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We find the horofunction boundary of the (2n+1)-dimensional Heisenberg
group with the Korányi metric and show that it is homeomorphic to a 2n-
dimensional disk. We also show that the Busemann points correspond to
the (2n− 1)-sphere boundary of this disk. We show that the compactified
Heisenberg group is homeomorphic to a (2n+ 1)-dimensional sphere.

1. Introduction

Gromov [1981, 1.2] defines a boundary for a metric space (X, ρ) as follows. Let
C(X) be the space of continuous real-valued functions with the topology of uni-
form convergence on compact sets, and let C∗(X) be the quotient space of C(X)
modulo the constant functions. If (X, ρ) is proper, that is, closed balls in X are
compact, then the map

X→ C∗(X), x 7→ equivalence class of ρ(x, · )

is an embedding and the closure of X in C∗(X) is compact. The topological bound-
ary of X in C∗(X), denoted ∂h X , is called the horofunction boundary of X (with
respect to the metric ρ) and its elements are called horofunctions. The union of
(the image of) X with its horofunction boundary is called the horofunction com-
pactification of X (with respect to the metric ρ); see [Bridson and Haefliger 1999,
page 267] and [Ballmann et al. 1985, Section 1.3].

The horofunction boundary of a metric space is known explicitly in only a very
few cases. When (X, ρ) is a proper CAT(0) space, the horofunction boundary of X
coincides with the “visual” boundary defined using equivalence classes of geodesic
rays [Bridson and Haefliger 1999, Theorem 8.13]. The notion of an almost geo-
desic ray, as in [Rieffel 2002, Definition 4.3] and Definition 3.1, is a generalization
of geodesic ray that serves as a substitute for geodesic ray in a general metric space.
A point on the horofunction boundary of a metric space is called a Busemann point
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if it is the limit of an almost geodesic ray. In the case of a proper CAT(0) space, all
points in the horofunction boundary are Busemann points. Non-Busemann points
may exist for other metric spaces; for example, Walsh [2007, Theorem 1.2] has
determined precisely when such points exist in the case X is a finite-dimensional
normed linear space. We show that non-Busemann points exist for Heisenberg
groups equipped with the Korányi metric, a non-CAT(0) metric that is important
for geometric analysis on these Lie groups.

The (2n+1)-dimensional Heisenberg group, denoted Hn , is the simply con-
nected nilpotent Lie group whose underlying manifold is Cn

×R with multiplication
given by (w, s)(z, t) = (w+ z, s + t + 2 Im〈w, z〉), where w, z ∈ Cn and s, t ∈ R

and 〈 · , · 〉 is the standard Hermitian inner product on Cn . The identity element is
0= (0, 0) and (w, s)−1

= (−w,−s).
The Korányi gauge [1985, 1.4] is the real-valued function ‖·‖ :Hn

→R defined
by

‖(z, t)‖ = (|z|4+ t2)1/4, where |z| = 〈z, z〉1/2.

Since ‖ · ‖ is known to be subadditive, that is, ‖ab‖ ≤ ‖a‖ + ‖b‖ for a, b ∈ Hn ,
it readily follows that the function d(a, b)= ‖a−1b‖ is a metric on Hn , called the
Korányi metric, which is left invariant with respect to the left action of Hn on itself;
see also [Capogna et al. 2007, page 18], where the gauge has been defined for an
isomorphic product on Hn with −1/2 replacing the coefficient 2 in our definition
above.1

Although a horofunction was defined above as an equivalence class of func-
tions, we will henceforth identify a horofunction on Hn with its representative that
vanishes at 0= (0, 0) ∈ Hn .

The Korányi sphere in Hn , denoted by S2n
K , is the unit sphere for the Korányi

gauge:

S2n
K =

{
(w,µ) ∈ Hn

| ‖(w,µ)‖ = 1
}
=

{
(w,µ) ∈ Hn

| |w|4+µ2
= 1

}
.

Given (w,µ) ∈ S2n
K , define h(w,µ) : Hn

→ R to be the real linear function defined
by

(1) h(w,µ)(z, s)=−Re〈(|w|2+ iµ)w, z〉 for (z, s) ∈ Hn,

where i =
√
−1.

We give the following explicit characterization of the horofunctions on Hn .

Proposition 2.8. Every horofunction on Hn is of the form hu for some u ∈ S2n
K .

