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DUALITY IN AN SL(3, C)-CHARACTER VARIETY

SEAN LAWTON

The SL(3, C)-representation variety R of a free group Fr arises naturally
by considering surface group representations for a surface with boundary.
There is an SL(3, C)-action on the coordinate ring of R. The geometric
points of the subring of invariants of this action is an affine variety X. The
points of X parametrize isomorphism classes of completely reducible rep-
resentations. The coordinate ring C[X] is a complex Poisson algebra with
respect to a presentation of Fr imposed by the surface. In previous work, we
have worked out the bracket on all generators when the surface is a three-
holed sphere and when the surface is a one-holed torus. In this paper, we
show how the symplectic leaves corresponding to these two different Poisson
structures on X relate to each other. In particular, they are symplectically
dual at a generic point. Moreover, the topological gluing map that turns
the three-holed sphere into the one-holed torus induces a rank-preserving
Poisson map on C[X].

1. Introduction

In [Lawton 2009] we describe two competing Poisson structures on the variety of
characters of SL(3,C)-valued representations of a rank 2 free group. The purpose
of this paper is to show that these two structures generically define symplectically
dual symplectic leaves, and that a natural topological mapping nontrivially relates
the two Poisson structures.

For the remainder of this section we briefly describe character varieties and their
smooth stratum’s foliation by complex symplectic submanifolds. In these terms we
formulate our main theorems. In Section 2, we describe in further detail past results
necessary to make sense of the discussion at hand. In particular, for the three-holed
sphere and the one-holed torus, we explicitly review the algebraic structure and the
Poisson structure of the character variety. Lastly, in Section 3 we restate and prove
our main theorems.

MSC2000: primary 14L24; secondary 53D30.
Keywords: Poisson, character variety, free group.

131

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2009.242-1


132 SEAN LAWTON

1.1. Algebraic structure of X(6n,g). Let 6n,g be a compact, connected, oriented
surface of genus g with n > 0 open disks removed. If g = 0 we assume n ≥ 3. Its
fundamental group has the presentation

π1(6n,g, ∗)=
{
x1, y1, . . . , xg, yg, b1, . . . , bn |

∏g
i=1[xi , yi ]

∏n
j=1 b j = 1

}
.

The group Fr := π1(6n,g, ∗) is always free of rank r = 2g + n − 1 since 6n,g

retracts to a wedge of 2g + n − 1 circles. Let G = SL(3,C) and let {g1, . . . , gr }

be generators of Fr . The representation variety R = Hom(Fr ,G) is bijectively
equivalent to G×r given by evaluation as

ρ 7→ (ρ(g1), . . . , ρ(gr )),

and so inherits the structure of a smooth affine variety from G. The coordinate ring
of G is the complex polynomial ring in 9 indeterminates subject to the irreducible
relation det(X)− 1, where X= (xi j ) is a generic matrix and xi j are the 9 indeter-
minates. There is a polynomial action of G on the coordinate ring of R, denoted
by C[R], by conjugation in r generic matrices; that is, for g ∈G and f ∈ C[R],

g · f (X1, . . . ,Xr )= f (g−1X1g, . . . , g−1Xr g).

The results of [Procesi 1976] imply that the ring of invariants C[R]G is generated
by {tr(W) | w∈ Fr , |w| ≤ 6}. Here W is the word w in Fr with its letters replaced by
generic matrices. Thus, C[R]G is a finitely generated domain, and so its geometric
points are an irreducible algebraic set, X(6n,g) = Spec(C[R]G) = R //G, called
the G-character variety of Fr . The quotient notation just used means that it is a
categorical quotient for the G-action; see [Dolgachev 2003; Mumford et al. 1994].

1.2. The boundary map and foliation of the top stratum. The coordinate ring of
G //G is

C[G //G] = C[tr(X), tr(X−1)].

So G//G=C2, which we parametrize by coordinates (τ(1), τ(−1)). We then define
the boundary map

bi : X=R //G= Hom(π1(6n,g, ∗),G) //G→G //G

by sending a representation class to the class corresponding to the restriction of ρ
to the boundary bi , that is, [ρ] 7→ [ρ|bi ] = (τ

i
(1), τ

i
(−1)) Subsequently we define

bn,g = (b1, . . . , bn) : X=G×r //G−→ (G //G)×n.

