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Let R be a commutative noetherian local ring, and let % be a resolving sub-
category of the category of finitely generated R-modules. In this paper, we
study modules in ¥ by relating them to modules in ¥ which are free on
the punctured spectrum of R. We do this by investigating nonfree loci and
establishing an analogue of the notion of a level in a triangulated category
which has been introduced by Avramov, Buchweitz, Iyengar and Miller. As
an application, we prove a result on the dimension of the nonfree locus of
a resolving subcategory having only countably many nonisomorphic inde-
composable modules in it, which is a generalization of a theorem of Huneke
and Leuschke.

1. Introduction

Four decades ago, Auslander and Bridger [1969] introduced the notion of a re-
solving subcategory of an abelian category with enough projectives. They proved
that in the category of finitely generated modules over a left and right noetherian
ring, the full subcategory consisting of all modules of Gorenstein dimension zero,
which are now also called totally reflexive modules, is resolving.

Let R be a commutative noetherian ring, and let mod R denote the category of
finitely generated R-modules. A lot of important full subcategories of mod R are
known to be resolving. As trivial examples, mod R itself and the full subcategory
proj R of mod R consisting of all projective modules are resolving. If R is a Cohen—
Macaulay local ring, then the full subcategory CM(R) of mod R consisting of all
maximal Cohen—Macaulay R-modules is resolving; see Example 2.4 for details
and other examples of a resolving subcategory.

Let R be a local ring, and let & be a resolving subcategory of mod R. In the
present paper, we study modules in & by relating them to modules in & which are
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free on the punctured spectrum of R. A key role is played by the nonfree loci of R-
modules and subcategories of mod R, which are certain closed and specialization-
closed subsets of Spec R, respectively.

To be more precise, from each module X € & we construct another module
X' € ¥ which is free on the punctured spectrum of R, and count the (minimum)
number of steps required to construct X’ from X. We denote the number by
step(X, X’). (The precise definition will be given in Definition 5.1.) This invariant
is an analogue of a level in a triangulated category which has been introduced by
Avramov, Buchweitz, Iyengar and Miller [Avramov et al. 2007].

We denote by NF(X) and NF(¥) the nonfree loci of an R-module X and a
subcategory ¥ of mod R, respectively (Definition 2.7). The main result of this
paper is the following, which will be proved in Corollary 5.6.

Theorem A. Let R be a commutative noetherian local ring, and let X be a resolv-
ing subcategory of mod R. Then for every nonfree R-module X € %, there exists a
nonfree R-module X' € ¥ such that

(1) step(X, X') <2dimNF(X) and
(2) X' is free on the punctured spectrum of R.

As an application, we consider how many nonisomorphic indecomposable mod-
ules are in . We will prove the following result in Corollary 6.9.

Theorem B. Let R be a commutative noetherian local ring that is either complete
or has uncountable residue field. Let X be a resolving subcategory of mod R in

which there are only countably many nonisomorphic indecomposable R-modules.
Then dimNF(%X) < 1.

This theorem recovers a theorem of Huneke and Leuschke [2003] which proves
a conjecture of Schreyer [1987].

Convention. Throughout this paper, let R be a commutative noetherian ring. All
R-modules considered in this paper are assumed to be finitely generated. We de-
note by mod R the category of finitely generated R-modules. By a subcategory
of mod R, we always mean a full subcategory of mod R which is closed under
isomorphisms. We freely use basic definitions and results in commutative algebra
which are stated in [Bruns and Herzog 1998].

2. Foundations

In this section, we define the resolving closures and the nonfree loci of an R-
module and a subcategory of mod R, and study their basic properties. We begin
with recalling the definition of a syzygy.
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Definition 2.1. (1) Let n be a nonnegative integer, and let M be an R-module. If
there exists an exact sequence

O->N—->P,_1—>---—>Php—>M—>0

of R-modules where P; is a projective R-module for every 0 <i <n — 1,
then we call N the n-th syzygy of M, and denote it by Q" M. Note that the
n-th syzygy of a given R-module is not uniquely determined; it is uniquely
determined up to projective summand. We simply write Q! M = QM.

(2) Inthe case where R is local, the R-module M admits a minimal free resolution

On+1 0, 0 0
CB3ES LA FR3 M.

Then we define the n-th syzygy of M as the image of J,, and denote it by
Q"M. The n-th syzygy of a given R-module is uniquely determined up to
isomorphism since so is a minimal free resolution. Whenever R is local, we
define the n-th syzygy of an R-module by using its minimal free resolution.

Definition 2.2. A subcategory ¥ of mod R is called resolving if % satisfies the
following conditions.

(1) % contains all projective R-modules.

(2) % is closed under direct summands: if M is in ¥ and N is a direct summand
of M, then N is also in ¥.

(3) % is closed under extensions: for any exact sequence 0 > L — M — N — 0
in mod R, if L and N are in ¥, then so is M.

(4) % is closed under kernels of epimorphisms: for any exact sequence 0 — L —
M — N —0OinmodR, if M and N are in &, then so is L.

A resolving subcategory is a subcategory such that any two “minimal” reso-
lutions of a module by modules in it have the same length; see [Auslander and
Bridger 1969, Lemma (3.12)].

The closedness under kernels of epimorphisms can be replaced with a weaker
condition of the closedness under syzygies.

Remark 2.3. [Yoshino 2005, Lemma 3.2] A subcategory ¥ of mod R is resolving
if and only if & satisfies the following conditions.

(1) % contains all projective R-modules.

