TILINGS DEFINED BY AFFINE WEYL GROUPS

ECKHARD MEINRENKEN
TILINGs DEFINED BY AFFINE WEYl GROUPS

ECKHARD MEINRENKEN

Let W be a Weyl group, presented as a reflection group on a Euclidean vector space V, and $C \subset V$ an open Weyl chamber. In a recent paper, Waldspurger proved that the images $(\text{id} - w)(C)$ for $w \in W$ are all disjoint, with union the closed cone spanned by the positive roots. We prove that similarly, the images $(\text{id} - w)(A)$ of the open Weyl alcove A, for $w \in W^{\text{aff}}$ in the affine Weyl group, are disjoint and their union is V.

1. Introduction

Let W be the Weyl group of a simple Lie algebra, presented as a crystallographic reflection group in a finite-dimensional Euclidean vector space $(V, \langle \cdot, \cdot \rangle)$. Choose a fundamental Weyl chamber $C \subset V$, and let D be its dual cone, that is, the open cone spanned by the corresponding positive roots. Waldspurger [2007] proved the following remarkable result. Consider the linear transformations $(\text{id} - w): V \rightarrow V$ defined by elements $w \in W$.

Theorem 1.1 (Waldspurger). The images $D_w := (\text{id} - w)(C)$ for $w \in W$ are all disjoint, and their union is the closed cone spanned by the positive roots:

$$D = \bigcup_{w \in W} D_w.$$

For instance, the identity transformation $w = \text{id}$ corresponds to $D_{\text{id}} = \{0\}$ in this decomposition, while the reflection s_α defined by a positive root α corresponds to the open half-line $D_{s_\alpha} = \mathbb{R}_{>0} \cdot \alpha$.

The aim of this note is to prove a similar result for the affine Weyl group W^{aff}. Recall that $W^{\text{aff}} = \Lambda \rtimes W$, where the coroot lattice $\Lambda \subset V$ acts by translations. Let $A \subset C$ be the Weyl alcove, with $0 \in \overline{A}$.

Theorem 1.2. The images $V_w = (\text{id} - w)(A)$ for $w \in W^{\text{aff}}$ are all disjoint, and their union is V:

$$V = \bigcup_{w \in W^{\text{aff}}} V_w.$$

MSC2000: 20F55, 22E46.

Keywords: affine Weyl group, reflection groups, alcoves.

The author is partially supported by an NSERC Discovery Grant and a Steacie Fellowship.
The figure above is a picture of the resulting tiling of V for the root system G_2. Up to translation by elements of the lattice Λ, there are five 2-dimensional tiles, corresponding to the five Weyl group elements with trivial fixed point set. With s_1 and s_2 denoting the simple reflections, the lightly shaded polytopes are labeled by the Coxeter elements s_1s_2 and s_2s_1, the medium shaded polytopes by $(s_1s_2)^2$ and $(s_2s_1)^2$, and the darkly shaded polytope by the longest Weyl group element $w_0 = (s_1s_2)^3$.

One also has the following related statement.

Theorem 1.3. Suppose $S \in \text{End}(V)$ with $\|S\| < 1$. Then the sets $V^{(S)}_w = (S - w)(A)$ for $w \in W^{\text{aff}}$ are all disjoint, and their closures cover V:

$$V = \bigcup_{w \in W^{\text{aff}}} V^{(S)}_w.$$

Note that for $S = 0$ the resulting decomposition of V is just the Stiefel diagram, while for $S = \tau$ id with $\tau \to 1$ one recovers the decomposition from Theorem 1.2.

The proof of Theorem 1.2 is in large parts parallel to Waldspurger’s [2007] proof of Theorem 1.1. We will nevertheless give full details so the paper is self-contained.

2. Notation

With no loss of generality we will take W to be irreducible. Let $\mathcal{R} \subset V$ be the set of roots, $\{\alpha_1, \ldots, \alpha_l\} \subset \mathcal{R}$ a set of simple roots, and

$$C = \{x \mid \langle \alpha_i, x \rangle > 0, \ i = 1, \ldots, l\}$$

the corresponding Weyl chamber. We denote by $\alpha_{\text{max}} \in \mathcal{R}$ the highest root, and $\alpha_0 = -\alpha_{\text{max}}$ the lowest root. The open Weyl alcove is the l-dimensional simplex...
defined as

\[A = \{ x \mid \langle \alpha_i, x \rangle + \delta_{i,0} > 0, \; i = 0, \ldots, l \}. \]

