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We consider the problem 12u = K ( y)|u|8/(n−4)u in Rn with u, 1u→ 0 as
| y|→∞, where K is a bounded and continuous function on Rn, n≥ 5. Our
aim is to construct infinitely many solutions which concentrate around k
points, k≥ 2, under some appropriate conditions on K . Moreover we prove
that there is no solution which concentrates at one point.

1. Introduction

In this paper, we consider the following problem:

(PK )

{
12u = K (y)|u|8/(n−4)u y ∈ Rn,

u→ 0, 1u→ 0 as |y| → +∞,

where n ≥ 5. The aim of this paper is to construct infinitely many solutions for
(PK ) under the condition that K has a sequence of strictly local minimum points
(respectively maximum points) moving to infinity. The solutions which we con-
struct in this paper concentrate at k points, k ≥ 2, and when K has a sequence of
strictly local minimum points these solutions have to change sign and concentrate
at two points each of which is a nearly local minimum point of K . When K has
a sequence of strictly local maximum points, solutions concentrating at k points,
k ≥ 2 are constructed. These solutions are not necessary positive. However under
an appropriate condition on K we can prove that these constructed solutions are
positive. Further we can perturb K in L∞ norm to obtain another function Kε such
that the problem (PKε) has solutions which concentrate near k fixed points, k ≥ 2.
We also explain why we do not have solutions which concentrate at one point.

In the past few decades, there has been a wide range of activity in the study
of concentration phenomena for second-order elliptic equations involving critical
Sobolev exponent; see for instance [Atkinson and Peletier 1987; Bahri et al. 1995;
Ben Ayed et al. 2003; Brezis and Peletier 1989; Chabrowski and Yan 1999; del Pino
et al. 2002; 2003; Han 1991; Micheletti and Pistoia 2003; Musso and Pistoia 2002;
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Rey 1989; 1990; 1991; 1992; 1999] and the references therein. In sharp contrast
to this, very little is known for equations involving the biharmonic operator. Our
results extend to a fourth-order equation on Rn some results of [Yan 2000] that were
previously known in the context of elliptic equations of second order. Compared
with the second-order case, further difficulties have to be solved by delicate and
careful estimates. Such estimates use the techniques developed by Bahri [1989]
and Rey [1990].

To state our results, we fix some notation. Let E be the closure of C∞c (R
n) (the

set of all smooth functions with compact support) equipped with the norm ‖ · ‖
and its inner product 〈 , 〉 defined by

‖u‖ =
(∫

Rn
|1u|2

)1/2

, 〈u, v〉 =
∫

Rn
1u1v, u, v ∈ E := C∞c (Rn).(1-1)

We define the Sobolev constant by

(1-2) Sn =min

∫
Rn |1u|2(∫

Rn |u|2n/(n−4)
)(n−4)/n ,

u ∈ L2n/(n−4)(Rn), 1u ∈ L2(Rn), u 6= 0.

For any x ∈ Rn, λ ∈ R∗
+

we set

(1-3) δx,λ(y)=
cnλ

(n−4)/2

(1+ λ2|y− x |2)(n−4)/2 , with cn =
(
n(n− 4)(n2

− 4)
)(n−4)/8

.

It is well known [Lin 1998] that δx,λ are the only solutions of

(1-4) 12u = u(n+4)/(n−4), u > 0 in Rn,

and are also the only minimizers of (1-2).
Let k ∈ N∗, for x j = (x j1, . . . , x jn ) ∈ Rn, λ j ∈ R∗

+
, j = 1, . . . , k. Set

Ex,λ,k =

k⋂
j=1

Ex j ,λ j ,

where

(1-5) Ex j ,λ j =

{
v∈E, 〈δx j ,λ j , v〉=

〈
∂δx j ,λ j

∂λ j
, v

〉
=

〈
∂δx j ,λ j

∂x ji
, v

〉
=0, i ≤n

}
, j ≤k.

Now we state the main results of this paper.
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Theorem 1.1. Assume that K is a bounded continuous function in Rn satisfying
the following condition:

(H1) K has a sequence of strictly local minimum points z j ∈ Rn such that |z j | →

+∞ and in a small neighbourhood of each z j , there are constants K j > 0
and β j ∈ (n− 4, n) such that

(1-6) K (y)= K j + Q j (y− z j )+ R j (y− z j ),

where K j satisfies K j ≥ η for some constant η > 0, and Q j and R j satisfy

(1-7) a0|y|β j ≤ Q j (y)≤ a1|y|β j and R j (y)= O(|y|β j+σ )

for some constants a1 ≥ a0 > 0 and σ > 0 independent of j .

Then for each small ν > 0 and z j1 there exists another strictly local minimum
point z j2 , such that (PK ) has a solution of the form

u = α1δx j1 ,λ j1
−α2δx j2 ,λ j2

+ v,

where (α, x, λ, v) satisfies v ∈ Ex,λ,2 ‖v‖ ≤ ν, x = (x j1, x j2), λ= (λ j1, λ j2) and

|z j1 − z j2 |> 1/ν, ‖αi − K (y ji )
(4−n)/8

| ≤ ν, |x ji − z ji | ≤ ν, λ ji ≥ 1/ν, i = 1, 2.

Theorem 1.2. Assume that K is a bounded continuous function in Rn satisfying
the following condition:

(H2) K has a sequence of strictly local maximum points z j ∈ Rn such that |z j | →

∞ and in a small neighbourhood of each z j , there are constants K j > 0 and
β j ∈ (n− 4, n) such that

(1-8) K (y)= K j − Q j (y− z j )+ R j (y− z j ),

where K j satisfies K j ≥ η for some constant η > 0, and Q j and R j satisfy
(1-7).

Then for each small ν > 0 and z j1 there exists another strictly local maximum
point z j2 , such that (PK ) has a solution of the form

u = α1δx j1 ,λ j1
+α2δx j2 ,λ j2

+ v,

where (α, x, λ, v) satisfies v ∈ Ex,λ,2, ‖v‖ ≤ ν, x = (x j1, x j2), λ= (λ j1, λ j2) and

|z j1 − z j2 |> 1/ν, |αi − K (z ji )
(4−n)/8

| ≤ ν, |x ji − z ji | ≤ ν, λ ji ≥ 1/ν, i = 1, 2.

Remark 1.3. (i) We can find some functions which satisfy the assumptions (H1)
and (H2). Therefore the problem (PK ) has at least four solutions given by
Theorems 1.1 and 1.2. (In fact if u is a solution of (PK ) then −u is another
one).
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(ii) To show that functions which satisfy the assumptions (H1) and (H2) exist, we
can take some functions which are periodic in at least one variable and having
one strictly local minimum point and one strictly local maximum point.

Observe that if (PK ) has a solution then the problem (PK oτζ ) has another one,
where τζ : x 7→ ζ x . The condition that |z j | → +∞, in Theorems 1.1 and 1.2
is useful to get the distance l = |z1 − z2| large enough in the proof of Theorems
1.1 and 1.2. Therefore for any two fixed points z1, z2, we can choose ζ small as
desired such that 1

ζ |z1− z2| will be large as desired, hence the proof of Theorems
1.1 and 1.2 are valid. This leads to the following perturbed result.

Theorem 1.4. Let K be a bounded continuous function in Rn . Then for any ε > 0,
x0 ∈ Rn satisfying K (y) ≥ η > 0 for all y ∈ Bε(x0), ν > 0 and any two different
points z1, z2 ∈ Bε(x0), we can find another continuous function Kε which satisfies
|Kε − K |L∞(Rn) ≤ ε, and Kε(y) = K (y) in Rn

\ Bε(x0) such that the perturbed
problem

(PKε )

{
12u = Kε(y)|u|8/(n−4)u, y ∈ Rn,

u→ 0, 1u→ 0, as |y| → +∞,

satisfies one of the following statements:

(1) (PKε ) has a solution of the form uε = α1δx1,λ1 −α2δx2,λ2 + v,

(2) (PKε ) has a solution of the form uε = α1δx1,λ1 +α2δx2,λ2 + v,

where (α, x, λ, v) satisfies v ∈ Ex,λ,2, x = (x1, x2), λ= (λ1, λ2) and

‖v‖ ≤ ν, |α j − K (z j )
(4−n)/8

| ≤ ν, |x j − z j | ≤ ν, λ j ≥ 1/ν, j = 1, 2.

Remark 1.5. (i) We can perturb K in Bε(x0) and Bε(x1) (Bε(x0)∩Bε(x1)=∅),
so that the conclusions (1) and (2) of Theorem 1.4 hold at the same time.

(ii) Taking four different points z1, z2, z′1 and z′2 in Bε(x0), we can choose Kε (z1

and z2 are two minimum points of Kε, and z′1 and z′2 are two maximum points
of Kε) so that the conclusions (1) and (2) of Theorem 1.4 hold at the same
time. Note that for (1), the concentration points xi are near zi , but for (2), the
concentration points xi are close to z′i .

