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A PERMUTATION MODEL FOR FREE RANDOM VARIABLES
AND ITS CLASSICAL ANALOGUE

FLORENT BENAYCH-GEORGES AND ION NECHITA

In this paper, we generalize a permutation model for free random variables
which was first proposed by Biane. We also construct its classical prob-
ability analogue, by replacing the group of permutations with the group
of subsets of a finite set endowed with the symmetric difference operation.
These constructions provide new discrete approximations of the respective
free and classical Wiener chaos. As a consequence, we obtain explicit exam-
ples of nonrandom matrices which are asymptotically free or independent.
The moments and the free (respectively classical) cumulants of the limiting
distributions are expressed in terms of a special subset of (noncrossing) pair-
ings. At the end of the paper we present some combinatorial applications of
our results.

Introduction

Free probability is the noncommutative probability theory built upon the notion of
independence called freeness. In classical probability theory, independence charac-
terizes families of random variables whose joint distribution can be deduced from
the individual ones by making their tensor product. In the same way, freeness,
in free probability theory, characterizes families of random variables whose joint
distribution can be deduced from the individual ones by making their free product
(with the difference that free random variables belong to noncommutative proba-
bility spaces, and that their joint distribution is no longer a probability measure, but
a linear functional on a space of polynomials). Concretely, independent random
variables are numbers arising randomly with no influence on each other, whereas
free random variables are elements of an operator algebra endowed with a state
which do not satisfy any algebraic relation together, at least judging by the algebra’s
state. Free probability theory has been a very active field of mathematics during the
last two decades, constructed in a deep analogy with classical probability theory.
It follows that there is a kind of dictionary between objects of both theories: many
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fundamental notions or results of classical probability theory, like the Law of Large
Numbers, the Central Limit Theorem, the Gaussian distribution, convolution, cu-
mulants, and infinite divisibility have a precise analogue in free probability theory.
Moreover, several examples of asymptotically free random variables have been
found, like random matrices [Voiculescu 1991; Voiculescu et al. 1992; Hiai and
Petz 2000; Haagerup and Thorbjørnsen 2005], representations of groups [Biane
1995b; 1998], and a permutation model of [Biane 1995a]. In the present paper,
we shall firstly generalize this permutation model and then develop its analogue
from classical probability theory, which will allow us to show that surprisingly, in
the “dictionary” mentioned above between classical and free probability theories,
there is a correspondence (of minor importance when compared to others, but still
interesting) between groups of sets endowed with the symmetric difference opera-
tion and groups of permutations, following from the correspondence between the
lattice of partitions and the lattice of noncrossing partitions.

To explain how we construct this model and its analogue from classical prob-
ability theory, let us recall a few basic definitions of noncommutative probability
theory. First of all, recall that a noncommutative probability space (as we shall use
it) is a complex unital ∗-algebra A endowed with a linear form ϕ such that ϕ(1)=1
and for all x ∈A, ϕ(x∗)= ϕ(x) and ϕ(xx∗)> 0. The noncommutative distribution
of a family (xi )i∈I of self-adjoint elements of A is then the application which maps
any polynomial P in the noncommutative variables (X i )i∈I to ϕ(P((xi )i∈I )). This
formalism is the one of free probability theory, but it recovers the one of classical
probability theory, because if the algebra A is commutative, then this distribution
is actually the integration with respect to a probability measure on RI , and A and
ϕ can respectively be identified with a subalgebra of the intersection of the L p

spaces (p ∈ [1,+∞)) of a certain probability space and with the integration with
respect to the probability measure of this probability space. A general example
of noncommutative probability space of historical importance is, given a count-
able group G, the ∗-algebra C[G] = C(G) (the set of finitely supported complex
functions on G), endowed with the notion of adjointness defined by(∑

g∈G

xg.g
)∗
=

∑
g∈G

xg.g−1

and with the trace

ϕ

(∑
g∈G

xg.g
)
= xe,

where e denotes the neutral element of G. Our asymptotic model for free random
variables is constructed in the algebra of the group S of permutations with finite
support of the set of nonnegative integers, whereas its classical probability theory
analogue is constructed in the algebra of the group G of finite sets of nonnegative
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integers endowed with the symmetric difference operation. More precisely, let us
define, for all integer r > 1, and t ∈ [0,+∞), the element of C[S]

Mr (n, t)=
1

nr/2

∑
(0a1a2 · · · ar )︸ ︷︷ ︸
designs the cycle

0→a1→a2→···→ar→0

,

where the sum runs over all r -tuplets (a1, . . . , ar ) of pairwise distinct integers
of [1, nt]. In [Biane 1995a], it was already proved that the noncommutative dis-
tribution of the family (M1(n, t))t∈[0,+∞) converges, as n goes to infinity, to the
one of a family (M1(t))t∈[0,+∞) which is a free Brownian motion. Here, we shall
prove that the noncommutative distribution of the family (Mr (n, t))r>1,t∈[0,+∞)

converges, as n goes to infinity, to the one of a family (Mr (t))r>1,t∈[0,+∞) such that
for all r , t , one has Mr (t)= tr/2Ur (t−1/2 M1(t)), where the Ur ’s are the Chebyshev
polynomials of second kind.