Its faces are indexed by the proper subsets \(I \subset \{0, \ldots, l\} \), where \(A_I \) is given by inequalities \(\langle \alpha_i, x \rangle + \delta_{i,0} > 0 \) for \(i \not\in I \) and equalities \(\langle \alpha_i, x \rangle + \delta_{i,0} = 0 \) for \(i \in I \). Each \(A_I \) has codimension \(|I| \). In particular, \(A_I = A_{\{i\}} \) are the codimension 1 faces, with \(\alpha_i \) as inward-pointing normal vectors. Let \(s_i \) be the affine reflections across the affine hyperplanes supporting \(A_I \), that is,

\[s_i : x \mapsto x - (\langle \alpha_i, x \rangle + \delta_{i,0})\alpha_i^{\vee} \quad \text{for} \; i = 0, \ldots, l, \]

where \(\alpha_i^{\vee} = 2\alpha_i/\langle \alpha_i, \alpha_i \rangle \) is the simple coroot corresponding to \(\alpha_i \). The Weyl group \(W \) is generated by the reflections \(s_1, \ldots, s_l \), while the affine Weyl group \(W^{\text{aff}} \) is generated by the affine reflections \(s_0, \ldots, s_l \). The affine Weyl group is a semidirect product

\[W^{\text{aff}} = \Lambda \rtimes W, \]

where the coroot lattice \(\Lambda = \mathbb{Z}[\alpha_1^{\vee}, \ldots, \alpha_l^{\vee}] \subset V \) acts on \(V \) by translations. For any \(w \in W^{\text{aff}} \), we will denote by \(\tilde{w} \in W \) its image under the quotient map \(W^{\text{aff}} \to W \), that is, \(\tilde{w}(x) = w(x) - w(0) \), and by \(\lambda_{\tilde{w}} = w(0) \in \Lambda \) the corresponding lattice vector.

The stabilizer of any element of \(A_I \) is the subgroup \(W^{\text{aff}}_I \) generated by \(s_i \) for \(i \in I \). It is a finite subgroup of \(W^{\text{aff}} \), and the map \(w \mapsto \tilde{w} \) induces an isomorphism onto the subgroup \(W_I \) generated by \(\tilde{s}_i \) for \(i \in I \). Recall that \(W_I \) is itself a Weyl group (not necessarily irreducible): Its Dynkin diagram is obtained from the extended Dynkin diagram of the root system \(\mathfrak{R} \) by removing all vertices that are in \(I \).

3. **The top-dimensional polytopes**

For any \(w \in W^{\text{aff}} \), the subset \(V_w = (\text{id} - w)(A) \) is the relative interior of a convex polytope in the affine subspace \(\text{ran}(\text{id} - w) \). Let

\[W^{\text{aff}}_{\text{reg}} = \{ w \in W^{\text{aff}} \mid (\text{id} - w) \text{ is invertible} \} \]

and \(W_{\text{reg}} = W \cap W^{\text{aff}}_{\text{reg}} \), so that \(w \in W^{\text{aff}}_{\text{reg}} \) if and only if \(\tilde{w} \in W_{\text{reg}} \). The top dimensional polytopes \(V_w \) are those indexed by \(w \in W^{\text{aff}}_{\text{reg}} \), and the faces of these polytopes are \(V_{w, I} := (\text{id} - w)(A_I) \). For \(w \in W_{\text{reg}} \) and \(i = 0, \ldots, l \), let

\[n_{w,i} := (\text{id} - \tilde{w}^{-1})^{-1}(\alpha_i). \]

Lemma 3.1. For all \(w \in W^{\text{aff}}_{\text{reg}} \), the open polytope \(V_w \) is given by the inequalities

\[\langle n_{w,i}, \xi + \lambda_w \rangle + \delta_{i,0} > 0 \quad \text{for} \; i = 0, \ldots, l. \]

The face \(V_{w,I} = (\text{id} - w)(A_I) \) is obtained by replacing the inequalities for \(i \in I \) by equalities.
Proof. For any $\xi = (\id - w)x \in V$, we have
\[
\langle a_i, x \rangle = \langle (\id - \tilde{w}^{-1})^{-1}a_i, (\id - \tilde{w})x \rangle = \langle n_{w,i}, (\id - \tilde{w})x \rangle = \langle n_{w,i}, \xi + \tilde{\lambda}_w \rangle,
\]
since \tilde{w}^{-1} is the transpose of \tilde{w} under the inner product $\langle \cdot, \cdot \rangle$. This gives the description of V_w and of its faces $V_{w,i}$.