Note that in Theorems 1.1 and 1.2 we need some flatness of the function K near
the critical points of K . See (H1) and (H2). In these assumptions the constants
β j are larger than n − 4, however if K is a C2 function, we derive that β j ≥ 2.
Furthermore if we assume that the critical points are nondegenerate, then near each
local minimum point (respectively maximum point) of K , (1-6) (respectively (1-8))
holds with β j = 2. We remark that β j = 2≤ n−4 if n≥ 6. Thus, this possibility is
admissible only for n= 5. In this case we can improve the result of Theorem 1.2 in
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constructing some solutions with k bubbles, k ≥ 2. In fact, we have the following
result.

Theorem 1.6. Let k ≥ 2 be a fixed integer. Assume n = 5 and K is a bounded
continuous function on R5 satisfying the following condition:

(H ′2) K has a sequence of strictly local maximum points z j ∈ R5 such that in
a small neighbourhood of each z j , K is C3 and we have a0 ≤ K (z j ) ≤

a1, −a1 ≤ 1K (z j ) ≤ −a0 < 0, for some a1 ≥ a0 > 0. Moreover for any
small τ > 0, there is an η = η(τ) > 0 such that K (z j ) − K (y) ≥ η, for
all y ∈ ∂Bτ (z j ). Furthermore, for any L > 0 and z j1 , there exist z j2, . . . , z jk
such that mini 6=h |z ji−z jh | ≥ L and maxi 6=h |z ji−z jh |/mini 6=h |z ji−z jh | ≤C,
where C > 0 is a constant.

Then for each small ν >0 and z j1 , we can find k−1 other strictly local maximum
points z j2, . . . , z jk such that (PK ) has a solution of the form

u =
k∑

i=1

αiδx ji ,λ ji
+ v,

where (α, x, λ, v) satisfies v∈Ex,λ,k , ‖v‖≤ν, x=(x j1, . . . , x jk ), λ=(λ j1, . . . , λ jk )

and for i = 1, . . . , k,

|z ji − z jh | ≥ 1/ν, i 6= h, |αi − K (z ji )
−1/8
| ≤ ν, |x ji − z ji | ≤ ν, λ ji ≥ 1/ν.

We remark that the proof of Theorem 1.6 is easier than the proof of Theorem
1.2. Indeed, assumption (1-8) also holds for Theorem 1.6 with Q j = D2K (z j ).
Furthermore, all the β j are equal to 2. Hence some inequalities in the proof of
Theorem 1.2 become equalities. However, we can obtain a more general result
than Theorem 1.6 by assuming that n ≥ 5 and in (1-8) all the constants β j are the
same.

Theorem 1.7. Let n ≥ 5. Assume that K is a bounded continuous function in Rn

satisfying the following condition:

(H ′′2 ) K has a sequence of strictly local maximum points z j ∈ Rn such that |z j |→

∞ and there exists β ∈ (n − 4, n) such that in a small neighbourhood of
each z j , (1-8) and (1-7) are satisfied (here β j = β). Furthermore, for any
L > 0 and z j1 , there exists z j2, . . . , z jk such that mini 6=h |z ji − z jh | ≥ L and
maxi 6=h |z ji − z jh |/mini 6=h |z ji − z jh | ≤ C, where C > 0 is a constant.

Then for each small ν >0 and z j1 , we can find k−1 other strictly local maximum
points z j2, . . . , z jk such that (PK ) has a solution of the form

u =
k∑

i=1

αiδx ji ,λ ji
+ v,
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where (α, x, λ, v) satisfies v∈Ex,λ,k , ‖v‖≤ν, x=(x j1, . . . , x jk ), λ=(λ j1, . . . , λ jk )

and

|z ji−z jh |≥1/ν, i 6= h, |αi−K (z ji )
(4−n)/8

|≤ ν, |x ji−z ji |≤ ν, λ ji ≥1/ν, i ≤ k.

Using Theorem 1.6 we get the following perturbation result for the case n = 5.

Theorem 1.8. Assume n = 5. Let K be a bounded continuous function on R5.
Then for any ε > 0, x0 ∈ R5 satisfying K (y) ≥ η > 0 for all y ∈ Bε(x0), ν > 0
and any k different points z1, . . . , zk ∈ Bε(x0), with k ≥ 2, we can find another
continuous function Kε which satisfies |Kε − K |L∞(R5) ≤ ε, and Kε(y)= K (y) in
R5
\ Bε(x0) such that (PKε ) has a solution of the form

u =
k∑

j=1

α jδx j ,λ j + v,

where (α, x, λ, v) satisfies v ∈ Ex,λ,k, x = (x1, . . . , xk), λ= (λ1, . . . , λk) and

‖v‖ ≤ ν, |α j − K (z j )
−1/8
| ≤ ν, |x j − z j | ≤ ν, λ j ≥ 1/ν, j = 1, . . . , k.

The constructed solutions, roughly speaking, concentrate at k different points
and in Theorems 1.1, 1.2, 1.6 and 1.7 the distance between different concentration
points is very large, while in Theorems 1.4 and 1.8 the distance between different
concentration points is fixed but K is very steep on the concentration points.

Note that our solutions are not necessary positive. In fact, for the case of 1
instead of 12, we multiply the equation by the function u− =max(0,−u) and we
integrate on Rn , so we are able to prove that the constructed solutions are positive.
However, in our cases the function u− is not in the space E . To overcome this
difficulty, we add another assumption on the function K . More precisely, we have:

Theorem 1.9. In Theorems 1.2, 1.4-(2), 1.6, 1.7 and 1.8, if we assume further that
there exists a positive constant η0 such that K ≥ η0> 0 on Rn , then the constructed
solution is a positive function.

Finally we give the following result which shows that k ≥ 2 in our main results
is necessary.

Proposition 1.10. Assume that K (y) is periodic in all variables and it satisfies
1K (x) <−c0 < 0 for all global maximum points x. Then for any α > 0 small, we
have

Sup {|u|L∞, u satisfies (PK ), c ≤ I (u)≤ c+α}<∞,

where c = 2
n Sn/4

n /K (n−4)/4
M and KM =maxRn K (y).
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The proof of our results is inspired by the methods of [Yan 2000]. As in [Bahri
1989; Bahri et al. 1995; Rey 1990] we first reduce the problem of finding a so-
lution for (PK ) to that of finding a critical point for a function defined in a finite
dimensional domain.

Our paper is organized as follows. In Section 2 we give the proofs of Theorems
1.1, 1.2 and 1.4. Section 3 is devoted to the proofs of Theorems 1.6, 1.7 and 1.8.
The proofs of Theorem 1.9 and Proposition 1.10 are given in Section 4. Some
basic estimates needed in the proofs are presented in Appendices A and B.

2. Proofs of Theorems 1.1, 1.2 and 1.4

Our method is a variational one. Hence, we introduce the Euler Lagrange func-
tional

(2-1) I (u)= 1
2

∫
Rn
|1u|2− n−4

2n

∫
Rn

K (y)|u|2n/(n−4), u ∈ E := C∞c (Rn).

Note that the critical points of I are solutions of (PK ) and inversely. Thus, to
prove the theorems, we will construct some critical points of I . The constructed
solutions concentrate at some critical points of K . Therefore, for z1 and z2 two
critical points of K and ν a small positive constant, we introduce the sets

Dν,2 = { (x, λ) ∈ (Rn)2×R2, x j ∈ Bν(z j ), λ j ≥ 1/ν, j = 1, 2},(2-2)

Mν,2 =

{
(α, x, λ, v) : (x, λ) ∈ Dν,2, v ∈ Ex,λ,2 ,(2-3)

2∑
j=1

∣∣α j − K (z j )
(4−n)/8∣∣+‖v‖ ≤ ν}.

Our goal is to prove we can choose (α, x, λ, v)∈Mν,2 so u=α1δx1,λ1+κα2δx2,λ2+v

is a critical point of I , where κ ∈ {−1, 1}. Since |x1− x2| ≥ d > 0 and the concen-
tration λi ’s are large, the interaction between δx1,λ1 and δx2,λ2 is very small. More
precisely, using [Bahri 1989], it is equivalent to (with a multiplicative constant)

(2-4) εi j =

(
λi

λ j
+
λ j

λi
+ λiλ j |xi − x j |

2
)−(n−4)/2

for i 6= j.

Proof of Theorem 1.1. In this proof, we will assume that, near z1 and z2, K satisfies
(1-6) and (1-7). Let J be the function defined by

J : Mν,2→ R, (α, x, λ, v) 7→ I
(
α1δx1,λ1 −α2δx2,λ2 + v

)
.

Note that (α, x, λ, v) ∈ Mν,2 is a critical point of J if and only if the function
u = α1δx1,λ1 − α2δx2,λ2 + v is a critical point of I . That means there exist A j , B j
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and C j i ∈ R, 1≤ i ≤ n and 1≤ j ≤ 2 such that

∂ J
∂α j
= 0,(2-5)

∂ J
∂x ji
= B j

〈
∂2δx j ,λ j

∂λ j∂x ji
, v

〉
+

n∑
h=1

C jh

〈
∂2δx j ,λ j

∂x jh∂x ji
, v

〉
,(2-6)

∂ J
∂λ j
= B j

〈
∂2δx j ,λ j

∂λ2
j
, v

〉
+

n∑
h=1

C jh

〈
∂2δx j ,λ j

∂x jh∂λ j
, v

〉
,(2-7)

∂ J
∂v
=

2∑
j=1

(
A jδx j ,λ j + B j

∂δx j ,λ j

∂λ j
+

n∑
h=1

C jh
∂δx j ,λ j

∂x jh

)
,(2-8)

where x ji is the i–th component of x j .
First we state the following proposition which allows us to reduce the origi-

nal problem to a finite-dimensional problem and to show that the v-part of u is
negligible with respect to the concentration phenomenon.