The classical probability analogue of this model is constructed by replacing the
group S of finitely supported permutations of the set of nonnegative integers by
the group G of finite sets of nonnegative integers, endowed with the symmetric
difference operation (the symmetric difference A1 B of two sets A and B is the
set (A∪B)\(A∩B)). We define, for all integer r > 1, and t ∈ [0,+∞), the element
of C[G]

Lr (n, t)=
1

nr/2

∑
{a1, a2, . . . , ar },

where the sum runs over all r -tuplets (a1, . . . , ar ) of pairwise distinct integers
of the interval [1, nt]. We shall prove that the noncommutative distribution of the
family (Lr (n, t))r>1,t∈[0,+∞) converges, as n goes to infinity, to the one of a family
(Lr (t))r>1,t∈[0,+∞) such that (L1(t))t∈[0,+∞) is a classical Brownian motion and
that for all r , t , one has Lr (t)= tr/2 Hr (t−1/2L1(t)), where the Hr ’s are the Hermite
polynomials.

This model is constructed on a commutative algebra, hence the joint distribu-
tion of the family (Lr (n, t))r>1,t∈[0,+∞) is the one of a family of classical random
variables, and the same holds for the family (Lr (t))r>1,t∈[0,+∞). This last process
is well known in classical probability theory: up to a renormalization, it is the
Wiener chaos [Janson 1997; Nualart 2006; Nourdin 2009]. Our model provides a
new discrete approximation of the random process (Lr (t))r>1,t∈[0,+∞). The Wiener
chaos is the starting point of a wide construction of stochastic processes, called the
stochastic measures [Rota and Wallstrom 1997; Nualart 2006; Peccati and Taqqu
2008]. In a forthcoming paper, we shall prove that both our classical and free
models can be generalized to this setting.

Let us now go back to the free model and explain how one can obtain nonrandom
asymptotically free matrices. From the results stated earlier, there emerges the
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general idea that duly renormalized elements of C[S] of the type

A(n) :=
∑

a1,...,ara
in a set of size n

(0a1 · · · ara ), B(n) :=
∑

b1,...,brb
in a set of size n

(0b1 · · · brb),

C(n) :=
∑

c1,...,crc
in a set of size n

(0c1 · · · crc), etc.

are asymptotically free as n goes to infinity if the respective sets where the ai ’s,
the bi ’s and the ci ’s are picked from are pairwise disjoint, and that in this result,
asymptotic freeness is replaced by asymptotic independence if the group S of
permutations is replaced by the one of finite sets endowed with the symmetric
difference operation and cycles (0x1 · · · xr ) are replaced by sets {x1, . . . , xr }.

Let us now comment on Biane’s original motivation for this construction. His
idea (for r = 1) easily generalizes for arbitrary r . As before, consider a finite set
of elements A(n), B(n), C(n), etc. of the group algebra C[SN ], which is possible
for N large enough. When viewed as operators on SN , A(n), B(n), C(n), etc. are
complex matrices with rows and columns indexed by the elements of SN (these
matrices can be seen as the adjacency matrices of some Cayley graphs). This is the
reason why these results provide explicit examples of asymptotically free families
of nonrandom matrices. To our knowledge, there are no other such constructions.
The classical probability part of our result also provides an explicit example of
commutative family of nonrandom matrices which are asymptotically independent,
property that only random matrices had until now been proved to have.

In the last part of this paper, we shall explore connections between several com-
binatorial structures and the sets of noncrossing pairings which appeared in the
formulas of moments and free cumulants in the limit theorems presented above.

1. The permutation model for free random variables

1.1. Computation of the limit distribution. We shall work with the noncommu-
tative probability space that is the group algebra C[S] of the group S of finitely
supported permutations of the set of nonnegative integers (that is, permutations for
which all but finitely many points are fixed points), with its canonical trace defined
by ϕ(

∑
σ xσσ) = xid, where id is the identity permutation. Let us define, for all

integer r > 1, and t ∈ [0,+∞), the element of C[S]

Mr (n, t)=
1

nr/2

∑
(0a1a2 · · · ar ),

where the sum runs over all r -tuplets (a1, . . . , ar ) of pairwise distinct integers of
[1, nt]. For r = 0, we put M0(n, t) = id. Our purpose in what follows is to study
the asymptotic properties (in the limit n→∞) of the family (Mr (n, t))r,t .
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Before stating the main result of this section, let us recall that a free Brownian
motion is a process (St)t∈[0+∞) of noncommutative random variables with free
increments such that for all t , St is semicircular with variance t . Let us also recall
some facts about the Chebyshev polynomials of the second kind, denoted by (Un).
These are the orthogonal polynomials on [−2, 2] with respect to the semicircular
weight w(x)= 1

2π

√
4− x2. They satisfy the property

Un(2 cos θ)=
sin(n+ 1)θ

sin θ
, ∀n > 0,

and the recurrence relation

U0(x)= 1, U1(x)= x, U1(x)Un(x)=Un−1(x)+Un+1(x),∀n > 1.

Theorem 1. The noncommutative distribution of the family (Mr (n, t))r>1,t∈[0,+∞)

converges, as n goes to infinity, to the one of a family (Mr (t))r>1,t∈[0,+∞) such
that (M1(t))t∈[0,+∞) is a free Brownian motion and for all r , t , one has Mr (t) =
tr/2Ur (t−1/2 M1(t)), where the Ur ’s are the Chebyshev polynomials of second kind.

Proof. Step I. It follows from a direct application of Theorem 1 of [Biane 1995a]
that the noncommutative distribution of the family (M1(n, t))t∈[0,+∞) converges,
as n goes to infinity, to the one of a family (M1(t))t∈[0,+∞) which is a free Brownian
motion.