\[\square\]

Lemma 3.2. Suppose $w \in W^{\text{aff}}_{\text{reg}}$ for $i \in \{0, \ldots, l\}$. Then $V_{w,i} = V_{\sigma,i} \subset \text{ran}(\id - \sigma)$ with $\sigma = ws_i$. In particular, σ is an affine reflection, and $n_{w,i}$ is a vector normal to the affine hyperplane $\text{ran}(\id - \sigma)$. One has $\langle n_{w,i}, a_i^\vee \rangle = 1$.

Proof. For any orthogonal transformation $g \in O(V)$ and any reflection $s \in O(V)$, the dimension of the fixed point set of the orthogonal transformations g and gs differ by ± 1. Since \tilde{w} fixes only the origin, it follows that $\tilde{\sigma}$ has a 1-dimensional fixed point set. Hence $\text{ran}(\id - \sigma)$ is an affine hyperplane, and σ is the affine reflection across that hyperplane. Since s_t fixes A_t, we have
\[
V_{w,i} = (\id - w)(A_t) = (\id - ws_t)(A_t) = V_{\sigma,i} \subset \text{ran}(\id - \sigma).
\]
By definition $n_{w,i} - \tilde{w}^{-1}n_{w,i} = a_i$. Hence
\[
-2\langle n_{w,i}, a_i \rangle + \langle a_i, a_i \rangle = \|n_{w,i} - a_i\|^2 - \|n_{w,i}\|^2 = \|\tilde{w}^{-1}n_{w,i}\|^2 - \|n_{w,i}\|^2 = 0. \quad \square
\]

The following proposition indicates how the top-dimensional polytopes $V_{w,i}$ are glued along the polytopes of codimension 1.

Proposition 3.3. Let $\sigma \in W^{\text{aff}}$ be an affine reflection, that is, $\text{ran}(\id - \sigma)$ is an affine hyperplane. Consider
\[
(1) \quad \xi \in V_{\sigma} \setminus \bigcup_{|l| \geq 2} V_{\sigma,l}.
\]
Then there are two distinct indices $i, i' \in \{0, \ldots, l\}$ such that $\xi \in V_{\sigma,i} \cap V_{\sigma,i'}$. Furthermore, $w = \sigma s_i$ and $w' = \sigma s_{i'}$ are both in $W^{\text{aff}}_{\text{reg}}$, so that $V_{w,i} = V_{\sigma,i}$ and $V_{w',i'} = V_{\sigma,i'}$, and the polytopes $V_w, V_{w'}$ are on opposite sides of the affine hyperplane $\text{ran}(\id - \sigma)$.

Proof. Let n be a generator of the 1-dimensional subspace $\ker(\id - \tilde{\sigma})$. Then n is a vector normal to $\text{ran}(\id - \sigma)$. The preimage $(\id - \sigma)^{-1}(\xi) \subset V$ is an affine line in the direction of n. Since $\xi \in V_{\sigma}$, this line intersects A_i; hence it intersects the boundary $\partial \tilde{A}$ in exactly two points x and x'. By (1), x and x' are contained in two distinct codimension 1 boundary faces A_i and $A_{i'}$. Since n is inward-pointing at one of the boundary faces, and outward-pointing at the other, the inner products $\langle n, a_i \rangle$ and $\langle n, a_{i'} \rangle$ are both nonzero, with opposite signs. Let $w = \sigma s_i$ and let $w' = \sigma s_{i'}$. We will show that $w \in W^{\text{aff}}_{\text{reg}}$, that is, $\tilde{w} \in W_{\text{reg}}$ (the proof for w' is
similar). Let \(z \in V \) with \(\bar{w}z = z \). Then \(\tilde{\sigma}^{-1}z = \tilde{s}_i z \), so
\[
(id - \tilde{\sigma}^{-1})(z) = (id - \tilde{s}_i)(z) = \langle a_i, z \rangle a_i^\vee.
\]
The left side lies in \(\text{ran}(id - \tilde{\sigma}) \), which is orthogonal to \(n \), while the right side is proportional to \(a_i \). Since \(\langle n, a_i \rangle \neq 0 \), this is only possible if both sides are 0. Thus \(z \) is fixed under \(\tilde{\sigma} \), and hence a multiple of \(n \). On the other hand we have \(\langle a_i, z \rangle = 0 \); hence using again that \(\langle n, a_i \rangle \neq 0 \) we obtain \(z = 0 \). This shows \(\ker(id - \bar{w}) = 0 \).