Proposition 2.1. Assume that near z1 and z2, K satisfies (1-6) and (1-7). There
exists ν0 > 0, such that for each ν ∈ (0, ν0] and (x, λ) ∈ Dν,2, there exists a unique
(α(x, λ), v(x, λ))∈R2

×Ex,λ,2 such that (2-5) and (2-8) are satisfied and we have
the estimate

(2-9)
2∑

j=1

∣∣∣∣α j −
1

K (x j )(n−4)/8

∣∣∣∣+‖v‖
= O

( 2∑
j=1

(
|x j − z j |

β j +
1

λ
inf(β j ,(n+4)/2)
j

)
+ ε

1/2+τ
12

)
,

where τ>0 is a constant. Moreover the function (x, λ) 7→
(
α(x, λ), v(x, λ)

)
is C1.

Proof. Let w = (α, v) ∈ R2
× Ex,λ,2, α = (α1, α2), α j = α j − K (x j )

(4−n)/8, j =
1, 2, and let

J(x, λ,w)= J (α, x, λ, v), w ∈ R2
× Ex,λ,2,

Hx,λ,2 =
1

K (x1)(n−4)/8 δx1,λ1 −
1

K (x2)(n−4)/8 δx2,λ2 .

As in [Bahri 1989] (see also [Rey 1990]), we expand J(x, λ,w) at w = 0. We get

J(x, λ,w)= J (α0, x, λ, 0)+ F(w)+ 1
2

Q(w)+ R(w),

where α0 =

(
1

K (x1)(n−4)/8 ,
1

K (x2)(n−4)/8

)
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and where

F(w)=
〈
Hx,λ,2, α1δx1,λ1 −α2δx2,λ2

〉
−

∫
Rn

K |Hx,λ,2|
8/(n−4)Hx,λ,2(α1δx1,λ1 −α2δx2,λ2 + v),

Q(w)= ‖αδx1,λ1 −α2δx2,λ2‖
2
+‖v‖2

−
n+4
n−4

∫
Rn

K |Hx,λ,2|
8/(n−4)(α1δx1,λ1 −α2δx2,λ2 + v)

2

and R(w) satisfies

R(w)= O
(
‖w‖min(3,2n/(n−4))), R′(w)= O

(
‖w‖min(2,(n+4)/(n−4))),

R′′(w)= O
(
‖w‖min(1,8/(n−4))).

It is clear that F is a continuous linear form on R2
×Ex,λ,2 which is equipped with

the R2
×E scalar product. Therefore there exists a unique f ∈R2

×Ex,λ,2 such that
F(w)= 〈 f, w〉. Furthermore, Q is a continuous quadratic form over R2

× Ex,λ,2.
It satisfies

Q(w)=−γ
2∑

i=1

(1+ o(1))αi
2
+‖v‖2−

n+4
n−4

2∑
i=1

∫
Rn
δ

8/(n−4)
xi ,λi

v2
+ o(‖v‖2),

where γ is a positive constant. Now using [Ben Ayed and El Mehdi 2007] we
know that the quadratic form

(2-10) v 7→ ‖v‖2−
n+4
n−4

2∑
i=1

∫
Rn
δ

8/(n−4)
xi ,λi

v2,

is positive definite on the space Ex,λ,2. Hence it is clear that Q is an invertible
quadratic form. Therefore from the implicit function theorem, we derive the ex-
istence of a C1 map which to (x, λ) ∈ Dν,2, ν < ν0 (ν0 small enough) associates
w(x, λ)= (α(x, λ), v(x, λ)) ∈ R2

× Ex,λ,2 such that

(2-11) ‖w(x, λ)‖ = O(‖ f ‖).

Moreover, for α j (x, λ)= α j (x, λ)+K (x j )
(4−n)/8, we have that (α(x, λ), v(x, λ))

satisfies (2-5) and (2-8) for certain A j , B j C j i , i = 1, . . . , n, j = 1, 2. It remains
to estimate ‖ f ‖. Using Lemmas A.2 and A.3 we derive

‖ f ‖ = O
( 2∑

j=1

(
|x j − z j |

β j +
1

λ
inf(β j ,(n+4)/2)
j

)
+ ε

1/2+τ
12

)
,

where τ > 0 is a constant. From (2-11) the same estimate holds for ‖w(x, λ)‖. �
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Without loss of generality, suppose z j1 = z1 and z2 is another local minimum
point of K with l = |z2− z1| is large enough. Define

L1 = l(n−4)β2/(β1β2−(β1+β2)(n−4)/2),

L2 = l(n−4)β1/(β1β2−(β1+β2)(n−4)/2),

where β j , j = 1, 2 is the constant defined in (1-7).
Let (x, λ) 7→

(
α(x, λ), v(x, λ)

)
be the function defined in Proposition 2.1. We

consider the problem

(2-12) sup{J
(
α(x, λ), x, λ, v(x, λ)

)
, (x, λ) ∈ Sν,2},

where

(2-13) Sν,2 = {(x, λ) ∈ Dν,2, λ j ∈ [γ1L j , γ2L j ], j = 1, 2},

γ1 > 0 is a small constant and γ2 > 0 is a large constant, which will be determined
later. Since Sν,2 is a compact set, it follows that the problem (2-12) has a maximizer
(x, λ) ∈ Sν,2. We will prove that for ν small enough, there exists l0 > 0 such that
if l = |z2− z1|> l0, the maximizer (x, λ) is an interior point of Sν,2. Hence (x, λ)
is a critical point of J

(
α(x, λ), x, λ, v(x, λ)

)
.

By Proposition 2.1 and Lemma A.4 we have for any (x, λ) ∈ Sν,2,

(2-14) J
(
α(x, λ), x, λ, v(x, λ)

)
= J(x, λ,w)

= J(x, λ, 0)+ O
(
‖ f ‖‖w‖+‖w‖2

)
=

2∑
j=1

I
(
K (x j )

−(n−4)/8δx j ,λ j

)
+

Dε12

K (x1)(n−4)/8K (x2)(n−4)/8

+O
( 2∑

j=1

(
|x j − z j |

2β j +
1

λ
inf(2β j ,n+4)
j

)
+ ε1+τ

12

)
,

where D > 0 is a constant depending on n only.
On the other hand, using (H1), a computation shows that

(2-15) I (K (x j )
−(n−4)/8δx j ,λ j )

=

(
1
2

1
K (x j )(n−4)/4 − (n− 4)/(2n)

K (z j )

K (x j )n/4

)
Sn/4

n

−
n−4
2n

1
K (x j )n/4

∫
Rn

Q j

(
y
λ j
+ x j − z j

)
δ

2n/(n−4)
0,1

+O
(
|x j − z j |

β j+σ +
1

λ
β j+σ
j

)
.
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Hence

(2-16) I (K (z j )
−(n−4)/8δz j ,λ j )

=
2Sn/4

n

nK (z j )(n−4)/4

−
n−4
2n

1
K (z j )n/4

∫
Rn

Q j

(
y
λ j

)
δ

2n/(n−4)
0,1 + O

(
1

λ
β j+σ
j

)

≥
2Sn/4

n

nK (z j )(n−4)/4 −
C

λ
β j
j

+ O
(

1

λ
β j+σ
j

)
.

At this time we will proceed in two steps.

Step 1. We claim that |x j − z j |< C/λ j , if l is large enough.
Using the fact that J

(
α(x, λ), x, λ, v(x, λ)

)
≥ J

(
α(z, λ), z, λ, v(z, λ)

)
together

with (2-14), (2-15) and (2-16) we obtain

(2-17)
2∑

j=1

(
1
2

1
K (x j )(n−4)/4 −

n− 4
2n

K (z j )

K (x j )n/4

)
Sn/4

n

−
n−4
2n

1
K (x j )n/4

∫
Rn

Q j

(
y
λ j
+ x j − z j

)
δ

2n/(n−4)
0,1

≥

2∑
j=1

2Sn/4
n

nK (z j )(n−4)/4 −

2∑
j=1

C

λ
β j
j

−
Dε12

K (x1)(n−4)/8K (x2)(n−4)/8 −
Dε12

K (z1)(n−4)/8K (z2)(n−4)/8

+O
( 2∑

j=1

(
|x j − z j |

β j+σ +
1

λ
β j+σ
j

)
+ ε1+τ

12

)
.

Now by (H1) a computation shows that

1
2

1
K (x j )(n−4)/4 −

n− 4
2n

K (z j )

K (x j )n/4
=

2
nK (z j )(n−4)/4 + O

(
|x j − z j |

2β j
)
,(2-18)

Q j

(
y

λ j
+ x j − z j

)
≥ a0

∣∣∣∣ y

λ j
+ x j − z j

∣∣∣∣β j

≥ a0|x j − z j |
β j − c

|y|β j

λ
β j
j

,(2-19)

where a0 and c are some positive constants. Therefore (2-17), (2-18) and (2-19)
imply

2∑
j=1

|x j − z j |
β j = O

( 2∑
j=1

(
|x j − z j |

β j+σ +
1
λ
β j
j

)
+ ε12

)
.
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Since x j ∈ Bν(z j ), it follows that for ν small enough

(2-20) |x j − z j | = O
(( 2∑

i=1

1
λ
βi
i

+ ε12

)1/β j
)
.