The map2 : S2n
K → S2n

K , (w,µ) 7→ ((|w|2+iµ)2w,−µ) is an involution whose
fixed point set is the “round” equator {(w, 0) ∈ S2n

K | |w| = 1}. We will show in

1Throughout this paper an unadorned d will always refer to the Korányi metric, while ρ will be
used to indicate an arbitrary metric.
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Theorem 2.10 that the map S2n
K → ∂hHn , u 7→ hu , induces a homeomorphism

S2n
K /〈2〉 → ∂hHn . Theorem 3.3 says the Busemann points in ∂hHn are precisely

the horofunctions of the form h(w,0). The space S2n
K /〈2〉 is homeomorphic to

a 2n-disk and its (2n−1)-sphere boundary corresponds to the set of Busemann
points. In summary, we prove the following theorem.

Theorem 4.1. The horofunction boundary ∂hHn of the Heisenberg group Hn with
the Korányi metric is homeomorphic to the 2n-disk, with the Busemann points
corresponding to the (2n−1)-sphere boundary of this disk. The horofunction com-
pactification Hn

∪ ∂hHn is homeomorphic to the (2n+1)-sphere.

2. The horofunction boundary of a metric space

In the notation of Section 1, write f 7→ f̄ for the quotient map C(X)→C∗(X). If
X has a distinguished basepoint p ∈ X , then C∗(X) can be identified with C(X)p,
the ideal of functions that vanish at p, via the homeomorphism C(X)p→ C∗(X),
f 7→ f̄ with inverse f̄ 7→ f − f (p). Under this identification the horofunctions are
precisely those functions in C(X)p that arise as limits of the form ρxn −ρ(xn, p),
where {xn} is a sequence such that xn →∞, and for any x ∈ X , ρx denotes the
function ρx(y)= ρ(x, y).

Remark 2.1. Rieffel [2002, Examples 5.1 and 5.2] shows that even for the hyper-
bolic group Z, two word metrics coming from different generating sets can give
horofunction boundaries that are not homotopy equivalent, even though the metrics
are Lipschitz equivalent.

In the case of the Heisenberg group Hn with the Korányi metric, we show that
each point u ∈ S2n

K gives rise to a horofunction.
For λ ≥ 0, the map δλ : Hn

→ Hn , (z, s) 7→ (λz, λ2s) is called nonisotropic
dilation by λ. It is a homomorphism of Hn and satisfies δλ1 ◦ δλ2 = δλ1λ2 for
λ1, λ2 ≥ 0. By direct computation,

d(g, 0)= ‖g−1
‖ = ‖g‖ and d(δλg1, δλg2)= λd(g1, g2).

Definition 2.2. Let u ∈ S2n
K . The dilation ray associated to u is the map

Du : [0,∞)→ Hn, t 7→ δt u.

We will show that the limit of each dilation ray (considered in C(Hn)0) deter-
mines a horofunction.

Proposition 2.3. Let (w,µ) ∈ S2n
K and let (z, s) ∈ Hn . Then

lim
t→∞

d(D(w,µ)(t), (z, s))− d(D(w,µ)(t), 0)=−Re〈(|w|2+ iµ)w, z〉,

with convergence uniform on compact subsets with respect to the variable (z, s).
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The proof requires the following lemma (stated in sufficient generality for later
use in Lemma 4.2).

Lemma 2.4. For 0 ≤ i ≤ 3, let {ai,n}n∈Z be sequences of real numbers such that
ai,n→ ai . Let {tn} be a sequence of numbers diverging to infinity, and let

p(tn)= t4
n + a3,nt3

n + a2,nt2
n + a1,ntn + a0,n.

Then limn→∞(p(tn))1/4− tn = a3/4.

Proof. (p(tn))1/4− tn =
p(tn)− t4

n

(p(tn)1/4+ tn)(p(tn)1/2+ t2
n )

=
(p(tn)− t4

n )/t3
n

[(p(tn)1/4+ tn)/tn][(p(tn)1/2+ t2
n )/t2

n ]

=
a3,n + a2,n/tn + a1,n/t2

n + a0,n/t3
n

[(p(tn)/t4
n )

1/4+ 1][(p(tn)/t4
n )

1/2+ 1]
.