(2) % is closed under direct summands.

(3) % is closed under extensions.

(4) % is closed under syzygies: if M is in &, then so is QM.

Examples 2.4. Many important subcategories of mod R are known to be resolving:
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It is trivial that the subcategory mod R of mod R is resolving.

It is obvious that the subcategory proj R of mod R consisting of all projective
R-modules is resolving.

Let I be an ideal of R. Then the subcategory of mod R consisting of all R-
modules M with grade(/, M) > grade(/, R) is resolving. This can be shown
by using the equality grade(I, M) = inf{i € Z | Ext},(R/I, M) # 0}.

Let R be a Cohen—Macaulay local ring. Then, letting / be the maximal ideal
of R in (3), we see that the subcategory CM(R) of mod R consisting of all
maximal Cohen—Macaulay R-modules is resolving.

An R-module C is called semidualizing if the natural homomorphism R —
Homg(C, C) is an isomorphism and Ext"R (C,C)=0foreveryi > 0. An R-
module M is called totally C-reflexive, where C is a semidualizing R-module,
if the natural homomorphism M — Homg(Homg (M, C), C) is an isomor-
phism and Ext’k M, C) = Ext’k (Homg (M, C), C) = 0 for every i > 0. The
subcategory %¢ (R) of mod R consisting of all totally C-reflexive R-modules
is resolving by [Araya et al. 2005, Theorem 2.1].

A totally R-reflexive R-module is simply called totally reflexive. The subcate-
gory G(R) of mod R consisting of all totally reflexive R-modules is resolving
by (5); see also [Auslander and Bridger 1969, (3.11)].

Let n be a nonnegative integer, and let K be an R-module (which is not nec-
essarily finitely generated). Then the subcategory of mod R consisting of all
R-modules M with Tor®(M, K) = 0 for i > n (respectively, i >> 0) and the
subcategory of mod R consisting of all R-modules M with Ext’k (M,K)=0
for i > n (respectively, i > 0) are both resolving.

Let R be a local ring. We say that an R-module M is bounded if there is
an integer s such that ﬁiR (M) < s for all i > 0, where ,Bl.R (M) denotes the
i-th Betti number of M. The subcategory of mod R consisting of all bounded
R-modules is resolving. This can be shown by using the equality ﬁiR M) =
dimy Torl.R (M, k), where k is the residue field of R.

Let R be local. We say that an R-module M has complexity c if c is the least
nonnegative integer d such that there exists a real number r satisfying the
inequality ﬁiR (M) < ri?=! for i > 0. The subcategory of mod R consisting
of all R-modules having finite complexity is resolving by [Avramov 1998,
Proposition 4.2.4].

Let R be local. We say that an R-module M has lower complete intersection
zero if M is totally reflexive and has finite complexity. The subcategory of



MODULES IN RESOLVING SUBCATEGORIES 351

mod R consisting of all R-modules of lower complete intersection dimension
zero is resolving by (6) and (9); see also [Avramov 2002, Lemma 6.3.1].

Now we define the resolving closures of a subcategory of mod R and an R-
module.

Definition 2.5. For a subcategory & of mod R, we denote by res & (or resg & when
there is some fear of confusion) the resolving subcategory of mod R generated by
%, namely, the smallest resolving subcategory of mod R containing ¥. If % consists
of a single module X, then we simply write res X (or resg X).

Remark 2.6. (1) Let {&,},ca be a family of resolving subcategories of mod R.
Then the intersection (1),., %, is also a resolving subcategory of mod R.
Therefore, for every subcategory & of mod R, the smallest resolving subcate-
gory of mod R containing ¥ exists.

(2) Let %, % be subcategories of mod R. If & C %, then res ¥ C res Y.

(3) A subcategory & of mod R is resolving if and only if & =res &. In particular,
res ¥ = res(res &) for every subcategory & of mod R.

Next we recall the definition of the nonfree locus of an R-module and define the
nonfree locus of a subcategory of mod R.

Definition 2.7. (1) We denote by NF(X) (or NFg (X)) the nonfree locus of an
R-module X, namely, the set of prime ideals p of R such that the Rp-module
Xy is nonfree.

(2) We define the nonfree locus of a subcategory & of mod R as the union of
NF(X) where X runs through all (nonisomorphic) R-modules in &%, and denote
it by NF(¥X) (or NFz(%)).

Remark 2.8. (1) For a subcategory & of mod R, one has NF(¥) = & if and only
if & is contained in proj R. In particular, one has NF(X) = & for an R-module
X if and only if X is projective.

(2) Let R be a local ring with maximal ideal m. Then an R-module X is nonfree
if and only if m is in NF(X).

(3) Let %, % be subcategories of mod R. If & C Y, then NF(¥) C NF(%¥).

Example 2.9. Let R be a Cohen—Macaulay local ring. Then the nonfree locus
NF(CM(R)) coincides with the singular locus Sing R of R.

In fact, for every prime ideal p in NF(CM(R)) there exists a maximal Cohen—
Macaulay R-module X such that the Ry,-module X, is not free. Hence X is a
nonfree maximal Cohen—Macaulay R,-module, which implies that the local ring
Ry is singular. On the other hand, each prime ideal p in Sing R belongs to the
nonfree locus of the maximal Cohen-Macaulay R-module QU™ (R /p).
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The nonfree locus of a module can be described as the support of an Ext module.