As we had seen above, \(n_{w,i} \) is a vector normal to \(\text{ran}(id - \sigma) \) and hence is a multiple of \(n \). By Lemma 3.2, it is a positive multiple if and only if \(\langle n, a_i \rangle > 0 \). But then \(\langle n, a_i' \rangle < 0 \), and so \(n_{w',i'} \) is a negative multiple of \(n \). This shows that \(V_w \) and \(V_{w'} \) are on opposite sides of the hyperplane \(\text{ran}(id - \sigma) \).

Consider the union
\[
X := \bigcup_{w \in W} V_w.
\]
over \(W \subset W_{\text{aff}} \). Thus \(\bigcup_{w \in W} V_w = \bigcup_{i \in \Lambda} (\lambda + X) \). The statement of Theorem 1.2 means in particular that \(X \) is a fundamental domain for the action of \(\Lambda \). Figure 1 and Figure 2 give pictures of \(X \) for the root systems \(B_2 \) and \(G_2 \). The shaded regions are the top-dimensional polytopes (that is, the sets \(V_w \) for \(id - w \) invertible), the dark lines are the 1-dimensional polytopes (corresponding to reflections), and the origin corresponds to \(w = id \).

Proposition 3.4. (a) The sets \(\lambda + \text{int}(X) \) for \(\lambda \in \Lambda \) are disjoint, and
\[
\bigcup_{\lambda \in \Lambda} \lambda + \text{int}(X) = \text{V}.
\]
The set X for the root system G_2.

(b) The open polytopes V_w for $w \in \mathcal{W}_{\text{aff}}$ are disjoint, and

$$\bigcup_{w \in \mathcal{W}_{\text{aff}}} V_w = V.$$

Proof. Since the collection of closed polytopes \overline{V}_w for $w \in \mathcal{W}_{\text{reg}}$ is locally finite, the union $V' := \bigcup_{w \in \mathcal{W}_{\text{aff}}} \overline{V}_w$ is a closed polyhedral subset of V. Proposition 3.3 shows that a point $\xi \in V'_w$ cannot contribute to the boundary of this subset unless it lies in $\bigcup_{\sigma \in \mathcal{W}} \bigcup_{|I| \geq 2} V_{w,I}$. We therefore see that the boundary has codimension at least 2, and hence is empty since V' is a closed polyhedron. This proves $V' = V$, and also $\bigcup_{\lambda \in A} (\lambda + \mathbb{X}) = V$ with X as defined in (2). Hence the volume $\text{vol}(X)$ (for the Riemannian measure on V defined by the inner product) must be at least the volume of a fundamental domain for the action of A:

$$\text{vol}(X) \geq |W| \text{vol}(A).$$

On the other hand, $\text{vol}(V_w) = \text{vol}((\text{id} - w)(A)) = \det(\text{id} - w) \text{vol}(A)$, so

$$\text{vol}(X) \leq \sum_{w \in W} \text{vol}(V_w) = \text{vol}(A) \sum_{w \in W} \det(\text{id} - w) = |W| \text{vol}(A),$$

where we used that $\sum_{w \in W} \det(\text{id} - w) = |W|$ from [Bourbaki 1975, page 134]. This confirms $\text{vol}(X) = |W| \text{vol}(A)$. It follows that the sets $\lambda + \text{int}(\mathbb{X})$ are pairwise disjoint, or else the inequality (3) would be strict. Similarly that the sets V_w for $w \in \mathcal{W}_{\text{reg}}$ are disjoint, or else the inequality (4) would be strict. (Of course, this also follows from Waldspurger’s Theorem 1.1 since $C_w \subset D_w$.) Hence all V_w for $w \in \mathcal{W}_{\text{aff}}$ are disjoint.