Since limn→∞ p(tn)/t4
n = 1 and limn→∞ ai,n/t3−i

n = 0 for 0 ≤ i ≤ 2, the result
follows. �

Remark 2.5. If a sequence of α-Lipschitz functions between metric spaces con-
verges pointwise, then the sequence converges uniformly on compact subsets to an
α-Lipschitz function. Also for any metric space (X, ρ) with basepoint p, and for
any a ∈ X , the function ρ̂a = ρa − ρ(a, p) is 1-Lipschitz. Therefore if {an} is a
sequence in X such that the sequence {ρ̂an } converges pointwise, then it converges
uniformly on compact subsets.

Proof of Proposition 2.3. Note that Remark 2.5 applies, and that

d(D(w,µ)(t), 0)= ‖δt(w,µ)‖ = t‖(w,µ)‖ = t for t ≥ 0.

Thus d(D(w,µ)(t), (z, s))− d(D(w,µ)(t), 0)= d(D(w,µ)(t), (z, s))− t . Now

d(D(w,µ)(t), (z, s))= ‖(z− tw, s− t2µ− 2t Im〈w, z〉)‖ = p(t)1/4,

where

p(t)= |z− tw|4+ (s− t2µ− 2t Im〈w, z〉)2

= (|w|4+µ2)t4
+ 4

(
−(Re〈w, z〉)|w|2+ (Im〈w, z〉)µ

)
t3

+ terms of lower order in t.

Since (w,µ) ∈ S2n
K , we have |w|4+µ2

= 1, and so by Lemma 2.4

lim
t→∞

p(t)1/4− t =−(Re〈w, z〉)|w|2+ (Im〈w, z〉)µ=−Re〈(|w|2+ iµ)w, z〉. �
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Let u = (w,µ) ∈ S2n
K . By Proposition 2.3,

lim
t→∞

dDu(t)− d(Du(t), 0)= lim
t→∞

dDu(t)− t = hu

where hu is as defined in (1). Hence we have a map 8 : S2n
K → ∂hHn, u 7→ hu ,

and 8 is continuous.
To show that 8 is surjective, that is, every horofunction is of the form hu for

some u ∈ S2n
K , we use the existence of a “conformal inversion” of Hn in the Korányi

sphere S2n
K .

Definition 2.6 [Capogna et al. 2007, page 19]. The conformal inversion of Hn in
the sphere S2n

K is the map j : Hn
−{0} → Hn

−{0} given by

j (z, s)=
(
−z
|z|2−is

,
−s

‖(z, s)‖4

)
.

Note that [Capogna et al. 2007] uses a different, but isomorphic, product on Hn ,
which leads to different constants in the Korányi metric and conformal inversion
formulas.

Conformal inversion satisfies the properties [Capogna et al. 2007, page 19]

(1) j2
= id;

(2) δλ ◦ j = j ◦ δ1/λ for λ > 0;

(3) ‖ j (p)‖ = 1/‖p‖;

(4) d( j (p), j (q))= d(p, q)/(‖p‖‖q‖).

To show that 8 is surjective, we will need the following relation between the
Korányi norm, conformal inversion, and dilation rays.

Lemma 2.7. For p, q ∈Hn
−{0}, we have d(p, q)=‖q‖d( j (δ1/‖p‖ p), δ‖p‖ j (q)).

Proof. d(p, q)= ‖p‖‖q‖d( j (p), j (q))

= ‖q‖d(δ‖p‖ j (p), δ‖p‖ j (q))= ‖q‖d( j (δ1/‖p‖ p), δ‖p‖ j (q)). �

Proposition 2.8. 8 : S2n
K → ∂hHn is surjective. Thus every horofunction of Hn with

the Korányi metric is of the form hu : H
n
→ R, (z, s) 7→ −Re〈(|w|2 + iµ)w, z〉,

where u ∈ S2n
K .

Proof. Let h : Hn
→ R be a horofunction. Then there is a sequence {pn} in Hn

such that pn→∞ and for all q ∈ Hn

lim
n→∞

d(pn, q)−‖pn‖ = h(q).

The points δ1/‖pn‖ pn lie on S2n
K because ‖δ1/‖pn‖ pn‖ = ‖pn‖/‖pn‖ = 1. Since

S2n
K is compact, {δ1/‖pn‖ pn} has a convergent subsequence, so by passing to the

subsequence, we may assume that limn→∞ δ1/‖pn‖ pn = u ∈ S2n
K .
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The triangle inequality gives

(2)
∣∣d( j (δ1/‖pn‖ pn), δ‖pn‖ j (q))− d( j (u), δ‖pn‖ j (q))

∣∣≤ d( j (δ1/‖pn‖ pn), j (u)).