Proposition 2.10. Let o : 0 - Y — P — X — 0 be an exact sequence of R-
modules such that P is projective. Then one has NF(X) = Supp Ext}e (X, Y). Hence
NF(X) = Supp Ext} (X, QX).

Proof. For a prime ideal p in Supp Ext}e(X ,Y), the module Ext}ep (Xp, Yp) is
nonzero. In particular, X, is a nonfree Rp-module, and hence p is in NF(X).
Conversely, let p be a prime ideal in NF(X). Localizing ¢ at p, we obtain an exact
sequence oy : 0 — ¥, — P, — X, — 0 of Ryp-modules. Since X, is not free, this
exact sequence oy, does not split, hence this defines a nonzero element of the module
Ext}ep (Xyp, Yp). Thus Ext}e (X, Y), is nonzero, that is, p is in Supp Ext}e X,7). O

Recall that a subset Z of Spec R is called specialization-closed provided that if
p € Z and q € Spec R with p C g then q € Z. Note that every closed subset of
Spec R is specialization-closed.

Corollary 2.11. (1) The nonfree locus of an R-module is a closed subset of Spec
R in the Zariski topology.

(2) The nonfree locus of a subcategory of mod R is specialization-closed.

Proof. (1) It is seen from Proposition 2.10 that NF(X) = Supp Ext}e (X, QX) for
an R-module X. As Ext}e(X , QX) is a finitely generated R-module, the subset
NF(X) of Spec R is closed.

(2) It is easy to see that in general any union of closed subsets of Spec R is
specialization-closed. Hence this statement follows from (1). O

Let Z be a closed subset of Spec R. Then Z = V(I) for some ideal I of R,
uniquely determined up to radical. We call such an ideal / the defining ideal of Z.

3. Inductive construction of resolving closures

In this section, we build a filtration of subcategories in the resolving closure of
a subcategory of mod R, and inductively construct the resolving closure. This is
an imitation of the notion of thickenings in the thick closure of a subcategory of
a triangulated category, which were introduced by Avramov, Buchweitz, Iyengar
and Miller [Avramov et al. 2007]. Using this construction of a resolving closure,
we can obtain several properties of a resolving closure and its nonfree locus.

The additive closure add & (or addg &) of a subcategory & of mod R is defined
to be the subcategory of mod R consisting of all direct summands of finite direct
sums of modules in &. Note that add & is closed under direct summands and finite
direct sums, namely, two R-modules M and N belong to add & if and only if so
does M @ N.
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Definition 3.1. Let & be a subcategory of mod R. For a nonnegative integer n, we
inductively define a subcategory res” & (or res’, &) of mod R as follows:

(1) Set res’ % = add(ZX U {R)).

(2) For n > 1, let res” & be the additive closure of the subcategory of mod R
consisting of all R-modules Y having an exact sequence of the form

0>A—->Y—>B—>0 or 0—-Y—>A—>B—0,

where A, B e res" ! %.
If % consists of a single module X, then we simply write res” X instead of res” .

Remark 3.2. Let &%, % be subcategories of mod R, and let n be a nonnegative
integer.

(1) If X C Y, then res” & C res" V.
(2) res"(add &) =res"” ¥ = add(res" X).

(3) There is an ascending chain {0} < res?% Cres! ¥C .- Cres" X C---Cres¥
of subcategories of mod R.

4) res® = J,=qres" %.

The first and second statements follow by definition and induction on n. As to
the third statement, since res” & is closed under direct summands, it contains the
zero module 0. For an R-module M in res” & there exists a short exact sequence
0— M > M — 0 — 0, which shows that M is in res"*! & by definition. As for
the fourth statement, it is easy to see by definition that & C J,,.,res” & C res ¥.
It remains to show that |, res” & is a resolving subcategory of mod R. But this
is also easy to check. -

From its definition, we might think that there are not so many nonisomorphic
indecomposable modules in res” ¥. But, the following two examples say that this
guess is not right.

Example 3.3. Let us consider the 1-dimensional complete local hypersurface R =
Cllx, y1/(x?) over the complex number field. Then the subcategory res' (x R) coin-
cides with CM(R), and there exist infinitely many nonisomorphic indecomposable
R-modules in res' (x R).
Indeed, set
R (n=0),
ILi=1(x,y)R (0<n <o0),

xR (n = 00).
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It follows from [Yoshino 1990, Example 6.5] that the set {1, }o<;<oo consists of all
the nonisomorphic indecomposable maximal Cohen—Macaulay R-modules. For
each integer n with 0 < n < 0o, we have isomorphisms

((x, yY")R)/xR L R/xR £ XR,

where f sends the residue class of a € R in R/x R to the residue class of y"a in
((x, Y")R)/xR, and g sends the residue class of @« € Rin R/x R to xa € xR. Hence
we see that there is an exact sequence

0—-xR—1,—->xR—0

for 0 < n < oo, which implies that I, is in resl(xR) for 0 < n < oc0. On the
other hand x R is a maximal Cohen—Macaulay R-module, and CM(R) is a resolv-
ing subcategory of mod R by Example 2.4(4). Therefore CM(R) coincides with
res' (xR).

The localization R, at the prime ideal p = xR is singular because it has a
(nonzero) nilpotent x. Hence the local ring R is not an isolated singularity, and
thus there exist infinitely many isomorphism classes of indecomposable maximal
Cohen—Macaulay R-modules by [Auslander 1986, §10] or [Huneke and Leuschke
2002, Corollary 2].

For a subcategory & of mod R, we denote by ind ¥ (or indg &) the set of non-
isomorphic indecomposable R-modules in &.