Step II. Let us prove that for all integer r > 1, and t ∈ (0,+∞),

(1) lim
n→∞

ϕ
(
(M1(n, t)Mr (n, t)− t Mr−1(n, t)−Mr+1(n, t))2

)
= 0.

We first compute M1(n, t)Mr (n, t):

M1(n, t)Mr (n, t)= n−(r+1)/2
∑

(a1,...,ar )
(ar+1)

(0ar+1)(0a1a2 · · · ar )

= n−(r+1)/2
∑

(a1,...,ar+1)

(0a1a2 · · · ar ar+1)

+n−(r+1)/2
r∑

k=1

∑
(a1,...,ar )

(0a1a2 · · · ak−1)(ak · · · ar )

= Mr+1(n, t)+ bntc
n

Mr−1(n, t)

+n−(r+1)/2
r−1∑
k=1

∑
(a1,...,ar )

(0a1a2 · · · ak−1)(ak · · · ar ).
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Thus, it suffices to show that (a = (a1, . . . , ar ), b = (b1, . . . , br ))

lim
n→∞

ϕ

((
n−(r+1/2)

r−1∑
k=1

∑
a

(0a1a2 · · · ak−1)(ak · · · ar )

)2)
= 0.

But( r−1∑
k=1

∑
a

(0a1a2 · · · ak−1)(ak · · · ar )

)2

=

r−1∑
k,l=1

∑
a,b

(0a1a2 · · · ak−1)(ak · · · ar )(0b1b2 · · · bl−1)(bl · · · br )

For the permutation on the right-hand side to be the identity, it has to be that

(0b1b2 · · · bl−1)(bl · · · br )=
(
(0a1a2 · · · ak−1)(ak · · · ar )

)−1

= (akar ar−1 · · · ak+1)(0ak−1 · · · a1)

and thus k = l and the b’s are determined (modulo some circular permutation of
size at most r ) by the a’s. We find that there are at most (r − 1)r !(nt)r terms in
the sum which are equal to the identity and (1) follows.

Step III. To prove the existence of a limit to the noncommutative distribution of the
family (Mr (n, t))r>1,t∈[0,+∞), we have to prove that for all polynomial P in the
noncommutative variables (Xr (t))r>0,t∈[0,+∞),

ϕ(P((Mr (n, t))r>0,t∈[0,+∞)))

has a finite limit as n goes to infinity. First, by linearity, we can suppose that P is
a monomial Xr1(t1) · · · Xrk (ik) with r1, . . . , rk > 0, t1, . . . , tk ∈ [0,+∞). Then we
prove our claim by induction on R := max{r1, . . . , rk}. If R = 0 or 1, it follows
from the first step of the proof and the convention M0(n, t)= 1. Now, suppose the
result to be proved until rank R−1. Replacing, for all t ∈ [0,+∞), each X R(t) in
P by

(X1(t)X R−1(t)− t X R−2(t))− (X1(t)X R−1(t)− t X R−2(t)− X R(t))

and using the second step of the proof with the Cauchy–Schwarz inequality, one
gets the convergence. Denote the limit distribution by

9 : C〈Xr (t) ; r > 0, t ∈ [0,+∞)〉 → C.

Step IV. Now, it remains only to identify the limit distribution. Note first that by the
first step and the convention M0(n, t)= 1, the Cauchy–Schwarz inequality allows
us to claim that the bilateral ideal generated by

{X0(t)−1; t ∈[0,+∞)}∪{X1(t)Xm−1(t)−t Xm−2(t)−Xm(t);m>2, t ∈[0,+∞)}
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is contained in the kernel of9. So up to a quotient of C〈Xr (t) ; r>0, t ∈[0,+∞)〉,
one can suppose that for all m > 2, t ∈ [0,+∞), X0(t) = 1 and X1(t)Xm−1(t) =
t Xm−2(t) + Xm(t). This allows us to claim that for all m > 0, t ∈ [0,+∞),
Xm(t) is a polynomial in X1(t), namely that Xm(t)= tm/2Um(t−1/2 X1(t)), where
the Um’s are the Chebyshev polynomials of second kind (indeed, this family is
completely determined by the fact that U0 = 1 and U1 = X and for all m > 2,
U1Um−1=Um−2+Um). Since by the first step, (M1(t))t∈[0,+∞) is a free Brownian
motion, the proof is complete. �

The following corollary generalizes Theorem 1 of [Biane 1995a]. Roughly
speaking, it states that duly renormalized elements of C[S] of the type

A(n) :=
∑

a1,...,ara
in a set of size n

(0a1 · · · ara ), B(n) :=
∑

b1,...,brb
in a set of size n

(0b1 · · · brb),

C(n) :=
∑

c1,...,crc
in a set of size n

(0c1 · · · crc), etc.

are asymptotically free as n goes to infinity if the respective sets where the ai ’s,
the bi ’s and the ci ’s are picked are pairwise disjoint. Biane proved this in the case
where ra = rb = rc = · · · = 1.

Corollary 1. Fix p > 1, r1, . . . , rp > 0, t0 < t1 < · · · < tp, and define, for all
i = 1, . . . , p, for each n > 1, Mi (n) = n−ri/2

∑
(0a1 · · · ari ), where the sum runs

over all ri -tuplets (a1, . . . , ari ) of pairwise distinct integers of (nti−1, nti ]. Then
M1(n), . . . ,Mp(n) are asymptotically free as n goes to infinity.