To proceed, we quote the following result from Waldspurger’s paper, where it is stated in greater generality.
Proposition 3.5 [Waldspurger 2007, Lemme]. Given $w \in W$ and a proper subset $I \subset \{0, \ldots, l\}$, there exists a unique $q \in W_I$ such that

$$\ker(id - w q) \cap \{x \in V \mid \langle a_i, x \rangle > 0 \text{ for all } i \in I\} \neq \emptyset.$$

Following [Waldspurger 2007] we use this to prove,

Proposition 3.6. Every element of V is contained in some V_σ for $\sigma \in W_{\text{aff}}$:

$$\bigcup_{w \in W_{\text{aff}}} V_\sigma = V. \tag{5}$$

Proof. Let $\xi \in V$ be given. Pick $w \in W_{\text{aff}}$ with $\xi \in V_w$, and let $I \subset \{0, \ldots, l\}$ with $\xi \in V_\sigma$. Then $x := (id - w)^{-1}(\xi) \in A_I$ is fixed under W_I. By Proposition 3.5 we may choose $\tilde{w}q \in W_I$ and $n \in V$ such that

(a) $\tilde{w}q(n) = n$,

(b) $\langle a_i, n \rangle > 0$ for all $i \in I$.

Taking $\|n\|$ sufficiently small, we have $x + n \in A$, and

$$(id - w q)(x + n) = (id - w q)(x) + (id - \tilde{w}q)n = (id - w)(x) = \xi.$$

This shows $\xi \in V_w$.

\[\square\]

4. Disjointness of the sets $\lambda + X$

To finish the proof of Theorem 1.2, we have to show that the union (5) is disjoint. Waldspurger’s Theorem 1.1 shows that all $D_\sigma = (id - w)(C)$ for $w \in W$ are disjoint. (We refer to his paper for a very simple proof of this fact.) Hence the same is true of $V_\sigma \subset D_\sigma$ for $w \in W$. It remains to show that the sets $\lambda + X$ for $\lambda \in \Lambda$, with X given by (2), are disjoint.

The closure $\overline{X} = \bigcup_{w \in W} V_\sigma$ only involves the top-dimensional polytopes:

Lemma 4.1. The closure of the set X is the union $\overline{X} = \bigcup_{w \in W_{\text{reg}}} V_\sigma$. Furthermore, $\text{int}(\overline{X}) = \text{int}(X)$.

Proof. We must show that for any $\xi \in V_\sigma$ with $\sigma \in W \setminus W_{\text{reg}}$, there exists a $w \in W_{\text{reg}}$ such that $\xi \in V_w$. Using induction, it suffices to find $\sigma' \in W$ such that $\xi \in V_{\sigma'}$ and $\dim(\ker(id - \sigma')) = \dim(\ker(id - \sigma)) - 1$. Let $\pi : V \rightarrow \ker(id - \sigma)^\perp = \text{ran}(id - \sigma)$ denote the orthogonal projection. Then $id - \sigma$ restricts to an invertible transformation of $\pi(V)$, and $V_{\sigma'}$ is the image of $\pi(A)$ under this transformation. We have

$$\pi(A) = \pi(\tilde{A}) = \bigcup_{i=0}^{l} \pi(\tilde{A}_i),$$

...
and this continues to hold if we remove the index \(i = 0 \) from the right side, as well as all indices \(i \) for which \(\dim \pi(A_i) < \dim \pi(V) \). That is, for each point \(x \in \pi(\bar{A}) \) there exists an index \(i \neq 0 \) such that \(x \in \pi(A_i) \), with \(\dim \pi(A_i) = \dim \pi(V) \). Taking \(x \) to be the preimage of \(\zeta \) under \((\id - \sigma)|_x(V) \), we have \(\zeta \in V_{\sigma,i} \) with \(i \neq 0 \) and \(\dim V_{\sigma,i} = \dim \ran(\id - \sigma) \). Let \(\sigma' = \sigma s_j \in W \). Then \(V_{\sigma,i} = V_{\sigma',i} \); hence \(\dim(\ran(\id - \sigma')) \geq \dim V_{\sigma,i} = \dim(\ran(\id - \sigma)) \), which shows \(\dim \ker(\id - \sigma') \leq \dim \ker(\id - \sigma) \). By elementary properties of reflection groups, the dimensions of the fixed point sets of \(\sigma \) and \(\sigma' \) differ by either +1 or −1. Hence \(\dim(\ker(\id - \sigma')) = \dim(\ker(\id - \sigma)) - 1 \), proving the first assertion of the lemma.