The map bn,g depends on the surface, not only its fundamental group. We refer to
it as a peripheral structure, and the pair (X, bn,g) as the relative character variety.

Let τ = ((τ 1
(1), τ

1
(−1)), . . . , (τ

n
(1), τ

n
(−1)))∈bn,g (X)⊂ (G//G)

n
=C2n be a point in

the image of the boundary map, and define L=b−1
n,g(τ ). Let X be the complement of
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the singular locus (a proper closed subvariety) in X. Thus X is a complex manifold
dense in X. At regular values of bn,g (these are generic since bn,g is dominant),
L∩X is a submanifold of dimension 8r −8−2n = 16(g−1)+6n. It is shown in
[Lawton 2009] that the union (over values of τ ) of the leaves, L=L∩X, foliate X

by complex symplectic submanifolds, making X a complex Poisson manifold. This
structure continuously extends over all of X.

1.3. The quotient map and main results. There are two orientable surfaces with
Euler characteristic −1, the three-holed sphere and the one-holed torus. Both of
these surfaces have fundamental groups free of rank 2.

Moreover, there is a natural topological quotient mapping q : 63,0→ 61,1 (in-
dependent of orientation) that maps the three-holed sphere (hereafter referred to
as pants) to the one-holed torus. In [Lawton 2009] we work out explicitly (with
respect to a coordinate system for X and choices of orientation for the surfaces)
the Poisson structures for the pants and the one-holed torus.

We now state our main theorems:

Theorem 1. Depending on the choice of orientation,

q∗ : C[X(63,0)] → C[X(61,1)]

is generically a rank-preserving Poisson (anti)morphism.

Let L(63,0) and L(61,1) be generic symplectic leaves of X.

Theorem 2. L(63,0) and L(61,1) are generically transverse and so are symplec-
tically dual to each other.

2. Past results and background

In this section we very briefly review some of the results from [Lawton 2007;
Lawton 2009] that we will need to prove our theorems.

2.1. Symplectic and Poisson structure on X(6n,g). Guruprasad, Huebschmann,
Jeffrey, and Weinstein [Guruprasad et al. 1997] showedω (in the following commu-
tative diagram) defines a symplectic form on the leaf L defined in the introduction.

H 1(S, ∂S; gAd)× H 1(S; gAd)
∪ // H 2(S, ∂S; gAd⊗ gAd)

tr∗
��

H 2(S, ∂S;C)

∩[Z ]
��

H 1
par(S; gAd)× H 1

par(S; gAd)

OO

ω // H0(S;C)= C



134 SEAN LAWTON

With respect to this 2-form, we show in [Lawton 2009] that Goldman’s proof
[1984; 1986] of the Poisson bracket formula (a Lie bracket and derivation) gener-
alizes directly to relative cohomology.

Let 6 be an oriented surface with boundary, and α, β ∈ π1(6, ∗). Let α∩β be
the set of (transverse) double point intersections of α and β. Let ε(p, α, β) be the
oriented intersection number at p ∈ α ∩ β, and let αp ∈ π1(6, p) be the curve α
based at p.

In these terms the bracket is defined on C[X] by{
tr(ρ(α)), tr(ρ(β))

}
=

∑
p∈α∩β

ε(p, α, β)
(

tr(ρ(αpβp))−
1
3 tr(ρ(α)) tr(ρ(β))

)
.

See [Lawton 2009, Sections 3 and 4] for further details.

2.2. Algebraic structure of X(63,0) and X(61,1). We now review the algebraic
structure of C[X] for the pants and one-holed torus and the corresponding Poisson
structures in those cases. Details are available in [Lawton 2007; 2009].

Let
C[t(1), t(−1), t(2), t(−2), t(3), t(−3), t(4), t(−4), t(5)]

be a freely generated complex polynomial ring, and let

R = C[t(1), t(−1), t(2), t(−2), t(3), t(−3), t(4), t(−4)].

