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We introduce two notions of symmetry for surfaces in S3. The first, special
spherical symmetry, generalizes the notion of rotational symmetry, and we
classify all complete surfaces of constant mean curvature having this sym-
metry. These surfaces turn out to also be rotationally symmetric, so our
characterization answers a question first posed by Hsiang in 1982 and also
considered by several authors since. From this point of view, these are the
Delaunay surfaces of S3.

Our second notion of symmetry, spherical symmetry, is a substantial, and
we believe important, technical generalization of special spherical symme-
try. We classify all compact surfaces of constant mean curvature having this
symmetry. We show in particular that the only compact embedded minimal
surfaces possessing this kind of symmetry are the great spheres and the
Clifford torus.

We derive from our classification theorem a special case of Lawson’s con-
jecture that the only embedded minimal torus in S3 is the Clifford torus.

Introduction

We consider surfaces in the three-dimensional sphere S3
= {x ∈ R4

: |x| = 1}.
Perhaps the simplest notion of symmetry for surfaces in S3 is that of rotational
symmetry, as exemplified by the Clifford torus

C= {(x, y, z, w) ∈ R4
: x2
+ y2
= 1/2= z2

+w2
}.

It is usual to explain the symmetry of such a surface by saying it is invariant under
an S1 action that fixes a geodesic. We will take a somewhat different approach
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suggested by the decomposition of rotational symmetry into some sufficient num-
ber of invariances under reflection maps. Such a decomposition was first used by
Alexandrov [1962] and modified in the direction of our interest in [Wente 1980]
and [McCuan 1997]. Each of these papers consider surfaces in R3, and though the
symmetry conditions considered here are described directly in S3 without reference
to particular coordinates, we find it easiest to think about and describe these results
in terms of stereographic projections into R3 of the geometric objects involved.

The surface C mentioned above stereographically projects to the anchor ring

{
(x, y, z) ∈ R3

:
(√

x2+ y2−
√

2
)2
+ z2
= 1

}
,

which is rotationally symmetric in R3. The anchor ring is invariant under the
orientation-reversing transformation of reflection through each vertical plane con-
taining the z-axis. If we apply a preliminary rotation R of S3 to obtain the con-
gruent torus R(C), the stereographic projection of R(C) will not, in general, be
invariant under the orientation-preserving isometry of rotation in R3. Properly
generalized, however, invariance under reflections (Kelvin transforms) will be pre-
served.

Our first symmetry condition, special spherical symmetry, is more general than,
but includes, the usual condition of being invariant under an S1 action that fixes a
geodesic. Roughly speaking, the stereographic projection must be invariant under a
continuous one-parameter family of reflections (that is, Kelvin transforms) through
spheres, and these reflections must fit together in a nice way, that is, satisfy a
coherence condition. The case of rotational symmetry (of Alexandrov and Wente
and the standard projection of the Clifford torus) mentioned above appears as a
kind of degenerate case in which each of the spheres is a plane, and the coherence
condition requires that the planes all contain a common line. In the more general
case, it is required that the spheres of symmetry all contain a common circle.

Notice also that there are certainly surfaces in S3 with stereographic projection
rotationally symmetric in R3 but that do not satisfy the usual definition of rotational
symmetry in S3. The fact that our new notions of symmetry do not depend on
isometries of S3 is one of the reasons that they are more general and one of the
main reasons they are of interest.

In Section 2 we classify all complete, connected constant mean curvature sur-
faces having this symmetry; see Theorem 1 below. The classified surfaces are
parameterized explicitly in terms of elliptic integrals, and we can determine com-
pletely the topology, and compactness in particular, of each surface.

Next, we introduce a more general symmetry condition, spherical symmetry,
in which continuity of the one-parameter family of reflections is relaxed and the



SYMMETRIC SURFACES OF CONSTANT MEAN CURVATURE IN S3 65

coherence condition is partially relaxed. More precisely, in the stereographic pro-
jection, the symmetry spheres are not required to contain a common circle, but
their Euclidean centers are required to be points on a Euclidean line.

In Section 3 we show that all compact surfaces with spherical symmetry actually
posses special spherical symmetry; see Theorem 2. This classification restricted
to those surfaces that are embedded, compact and minimal gives a special case of
Lawson’s conjecture [Yau 1982, Problem 97]:

Theorem. The Clifford torus is the only embedded minimal torus with spherical
symmetry.

A somewhat analogous result under very different symmetry assumptions was
obtained by Ros [1995]. The referee brought to our attention the very beautiful
paper of Kilian and Schmidt [2008], which gives a much more extensive discussion
of Lawson’s conjecture than found here and proves the result under the assumption
that the torus has finite type.

The classification of complete constant mean curvature surfaces with spherical
symmetry remains open. We suspect there are no new surfaces in this broader
class, but we use compactness very strongly and cannot make that assertion with
any confidence.

Ultimately, the conditions of special spherical symmetry and spherical symme-
try each rely on invariance of the image of the surface considered as an immersion
into S3 from an abstract Riemannian manifold. For this reason, we must make
preliminary arguments in Section 1 to obtain an explicit local parameterization on
a domain in R2 whose dependent variables will satisfy explicit differential equa-
tions. The existence of such parameterizations has been, as far as we can tell,
simply assumed in the literature. Our basic parameterization result, Theorem 4,
should naturally generalize to apply in other contexts. Once a parameterization
is obtained, stereographic projection plays a key role again in providing a crucial
change of variables through which the equation of constant mean curvature takes
a form amenable to explicit integration.

Rossman and Sultana [2007; 2008] have recently considered classification ques-
tions similar to those considered here. The particular coordinates we have chosen
are crucial to the latter developments of the paper and have other advantages as
well, including making obvious the identification of these surfaces with the surfaces
of Delaunay and permitting easy access to explicit integral representation. Both of
these topics will be discussed further below.

0.1. Reflection and special spherical symmetry. We now describe the notion of
generalized (or spherical) reflection maps, on which our symmetry conditions are
based. There are two kinds of generalized reflection maps f :S3

→S3. The first is
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Figure 1. Cone point reflection.

the restriction to S3 of appropriate reflections of R4. To be precise, given n ∈ S3,

gn : S
3
→ S3, x 7→ x− 2(x · n)n

is the restriction to S3 of the reflection through the (hyper)plane {x ∈R4
: x ·n= 0}.

The intersection of this plane with S3 is the great sphere Gn = {x ∈S3
: x ·n= 0};

we will call such maps great sphere reflections, and they may be identified either
by the corresponding great sphere Gn or a corresponding normal n (determined up
to a sign). The great sphere Gn is also called the symmetry sphere of gn.

The second kind of map we wish to consider is determined by a point y ∈ R4

with | y|> 1. Each is an orientation-reversing diffeomorphism

h y : S
3
→ S3, x 7→ y+ (| y|2− 1) x− y

|x− y|2
.

The formula for h y also has a simple geometric interpretation. If ` is the line
through y and x, then ` ∩ S3

= { y, h y(x)}. The fixed point set of h y is the
nondegenerate sphere

Hy = {x ∈ S3
: x · y = 1},

which we call the symmetry sphere of h y. Note that if an observer is located at y,
then Hy appears as the horizon on S3; see Figure 1. Accordingly, we refer to h y as
the cone point reflection based at the cone point y ∈ R4

\ B1(0); the map h y may
be identified uniquely by either its horizon sphere Hy or its cone point y.

Definition 1 (special spherical symmetry). A set S ⊂ S3 has special spherical
symmetry if S is invariant under a family of generalized reflections consisting of
either all the great sphere reflections gn associated to the points n of a great circle
in S3 or all the cone point reflections h y associated to a line in R4

\ B1(0).
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0.2. Classification theorem. Our classification by Theorem 1 of constant mean
curvature (CMC) surfaces with special spherical symmetry bears a strong superfi-
cial resemblance to the classification of Delaunay surfaces (rotationally symmetric
constant mean curvature surfaces in R3). Recall that the Delaunay surfaces form
a two parameter family consisting of six qualitative types: spheres, cylinders,
catenoids, unduloids, nodoids, and planes. We borrow this terminology, so we
briefly recall some properties of these surfaces.

The surfaces of Delaunay are often indexed by the two parameters mean cur-
vature and neck size (the minimum distance from the meridian curve to the axis).
Neck size is positive, except for the spheres and the plane. After a rigid motion, one
may assume the axis of rotation is the vertical z-axis in R3 and that each surface
has a natural parameterization of the form

(1) (t, θ) 7→ (r cos θ, r sin θ, u),

where t 7→ (r(t), u(t)) parameterizes the surface’s meridian curve. Catenoids have
a unique neck, that is, point on the meridian curve closest to the axis. The meridian
curve of a catenoid is an embedded graph of an unbounded convex function over
the entire axis of rotation. After translating the neck to z= 0, the meridian is even.

The unduloids and nodoids have periodic meridians. The meridian of an un-
duloid is an embedded graph with one positive minimum (neck), one maximum
(bulge), and one inflection per closed half period, as shown in Figure 2. The
nodoids have immersed meridians of nonvanishing curvature with loops toward
the axis. When considered as a limit of unduloids or nodoids (neck size tending to
zero), the sphere naturally arises as a “string of pearls”.

Note finally that a multiple cover of the surface arises from the parameter θ
in (1). The parameterization becomes singular when r vanishes, as in the case of
the sphere and plane. Our classification theorem also gives a natural parameteri-
zation (2) containing a wrapping parameter φ and a dependent function r whose
behavior is completely analogous.

Theorem 1. The complete CMC surfaces in S3 with special spherical symmetry
form, up to rigid motions, a-two parameter family consisting of five qualitatively
different types of surfaces.

Generating curves and parameterization. Associated to each surface is a paramet-
ric curve γ : t 7→ (r(t), θ(t)) given explicitly in terms of elliptic integrals. Given
the generating curve γ, a fundamental domain on the corresponding surface is
parameterized by X : Dom(γ)×R→ S3, where

(2) X (t, φ)= 1
R
√

r2+1
(R cos θ, R sin θ, r sinφ, R

√
r2+ 1− 1)

and R =
√

r2+ 1+ r cosφ.
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Figure 2. The Delaunay surfaces and their meridian curves and
immersions: sphere, nodoid, unduloid, cylinder, catenoid, plane.

Differential equation and parameters for the space of surfaces. With the ex-
ception of the great sphere and the standard tori (described under classification
headings (i) and (ii) below), it is possible to take t = r on an appropriate inter-
val in [0,∞) and obtain the complete surface by taking closures (if necessary)
and extending by rigid reflection. In these cases, θ = θ(r) satisfies the ordinary
differential equation

(3) rθ ′′ = 2Hsr
(
θ ′2+

1
r2+1

)3/2
−

θ ′

r2+1
+ (r2

− 1)θ ′3,

where Hs is the mean curvature of the corresponding surface in S3. A first integra-
tion of this equation yields

(4) θ ′ =
c(r2
+1)−Hs√

(1+r2)(r2−(c(r2+1)−Hs)2)
,

where c is a constant of integration. We will use c as the second parameter to index
the solution surfaces.
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Figure 3. The parameter domain for symmetric CMC surfaces in S3.

Up to a choice of normal, all surfaces are represented in the parameter region

{(Hs, c) : 0< c ≤ (Hs +
√

H 2
s + 1)/2} ∪ {(Hs, 0) : Hs ≥ 0}.

While the expression (4) is not defined along the curve c = (Hs +
√

H 2
s + 1)/2,

these parameter values correspond naturally to the standard tori; see Figure 3. All
possible complete solution surfaces are as follows.

Classification.

(i) Spheres (c = Hs ≥ 0): For Hs 6= 0, we find the relation

r =
√

a2− (a2− 1) sin2 θ,

where a = 1/Hs . If this expression is used to define r = r(θ) for θ in
0≤ |θ | ≤ θmax = sin−1(1/

√
H 2

s + 1), the expression (2) regularly parameter-
izes a sphere minus the two points

{X (±θmax, φ)} = {(cos θmax,± sin θmax, 0, 1)}

on (−θmax, θmax)×R.
For Hs = 0, we take t = r ∈ [0,∞) and θ ≡ 0; the expression (2) then

parameterizes the open hemisphere {x = (x, y, z, w) ∈ S3
: x > 0, y = 0} of

the (minimal) great sphere {x ∈ S3
: y = 0}.
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(ii) Standard tori (c = (Hs +
√

H 2
s + 1)/2): In this case, we take

(5) r ≡ Hs +
√

H 2
s + 1

constant. If θ(t)= t in (2), we obtain a regular covering map of

{x : x2
+ y2
= 1/
√

r2+ 1, z2
+w2

= r/
√

r2+ 1},

which is a CMC torus.

(iii) Catenoid-type (c = 0, Hs > 0): Integration leads to the relation

θ =−Hs

∫ r

Hs

1√
(τ 2+1)(τ 2−H 2

s )
dτ=− cosαF(cos−1(Hs/r), α),

where α = sin−1(1/
√

H 2
s + 1) and F is the standard elliptic integral of the

first kind.1 Using this formula to define θ = θ(r), we can set

θmax =− lim
r↗+∞

θ(r)= cosαK (α)

with K the complete elliptic integral of the first kind. Then we can let r = r(θ)
be defined implicitly by the same formula on (−θmax, 0). This function has
a unique (real analytic) extension to (−θmax, θmax) that is even, convex and
unbounded; see Figure 4.

The image of the resulting mapping (2) restricted to [0, θmax) is an embed-
ded topological cylinder bounded by the circles

C0 = X ({0}×R)=
{

x ∈ S3
: y = 0, x = 1/

√
H 2

s + 1
}

and the great circle

C1 = lim
θ↗θmax

X ({θ}×R)= {x ∈ S3
: x = 0= y}.