Proof. Let us define, for all i = 1, . . . , p and n > 1,

Si (n) := n−1/2
∑

a∈(nti−1,nti ]
a integer

(0a).

Theorem 1 implies that as n goes to infinity, the noncommutative distribution of
(S1(n), . . . , Sp(n)) tends to the one of a free family (s1, . . . , sp) of semicircular
elements (with various variances). Moreover, the same theorem says that for all i ,
as n goes to infinity,

lim
n→∞

ϕ
(
(Mi (n)− (ti − ti−1)

ri/2Uri (
√

ti − ti−1Si (n))2
)
= 0.

The noncommutative distribution of the family (S1(n),M1(n), . . . , Sp(n),Mp(n))
then converges to the one of

(s1, (t1− t0)r1/2Ur1(
√

t1− t0s1), . . . , sp, (tp − tp−1)
rp/2Ur1(

√
tp − tp−1sp),

which finishes the proof. �
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1.2. Moments and cumulants of the limit distribution. We now turn to the mo-
ments and the free cumulants of the family (Mr (t))r>1,t∈[0,+∞). As we shall see,
these quantities have elegant closed expressions in terms of noncrossing pairings
of a special kind. Let us now introduce the combinatorial objects of interest. For a
function f defined on a finite set X , ker f designates the partition of X by the level
sets of f . For every p>1 and for every vector r = (r1, . . . , rp) of positive integers,
consider the function fr : {1, . . . , |r |} → {1, . . . , p} defined by fr (x) = k if and
only if r1+· · ·+rk−1 < x 6 r1+· · ·+rk (we put |r | = r1+· · ·+rp). We introduce
the set NC2(r) of noncrossing pairings π of the set {1, . . . , |r |} which do not link
two elements who have the same image by fr , that is, such that π∧1̂r = 0̂|r |, where
1̂r = ker fr and 0̂|r | is the singletons partition of {1, . . . , |r |}. We also introduce
NC∗2(r) = {π ∈ NC2(r) | π ∨ 1̂r = 1̂|r |}, where 1̂|r | is the one-block-partition of
{1, . . . , |r |}. For s positive integer, we denote with 〈s〉p= (s, s, . . . , s) the constant
vector where s appears p times.

In the following theorem, we compute the mixed moments and free cumulants
of the family (Mr )r>1 = (Mr (1))r>1 (the mixed moments and cumulants of the
family (Mr (t))r>1,t∈[0,+∞) can easily be computed in the same way).

Theorem 2. The distribution of the family (Mr )r>1 is characterized by the fact
that its mixed moments are given by

ϕ(Mr1 Mr2 · · ·Mrp)= ]NC2(r)

and its free cumulants are given by

κp(Mr1,Mr2, . . . ,Mrp)= ]NC∗2(r).

Remark 1. Although they are clearly dependent, the elements Mr are not corre-
lated: ϕ(Mq Mr )= 0 if q 6= r (this follows from the orthogonality of the Chebyshev
polynomials).

Remark 2. This theorem provides a new proof (even though there are already
many!) of the formula of the free cumulants of the free Poisson distribution
(also called Marchenko–Pastur distribution; see [Hiai and Petz 2000]). Indeed,
M2+ 1= M2

1 is well known to have a free Poisson distribution with mean 1, all of
whose cumulants except the first one the same as the free cumulants of M2. By the
theorem, for all p>2, κp(M2) is the cardinality of {π ∈NC2(2p) |π∨1̂〈2〉p = 1̂2p}.
In [Nica and Speicher 2006], it is shown that{
π ∈ NC(2p) | π ∨ 1̂〈2〉p = 1̂2p

}
=
{
π ∈ NC(2p) | 1

π
∼ 2p, 2i

π
∼ 2i + 1,∀i ∈ {1, . . . , p− 1}

}
.
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Thus,{
π ∈ NC2(2p) | π ∨ 1̂〈2〉p = 1̂2p

}
=
{{
{2p, 1}, {2, 3}, . . . , {2p− 2, 2p− 1}

}}
,

which is a partition of NC2(〈2〉p), hence κp(M2)= 1.

Proof. Let us first prove that the mixed moments are given by the formula of the
theorem. Using the identity (0b1b2 · · · bs)= (0bs)(0bs−1) · · · (0b1), we have

p∏
j=1

Mr j (n, 1)= n−|r |/2
∑

a

(0a1)(0a2) · · · (0a|r |),

where the sum is taken over all families a = (a1, . . . , a|r |) ∈ {1, . . . , n}|r | such that
for all k, l ∈ {1, . . . , |r |}, ak 6= al whenever fr (k) = fr (l). To such a family a we
associate the partition P(a) of the set {1, . . . , |r |} defined by k ∼ l if and only if
ak = al . Thus, for all a, P(a) does not link two elements that have the same image
by fr , that is, satisfies P(a)∧ 1̂r = 0̂|r |. We regroup the terms of the preceding sum
according to the partitions P:∑

π

n−|r |/2
∑

a :P(a)=π

(0a1)(0a2) · · · (0a|r |).

Let us show that among the partitions π such that π ∧ 1̂r = 0̂|r |, the only partitions
that contribute to the limit, as n goes to infinity, are noncrossing pairings, that is,
elements of NC2(r). If π = P(a) contains a singleton {k}, then the permutation
(0a1)(0a2) · · · (0a|r |) cannot be the identity, because the element ak appears only
once and thus its image cannot be itself. Consider now a partition π with no
singleton but with a class with at least three elements. It is easy to show that there
are no more than n(|r |−1)/2 families a such that P(a) = π and thus they have no
contribution asymptotically. We have shown that only pairings contribute to the
trace. The argument in [Biane 1995a, Lemma 2] (which adapts mutatis mutandis
to our case) shows that only the noncrossing pairings contribute, completing the
proof.