Define the ring homomorphism

R[t(5)]
5
−→ C[X]

by
t(1) 7→ tr(X1), t(−1) 7→ tr(X−1

1 ),

t(2) 7→ tr(X2), t(−2) 7→ tr(X−1
2 ),

t(3) 7→ tr(X1X2), t(−3) 7→ tr(X−1
1 X−1

2 ),

t(4) 7→ tr(X1X−1
2 ), t(−4) 7→ tr(X−1

1 X2),

t(5) 7→ tr(X1X2X−1
1 X−1

2 ).

It can be shown using trace equations that 5 is surjective, and hence

R[t(5)]/ ker(5)∼= C[X].

The Krull dimension of X is 8 since generic orbits are 8-dimensional. Hence,
ker(5) is nonzero and principal.

Let S be the formal sum of the elements in the group generated by the permu-
tations (in cycle notation)

(1, 2)(−1,−2)(4,−4) and (1,−1)(3,−4)(−3, 4)
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acting on the indices of the generators of R[t(5)]/ ker(5). The action is induced
by the following elements of the Out(F2):

t=

{
x1 7→ x2

x2 7→ x1
and i1 =

{
x1 7→ x−1

1
x2 7→ x2.

The group generated has order 8 and is isomorphic to the dihedral group D4. In
[Lawton 2007, Theorem 8 and Corollary 15] we show this:

Theorem 3. (1) X=G×2 //G is a degree 6 hypersurface in C9.

(2) ker(5)= (t2
(5)− Pt(5)+ Q), where P, Q ∈ R.

(3) There is a D4-equivariant surjection (submersion) m : X → C8, which is
generically 2-to-1.

(4) P and Q are given by

P = S
(1

8

(
t(1)t(−1)t(2)t(−2)− 4t(1)t(−2)t(−4)+ 2t(1)t(−1)+ 2t(3)t(−3)

))
− 3,

Q = S
(1

8

(
2t(−2)t2

(−1)t
2
(1)t(2)+ 4t2

(1)t
2
(2)t(3)− 4t3

(1)t(−2)t(2)

− 8t(−4)t(−2)t(−1)t2
(1)− 4t(4)t(3)t(2)t(1)t(−2)+ 8t(1)t(3)t2

(−4)

+ 8t(−4)t(1)t2
(2)− 8t2

(3)t(2)t(1)+ 4t(4)t(−3)t2
(2)+ t(−2)t(−1)t(2)t(1)

+ t(−3)t(−4)t(3)t(4)+ 4t(−3)t(−1)t(3)t(1)+ 4t3
(1)+ 4t3

(3)

+ 12t(−4)t(−2)t(1)− 12t(−4)t(2)t(3)− 12t(1)t(−1)− 12t(3)t(−3)
))
+ 9.

2.3. Poisson structures of X(63,0) and X(61,1). For our purposes, a Poisson va-
riety is an affine variety X over C that is endowed with a Lie bracket { · , · } on its
coordinate ring C[X] and that acts as a formal derivation (that is, it satisfies the
Leibniz rule). On the smooth strata of X (denoted by X), it makes X a complex
Poisson manifold in the usual sense (by Stone–Weierstrass). For any such Poisson
bracket, there exists an exterior bivector field a ∈ 32(T X) whose restriction to
symplectic leaves is given by the symplectic form as { f, g} = ω(Hg, H f ) (where
H f ={ f, · } is called the Hamiltonian vector field). If f, g∈C[X], then with respect
to interior multiplication, { f, g} = a ·d f ⊗dg. In local coordinates (z1, . . . , zk), it
takes the form

a=
∑
i, j

ai, j
∂
∂zi
∧

∂
∂z j

,

and so
{ f, g} =

∑
i, j

(
ai, j

∂
∂zi
∧

∂
∂z j

)
·

(
∂ f
∂zi

dzi ⊗
∂g
∂z j

dz j

)
=

∑
i, j

ai, j

(
∂ f
∂zi

∂g
∂z j
−
∂ f
∂z j

∂g
∂zi

)
.
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Denote the bivector associated to X(6n,g) by a(6n,g). In the case of the pants
or the one-holed torus, there are 9 generating functions of C[X]; they are t(±i)

for 1 ≤ i ≤ 4 and t(5). Since the bivector is a Lie bracket and a derivation, its
formulation is in these terms. Let ai, j = {t(i), t( j)}. In [Lawton 2009, Corollary 26,
Theorem 29] we show the following two structure theorems.

