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Let K be an algebraically closed, complete, nonarchimedean field, let E/K

be an elliptic curve, and let E denote the Berkovich analytic space associated
to E/K. We study the µ-equidistribution of finite subsets of E(K), where
µ is a certain canonical unit Borel measure on E. Our main result is an
inequality bounding the error term when testing against a certain class of
continuous functions on E. We then give two applications to elliptic curves
over global function fields: We prove a function field analogue of the Szpiro–
Ullmo–Zhang equidistribution theorem for small points, and a function field
analogue of a result of Baker, Ih, and Rumely on the finiteness of S-integral
torsion points. Both applications are given in explicit quantitative form.

Introduction

The main local inequality. Let K be a field that is algebraically closed and com-
plete with respect to a nontrivial, nonarchimedean absolute value | · |, and let E/K
be an elliptic curve. The main result of this paper is an inequality that measures the
equidistribution of finite subsets of E(K) with respect to a certain canonical unit
Borel measure µ defined on the Berkovich analytic space E associated to E/K.

We will give a thorough review of the space E in Section 1, but briefly it is a
path-connected, compact, Hausdorff topological space that contains E(K) (with
the topology induced by the absolute value on K) as a dense subspace. The set
E \ E(K) is endowed with a canonical path metric ρ(x, y) giving it the structure
of an (infinite) metrized graph. In particular, there exists a distinguished finite
subgraph 6 of E called the skeleton, along with a strong deformation retraction
r6 : E → 6, such that each connected component of E \ 6 is homeomorphic
to a simply connected open Berkovich disc B◦. If the j-invariant jE is integral
(| jE | ≤ 1), the set 6 consists of a single point, and so in particular E is simply
connected. If jE is not integral (| jE | > 1), the set 6 is isometric to a circle of
circumference log| jE |, and in this case the fundamental group of E is infinite cyclic.
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The canonical unit Borel measure µ on E is supported on 6, and is defined as
follows: If jE is integral, µ is the Dirac measure supported at the point 6, while if
jE is not integral, µ is the normalized uniform measure supported on the circle 6.

Let Z be a nonempty finite subset of E(K). In Section 2 we will define a
nonnegative real number D(Z) called the local discrepancy of Z , which is closely
related to the Néron local height function on E(K), and which is small precisely
when the set Z is close to being µ-equidistributed. Let C(E,R) denote the space
of continuous real-valued functions on E. Our main local result is summarized in
the following theorem.

Theorem 1. There exists a dense subspace S(E,R) of C(E,R) such that∣∣∣∣ 1
|Z |

∑
P∈Z

F(P)−
∫

Fdµ
∣∣∣∣≤ C1(F)

(
D(Z)+ C2(F)

|Z |

)1/2

for all F ∈ S(E,R) and all nonempty finite subsets Z of E(K), where C1(F) and
C2(F) are constants depending only on F.

Roughly speaking, S(E,R) is the space of continuous functions F :E→R whose
derivative F ′ is supported on some finite subgraph of E and is square-integrable.
The constant C1(F) is essentially the L2-norm of F ′, and C2(F) is a quantity
measuring the size of the support of F ′. In Section 2 we will restate this result with
precise definitions of S(E,R), C1(F), and C2(F). As applications of Theorem 1
we prove several global results summarized in the following two sections.

The global equidistribution theorem. Let K be a global function field. We will
state precisely what this means in Section 3, but an example is the field K =k(C) of
rational functions on an integral, proper, geometrically connected curve C defined
over an arbitrary field k. At each place v of K , let Kv be the completion of K at v,
and let Kv be the completion of the algebraic closure of Kv; the field Kv is both
complete and algebraically closed [Bosch et al. 1984, Section 3.4].