Let us now compute the free cumulants. To a pairing P ∈ NC2(r) we associate
the noncrossing partition P ∈ NC(p) which encodes the way P links the blocks
of 1̂r :

k
P
∼ l if and only if r1+ · · ·+ rk

P∨1̂r
∼ r1+ · · ·+ rl,

for all k, l ∈ {1, . . . , p}.We have

ϕ((Mr1 Mr2 · · ·Mrp)= ]NC2(r)=
∑

π∈NC(p)

]{P ∈ NC2(r) | P= π}.
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Since the functionals NC(p) 3 π 7→ ]{P ∈NC2(r) |P= π} are multiplicative, we
have identified the free cumulants of the family (Mr )r>1:

∀p > 1, r1, . . . , rp > 1, κπ (Mr1,Mr2, . . . ,Mrp)= ]{P ∈ NC2(r) | P= π}.

Considering the case π = 1̂p, we obtain the announced formula for the free cumu-
lants. �

1.3. An application: linearization coefficients for orthogonal polynomials. As a
corollary of Theorems 1 and 2, we recover some formulas already obtained in [An-
shelevich 2005] using different techniques. Consider a family (Pn) of orthonormal
polynomials with respect to some weight w. For an integer vector r = (r1, . . . , rp)

there is a decomposition

Pr1(x)Pr2(x) · · · Prp(x)=
|r |∑

k=0

c(r)k Pk(x),

where the scalars c(r)k ∈ R are called linearization coefficients of the family (Pn).
They can easily be recovered by integration:

c(r)k =

∫
Pr1(x)Pr2(x) · · · Prp(x) · Pk(x) dw(x).

For the Chebyshev polynomials, these integrals are the expectation (the trace) of
the corresponding products of the random variables Mr :

Corollary 2. The linearization coefficients for the Chebyshev polynomials of the
second kind Un are given by

(2) c(r)k = ]NC2(r ∪ k),

where r ∪ k is the vector (r1, . . . , rp, k).

Remark 3. A referee mentioned to us that formula (2) had already been proved,
with another method, in [de Sainte-Catherine and Viennot 1985, Theorem 7].

In [Anshelevich 2005], a similar formula is deduced for the centered free Char-
lier polynomials Vn . These polynomials are orthogonal with respect to the centered
Marchenko-Pastur density

w2(t)= 1]−1,3](t)
1

2π

√
4

1+ t
− 1.



A PERMUTATION MODEL FOR FREE RANDOM VARIABLES 43

Note that M2 = M2
1 − 1 has the distribution dµ2 = w2(t) dt . Moreover, one can

easily see that Vn ◦U2 =U2n and thus∫
Vr1(x)Vr2(x) · · · Vrp(x) · Vk(x) dw2(x)

=

∫
U2r1(x)U2r2(x) · · ·U2rp(x) ·U2k(x) dw(x).

We obtain:

Corollary 3. The linearization coefficients for the centered free Charlier polyno-
mials Vn are given by

d(r)k = ]NC2(2r ∪ 2k),

where 2r ∪ 2k is the vector (2r1, . . . , 2rp, 2k).

Using the bijection between noncrossing pairings of size 2n and noncrossing
partitions of size n (see [Nica and Speicher 2006, pages 153–154]), one can easily
see that the sets NC2(2r ∪ 2k) and {π ∈ NC(r ∪ k | π has no singleton} have the
same cardinality, hence our formula is equivalent to the one in [Anshelevich 2005].

2. A classical probability analogue

The model we have studied in the first part involves permutations, asymptotical
freeness, noncrossing pairings, the semicircular distribution and its orthogonal
polynomials, the second kind Chebyshev polynomials. By replacing permutations
with sets, we construct in this section an analogue model, where the objects from
free probability are replaced by their classical counterparts, respectively indepen-
dence, (possibly crossing) pairings, and the Gaussian distribution with the orthog-
onal Hermite polynomials.

2.1. Computation of the limit distribution. Here, we shall work with the noncom-
mutative probability space which is the group algebra C[G] of the group G of finite
sets of nonnegative integers endowed with the symmetric difference operation, with
its canonical trace defined by ψ(

∑
A xA A) = x∅. Let us define, for all integers

r > 1, and t ∈ [0,+∞), the element of C[G]

Lr (n, t)=
1

nr/2

∑
{a1, a2, . . . , ar },

where the sum runs over all r -tuplets (a1, . . . , ar ) of pairwise distinct integers of
[1, nt]. For r = 0, we put L0(n, t) = ∅ (which is the unity of this algebra). Our
purpose in what follows is to study the asymptotic properties (in the limit n→∞)
of the family (Lr (n, t))r,t .

Recall that for every p > 1 and for every vector r = (r1, . . . , rp) of positive
integers, the function fr : {1, . . . , |r |} → {1, . . . , p} is the projection defined by
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fr (x)= k if and only if r1+· · ·+rk−1 < x 6 r1+· · ·+rk (|r | = r1+· · ·+rp). We
replace the noncrossing partitions from the free case with general partitions: 52(r)
is the set of pairings π of {1, . . . , |r |} which do not link two elements who have the
same image by fr , that is, such that π ∧ 1̂r = 0̂|r |, where 1̂r is still the partition of
{1, . . . , |r |} with blocks f −1

r (1), f −1
r (2), . . . , f −1

r (p). We also introduce5∗2(r)=
{π ∈52(r) | π ∨ 1̂r = 1̂|r |}.