Theorem 4. The Poisson bivector on X(63,0) is

a(63,0)= (P − 2t(5))
∂
∂t(4)
∧

∂
∂t(−4)

+ (1− i)

(
a4,5

∂
∂t(4)
∧

∂
∂t(5)

)
,

where a4,5 = (∂/∂t(−4))(Q− t(5)P) and i= i1ti1t is the mapping xi 7→ x−1
i .

In D4 define i2 = ti1t, the mapping that sends x2 7→ x−1
2 .

Additionally, define the elements 61 = 1+ i− i1− i2 and 62 = 1+ i− t− it of
the group ring of D4. Note that 1

26162 = 1+ i− i1− i2− t− it+ i1t+ i2t.
Then after doing 28 calculations, while observing symmetry, we conclude:

Theorem 5. The Poisson bivector field on X(61,1) is

a(61,1)=61

(
a1,2

∂
∂t(1)
∧

∂
∂t(2)

)
+62

(
a3,4

∂
∂t(3)
∧

∂
∂t(4)

)
+

1
26162

(
a1,3

∂
∂t(1)
∧

∂
∂t(3)
+ a1,−3

∂
∂t(1)
∧

∂
∂t(−3)

)
,

where a1,2 = t(3)− 1
3 t(1)t(2),

a1,3 =
2
3 t(1)t(3)− t(−1)t(2)+ t(−4),

a1,−3 =−t(−2)+
1
3 t(1)t(−3),

a3,4 =−t2
(1)+ t(−1)− t(−4)t(−2)− t(2)t(−3)+ t(−1)t(2)t(−2)−

1
3 t(3)t(4).

Comment 6. The orientations chosen on these surfaces are opposite. Our presen-
tation of the pants has the boundary on the outside whereas the one-holed torus has
the same boundary (after projection) on the inside. Since the orientations of the
boundaries are the same, the surfaces are “inside-out” with respect to each other,
and so the orientations are reversed. Consequently, if the quotient mapping taking
the pants to the one-holed torus is to preserve orientations, one of the above two
bivectors must be multiplied by −1.

3. Obtaining the torus from pants

Let q :63,0→61,1 be the quotient map given by identifying two of the boundaries
(call them b1 and b2). Let x0 be a fixed base point. Let x1 ∈ b1 and x2 ∈ b2 be also
fixed, where q(x1)= q(x2).

Then the third boundary b3 in 63,0 is homotopic to (b1b2)
−1 in π1(63,0, x0).
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Let γ1 and γ2 be paths from x0 to x1 and x0 to x2 respectively. The image
q(γ1γ

−1
2 ) := β is a nontrivial based loop in 61,1. Moreover, (γ1γ

−1
2 )b1(γ1γ

−1
2 )−1

is homotopic to b−1
2 , since γ−1

1 b1γ1 is homotopic to γ−1
2 b−1

2 γ2 in 61,1.
Therefore,

q] :π1(63,0, x0)=〈b1, b2, b3 |b1b2b3=1〉→π1(61,1, x0)=〈α, β, γ | [α, β]γ =1〉

is injective and given by

b1 7→ α, b2 7→ βα−1β−1, b3 7→ [α, β]
−1.

Consequently, q∗ : X(61,1)→ X(63,0) is given by

[(A, B)] 7→ [(A, B A−1 B−1)],

and q∗ : C[X(63,0)] → C[X(61,1)] is given by f 7→ f ◦ q∗.
To be concrete, we write the assignments that determine q∗:

t(1) 7→ t(1), t(−1) 7→ t(−1), t(2) 7→ t(−1), t(−2) 7→ t(1),

t(3) 7→ t(5), t(−3) 7→ tr(A−1 B AB−1)= P − t(5),

t(4) 7→ tr(AB AB−1)