The surface extends smoothly (by reflection y 7→ −y) according to the same
formula on −θmax < θ ≤ 0. If we extend r = r(θ) to (θmax, 3θmax) by the
formula r(θ)=−r(θ−2θmax), formula (2) leads to a smooth extension across
C1 by reflection with respect to the plane x + y tan θmax = 0. More generally,
we extend the function r = r(θ) to be periodic on R \ {(2k + 1)θmax : k ∈ Z}

with period 4θmax. In this way, the image

Ik = X (((2k− 1)θmax, (2k+ 1)θmax)×R)

under the map given in (2) is the reflection of Ik+1 with respect to the plane
x + y tan(2k + 1)θmax = 0; the union Ik ∪Ik+1 ∪C1 of these two embedded

1See Section 2 below for our precise conventions concerning parameters in the elliptic integrals.
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θ

r

Figure 4. The generating curve for catenoid-type surfaces. Also
shown are one “horn” of the stereographic projection of the
catenoid-type surface with H =±1, and projections that illustrate
the extension of the surface from a fundamental domain. The horn
is actually only a portion of the (stereographic projection of a)
fundamental domain; the fundamental domain occupies the entire
sector 0≤ θ < θmax. The top row projections show first the outline
of the projection into the (x, y)-plane of the horn and, second, ex-
tension by reflection across C0. The bottom row shows extension
across C1 (which is the z-axis in the projection).

annuli and the disjoint circle C1 form a single smooth CMC annulus (which
is embedded if θmax ≤ π/4).

The union
⋃

k Ik ∪ C1 is a strictly immersed topological cylinder. As Hs

increases from 0 to ∞, the value of θmax increases and takes all values be-
tween 0 and π/2. The immersion is a covering of a torus if and only if
θmax = nπ/(2m), where n,m ∈ N are relatively prime and n < m. In this
case, C1 is covered 2m times by the immersion for 0≤ θ ≤ 4mθmax = 2nπ .
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(iv) Unduloid-type (max{0, Hs}< c < (Hs +
√

H 2
s + 1)/2): For

rmin =
1−
√

1−4c(c−Hs)
2c

≤ r ≤ rmax =
1+
√

1−4c(c−Hs)
2c

,

we have the relation

(6) θ =

∫ r

rmin

cτ 2
+c−Hs√

(1+τ 2)(τ 2−(cτ 2
c −Hs)2)

dτ =

c−Hs
crmaxd0

F
(

sin−1

√
1− (rmin/r)2

1−µ2 , α

)
+
µrmin

d0
5

(
ν, sin−1

√
1− (rmin/r)2

1−µ2 , α

)
,

where

µ= rmin/rmax, d0 =
√

1+ r2
min, ν = 1−µ2, α = sin−1(

√
ν/d0),

and 5 is the standard elliptic integral of the third kind.2 This relation deter-
mines an interval

(7) 0≤ θ ≤ θmax =

∫ rmax

rmin

cτ 2
+c−Hs√

(1+τ 2)[τ 2−(cτ 2
c −Hs)2]

dτ

=
c−Hs

crmaxd0
K (α)+ µrmin

d0
5(ν, π/2, α).

We may then use (6) to define r = r(θ) on [0, θmax] and extend r to be even
and periodic with period 2θmax; see Figure 5. The resulting immersion (2) has
an immersed topological cylinder as image.

For these unduloid-type surfaces, θmax as a function of Hs and c is a map-
ping onto the interval (0, π).

A given unduloid-type immersion is a covering of an immersed torus if and
only if θmax is a rational multiple of π . Such an immersed torus is embedded
if and only if θmax = π/m for some m = 1, 2, 3, . . . . This does not occur for
Hs ≤0 or m=1, but it does occur for Hs >0. In fact, for each m=2, 3, 4, . . .
the relation θmax(Hs, cm) = π/m defines a unique smooth increasing func-
tion cm = cm(Hs) taking the interval [(cot(π/m), (m2/2−1)/

√
m2− 1] onto

[cot(π/m),
√

m2− 1/2]. Each pair of parameters (Hs, cm(Hs)) corresponds
to an embedded unduloid-type torus with m bulges and m necks. See Figure 6.

(v) Nodoid-type (0< c < Hs): For

rmin =
−1+

√
1− 4c(c− Hs)

2c
≤ r ≤ rmax =

1+
√

1− 4c(c− Hs)

2c
,

2See Section 2 below for our precise conventions concerning parameters in the elliptic integrals.
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Figure 5. The generating curve for unduloid-type surfaces (one
period corresponding to 0 < θ < 2θmax) and the stereographic
projection of two fundamental domains. The parameter values for
this surface are (Hs, c)= (.25, .5), and θmax ≈ 1.8> π/2.

we have the relation (6). The function θ(r) thereby defined is not monotone in
this instance, but the inclination angle ψ = ψ(r) satisfying

sinψ = θ ′
√

1+θ ′2

is monotone and allows us to define r=r(ψ) and θ=θ(ψ) so that r(ψ −π/2)
is even and periodic with period 2π , and θ(ψ + π) = θ(ψ) + θmax, where
θmax is given by (7). The resulting generating curve γ : ψ 7→ (r(ψ), θ(ψ))
resembles the meridian of a nodoid; it has nonvanishing curvature and loops
toward the θ -axis.

This immersed curve gives rise, via (2), to a strictly immersed cylinder that
covers an immersed torus if and only if θmax is a rational multiple of π . See
Figure 7.
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Figure 6. The parameter curves for unduloid-type embedded tori
and corresponding examples for m = 2, 3.

θ

r

Figure 7. Two periods of the generating curve for a nodoid-type
surface and the stereographic projection of one half period of the
surface (one fundamental domain).

0.3. Radial lines and spherical symmetry. One drawback of Definition 1 is that it
appears to simply concatenate two unrelated notions of symmetry (having a great
circle’s worth of great circle reflectional symmetry — which is equivalent to ro-
tational symmetry — or a line’s worth of cone point reflectional symmetry). We
obtain some unification of these two kinds of symmetry by using radial lines. The
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e4

`∗

Figure 8. Reflections with the same radial line.

radial line associated to the great circle reflection gn is

`∗ = {e4+ tn : t ∈ R},

which passes through the north pole e4 = (0, 0, 0, 1) in the direction of n. The
radial line associated to the cone point reflection h y is

`∗ = {(1− t)e4+ t y : t ∈ R},

which passes through e4 and y. If any line `∗ = {e4 + tv : t ∈ R} through e4 is
specified as a radial line, then a certain family of generalized reflections is specified.
The family consists of cone point reflections h y associated to the points in `∗\B1(0)
and the great circle reflection gn, where n = v/|v|. The family of generalized
reflections associated to `∗ is indicated (by symmetry spheres) in Figure 8. The
map that associates to a generalized (cone point) reflection a specific point y∈ `∗ is
called the radial function. The terminology for radial lines and the radial function
will be explained in Section 1 below. We now formulate the definition of spherical
symmetry, which takes advantage of this unified viewpoint concerning reflections.

Definition 2 (spherical symmetry). A set S in S3 has spherical symmetry if there
exists a family 3 of generalized reflections such that

(i) S is invariant under each map in 3, and



76 RYAN HYND, SUNG-HO PARK AND JOHN MCCUAN

(ii) There is some line 3∗ = {b+ tv : t ∈ R} ⊂ R4
\ B1(0) such that

(8)
⋃
`∗∈R

`∗ ⊃3∗ ∪ {e4+ v/|v|},

where R is the set of radial lines associated to maps in 3.

We prove the following classification theorem in Section 3.

Theorem 2. Any spherically symmetric surface that is compact has special spher-
ical symmetry. Consequently, the compact spherically symmetric CMC surfaces
are either

(i) spheres,

(ii) standard tori,

(iii) catenoid-type tori with θmax = nπ/(2m), with m, n ∈ N relatively prime and
n/m < 1,

(iv) unduloid-type tori with θmax = nπ/m, with m, n ∈ N relatively prime and
n/m < 1, or

(v) nodoid-type tori with θmax = nπ/m.

The embedded examples are spheres, standard tori, and countably many unduloid-
type tori corresponding to θmax = π/m, with m = 2, 3, 4, . . . ; all unduloid-type
examples correspond to parameters in our classification with Hs > 0.

Corollary 1. The only embedded minimal torus with spherical symmetry is the
Clifford torus.

Some authors, for example [Hsiang 1982; Jagy 1998; Park 2002; Brito and
Leite 1990], have considered formally the family of rotationally symmetric CMC
surfaces generated by an appropriate meridian curve. It turns out that the surfaces
described in Theorem 1 are precisely these surfaces, though the parameteriza-
tion (2) we have chosen does not make this apparent. In the final Section 4 we
briefly describe the meridian curves associated to these surfaces.

Still other authors, for example [Ôtsuki 1970; do Carmo and Dajczer 1983], have
considered in greater detail the special case of minimal surfaces in this context.
Aside from the great sphere, all minimal surfaces are unduloid-type. Thus, our
assertion that θmax is never π/m for Hs ≤ 0 generalizes a result of Ôtsuki [1988]
asserting that in the minimal case π/2< θmax < π/

√
2.

1. Preliminaries

Here we discuss the definitions of spherical symmetry introduced above, and we
describe in particular the notion of spherical symmetry along a line in R3. This is
an important technical tool in our proofs of the classification theorems.
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Recall that stereographic projection

(9) π : S3
\ {e4} → R3, x = (x, y, z, w) 7→ 1

1−w
(x, y, z)

is a conformal (angle-preserving) diffeomorphism with inverse given by

π−1
: x = (x, y, z) 7→ 1

|x|2+1
(2x, 2y, 2z, |x|2− 1).

The domain of the mapping π may be extended by the same formula to R4
\{w=1}.

We denote the resulting surjection by π .

Notation. An effort will be made to denote points in Rn with lowercase boldface
letters or by uppercase letters when the image of an immersion is under discussion
(see two paragraphs below). The j-th standard basis vector (with 1 in the j-th entry
and zeros elsewhere) will be denoted by e j . The coordinates of points may appear
as (x, y, z, w) or (x1, x2, x3, x4). We will underline points to indicate that they have
been projected into a lower dimensional subspace. Thus, when x = (x, y, z, w),
the point x will denote (x, y, z). Among these conventions, the context should
make any ambiguities clear.

By a rotation of S3, we mean the restriction to S3 of a linear transformation
of R4 with determinant 1. Similarly, a rotation of R3 is an element of SL3(R).
Our discussion could be given with little change in the context of rigid motions,
that is, linear transformations with determinant ±1. Certain special rotations will
be important for the discussion below. If R is a rotation of R3, then the trivial
extension of R to R4 is the rotation of R4 defined by e j 7→ (R(e j ), 0) for j = 1, 2, 3
and e4 7→ e4. We will denote this trivial extension by the same name R. We denote
rotations of the coordinate 2-planes in R4 by superscripting the rotated coordinates
and subscripting the angle. Thus, Rxw

ψ is the rotation corresponding to the matrix
cosψ 0 0 −sinψ

0 1 0 0
0 0 1 0

sinψ 0 0 cosψ

 .
With this notation, we observe the following result, whose proof may be found in
[McCuan and Spietz 1998].

Theorem 3. Any rotation R of S3
⊂ R4 is a composition

(10) R = R0 ◦ Rxw
ψ ◦ Rzw

φ ◦ Rxy
θ ,

where R0 is the trivial extension to R4 of a rotation of R3
= {(x, y, z, 0)}.
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Throughout the paper S will denote the image in S3 of a smooth immersion
X0 : M → S3, where M is a complete, connected two-dimensional Riemannian
manifold without boundary. It will be assumed, in general, that the immersion has
constant mean curvature and that the image S= X0(M) is spherically symmetric.
We assume explicitly that M is second countable so that S has measure zero and
has, in particular, dense complement [Hirsch 1994, Proposition 3.1.2].

For n= (n1, n2, n3, n4)∈S3 and 0≤ B ≤π , the sphere with center n and radius
B is 0 = {x ∈ S3

: dist(x, n) = B}, where the distance is measured intrinsically
in S3. Equivalently, this sphere is given by

(11) 0 = {x ∈ S3
: x · n= cos B}.

The center and radius are not unique but are determined to the extent that they lie
among specific pairs {(n, B), (−n, π − B)}. More generally, we recognize (11)
as the intersection with S3 of a hyperplane {x ∈ R4

: x · y = | y| cos B}. We say
that 0 is nondegenerate if 0 < B < π . In this case, 0 is a smooth submanifold
that stereographically projects to a round sphere (or a flat plane if the north pole is
in 0). To be precise, one finds π(0)= Sρ(a)≡ ∂Bρ(a), where

a = y/(| y| cos B− y4) and ρ = | y| sin B/|y4− | y| cos B|

when e4 /∈0 and π(0\{e4})= {x : x · y= y4} otherwise. In this way, stereographic
projection provides a one-to-one correspondence between the set of nondegenerate
spheres in S3 and the set of nondegenerate spheres and planes in R3. For refer-
ence, we record the explicit formulas for the inverse stereographic projection of a
sphere Sρ(a), which is

{x ∈ S3
: x · (−2a, ρ2

− |a|2+ 1)= ρ2
− |a|2− 1},

and a plane {x ∈ R3
: x · n= e}, which is

{x ∈ S3
: x · (n, e)= e} \ {e4}.

A great sphere in S3 is one of radius π/2. Alternatively, a great sphere is the
intersection of a hyperplane subspace with S3. The great spheres are in one-to-one
correspondence with the spheres and planes in R3 passing through a great circle
on S2. A circle in S3 or R3 arises as the intersection of two spheres. Aside from
degenerate cases, the collection of circles in S3 is in one-to-one correspondence
with the collection of circles and lines in R3. A great circle is the intersection of
two distinct great spheres.

1.1. Special spherical symmetry and a parameterization theorem. We now con-
sider a surface S with special spherical symmetry and examine its stereographic
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projection P = π(S \ {e4}). We begin by obtaining several refinements of the
following basic result.

Lemma 1. If S ⊂ S3 has special spherical symmetry, then there is a rotation Rs

such that P= π(Rs(S) \ {e4}) is rotationally symmetric about an axis in R3.

Proof. Let us first assume the symmetry group of S contains the great sphere
reflections G={gn : n ·m= 0= n ·m̃}, where m and m̃ are nonparallel unit vectors.
By preliminary rotation, we may assume m̃ = e1 and m = (m1,m2, 0, 0) 6= ±e1.
In this situation,

G= {gn : n= (0, 0, n3, n4) ∈ S3
}.