It follows in particular that the closure of \(\text{int}(\bar{X}) \) equals that of \(X \). Suppose \(\zeta \in \text{int}(\bar{X}) \). By Proposition 3.6 there exists \(\lambda \in \Lambda \) with \(\zeta \in \lambda + X \). It follows that \(\text{int}(\bar{X}) \) meets \(\lambda + X \), and hence also meets \(\lambda + \text{int}(\bar{X}) \). Since the \(\Lambda \)-translates of \(\text{int}(\bar{X}) \) are pairwise disjoint (see Proposition 3.4), it follows that \(\lambda = 0 \), that is, \(\zeta \in X \). This shows \(\zeta \in X \cap \text{int}(\bar{X}) = \text{int}(X) \); hence \(\text{int}(\bar{X}) \subset \text{int}(X) \). The opposite inclusion is obvious.

Since we already know that the sets \(\lambda + \text{int}(X) \) are disjoint, we are interested in \(X \setminus \text{int}(X) \subset \partial X = \bar{X} \setminus \text{int}(X) \). Let us call a closed codimension 1 boundary face of the polyhedron \(\bar{X} \) horizontal if its supporting hyperplane contains \(V_{w,0} \) for some \(w \in W_{\text{reg}} \), and vertical if its supporting hyperplane contains \(V_{w,i} \) for some \(w \in W_{\text{reg}} \) and \(i \neq 0 \). These two cases are exclusive:

Lemma 4.2. Let \(n \) be the inward-pointing normal vector to a codimension 1 face of \(\bar{X} \). Then \(\langle n, \alpha_{\text{max}} \rangle \neq 0 \). In fact, \(\langle n, \alpha_{\text{max}} \rangle < 0 \) for the horizontal faces and \(\langle n, \alpha_{\text{max}} \rangle > 0 \) for the vertical faces.

Proof. Given a codimension 1 boundary face of \(\bar{X} \), pick any point \(\zeta \) in that boundary face not lying in \(\bigcup_{w \in W_{\text{reg}}} \bigcup_{|I| \geq 2} V_{w,I} \). Let \(w \in W_{\text{reg}} \) and \(i \in \{0, \ldots, l\} \) such that \(\zeta \in V_{w,i} \) and \(n_{w,i} \) is an inward-pointing normal vector. By Proposition 3.3, there is a unique \(i' \neq i \) such that \(\zeta \in V_{w',i'} \), where \(w' = ws_{j_l}s_{j_l}' \). Since \(V_{w'} \) and \(V_{w'} \) lie on opposite sides of the affine hyperplane spanned by \(V_{w,i} \), and \(\zeta \) is a boundary point of \(\bar{X} \), we have \(w' \notin W \). Thus one of \(i \) and \(i' \) must be zero. If \(i = 0 \) (so that the given boundary face is horizontal) we obtain \(\langle n_{w,0}, \alpha_{\text{max}} \rangle = -\langle n_{w,0}, \alpha_0 \rangle < 0 \). If \(i' = 0 \) we similarly obtain \(\langle n_{w',0}, \alpha_{\text{max}} \rangle < 0 \); hence \(\langle n_{w,i}, \alpha_{\text{max}} \rangle > 0 \).

Lemma 4.3. Let \(\zeta \in X \setminus \text{int}(X) \). Then there exists a vertical boundary face of \(\bar{X} \) containing \(\zeta \). Equivalently, the complement \(\partial \bar{X} \setminus (X \setminus \text{int}(X)) \) is contained in the union of horizontal boundary faces.

Proof. The alcove \(A \) is invariant under multiplication by any scalar in \((0, 1) \). Hence, the same is true for the sets \(V_w \) for \(w \in W \), as well as for \(X \) and \(\text{int}(X) \). Hence, if \(\zeta \in X \setminus \text{int}(X) \) there exists \(t_0 > 1 \) such that \(t_0 \zeta \in X \setminus \text{int}(X) \) for \(1 \leq t < t_0 \). The closed codimension 1 boundary face containing this line segment is necessarily vertical,
since a line through the origin intersects the affine hyperplane \{ x \mid \langle a_{w,0}, x - \xi \rangle = 0 \}
in at most one point.

Proposition 4.4. For any \(\xi \in X \), there exists \(\epsilon > 0 \) such that \(\xi + s\alpha_{\text{max}} \in \text{int}(X) \) for \(0 < s < \epsilon \).