On the other hand since λ j ∈ [γ1L j , γ2L j ], one has

1
λ
β j
j

= O
(
l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2)), j = 1, 2(2-21)

ε12 = O
(
l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2)).(2-22)

Then (2-20), (2-21) and (2-22) imply

|x j − z j | = O
(
l−((n−4)β1β2/(β1β2−(β1+β2)(n−4)/2))(1/β j )

)
= O

(
1
λ j

)
,

and the claim follows.

Step 2. We claim that λ j ∈ (γ1L j , γ2L j ).
Write λ j = t j L j , j=1, 2. Since β j >n−4, we see that there exists (t01, t02)∈R2

with t0 j > 0 large enough such that

(2-23)
2∑

j=1

C ′

tβ j
0 j

−
D

t (n−4)/2
01 t (n−4)/2

02 K (z1)(n−4)/8K (z2)(n−4)/8
<−c0 < 0.

Let λ0 j = t0 j L j , j = 1, 2. Then (2-14) and (2-16) imply

J (α(z, λ0), z, λ0, v(z, λ0))

≥

2∑
j=1

2Sn/4
n

nK (z j )(n−4)/4 −

2∑
j=1

C

λ
β j
0 j

+ O
( 2∑

j=1

1

λ
β j+σ

0 j

)

+
Dε12

K (z1)(n−4)/8K (z2)(n−4)/8 + O
( 2∑

j=1

1

λ
inf(2β j ,n+4)
0 j

+ ε1+τ
12

)
.

Then using (2-23), we obtain

(2-24) J
(
α(z, λ0), z, λ0, v(z, λ0)

)
≥

2∑
j=1

2Sn/4
n

nK (z j )(n−4)/4 + c′0l(−(n−4)β1β2)/(β1β2−(β1+β2)(n−4)/2)

+ O
( 2∑

j=1

1

λ
β j+σ
j

+ ε1+τ
12

)
.
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On the other hand by (2-14), (2-15), (2-18) together with the fact |x j−z j |<C/λ j ,
we get

(2-25) J
(
α(x, λ), x, λ, v(x, λ)

)
≤

2∑
j=1

2Sn/4
n

nK (z j )(n−4)/4

−
n− 4

2n
1

K (x j )n/4
a0

λ
β
j

∫
Rn

∣∣y+ λ j (x j − z j )
∣∣β j δ

2n/(n−4)
0,1

+
Dε12

K (x1)(n−4)/8K (x2)(n−4)/8 + O
( 2∑

j=1

1

λ
β j+σ
j

+ ε1+τ
12

)

≤
Dε12

K (x1)(n−4)/8K (x2)(n−4)/8 +

2∑
j=1

2Sn/4
n

nK (z j )(n−4)/4 −
C

λ
β j
j

+O
(

1
λ
β j+σ
j

+ ε1+τ
12

)
.

Combining J
(
α(x, λ), x, λ, v(x, λ)

)
≥ J

(
α(z, λ0), z, λ0, v(z, λ0)

)
with Equations

(2-24) and (2-25) we obtain

(2-26)
2∑

j=1

C

λ
β j
j

+
Dε12

K (x1)(n−4)/8K (x2)(n−4)/8 + O
( 2∑

j=1

1

λ
β j+σ
j

+ ε1+τ
12

)
≥ c′′0l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2).

If we take ν small enough such that |x1− x2|> l/2, we get

1

λ
β j+σ
j

≤ Cνσ l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2), j = 1, 2,

ε1+τ
12 ≤ Cντ(n−4)l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2).

Then (2-26) implies

(2-27)
2∑

j=1

C

λ
β j
j

−
Dε12

(K (x1)K (x2))(n−4)/8

≤
(
c1ν

σ
+ c2ν

τ(n−4)
− c′′0

)
l(4−n)β1β2/(β1β2−(β1+β2)(n−4)/2).
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Since c1ν
σ
+ c2ν

τ(n−4) tends to zero as ν goes to zero, we can choose ν small
enough such that c1ν

σ
+ c2ν

τ(n−4) < c′′0/2 and (2-27) becomes

(2-28)
2∑

j=1

C

λ
β j
j

−
Dε12

K (x1)(n−4)/8K (x2)(n−4)/8

≤
−c′′0

2
l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2).

First, assume that λ1 = γ1L1. Then

ε12 =
1+ o(1)

(λ1λ2|x1− x2|2)(n−4)/2
=

1+ o(1)
(γ1t2)(n−4)/2 l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2)

≤
1+ o(1)
γ1n−4 l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2).

The last inequality follows from the fact that λ2 = t2L2 ∈ [γ1L2, γ2L2]. Then

(2-29)
2∑

j=1

C

λ
β j
j

−
Dε12

K (x1)(n−4)/8K (x2)(n−4)/8

≥

(
C
γ
β1
1

−
C ′

γ n−4
1

)
l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2).

Since β1> n−4 we see that, C/γ β1
1 −C ′/γ n−4

1 tends to infinity as γ1 tends to zero.
So we can choose γ1 small enough such that C/γ β1

1 −C ′/γ n−4
1 ≥ k0 > 0. Hence

(2-29) implies

(2-30)
2∑

j=1

C

λ
β j
j

−
Dε12

K (x1)(n−4)/8K (x2)(n−4)/8 ≥ k0l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2).

Combining (2-28) and (2-30), we obtain a contradiction.
Now, assume that λ1 = γ2L1. Then

ε12 =
1+o(1)

(λ1λ2|x1−x2|2)(n−4)/2
=

1+o(1)
(γ2t2)(n−4)/2 l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2)

≤
1+o(1)

(γ1γ2)(n−4)/2 l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2),
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since λ2 = t2L2 ∈ [γ1L2, γ2L2]. It follows that

(2-31)
2∑

j=1

C

λ
β j
j

− (Dε12)/K (x1)
(n−4)/8K (x2)

(n−4)/8

≥−C ′′ 1+o(1)
(γ1γ2)(n−4)/2 l−(n−4)β1β2/(β1β2−(β1+β2)(n−4)/2).

Combining (2-28) and (2-31) we get

−C ′′
1+ o(1)

(γ1γ2)(n−4)/2 ≤
−C ′′0

2
.

Now since (1+ o(1))/(γ1γ2)
(n−4)/2 tends to zero as γ2 tends to infinity, we derive

a contradiction. The same argument can be applied to λ2 and the claim follows.
Since (x, λ) is an interior point of Sν,2 maximizing J (α(x, λ), x, λ, v(x, λ)) on

Sν,2, it follows that

u := α1(x, λ)δx1,λ1
−α2(x, λ)δx2,λ2

+ v(x, λ),

is a critical point of J . Hence our theorem follows. �

Proof of Theorem 1.2. In this proof, we will assume that near z1 and z2, K satisfies
(1-8) and (1-7). Let

J : Mν,2→ R, (α, x, λ, v) 7→ I
(
α1δx1,λ1 +α2δx2,λ2 + v

)
.

As in Proposition 2.1 we get a C1 map (α(x, λ), v(x, λ)) such that

∂ J
∂α j
= 0, j = 1, 2 and

∂ J
∂v
=

2∑
j=1

(
A jδx j ,λ j + B j

∂δx j ,λ j

∂λ j
+

n∑
h=1

C jh
∂δx j ,λ j

∂x jh

)
,

for certain A j , B j and Ci j ∈ Rn , i = 1, . . . , n, j = 1, 2. Moreover the estimate
(2-9) holds. Then replacing the problem (2-12) by

(2-32) inf{J
(
α(x, λ), x, λ, v(x, λ)

)
, (x, λ) ∈ Sν,2},

where Sν,2 is defined in (2-13), and following the proof of Theorem 1.1, our result
follows. Note that there are some changes in the proof taking account of the sign
behind the function Q j and the new problem (2-32) instead of (2-12). �

Proof of Theorem 1.4. We begin by proving Claim (1). Let τ > 0 be small enough
so that B2τ (z1)∩ B2τ (z2)= φ. For a fixed β ∈ (n− 4, n), we define

Kε(y)=

{
K (y), if y ∈ Rn�

⋃2
j=1 B2ητ (z j ),

K (z j )+ (1/ηβ)|y− z j |
β, if y ∈ Bητ (z j ), j = 1, 2,
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where η > 0 is a small constant. Since τ is small and K is continuous, for each
y ∈ Bητ (z j ), we have

|Kε(y)− K (y)| = |K (z j )+
1
ηβ
|y− z j |

β
− K (y)|(2-33)

≤ |K (y)− K (z j )| + τ
β
≤ τ + τβ ≤ Cτ < ε.

In
⋃2

j=1
(
B2ητ (z j )�Bητ (z j )

)
, Kε can be continuously extended such that (2-33)

is satisfied. Then consider the problem

(2-34)

{
12u = Kε(y)|u|8/(n−4)u, y ∈ Rn,

u→ 0, 1u→ 0, as |y| → +∞.