Example 3.4. Let k be a field. We consider the 2-dimensional hypersurface R =
klx,y, zl/(x?). Put p(f) = (x, y — zf)R for an element f € k[[z]] € R. Then
p(f) is an indecomposable R-module in res!(xR), and there exist uncountably
many nonisomorphic indecomposable R-modules in res' (x R).

Indeed, note that x R is a maximal Cohen—Macaulay R-module. Hence the R-
regular element y — zf is also x R-regular. Note also that p(f) is isomorphic to
QxR/(y —zf)xR). We can make the following pullback diagram:

0 0
| |
p(f) =——=»()
i |
0 - xR - E - R -0
T
0 » xR xR — xR/(y—zf)xR — 0

| |

0 0
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Since the middle row splits, E is isomorphic to x R & R. We get an exact sequence
00— p(f) >xR®R— xR — 0.

The R-modules xR and xR @ R belong to res’(xR); therefore p(f) belongs to
res' (xR). A similar argument to the proof of Claim 1 in [Takahashi 2007, Example
4.3] shows that p( f) is an indecomposable R-module. Thus, we obtain a map from
k[[z] to ind(res' (x R)) which is given by f > p(f). Along the same lines as in the
proofs of Claims 2 and 3 in [Takahashi 2007, Example 4.3], we can prove that this
map is injective. Since the set k[[z]] is uncountably infinite, the assertion follows.

For a subcategory & of mod R and a multiplicatively closed subset S of R, we
denote by ¥ the subcategory of mod Ry consisting of all Rg-modules Xg with
X € ®. Our inductive construction of a resolving closure yields a relationship
between a resolving closure and localization.

Proposition 3.5. Let & be a subcategory of mod R, and let S be a multiplicatively
closed subset of R. Then (resg X)s is contained in resgg Xs.

Proof. It is enough to show that (res’, &) is contained in resy & for each integer
n > 0. We use induction on n. The statement obviously holds when n = 0. Let
n > 1, and take an R-module M in res &. Then there are a finite number of R-
modules My, ..., M, such that M is a direct summand of M; & ---@® M, and that
for each 1 <i <t there exists an exact sequence of the form

0—A - M —-B —0 or 0—- M — A — B =0,

where A; and B; are in res’l’e_1 . Hence for each 1 <i <t there is an exact sequence
of either of the form

0—(A)s— Mj)s— (Bj))s—0 or 00— (Mj)s— (A))s— (Bj)s— 0,

where (A;)s and (B;)s are in (res’;{1 %)s. The induction hypothesis implies that
(res’};1 X)s C res’,’g1 ¥s. Since My is a direct summand of (M)s & --- ® (M;)s,
the Rg-module Mg belongs to res’}es Xs. ]

Making use of the above result, we see that the nonfree locus of a subcategory
is stable under taking its resolving closure.

Corollary 3.6. For each subcategory X of mod R, we have
NF(res ) = NF(add ¥) = NF(%).

Proof. Note that there are inclusions resg & 2 addg X 2D & of subcategories of
mod R. From this we see that there are inclusions NF(resg &) 2 NF(addg &) D
NF(¥) of subsets of Spec R. We have only to show that NF(resg %) is contained
in NF(%).
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Let p be a prime ideal in NF(resg ). Then there is an R-module Y € resg &
such that p is in NF(Y). The localization Yy, belongs to (resg &)y, and to resg, &
by Proposition 3.5. Assume that p is not in NF(¥). Then for every X € ¥ the
Ry-module Xy, is free. Hence the subcategory &), of mod Ry, consists of all free
Ry-modules, and in particular, &, is resolving by Example 2.4(2). Therefore we
have res Ry Xy = %p, and thus Y} is a free Ry-module. But this contradicts the
choice of p. Consequently, the prime ideal p must be in NF(¥), which completes
the proof of the corollary. U

Using the above corollary, we can show that the nonfree locus of a subcategory is
determined by the isomorphism classes of indecomposable modules in its resolving
closure.

Corollary 3.7. Let & be a subcategory of mod R. Then

NE(X) = U Supp Ext}e(Y, Z).
Y,Zeind(res &)

Proof. By Corollary 3.6, replacing ¥ with res %, we may assume that the subcat-
egory ¥ is resolving. Under this assumption, we have only to show the equality
NF(&) = UY,Zeind% Supp Ext}e (Y, Z). If a prime ideal p is such that Ext}ep Yy, Zyp)
is nonzero for some modules Y, Z € &, then Y, is nonfree as an Rp-module, hence
p is in NF(¥X). Conversely, let p be a prime ideal in NF(X) for some X € ¥.
Then it follows from Proposition 2.10 that Ext}ep (Xp, QXp) is nonzero. Hence
there are indecomposable summands Y and Z of X and QX respectively such that
Ext}ep (Yyp, Zy) is nonzero. The modules Y, Z are in ind &. (]

4. Closed subsets of nonfree loci

In this section, we study the structure of the nonfree locus of an R-module. The
main result of this section is concerning closed subsets of a nonfree locus (in the
relative topology induced by the Zariski topology of Spec R), which will often be
referred in later sections. We begin with the following lemma, which is proved
by taking advantage of an idea used in the proof of [Huneke and Leuschke 2002,
Theorem 1].