Since limn→∞ δ1/‖pn‖ pn = u and v 7→ d( j (v), j (u)) is continuous, the right side
of (2) tends to 0 as n→∞.

By Lemma 2.7, for q 6= 0,

(3) lim
n→∞

d(pn, q)−‖pn‖ = lim
n→∞

(‖q‖d( j (δ1/‖pn‖ pn), δ‖pn‖ j (q))−‖pn‖).

By (2), the right side of (3) is the same as

(4) lim
n→∞
‖q‖d( j (u), δ‖pn‖ j (q))−‖pn‖.

Using properties of the metric and inversion, we have

d( j (u), δ‖pn‖ j (q))= d( j (u), j (δ1/‖pn‖q))=
d(u, δ1/‖pn‖q)
‖u‖‖δ1/‖pn‖q‖

=
‖pn‖

‖q‖
d(u, δ1/‖pn‖q) =

1
‖q‖

d(δ‖pn‖u, q).

Hence (4) is the same as limn→∞ d(δ‖pn‖u, q)−‖pn‖, which by Proposition 2.3
is hu(q). �

The map 8 : S2n
K → ∂hHn is not injective, but we can state explicitly which

points get identified under 8.

Lemma 2.9. For (w,µ), (w′, µ′)∈ S2n
K , we have8(w,µ)=8(w′, µ′) if and only

if (w′, µ′)= (w,µ) or (w′, µ′)= ((|w|2+ iµ)2w,−µ).

Proof. Since (w,µ), (w′, µ′) ∈ S2n
K , we have

(5) |w|4+µ2
= 1= |w′|4+ (µ′)2.

The condition 8(w′, µ′)=8(w,µ) is equivalent to

−Re〈(|w′|2+ iµ′)w′, z〉 = −Re〈(|w|2+ iµ)w, z〉 for all z ∈ Cn ,

which is in turn equivalent to

(6) (|w′|2+ iµ′)w′ = (|w|2+ iµ)w

since Re〈 · , · 〉 is a Euclidean inner product on Cn .
If (w′, µ′)= (w,µ) then obviously (6) holds. Ifw′= (|w|2+iµ)2w andµ′=−µ

then (5) implies |w| = |w′| and (|w′|2 + iµ′)w′ = (|w|2 − iµ)(|w|2 + iµ)2w =
(|w|4+µ2)(|w|2+ iµ)w = (|w|2+ iµ)w, so (6) holds.

Conversely, suppose (6) is valid. Taking the Euclidean norm of both sides yields
|w′| = |w|, and thus by (5) we have µ2

= (µ′)2. Hence µ′ = µ or µ′ = −µ. If
µ′ = µ, then dividing both sides of (6) by |w′|2+ iµ′ = |w|2+ iµ yields w = w′.
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If µ′ = −µ, then multiplying both sides of (6) by (|w|2+ iµ) and observing that
(|w|2+ iµ)(|w|2− iµ)= |w|4+µ2

= 1 yields w′ = (|w|2+ iµ)2w. �

We define an involution 2 : S2n
K → S2n

K of the Korányi sphere by

(7) 2(w,µ)= ((|w|2+ iµ)2w,−µ) for (w,µ) ∈ S2n
K .

It is straightforward to verify that 22
= id and that the fixed point set of 2 is

the round (2n−1)-sphere {(z, 0) ∈ Hn
| |z| = 1}.

By Lemma 2.9, 8(u) = 8(v) for u, v ∈ S2n
K if and only if u = v or 2(u) = v.

Hence 2 induces an injection 8 : S2n
K /〈2〉 → ∂hHn .

Theorem 2.10. 8 : S2n
K /〈2〉 → ∂hHn is a homeomorphism.

Proof. We have already shown 8 is a continuous injection. By Proposition 2.8, it
is also surjective. Since S2n

K /〈2〉 is compact, 8 is a homeomorphism. �

3. Busemann points

Definition 3.1 [Rieffel 2002, Definition 4.3]. Let (X, ρ) be a metric space and let
T ⊆ [0,∞) be an unbounded subset with 0 ∈ T . Let γ : T → X be a function.