Let w(y)= η(n−4)/2u(ηy). Then w satisfies

(2-35)

{
12w = K ∗ε (y)|w|

8/(n−4)w, y ∈ Rn,

w→ 0, 1w→ 0, as |y| → +∞,

where K ∗ε (y)= Kε(ηy). Let z∗j = z j/η, j = 1, 2. For any y ∈ Bτ (z∗j ), we have

K ∗ε (y)= Kε(ηy)= K (z j )+
1
ηβ
|ηy− z j |

β

= Kε(z j )+
1
ηβ
|ηy− z j |

β (since Kε(z j )= K (z j ))

= Kε(ηz∗j )+
1
ηβ
|ηy− z j |

β

= K ∗ε (z
∗

j )+
1
ηβ
|ηy− z j |

β .

Thus K ∗ε (y) > Kε(z∗j ), for all y ∈ Bτ (z∗j ) \ {z
∗

j }. Hence z∗1 and z∗2 are two strictly
local minimum points of K ∗ε (y) with |z∗1 − z∗2| = |z1− z2|/η. Moreover

K ∗ε (y)= K ∗ε (z
∗

j )+ |y− z∗j |
β for all y ∈ Bτ (z∗j ).

Then arguing as in Theorem 1.1 we see that for any ν > 0, we can choose η > 0
small enough so that (2-35) has a solution of the form

w = α1δx∗1 ,λ
∗

1
−α2δx∗2 ,λ

∗

2
+ v∗

where v∗ ∈ Ex∗,λ∗,2, ‖v∗‖ < ν and for j = 1, 2, |α j − 1/K ∗ε (z
∗

j )
(n−4)/8

| < ν,
|x∗j − z∗j | < ν, 1/λ∗j > ν. We deduce that (2-34) has a solution of the form u =
α1δx1,λ1 −α2δx2,λ2 + v where v(y)= η−(n−4)/2v∗(y/η), x j = ηx∗j and λ j = λ

∗

j/η,
and it is easy to check that u satisfies the desired properties.
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To prove Claim (2), we take

Kε(y)=

{
K (y), if y ∈ Rn�

⋃2
j=1 B2ητ (z j ),

K (z j )− (1/ηβ)|y− z j |
β, if y ∈ Bητ (z j ), j = 1, 2,

where τ and β are defined as in the proof of Claim (1). Finally, following the
previous proof, Claim (2) follows. �

3. Proofs of Theorems 1.6, 1.7 and 1.8

Proof of Theorem 1.6. Let z1, . . . , zk be k different strictly local maximum points
of K such that

(3-1) l :=min
i 6= j
|zi − z j | is large and max

i 6= j
|zi − z j |/ l is bounded.

Note that this choice is possible using the assumption of the theorem.
As in the previous section, we introduce the sets

Dν,k = { (x, λ), x j ∈ Bν(z j ), λ j ≥ 1/ν, j = 1, . . . , k},

Mν,k =

{
(α, x, λ, v) : (x, λ)∈ Dν,k, v ∈ Ex,λ,k,

k∑
j=1

∣∣α j − K (z j )
−1/8∣∣+‖v‖≤ ν},

and our functional will be

J : Mν,k→ R, (α, x, λ, v) 7→ I
( k∑

i=1

αiδxi ,λi + v

)
.

As before, we start by giving the estimate of the v-part and the α-variables. Using
Lemmas A.5 and A.6, we obtain similarly to Proposition 2.1 the following result:

Proposition 3.1. Assume that K is a C2 function. Then there exists ν0 > 0, such
that for each ν ∈ (0, ν0] and (x, λ)∈ Dν,k , there exists a unique (α(x, λ), v(x, λ))∈
Rk
×Ex,λ,k such that (2-5) and (2-8) are satisfied. (We remark that the sum in (2-8)

will be from 1 to k). We note that the function (x, λ) 7→
(
α(x, λ), v(x, λ)

)
is a C1

map. Moreover we have

k∑
j=1

∣∣∣∣α j −
1

K (x j )1/8

∣∣∣∣+‖v‖ = O
( k∑

j=1

(
|∇K (x j )|

λ j
+

1
λ j

2

)
+

∑
i 6= j

ε
1/2+τ
i j

)
,

where τ is a positive constant.

We then consider the problem

(3-2) inf{J
(
α(x, λ), x, λ, v(x, λ)

)
, (x, λ) ∈ Sν,k},
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where Sν,k := {(x, λ) ∈ Dν,k, λ j ∈ [γ1l, γ2l]} and γ2 > γ1 > 0 are two constants to
be determined later. Since Sν,k is a compact set it follows that the problem (3-2)
has a minimizer (x, λ) ∈ Sν,k . We will prove that (x, λ) is an interior point of Sν,k
and thus a critical point of J

(
α(x, λ), x, λ, v(x, λ)

)
. For this we proceed in two

steps.

Step 1. We claim that x j ∈ Bν(z j ) if l := mini 6= j |zi − z j | is large enough. By
Proposition 3.1 and Lemma A.7 we have

(3-3) J
(
α(x, λ), x, λ, v(x, λ)

)
= I (Hx,λ,k)+ O

( k∑
j=1

(
|∇K (x j )|

2

λ j
2 +

1
λ j

4

)
+

∑
i 6= j

ε1+τ
i j

)

=
2
5

k∑
j=1

S5/4
5

K (x j )1/4
−

1
10

k∑
j=1

B1K (x j )

λ2
j K (x j )5/4

−

∑
i 6= j

Dεi j

K (xi )1/8K (x j )1/8

+O
( k∑

j=1

(
|∇K (x j )|

2

λ j
2

)
+

∑
i 6= j

ε1+τ
i j

)
+ o

( k∑
j=1

1
λ j

2

)
.

Using the fact that J (α(x, λ), x, λ, v(x, λ)) ≤ J (α(z, λ), z, λ, v(z, λ)) together
with (3-3), we derive

0≤
k∑

j=1

(
1

K (x j )1/4
−

1
K (z j )1/4

)
≤ C

( k∑
j=1

1

λ j
2 +

∑
i 6= j

εi j

)
.

It follows that

(3-4) 0≤ K (z j )− K (x j )→ 0 as l→+∞.

Assume x j ∈ ∂Bν(z j ). By hypothesis (H ′2) we have K (z j )− K (x j ) ≥ η(ν) > 0,
which contradicts (3-4). Hence x j ∈ Bν(z j ) if l is large enough.

Step 2. We claim that λ j ∈ (γ1l, γ2l) if γ1 is small enough and γ2 is large enough.
Consider the function

f (t)=−
B
10

k∑
j=1

1K (x j )

K (x j )5/4
t j

8
− D

∑
i 6= j

ai j t2
i t2

j

K (xi )1/8K (x j )1/8
,

where ai j = l/|xi − x j |. Since each xi is close to zi , from (3-1), we get that each
ai j is bounded below and above and1K (xi )<−c< 0 for each i . Hence, it is easy
to check that f (t) has a global minimizer t∗= (t1∗, . . . , tk∗)∈Rk . Moreover there
are constants b2 > b1 > 0 such that b1 ≤ |t j

∗
| ≤ b2 for any global minimizer t∗

of f (t) and j = 1, . . . , k. Indeed since f (t)→ +∞ as |t | → +∞ we deduce
|t∗| ≤ b2 for some constant b2. On the other hand, we have minRk f (t) <−c′ < 0.
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Indeed, we have l = mini 6= j |zi − z j |, without loss of generality, we may assume
that l = |z1− z2|, which implies that a12 satisfies 1/2≤ a12 < 2, then

f (θ, θ, 0, . . . , 0)=−
B
10

(
1K (x1)

K (x1)5/4
+
1K (x2)

K (x2)5/4

)
θ8
−

2Da12

K (x1)1/8K (x2)1/8
θ4

= (B ′θ4
− D′)θ4,

where B ′ and D′ are some positive constants independent of l. Since B ′θ4
− D′

tends to −D′ as θ tends to 0, we see that there exists η > 0 such that if |θ | < η

we have (B ′θ4
−D′)θ4

≤−(D′/2)η4. It follows minRk f (t)≤ f (θ, θ, 0, . . . , 0)≤
−(D′/2)η4. We deduce since f (t)→ 0 as |t | → 0 that |t∗| ≥ b′ > 0. Now since
∂ f
∂t j
(t1∗, . . . , tk∗)= 0, we get

(3-5) −
B
5
1K (x j )

K (x j )9/8
t j
∗6
= D

k∑
i=1, i 6= j

ai j t∗i
2

K (xi )1/8
.