Let E/K be an elliptic curve, and at each place v of K , let Ev be the Berkovich
analytic space associated to E/Kv; more generally, we affix a subscript v to all
local objects associated to E/Kv, including the canonical measureµv on Ev. Recall
that the Néron–Tate canonical height function ĥ : E(K )→ R is nonnegative and
vanishes on the torsion subgroup E(K )tor of E(K ). Given a finite set Z of points
in E(K ), define the height of Z to be the average ĥ(Z)= |Z |−1∑

P∈Z ĥ(P) of the
heights of its points. Using Theorem 1 we will prove an inequality measuring the
local µv-equidistribution of a large set Z of small global points in E(K ):

Theorem 2. Let E/K be an elliptic curve over a global function field, let v be a
place of K , and let ε : K ↪→Kv be a K -embedding. There exists a dense subspace
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S(Ev,R) of C(Ev,R) such that∣∣∣∣ 1
|Z |

∑
P∈Z

F(ε(P))−
∫

Fdµv

∣∣∣∣≤ C1(F)
(

4ĥ(Z)+
h( jE)

12|Z |
+

C2(F)
|Z |

)1/2

for all F ∈S(Ev,R) and all nonempty finite Aut(K/K )-stable subsets Z of E(K ),
where h( jE) denotes the absolute Weil height of the j-invariant of E , and where
C1(F) and C2(F) are the same constants associated to the function F ∈ S(Ev,R)

as in Theorem 1.

Using the fact that S(Ev,R) is dense in C(Ev,R), we will deduce the following
corollary, a function field analogue of the Szpiro–Ullmo–Zhang equidistribution
theorem for elliptic curves.

Corollary 3. Let E/K be an elliptic curve over a global function field, let v be a
place of K , and let ε : K ↪→ Kv be a K -embedding. Let {Zn}

∞

n=1 be a sequence of
finite Aut(K/K )-stable subsets of E(K ) with ĥ(Zn)→ 0 and |Zn| → +∞. Then

(1) lim
n→+∞

1
|Zn|

∑
P∈Zn

F(ε(P))=
∫

Fdµv

for all continuous functions F : Ev→ R.

We will prove Theorem 2 and Corollary 3 in Section 3.

The finiteness of S-integral torsion points. Let K be a global function field or a
number field, and let E/K be an elliptic curve given by a Weierstrass equation

(2) y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6.

Let S be a finite set of places of K (including the archimedean places if K is a
number field) such that (2) is defined over the ring

OS = {a ∈ K | |a|v ≤ 1 for all places v 6∈ S}

of S-integers in K . Given two points P, Q ∈ E(K ), we say that P is S-integral
with respect to Q if the Zariski closures of P and Q do not meet in the model E/OS

of E associated to the Weierstrass equation (2).
For fixed Q ∈ E(K ), let E(OS, Q) denote the set of points in E(K ) that are S-

integral with respect to Q, and let E(OS, Q)tor = E(K )tor∩E(OS, Q) be the set of
torsion points that are S-integral with respect to Q. In the number field case, Baker,
Ih and Rumely [Baker et al. 2008] have shown that if Q ∈ E(K ) is a nontorsion
point, then E(OS, Q)tor is finite. More generally, Ih has conjectured analogous
finiteness results for torsion points on abelian varieties and preperiodic points for
dynamical systems on P1 over number fields. We will prove the following function
field analogue of Baker, Ih and Rumely’s theorem for elliptic curves.
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Theorem 4. Let E/K be an elliptic curve over a global function field. Let (2) be
a Weierstrass equation for E/K , let S be a finite set of places of K such that (2) is
defined over OS , and let E/OS denote the associated S-integral model for E. If Q
is a point in E(K ) with ĥ(Q) > 0, then the set E(OS, Q)tor is finite.

In the number field case, Baker, Ih and Rumely [Baker et al. 2008] treat the
nonarchimedean places using a result of Chambert-Loir (which in our notation is
equivalent to the equidistribution of torsion points after they have been retracted
onto the skeleton 6v), in combination with a result of Cassels bounding the de-
nominators of torsion points in characteristic zero. Our proof over function fields,
which holds in arbitrary characteristic, requires the full equidistribution theorem
on Ev, and in place of Cassels’s inequality it uses the discreteness of torsion points
in E(Kv). On the other hand, the lack of archimedean places makes the proof
of Theorem 4 quite a bit less complicated than its number field analogue: The
treatment of the archimedean places in [Baker et al. 2008] requires a strong quan-
titative equidistribution result on torsion points in E(C), along with an effective
diophantine inequality on linear forms in elliptic logarithms due to David and
Hirata-Kohno.