Lemma 4.1. Let R be a local ring with maximal ideal m. Let

0:0—>L—f>M—>N—>O

be an exact sequence of R-modules. Let x be an element in m. Then there is an
exact sequence

x

0—>L(—f>)L69M—>K—>O.
If this splits, then so does o.
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Proof. There exists a homomorphism (g, &) : L& M — L such that 1 = (g, h)(?) =
xg +hf. Applying Homg (N, —) to o, we have an exact sequence
N ol ExtR(N.f) |

Homg(N, N) = Extp(N,L) —  Extp(N, M),
and get Ext}Q(N, o) = (Ext}Q(N, f)-n)(1)=0. Set ¢ = Ext}Q(N, g). There are
equalities 1 = Ext}e(N, xg+hf)=x¢+ Ext}e (N, h) -Ext}g(N, f), so we obtain
o =x&(o)+ Ext}e(N, h)(Ext}e(N, £)(0)) = x&(c). Hence ¢ = x'& (o) for any
i > 1, and therefore o € () i>1 m' Ext}e (N, L) =0 by virtue of Krull’s intersection
theorem. Thus the exact sequence o splits. ]

Using the above lemma, we prove the following proposition, which will play an
essential role in the proofs of our main results.

Proposition 4.2. Let X be an R-module. Let p be a prime ideal in NF(X) and x
an element in p. Then there is a commutative diagram

s 00X JoRr . x_ .
42.1) xl l “
o 0 OX X X 0

of R-modules with exact rows, and the following statements hold:
(1) X, eres® X,

(2) V(p) € NF(X;) € NF(X),

(3) D(x)NNF(X,) = 2.

Proof. Taking a free cover of X, we get an exact sequence

0:0—>QXI>R”—>X—>0

of R-modules. Making a pushout diagram of f : QX — R" and the multiplication
map x : QX — QX, we obtain a commutative diagram (4.2.1).

(1) From the first row in (4.2.1) we see that QX is in res! X. It follows from the
second row that X is in res® X.

(2) Assume that p is not in NF(X;). Then (X1), is free as an Rp-module, and the
exact sequence

X

()
0— QX, % QX, ®R! — (X1)y — 0

splits. Lemma 4.1 implies that oy, is a split exact sequence, and so the Rp-module
Xy is free. This contradicts the assumption that p is in NF(X). Therefore p is in
NF(X1), and the set V (p) is contained in NF(X) by Corollary 2.11(2).
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Take a prime ideal g € NF(X1). Suppose that q is not in NF(X). Then X is a
free Rq-module, and the localized exact sequences

oq: 0—>QXq—>R;’—>Xq—>O,
x0q: 0= QX5 — (X1)g—> Xq—0

both split. This implies that (X;)q is a free R;-module, which contradicts the
choice of q. Thus NF(X) is contained in NF(X).

(3) Assume that the set D(x) N NF(X;) is nonempty, and take a prime ideal q
in D(x) "NF(X1). Then the element x can be regarded as a unit of the local ring
Rg. Localizing the diagram (4.2.1) at q, we see from the five lemma that (X)g is
a free Rq-module. Hence q is not in NF(X), which is a contradiction. U

Now we can prove one of the main results of this paper.

Theorem 4.3. For any R-module X and any subset W of NF(X) which is closed
in Spec R, there exists an R-module Y € res X such that W = NF(Y).

Proof. First of all, if W is an empty set, then we can take Y := R. So, suppose that
W is nonempty. Take an irreducible decomposition W = V(py)U--- U V(p,,) of
W. Suppose that for each 1 <i <n we can find an R-module Y; € res X such that
NF(Y;) coincides with V (p;). Then, putting ¥ =Y, & - - - @ Y,,, which belongs to
res X, we easily see that W is equal to NF(Y). So, we can assume without loss of
generality that W is an irreducible closed subset of Spec R; we write W = V (p)
for some p € Spec R.

If V (p) coincides with NF(X), then we can take ¥ := X. So assume that V (p) is
strictly contained in NF(X). Then there is a prime ideal g € NF(X) which is not in
V (p). Hence there exists an element x € p which is not in g. For this element x of
R, let X be an R-module satisfying the three conditions in Proposition 4.2. Then
it is obvious that X is in res X. Since q is in D(x), it does not belong to NF(X).
Thus we have V (p) € NF(X) C NF(X). If V (p) coincides with NF(X), then we
can take Y := X|. So we assume that V (p) is strictly contained in NF(X). Then,
a similar argument to the above shows that there exists an R-module X, € res X
which satisfies V (p) € NF(X,) C NF(X;) C NF(X).

According to Corollary 2.11(1), all nonfree loci are closed subsets of Spec R.
Since Spec R is a noetherian space, every descending chain of closed subsets sta-
bilizes. This means that the above procedure to construct modules X; cannot be
iterate infinitely many times. Hence there exists an R-module Y € res X such that
V (p) coincides with NF(Y). O

A very special case of this theorem was obtained in [Takahashi 2007, Lemma 3.4].

From Theorem 4.3 we see that the nonfree locus of a given nonfree module has
an irreducible decomposition by the nonfree loci of a finite number of modules in
its resolving closure.
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Corollary 4.4. For every nonfree R-module X there exists a decomposition
NF(X) =NF(Y))U---UNF(Y,)

with Yy, ..., Y, eres X such that NF(Y}), ..., NF(Y,) are irreducible closed sub-
sets of Spec R.