Our primary interest is in this position, the Apollonian position. Only one of the
associated great spheres Gn = {x ∈ S3

: x · n = 0}, namely Ge3 , contains e4. To
obtain a specific local parameterization for such a surface, we temporarily consider
a rotation to another position in which each of the symmetry spheres contains e4.
Let us, in particular, consider a rotation Rs of S3 for which e1 7→ e4, e2 7→ e3,
e3 7→ −e1, and e4 7→ e2. This rotation decomposes as

(12) Rs
= Ryz

π/2 ◦ Rxw
π/2 ◦ Rzw

π/2.

The surface Ss = Rs(S) is now said to be in symmetric position, and Ss is in-
variant under the great sphere reflections in Gs = {gn : n = (n1, n2, 0, 0) ∈ S3

}

with corresponding symmetry great spheres Gn = {x ∈S3
: x ·n= 0}, which each

contain e4 and stereographically project to planes

Pn = π(Gn \ {e4})= {x ∈ R3
: x · n= 0}.

Each of these planes contains the z-axis, and a calculation shows that gn ∈ Gs

induces a standard reflectionψn( p)= p−2( p·n)n about Pn in R3. It is well known
(see for example [Hopf 1983, Chapter VIII §2]) that this implies Ps =π(Ss \{e3})

is invariant under all rotations about the z-axis.
We turn next to the situation in which the symmetry group of S contains the cone

point reflections h y corresponding to the cone points y along a line in R4
\ B1(0).

The conclusion is substantially the same, though the calculation is somewhat more
technical, and several of it details generalize the discussion above.

A line in R4
\ B1(0) may be represented as { y0 + tv : t ∈ R}, where y0, with

| y0|> 1, is the closest point on the line to S3, v ∈S3, and y0 ·v = 0. The horizon
sphere Hy0 ={x ∈S3

: x · y0=1} intersects the great sphere Gv={x ∈S3
: x ·v=0}

in a circle C0. It is easily checked that

C0 = Hy0 ∩Gv = Hy0+tv ∩ Hy0 = Hy0+tv ∩Gv for all t ∈ R \ {0},
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and an explicit parameterization of C0 is given by

γ(A)= y0
α2 +

√
α2−1(cos A w1+sin A w2)

α
=

1
α2 y0+

1
c
(cos A w1+ sin A w2),

where α = | y0|, a = 1/
√
α2− 1, c = aα =

√
a2+ 1, and {w1,w2, y0/α, v} is an

orthonormal basis for R4.
Using a preliminary rotation, we may assume w1= e1, w2= e2, y0= αe3, and

v = e4. With this normalization, we have

γ(A)= cos Be3+ sin B(cos A e1+ sin A e2),

where cos B = a/c and sin B = 1/c; this is again called the Apollonian position.
We now obtain symmetric position by applying a rotation Rs so that the inter-

section circle Cs = Rs(C0) passes through the north pole e4. One rotation that does
this is Ryz

π/2◦Rxw
B ◦Rzw

π/2. This choice is fairly straightforward in light of the rotation
decomposition theorem (Theorem 3) and the ansatz that the inverse rotation satis-
fies e4 7→γ(0)=cos Be3+sin Be1 and, in addition, that π◦Rs(cos Be3−sin Be1)=

−ae1. More generally, we may apply

Rs
= Ryz

π/2 ◦ Rxw
B ◦ Rzw

π/2 ◦ Rxy
−A0

,

where A0 is any fixed angle. Note that Rxy
−A0

leaves C0 invariant, but moves a
specified point γ(A0) to γ(0)= cos Be3+ sin Be1, so that Rs

◦ γ(A0)= e4.
In symmetric position, therefore, the intersection circle Cs = R(C0) is parame-

terized by

γs(A)= cos B(− sin Be1+ cos Be4)

+ sin B(cos(A− A0)(cos Be1+ sin Be4)+ sin(A− A0)e3)

= cos B sin B(cos(A− A0)− 1)e1+ sin B sin(A− A0)e3

+ (cos2 B+ sin2 B cos(A− A0))e4.

Note γs(A0) = e4, and the stereographic projection of Cs \ {e4} is parameterized
by

π ◦ γs(A)=− cot Be1+ csc B sin(A−A0)
1−cos(A−A0)

e3

= (−a, cα sin(A− A0)/(1− cos(A− A0)), 0).

For A ∈ (0, 2π), the function f (A)= sin A/(1−cos A) is decreasing and takes all
values in R. Thus, π(Cs \ {e4}) is the vertical line L through (−a, 0, 0) in R3.

One also checks that π(Hy \{e4}), where y= Rs( y0+ tv)=−α sin Be1+ te2+

α cos Be4 =−e1/a+ te2+ e4, is the plane

(13) Py = {x ∈ R3
: x · (−e1/a+ te2)= 1},
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Figure 9. Stereographic projections of an annular surface. At left,
Apollonian position; also shown is the image of the circle C0.
At right, symmetric position; notice the horizontal vertical axis
L = π(Cs) \ {e4} of rotational symmetry.

and h y induces the standard reflection ψ y( p) = p− 2( p · y− 1) y/| y|2 about Py

on R3. All planes containing the vertical line L = π(Cs \ {e4}) are represented in
(13) as t ranges over R, except the x, z-plane. It follows that Ps = π(Rs(S)\{e4})

is invariant under rotation about the vertical line L . See Figure 9. �

In view of the foregoing discussion, we digress temporarily to prove a parame-
terization theorem for rotationally symmetric images in R3.

Theorem 4. Let Y : N → R3 be an immersion of a complete, second countable,
two-dimensional manifold N , complete in the metric induced by the immersion
and without boundary. Assume the image Y (N ) is rotationally symmetric with
respect to the vertical axis L = {(−a, 0, t) : t ∈ R}. Then either each connected
component Nc of N is diffeomorphic to R2 and Y is an embedding of each Nc

onto a horizontal plane, or there is a point p0 ∈ N whose image p0 = Y (p0) has
the form (−a + r0, 0, z0) with r0 > 0, and there is some ε > 0, an immersion
 : R× (z0 − ε, z0 + ε)→ N and a smooth positive function r = r(z) defined on
(z0− ε, z0+ ε) such that

(i) Y ◦  (θ, z)= (−a+ r cos θ, r sin θ, z),

(ii)  (0, z0)= p0, and

(iii) for every θ ∈R, the restriction  : (θ, θ+2π)×(z0−ε, z0+ε)→ N is a local
parameter chart for N.

Proof. Evidently, the special case of the theorem when a = 0 and L is the z-axis
implies the result as stated.
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Consider the action R of rotation about the z-axis Z on R3
\ Z . We will use the

notations

Rθ (x)=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x and Ṙθ (x)=

− sin θ − cos θ 0
cos θ − sin θ 0
0 0 0

 x.

Note that Ñ = N \ Y−1(L) is a nonempty open submanifold of N . Any point
p0 ∈ Ñ has image p0 = Y (p0) = (r0 cos θ0, r0 sin θ0, z0) where r0 > 0. Let
ξ :U → V ⊂ R2 be a local coordinate chart on Ñ with ξ(p0) = (0, 0) and such
that Y ◦ ξ−1 is an embedding of V into R3

\ L . Set S0 = Y (U ).
We claim that Ṙ0( p) ∈ TpR3 satisfies Ṙ0( p) ∈ TpS0 for every p ∈ S0. In fact,

this is obvious from the rotational symmetry, since otherwise Ṙ0( p) is transverse
to TpS0, and we find Y (N ) ⊃

⋃
θ Rθ (S0), which contains an open set in R3;

this contradicts our assumption that N is second countable since Hirsch shows
in [1994, Proposition 3.1.2] that all images of second countable manifolds have
empty interior. We thus obtain a nonvanishing vector field

wξ = (d(Y ◦ ξ−1)−1 Ṙ0(Y ) on V ⊂ R2.

By reparametrizing V [Chern 1959, Theorem 1.4], we may assume w = e2, or
equivalently w = ∂/∂v2 in terms of (v1, v2)-coordinates on V .

It follows that the images under Y ◦ξ−1 of the coordinate lines v1= constant in
V lie along the circular orbits of R. In fact, Y ◦ ξ−1(v1, v2)= Rv2(Y ◦ ξ

−1(v1, 0))
at least locally in some open ball about (0, 0) ∈ V , since both expressions satisfy
the ODE

dx
dv2
= Ṙ0(x), x(0)= Y ◦ ξ−1(v1, 0).

A local basis for TpS0, where p= Y ◦ ξ−1(v1, v2), is thus given by

u := d
dv1

(Y ◦ ξ−1(v1, v2)) and Ṙ0( p).

Since these vectors are independent, u·e3= 0 if and only if Y = (Y1, Y2, 0)∈ TpS0.
Let us consider first the possibility that Y (0, 0)∈ Tp0S0 for every p0 ∈Y (N )\L .

In this case, we consider

η : V → R2, (v1, v2) 7→ χ ◦ Y ◦ ξ−1(v1, v2)

where χ is a branch of polar coordinates on [θ0−π, θ0+π). Note that

Dη(v1, v2)=

(
(Y · u)/χ1 0

(Ṙ0(Y ) · u)/χ2
1 1

)
, where χ1 = |Y |.

In particular, det Dη(0, 0) = p0 · u0/r0 where u0 = u(0, 0). We are assuming
u0·e3=0, so u0 = (u0 · p0) p0/r2

0 + (u0 · Ṙ0( p0))Ṙ0( p0)/r2
0 . Since u0 and Ṙ0( p0)
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are linearly independent, we must have u0 · p0 6= 0. Thus, η is invertible in some
neighborhood V0 ⊂⊂ V . Setting U0 = ξ

−1(V0), we have a local coordinate chart
ζ = η ◦ ξ : U0→ R2 for which Y ◦ ζ−1(r, θ) = (r cos θ, r sin θ, z0). The form of
the first two coordinates follows from the definition of η−1; the last coordinate is
a consequence of the fact that u · e3 = 0= Ṙ0(Y ) · e3.

There exist positive numbers ε, δ > 0 such that

(r0− ε, r0+ ε)× (θ0− δ, θ0+ δ)⊂ η(V0),

and we have an immersion

ı = ζ−1
: (r0− ε, r0+ ε)× (θ0− δ, θ0+ δ)→ N

satisfying Y ◦ ı(r, θ)= (r cos θ, r sin θ, z0) and ı(r0, θ0)= p0.
We first extend ı to a local diffeomorphism on all of (0,∞)×R onto all of Nc,

where Nc is the component of N containing p0. The resulting map will still satisfy
Y ◦ ı(r, θ)= (r cos θ, r sin θ, z0).

Let ı now also denote a maximal extension of ı = ζ−1 to an open subset 6 of
(0,∞)× R such that Y ◦ ı(r, θ) = (r cos θ, r sin θ, z0) and for every θ ∈ R, the
restriction of ı to 6 ∩ (0,∞)× (θ, θ + 2π) is a local parameter chart for N . We
claim that 6 = (0,∞)×R. Otherwise, there is some (r∗, θ∗) ∈ ∂6 ∩ (0,∞)×R.
Since the point p0 in the reasoning above was arbitrary in Ñ , we may apply the
same argument to

p∗ = lim
63(r,θ)→(r∗,θ∗)

ı(r, θ)

and obtain a nontrivial extension of ı to a neighborhood of (r∗, θ∗), which contra-
dicts the maximality of ı .

Finally, we set q0 = limr→0 ı(r, θ). Since this point is well defined, we see that
Nc = ı(6)∪ {q0} is diffeomorphic to R2.

We now turn to the alternative situation in which there is a point p0 ∈ Ñ with

Y (p0)= p0 = (r0 cos θ0, r0 sin θ0, z0)

and Y (p0) = (r0 cos θ0, r0 sin θ0, 0) /∈ Tp0S0, where S0 = Y (U ) is the image of
a coordinate neighborhood with local coordinate ξ : U → V ⊂ R2 on Ñ with
ξ(p0) = (0, 0) and Y ◦ ξ−1 an embedding much as above. Continuing the same
line of reasoning, we may assume v1 is the polar displacement in local coordinates
v1, v2 on V . In this case

(14) Y ◦ ξ−1(v1, v2)= Rv1−θ0(Y ◦ ξ
−1(0, v2))

locally near (0, 0) ∈ V and

v(v1, v2) :=
∂
∂v2

(Y ◦ ξ−1(v1, v2))
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satisfies v · e3 6= 0 (also near the origin). We consider the map

η(v1, v2)= (χ2 ◦ Y ◦ ξ−1(v1, v2), Y ◦ ξ−1(v1, v2) · e3

= (θ0+ v1, Rv1(Y ◦ ξ
−1(0, v2)) · e3)

= (θ0+ v1, Y ◦ ξ−1(0, v2) · e3)

and note that

(15) Dη =
(

1 0
0 v · e3

)
where v = v(0, v2).

In particular, det Dη(0, 0) is nonzero, and again we obtain a local coordinate chart
ζ = η ◦ ξ :U0→ R2 where V0 ⊂⊂ V and U0 = ξ

−1(V0). This time, however, we
find

Y ◦ ζ−1(θ, z)= (r cos θ, r sin θ, z), where r = r(θ, z)= χ1 ◦ Y ◦ ζ−1(θ, z).

We claim that r = r(z) is independent of θ . To see this, we compute

∂
∂θ
(χ1 ◦ (Y ◦ ξ−1) ◦ η−1(θ, z0))=

Y ◦ ζ−1(θ, z)
χ1 ◦ Y ◦ ζ−1(θ, z)

D(Y ◦ ξ−1(η−1(θ, z)) · ∂
∂θ
· (η−1(θ, z)).

We have from (15) that

Dη−1(θ, z)= 1
det Dη(θ, z)

=

(
v(η−1(θ, z)) · e3 0

0 1

)
.