Therefore, if |t j
∗
| is small for some j , then from (3-5) and the fact that ai j ≥ c> 0

for each i 6= j , |ti ∗| is also small for i = 1, . . . , k. We obtain a contradiction.
So the function

(3-6) −
B
10

k∑
j=1

1K (x j )

K (x j )5/4
1
θ j

2 − D
∑
i 6= j

ai j

K (xi )1/8K (x j )1/8θi
1/2θ j

1/2 ,

has a global minimizer θ∗= (θ1
∗, . . . , θk

∗) and there are constants b′2>b′1>0 such
that b′2 >θ j

∗> b′1 > 0, j = 1, . . . , k for any global minimizer θ∗= (θ1
∗, . . . , θk

∗).
Denote λ j = θ j l, λ∗ = θ j

∗l. Using the fact that J (α(x, λ), x, λ, v(x, λ)) ≤
J (α(x, λ∗), x, λ∗, v(x, λ∗)) together with (3-3), we derive

−
B
10

k∑
j=1

1K (x j )

K (x j )5/4θ j
2 − D

∑
i 6= j

ai j

K (x i )1/8K (x j )1/8θ
1/2
i θ

1/2
j

≤−
B
10

k∑
j=1

1K (x j )

K (x j )5/4θ
∗

j
2 − D

∑
i 6= j

ai j

K (x i )1/8K (x j )1/8θ
∗

i
1/2θ∗j

1/2

+ O
( k∑

j=1

|∇K (x j )|
2

θ∗j
2

)
+ o

( k∑
j=1

1

θ∗j
2

)
.

Hence, θ j will tend to one of the global minimum points of the function defined
by (3-6). As a result, if γ1 > 0 is small enough and γ2 > 0 is large enough,
λ j = θ j l ∈ (γ1l, γ2l).

From Steps 1 and 2, (x, λ) is an interior point of Sν,k and thus it is a critical
point of the function J

(
α(x, λ), x, λ, v(x, λ)

)
. �
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Proof of Theorem 1.7. As in the proof of Theorem 1.6, let z1, . . . , zk be k different
strictly local maximum points of K satisfying (3-1). Define

L = l(n−4)/(β−n+4),

where β is defined in (H ′′2 ). As in Proposition 2.1, we get a map (α(x, λ), v(x, λ))
which is C1 such that

∂ J
∂α j
= 0, j = 1, . . . , k and

∂ J
∂v
=

k∑
j=1

(
A jδx j ,λ j +B j

∂δx j ,λ j

∂λ j
+

n∑
h=1

C jh
∂δx j ,λ j

∂x jh

)
.

Moreover we have the estimate
k∑

j=1

∣∣∣∣α j−
1

K (x j )(n−4)/8

∣∣∣∣+‖v‖=O
( k∑

j=1

(
|x j−z j |

β j+
1

λ
inf(β j ,(n+4)/2)
j

)
+

∑
i 6= j

ε
1/2+τ
i j

)
,

where τ > 0 is a constant. We consider the problem

(3-7) inf{J
(
α(x, λ), x, λ, v(x, λ)

)
, (x, λ) ∈ Sν,k},

where
Sν,k = {(x, λ) ∈ Dν,k, λ j ∈ [γ1L , γ2L], j = 1, . . . k},

γ1 > 0 is a small constant and γ2 > 0 is a large constant. Then arguing as in the
proof of Theorem 1.2, Theorem 1.7 follows. �

Proof of Theorem 1.8. Let η > 0. As in Theorem 1.4 we define Kε(y)= K (z j )−

(1/η2)|y− z j |
2, for y ∈ Bτη(z j ), j = 1, . . . , k with a suitable extension of Kε(y)

into R5
\
⋃k

j=1 Bτη(z j ). Then using Theorem 1.6 and arguing as in the proof of
Theorem 1.4, we see that the perturbed problem (PKε ) has a solution concentrating
at the k given points z j if η > 0 is small enough. �

4. Proofs of Theorem 1.9 and Proposition 1.10

Proof of Theorem 1.9. Let u be a solution of (PK ) of the form u=
∑

i≤k αiδxi ,λi+v.
We will argue as in [Ben Ayed et al. 2005]. Let u = u+ − u−, u+ = max(0, u),
u− = max(0,−u). Then we have |u−| < |v| and (u−)(n+4)/(n−4)

∈ L2n/(n+4). Let
us introduce w satisfying

(4-1) 12w =−K (u−)(n+4)/(n−4), w,1w→ 0 as |y| → +∞.

Using a regularity argument, we derive that w ∈ D1,2(Rn). Furthermore, since
K ≥ 0 by the maximum principle, w ≤ 0. Multiplying (4-1) by w and integrating
on Rn , we obtain

‖w‖2 =

∫
Rn
12w ·w =−

∫
Rn

K (u−)(n+4)/(n−4)w ≤ c1‖w‖|u−|
(n+4)/(n−4)
L2n/(n−4)
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so that, we have either ‖w‖ = 0 and it follows u− = 0 or ‖w‖ 6= 0 and therefore

(4-2) ‖w‖ ≤ c1|u−|
(n+4)/(n−4)
L2n/(n−4) .

Now, in view of the fact that u is a solution of (PK ), we have∫
Rn
12wu =

∫
Rn
w12u =

∫
Rn

K |u|8/(n−4)uw(4-3)

=−

∫
u≤0

K (u−)(n+4)/(n−4)w+

∫
u≥0

K (u+)(n+4)/(n−4)w

≤−

∫
u≤0

K (u−)(n+4)/(n−4)w, (since w ≤ 0, K ≥ 0)

≤−

∫
Rn

K (u−)(n+4)/(n−4)w =

∫
Rn
12w ·w = ‖w‖2.

On another hand, using the fact that K ≥ η0 > 0, we have∫
Rn
12wu =−

∫
Rn

K (u−)(n+4)/(n−4)u(4-4)

=

∫
Rn

K (u−)2n/(n−4)
≥ c2|u−|

2n/(n−4)
L2n/(n−4) .

From (4-2), (4-3) and (4-4), we deduce

c2|u−|
2n/(n−4)
L2n/(n−4) ≤ ‖w‖

2
≤ η0|u−|

2n/(n−4)
L2n/(n−4) .

Now since, |u−|L2n/(n−4) is small enough, we derive a contradiction, and the case
‖w‖ 6= 0 cannot occur. Therefore u−= 0 on Rn , and the strong maximum principle
implies that u > 0. �

Proof of Proposition 1.10. We proceed by contradiction. Assume that there exists
a sequence of solutions um of (PK ) such that |um |L∞ →+∞ and I (um)→ c as
m→+∞. Denote |um |L∞ =µ

(n−4)/2
m and let x ′m ∈Rn be a maximum point of um .

Since K (y) is periodic in all variables, by translation we may assume that x ′m is
bounded and thus we may assume that x ′m→ x0 as m→+∞. Set

wm(y)=
1

µ
(n−4)/2
m

um

(
y
µm
+ x ′m

)
.

Then wm satisfies

(4-5)


12wm = K (y/µm + x ′m)|wm |

8/(n−4)wm, y ∈ Rn,

um→ 0, 1um→ 0, as |y| → +∞,

wm(0)= 1.
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By the L p estimate, we see that wm converges weakly in E and converges in
C4

loc(R
n) to a function w0 ∈ E satisfying

(4-6)

{
12w0 = K (x0)|w0|

8/(n−4)w0, in Rn,

w0→ 0, 1w0→ 0, as |y| → +∞.

Let t0 = K (x0)
8/(n−4)w0. Then t0 satisfies

(4-7)

{
12t0 = |t0|8/(n−4)t0, in Rn

t0→ 0, 1t0→ 0, as |y| → +∞.

We have

(4-8) ‖t0‖2 = K (x0)
(n−4)/n

‖w0‖
2
≥ Sn/4

n .

Observe that

2
n

∫
Rn
|1wm |

2
=

1
2

∫
Rn
|1wm |

2
−

n−4
2n

∫
Rn

K
(

y
µm
+ x ′m

)
|wm |

2n/(n−4)(4-9)

=
1
2

∫
Rn
|1um |

2
−

n−4
2n

∫
Rn

K (z)|um |
2n/(n−4)

= I (um)→ c :=
2
n

Sn/4
n

K (n−4)/4
M

as m→+∞.

Since lim inf ‖wm‖ ≥ ‖w0‖, it follows that

(4-10) c =
2
n

Sn/4
n

K (n−4)/4
M

=
2
n

∫
Rn
|1wm |

2
+ o(1)≥

2
n

∫
Rn
|1w0|

2
+ o(1),

which implies

(4-11) ‖t0‖2 ≤
(

K (x0)
KM

)(n−4)/4

Sn/4
n .

Hence from (4-8) and (4-11), we get ‖t0‖2= Sn/4
n and K (x0)= KM , that is, x0 is a

global maximum point of K . Therefore Sn is achieved with t0, which implies the
existence of a0, λ0 such that t0 = δa0,λ0 . From (4-8), (4-9) and (4-10), we have

2
n
‖wm‖

2
+ o(1)≥

2
n
‖w0‖

2
≥

2
n

Sn/4
n

K (x0)(n−4)/4 = c =
2
n
‖wm‖

2
+ o(1).