In the following lemma we compute the asymptotic joint moments of the random
variables Lr (n, t).

Lemma 1. Let p > 1 and consider t1, . . . , tp > 0 and a family of positive inte-
gers r = (r1, . . . , rp). Then, in the limit n →∞, the trace ψ

(∏p
j=1 Lr j (n, t j )

)
converges to ∑

π∈52(r)

∏
{i, j}∈π

min(t fr (i), t fr ( j)).

Proof. Using the properties of the symmetric difference 1, we get

p∏
j=1

Lr j (n, t j )= n−|r |/2
∑

a

{a1}1{a2}1 · · ·1{a|r |},

where the sum is taken over all families a= (a1, . . . , a|r |) of positive integers such
that for all k, l ∈ {1, . . . , |r |}, ak ∈ [1, nt fr (k)] and ak 6= al whenever fr (k)= fr (l).
To such a family a we associate the partition P(a) of the set {1, . . . , |r |} defined
by k∼ l if and only if ak = al . Thus, for all a, P(a) does not link two elements that
have the same image by fr . We regroup the terms of the preceding sum according
to the partitions P: ∑

π

n−|r |/2
∑

a :P(a)=π

{a1}1 · · ·1{a|r |}.

Let us show that only pairings can contribute to the asymptotic trace of the sum.
It is obvious that {a1}1 · · ·1{a|r |} is the empty set if and only if each ai appears
an even number of times. Thus, π =P(a) cannot contain singletons. On the other
hand, if π contains no singleton but has a class with at least three elements, it
is easy to show that there are no more than (n max{t1, . . . , tp})

(|r |−1)/2 families a
such that P(a)= π and thus such partitions π do not contribute asymptotically.

For π pairing of 52(r), the number of families a such that P(a)= π , is asymp-
totic, as n goes to infinity, to n|r |/2

∏
{i, j}∈π min(t fr (i), t fr ( j)), which concludes the

proof. �

Before stating the main result of this section, let us recall some facts about the
Hermite polynomials, denoted by (Hn). These are the orthogonal polynomials
on the real line with respect to the standard Gaussian measure. They satisfy the
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recurrence relation

H0(x)= 1, H1(x)= x, H1(x)Hr (x)= Hr+1(x)+ r Hr−1(x),∀r > 1.

Theorem 3. The distribution of the family (Lr (n, t))r>1,t∈[0,+∞) converges, as n
goes to infinity, to the one of a commutative family (Lr (t))r>1,t∈[0,+∞) such that
(L1(t))t∈[0,+∞) is a classical Brownian motion and for all r , t , one has Lr (t) =
tr/2 Hr (t−1/2L1(t)), where the Hr ’s are the Hermite polynomials.

Proof. Step 0. Note first that the symmetric difference is a commutative operation
on sets. Hence the algebra C[G] is commutative.

Step I. It follows from a direct application of the previous lemma that the distribu-
tion of the family (L1(n, t))t∈[0,+∞) converges, as n goes to infinity, to the one of
a classical Brownian motion (L1(t))t∈[0,+∞).

Step II. Let us prove that for all integer r > 1, and t ∈ (0,+∞),

(3) lim
n→∞

ψ
(
(Lr (n, t)L1(n, t)− r t Lr−1(n, t)− Lr+1(n, t))2

)
= 0.

This is a consequence of the following computation of Lr (n, t)L1(n, t). The sums
run over integers of [1, nt].

Lr (n, t)L1(n, t)= n−(r+1)/2
∑

(a1,...,ar )
(ar+1)

{a1}1 · · ·1{ar+1}

= n−(r+1)/2
∑

(a1,...,ar+1)

{a1, a2, . . . , ar , ar+1}

+ n−r+1/(2)
r∑

k=1

∑
(a1,...,ar )

{a1, a2, . . . , ǎk, . . . , ar }

= Lr+1(n, t)

+ n−(r+1)/2
r∑

k=1

(bntc− r + 1)
∑

(b1,...,br−1)

{b1, b2, . . . , br−1}

= Lr+1(n, t)+ bntc−r+1
n

r Lr−1(n, t)

= Lr+1(n, t)+ r t Lr−1(n, t)+ εn Lr−1(n, t), with εn −→
n→∞

0.

Steps III and IV are as in the proof of Theorem 1, with the difference that here, the
algebra is commutative, hence one-dimensional noncommutative distributions are
integrations with respect to a probability measure, which is unique in this case. �
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The next corollary is the classical probability theory counterpart of Corollary 1.
Roughly speaking, it states that duly renormalized elements of C[G] of the type

A(n) :=
∑

a1,...,ara
in a set of size n

{a1, . . . , ara }, B(n) :=
∑

b1,...,brb
in a set of size n

{b1, . . . , brb},

C(n) :=
∑

c1,...,crc
in a set of size n

{c1, . . . crc}, . . .

are asymptotically independent as n goes to infinity if the respective sets where the
ai ’s, the bi ’s and the ci ’s are picked are pairwise disjoint.