Thus,

∂
∂θ
(χ1 ◦ Y ◦ ζ−1(θ, z))= µY ◦ ζ−1(θ, z) · ∂(Y ◦ξ

−1)
∂v1

(η−1(θ, z)),

where µ = v(η−1(θ, z)) · e3/(χ1 ◦ Y ◦ ζ−1(θ, z) det Dη(η−1(θ, z))). On the other
hand, using (14),

∂(Y ◦ξ−1)
∂v1

(η−1(θ, z))= Ṙη−1
1 (θ,z)(Y ◦ ξ

−1(0, η−1
2 (θ, z)))

= Rπ/2+η−1
1 (θ,z)(Y ◦ ξ

−1(0, η−1
2 (θ, z)))

= Rπ/2(Y ◦ ξ−1
◦ η−1(θ, z)).

Thus,
∂
∂θ
(r(θ, z))= µY ◦ ζ−1(θ, z) · Rπ/2(Y ◦ ζ−1(θ, z))= 0,

and r = r(θ) as claimed.
We conclude that  := ζ−1

: (θ0− δ, θ0+ δ)× (z0− ε, z0+ ε)→ N is a well-
defined immersion (for ε and δ small enough) that satisfies conditions (i) and (ii)
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Figure 10. Mappings used to obtain an explicit parameterization.
Unlabeled mappings are either identity immersions or composi-
tions as shown.

of the theorem. Finally, we let  also denote an extension to a subset 6 of the strip
R× (z0− ε, z0+ ε) that is maximal subject to these conditions:

•  is an immersion.

• There is a smooth positive function r = r(z) defined on

62 := {z such that there exists a θ ∈ R with (θ, z) ∈6}

such that Y ◦  (θ, z)= (r cos θ, r sin θ, z).

• For every θ ∈ R, the restriction  :6 ∩ (θ, θ + 2π)× (z0− ε, z0+ ε)→ N is
a local parameter chart for N .

It follows that  satisfies all the conditions of the theorem’s second alternative. �

We now return to the CMC immersion X0 : M → S3. In the discussion that
follows, the diagrams of Figure 10 display the relations between various sub-
manifolds and maps. We set N = M \ (Rs

◦ X0)
−1(e4) and apply Theorem 4

to Y0 = π ◦ Rs
◦ X0 : N → R3 to obtain the following basic result.

Lemma 2. If X0 : M → S3 has image S with special spherical symmetry, then
either S is a sphere, or (without loss of generality) there is some ε > 0 and a
nonsingular immersion  : (−ε, ε)×R→ M , a positive smooth function r = r(θ)
defined on (−ε, ε), a positive constant ρ0 > 0, and another constant h such that
X0 ◦  satisfies

π ◦ X0 ◦  (θ, φ)= (R cos θ, R sin θ, r sinφ+ h)

where R =
√

r2+ ρ2
0 + r cosφ.
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Proof. If Y0 parameterizes horizontal planes, then we let Nc be any connected
component of N . We know Y0(Nc) = {(x, y, h)} for some h ∈ R, and by the
formula for inverse stereographic projection,

Rs
◦ X0(Nc)= {x ∈ S3

: x · (e3+ he4)= h} \ {e4}.

Since the image of X0 is complete, there is some p0 ∈ M for which

lim
p∈Nc,|Y0(p)|→∞

p = p0 and Rs
◦ X0(p0)= e4.

There is a neighborhood U0 of p0 in M such that U0 \ {p0} ⊂ Nc, and it follows
that M = Nc ∪ {p0} is a sphere with X0(M)= Rs

{x ∈ S3
: x · (e3+ he4)= h}.

If the second alternative of Theorem 4 holds, there is an immersion

 : R× (z0− ε, z0+ ε)→ N

such that Y0 ◦  (θs, zs)= (−a+ rs cos θs, rs sin θs, zs) parameterizes an embedded
annulus. Since Y0 = π ◦ Rs

◦ X0, we find

Rs
◦ X0 ◦  =

(2(−a+ rs cos θs), 2rs sin θs, 2zs, a2
− 2ars cos θs + rs

2
+ zs

2
− 1)

a2− 2ars cos θs + rs
2+ zs

2+ 1

=
(2(−a+ rs cos θs), 2rs sin θs, 2zs, µ

2
− 2ars cos θs − 2)

µ2− 2ars cos θs
,

whereµ2
=rs

2
+zs

2
+a2
+1. Note that the s subscripts on rs , θs , and zs indicate that

these are cylindrical coordinates specifically associated with the projection from
symmetric position. For zs fixed, the expression Rs

◦ X0 ◦  (θs, zs) parameterizes
a circle 0s(zs) in S3. Since X0 ◦  is an embedding (mod 2π in θs), we know
that e4 can lie in at most one of the Apollonian circles 0(zs) := (Rs)−1(0s(zs)).
By adjusting the zs interval if necessary, we may assume that e4 does not belong
to {X0 ◦  (R× (z0− ε, z0+ ε)}. Thus, π(0(zs)) is a circle in R3 for every zs .

Recalling that c=
√

a2+ 1= csc B and Rs
= Ryz

π/2 ◦ Rxw
B ◦ Rzw

π/2 ◦ Rxy
−A0

, we find

Rxw
B ◦ Rzw

π/2 ◦ Rxy
−A0
◦ X0 ◦  =

(2(−a+ rs cos θs), 2zs,−2rs sin θs, µ
2
− 2ars cos θs − 2)

µ2− 2ars cos θs
,

Rzw
π/2 ◦ Rxy

−A0
◦ X0 ◦  =

(µ2
− 2c2, 2czs,−2crs sin θs, aµ2

− 2c2rs cos θs)

c(µ2− 2ars cos θs)
,

since cos B = a/c and sin B = 1/c. Hence,

Rxy
−A0
◦ X0 ◦  =

(µ2
− 2c2, 2czs, aµ2

− 2c2rs cos θs, 2crs sin θs)

c(µ2− 2ars cos θs)
,



SYMMETRIC SURFACES OF CONSTANT MEAN CURVATURE IN S3 87

If µ2
−2c2

≡ 0 on (z0−ε, z0+ε), then rs(zs)≡
√

c2− zs
2, and the annular image

Ps of Y0 ◦  is a part of the sphere ∂Bc(−a, 0, 0). In particular, X0 is an isometry
onto a portion of a great sphere locally near the point p0.

If µ2
− 2c2 does not vanish identically, we may again adjust the zs interval and

assume

(16) θ = θ(zs)= tan−1
( 2czs
µ2−2c2

)
is well defined for zs ∈ (z0 − ε, z0 + ε). If θ ′ ≡ 0, then we have an ODE for
rs = rs(zs), namely, ( 2czs

µ2−2c2

)′ / (
1+

( 2czs
µ2−2c2

)2)
= 0,

that is, 2zsrsrs
′
− rs

2
+ zs

2
+ c2

= 0. The solutions of this equation have the
form rs(zs) =

√
c2− zs

2+ 2kzs , and Y0 ◦  parameterizes a portion of the sphere
∂B√c2+k2(−a, 0, k). Again, X0 ◦  parameterizes a portion of a great sphere.

Finally, if θ ′ does not vanish identically, we may restrict the values of zs to an
interval (z0− ε, z0+ ε) on which θ ′(zs) does not vanish. Furthermore, projecting,
we have

π ◦ Rxy
−A0
◦ X0 ◦  =

(µ2
−2c2, 2czs, aµ2

−2c2rs cos θs)
c(µ2−2ars cos θs−2rs sin θs)

=
(µ2
−2c2, 2czs, aµ2

−2c2rs cos θs)
c(µ2−2crs cos(θs−B))

=

√
(µ2− 2c2)2+ 4c2zs

2

c(µ2− 2crs cos(θs − B))
(cos θ, sin θ, 0)

+
aµ2
−2c2rs cos θs

c(µ2−2crs cos(θs−B))
(0, 0, 1).

Notice that if zs is fixed, then θ = θ(zs) is constant and the last expression is a
parameterization of the circle π ◦ Rxy

−A0
(0(zs)) in the plane y = x tan θ . In order

to see this in more convenient coordinates, set

γ0(θs, zs)=

√
(µ2−2c2)2+4c2zs

2

c(µ2−2crs cos(θs−B))
and σ0(θs, zs)=

aµ2
−2c2rs cos θs

c(µ2−2crs cos(θs−B))
.

Again, thinking of zs as fixed and γ0 = γ0(θs), we can take a derivative to find
that γ0 has exactly one maximum ρ+ at θs= B and one minimum ρ− at θs = B+π
on the interval [0, 2π). The radius of this circle must be r = (ρ+− ρ−)/2, that is,

r = 1
2c

( 1
µ2−2crs

−
1

µ2+2crs

)√
(µ2− 2c2)2+ 4c2zs

2

= 2rs

√
(µ2− 2c2)2+ 4c2zs

2

µ4− 4c2rs
2 =

2rs√
µ4−4c2rs

2
.
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The last equality uses the fact that (µ2
−2c2)2+4c2zs

2
=µ4

−4c2(µ2
−c2
− zs

2)

= µ4
− 4c2rs

2. Similarly, the center of this circle must be d(cos θs, sin θs, 0)+he3,
where h = σ0(B)= σ0(B+π) and d = (ρ+− ρ−)/2, that is,

h = cos B and d = µ2 sin B/
√
µ4− 4c2rs

2.

Next, we define γ and σ by the equations γ0 = d + rγ and σ0 = h+ rσ . That is,

γ =
µ2 cos(θs−B)−2crs
µ2−2crs cos(θs−B)

and σ =
sin(B−θs)

√
µ4−4c2rs

2

µ2−2crs cos(θs−B)
.

The quantities γ and σ are the cosine and sine of the projected Apollonian angle φ
appearing in the fundamental parameterization (2), as we will now see. Note first
that γ = γ(θs) has maxima and minima corresponding to those of γ0 with values
1 and −1 respectively. Thus, the assignment cosφ = γ is always possible. Also,
one can see directly that γ2

+ σ 2
= 1. In fact,

(µ2 cos(θs − B)− 2crs)
2
+ sin2(B− θs)((µ

2
− 2c2)2+ 4c2zs

2)

= µ4
− 4crsµ

2 cos(θs − B)+ 4c2(rs
2
− (µ2

− c2
− zs

2) sin2(θs − B))

= µ4
− 4crsµ

2 cos(θs − B)+ 4c2rs
2 cos2(θs − B)

= (µ2
− 2crs cos(θs − B))2.

Thus, the assignments cosφ = γ(θs, zs) and sinφ = σ(θs, zs), along with the defi-
nition of θ given in (16), define φ and θ as smooth functions of θs and zs . To see
that this defines a nonsingular change of variables, we compute the determinant
of D(φ, θ). In fact, we already know that θ = θ(zs) and θ ′ 6= 0. From this we
see also that r = r(θ) is well defined from the definition above. Recalling that
rs = rs(z), we find

Dφ = (4c2rs
2
−µ4, 2((2rs

2
−µ2)rs

′
+2rszs) sin(θs−B))√

µ4−4c2rs
2(µ2−2crs cos(θs−B))

.

We need only check that the first coordinate ∂φ/∂θs is nonzero. In fact,

µ4
− 4c2rs

2
= (µ2

− 2crs)(µ
2
+ 2crs)= ((rs − c)2+ zs

2)((rs + c)2+ zs
2) > 0.

Thus changing variables, we obtain a local parameterization of π ◦ Rxy
−A0
◦ X0(M)

on (θ0− ε0, θ0+ ε0)×R given by

(θ, φ) 7→ (d + r cosφ)(cos θ, sin θ, 0)+ (h+ r sinφ)e3,

where d = d(θ), r = r(θ), and h = cos B is constant. Finally, we set

ρ0 =
√

d2− r2 =

√
µ4sin2 B− 4rs

2

µ4− 4c2rs
2 = sin B
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and use the arbitrary rotation by A0 in order to shift the interval for θ to (−ε0, ε0);
so we obtain a local parameterization X : (−ε0, ε0)×R→R3 of P0 = π ◦ X0(M)
given by

X (θ, φ)= (
√
ρ2

0 + r2+ r cosφ)(cos θ, sin θ, 0)+ (h+ r sinφ)e3.

We conclude that, aside from the case of spheres, all CMC surfaces with special
spherical symmetry have stereographic projections that can be parameterized in
this way. For our classification, this is the basic expression with which we will
work. The one unknown function is r = r(θ), and we need to derive (and solve)
the ordinary differential equation corresponding to constant mean curvature in S3.
It will be convenient to write this expression as

(17) X (θ, φ)= Ru1+ (h+ r sinφ)e3,

with R = d + r cosφ and d2
= r2
+ ρ2

0 .
Before turning to this classification, we briefly describe spherical symmetry in

terms of stereographic projection and point out the key differences making it a
(much) more general notion.

1.2. Interpreting spherical symmetry. Given a line 3∗= {b+ tv : t ∈R}, we may
often assume b ⊥ v, and this assumption will be made below whenever possible
and convenient.

If S ⊂ S3 has special spherical symmetry and is invariant with respect to cone
point reflections

h y(x)= y+ (| y|2− 1) x− y
|x− y|2

for y ∈ 3∗ = {b+ tv : t ∈ R}, some line in R4
\ B1(0), then a straightforward

calculation shows that for x fixed

lim
t→∞

hb+tv(x)= x− 2(x · n)n= gn(x),

where n= v/|v| and gn is a great sphere reflection. Thus, for bounded sets like S,
we have gn(S) = limt→∞ hb+tv(S) = S. Hence, the set 3 of all generalized
reflections under which S is invariant contains {hb+tv : t ∈R}∪{gv/|v|}. The radial
line associated with hb+tv is

`∗ = {(1− τ)e4+ τ(b+ tv) : τ ∈ R} 3 b+ tv,

and the radial line associated with gv/|v| is

`∗ = {e4+ τv/|v| : τ ∈ R} 3 e4+ v/|v|.

We have thus shown half of the following result.

Lemma 3. If S⊂ S3 has special spherical symmetry, S has spherical symmetry.
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To see the other half of the proof, we must consider the case in which S is
invariant with respect to3={gn :n·m=0=n·m̃}, where m and m̃ are nonparallel
unit vectors. In this case, we first observe that⋃

`∗∈R

`∗ = {e4+ τn : τ ∈ R, n ·m = 0= n · m̃}.