= t(−4)t(−2)+ t(−1)+ t(−3)t(2)− t(−1)t(2)t(−2)+ t(3)t(4),

t(−4) 7→ tr(A−1 B A−1 B−1)

= t(−4)t(−3)+ t(1)+ t(3)t(−2)− t(1)t(2)t(−2)+ t(2)t(4),

t(5) 7→ tr(AB A−1 B−1 A−1 B AB−1)

= t3
(−3)− 2t(−2)t(−1)t2

(−3)+ t(−4)t(2)t2
(−3)+ t(1)t(4)t2

(−3)+ t2
(−2)t

2
(−1)t(−3)

− t(−2)t(1)t2
(2)t(−3)+ t(−1)t2

(4)t(−3)+ t2
(−4)t(−2)t(−3)− t(−4)t(−1)t(−3)

+ t2
(−2)t(1)t(−3)− t(−4)t(−2)t(−1)t(2)t(−3)+ 2t(1)t(2)t(−3)+ t(−2)t(2)t(3)t(−3)

− 3t(3)t(−3)+ t2
(2)t(4)t(−3)− 3t(−2)t(4)t(−3)− t(−2)t(−1)t(1)t(4)t(−3)

+ t(−4)t(3)t(4)t(−3)+ t3
(−2)+ t3

(4)+ t2
(−2)t(−1)t(1)t2

(2)− 2t(−2)t(1)t2
(4)

+ t(2)t(3)t2
(4)+ 2t(−4)t(−2)t(1)− t3

(−2)t(−1)t(1)− 3t(−2)t(2)− t(−4)t2
(−2)t(1)t(2)

− t(−2)t(−1)t(1)t(2)+ t(−4)t2
(−2)t(3)+ 2t(−2)t(−1)t(3)− t2

(−2)t(−1)t(2)t(3)

+ t2
(−2)t

2
(1)t(4)− t(−2)t(−1)t2

(2)t(4)+ t(−2)t2
(3)t(4)− 3t(−4)t(4)+ t2

(−2)t(−1)t(4)

+ t(−4)t(−2)t(2)t(4)+ 2t(−1)t(2)t(4)− t(1)t(3)t(4)− t(−2)t(1)t(2)t(3)t(4)+ 3.

These last three identities follow from recursive trace reduction formulas; see
[Lawton 2007; 2008].

Let { · , · }1 be the bracket corresponding to 61,1 and let { · , · }3 be the bracket
corresponding to 63,0. Let Q be the image of q∗. We now prove Theorem 1.
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Theorem 7. (1) Q is a Poisson subalgebra of C[X(61,1)].

(2) q∗ is an anti-Poisson morphism; that is, {q∗( f ), q∗(g)}1 =−q∗({ f, g}3).

(3) at a generic point of X, rank(a(61,1)|Q)= rank(a(63,0)).

Proof. First we note that (2) implies (1).
To prove (2), since q∗ is an algebra morphism and the bracket is a derivation, it

is enough to verify it on all generators of the algebra. One can use the explicit form
of the mapping q∗ and the explicit form of the bivectors to verify the result. How-
ever, since q preserves transversality of cycles, double points, and does not affect
orientation, it follows that for any two cycles α and β in 63,0 used in computing
the bivector a(63,0), we have

(1) q∗
(
{tr(ρ(α)), tr(ρ(β))}3

)
=∑

q(p)∈q(α)∩q(β)

ε(q(p), q(α), q(β))
(
tr(ρ(q(α)q(p)q(β)q(p)))

−
1
3 tr(ρ(q(α))) tr(ρ(q(β)))

)
.

However, as noted in Section 2.3, the intersection numbers ε(q(p), q(α), q(β))
and ε(p, α, β) must be reversed since the bracket computations of [Lawton 2009]
are with respect to opposite orientations on the surfaces 63,0 and 61,1.