Using Theorem 2, we can prove a quantitative version of Theorem 4. First
observe that for fixed Q ∈ E(K ), the set E(OS, Q) depends on the choice of
Weierstrass equation and the set S. However, enlarging the set S only makes the set
E(OS, Q)tor larger, and since any two Weierstrass equations for E/K give rise to
isomorphic models over OS for some (sufficiently large) finite set S of places of K ,
we see that the finiteness of E(OS, Q)tor for all S is independent of the Weierstrass
equation (2). Moreover, by enlarging the set S if necessary, we may assume that
the Weierstrass equation (2) has good reduction outside S. Under this additional
hypothesis we can give an explicit bound on E(OS, Q)tor.

Theorem 5. Let E/K , S, and E/OS satisfy the same hypotheses as in Theorem 4,
and assume in addition that S contains all places v of K such that |1|v 6= 1, where
1 ∈ K is the discriminant of (2). If Q is a point in E(K ) with ĥ(Q) > 0, then

(3) |E(OS, Q)tor| ≤
1

ĥ(Q)2

(
|S|h( jE)

12
+

∑
v∈S

mv(Q)
)2
.

In this inequality, h( jE) denotes the absolute Weil height of the j-invariant of E ,
and for each v ∈ S, mv(Q) is a certain nonnegative quantity that is large when
some embedding of Q into E(Kv) is v-adically close to a torsion point; we will
define this precisely in Section 4. We point out that Theorem 5 holds even when S
is empty; in that case E must be defined over the constant field K0 of K , and our
proof shows that E(OS, Q)tor is empty.
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Other work. It is now well understood that Berkovich’s theory of analytic spaces
provides a suitable framework in which to prove nonarchimedean equidistribution
theorems of the type of Szpiro, Ullmo and Zhang’s; see for example [Baker and
Rumely 2006; Chambert-Loir 2006; Favre and Rivera-Letelier 2006; Thuillier
2005]. Until very recently such results have been worked out in the number field
case only. However, independently Faber [2008] and Gubler [2008] have now
proved a general equidistribution result for dynamical systems on varieties over
function fields. When K = k(C), the results of Faber and Gubler contain our
Corollary 3 as a special case; on the other hand, we treat a wider class of function
fields than in [Faber 2008], and our results are quantitative.

Favre and Rivera-Letelier [2006] have proved a quantitative equidistribution re-
sult for small points with respect to dynamical systems on P1 over number fields.
The local results therein are proved using potential theory on the Berkovich pro-
jective line P1 and work for a large class of Borel measures on P1, while our
techniques are more elementary and are formulated specifically for the canonical
measure µ on E. However, Thuillier [2005] has developed potential theory on an
arbitrary nonarchimedean curve; it would be interesting to use this theory to obtain
more general equidistribution results in the spirit of Theorem 1.

Baker and Petsche [2005] established quantitative equidistribution results for
elliptic curves over number fields, although they did not prove an explicit inequality
on the error term as in Theorem 2. Rather, their main inequality is a bound on the
local discrepancy Dv(Z) at each place v, which is enough to deduce the qualitative
equidistribution theorem and several quantitative corollaries. As is often the case
with nonarchimedean equidistribution theorems of this type, they use the count-
ability of the residue field of Cv (over a number field) to show that the limiting
measure is supported on the skeleton 6v of Ev. Our proof of Corollary 3 gets
around this assumption by establishing the limit formula (via Theorem 2) for the
dense class S(Ev,R) of test functions. Note that the field Kv over a function field
K may have uncountable residue field.

Our analytic treatment of E using the path metric ρ(x, y) is heavily influenced by
the work of Baker and Rumely, especially their monograph [2009] on the analytic
theory of the Berkovich projective line P1.