Fixing any gn0 ∈ 3, we can construct an orthonormal basis {m, m̃, n0, v} for R4.
Setting b= e4+ 3n0, we claim that

3∗ = {b+ tv : t ∈ R}

satisfies requirement (ii) of Definition 2. First note that |b+tv|≥ |3n0+tv|−|e4|≥

3−1= 2. Thus,3∗⊂R4
\B1(0). Second, 3n0+ tv is orthogonal to both m and m̃.

Thus, 3n0 + tv = τn, where τ = |3n0 + tv| ∈ R and n = (3n0 + tv)/|3n0 + tv|
is orthogonal to both m and m̃. It follows that b+ tv = e4+ 3n0+ tv = e4+ τn,
which belongs to

⋃
`∗∈R `

∗. Finally, e4 + v/|v| = e4 + v and v · m = 0 = v · m̃.
Thus, S has spherical symmetry. �

Having shown that special spherical symmetry is a special case of spherical
symmetry, we turn our attention to a set S⊂S3 with spherical symmetry and make
some basic observations concerning the stereographic projection P= π(S \ {e4}).

As usual, we assume 3∗ = {b+ tv : t ∈ R} in Definition 2 is given with b⊥ v.
After a preliminary rotation of R4, we may also assume

3∗ = {−ae1+ te3 : t ∈ R} ⊂ R3
⊂ R4.

Let p ∈ 3∗ and f ∈ 3 with radial line `∗ passing through p. It is easy to check
that the projection of the symmetry sphere S of f (where S = Gn or S = Hy as
in Section 0.1) passes through e4 only if the radial line `∗ of f lies in the x4 = 1
hyperplane. Since 3∗ does not intersect this plane, the projection of S is a sphere
∂Bρ(a) in R3. It follows that P \ {a} is invariant under the transformation given
in (18). One can check, furthermore, that π(`∗) = {a} = p. In particular, the
centers of the projected spheres comprise the points along a line L in R3.

Note that spherical symmetry does not specify the radius ρ of ∂Bρ(a) as does
special spherical symmetry since, in that case, taking b=−ae1 and a=−ae1+te3,
we have ρ=ρ(t)=

√

ρ2
0 + (h− t)2, where ρ0 and h are given constants. This is the

key difference. In this regard, it is useful to note that the cone points y in a radial
line (any line passing through the north pole but not lying in x4 = 1) correspond to
spheres in S3 that project to concentric spheres in R3. Hence, specifying the radial
line `∗ of a reflection specifies the center of a sphere in R3; specifying the specific
cone point y on `∗ specifies both the center and radius of ∂Bρ(a)= π(Hy). With
this in mind, we formulate the following property of P.
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Definition 3 (spherical symmetry along a line in R3). A set P ⊂ R3 has spherical
symmetry along a line if there is some line L in R3 and for each a ∈ L , there is
some radius ρ > 0 such that P \ {a} is invariant under the map

(18) p 7→ ρ2 p−a
| p−a|2

+ a.

The following result is immediate from the discussion above.

Lemma 4. If S⊂ S3 has spherical symmetry, there is some rotation R of S3 such
that P=π(R(S)\{e4}) has spherical symmetry along a line. Conversely, if P⊂R3

has spherical symmetry along a line L , and P∩L = φ, then S= π−1(P)⊂S3 has
spherical symmetry.

It is not known, in general, if surfaces with spherical symmetry admit convenient
parameterization. We sharpen the observations of this section in Section 3 and show
that compact surfaces with spherical symmetry are well behaved.

2. CMC surfaces with special spherical symmetry

Consider a local projected immersion P with parameterization of the form (17):

(19) X (θ, φ)= Ru1+ (h+ r sinφ)e3

on (−ε, ε)×R with r = r(θ) some smooth function and R =
√

r2
+ ρ2

0 + r cosφ;
ρ0 ∈ (0, 1) and h are constants. We also have an initial condition r(0) = r0 > 0.
It will be convenient to let d = d(θ) =

√

r2
+ ρ2

0 as above. Calculating the mean
curvature Hs of S at X0 = π

−1
◦ X we find [Park 2002]

Hs =
1
2(1+ |X |

2)H + X · N

where H is the Euclidean mean curvature of P and N is the normal to P at
X = X (θ, φ). Here the s subscript indicates the mean curvature with respect to S3.
It is easily checked that

∂H
∂φ

∣∣∣
φ=0
= 0.

Thus, we find

(20) 0= ∂Hs
∂φ

∣∣∣
φ=0
= (H X · Xφ + X · Nφ)|φ=0.

We recall the expression for u1 and introduce notation for its derivative:

u1 = (cos θ, sin θ, 0) and u2 = (− sin θ, cos θ, 0).

Of course, u1, u2, and e3 form an orthonormal basis.
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A somewhat lengthy calculation, outlined below, provides these formulas:

(21)

Xφ|φ=0 = (−r sinφu1+ r cosφe3)|φ=0 = re3,

N |φ=0 =
1

√
r ′2+d2

(du1− r ′u2),

Nφ|φ=0 =
d

√
r ′2+d2

e3,

H |φ=0 =
a0+a1+a2

2r(r+d)2(r ′2+d2)3/2

where
a0 = d(rd2r ′′− (r2

+ d2)r ′2− d4),

a1 = r(rd2r ′′− (4r2
+ 3ρ3

0)r
′2
− 3d4),

a2 =−2r2d(r ′2+ d2).

Substituting the first three formulas into (20), we find

0= h(r H |φ=0+ d/
√

r ′2+ d2).

If h 6= 0, then H |φ=0 =−d/(r
√

r ′2+ d2). Comparing this equation with (21), we
arrive at

(22) (r2
+ ρ2

0)rr ′′+ ρ2
0r ′2+ (r2

+ ρ2
0)

2
= 0.

Given r0=r(0)>0 and v0=r ′(0), there are unique values of a>0 and θ1∈ (−π, π)

for which the solution is given by

(23) r =
√

(a2
+ ρ2

0) cos2(θ − θ1)− ρ
2
0 ,

which correspond to a (portion of a) sphere. It can be checked that

a2
= r2

0 (1+ v
2
0/(r

2
0 + ρ

2
0))

and θ1 is determined by

cos θ1 =
r2

0+ρ
2
0√

(r2
0+ρ

2
0)

2
+r2

0v
2
0

and sin θ1 =
r0v0

√

(r2
0+ρ

2
0)

2
+r2

0v
2
0

.

Of course, formal solutions can be obtained with θ1 in other intervals; this does not
affect the values of r = r(θ), but such an interval will not contain the normalized
initial value θ0= 0. It is instructive to write the ODE (22) as the equivalent system{

r ′ = v

v′ =−(ρ2
0v

2
+ (r2

+ ρ2
0)

2)
/
(r(r2

+ ρ2
0))

whose phase diagram is shown in Figure 11 along with the geometrical quantities
associated with the corresponding spherical solutions.
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Figure 11. Spherical solutions with nonstandard projection.

From these considerations, we the following lemma is immediate.

Lemma 5. Unless S is a sphere, we must have h = 0.

Corollary 2. Unless S is a sphere, we must also have ρ0 = 1.

Proof. This is immediate once we recall that h = cos B and ρ0 = sin B with
B ∈ (0, π/2] determined by the original surface. Since h = 0, we must have B =
π/2 and ρ0 = 1. The surface must therefore fall back into the class of surfaces
that may be stereographically projected (at least locally) to rotationally symmetric
ones in R3. �

We outline below the long calculation alluded to above for the parameterization

(24) X (θ, φ)= Ru1+ r sinφe3.

The first and second order quantities mentioned above do not depend on h; we will
include the constant ρ0 ∈ (0, 1], though in the end, we will use Corollary 2 and
specialize to the case ρ0 = 1.

N =
Xθ×Xφ
|Xθ×Xφ|

=
d cosφ u1− r ′u2+ d sinφ e3

√
r ′2+ d2

,

E = |Xθ |2 = r2 cos2 φ+ 2r(d + 1/d) cosφ+ (1+ r2/d2)r ′2+ d2,

F = Xθ · Xφ =−(r2r ′/d) sinφ,

G = |Xφ|2 = r2,

e = Xθθ · N =
−rd cos2 φ+(rr ′′−r2r ′2/d2

−r ′2−d2) cosφ−2rr ′2/d+dr ′′
√

r ′2+d2
,

f = Xθφ · N = (rr ′/
√

r ′2+ d2) sinφ,
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g = Xφφ · N =−rd/
√

r ′2+ d2,

X · N = (d/
√

r ′2+ d2)(d cosφ+ r),

H = eG−2 f F+gE
2(EG−F2)

=
a0+a1 cosφ+a2 cos2 φ

2r R2(r ′2+d2)3/2
,

a0 = d(rd2r ′′− (r2
+ d2)r ′2− d4),

a1 = r(rd2r ′′− (r2
+ 3d2)r ′2− 3d4),

a2 =−2r2d(r ′2+ d2),

Hs =
1
2(1+ |X |

2)H + X · N =
c0+ c1 cosφ+ c2 cos2 φ

4r R2(r ′2+ d2)3/2
,

c0 = d(rd2(r2
+ d2
+ 1)r ′′− (r2

+ d2
+ (r2

− d2)2)r ′2+ d4(3r2
− d2
− 1)),

c1 = r(rd2(r2
+ 3d2

+ 1)r ′′− (r2
+ 3d2

+ (r2
− d2)2)r ′2+ d4(5r2

− d2
− 3)),

c2 = 2r2d(rd2r ′′− r ′2+ (r2
− 1)d2).

Finally, we obtain for ρ0 = 1

(25) Hs =

√
r2+1(r(r2

+1)r ′′−r ′2+r4
−1)

2r(r ′2+r2+1)3/2
.

It is important to note that (25) depends on the particular parameterization we
have chosen, but not essentially. To be more precise, the mean curvature of a
given surface depends on a choice of normal, and the opposite choice of normal
results in a change in sign of the mean curvature. The expression we have obtained
is for a particular choice of normal (“outward” for the local annular patch in the
stereographic projection). Because we are considering all possible signs of the
mean curvature, we will obtain all possible portions of surfaces with local parame-
terization of this form. It is possible, however (and it does happen) that two annular
portions of a surface can fit together along a circle (singular with respect to (24))
to form a single smooth piece of constant mean curvature surface; one piece will
have mean curvature Hs given by (25), and the other will have mean curvature−Hs

according to the same formula. Such surfaces all fall into the nodoid-type class,
and this technicality will be discussed further below when it becomes an issue.

We are now in a position to prove Theorem 1. We begin by considering the
system corresponding to (25) in the r > 0 halfplane:

(26)


r ′ = v,

v′ = 2Hs

(
1+ v2

r2+1

)3/2
+

1
r

(
1+ v2

r2+1

)
− r.



SYMMETRIC SURFACES OF CONSTANT MEAN CURVATURE IN S3 95

A unique equilibrium point occurs for the system (26) at (r, v)= (r∗, 0), where r∗
is a solution of the equation r2

−2Hsr−1= 0, which is easily solved to obtain (5).
The Clifford torus lies in a collection of anchor ring solutions that project to{

(
√

r2
∗
+ 1+ r∗ cosφ)(cos θ, sin θ, 0)+ r∗ sinφe3 : θ, φ ∈ R

}
.

These anchor rings become, as Hs tends to −∞ due to our choice of normal, thin
tubes around the great circle {x2

+ y2
= 1}.

More generally, in any solution with initial condition (r0, 0) and r0 6= r∗, the
point(s) with v=0 is isolated. (If 0<r0<r∗, then v′(θ0)=−(r2

0 − 2Hsr0− 1) > 0;
if r∗< r0, then v′(θ0)< 0.) Consequently, aside from the standard tori (anchor ring
solutions), all solutions may be pieced together along circles from annular pieces
that may be parameterized as

(27) X (r, φ)= (
√

r2+ 1+ r cosφ)(cos θ, sin θ, 0)+ r sinφ e3,

where θ = θ(r). This is the only fact we will use for now about the system (26),
whose phase diagrams for representative values of Hs , namely, 0 and±1, are shown
in Figure 12. We will note for future reference one important observation.

Lemma 6. If (r, v) is a solution of (26), then (r̃(θ), ṽ(θ)) = (r(−θ),−v(−θ))
is also a solution. Consequently, the phase diagram for (26) is symmetric with
respect to the r axis; solutions satisfying r ′(0)= 0 are even.

We note concerning the phase diagrams that each nodoid trajectory (the ones
asymptotic to vertical lines) having Hs < 0 fits together with a nodoid trajectory
having Hs > 0 and asymptotic to the same line. One may also match the solutions
indicated in the phase diagrams with those represented on two vertical lines in the
parameter domain indicated in Figure 13; move downward for Hs < 0 and upward
for Hs > 0. The phase diagrams of Figure 12 are numerically generated, and the
precise global properties of all trajectories will not be evident until we finish the
proof of Theorem 1; then they may be determined from the explicit formulas.

Before working directly with the equation for θ = θ(r), we briefly return to
Equation (25). Whenever v = r ′ 6= 0, there is a locally defined smooth function
u = u(r) such that u(r) = r ′. Consequently, r ′′ = u′r ′ = uu′ and (25) may be
rewritten as

ru
(u2+r2+1)3/2

=
u2
−r4
+1

(r2+1)(u2+r2+1)3/2
+

2Hsr
(r s+1)3/2

.

Thinking of this equation as M(r, u)u′= N (r, u) and making a standard search for
an integrating factor φ = φ(r), we find that φ = 1/

√
r2+ 1 and(

r√
(u2+r2+1)(r2+1)

+
Hs

r2+1

)′
= 0.
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Figure 12. Phase portraits of solutions r = r(θ) for Hs < 0 (left),
Hs = 0 (center) and Hs > 0 (right). The nodoid-type solutions
shown (with asymptotes) correspond to only a portion of a fun-
damental domain. In this particular figure we also see the cor-
respondence of nodoid-type solutions because the figure on the
left is for Hs = −1, the one on the right is for Hs = 1, and the
nodoid-type solutions indicated (c = 3/5) may be joined along a
circle to comprise a fundamental domain; the asymptotes coincide
at r∗ = 3/5 as in the proof of Lemma 11 below.