It follows that ‖wm‖→‖w0‖ as m→+∞ and then wm converges strongly to w0.
Hence

‖um − K (4−n)/8
M δym ,ξm‖→ 0 as m→+∞,
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with ym→ x0, ξm→+∞. Then, following the same idea as in [Bahri 1989; Bahri
and Coron 1988; Rey 1990], we can write

(4-12) um = αmδxm ,λm + vm,

where vm ∈ Exm ,λm , ‖vm‖ → 0, αm → K (4−n)/8
M , xm → x0 and λm → +∞, as

m → +∞. Next, we will give an estimate of vm defined in (4-12). We have by
multiplying 12um = K |um |

8/(n−4)um by vm and integrating

‖vm‖
2
=

∫
Rn

K (y)|um |
8/(n−4)umvm

=
n+4
n−4

∫
Rn

K (y)(αmδxm ,λm )
8/(n−4)v2

m

+O
(∫

Rn
K (y)δ(n+4)/(n−4)

xm ,λm
vm +‖vm‖

2+τ
)

where τ > 0 is a constant. It follows since αm = 1/K (n−4)/8
M + o(1)

(4-13) (1+ o(1))‖vm‖
2

=
n+4
n−4

∫
Rn

K (y)
KM

δ
8/(n−4)
xm ,λm

v2
m + O

(∫
Rn

K (y)δ(n+4)/(n−4)
xm ,λm

vm

)
.

Since vm ∈ Exm ,λm , a computation using Holder’s inequality and Sobolev embed-
ding theorem shows that∫

Rn
K (y)δ(n+4)/(n−4)

xm ,λm
vm = O

(
|∇K (xm)|

λm
+

1
λ2

m

)
‖vm‖.

Then (4-13) implies

(1+ o(1))‖vm‖
2
≤

n+4
n−4

∫
Rn
δ

8/(n−4)
xm ,λm

v2
m + O

(
|∇K (xm)|

λm
+

1
λ2

m

)
‖vm‖.

Since the quadratic form defined by (2-10) is positive definite, we derive the esti-
mate

(4-14) ‖vm‖ = O
(
|∇K (xm)|

λm
+

1
λ2

m

)
.

Multiplying equation12um = K (y)|um |
8/(n−4)um by ∂δxm ,λm/∂λm and integrating,

we obtain

(4-15)
∫

Rn
1um1

∂δxm ,λm

∂λm
=

∫
Rn

K (y)|um |
8/(n−4)um

∂δxm ,λm

∂λm
.
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Since vm ∈ Exm ,λm , we have

(4-16)
∫

Rn
1um1

∂δxm ,λm

∂λm
= 0.

On the other hand

(4-17)
∫

Rn
K (y)|um |

8/(n−4)um
∂δxm ,λm

∂λm

=

∫
Rn

K (y)(αmδxm ,λm )
(n+4)/(n−4) ∂δxm ,λm

∂λm

+
n+ 4
n− 4

∫
Rn

K (y)(αmδxm ,λm )
8/(n−4)vm

∂δxm ,λm

∂λm

+O
(∫
|αmδxm ,λm |≤|vm |

|vm |
(n+4)/(n−4)

∣∣∣∣∂δxm ,λm

∂λm

∣∣∣∣
+

∫
|vm |≤|αmδxm ,λm |

δ
(12−n)/(n−4)
xm ,λm

|vm |
2
∣∣∣∣∂δxm ,λm

∂λm

∣∣∣∣).
Using the fact that αm = 1/K (n−4)/8

M + o(1) together with Lemma B.3, we derive

(4-18)
∫

Rn
K (y)(αmδxm ,λm )

(n+4)/(n−4) ∂δxm ,λm

∂λm
=
−B1K (xm)

λ3
m

+ o
(

1
λ3

m

)
.

Next, a computation using Holder’s inequality, Sobolev embedding theorem shows
that ∫

Rn
K (y)(αmδxm ,λm )

8/(n−4)vm
∂δxm ,λm

∂λm
= O

(
|∇K (xm)|

λ2
m

+
1
λ3

m

)
‖vm‖,(4-19) ∫

|αmδxm ,λm |≤|vm |

|vm |
(n+4)/(n−4)

∣∣∣∣∂δxm ,λm

∂λm

∣∣∣∣= O
(
‖vm‖

2n/(n−4)

λm

)
,(4-20)

∫
|vm |≤|αmδxm ,λm |

δ
(12−n)/(n−4)
xm ,λm

|vm |
2
∣∣∣∣∂δxm ,λm

∂λm

∣∣∣∣= O
(
‖vm‖

2

λ2
m

)
.

(4-21)

From (4-17)–(4-21) and (4-14) we get

(4-22)
∫

Rn
K (y)|um |

8/(n−4)um
∂δxm ,λm

∂λm
=
−B1K (xm)

λ3
m

+ o
(

1
λ3

m

)
.

Then (4-15), (4-16) and (4-22) imply

(4-23)
−B1K (xm)

λ3
m

+ o
(

1
λ3

m

)
= 0

which contradicts the fact 1K (xm)→1K (x0) 6= 0. This ends the proof of Propo-
sition 1.10. �
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Appendix A

In this section we will focus on the estimates needed in the proof of Theorem 1.1.
Hence we will assume that (H1) holds. Note that the same program is needed for
Theorem 1.2. There are some changes in the formula but the proofs are the same.
We have to take account of the form of Hx,λ,2 and the behavior of the function K
near the critical point.

Lemma A.1. For any x ∈ Bν(z j ) and v ∈ Ex,λ we have∫
Rn

K (y)δ(n+4)/(n−4)
x,λ v = O

(
|x − z j |

β j +
1

λinf(β j ,(n+4)/2)

)
‖v‖.

Proof. Since v ∈ Ex,λ, we have

(A-1)
∫

Rn
K (y)δ(n+4)/(n−4)

x,λ v

=

∫
B%(x)

(
K (y)− K (x)

)
δ
(n+4)/(n−4)
x,λ v+

∫
Bc
%(x)

(
K (y)− K (x)

)
δ
(n+4)/(n−4)
x,λ v.

Using Holder’s inequality and Sobolev imbedding theorem we compute∫
Bc
%(x)

(
K (y)− K (x)

)
δ
(n+4)/(n−4)
x,λ v = O

(
‖v‖

λ(n+4)/2

)
,(A-2) ∫

B%(x)

(
K (y)− K (x)

)
δ
(n+4)/(n−4)
x,λ v = O

(
|x − z j |

β j +
1
λ
β j
j

)
‖v‖,(A-3)

by (1-6) and (1-7). Then the lemma follows from (A-1), (A-2) and (A-3). �

Lemma A.2. For any (x, λ) ∈ Dν,2 and v ∈ Ex,λ,2 we have

(A-4)
∫

Rn
K (y)|Hx,λ,2|

8/(n−4)Hx,λ,2v

= O
( 2∑

j=1

(
|x j − z j |

β j +
1

λ
inf(β j ,(n+4)/2)
j

)
+ ε

1/2+τ
12

)
‖v‖,

where τ is a positive constant.

Proof. For p > 1, there exists C(p) > 1 such that for any a, b ∈ R+, we have

∣∣|a− b|p−1(a− b)− a p
+ bp

∣∣≤ {C(p)a p/2bp/2, if p ≤ 2,

C(p)(a p−1b+ abp−1), if p > 2.
(A-5)
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From (A-5) we see that

(A-6)
∫

Rn
K (y)|Hx,λ,2|

8/(n−4)Hx,λ,2v

=

∫
Rn

1
K (x1)(n+4)/8 K (y)δ(n+4)/(n−4)

x1,λ1
v−

∫
Rn

1
K (x2)(n+4)/8 K (y)δ(n+4)/(n−4)

x2,λ2
v

+


O
(∫

Rn
(δx1,λ1δx2,λ2)

(n+4)/(2(n−4))
|v|

)
, if n ≥ 12,

O
(∑

i 6= j

∫
Rn
δ

8/(n−4)
xi ,λi

δx j ,λ j |v|

)
, if n < 12.

By Holder’s inequality, the Sobolev embedding theorem and Lemma B.2 we have∫
Rn
(δx1,λ1δx2,λ2)

(n+4)/(2(n−4))
|v|

= O
(
ε
(n+4)/(2(n−4))
12 (log ε−1

12 )
(n+4)/(2n))

‖v‖
(A-7)

∫
Rn
δ

8/(n−4)
xi ,λi

δx j ,λ j |v| = O
(
ε12(log ε−1

12 )
(n−4)/n)

‖v‖, for i 6= j.(A-8)

The lemma then follows from (A-6), (A-7), (A-8) and Lemma A.1. �

Lemma A.3.

〈Hx,λ,2, α1δx1,λ1 −α2δx2,λ2〉−

∫
Rn

K (y)|Hx,λ,2|
8/(n−4)Hx,λ,2(α1δx1,λ1 −α2δx2,λ2)

= O
( 2∑

j=1

(
|x j − z j |

β j +
1
λ
β j
j

)
+ ε12

)
.

Proof. By Lemma B.1 we have

(A-9) 〈Hx,λ,2, α1δx1,λ1 −α2δx2,λ2〉 =
α1Sn/4

n

K (x1)(n−4)/8 −
α2Sn/4

n

K (x2)(n−4)/8 + O
(
ε12
)
,

where Sn is defined by (1-2). On the other hand it is easy to get

(A-10)
∫

Rn
K (y)|Hx,λ,2|

8/(n−4)Hx,λ,2(α1δx1,λ1 −α2δx2,λ2)

=
α1

K (x1)(n+4)/8

∫
Rn

K (y)δ2n/(n−4)
x1,λ1

−
α2

K (x2)(n+4)/8

∫
Rn

K (y)δ2n/(n−4)
x2,λ2

+ O
(
ε12
)
.