Proof. Since NF(X) is a nonempty closed subset of Spec R, we have a decompo-
sition

NF(X) =V(p)U---UV(pn)
for some prime ideals py, ..., p,. We apply Theorem 4.3 to each V (p;) to see that
there is an R-module Y; € res X such that V (p;) coincides with NF(Y;). Then each
NF(Y;) is irreducible and we have NF(X) = NF(Y;) U- - - UNF(Y,). O

We might think that the above corollary predicts that all closed subsets of Spec R
are the nonfree loci of some modules. But, as the proposition below says, this
statement does not hold. Here, for a subset W of Spec R, we denote by min W the
set of minimal elements of W with respect to inclusion relation.

Proposition 4.5. Let W be a nonempty closed subset of Spec R. Then the following
are equivalent:

(1) W =NF(X) for some R-module X,
(2) W =NE(X) for some R-module X € resg (D pcminw R/P);
(3) Foreveryp € W, the local ring Ry, is not a field.

Proof. (2) = (1): This implication is trivial.

(I) = (3): Let p be a prime ideal in W. Then X, is not a free Rp-module. In
particular, Ry, is not a field.

(3) = (2): Take an irreducible decomposition W = V (p;)U---UV (p,) of W. Fix
an integer i with 1 <i < n. By assumption, the local ring Ry, is not a field. It is
easy to see that p; belongs to NFg(R/p;), hence V (p;) is contained in NFgr(R/p;)
by Corollary 2.11(2). Theorem 4.3 implies that there exists an R-module Y; €
resg(R/p;) such that V (p;) = NF(Y;). Setting Y =Y, d--- Y, we see that Y is
in resg (P;_; R/p;) and that W coincides with NF(Y). O

5. Walks in resolving subcategories

In this section, we investigate the structure of the resolving closure of an R-module
by means of the inductive construction of the resolving closure which we obtained
in Section 3. More precisely, let X be an R-module. For an R-module Y € res X,
we consider how many resolving operations are needed to take to construct Y from
X. Here, resolving operations mean extensions and kernels of epimorphisms. For
this purpose, we introduce the following invariant which measures the minimum
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number of required resolving operations. This is an imitation of a level in a trian-
gulated category defined in [Avramov et al. 2007].

Definition 5.1. For two R-modules X and Y, we define
step(X,Y) =inf{n > 0| Y €resy X}.
Remark 5.2. Let X be an R-module.

(1) One has step(X, Y) = 0 for every R-module Y € res’ X = add(X @ R). In
particular, step(X, X) = step(X, R) = step(X, 0) = 0.

(2) One has step(X, Y) < oo for an R-module Y if and only if ¥ belongs to res X.

In general, the invariant step(—, —) does not induce a distance function. How-
ever, it satisfies the triangle inequality.

Proposition 5.3. Let X, Y, Z be R-modules.

(1) Let m, n be nonnegative integers. If Y € res” X and Z € res" Y, then Z €
res” " X.

(2) The inequality step(X, Z) < step(X, Y) + step(Y, Z) holds.

Proof. (1) Let us prove this assertion by induction on 7.

When n = 0, the module Z is in add(Y & R). Note that both Y and R are in
res”™ X. Since res™ X is an additive closure, it contains add(Y & R). Hence Z
belongs to res” X =res" " X.

Let n > 1. By definition, there are a finite number of R-modules My, ..., M;
such that Z is a direct summand of M@ - - - @ M, and that for each 1 <i < s there
exists an exact sequence of the form

00— A > M;,— B, —0 or 0— M; —> A; > B; — 0,
where A;, B; e res"~! Y. Induction hypothesis implies that the modules A;, B; are

in res™ ™"~ X for 1 <i <s. Hence each M; is in res” 1" X, and therefore so is Z.

(2) Set p =step(X, Y) and g = step(Y, Z). Then Y isinres” X and Z isinres? Y.
The assertion (1) implies that Z is inres?*9 X, which says that step(X, Z) < p+q =
step(X, Y) +step(Y, Z). O

Let Z be a subset of Spec R. For a prime ideal p in Z, we define the height of
p with respect to Z as the supremum of ht(p/q) where q runs through all prime
ideals in Z that are contained in p. We denote it by htz(p).

Remark 5.4. The following statements are straightforward.

(1) One has htgpec g(p) = htp for any p € Spec R.
(2) For a prime ideal p in a subset Z of Spec R, it holds that 0 < htz(p) < htp.
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(3) Let Z be a closed subset of Spec R, and let / be the defining ideal of Z. For
each prime ideal p € Z, one has htz(p) =ht(p/I).

(4) Letp, q be prime ideals in a subset Z of Spec R. If p C q, then htz(p) <htz(q).
(5) Let Z, W be subsets of Spec R. If Z C W, then ht(p) <hty (p) foranyp e Z.

(6) Let R be alocal ring with maximal ideal m. Then the equality htz(m) =dim Z
holds for every subset Z of Spec R containing m. (Recall that the dimension
dim Z of a subset Z of Spec R is defined as the supremum of dim R /p where
p runs over all prime ideals in Z.)

(7) Let Z be a subset of Spec R and let p be a prime ideal in Z. Then htz(p) =0
if and only if p is minimal in Z.

Now we state and prove one of the main results of this paper.

Theorem 5.5. Let X be an R-module and let p be a prime ideal in NF(X). Then
there exists an R-module Y € res X satisfying the following three conditions:

(1) step(X, Y) <2 htngx)(p),
(2) p e NF(Y),
(3) hinrr)(p) = 0.
Proof. We prove the theorem by induction on n :=htnr(x) (p). (Note that htng(x) (p)
is finite because R is a noetherian ring.)
When n =0, we set Y := X. Then Y is in res® X, so we have step(X,Y) =0 =

2 htnp(x) (p). We also have p € NF(Y) and htxgyy (p) = 0.
When n > 1, put

§ = {qg € NF(X) | htxp(x)(q) = 0}.

