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We prove the Liouville theorem for the mean field equation (also called the
conformal curvature equation) in R2, an a priori bound for solutions of the
mean field equation on the negative part of indefinite nonlinearity, and the
symmetry property of mean field equation on an annulus with zero Dirichlet
boundary condition.

We study the mean field equation (also called the conformal curvature equation)
in a smooth domain D of the plane R2; that is, we study

(1) −1u = K (x)eu for x ∈ D,

where K = K (x) is a smooth function on D. Usually K (x) is assumed to be
positive, but here we allow K (x)eu to change sign; then (1) is said to have indefinite
nonlinearity. This equation has received much attention in recent years for its rich
physical and geometrical content, such as its relation with the Nirenberg problem
on S2 in geometry and with Chern–Simons–Higgs theory [Yang 2001] in gauge
theory. See [Cheng and Ni 1991] and [Lin 2007] for deep results on the mean field
equations and related topics. See also [Ma and Wei 2001] and [Tarantello 2004].

Using the boundary blow-up method [Du and Ma 2001], we have the following
Liouville theorem for the Liouville equation on R2; see [Liouville 1853].

Theorem 1. Let H(x) be a positive smooth function on R2. Assume that there are
positive constants C > 0, R0 > 0, and β ∈ [0, 2) such that inf|x |≤R H(x)≥ C R−β

for all R > R0. Then there is no u ∈ C2(R2) satisfying the Liouville equation

(2) 1u = H(x)eu for x = (x1, x2) ∈ R2.

When H(x) = 1, this result with the extra assumption
∫

R2 eu <∞ was proved
in [Li 1999] by the spherical averaging method. Actually, this result can be easily
derived from [Osserman 1957] and [Keller 1957]. We present it here because it
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is useful in local estimates with indefinite nonlinearity. Using the method used to
prove Theorem 1, we have this:

Theorem 2. Let u be a solution of (1) with D = BR(0). Assume that there is a
positive constant C0 > 0 such that K (x) ≤−C0 in the ball BR(0). Then there is a
constant C = C(R, supBR

K ) such that u(x)≤ C in BR/2(0).

Following the classic paper [Gidas et al. 1979], Chen and Li [2008] proved this
result on S2 by the moving plane method. Our method is simpler.

Let a > 1 be a fixed constant. Let A = {x ∈ R2
: a−1 < |x |< a} be an annulus.

Using the moving sphere method as in [Chen and Li 1995; Padilla 1997], we have:

Theorem 3. For x ∈R2, let r =|x |. Suppose the function K (x) of (1) is continuous
in A and satisfies K (x) < 0 for r < 1, and K (λ2x/r2)− K (x) < 0 for every λ > 1
and r >λ. Assume u ∈C2(A)∩C(A) satisfies (1) in A with the Dirichlet boundary
condition u = 0 on ∂A.

Then

(3) u(x)≥ u(x/r2)− 4 log r for all points x satisfying 1≤ |x | ≤ a,

and either

(4) ∂r u(z)=−2/|z| for some point z satisfying 1< |z|< a,

or else

(5) ∂r u(x) >−2/r for all points x satisfying 1< |x |< a.

In the proof of Theorem 3, we may use the notation u = u(r) since the angular
variable plays no role.

Padilla [1997] used a similar method to show radial symmetry of solutions for
other nonlinear Dirichlet problems on higher-dimensional annuli.

Proof of Theorem 1. Choose any fixed point x0 ∈R2, and let R> 0. Let r =|x−x0|

and let ε > 0. Define

M(x) := MR,ε(x)= 2 log 2R
√
ε(R2−r2)

for r ≤ R.

The metric g = eM(x)dx2 on BR = BR(x0) is the Poincaré metric with scalar cur-
vature −2ε. Hence 1M = 2εeM for x ∈ BR and M(x)→∞ as x→ ∂BR . Choose
ε=C R−β/2, where R> R0. By our assumption on H , we have1u≥ 2εeu in BR .