Corollary 4. Fix p > 1, r1, . . . , rp > 0, t0 < t1 < · · · < tp, and defines, for all
i = 1, . . . , p, for each n > 1, L i (n) = n−ri/2

∑
{a1, . . . , ari }, where the sum runs

over all ri -tuplets (a1, . . . , ari ) of pairwise distinct integers of (nti−1, nti ]. Then
L1(n), . . . , L p(n) are asymptotically independent as n goes to infinity.

Proof. Mutatis mutandis, the proof follows the same lines as that of Corollary 1. �

2.2. Moments and cumulants of the limit distribution. In the following theorem,
we compute the mixed moments and cumulants of the family (Lr )r>1= (Lr (1))r>1

(the mixed moments and cumulants of the family (Lr (t))r>1,t∈[0,+∞) can easily be
computed in the same way). Here, the analogy with the free probability model is
obvious, since the formulas are the same ones as in Theorem 2, with the difference
that the pairings are now allowed to have crossings.

Theorem 4. The distribution of the family (Lr )r>1 is characterized by the fact that
its mixed moments are given by

ψ(Lr1 Lr2 · · · Lrp)= ]52(r)

and its classical cumulants are given by

kp(Lr1, Lr2, . . . , Lrp)= ]5
∗

2(r).

Proof. The moments have been computed in Lemma 1 and the cumulants can be
computed in the same way as in the proof of Theorem 2. �

Remark 4. The correspondence between the limit distributions of the classical and
the free case is not the Bercovici–Pata bijection, since the distribution of L2 is not
a classical Poisson distribution.

2.3. An application: linearization coefficients for orthogonal polynomials. As
in Corollaries 2 and 3, one deduce from this work combinatorial formulas for the
linearization coefficients for Hermite and centered Charlier polynomials. Up to
normalization, the formulas are the same ones, with the difference that noncrossing
parings are replaced by pairings.



A PERMUTATION MODEL FOR FREE RANDOM VARIABLES 47

3. Further combinatorics

In this section, we explore connections between several combinatorial structures
and the sets NC2(r) and NC∗2(r), which appeared in the formulas of moments and
free cumulants of the family Mr (1).

3.1. A bijection with a class of paths. Here, we shall denote the set of nonnegative
integers by N and the set of integers by Z.

It is well known that for all n > 1, the n-th moment of a semicircular element is
the number of Dyck paths with length n, that is, of functions γ : {0, . . . , n} → N
such that γ (0) = γ (n) = 0 and for all i , |γ (i) − γ (i − 1)| = 1. Since for n,
t fixed, the Mr (n, t)’s (r > 1) are a generalizations of the Jucys–Murphy ele-
ment M1(n, t), whose distribution tends to a semicircular one, it is natural to
expect a generalization of this interpretation of the moments in terms of paths
for the moments of the Mr (t)’s. We show here that the mixed moments and free
cumulants of the family (Mr )r>1 count lattice paths with general jump size, as
follows. Consider an integer vector r = (r1, . . . , rp). For k > 1, define 1(k) =
{k, k − 2, k − 4, . . . ,−k + 2,−k} = {t − s; s, t ∈ N, s + t = k} ⊂ Z. We define a
Dyck r-path to be a function γ : {0, 1, . . . , p} → Z such that γ (0)= 0, γ (p)= 0,
γ (i)+ γ (i − 1) > ri and γ (i)− γ (i − 1) ∈ 1(ri ) for all i ∈ {1, . . . , p} (1(k) is
somehow the set of admissible jumps for these paths). We denote by 0(r) the set of
Dyck r -paths and we also consider its subset 0∗(r) of irreducible Dyck r -paths: a
Dyck r -path γ is said to be irreducible if it has the property that it does not contain
strictly smaller Dyck s-paths, in the following sense: there is no pair (x, y) 6= (0, p)
such that the path γ̄ : {0, . . . , y− x} → Z defined by γ̄ (i)= γ (x + i)− γ (x) is a
Dyck (rx+1, rx+2, . . . , ry)-path.

It can be easily seen that Dyck r -paths are always positive (γ (i) > 0, for all
i ∈ {0, . . . , p}) and that the first and the last jumps are the largest, respectively
smallest, possible: γ (1)=r1 and γ (p−1)=rp. By the following proposition, Dyck
r -paths (respectively irreducible ones) are counted by the moments (respectively
free cumulants) of the family (Mr )r := (Mr (1))r :

Proposition 1. The sets NC2(r) and 0(r) are in bijection. The same holds true for
NC∗2(r) and 0∗(r). In particular, we have

ϕ(Mr1 Mr2 · · ·Mrp)= ]0(r),

κp(Mr1,Mr2, . . . ,Mrp)= ]0
∗(r).

Proof. Consider a noncrossing pairing π ∈ NC2(r). We begin by constructing the
path of 0(r) associated to π . An element k of {1, . . . , |r |} is said to be an opener
(for π ) if it appears first in its block (pair) of π . Otherwise, it is called a closer.
For 16 i 6 p, let Bi = f −1

r (i). As π is noncrossing and it does not contain pairs
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with both ends in Bi , the closers appear before the openers in each Bi . Let si be the
number of closers of Bi and ti be the number of openers of Bi . We have si+ti = ri .
Define γ : {0, 1, . . . , p}→Z by γ (0)= γ (p)= 0 and γ (i)−γ (i−1)= ti−si , for
all 16 i 6 p; we have thus γ (i)−γ (i−1)∈1(ri ). The value of γ (i) is the number
of open pairs after the first i groups of π . Hence, for all i > 1, γ (i − 1)− si > 0.
This implies γ (i)+ γ (i − 1) > ri , and thus γ is an r -path. In order to prove the
other direction, note that a pairing π ∈ NC2(r) can be reconstructed by knowing
only the number of openers/closers in each block Bi . This information can easily
be deduced from an r -path γ .