Corollary 2.11(1) implies that NF(X) is a closed subset of Spec R. Letting I be
the defining ideal of NF(X), we have htng(x)(q) = ht(q/1) for every q € NF(X).
Hence S coincides with the set of minimal prime ideals of /, and therefore § is a
finite set. As n is positive now, the prime ideal p is not contained in all prime ideals
in S. By prime avoidance, we can choose an element x € p which is not contained
in all prime ideals in S.

For this element x, take an R-module X which satisfies the conditions in Propo-
sition 4.2. Namely, the module X satisfies the following three conditions:

X € res’ X,
V(p) € NF(X;) € NF(X),
D(x)NNF(X,) = 2.

Hence step(X, X) <2 and X € res X. Since S is contained in D(x), we have
SNANF(X,) =2.
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Let g be a prime ideal in NF(X) which is contained in p. Then g does not
belong to S, so htyrx)(q) > 0. Hence ht(q/t) > 0 for some prime ideal v € NF(X)
which is contained in q. There are inequalities

ht(p/q) <ht(p/q) +ht(q/v) <ht(p/r) <htxee) (p) = n.

Therefore we have htng(x,)(p) < n. The induction hypothesis implies that there
exists an R-module Y eres X such that step(X1, Y') <2 htnr(x,)(p), that p e NF(Y)
and that htyg(y)(p) = 0. According to Proposition 5.3(2), there are inequalities

step(X, Y) < step(X, X1) +step(X1, Y)
<2+ 2htnpx,) (p)
< 2+2(l’l — 1) =2n= 2hth(x)(p).

Thus the proof of the theorem is completed. (]

Applying the above theorem to a local ring R, we get the following result. This
result contains Theorem A from the introduction.

Corollary 5.6. Let R be a local ring. Then for every nonfree R-module X, there
exists a nonfree R-module Y in res X satisfying the following conditions:

(1) step(X, Y) <2dimNF(X),
(2) Y is free on the punctured spectrum of R.

Proof. Let m be the unique maximal ideal of R. We observe that m is in NF(X).
Letting p = m in Theorem 5.5, we see that there is an R-module Y € res X such
that step(X, Y) < 2htxg(x)(m), that m € NF(Y) and that htygy)(m) = 0. These
three conditions imply that the inequality step(X, ¥) < 2 dim NF(X) holds, that ¥
is a nonfree R-module and that Y}, is a free Rp-module for every prime ideal p #m,
respectively. U

Restricting the above corollary to the Cohen—Macaulay case, we obtain the fol-
lowing result on maximal Cohen—Macaulay modules.

Corollary 5.7. Let R be a Cohen—Macaulay local ring. Then for any nonfree
maximal Cohen—Macaulay R-module X, there exists a nonfree maximal Cohen—
Macaulay R-module Y satisfying the following two conditions:

(1) step(X, Y) <2dim Sing R,

(2) Y is free on the punctured spectrum of R.
Proof. By virtue of Corollary 5.6, we find an R-module Y € res X which is free on
the punctured spectrum of R and satisfies the inequality step(X, Y) <2 dim NF(X).
Since X is in CM(R) and CM(R) is resolving by Example 2.4(4), the module Y

is also in CM(R), that is, Y is maximal Cohen—Macaulay. Since NF(CM(R)) =
Sing R by Example 2.9, the assertion follows. ([
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Forgetting the first condition on the module Y in Corollary 5.6, we obtain the
following result.

Corollary 5.8. Let R be a local ring and X a resolving subcategory of mod R. If
there exists a nonfree R-module in X, then there exists a nonfree R-module in ¥
which is free on the punctured spectrum of R.

Remark 5.9. In the case where R is a Cohen—Macaulay local ring, a nonfree R-
module in & := CM(R) which is free on the punctured spectrum can be constructed
explicitly as follows. Let R be a d-dimensional Cohen—Macaulay local ring with
maximal ideal m. Then it is well-known and easy to see that there exists a nonfree
R-module in CM(R) if and only if R is singular. When this is the case, the R-
module Q7 (R /m) is a nonfree R-module in CM(R) which is free on the punctured
spectrum of R.

Applying Corollary 5.8 to the resolving subcategory ¥ = 9(R) (see Example
2.4(6)), we have:

Corollary 5.10. Let R be a local ring. If there exists a nonfree totally reflexive
R-module, then there exists a nonfree totally reflexive R-module which is free on
the punctured spectrum.

Remark 5.11. A local ring over which all totally reflexive modules are free is
called G-regular. G-regular local rings have been studied by several authors. One
of the main problems for G-regular local rings is to establish necessary and/or
sufficient conditions for a given local ring to be G-regular. For the details of G-
regular local rings, see [Takahashi 2008]. The above corollary should give some
contribution to this problem.

6. Resolving subcategories of countable type

In this section, we investigate resolving subcategories in which there exist only
countably many nonisomorphic indecomposable modules. The following propo-
sition plays a key role for this goal, which is proved by using Theorem 4.3. It
actually gives a refinement of one inclusion in the equality given in Corollary 3.7.

Proposition 6.1. For a subcategory X of mod R one has an inclusion of sets:

NF(X) C {,/AnnExt}e(Y, Z) | Y, Z € ind(res 96)}.