The rest of this paper is organized as follows. In Section 1 we give a detailed
review of the topological and analytic structure of the Berkovich analytic space
associated to an elliptic curve. We prove our main local result Theorem 1 in
Section 2, and in Sections 3 and 4 we treat the global applications.
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1. Nonarchimedean preliminaries

Overview. Let K be a field that is algebraically closed and complete with respect
to a nontrivial, nonarchimedean absolute value | · |. Let

O= {a ∈ K | |a| ≤ 1} and M= {a ∈ K | |a|< 1}

respectively be the ring of integers in K and its maximal ideal. Let k=O/M denote
the residue field, which is algebraically closed [Bosch et al. 1984, Section 3.4].

Let E/K be an elliptic curve with j-invariant jE ∈K. In this section we will give
a fairly detailed review of the Berkovich analytic space E associated to E/K, its
canonical path metric ρ(x, y), and its relation to the Néron local height function
λ on E(K). This is partly to make this paper as self-contained as possible; in
particular, to understand our results it is not necessary to have any prior knowledge
of the general theory of Berkovich analytic spaces. Moreover, we intend to make
essential use of the metrized graph structure on E, and we will put special emphasis
on the completely explicit nature of our main inequality and its corollaries. We will
therefore need to have an explicit description of the space E and its canonical path
metric ρ(x, y). See [Berkovich 1990] for the theoretical foundation of Berkovich
analytic spaces in general, and see [Baker and Rumely 2009; Baker 2008] for more
detailed expositions on the Berkovich projective line and more general curves.

1.1. Elliptic curves and integral models. In this section we will fix a model E/O

associated to an integral Weierstrass equation for E/K, and we will record a basic
lemma. In later sections we will use this model to explicitly construct the Berkovich
analytic space E and its associated path metric ρ(x, y), working out the details in
the cases of integral and nonintegral j-invariant separately. We will then explain
the topology on E and its metrized graph structure in Section 1.7.

First suppose that jE is integral (| jE | ≤ 1). Then there exists a Weierstrass
equation

(4) y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6

for E with integral coefficients a1, a3, a2, a4, a6 ∈O and unit discriminant1∈O×.
Letting E/O denote the associated integral model for E , the special fiber E is an
elliptic curve over k, and the reduction map π : E(K)→E(k) is a surjective group
homomorphism. In this situation E/K is said to have good reduction.

Suppose now that jE is not integral (| jE | > 1). Then we let E/O denote the
integral model for E associated to the Weierstrass equation

(5) y2
+ xy = x3

+ a4(q)x + a6(q)

afforded by Tate’s uniformization theory; see [Tate 1995] and [Silverman 1994,
Section V.3]. Here q ∈K× is a uniformizing parameter satisfying |q| = |1/jE |< 1,
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and a4(q), a6(q) are certain elements of K defined by convergent integral power
series in q . In particular we have a group isomorphism φ :K×/qZ ∼−→ E(K) given
by φ(u)= (X (u, q), Y (u, q)) for u 6∈ qZ, where X (u, q) and Y (u, q) can be given
explicitly in terms of u and q. Let π : E(K)→ E(k) denote the reduction map
onto the special fiber (which is singular). The set Ens(k) of nonsingular points on
the special fiber is a group variety that is isomorphic to k×, and thus E/K is said
to have (split) multiplicative reduction. Letting E0(K) = π

−1(Ens(k)) denote the
set of points with nonsingular reduction, the map π restricts to a surjective group
homomorphism π0 : E0(K)→ Ens(k) ' k×. The set {u ∈ K× | |q| < |u| ≤ 1} is a
fundamental domain for the quotient K×/qZ. Given an element u in this domain,
we have φ(u) ∈ E0(K) if and only if |u| = 1. Moreover, when |u| = 1, the point
φ(u) ∈ E0(K) reduces to the identity element of Ens(k) if and only if |u− 1|< 1.

