Vol. 242, No. 1, 2009

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Some sharp Hardy inequalities on spherically symmetric domains

Francesco Chiacchio and Tonia Ricciardi

Vol. 242 (2009), No. 1, 173–187
Abstract

We prove several sharp Hardy inequalities for domains with a spherical symmetry. In particular, we prove an inequality for domains of the unit n-dimensional sphere with a point singularity, and an inequality for functions defined on the half-space +n+1 vanishing on the hyperplane {xn+1 = 0}, with singularity along the xn+1-axis. The proofs rely on a one-dimensional Hardy inequality involving a weight function related to the volume element on the sphere, as well as on symmetrization arguments. The one-dimensional inequality is derived in a general form.

Keywords
sharp weighted Hardy inequalities, symmetrization
Mathematical Subject Classification 2000
Primary: 46E35
Secondary: 26D10, 35J25
Milestones
Received: 29 July 2008
Accepted: 20 May 2009
Published: 1 September 2009
Authors
Francesco Chiacchio
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
Università degli Studi di Napoli Federico II
Via Cintia, Monte S. Angelo
80126 Napoli
Italy
Tonia Ricciardi
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
Università degli Studi di Napoli Federico II
Via Cintia, Monte S. Angelo
80126 Napoli
Italy
http://wpage.unina.it/tonricci