(a) γ is a geodesic ray if ρ(γ(t), γ(s))= |t − s| for all t, s ∈ T .

(b) γ is an almost geodesic ray if for every ε > 0 there is an integer N such that
t, s ∈ T and t ≥ s ≥ N implies

|ρ(γ(t), γ(s))+ ρ(γ(s), γ(0))− t |< ε.

(c) γ is a weakly geodesic ray if for every y ∈ X and every ε > 0 there is an
integer N such that s, t ≥ N implies

|ρ(γ(t), γ(0))− t |< ε and |ρ(γ(t), y)− ρ(γ(s), y)− (t − s)|< ε.

Rieffel proves that geodesic implies almost geodesic implies weakly geodesic
[2002, Lemma 4.5], and that every horofunction is the limit of a weak geodesic
[2002, Theorem 4.7] (when X is proper and has a countable basis).

Remark 3.2. It follows from Proposition 2.3 that for the Korányi metric on the
Heisenberg group and for a unit vector u, the dilation ray Du is a weak geodesic
converging to the horofunction hu .

A horofunction h ∈ ∂h X is a Busemann point [Rieffel 2002, Definition 4.8] if
it is the limit of an almost geodesic ray, that is, there is an almost geodesic ray
γ : T → X such that limt→∞ ρ(γ(t), · )− ρ(γ(t), p) = h − h(p), where p is a
basepoint.

Let (w, 0) ∈ S2n
K with |w| = 1. Then by direct computation, the dilation ray

D(w,0) : [0,∞) → Hn is the Euclidean straight line D(w,0)(t) = (tw, 0), and
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d(D(w,0)(t), D(w,0)(s)) = |t − s|. Hence D(w,0) is a geodesic ray, and it follows
from Proposition 2.3 that h(w,0) is the limit of this ray. In particular, h(w,0) is a
Busemann point. For the Korányi metric on the Heisenberg group, these are the
only Busemann points.

Theorem 3.3. A horofunction h(w,µ) ∈ ∂hHn with (w,µ) ∈ S2n
K is a Busemann

point if and only if µ= 0.

Proof. We showed above that h(w,0) with |w| = 1 is a Busemann point.
Suppose now that h(w,µ) ∈ ∂hHn is a Busemann point. Then by definition there

exists an almost geodesic ray γ : T →Hn (where T ⊆ [0,∞) is an unbounded set
with 0 ∈ T ) such that

(8) lim
t→∞

d(γ(t), · )− d(γ(t), 0)= h(w,µ).

Let tn ∈ T , n = 1, 2, . . . , be such that tn →∞, and let pn = γ(tn). Since γ is an
almost geodesic ray, for every ε > 0 there exists an integer N such that n ≥m ≥ N
implies

(9) |d(pn, pm)+ d(pm, γ(0))− tn|< ε.

By setting n = m in (9), we see that n ≥ N implies

(10) |d(pn, γ(0))− tn|< ε.

By (8), given ε > 0 there exists an integer N ′ such that n ≥ N ′ implies

(11) |d(pn, γ(0))−‖pn‖− h(w,µ)(γ(0))|< ε.

Combining (9), (10), and (11) yields that

(12) |d(pn, pm)− (‖pn‖−‖pm‖)|< 4ε for n ≥ m ≥ N ′′ =max(N , N ′).

Keeping m fixed in (12), and letting n → ∞ shows that m ≥ N ′′ implies
|h(w,µ)(pm)+‖pm‖| ≤ 4ε and so

(13) lim
m→∞

h(w,µ)(pm)+‖pm‖ = 0.

Let pn = (zn, λn). Then by passing to a subsequence we can assume {δ1/‖pn‖ pn}

converges to u ∈ S2n
K . From the proof of Proposition 2.8, h(w,µ) = hu , so by

Lemma 2.9, u = (w,µ) or u = ((|w|2 + iµ)2w,−µ). By replacing (w,µ) with
((|w|2+ iµ)2w,−µ) if necessary, we can assume δ1/‖pn‖ pn converges to (w,µ).

In particular, {zm/‖pm‖} converges to w. By Equation (13),

lim
m→∞

−Re〈(|w|2+ iµ, zm)〉+ ‖pm‖ = 0
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and so
lim

m→∞
[−Re〈(|w|2+ iµ)w, zm/‖pm‖〉+ 1]‖pm‖ = 0.