Regardless of the reduction type of E/K, we let z =−x/y denote the standard
local parameter at the origin with respect to the chosen Weierstrass equation. Let
B◦ = {P ∈ E(K) | π(P)= π(O)} denote the “kernel of reduction”, that is, the set
of points in E(K) that reduce to the point π(O)= (0 : 1 : 0) ∈ E(k)⊂P2(k). Note
that B◦ is a subgroup of E(K).

Lemma 6. The map z : B◦→ B◦(0, 1) is a bijection of B◦ with the open unit disc
B◦(0, 1) of K, and |z(P ± Q)| = |z(P)± z(Q)| for all P, Q ∈ B◦.

Before we get to the proof of this lemma, define

(6) d(P, Q)=
{
|z(P − Q)| if P − Q ∈ B◦,
1 if P − Q 6∈ B◦

for any two points P, Q ∈ E(K). This definition does not depend on our choice
of Weierstrass equation. It is easy to check using Lemma 6 that d(P, Q) defines
a nonarchimedean metric on E(K); we take the resulting metric topology as the
definition of the topology on E(K).

Proof of Lemma 6. Let F(Z1, Z2)∈O[[Z1, Z2]] be the formal group law associated
to the integral Weierstrass equation, with inverse i(Z) ∈ O[[Z ]], and let w(Z) ∈
O[[Z ]] be the expansion of the function z 7→ w = −1/y on E(K) at z = 0. These
are formal power series with integral coefficients that converge when the variables
Z , Z1, Z2 take values z, z1, z1 ∈ B◦(0, 1); see [Silverman 1986, Section IV.1] for
their definitions and basic properties.

Given z ∈ B◦(0, 1), the point σ(z) := (−z : 1 : −w(z)) ∈ P2(K) satisfies the
Weierstrass equation and thus constitutes a point in E(K). Sincew(Z)= Z3

+u(Z),
where all terms of u(Z) ∈ O[[Z ]] have degree at least 4, we see that |w(z)| < 1,
and thus σ(z) reduces to (0 : 1 : 0) ∈ P2(k); in other words σ(z) ∈ B◦. It follows
that the map σ : B◦(0, 1)→ B◦ is the inverse of z : B◦→ B◦(0, 1), and thus both
maps are bijections.
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In fact the maps σ : Ê(M)→ B◦ and z : B◦→ Ê(M) are group isomorphisms,
where Ê(M) denotes the group that is equal to the set B◦(0, 1) endowed with
the group law (z1, z2) 7→ F(z1, z2), with inverse z 7→ i(z). Since F(Z1, Z2) =

Z1 + Z2 + G(Z1, Z2), where all terms of G(Z1, Z2) ∈ O[[Z1, Z2]] have degree
at least 2, we have |z(P + Q)| = |F(z(P), z(Q))| = |z(P) + z(Q)|. Moreover
i(Z) = −Z + j (Z), where all terms of j (Z) ∈ O[[Z ]] have degree at least 2, and
thus |z(−P)| = |i(z(P))| = |z(P)|. �

1.2. The Berkovich unit disc. In this section we will pause from the discussion
of elliptic curves. We define the Berkovich unit disc B(0, 1) over K and the open
Berkovich unit disc B◦(0, 1). We summarize their basic properties and describe
their canonical path metric ρ(x, y). Our treatment of B(0, 1) follows [Baker and
Rumely 2009, Chapter 1].

Let K〈T 〉= { f (T )=
∑

`≥0 a`T `
| a` ∈K, |a`|→ 0} be the ring of formal power

series converging in the unit disc B(0, 1)= {a ∈K | |a| ≤ 1} of K. A multiplicative
seminorm [ · ] on K〈T 〉 is a nonnegative real-valued function on K〈T 〉 that satisfies
the axioms [0]= 0, [1]= 1, [ f (T )+g(T )]≤ [ f (T )]+[g(T )], and [ f (T )g(T )]=
[ f (T )][g(T )] for all f (T ), g(T ) ∈K〈T 〉. A seminorm may fail to be a true norm
in the functional-analytic sense since it may vanish on nonzero elements of K〈T 〉.
A multiplicative seminorm [·] is said to be bounded if there exists a constant C > 0
such that [ f (T )] ≤ C max`≥0|a`| for all f (T )=