Now,

(A-11)
∫

Rn
K (y)δ2n/(n−4)

x j ,λ j
= K (x j )Sn/4

n +

∫
Rn

(
K (y)− K (x j )

)
δ

2n/(n−4)
x j ,λ j

.
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Since K is bounded, it is easy to check that

(A-12)
∫

Bc
%(x j )

(
K (y)− K (x j )

)
δ

2n/(n−4)
x j ,λ j

= O
(

1
λn

j

)
.

On the other hand by using (1-6) and (1-7), we compute

(A-13)
∫

B%(x j )

(
K (y)− K (x j )

)
δ

2n/(n−4)
x j ,λ j

= O
(

1
λ
β j
j

+ |x j − z j |
β j

)
.

The lemma follows from (A-9)–(A-13). �

Lemma A.4. There exists a constant τ > 0 such that

I (Hx,λ,2)=

2∑
j=1

I
(

1
K (x j )(n−4)/8 δx j ,λ j

)
+

Dε12

K (x1)(n−4)/8K (x2)(n−4)/8

+ O
( 2∑

j=1

(
|x j − z j |

2β j +
1
λ2n

j

)
+ ε1+τ

12

)
.

Proof. The proof follows immediately from the fact that K is bounded, (A-5),
Lemmas B.1, B.2, and from∫

Bc
%(xi )

K (y)δ(n+4)/(n−4)
xi ,λi

δx j ,λ j(A-14)

≤ c
(∫

Bc
%(xi )

δ
n/(n−4)
xi ,λi

δ
n/(n−4)
x j ,λ j

)(n−4)/n(∫
Bc
%(xi )

δ
2n/(n−4)
xi ,λi

)4/n

≤
c
λ4

i
εi j
(

log ε−1
i j

)(n−4)/n
.

In the ball B%(xi ), by (1-6) and (1-7), we have

(A-15)
∫

B%(xi )

K (y)δ(n+4)/(n−4)
xi ,λi

δx j ,λ j

= K (zi )

∫
B%(xi )

δ
(n+4)/(n−4)
xi ,λi

δx j ,λ j +

∫
B%(xi )

Qi (y− zi )δ
(n+4)/(n−4)
xi ,λi

δx j ,λ j

+

∫
B%(xi )

Ri (y− zi )δ
(n+4)/(n−4)
xi ,λi

δx j ,λ j .

We compute

K (zi )

K (xi )

∫
B%(xi )

δ
(n+4)/(n−4)
xi ,λi

δx j ,λ j = Dεi j + O
(
|xi − zi |

2βi + ε1+τ
i j

)
,(A-16)
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B%(xi )

Qi (y− zi )δ
(n+4)/(n−4)
xi ,λi

δx j ,λ j = O
(
|xi − zi |

2βi +
1
λ2n

i
+ ε1+τ

i j

)
,(A-17) ∫

B%(xi )

Ri (y− zi )δ
(n+4)/(n−4)
xi ,λi

δx j ,λ j = O
(
|xi − zi |

2βi+2σ
+

1
λ2n

i
+ ε1+τ

i j

)
.(A-18)

This completes the proof. �

In the following, we will focus in dimension five and we will assume that K is
a C2 function. Hence for each x ∈ R5, we can expand K near x and we obtain

K (y)= K (x)+∇K (x)(y− x)+ 1
2

D2K (x)(y− x, y− x)+ o(‖y− x‖2).

Moreover, we have ‖D2K (x)‖ is bounded.

Lemma A.5. For any x ∈ Dν,k and v ∈ Ex,λ,k , we have

(A-19)
∫

R5
K (y)H 9

x,λ,kv = O
( k∑

j=1

(
|∇K (x j )|

λ j
+

1
λ2

j

)
+

∑
i 6= j

ε
1/2+τ
i j

)
‖v‖

where τ > 0 is a constant.

Proof. As in (A-6) and using Lemma B.2, we have

(A-20)
∫

R5
K (y)H 9

x,λ,kv=

k∑
j=1

∫
R5

K (y) 1
K (x j )9/8

δ9
x j ,λ j

v+O
(∑

i 6= j

ε
1/2+τ
i j

)
‖v‖.

For the integral in the right hand side of (A-20), we follow the proof of Lemma
A.1. But here we cannot use (H1). In fact, (A-1) and (A-2) hold. It remains to
compute

(A-21)
∫

B%(x j )

(K (y)− K (x j ))δ
9
x j ,λ j

v

=

∫
B%(x j )

∇K (x j )(y− x j )δ
9
x j ,λ j

v+ O
(∫

B%(x j )

|y− x j |
2δ9

x j ,λ j
|v|

)
.

Now, by using Holder’s inequality and the Sobolev imbedding theorem, we have∫
B%(x j )

∇K (x j )(y− x j )δ
9
x j ,λ j

v = O
(
|∇K (x j )|

λ j
‖v‖

)
,(A-22) ∫

B%(x j )

|y− x j |
2δ9

x j ,λ j
v = O

(
‖v‖

λ2
j

)
.(A-23)

Then the lemma follows from (A-1), (A-2), (A-21), (A-22) and (A-23). �
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Lemma A.6. We have

(A-24) 〈Hx,λ,k, δx j ,λ j 〉−

∫
R5

K (y)H 9
x,λ,kδx j ,λ j = O

( k∑
j=1

1
λ2

j
+

∑
i 6= j

εi j

)
.

Proof. Similarly to (A-9) and (A-10), we have

〈Hx,λ,k, δx j ,λ j 〉 =
S5/4

5

K (x j )1/8
+ O

(∑
i 6= j

εi j

)
,(A-25)

∫
R5

K (y)H 9
x,λ,kδx j ,λ j =

1
K (x j )9/8

∫
R5

K (y)δ10
x j ,λ j
+ O

(∑
i 6= j

εi j

)
.(A-26)

Since K is a C2 function, then expanding K around x j and using the evenness of
δx j ,λ j with respect to y− x j , we get

(A-27)
∫

R5
K (y)δ10

x j ,λ j
= K (x j )S

5/4
5 + O

(
1
λ2

j

)
.

From (A-25), (A-26) and (A-27), the lemma follows. �

Lemma A.7.

I (Hx,λ,k)=
2
5

k∑
j=1

S5/4
5

K (x j )1/4
−

1
10

k∑
j=1

1
K (x j )5/4

B1K (x j )

λ2
j

−

∑
i 6= j

Dεi j

K (xi )1/8K (x j )1/8
+ o

( k∑
j=1

1
λ2

j

)
+ O

(∑
i 6= j

ε1+τ
i j

)
,

where B = 1
5

∫
R5 |x |2δ10

0,1.

Proof. We have

(A-28) I (Hx,λ,k)=
1
2
‖Hx,λ,k‖

2
−

1
10

∫
R5

K (y)H 10
x,λ,k .

First by Lemma B.1, one has

(A-29) ‖Hx,λ,2‖
2
=

k∑
j=1

S5/4
5

K (x j )1/4
+ 2

∑
i 6= j

Dεi j

K (xi )1/8K (x j )1/8
+ O

(∑
i< j

ε1+τ
i j

)
.
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Second using Lemma B.2, we get

(A-30)
∫

R5
K (y)H 10

x,λ,k

=

k∑
j=1

1
K (x j )5/4

∫
R5

K (y)δ10
x j ,λ j

+ 10
∑
i 6= j

1
K (xi )9/8K (x j )1/8

∫
R5

K (y)δ9
xi ,λi

δx j ,λ j + O
(∑

i 6= j

ε1+τ
i j

)
.

Now since K is a C2 function, by expanding K around x j and using the evenness
of δx j ,λ j with respect y− x j , we compute

(A-31)
∫

R5
K (y)δ10

x j ,λ j
= K (x j )S

5/4
5 +

1K (x j )

λ2
j

1
5

∫
R5

|x |2

(1+ |x |2)5
+ o

(
1
λ2

j

)
.

We have also by expanding K around xi and using Lemmas B.1 and B.2

(A-32)
∫

R5
K (y)δ9

xi ,λi
δx j ,λ j = K (xi )Dεi j + O

(
1
λ5

i
+ ε1+τ

i j

)
.

It is easy to see that the lemma follows from (A-28)–(A-32). �

Appendix B

A computation similar to the one performed in [Bahri 1989] shows that, for i 6= j ,
if the interaction εi j is small and the concentration λi are large, then we have the
following lemmas:

Lemma B.1.

(B-1)
∫

Rn
δ
(n+4)/(n−4)
xi ,λi

δx j ,λ j = Dεi j + O
(
ε
(n−2)/(n−4)
i j

)
,

where D =
∫

Rn

dx
(1+ |x |2)(n+4)/2 .

Lemma B.2. Let α>1, β >1 be such that α+β=2n/(n−4) and let θ = inf(α, β).
Then we have

(B-2)
∫

Rn
δαxi ,λi

δ
β
x j ,λ j
= O

(
εθi j
(

log(ε−1
i j )

)(n−4)θ/n
)
.

Lemma B.3. If K is a C2 function near the concentration point x , then

(B-3)
∫

Rn
K (y)δ(n+4)/(n−4)

x,λ
∂δx,λ

∂λ
=−

n− 4
2n

c2
1K (x)
λ3 + o

(
1
λ3

)
.
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DÉPARTEMENT DE MATHÉMATIQUES
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