Thus, we obtain a first integral

(28) r√
(r ′2+r2+1)(r2+1)

+
Hs

r2+1
= c.

Changing variables in (25), we obtain

rθ ′′ =− sign(θ ′)2Hsr
(
θ ′2+

1
r2+1

)3/2
−

1
r2+1

θ ′+ (r2
− 1)θ ′3.

At this point, we recall that the formula (25) assumes the outward normal on an
annular piece of surface, and if θ ′ changes sign at a smooth finite point of the curve
traced out by (r, θ), then Equation (25) is using the opposite choice of normal on
opposite sides of that sign change. If θ ′(r) > 0 for r < r0, for example, with
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Figure 13. Piecing together solutions represented in parameter space.

θ ′(r) > 0 for r > r0, then the equation above assumes the downward (that is, out-
ward) normal for r < r0 and the upward (that is, outward) normal for r > r0. Taking
this into account, we get a single equation applying to a single CMC annulus having
mean curvature Hs with respect to the upward normal (that is, in the positive θ
direction), which is nonsingular with respect to the parameterization (27):

(29) rθ ′′ = 2Hsr
(
θ ′2+

1
r2+1

)3/2
−

1
r2+1

θ ′+ (r2
− 1)θ ′3.

This is the origin of Equation (3), which we could have derived from the param-
eterization itself via a long calculation. The first integral proved more difficult to
derive for this equation as well.

The same change of variables in (28) yields

(30) θ ′2 =
(cr+(c−Hs)/r)2

(r2+1)(1−(cr+(c−Hs)/r)2)
.

It is easily checked that this agrees with (4) up to a sign. In fact, consideration
of both possible signs only results in obtaining geometrically congruent pieces of
surface, as we will explain below.

The expression on the right in (30) is well defined on intervals where the function
f (r) = cr + (c− Hs)/r takes values in (−1, 1). Furthermore, if we temporarily
ignore the possibility of ambiguity due to a sign change when f vanishes, we can
take the square root in (30) and obtain

(31) θ ′ =
f√

(r2+1)(1− f 2)
,
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where we have ignored the possible sign change of the right side, since that is
equivalent to a change in sign of both c and Hs . It is straightforward to see that
the right side has integrable singularities at values of rm for which f (rm) = ±1.
A very simple analysis of this function f (see Figure 14) leads to the distinct
parameter regions of Theorem 1 and a complete qualitative understanding of the
(θ, r) meridian curves for solutions, as summarized in the following result, which
we state for convenience under the temporary restriction c ≥ 0.

Lemma 7. Let r 7→ (θ(r), r) parameterize a portion of the meridian curve of a
CMC surface satisfying (31) with c ≥ 0. The inclination angle ψ of such a curve
with respect to the r-axis satisfies

sinψ := θ ′
√

1+θ ′2
=

f√
1+r2(1− f 2)

.

Consequently, sinψ has the same monotonicity and sign of f on their common
interval of definition. Furthermore, they both take the values ±1 at precisely the
same singular values rm . The qualitative behavior of sinψ may thus be obtained
from that of f as follows:

(i) If c= 0 and Hs > 0, then sinψ takes the value −1 at rmin = Hs and increases
to 0 smoothly on the interval [rmin,∞). The singularity is integrable and the
resulting solution is a catenoid-type surface described by Theorem 1(iii).

(ii) If 0 < c < Hs , then sinψ = −1 at rmin = (−1+
√

1− 4c(c− Hs))/(2c) and
increases to +1 at rmax = (1 +

√
1− 4c(c− Hs))/(2c). Both singularities

are integrable, and the resulting solution is of nodoid-type as described by
Theorem 1(v).

(iii) If 0 < c = Hs , then f (r) = cr , and sinψ is defined on [0, 1/c] with an
integrable singularity at 1/c. Elementary integration leads to the spherical
surfaces described in Theorem 1(i); the case c = Hs = 0 is also described
there.

(iv) If c − 1/(4c) < Hs < c, then sinψ is positive and well defined precisely
between the singular points rmin = (1−

√
1− 4c(c− Hs))/(2c) and rmax =

(1+
√

1− 4c(c− Hs))/(2c); at both of these points sinψ =+1. Again, both
singularities are integrable, and one obtains a solution with profile curve of
unduloid-type as in Theorem 1(iv).

This lemma is essentially self-explanatory. One can almost obtain Theorem 1
directly from this result by simply expressing the integrals for θ in terms of standard
elliptic integrals. The only ambiguities arise from various questions concerning
signs, which we now discuss.
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Figure 14. Profiles of inclination angle/indicator function f .

We recall that the only ambiguity in taking the square root in (30) is when f
changes sign. This only occurs in the case of nodoid-type surfaces. When that sign
change occurs, one has θ ′′ 6= 0, that is, nodoid-type meridians have no inflections.
Thus, the uniqueness theorem for ODEs applied to Equation (29) shows that one
must keep the same sign across the singularity. This justifies only consideration
of (31) as long as we consider all possible signs for c and Hs .

Our classification does not, in fact, consider all possible signs for c and Hs ,
because the surface corresponding to (Hs, c) is geometrically congruent to the
(−Hs,−c) surface. For example, if c = 0 > Hs , we obtain a surface geometri-
cally congruent to that for c = 0< Hs , but with stereographic projection reflected
across a plane through the z-axis; this is simply a change of sign for Hs corre-
sponding to a reversal of normal as described in connection with Equation (29).
The same remarks apply to all pairs of surfaces determined by the correspondence
(Hs, c)←→ (−Hs,−c).

We conclude this section with some remarks on the reduction to standard elliptic
integrals and the resulting period conditions.

For catenoid-type surfaces (c = 0, Hs > 0), we have

θ(r)=−Hs

∫ r

Hs

1√
(τ 2+1)(τ 2−H 2

s )
dτ.

(Technically, |θ ′(r0)|<∞ implies r(0)= r0 > Hs , but since the singularity at Hs

is integrable, we may apply a rotation Rxy to obtain the expression above.) The
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change of variables τ = Hs sec t yields

(32)

θ(r)=−Hs

∫ cos−1(Hs/r)

0

sec t√
H 2

s sec2 t+1
dt

=− cosαF(cos−1(Hs/r), α),

where α = sin−1(1/
√

H 2
s + 1) and F(φ, α) =

∫ φ
0 1/

√
1− sin2 α sin2 t dt is the

standard elliptic integral of the first kind.
Thus one finds, as described in Theorem 1(iii), that θmax = cosαK (α), where

K (α)= F(π/2, α) is the complete elliptic integral of the first kind. One can show
that θmax increases as a function of Hs , taking all values between 0 and π/2. While
the general properties of elliptic integrals are well known, it can be somewhat
involved to verify statements like these. For brevity, we will only show how one
such result is proved and leave the rest to precisely stated lemmas involving one-
dimensional calculus, accompanied by illustrative numerical plots.

Lemma 8. The function cosαK (α) is decreasing in α with

lim
α↘0

cosαK (α)= π/2 and lim
α↗π/2

cosαK (α)= 0.

Proof. Note first that (d/dα)K = secα cscαE − cotαK , where

E(φ, α)=
∫ φ

0

√
1− sin2 α sin2 t dt

is the standard elliptic integral of the second kind and (here) E= E(α)= E(π/2, α)
is the complete elliptic integral of the second kind [Whittaker and Watson 1996,
page 521]. Thus,

d
dα
(cosαK )=− sinαK + cscαE − cosα cotαK = 1

sinα
(E − K )

=−

∫ π/2

0

sinα sin2 t√
1−sin2 α sin2 t

dt < 0.

The first limit is immediate. To see the second, observe that for any ε ∈ (0, 1), there
is some δ= δ(ε)> 0 such that sin2 t ≤ 1−(1−ε)(t−π/2)2 for π/2−δ≤ t ≤π/2.
Consequently,

cosαK = cosα
(∫ π/2−δ

0

1√
1−sin2 α sin2 t

dt +
∫ π/2

π/2−δ

1√
1−sin2 α sin2 t

dt
)

≤ cosα
∫ π/2−δ

0
sec t dt +

∫ π/2

π/2−δ

cosα√
1−sin2 α(1−(1−ε)(t−π/2)2)

dt
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Figure 15. Properties of elliptic integrals.

= cosα
∫ π/2−δ

0
sec t dt +

∫ δ

0

cosα√
cos2 α+sin2 α(1−ε)t2

dt

= cosα
∫ π/2−δ

0
sec t dt +

∫ δ

0

cotα/
√

1−ε√
cot2 α/(1−ε)+t2

dt

= cosα
∫ π/2−δ

0
sec t dt + cotα

√
1−ε

(
ln
(
δ+

√
cot2 α
1−ε

+ δ2
)
− ln

(√cot2 α
1−ε

))
.

Since ε is fixed in (0, 1) and δ is fixed and positive,

lim
α↗π/2

cosαK =− lim
α↗π/2

cotα ln(cosα)/
√

1− ε = 0. �

It is essentially the same for reductions of unduloid-type (c−1/(4c) < Hs < c)
and nodoid-type (0< c < Hs). In each case, we may take r0 = rmin, so that

θ(r)= 1
c

∫ r

rmin

c(τ 2
+1)−Hs√

(1+τ 2)(r2
max−τ

2)(τ 2−r2
min)

dτ

=
c−Hs

c

∫ r

rmin

1√
(1+τ 2)(r2

max−τ
2)(τ 2−r2

min)
dτ

+

∫ r

rmin

τ 2√
(1+τ 2)(r2

max−τ
2)(τ 2−r2

min)
dτ.
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In each integral we substitute

t = sin−1
√

1− (rmin/τ)2/(1−µ2),

where µ= rmin/rmax ∈ (0, 1) and obtain

τ =
rmin√

1−(1−µ2) sin2 t
, dτ = (1−µ

2)rmin sin t cos t
(1−(1−µ2) sin2 t)3/2

,

1
√

1+τ 2
=

√
1− (1−µ2) sin2 t√

1− (1−µ2) sin2 t + r2
min

=
1

√

1+r2
min

·

√
1−(1−µ2) sin2 t√

1−(1−µ2) sin2 t/(1+r2
min)

,

1√
r2

max−τ
2
=

√
1− (1−µ2) sin2 t

rmax cos t
√

1−µ2
,

1
√

τ 2
−r2

min

=

√
1− (1−µ2) sin2 t

rmin sin t
√

1−µ2
,

so that

θ(r)= c−Hs

crmax
√

1+r2
min

∫ A

0

1√
1−(1−µ2) sin2 t/(1+r2

min)
dt

+
µrmin
√

1+r2
min

∫ A

0

1

(1−(1−µ2) sin2 t)
√

1−(1−µ2) sin2 t/(1+r2
min)

dt

=
c−Hs

crmaxd0
F(A, α)+

µrmin

d0
5(ν, A, α)

where

A = sin−1

√
1−(rmin/r)2

1−µ2 , d0 =

√
1+ r2

min,

α = sin−1
√

1−µ2

d0
= sin−1(

√
ν/d0), ν = 1−µ2,

and

5(ν, φ, α)=

∫ φ

0

1

(1−ν sin2 t)
√

1−sin2 α sin2 t
dt

is the standard elliptic integral of the third kind.
For both the unduloid and nodoid-type surfaces, the half-period

(33) θ(rmax)=
c−Hs

crmaxd0
K (α)+ µrmin

d0
5(ν, π/2, α)

is of interest. Let us first consider the unduloid-type region by fixing Hs and re-
stricting attention to vertical segments max{0, Hs}< c < (Hs +

√
H 2

s + 1)/2.
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Lemma 9. For fixed Hs , the function θmax = θ(rmax) is increasing as a function
of c on (max{0, Hs}, (Hs +

√
H 2

s + 1)/2) with

lim
c↘max{0,Hs}

θmax =


π
2
−

Hs√
H 2

s +1
K
(
sin−1(1/

√
H 2

s + 1)
)

if Hs < 0,

sin−1(1/
√

H 2
s + 1) if Hs ≥ 0

and

lim
c↗
(

Hs+
√

H2
s +1

)
/2
θmax =

√
H 2

s + 1− Hs√
2
(
H 2

s + 1− Hs
√

H 2
s + 1

) π.
Notes on proof. The derivative ∂θmax/∂c is a (complicated) expression of the form
AK (α)+B E(α), where K and E are the complete elliptic integrals of the first and
second kinds, and A and B are rational functions of c, Hs , and

√
1− 4c(c− Hs).

The second plot in Figure 15 shows the values of this derivative as a function of c
in the unduloid-type region for Hs =−1,−.5,−.25,−.1,−.01, 0, .1, .25, .5.

In order to see the limits, it is convenient to set λ=
√

1− 4c(c− Hs) and write,
for example, rmin and d0 in the nonsingular forms

rmin=
2(c−Hs)

1+λ
and d0=

√
(1+λ)2+4(c−Hs)2

1+λ
=

√
2
√

1+λ−2Hs(c−Hs)
1+λ

.

Making these substitutions, it is not difficult to see that

c−Hs
crmaxd0

K (α)=
√

2(c−Hs)
√

1+λ−2Hs(c−Hs)
K
(

sin−1
√

2λ
1+λ−2Hs(c−Hs)

)
and
µrmin

d0
5(ν, π/2, α)=
√

2(c−Hs)(1−λ)
(1+λ)

√
1+λ−2Hs(c−Hs)

5
( 4λ
(1+λ)2

, π/2, sin−1
√

2λ
1+λ−2Hs(c−Hs)

)
.

The sum of these two expressions is, of course, θ(rmax); it is convenient to refer to
the first one as the “K part” and the second one as the “5 part.”

When Hs < 0 is fairly straightforward to see that

lim
c↘0

c−Hs
crmaxd0

K (α)=− Hs√
H 2

s +1
K
(

sin−1
( 1√

H 2
s +1

))
.

