Vol. 242, No. 1, 2009

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Exceptional 2 × 2-symmetric spaces

Andreas Kollross

Vol. 242 (2009), No. 1, 113–130
Abstract

The notion of 2 × 2-symmetric spaces is a generalization of classical symmetric spaces, where the group 2 is replaced by 2 × 2. In this article, a classification is given of the 2 × 2-symmetric spaces G∕K where G is an exceptional compact Lie group or Spin(8), complementing recent results of Bahturin and Goze. Our results are equivalent to a classification of 2 × 2-gradings on the exceptional simple Lie algebras e6, e7, e8, f4, g2 and so(8).

Keywords
exceptional 2 × 2 symmetric space, Lie algebra grading
Mathematical Subject Classification 2000
Primary: 53C30, 53C35
Secondary: 17B40
Milestones
Received: 3 August 2008
Accepted: 22 January 2009
Published: 1 September 2009
Authors
Andreas Kollross
Institut für Mathematik
Universität Augsburg
86135 Augsburg
Germany
www.math.uni-augsburg.de/~kollross/