Proof. Let p be a prime ideal in NF(%). Then p is in NF(X) for some R-module X €
%. As NF(X) is specialization-closed by Corollary 2.11(2), the irreducible set V (p)
is contained in NF(X). According to Theorem 4.3, there exists an R-module Y €
res X such that V (p) coincides with NF(Y). Since NF(Y) = Supp Ext}? (Y,QY)=
V (Ann Ext}e (Y, QY)) by Proposition 2.10, the prime ideal p is equal to the radical
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of Ann Ext}e(Y, QY). Take indecomposable decompositions ¥ = €D, ¥; and
QY =@’ Z;. Then

m n
Yi, Zj): ﬂ \/AnnExt}Q(Yi,Zj).
= =1

1

p=1/AnnExt, (¥, Q¥) = \/ Ann Extl(

1 J 1<i<m
1<j<n

Since p is a prime ideal, it is equal to \/ Ann Ext}e(Ya, Zp) for some integers a, b.
As res X is a resolving subcategory of mod R, the R-modules Y,, Z;, are in res X,
hence in res & and therefore in ind(res &). Thus we obtain the desired inclusion. [

A very special case of this proposition was obtained in [Takahashi 2007, Propo-
sition 3.5].

Definition 6.2. We say that a subcategory & of mod R has countable type if the
set ind & is countable.

We say that a Cohen—Macaulay local ring R has countable Cohen—Macaulay
representation type if CM(R) has countable type.
The result below is a direct consequence of Proposition 6.1.

Corollary 6.3. Let & be a subcategory of mod R. Ifres & has countable type, then
NFE(X) is at most a countable set.

The converse of this corollary does not necessarily hold:

Example 6.4. Take the 1-dimensional local hypersurface R = C[[x, y]I/(x*+ y°).
Let m = (x, y) be the maximal ideal of R, and set ¥ = CM(R). Then, since this
ring R is an integral domain of dimension 1, we have NF(¥) = Sing R = {m}
(Example 2.9). In particular, the set NF(¥) is finite, hence at most countable.
Since & is resolving by Example 2.4(4), we have res¥ = &. This subcategory ¥
does not have countable type by virtue of the classification theorem [Buchweitz
et al. 1987, Theorem B] of hypersurfaces of finite and countable Cohen—Macaulay
representation type.

The lemma below is proved by using so-called countable prime avoidance; see
[Takahashi 2007, Lemma 2.2] for the proof.

Lemma 6.5. Let R be a local ring with residue field k, and assume either that R
is complete or that k is uncountable. Let Z be a specialization-closed subset of
Spec R. If Z is at most countable, then dim Z < 1.

Corollaries 6.3, 2.11(2) and Lemma 6.5 yield the following theorem, which is
one of the main results of this paper.

Theorem 6.6. Let R be a local ring with residue field k, and assume either that R
is complete or that k is uncountable. Let ¥ be a subcategory of mod R such that
res X has countable type. Then dimNF(X) < 1.
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Combining this theorem with Corollary 5.6 gives the following result.

Corollary 6.7. Let R be a local ring with residue field k, and assume either that R
is complete or that k is uncountable. Let X be a nonfree R-module such that res X
has countable type. Then there exists a nonfree R-module Y € res X which is free
on the punctured spectrum of R and satisfies step(X, Y) < 2.

Remark 6.8. Along the lines in the proof of Theorem 5.5, we can actually con-
struct such a module Y as in the above corollary. Let m be the unique maximal
ideal of R. Since X is a nonfree R-module, m belongs to NF(X). Theorem
6.6 guarantees that htyp(x)(m) = dimNF(X) < 1. If htypx)(m) = 0, then X is
free on the punctured spectrum, so we can take Y := X. In this case we have
step(X, Y) = 0. If htnpx)(m) = 1, then the proof of Theorem 5.5 implies that
there exists an element x € m which is not in each prime ideal g € NF(X) with
htng(x) (q) =0. Applying Proposition 4.2 to this element x, we obtain an R-module
X satisfying the three conditions in the proposition. The proof of Theorem 5.5
shows that htng(x,)(m) < 1, which implies that X is free on the punctured spectrum
of R. Thus we can take Y := X. In this case we have step(X, Y) < 2.

We immediately get the following corollary from Theorem 6.6. This result is
nothing but Theorem B from the introduction.

Corollary 6.9. Let R be a local ring with residue field k, and assume either that R
is complete or that k is uncountable. Let X be a resolving subcategory of mod R of
countable type. Then dimNF(X) < 1.

Applying this to the subcategory of maximal Cohen—Macaulay modules over
a Cohen—Macaulay local ring (see Example 2.4(4)), we can recover a theorem of
Huneke and Leuschke.

Corollary 6.10 [Huneke and Leuschke 2002, Theorem 1.3; Takahashi 2007, The-
orem 2.4]. Let R be a Cohen—Macaulay local ring of countable Cohen—Macaulay
representation type. Assume either that R is complete or that the residue field is
uncountable. Then dim Sing R < 1.

Applying Corollary 6.9 to the subcategory of totally C-reflexive modules where
C is a semidualizing module (see Example 2.4(5)), we obtain a refinement of the
main theorem of [Takahashi 2007].

Corollary 6.11 [Takahashi 2007, Theorem 3.6]. Let R be a local ring which either
is complete or has uncountable residue field. Let C be a semidualizing R-module.
Suppose that §¢ (R) has countable type. Then dim NF(%¢(R)) < 1.
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