Since ‖pm‖→∞, it follows that

lim
m→∞

Re〈(|w|2+ iµ)w, zm/‖pm‖〉 = 1.

The left side is Re〈(|w|2+ iµ)w,w〉 = |w|4, so |w|4 = 1. Since |w|4+µ2
= 1, it

follows that µ= 0. �

Remark 3.4. Walsh has studied the horofunction boundary of the discrete Heisen-
berg group, H3=〈a, b | [[a, b], a]= [[a, b], b]= 1〉, where [x, y] denotes the com-
mutator of x and y, with the word length metric coming from the set of generators
{a, b, a−1, b−1

}. In this case he was able to explicitly determine the Busemann
points in the horofunction boundary [Walsh 2008, Theorems 3.3 and 3.4]. See also
[Webster and Winchester 2006, Example 3.5].

Theorem 3.3 answers in the affirmative the following question, in the special
case of the Heisenberg group with the Korányi metric, which concerns the global
geometry of simply connected nilpotent Lie groups.

Question 3.5. Given a left invariant metric on a nonabelian simply connected
nilpotent Lie group N , must the horofunction boundary of N necessarily contain
non-Busemann points?

4. The topological types of the horofunction boundary and compactification

Recall from Section 2 the involution2 : S2n
K → S2n

K of the Korányi sphere, given by
Equation (7), which fixes the equator of S2n

K and interchanges its two hemispheres.
By Theorem 2.10, S2n

K /〈2〉 is homeomorphic to the horofunction boundary of Hn

with the Korányi metric.
For the standard sphere S2n

= {(w,µ) ∈ Hn
| |w|2+µ2

= 1}, the map

S2n
K

f
−→
∼=

S2n, (w,µ) 7→ (|w|w,µ)

is a homeomorphism that restricts to a homeomorphism from the northern hemi-
sphere (S2n

K )
+
= {(w,µ) ∈ S2n

K | µ ≥ 0} of S2n
K to the northern hemisphere of the

standard sphere. The composite map

(S2n
K )
+ ↪→ S2n

K → S2n
K /〈2〉

is a continuous bijection and hence a homeomorphism, so we find that ∂hHn ∼=

S2n
K /〈2〉

∼= (S2n
K )
+ ∼= (S2n)+ is homeomorphic to a 2n-disk, and that under this

homeomorphism, the Busemann points from Theorem 3.3 correspond to the S2n−1

boundary of the disk.
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Theorem 4.1. The horofunction boundary ∂hHn of the Heisenberg group Hn with
the Korányi metric is homeomorphic to the 2n-disk, with the Busemann points cor-
responding to the S2n−1 boundary of this disk. The horofunction compactification
Hn
∪ ∂hHn is homeomorphic to the (2n+ 1)-sphere.

The fact that the horofunction compactification Hn
∪ ∂hHn is homeomorphic to

the (2n+ 1)-sphere will follow from the next two lemmas.
Let B2n+1

K = {x ∈ Hn
| ‖x‖ ≤ 1} denote the unit ball for the Korányi metric.

Define a map 9 : B2n+1
K → Hn

∪ ∂hHn by 9(x) = δ1/(1−‖x‖)x if ‖x‖ < 1 and
9(x)= hx if ‖x‖ = 1, where we recall that hx(z, s)=−Re〈(|w|2+ iµ)w, z〉 for
x = (w,µ).

Then we get an induced map 9 through

B2n+1
K

��

9 // Hn
∪ ∂hHn

B2n+1
K /〈2〉.

9

88qqqqqqqqqqq

Note that 9|S2n
K /〈2〉

=8 from Theorem 2.10.

Lemma 4.2. 9 : B2n+1
K /〈2〉 → Hn

∪ ∂hHn is a homeomorphism.

Proof. 9|Int B2n+1
K : Int B2n+1

K → Hn is a homeomorphism with inverse δ1/(1+‖x‖),
and we showed in Theorem 2.10 that9|S2n

K /〈2〉
=8 : S2n

K /〈2〉→ ∂hHn is a homeo-
morphism. Thus we need only show that 9 is continuous.

Let {xn} be a sequence in Int B2n+1
K converging to u∈ S2n

K . Let qn=δ1/(1−‖xn‖)xn .
We will prove that dqn −‖xn‖/(1−‖xn‖)→ hu uniformly on compact subsets.