Proof. If \(\xi \in \text{int}(X) \) there is nothing to show; hence suppose \(\xi \in X \setminus \text{int}(X) \). Suppose first that \(\xi \) is not in the union of horizontal boundary faces of \(\bar{X} \). Then there exists an open neighborhood \(U \) of \(\xi \) such that \(U \cap X = U \cap \bar{X} \). All boundary faces of \(\bar{X} \) meeting \(\xi \) are vertical, and their inward-pointing normal vectors \(n \) all satisfy \(\langle n, \alpha_{\text{max}} \rangle > 0 \). Hence, \(\xi + s\alpha_{\text{max}} \in \text{int}(U \cap \bar{X}) = \text{int}(U \cap X) \subset X \) for \(s > 0 \) sufficiently small.

For the general case, suppose by way of contradiction that for all \(\epsilon > 0 \), there is \(s \in (0, \epsilon) \) with \(\xi + s\alpha_{\text{max}} \notin \text{int}(X) \). Since \(\xi \) is contained in some vertical boundary face, one can choose \(t > 1 \) so that \(\xi' := t\xi \in X \setminus \text{int}(X) \), but \(\xi' \) is not in the closure of the union of horizontal boundary faces. Given \(\epsilon > 0 \), pick \(s \in (0, \epsilon) \) such that \(\xi' + (s/t)\alpha_{\text{max}} \notin \text{int}(X) \). Since \(\text{int}(X) \) is invariant under multiplication by scalars in \((0, 1) \), the complement \(V \setminus \text{int}(X) \) is invariant under multiplication by scalars in \((1, \infty) \); hence we obtain \(\xi' + s\alpha_{\text{max}} \notin \text{int}(X) \). This contradicts what we have shown above, and completes the proof. \(\square \)

Proposition 4.5. The sets \(\lambda + X \) for \(\lambda \in \Lambda \) are disjoint.

Proof. Suppose \(\xi \in (\lambda + X) \cap (\lambda' + X) \). By Proposition 4.4, we can choose \(s > 0 \) so that \(\xi + s\alpha_{\text{max}} \in (\lambda + \text{int}(X)) \cap (\lambda' + \text{int}(X)) \). Since the \(\Lambda \)-translates of \(\text{int}(X) \) are disjoint, it follows that \(\lambda = \lambda' \). \(\square \)

This completes the proof of Theorem 1.2. We conclude with some remarks on the properties of the decomposition \(V = \bigcup_{w \in W_{\text{aff}}} V_w \).

Remarks 4.6. (a) The group of symmetries \(\tau \) of the extended Dynkin diagram (that is, the outer automorphisms of the corresponding affine Lie algebra) acts by symmetries of the decomposition \(V = \bigcup_{w \in W_{\text{aff}}} V_w \), as follows. Identify the nodes of the extended Dynkin diagram with the simple affine reflections \(s_0, \ldots, s_l \). Then \(\tau \) extends to a group automorphism of \(W_{\text{aff}} \), taking \(s_i \) to \(\tau(s_i) \). This automorphism is implemented by a unique Euclidean transformation \(g : V \to V \), that is,

\[g \varphi g^{-1} = \tau(w) \text{ for all } w \in W_{\text{aff}}. \]

Then \(g \) preserves \(A \), and consequently

\[g V_w = g(\text{id} - w)(A) = (\text{id} - \tau(w))(A) = V_{\tau(w)} \text{ for } w \in W_{\text{aff}}. \]

(b) It is immediate from the definition that \(-w : V \to V, x \mapsto -wx \) takes \(V_{w^{-1}} \) into \(V_w \):

\[-w(V_{w^{-1}}) = V_w. \]
(c) For any positive root α, let s_α be the corresponding reflection. Then
\[(\text{id} - s_\alpha)(\xi) = \langle \alpha, \xi \rangle \alpha^\vee,\]
where α^\vee is the coroot corresponding to α. Hence D_{s_α} is the relative interior of the line segment from 0 to $\lambda \alpha^\vee$, where λ is the maximum value of the linear functional $\zeta \mapsto \langle \alpha, \zeta \rangle$ on the closed alcove \overline{A}. This maximum is achieved at one of the vertices. Let $\sigma_1^\vee, \ldots, \sigma_l^\vee$ be the fundamental coweights, defined by $\langle \alpha, \sigma_j^\vee \rangle = \delta_{ij}$ for $i, j = 1, \ldots, l$. Let $c_i \in \mathbb{N}$ be the coefficients of α_{max} relative to the simple roots: $\alpha_{\text{max}} = \sum_{i=1}^l c_i \alpha_i$. Then the nonzero vertices of A are σ_i^\vee / c_i. Similarly let $a_i \in \mathbb{Z}_{\geq 0}$ be the coefficients of α_i, so that $\alpha_i = \sum_{i=1}^l a_i \alpha_i$. Then the value of α at the i-th vertex of \overline{A} is a_i / c_i, and λ is the maximum of those values. There are two interesting cases: First, if $\alpha = \alpha_{\text{max}}$, then all $a_i / c_i = 1$, and $\alpha^\vee = \alpha$. That is, the open line segment from the origin to the highest root always appears in the decomposition. Second, if $\alpha = \alpha_i$, then $a_i = 1$ while all other a_j vanish. In this case, one obtains the open line segment from the origin to $(1 / c_i) \alpha^\vee_i$.