Let w = u − M . Note that 1w ≥ 2ε(eu
− eM) = C(x)w for x ∈ BR , where

C(x) = 2ε(eu
− eM)/(u − M) > 0. Note that w(x)→−∞ as x → ∂BR . Hence

by maximum principle we have w ≤ 0 in BR . Then we have

u(x0)≤ M(x0)= 2 log 2
√
εR
→−∞ as R→∞,
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which contradicts that u(x0) is finite. �

Proof of Theorem 2. Without loss of generality we may let C0 = 1. Recall that
1u = (−K )eu

≥ eu in BR . Let w = u − MR,1. Then as in our previous proof,
1w ≥ C(x)w for x ∈ BR . Then by maximum principle again, we have w(x) ≤ 0
for x ∈ BR , that is, u(x)≤ MR,1(x) for x ∈ BR . Hence

u(x)≤ 2 log(8/(3R)) for x ∈ BR/2. �

This result is a local version of one obtained in [Chen and Li 2008] by the
moving sphere method, which we will now use.

Proof of Theorem 3. Given λ∈ (1, a), let Tλ= ∂Bλ and6λ={x ∈R2
:λ< |x |< a}.

For x ∈6λ, let xλ = λ2x/|x |2. Note that

|x |> |xλ| = λ2/|x |> 1/|x | on 6λ.

Recall that the Kelvin transform v(x) for the function u(x) outside the unit ball
B := B1(0)⊂ R2 is v(x)= u(x/|x |2)− 4 log|x |.

For any λ > 0, we define

vλ(x)= u(λ2x/|x |2)+ 4 log λ− 4 log|x |.

Noting that 1(u(λ2x/|x |2))= (λ4/|x |4)1u(λ2x/|x |2), we have

−1vλ = K (λ2x/|x |2)evλ .

Let wλ(x)= u(x)− vλ(x) on 6λ. Then we have

−1wλ = K (λ2x/|x |2)C(x, λ)wλ+ (K (x)− K (λ2x/|x |2))eu on 6λ,

where
C(x, λ) := (eu(x)

− evλ(x))/(u(x)− vλ(x)) > 0.

By assumption, we have (K (λ2x/|x |2)− K (x))eu
≤ 0 on 6λ, and then

(6) −1wλ ≥ K (λ2x/|x |2)C(x, λ)wλ on 6λ.

Note that wλ = 0 on Tλ. We remark that for λ= 1, we have w1 ≥ 0 on ∂61. By
the maximum principle and Hopf’s boundary point lemma, we have w1 > 0 in 61,
which is (3), and ∂rw1 > 0 on |x | = 1. We now assume that (4) is not true.

We claim that ∂rwλ > 0 on Tλ for all 1< λ < a.
This claim is true for λ near 1 by continuity. Then by using the standard moving

sphere method and Hopf’s boundary point lemma, we need only to show that for
λ ∈ [1, a), there is a neighborhood Uλ of Tλ in 6λ such that

(7) wλ > 0 in Uλ and ∂rwλ > 0 on Tλ.
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and that this neighborhood depends continuously on λ. In fact, let

λ1 = sup{λ ∈ [1, a) : wλ̃ > 0 for all λ̃≤ λ and x ∈Uλ̃}.

If λ1 < a, by continuity, we have wλ1 ≥ 0 in Tλ1 and ∂rwλ1 |r=λ1 ≥ 0 in Tλ1 . By
our assumption that (4) is not true, we must have ∂rwλ1 |r=λ1 > 0 in Tλ1 . By this,
we conclude that there is some ε > 0 and a neighborhood Uλ of Tλ in 6λ such that
wλ > 0 in Uλ for all λ ∈ [λ1, λ1+ ε); this contradicts the definition of λ1.

Hence, λ1 = a. Setting r = λ > 1 in the second inequality of (7), we have

∂r u(r) >−2/r on 61.

This is the desired inequality (5). �
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