Let xn = (wn, µn) and let u = (w,µ), so that wn→ w and µn→ µ. We have

dqn (z, s)−
‖xn‖

1−‖xn‖
=(∣∣∣∣z− wn

1−‖xn‖

∣∣∣∣4+ (
s− µn

(1−‖xn‖)2
−

2
1−‖xn‖

Im〈wn, z〉
)2)1/4

−
‖xn‖

1−‖xn‖
.

Let tn = ‖xn‖/(1−‖xn‖), so that tn→∞. Then

dqn (z, s)−‖xn‖/(1−‖xn‖)= (p(tn))1/4− tn,

where

p(tn)=
∣∣∣∣z− tn

wn

‖xn‖

∣∣∣∣4+(
s− t2

n
µn

‖xn‖
2 − 2tn

Im〈wn, z〉
‖xn‖

)2

=

(
|wn|

4
+µ2

n

‖xn‖
4

)
t4
n + 4

(
−

Re〈wn, z〉|wn|
2

‖xn‖
3 +

µn Im〈wn, z〉
‖xn‖

3

)
t3
n

+ terms of lower order in tn.
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Note that (|wn|
4
+µ2

n)/‖xn‖
4
= 1, so p(tn) is “monic”. The coefficient of 4t3

n in
the second line above converges to

−(Re〈w, z〉)|w|2+ (Im〈w, z〉)µ=−Re〈(|w|2+ iµ)w, z〉 = hu(z, s),

and the lower power tn coefficients converge, so by Lemma 2.4 and Remark 2.5
the proof is complete. �

Define the following subsets of B2n+1
K :

(S2n
K )
+
=

{
(w,µ) ∈ S2n

K | µ≥ 0
}
, (B2n+1

K )+ =
{
(w,µ) ∈ B2n+1

K | µ≥ 0
}
,

(S2n
K )
−
=

{
(w,µ) ∈ S2n

K | µ≤ 0
}
, (B2n+1

K )− =
{
(w,µ) ∈ B2n+1

K | µ≤ 0
}
,

S+ = (S2n
K )
+
∪

{
(w,µ) ∈ B2n+1

K | µ= 0
}
,

S− = (S2n
K )
−
∪

{
(w,µ) ∈ B2n+1

K | µ= 0
}
.

The next lemma will show that B2n+1
K /〈2〉 is homeomorphic to S2n+1. Define

a homeomorphism 2′ : S+→ S− by

2′(w,µ)=

{
((|w|2+ iµ)2w,−µ) if µ > 0,
(w, 0) if µ= 0.

Lemma 4.3. 2′ is isotopic to 2′′ : S+→ S−, where 2′′(w,µ)= (w,−µ).

Proof. Define θ : (S2n
K )
+
→R by θ(w,µ)= arccos(|w|4−µ2), where arccos is the

branch with 0≤ arccos(x)≤ π . Then eiθ(w,µ)
= (|w|2+ iµ)2 for (w,µ) ∈ (S2n

K )
+.

Define an isotopy F : S+× I → S− by F((w,µ), t)= (eiθ(w,µ)(1−t)w,−µ). Then
F0 =2

′ and F1 =2
′′. �

Completion of the proof of Theorem 4.1. By Lemma 4.2, Hn
∪ ∂hHn is homeo-

morphic to B2n+1
K /〈2〉, which in turn is homeomorphic to (B2n+1

K )+∪2′ (B2n+1
K )−,

which, since 2′ is isotopic to 2′′ by Lemma 4.3, is in turn homeomorphic to
(B2n+1

K )+ ∪2′′ (B2n+1
K )− by a standard theorem in geometric topology. Since the

latter is homeomorphic to S2n+1 (we are essentially gluing two disks by the identity
along their boundaries), the proof of Theorem 4.1 is complete. �

Remark 4.4. Suppose that a group G acts on a metric space X by isometries. Then
G acts on the function space C(X)p by the rule g f (x)= f (g−1x)− f (g−1 p) for
g ∈G and f ∈C(X)p. This action is equivariant for the embedding X ↪→C(X)p,
so the action of G on X extends to the horofunction boundary ∂h X . In the specific
case of the Heisenberg group with the Korányi metric, the explicit calculation of
the horofunctions (Proposition 2.8) makes it straightforward to show that the action
of Hn on itself extends to the trivial action on the horofunction boundary.
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