(d) Every V_w contains a distinguished ‘base point’. Indeed, let $\rho \in V$ be the half-sum of positive roots, and $h^\vee = 1 + \langle \alpha_{\text{max}}, \rho \rangle$ the dual Coxeter number. Then $\rho / h^\vee \in A$, and consequently $\rho / h^\vee - w(\rho / h^\vee) \in V_w$.

5. Proof of Theorem 1.3

The proof is very similar to the proof of Proposition 3.4; hence we will be brief. Each $V_w^{(S)} = (S - w)(A)$ is the interior of a simplex in V, with codimension 1 faces $V_{w,i}^{(S)} = (S - w)(A_i)$. As in the proof of Lemma 3.1, we see that
\[n_{w,i}^{(S)} = (S - i\omega^{-1})^{-1} a_i\]
is an inward-pointing normal vector to the face $V_{w,i}^{(S)}$. For $S = 0$ this simplifies to $n_{w,i}^{(0)} = - w a_i$. If $w' = w_s i$, then $V_{w,i}^{(S)} = V_{w',i}^{(S)}$, so that $n_{w,i}^{(S)}$ and $n_{w',i}^{(S)}$ are proportional. Since $n_{w,i}^{(0)} = - n_{w',i}^{(0)}$, continuity implies that $n_{w,i}^{(S)}$ is a negative multiple of $n_{w',i}^{(S)}$. As a consequence, we see that $V_w^{(S)}$ and $V_{w'}^{(S)}$ are on opposite sides of affine hyperplane supporting $V_{w,i}^{(S)} = V_{w',i}^{(S)}$. Arguing as in the proof of Proposition 3.4, this shows that
\[\bigcup_{w \in W^{\text{af}}} V_w^{(S)} = V.\]
Letting $X^{(S)} = \bigcup_{w \in W} V_w^{(S)}$, it follows that $V = \bigcup_{i \in A} (S + X^{(S)})$. Therefore we have $\text{vol}(X^{(S)}) \geq |W| \text{vol}(A)$. But

\[
\text{vol}(X^{(S)}) \leq \sum_{w \in W} \text{vol}((S - w)(A)) = \text{vol}(A) \sum_{w \in W} |\det(S - w)| = \text{vol}(A) \sum_{w \in W} \det(id - Sw^{-1}) = |W| \text{vol}(A),
\]

using [Bourbaki 1975, page 134]. It follows that $\text{vol}(X^{(S)}) = |W| \text{vol}(A)$, which implies (as in the proof of Proposition 3.4) that all $\text{int}(\overline{V}_w^{(S)}) = V_w^{(S)}$ are disjoint. This completes the proof.

Remark 5.1. Theorem 1.3 and its proof go through for any S in the component of 0 in the set $\{S \in \text{End}(V) \mid \det(S - w) \neq 0 \text{ for all } w \in W\}$. For instance, the fact that $\det(id - Sw^{-1}) > 0$ follows by continuity from $S = 0$. On the other hand, the result becomes false if, for example, S is a positive matrix with $S > 2 \text{id}$, since then $\sum_{w \in W} |\det(S - w)| = \sum_{w \in W} \det(S - w) = \det(S)|W|$; see [Bourbaki 1975, page 134].

Acknowledgments

I would like to thank Bert Kostant for telling me about Waldspurger’s result, and the referee for helpful comments.

References

Eckhard Meinrenken

University of Toronto

Department of Mathematics

40 St. George Street

Toronto, Ontario M4S 2E4

Canada

mein@math.toronto.edu