The term in (33) involving an elliptic integral of the third kind (the 5 part) is
more difficult for this limit. One finds, from the fact that Hs < 0, that for c small
the integral falls into the circular classification with sin2 α < ν < 1 according to
Milne-Thompson [Abramowitz and Stegun 1964]. It follows that

5(ν, π/2, α)= K (α)+ (π/2)δ2(1−30(φ, α)),



104 RYAN HYND, SUNG-HO PARK AND JOHN MCCUAN

where δ2 =
√
ν/((1− ν)(ν− sin2α)) and 30 is Heuman’s lambda function with

φ = sin−1
√
(1− ν)/ cos2 α. Thus, from the expression above, one sees that it is

only necessary to compute

lim
c↘0

(1− λ)(K (α)+ (π/2)δ2(1−30(φ, α))).

It is easily checked that (1− λ)/ cosα has a finite limit, so that Lemma 8 applies
to the first term. One can next see that the limit in the last argument of 30 is
nonsingular, so that one need only consider

lim
λ↗1

(1− λ)δ2(1−30(φ, α0))π where α0 = sin−1(1/
√

H 2
s + 1).

Since 30 is finite valued at φ = 0 for all fixed α0, one only needs to check that the
finite value taken by δ2 in the limit (with ν = 4λ/(1+ λ)2) is the correct one.

It is interesting that the limit of θmax is singular for Hs <0 and c↘0: Comparing
to the catenoid-type surfaces that correspond to Hs < 0 = c, we might expect the
value − cosα0K (α0) in accord with (32), and this is attained by the limit of the
K part. An additional contribution of π/2 arises from the limit of the 5 part.
Thus, considering the convergence of the generating curves, the portion of the
generating curve left of the inflection is dominated by the K part and that to the
right is dominated by the 5 part.

The second and third limits are both represented in the third graph of Figure 15.
As the unduloid-type surfaces approach spheres, the limit is nonsingular; the K part
vanishes in the limit and the 5 part gives the value sin−1(1/

√
H 2

s + 1) indicated.
The third (upper) limit is nonsingular and straightforward since λ tends to zero

as the unduloid-type surfaces approach the standard tori. There is a peculiarity to
our expressions in Theorem 1: In this limit, our expression for rmin (and the one
for rmax) tends to (

√
H 2

s + 1− Hs)/2, apparently at odds with Theorem 1(iv). For
convenience, we considered the tori with respect to the outward normal and the
unduloid-type surfaces with respect to the inward normal; note that reversing the
sign of Hs harmonizes the classification. �

Next, we consider the same region by fixing σ ∈ (0, 1) and restricting attention
to the curve

Hs = c− (1− σ)/(4c),

as indicated in Figure 16. Thus, we write 2(σ, c) := θmax(c− (1− σ)/(4c), c).

Lemma 10. For σ ∈ (0, 1) fixed, 2 is a decreasing function of c with

lim
c↘0

2= π and lim
c↗∞

2= 0.
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Figure 16. Curves that foliate the parameter region c− 1/(4c) < Hs < c.

Notes on the proof. We see immediately that λ=
√
σ so that

c−Hs
crmaxd0

K (α)= 1−
√
σ√

4c2+(1−
√
σ)2

K
(

sin−1
(

4c
1+
√
σ

√
√
σ

4c2+(1−
√
σ)2

))
and

µrmin
d0

5(ν, π/2, α)= (1−
√
σ)2

(1+
√
σ)
√

4c2+(1−
√
σ)2

×5

(
4σ

(1+
√
σ)2

, π/2, sin−1
(

4c
1+
√
σ

√
√
σ

4c2+(1−
√
σ)2

))
.

Note that the c dependence is not as complicated in this case. The derivative
∂2/∂c has the form AK (α) + B E(α), with A and B rational functions of σ ,
c, and

√
4c2+ (1−

√
σ)2. The fourth graph in Figure 15 gives ∂2/∂c for various

values of σ . The fifth graph illustrates the limits. �

Corollary 3. (i) For each m = 2, 3, . . . and σ ∈ (0, 1) fixed, there is a unique
c = cm(σ ) for which 2(σ, cm)= π/m.

(ii) ∂θmax
∂Hs

< 0.

(iii) The condition θmax(Hs, c) = π/m defines smooth curves, as indicated in
Theorem 1.
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Proof. The first claim is immediate from the monotonicity of the preceding lemma.
The second follows from differentiation:

∂2
∂σ
(σ, c)= ∂θmax

∂Hs
(c− 1−σ

4c
, c) · 1

4c
.

The third follows from the second, since we obtain the ODE

∂θmax
∂Hs

(Hs, cm)+
∂θmax
∂c

(Hs, cm)c′m = 0. �

Qualitatively, we observe for nodoid-type surfaces that the loops in the generat-
ing curve always face the θ -axis. More precise is the following result, whose proof
is similar to the one found in [Hynd and McCuan 2006].

Lemma 11. If 0< c < Hs , then θ(rmax) > θ(rmin).

Proof. With the normalization θmin = 0 as above, this assertion is equivalent to
θ(rmax) > 0. To see this, we return to the expression (31). Notice that f (r) =
cr + (c− Hs)/r is increasing and concave on [rmin, rmax], taking values −1 and 1
at the endpoints. We let r∗ =

√
Hs/c− 1 denote the unique zero of f . Setting

τ(r)= (Hs − c)/(cr), which is the unique solution of f (τ )=− f (r), we find

θ(rmax)=

∫ r∗

rmin

f√
(r2+1)(1− f 2)

dr +
∫ rmax

r∗

f√
(r2+1)(1− f 2)

dr

=

∫ rmax

r∗

1
r

(
r

√
r2+1

−
(Hs−c)/(cr)√

((Hs−c)/(cr))2+1

)
f√

1− f 2
dr.

Notice that r/
√

r2+ 1 is increasing, and that r ≥ (Hs − c)/(cr) when r ≥ r∗ =
√
(Hs − c)/c. Thus, θmax > 0. �

3. Spherically symmetric compact surfaces

We now consider the more general condition of spherical symmetry and prove
Theorem 2. Let S⊂ S3 be a compact surface with spherical symmetry.

Recall our discussion of spherical symmetry in Section 1.2 and the fact that
stereographic projection extends naturally to R4

\ {x4 = 1}. We begin with the
preliminary rotation described there, which resulted in 3∗ = {−a0e1+ te3 : t ∈ R}

with a0 > 1. If, having made this normalization, we have that e4 /∈ S, then

P= π(S) is a compact surface in R3 with spherical symmetry along a line.

Otherwise, we seek to find a preliminary rotation R so that this assertion is true
of P = π(R(S)). Using once again [Hirsch 1994, Proposition 3.1.2], we know
that any neighborhood of e4 contains points of S3

\S. Taking such a point p and
denoting its fourth coordinate by cos ε, we see that for some (small) rotation R0
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of R3, we can arrange to have R−1
0 ◦ Rxw

−ε e4 = p. Thus, applying Rxw
ε ◦ R0 as an

additional preliminary rotation, we may assume

3∗ = {Rxw
ε (−a0 R0(e1)+ t R0(e3)) : t ∈ R}.

We may write

R0(e1)=
∑

a1 j e j and R0(e3)=
∑

a3 j e j

so that

λ(t)= Rxw
ε (−a0 R0(e1)+t R0(e3))

= (−a0a11+ta31) cos εe1+

3∑
j=2

(−a0a1 j+ta3 j )e j+(−a0a11+ta31) sin εe4.

Since |a11| ≤ 1 and is fixed, we may assume ε is small enough so−a0a11 sin ε 6= 1.
It follows that there is at most one value of t for which λ(t) can intersect the plane
{x4 = 1}. More precisely, if a31 = 0, then 3∗ ∩ {x4 = 1} = φ and the reasoning
of Section 1.2 yields that π(S \ {e4}) = π(S) is a compact surface with spherical
symmetry along the line L = π(3∗). If a31 6= 0, then λ(t0) ∈ {x4 = 1} for the
unique value t0 = (1+ a0a11 sin ε)/(a31 sin ε). We pause here to relabel so that
3∗={b+tv : t ∈R} with (b+tv)·e4 6= 1 unless t = t0. Setting b= (b1, b2, b3, b4),
v= (v1, v2, v3, v4), b= (b1, b2, b3) and v= (v1, v2, v3) as usual, we have for t 6= t0

π(b+ tv)= b+tv
1−(b4+tv4)

=
1

1−b4
b+ t

1−(b4+tv4)

(
v4

1−b4
b+ v

)
.

Thus, P= π(S) is a compact immersed surface in R3 which, by our discussion of
radial lines, is invariant under maps

ψ(x)= ρ2 x−a
|x−a|2

+ a,

where

a = a(t)= 1
1−b4

b+ t
1−(b4+tv4)

(
v4

1−b4
b+ v

)
for t ∈ R \ {t0}

and ρ = ρ(t) > 0. The centers of reflection a(t) include all points on a line
L in R3 except a1 = limt→∞ a(t) = −v/v4. We now recall that e4 + v/|v| ∈⋃
`∗∈R `

∗. Therefore, some radial line contains e4+v/|v|, and there is some sphere
∂Bρ(a)⊂ R3 with center a = π(e4 + v/|v|) = −v/v4 = a1 about which P is
symmetric. Thus, in all cases, it is possible after preliminary rotation to project
a compact surface S ⊂ S3 so that P = π(S) is compact in R3 and so that P has
spherical symmetry along a line.

The reasoning above admits an additional preliminary rotation of R3, which we
now use to again pause and relabel:
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Theorem 5. Given a compact, connected surface P immersed in R3 and with
spherical symmetry along a line L = {−ae1 + te3 : t ∈ R} ⊂ R3, the surface
S= π−1(P)⊂ S3 has special spherical symmetry.

A number of lemmas follow, which together prove this result. For all of them,
we fix notation as follows: The symmetry spheres along L are denoted by ∂Bρ(x0)

with ρ=ρ(t) corresponding to x0=−ae1+te3. The collection of all such spheres
is denoted by 6, and we denote by 9 the set of associated reflection maps

ψ(x)= ρ2 x−x0
|x−x0|2

+ x0.

The claim of Theorem 5 is equivalent to showing that each such sphere passes
through a particular horizontal circle {(x, y, h) : (x + a)2+ y2

= ρ2
0}.

Lemma 12. P∩ L = φ, and hence dist(P, L) > 0.

Proof. If x0 ∈P∩ L , then there is a sequence of points x j ∈P \ L with x j → x0.
Since

lim
j→∞
|ψ(x j )| = lim

j→∞

∣∣∣ρ2 x j−x0

|x j−x0|2
+ x0

∣∣∣≥ lim
j→∞

(
ρ2 1
|x j−x0|

− |x0|

)
=∞,

this contradicts compactness. �

Lemma 13. For every x0 ∈ L , we must have P∩ Bρ(x0) 6= φ and P\ Bρ(x0) 6= φ.

Proof. If x ∈ P \ Bρ(x0), then ψ(x) ∈ P∩ Bρ(x0). �

Lemma 14. P is symmetric with respect to a unique horizontal plane L⊥ ortho-
gonal to L.

Proof. By compactness, there is some R > 0 such that P ⊂ BR(−ae1). Con-
sider −ae1 + t j e3 with t j ↗ +∞. When t j > R, we must have −ae1 + (t j −

ρ(t j ))e3 on the segment connecting −ae1− Re3 and −ae1+ Re3. Consequently,
−R ≤ t j − ρ(t j )≤ R. Taking a subsequence, we may assume t j−ρ(t j )→ b0 ∈R

as j→+∞. For x in any compact set, such as P,

lim
j→∞

ψ j (x)= lim
j→∞

ρ(t j )
2 x+ae1−t j e3

|x+ae1−t j e3|2
− ae1+ t j e3= x+ 2(b0− x · e3)e3.

The last expression will be recognized as standard reflection with respect to the
horizontal plane L⊥ = {x3 = b0}. This gives existence.

If there were another such plane of symmetry, the composition of the two asso-
ciated reflections would provide a vertical translation to which P is invariant. This
again contradicts the fact that P is bounded. �

Lemma 15. Let ψ, ψ̃ ∈ 9 with associated symmetry spheres ∂Bρ(x0), ∂Bρ̃(x̃0),
both in 6.

(i) ∂Bρ(x0) and ∂Bρ̃(x̃0) have nontrivial intersection outside of L.
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(ii) ∂Bρ(x0) and L⊥ have nontrivial intersection outside of L.

(iii) If x0 ∈ ∂Bρ̃(x̃0), then ψ(∂Bρ̃(x̃0) \ {x0})= L⊥.

(iv) If x0 /∈ ∂Bρ̃(x̃0), then ψ(∂Bρ̃(x̃0)) ∈6.

Proof. For the first claim, we proceed by contradiction. If ∂Bρ(x0)∩∂Bρ̃(x̃0)⊂ L ,
then either Bρ(x0) ⊂ Bρ̃(x̃0), Bρ̃(x̃0) ⊂ Bρ(x0), or Bρ(x0) ∩ Bρ̃(x̃0) = φ. The
second possibility is (by relabeling) the same as the first. If the last possibility
obtains, then a calculation shows that ψ̃(∂Bρ(x0)) is a sphere ∂Bρ̄(x̄0)) with
Bρ̄(x̄0)) ⊂ Bρ̃(x̃0). Also, a calculation shows that the reflection ψ associated
with ∂Bρ̄(x̄0)) is given by ψ̃ ◦ψ ◦ ψ̃ . Thus, ∂Bρ̄(x̄0)) ∈6 and again the situation
reduces to the first possibility Bρ(x0)⊂ Bρ̃(x̃0). We note for future reference that

ρ̄ =
ρ̃2ρ

|(t− t̃)2−ρ2|
and x̄0 = x̃0+

ρ̃2

(t − t̃)2− ρ2
e3.

We begin with the special case x0= x̃0. By the reasoning above (with x0 and x̃0

reversed), we obtain ∂Bρ1(x0) ∈ 6 with ρ1 = ρ
2/ρ̃. Repeating this construction

with Bρ1(x0) and Bρ̃(x0), we obtain ∂Bρ j (x0) ∈6 with ρ j = ρ̃(ρ/ρ̃)
2 j
→ 0 since

ρ/ρ̃ < 1. According to Lemma 13, we must have points in P converging to x0 ∈ L .
This contradicts Lemma 12. This special case has this corollary:

Corollary 4. For each ∂Bρ(x) ∈6, the radius ρ = ρ(t) is uniquely determined.