∑
`≥0 a`T `

∈ K〈T 〉.
The Berkovich unit disc B(0, 1) is defined to be the set of bounded multiplicative

seminorms [ · ] on the ring K〈T 〉 that extend the absolute value | · | on K. There
exists a natural compact, Hausdorff topology on B(0, 1); it is defined as the weakest
topology such that those subsets of the form

(7) {x ∈ B(0, 1) | α < [ f (T )]x < β} for α, β ∈ R and f (T ) ∈ K〈T 〉

are open, where here and throughout [ · ]x denotes the seminorm corresponding to
the point x ∈ B(0, 1). In other words, the collection of sets of the form (7) is a
subbase for the topology on B(0, 1); see [Berkovich 1990, Section 1.2] and [Baker
and Rumely 2009, Section 1.1].

To see some examples of elements of the Berkovich unit disc B(0, 1), note that
each element a in the ordinary unit disc B(0, 1) gives rise to the evaluation semi-
norm [ f (T )]a = | f (a)|, and this defines a dense embedding B(0, 1) ↪→ B(0, 1).
More generally, each closed disc B(a, r)= {z ∈K | |z−a| ≤ r}, where a ∈ B(0, 1)
and r ∈ {0}∪ |K×| with 0≤ r ≤ 1, defines a point ζa,r in B(0, 1) corresponding to
the sup norm [ f (T )]ζa,r = supz∈B(a,r)| f (z)|. Thus we identify the “classical point”
a ∈ B(0, 1) with the “Berkovich point” ζa,0 ∈ B(0, 1) under this notation. It may
happen (depending on the field K) that the points ζa,r account for all elements of
B(0, 1), but this is generally not the case. In fact, Berkovich [1990, Section 1.4.4]
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has classified of all points of B(0, 1) into four types, of which the points ζa,0 for
a ∈ B(0, 1) compose type 1, and the points ζa,r for a ∈ B(0, 1) and r ∈ |K×| with
0< r ≤ 1 compose type 2. Loosely speaking, the points of type 3 and 4 “fill in the
holes” of the set {ζa,r } to create a compact, path-connected space B(0, 1).

The path-connectedness of B(0, 1) can be easily seen. First observe that B(0, 1)
carries a natural partial order under which x ≤ y if and only if [ f (T )]x ≤ [ f (T )]y
for all f (T )∈K〈T 〉. Thus if ζa,r and ζa′,r ′ are points of type 1 or 2, then ζa,r ≤ ζa′,r ′

if and only if B(a, r) ⊆ B(a′, r ′). It follows from Berkovich’s classification that
the point ζ0,1 corresponding to the sup norm on the unit disc B(0, 1) itself is the
unique maximal point in B(0, 1); this point is commonly known as the Gauss
point of B(0, 1). On the other hand, each type 1 point a = ζa,0 in B(0, 1) is
minimal. Given two points x, y ∈B(0, 1) with x ≤ y, denote by [x, y] the set of all
z ∈B(0, 1) satisfying x ≤ z ≤ y. It is a straightforward exercise to show that [x, y]
is homeomorphic to a closed subinterval of the real line. More generally, given any
two x, y ∈ B(0, 1) (perhaps with x 6≤ y), there exists a unique least upper bound
x ∨ y of x and y; we then define [x, y] = [x, x ∨ y] ∪ [y, x ∨ y], which is again
homeomorphic to a closed real interval; we will call such sets [x, y] line segments
in B(0, 1). We remark that [x, y]= [y, x] for all x, y ∈B(0, 1); that is, the notation
does not imply an order relationship between x and y.