The proof that the construction above is a bijection between the set of irreducible
r -paths 0∗(r) and NC∗2(r) is cumbersome; we shall just give the main idea. Again,
let π be a pairing of NC2(r). The condition π ∨ 1̂r = 1̂|r | amounts to the fact that
the standard graphical representation of π and 1̂r on the same figure (1̂r can drawn
by connecting the points of each of its groups by horizontal lines) is a connected
graph. If it is not the case, then the subgraph of a connected component corresponds
to a strictly smaller r -path in the path γ previously associated to π . �

Remark 5. Note that for r = 〈1〉p, 1(1) = {±1}, and we recover the usual Dyck
paths. For r = 〈2〉p, and p > 2, it is easy to see that

0∗(〈2〉p)= {(0, 2, 2, . . . , 2, 0)},

and we obtain the free cumulants of the centered Marchenko–Pastur (or free Pois-
son) distribution.

3.2. A Toeplitz algebra model for (Mr(1))r>1. In this section we provide a con-
crete realization of the family (Mr (1))r>1 by Toeplitz operators. Consider the
Toeplitz algebra T of bounded linear operators on `2(N) with its vacuum state
ω(T ) = 〈e0, T e0〉. The shift operators are denoted by S and S∗. Let T0 = 1 and
define, for all r > 1 the operators

Tr =

r∑
k=0

SS · · · S︸ ︷︷ ︸
r−k times

S∗S∗ · · · S∗︸ ︷︷ ︸
k times

= Sr
+ Sr−1S∗+ · · ·+ S∗r .

It can be easily checked that the operators Tr verify the recurrence relation of the
(second kind) Chebyshev polynomials T1Tr = Tr−1+ Tr+1. It is well known that,
under the vacuum state, the operator T1 = S+ S∗ has a semicircular distribution,
and thus it has the same law as M1(1). We conclude that:

Proposition 2. The families (Tr )r ∈ (T, ω) and (Mr (1))r ∈ (A, ϕ) have the same
distribution.
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Remark 6. Note that we can also realize the whole family (Mr (t))r>1,t∈[0,+∞) on
the full Fock space of the Hilbert space L2([0,+∞), dx) with the operators (here,
` denotes the creation operator)

Tr (t)=
r∑

k=0

`(1[0,t)) · · · `(1[0,t))︸ ︷︷ ︸
r−k times

`∗(1[0,t)) · · · `∗(1[0,t))︸ ︷︷ ︸
k times

∈B(F(L2([0,+∞), dx))).

It can be insightful to look at the matrix representations of the operators Tr . It
can be easily verified that the (i, j) coefficient of Tr , Tr (i, j) = 〈ei , Tr e j 〉 is null,
unless

• j − i ∈1(r)= {r, r − 2, . . . ,−r} and

• j + i > r ,

in which case it equals 1.
This matrix point of view introduces the connection with the set 0(r):

ϕ(Mr1 Mr2 · · ·Mrp)= ω(Tr1 Tr2 · · · Trp)= [Tr1 Tr2 · · · Trp ](0, 0)

=

∑
i0=0,i1,...,i p=0

Tr1(i0, i1)Tr2(i1, i2) · · · Trp(i p−1, i p).

In order for the general term of the above sum to be nonzero, it has to be that each
factor is 1, and that amounts to the fact that γ = (i0, i1, . . . , i p) ∈ 0(r), providing
a connection with the generalized Dyck paths discussed earlier.

3.3. Noncommutative invariants and semistandard Young tableaux. In this sec-
tion we show that the combinatorics of the family (Mr )r is related to semistandard
Young tableaux, which have been shown to count the number of noncommutative
classical invariants of binary forms [Teranishi 1988]. Here, we prove only a com-
binatorial result; whether there is a more profound reason for this, we ignore at
this moment and connections with the representation theory of SL2(C), GL(n) or
Sn are to be explored.

Start by fixing a vector r = (r1, . . . , rp) such that |r | is even and consider the
Young diagram with 2 rows and |r |/2 columns associated to the partition λ =
(|r |/2, |r |/2) of |r |. A semistandard Young tableau of shape λ and weight r is a
numbering of the Young diagram of shape λ with r1 1’s, r2 2’s, . . . , rp p’s such
that the rows are not decreasing and the columns are increasing. Let c(r) be the
number of such semistandard Young tableaux.

Proposition 3. c(r)= ]NC2(r).

Proof. We shall construct a bijection between the set of noncrossing pairings of
NC2(r) and the set of semistandard Young tableaux of weight r . Start with a pairing
π ∈ NC2(r). We shall add numbers in the empty Young diagram group by group.
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When we arrive at the i-th group of π , start by appending si i’s to the second row,
corresponding to the si closing pairs of the i-th group. Then add the remaining
ti i’s to the top row – these are the ti opening pairs. In this way we are sure to get
a row nondecreasing numbering. The fact that the columns are increasing follows
from the fact that at each moment, the number of opened pairs of π is larger or
equal than the number of closed pairs. Thus the top row is always more occupied
then the bottom row. �

Remark 7. As we did for the paths, we can prove a bijection between NC∗2(r) and
a strict subset of semistandard Young tableaux. However, this is stricter than the
notion of “indecomposable” Young tableaux, defined in [Teranishi 1988].
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