Thus Equation (1) is exactly −{tr(q(α)), tr(q(β))}1, as was to be shown.
To prove (3) we first note that the rank of a bivector is the rank of the anti-

symmetric matrix of functions (ai j ). Then, from (2), there are only three nonzero
coefficients to a(61,1) after restricting to the image of q∗. Namely, t(5) and P− t(5)
are Casimirs for { · , · }1, and since the mapping is Poisson and t(±1) are fixed, it
follows that they are Casimirs in the images since they are Casimirs in the preim-
age. Thus we are left with the image generators q∗(t( j)) for j = 4,−4, 5. Since
the bivector on the Poisson subalgebra is exactly the induced one, we explicitly
formulate the bivector matrix and compute its rank, finding it generically 2. In
particular, the matrix has the form 0 a b

−a 0 c
−b −c 0

 ,
where

a = {q∗(t(4)), q∗(t(−4))}1, b = {q∗(t(4)), q∗(t(5))}1, c = {q∗(t(−4)), q∗(t(5))}1.

However any matrix of this form has rank 2 as long as all three of a, b, c are
not 0, in which case the rank is 0. By direct calculation one sees that all polynomials
a, b, c are in terms of only algebraically independent generators, and so none of
a, b, c are generically 0 on X. So generically the rank is 2, and the rank of { · , · }3
is two since the rank is equal to the dimension of a symplectic leaf. Hence, the
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mapping is rank-preserving as long as it is not completely degenerate (which is
generically the case). �

Comment 8. Equation (1) used in the argument above shows much more. For any
two surfaces6n1,g1 and6n2,g2 with n1>n2>0 and χ(6n1,g1)=χ(6n2,g2), there is
a quotient map (identifying pairs of boundary components) q :6n1,g1→6n2,g2 that
gives an injection on fundamental groups and therefore gives a map of coordinate
rings q∗ : C[X(6n1,g1)] → C[X(6n2,g2)]. This is true not only for SL(3,C) but
for any complex algebraic reductive Lie group G. The argument above shows that
if the orientations of the surfaces correspond to each other, then q∗ is a Poisson
mapping and if the orientations are opposite, then it is an anti-Poisson morphism.
Therefore the image of q∗ is generally a Poisson subalgebra of the codomain of q∗.

It does not seem clear whether rank-preserving is a general property or not.
See [Fock and Rosly 1999] for more about induced Poisson mappings (in the

context of the moduli of flat connections on an n-holed surface).

Let L(6n,g) be a generic symplectic leaf of X(6n,g). We now prove Theorem 2.

Theorem 9. L(63,0) and L(61,1) are generically transverse.

Proof. The mapping m : X→ C8 from Theorem 3 is given by

(t(1), t(−1), . . . , t(4), t(−4), t(5)) 7→ (t(1), t(−1), . . . , t(4), t(−4)).

It is surjective, and since the first eight generators are algebraically independent, it
is submersive as well.

This immediately implies that the mapping b3,0 : X(63,0)→ C6 given by

(t(1), t(−1), . . . , t(4), t(−4), t(5)) 7→ (t(1), t(−1), . . . , t(3), t(−3))

is likewise surjective and submersive. Consequently, L(63,0) = b−1
3,0(b3,0(x)) has

dimension 2 for any x ∈ X. Moreover, we can locally parametrize this leaf by
the coordinates (t(4), t(−4)) since the other six coordinates t(±i) for i = 1, 2, 3 are
held constant and t(5) is then determined by the defining relation t2

(5)− Pt(5)+ Q.
In particular, flows through these coordinates determine a dimension 2 subspace
T∗L(63,0)⊂ T∗X of the tangent space.

Now consider the mapping b1,1 : X(61,1)→ C2 given by

(t(1), t(−1), . . . , t(4), t(−4), t(5)) 7→ (t(5), P − t(5)).

Note that this is in fact the correct mapping since P = tr([A, B])+ tr([B, A]); see
[Lawton 2007]. It is shown in [Lawton 2009] that the boundary mapping is always
surjective if g > 0.

However, b1,1 may not be everywhere submersive, in particular, in the case when
P2
− 4Q vanishes. However, there is an open dense set of X where db1,1 is onto
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(call it U), since b1,1 is surjective and regular; see [Lawton 2009]. We may assume
that U⊂ X.

Take any u ∈ U. [Lawton 2009] shows that the leaves L1 := b−1
1,1(b1,1(u))∩X

and L3 := b−1
3,0(b3,0(u)) ∩ X are complex symplectic manifolds of dimensions 6

and 2, respectively. Consequently, these leaves are properly transverse; that is,
dimL1+ dimL3 = dimX.