More generally, if ∂Bρ(x0) and ∂Bρ̃(x̃0) are not assumed to have the same cen-
ter, but it is assumed that Bρ(x0)⊂ Bρ̃(x̃0) so that δ=dist(∂Bρ(x0), ∂Bρ̃(x̃0))>0,
then the sequence of nested spheres ∂Bρ j (x j )∈6 may still be constructed as above,
and from the formula for the radius, we see that

ρ1 = ρ
2 ρ̃

ρ̃+|t̃−t |
·

1
ρ̃−|t̃−t |

≤
ρ2

ρ+δ
≤ ρ.

Noting that Bρ1(x1) ⊂ Bρ̃(x̃0) and δ1 = dist(∂Bρ1(x1), ∂Bρ̃(x̃0)) > δ, we find by
induction (as follows) that

ρ j ≤ ρ j−1
ρ j−1

ρ̃−|t̃−t j−1|

≤ ρ
(
ρ
ρ+δ

) j−1 ρ j−1

ρ j−1+δ
≤ ρ

(
ρ
ρ+δ

) j
→ 0 as j→+∞.

We again obtain arbitrarily small spheres and the same contradiction.
Finally, if Bρ(x0)⊂ Bρ̃(x̃0)with ∂Bρ(x0)∩∂Bρ̃(x̃0) 6=φ, then making the same

construction yields

ρ1 =
ρ2ρ̃

ρ̃2−(ρ̃−ρ)2
=

ρρ̃
2(ρ̃−ρ)+ρ

.
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By induction in this case, we have

ρ j =
ρρ̃

2 j (ρ̃−ρ)+ρ
→ 0 as j→+∞,

and the contradiction is the same one. We have established the first assertion.
The second claim follows via contradiction from the first. If Bρ(x0)∩ L⊥ ⊂ L ,

then ψ(L⊥)= ∂Bρ1(x1)\{x0} with ρ1<ρ and Bρ1(x1)⊂ Bρ(x0). Also, letting ψ0

denote reflection in L⊥, and ψ1 reflection in ∂Bρ1(x1), we have ψ1 = ψ ◦ψ0 ◦ψ ,
at least outside of L . Thus, ∂Bρ1(x1) ∈6 with ∂Bρ1(x1)∩ ∂Bρ(x0)⊂ L .

That ψ(∂Bρ̃(x̃0) \ {x0}) is a horizontal plane if x0 ∈ ∂Bρ̃(x̃0) follows from a
calculation. Another shows that reflection with respect to that plane is given by
ψ ◦ ψ̃ ◦ ψ at all points in R3

\ {x0}. Since x0 /∈ P by Lemma 12, we see that
ψ(∂Bρ̃(x̃0) \ {x0}) is a symmetry plane for P. This plane must be L⊥ of course.

The last claim follows via a similar, and now familiar, reasoning. �

In view of the previous lemma, for each x0=−ae1+ te3 ∈ L the radius ρ0(t) of
the intersection circle of ∂Bρ(x0) with L⊥ is well defined. The properties of this
quantity are the key to the rest of the proof of Theorem 5.

Lemma 16. ρ0(t ± ρ(t))= ρ0(t).

Proof. Let ψ± ∈ 9 be the reflection associated to ∂Bρ(t±ρ(t))(x0 ± ρ(t)e3) ∈ 6.
Note that ψ±(∂Bρ(t)(x0) \ {x0 ± ρ(t)}) is a horizontal plane of symmetry for P.
By Lemma 14 that plane must be L⊥. Moreover, the intersection circle C± =
∂Bρ(t±ρ(t))(x0± ρ(t)e3)∩ ∂Bρ(t)(x0) is a nontrivial horizontal circle.

On the other hand, C± is fixed by ψ±, and

ψ±(C±)⊂ ψ±(∂Bρ(t)(x0) \ {x0± ρ(t)})= L⊥.

Thus C± ⊂ L⊥, and it follows that C± = ∂Bρ(t)(x0)∩ L⊥. �

Lemma 17. ρ0(t)= ρ(b0) for every t ∈ R.

Proof. We again argue by contradiction. If for some t , we have ρ0(t0) < ρ(b0),
then ψb0(∂Bρ(t0)(−ae1+ t0e3)) is a sphere ∂Bρ1(x1). As usual, ∂Bρ1(x1) ∈6 and
ρ0(t1) > ρ(b0).

Now we restrict attention to t ∈R for which ρ0(t)=ρ0(t1). The previous lemma
gives us many such t . We first observe that B={|t−b0| :ρ0(t)=ρ0(t1)} is bounded
away from zero. In fact, by the triangle inequality

|t − b0|> ρ(t)− ρ0(t) > ρ(t)− ρ(b0) > 0.

On the other hand, setting t j = t j−1+ρ(t j−1) for j=2, 3, . . . , we obtain a sequence
with ρ0(t j ) = ρ0(t1) such that |t j − b0| ∈ B. Also, since ρ(t) > |t − b0|, we may
assume t1 > b0. Then for j ≥ 2, we have t j > 2t j−1 − b0, so that inductively we
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find t j > 2 j−1t1− (2 j−1
− 1)b0 = t1+ (2 j−1

− 1)(t1− b0)→+∞ as j→+∞. It
follows that ρ(t j )→+∞ as j→+∞.

Finally, setting τ j = t j − ρ(t j ) we obtain another sequence of points with
ρ0(τ j )= ρ0(t1) > ρ(b0). These points satisfy

|τ j − b0| = t j − τ j − t j + b0 = ρ(t j )−
√
ρ(t j )2− ρ0(t1)2→ 0 as j→+∞.

This contradicts the fact that B is bounded away from zero. �

We have shown that every sphere ∂Bρ(x0) passes through the horizontal circle
{(x, y, h) : (x + a)2+ y2

= ρ2
0} where h = b0 and ρ0 = ρ(b0). Thus, S= π−1(P)

has special spherical symmetry and Theorem 5 is proved. �

4. Rotational symmetry

If a nonspherical surface S ∈S3 stereographically projects to a surface of rotation
about the projection of a geodesic, then we may assume the axis of symmetry in R3

is the z-axis and the meridian curve is given locally by x = x(z). In this case, a
natural parameterization for P= π(S) is

(34) Y (ϑ, z)= (x cosϑ, x sinϑ, z).

Stereographic projection of the expression in (2) yields

(35) X (θ, φ)= (R cos θ, R sin θ, r sinφ), where R =
√

r2+ 1+ r cosφ,

which does not, in general, have rotational symmetry in R3. Nevertheless, for
an appropriate rotation R of S3, we find that Y = π ◦ R ◦ π−1

◦ X does indeed
have the form (34). In fact, taking R = Ryz

π/2 Rxw
π/2, one checks easily that the

resulting projected surface has all the planes passing through the z-axis as planes
of symmetry. It follows that the surface is rotationally symmetric. Setting φ = 0
and

z = (
√

r2+1+r)(
√

r2+1+r2
+1) sin θ

√
r2+1+r2+1+(

√
r2+1+r) cos θ

,

where r = r(θ, 0), we find the meridian curve is given by

x = (
√

r2+1+r2)(
√

r2+1+r2
+1)

√
r2+1+r2+1+(

√
r2+1+r) cos θ

.

We thus obtain the expression (34) parametrically in ϑ and θ :

Y = (x(θ) cosϑ, x(θ) sinϑ, z(θ)).

Due to the spatial inhomogeneity of the spherical metric in R3
= π(S3

\ {e4}), it
is not surprising that the meridian curves do not take a simple form. It is therefore
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Figure 17. The generating curve of an unduloid-type surface, the
stereographic projection of the curve φ=0 in Apollonian position,
and the meridian of the same surface in symmetric position.

fortuitous that these surfaces are easily understood in terms of the (sometimes
periodic) function r ; the expression (35) might be called the Apollonian form.

We conclude with Figures 17–20, which are galleries of meridian curves of
representative surfaces in rotationally symmetric form.

References

[Abramowitz and Stegun 1964] M. Abramowitz and I. A. Stegun, Handbook of mathematical func-
tions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Math-
ematics Series 55, Government Printing Office, 1964. MR 29 #4914 Zbl 0171.38503

[Alexandrov 1962] A. D. Alexandrov, “A characteristic property of spheres”, Ann. Mat. Pura Appl.
(4) 58 (1962), 303–315. MR 26 #722

[Brito and Leite 1990] F. Brito and M. L. Leite, “A remark on rotational hypersurfaces of Sn”, Bull.
Soc. Math. Belg. Sér. B 42:3 (1990), 303–318. MR 91j:53028 Zbl 0734.53010

[do Carmo and Dajczer 1983] M. do Carmo and M. Dajczer, “Rotation hypersurfaces in spaces of
constant curvature”, Trans. Amer. Math. Soc. 277 (1983), 685–709. MR 85b:53055 Zbl 0518.53059

[Chern 1959] S. S. Chern, Differentiable manifolds, Textos de Matemática 4, Instituto de Física e
Matemática, Universidade do Recife, 1959. MR 24 #A3566 Zbl 0099.37402

[Hirsch 1994] M. W. Hirsch, Differential topology, Graduate Texts in Mathematics 33, Springer,
New York, 1994. MR 96c:57001

[Hopf 1983] H. Hopf, Differential geometry in the large, Lecture Notes in Mathematics 1000,
Springer, Berlin, 1983. MR 85b:53001 Zbl 0526.53002

[Hsiang 1982] W.-y. Hsiang, “Generalized rotational hypersurfaces of constant mean curvature in
the Euclidean spaces, I”, J. Differential Geom. 17 (1982), 337–356. MR 84h:53009 Zbl 0493.53043



SYMMETRIC SURFACES OF CONSTANT MEAN CURVATURE IN S3 113

Figure 18. The generating curve of spheres, the stereographic
projection of the curve φ = 0 in Apollonian position, and the
meridian of the same spheres in symmetric position. Note that
the generating curve does not consist of arcs of circles, though the
projection curves are arcs of circles.

[Hynd and McCuan 2006] R. Hynd and J. McCuan, “On toroidal rotating drops”, Pacific J. Math.
224:2 (2006), 279–289. MR 2007h:53010 Zbl 1125.49001

[Jagy 1998] W. C. Jagy, “Sphere-foliated constant mean curvature submanifolds”, Rocky Mountain
J. Math. 28:3 (1998), 983–1015. MR 99j:53026 Zbl 0979.53072

[Kilian and Schmidt 2008] M. Kilian and M. U. Schmidt, “On the moduli of constant mean curvature
cylinders of finite type in the 3-sphere”, 2008. arXiv 0712.0108v2

[McCuan 1997] J. McCuan, “Symmetry via spherical reflection and spanning drops in a wedge”,
Pacific J. Math. 180:2 (1997), 291–323. MR 98m:53013 Zbl 0885.53009

[McCuan and Spietz 1998] J. McCuan and L. Spietz, “Rotations of the three-sphere and symme-
try of the Clifford torus”, Mathematical Sciences Research Institute, 1998, Available at http://
www.msri.org/publications/preprints/online/1998-052.html.

[Ôtsuki 1970] T. Ôtsuki, “Minimal hypersurfaces in a Riemannian manifold of constant curvature.”,
Amer. J. Math. 92 (1970), 145–173. MR 41 #9157 Zbl 0196.25102

[Otsuki 1988] T. Otsuki, “A nonlinear ordinary differential equation of order 2 in differential geome-
try”, pp. 1001–1025 in Topics in differential geometry, II (Debrecen, 1984), edited by J. Szenthe and
L. Tamássy, Colloq. Math. Soc. János Bolyai 46, North-Holland, Amsterdam, 1988. MR 89g:53009
Zbl 0646.53054

[Park 2002] S.-H. Park, “Sphere-foliated minimal and constant mean curvature hypersurfaces in
space forms and Lorentz–Minkowski space”, Rocky Mountain J. Math. 32:3 (2002), 1019–1044.
MR 2003j:53037 Zbl 1043.53055



114 RYAN HYND, SUNG-HO PARK AND JOHN MCCUAN

Figure 19. The generating curve of a nodoid-type surface, the
stereographic projection of the curve φ=0 in Apollonian position,
and the meridian of the same surface in symmetric position.

[Ros 1995] A. Ros, “A two-piece property for compact minimal surfaces in a three-sphere”, Indiana
Univ. Math. J. 44:3 (1995), 841–849. MR 97g:53008 Zbl 0861.53009

[Rossman and Sultana 2007] W. Rossman and N. Sultana, “Morse index of constant mean curvature
tori of revolution in the 3-sphere”, Illinois J. Math. 51:4 (2007), 1329–1340. MR 2417430

[Rossman and Sultana 2008] W. Rossman and N. Sultana, “The spectra of Jacobi operators for
constant mean curvature tori of revolution in the 3-sphere”, Tokyo J. Math. 31:1 (2008), 161–174.
MR 2009b:53010

[Wente 1980] H. C. Wente, “The symmetry of sessile and pendent drops”, Pacific J. Math. 88:2
(1980), 387–397. MR 83j:49042a Zbl 0473.76086

[Whittaker and Watson 1996] E. T. Whittaker and G. N. Watson, A course of modern analysis:
An introduction to the general theory of infinite processes and of analytic functions, Cambridge
University Press, 1996. MR 97k:01072 Zbl 0951.30002

[Yau 1982] S. T. Yau (editor), Seminar on Differential Geometry, Annals of Mathematics Studies
102, Princeton University Press, 1982. MR 83a:53002

Received March 12, 2008. Revised January 19, 2009.

RYAN HYND

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA

BERKELEY, CA 94720-3840
UNITED STATES

ryanhynd@math.berkeley.edu



SYMMETRIC SURFACES OF CONSTANT MEAN CURVATURE IN S3 115

Figure 20. The generating curve of a catenoid-type surface, the
stereographic projection of the curve φ=0 in Apollonian position,
and the meridian of the same surface in symmetric position. This
is the catenoid-type surface with θmax = π/3, so the surface is
compact. Three loops are shown in the meridian; there are three
more, but it is not easy to guess how they will look. In contrast,
the three missing from the φ = 0 curve are easy to draw in.
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