We now show dimL1 ∩ L3 = 0 and L1 ∩ L3 6= ∅. At an intersection point,
P = t(5) + t(−5) := C and Q = t(5)t(−5) := D and t(±1), t(±2), t(±3) are all fixed.
Moreover, solving P = C for t(4) generically gives

(2) t(4) 7→
1

t(−4)−t(−1)t(2)

(
C + t(−4)t(−2)t(1)− t(−1)t(1)− t(−2)t(2)+ t(−3)t(1)t(2)

− t(−2)t(−1)t(1)t(2)− t(−3)t(3)+ t(−2)t(−1)t(3)+ 3
)
.

Now, substituting this into Q − D = 0 gives a monic degree six polynomial in
the variable t(−4) since the degree in t(4) of Q is 3. So the intersection is nonempty
and of dimension 0 (at most 6 discrete points) if t(−4) − t(−1)t(2) 6= 0. Otherwise,
setting t(−4) = t(−1)t(2) and substituting this into Q− D = 0 gives a monic degree
3 polynomial in t(4). Either way, the intersection is nonempty and of dimension 0.

We claim that the tangent space to L3 locally can be determined by flows
through {t(1), t(−1), t(2), t(−2), t(3), t(−3)} by solving for t(4) and t(−4) in terms of
t(±1), . . . , t(±3) on an open subset since both P and Q are constant on L3.

Explicitly, substituting Equation (2) into Q − D = 0, where t(±i) for 1 ≤ i ≤ 3
are now not fixed, locally and generically gives t(−4), and subsequently t(4), as
functions of t(±i) for 1≤ i ≤ 3. Thus the flows through t(±i) for 1≤ i ≤ 3 determine
a full-dimensional tangent space to L3 whenever t(−4)− t(−1)t(2) 6= 0.

Switching the roles of t(4) and t(−4) gives a like result at any point at which
t(4)− t(1)t(−2) 6= 0.

However, the tangent space to any point in L1 is given by the kernel to the
mapping M := (∂ fi/∂t(± j)), where

f1 = t2
(5)− Pt(5)+ Q, f2 = t(5)− a, f3 = P − t(5)− b,

and C = a + b and D = ab; see [Harris 1992]. This follows since these three
functions define the leaf as an algebraic set cut out of C9. At any smooth point
in the leaf, the dimension of the kernel is 6. So whenever t(4) − t(1)t(−2) 6= 0 and
t(−4) − t(−1)t(2) 6= 0 using P = C , Q = D, and t(5) = a from above, this matrix
has entries that are rational functions of t(±1), . . . , t(±3) alone. On the other hand,
if any smooth point also satisfies t(4)− t(1)t(−2) = 0 and t(−4)− t(−1)t(2) = 0, then
solving for t(±4) again gives M as a matrix in these six variables. Thus the flows
through these six coordinate functions always determine the tangent space at a
smooth point of L1.
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Consequently, the span of the flows through {t(4), t(−4)} and {t(±1), . . . , t(±3)}

generically and locally give full-dimensional tangent spaces to L3 and L1, respec-
tively, at an intersection point u. However, collectively they span a full-dimensional
tangent space to X since they are globally independent. Hence, TuL1+TuL3=TuX

for any point in u ∈U.
Compounded with the fact that the leaves are properly transverse and trivially

intersect, we conclude that TuX = TuL1⊕ TuL3 for any u ∈ U; that is, the leaves
are generically transverse. �

We thus conclude that the tangent spaces TuX are symplectic with respect to the
product form. This does not imply that X is complex symplectic since the form
may not be closed. We call two symplectic submanifolds symplectically dual if
their tangent spaces are symplectic duals to each other with respect to this form.

Corollary 10. The symplectic leaves of X are generically symplectically dual.

Comment 11. This sort of phenomena is not general. For SL(2,C), the leaves
L(63,0) and L(61,1) are respectively of dimension 0 and 2 and the variety X is of
dimension 3, so there is not transversality.
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