In addition to the topological considerations above, there is a natural way to
assign a notion of length to each line segment in B(0, 1). To do this we first con-
sider the diameter function diam : B(0, 1)→ [0, 1], x 7→ infa∈B(0,1)[T − a]x ; thus
diam(ζa,r )= r for points of type 1 and 2. For two points x, y ∈ B(0, 1) \ B(0, 1),
define the length of the line segment [x, y] by

ρ(x, y)= log
( diam(x∨y)2

diam(x) diam(y)

)
.

This defines a path metric on B(0, 1) \ B(0, 1) under which the points of B(0, 1)
can be viewed as being at infinite distance from all other points. Moreover, any line
segment [x, y] in B(0, 1) \ B(0, 1) is isometric to a real interval of length ρ(x, y).

We note for future use the following fact: Let x, y ∈ B(0, 1) be two distinct
type 1 points. Then it is easy to see that x∨ y= ζx,|x−y|, and therefore the distance
from the Gauss point ζ0,1 to the point x ∨ y is

(8) ρ(ζ0,1, x ∨ y)=− log|x − y|.

For our purposes it will be more useful to work with the open Berkovich unit
disc B◦(0, 1), which is a certain proper subset of B(0, 1). To define B◦(0, 1), let
B◦(0, 1)= {a ∈K | |a|< 1} be the open unit disc in B(0, 1). Given a ∈ B(0, 1), it
is clear that a ∈ B◦(0, 1) if and only if 0∨ a 6= ζ0,1 in B(0, 1). Motivated by this,
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we define the open Berkovich unit disc by

B◦(0, 1)= {x ∈ B(0, 1) | 0∨ x 6= ζ0,1}.

Thus B◦(0, 1)∩B(0, 1)= B◦(0, 1). Like B(0, 1), the B◦(0, 1) is path connected, but
unlike B(0, 1), it has no maximal element. On the other hand, the set B◦(0, 1) ∪
{ζ0,1} obtained by adjoining the Gauss point is path connected, with ζ0,1 as its
unique maximal element.

1.3. The space E in the good reduction case. Returning to our elliptic curve E/K,
suppose that | jE |≤1. For each α∈E(k), let B◦α=π

−1(α)={P ∈ E(K) |π(P)=α}
be the set of points reducing to α, and fix a point Pα ∈ B◦α. Lemma 6 implies that
the map

(9) να : B◦α→ B◦(0, 1), P 7→ z(P − Pα)

is a homeomorphism of B◦α with the open unit disc B◦(0, 1) of K. We thus have a
decomposition of E(K) into a disjoint union

(10) E(K)=
∐
α∈E(k)

B◦α

of subsets that are homeomorphic to open discs.
For each α ∈ E(k), let B◦α denote the open Berkovich unit disc associated to the

open unit disc B◦α, and let B◦α ∪ {ζα} denote the union of B◦α with its associated
Gauss point ζα, as described in Section 1.2. The Berkovich analytic space E is the
union of the B◦α ∪{ζα} over all α ∈ E(k), where the points ζα are identified to form
a single point ζ ∈ E. The set 6 = {ζ } is the skeleton of E, and we therefore have a
decomposition

(11) E \6 =
∐
α∈E(k)

B◦α

of E \6 into its connected components B◦α. The constant map r6 : E→6 defines
a strong deformation retraction of E onto 6; in particular, E is simply connected.

1.4. The space E in the multiplicative reduction case. Suppose now that | jE |>1.
Let u : E(K) ∼−→K×/qZ be the inverse of the Tate isomorphism φ discussed in
Section 1.1. Then

(12) r : E(K)→6, P 7→ − log|u(P)|

is a group homomorphism, where 6 = R/(log| jE |)Z denotes the circle group of
circumference log| jE | > 0. As explained in Section 1.1, the kernel of the map r
is precisely the set E0(K) of points in E(K) with nonsingular reduction. More
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generally, let6r ⊆6 denote the image of r , and for each s ∈6r , let Es(K)=r−1(s)
denote its r -preimage.

For each s ∈ 6r , select Ps,0 ∈ Es(K). Then for each pair (s, α) ∈ 6r ×Ens(k)
define a subset

B◦s,α = {P ∈ Es(K) | π0(P − Ps,0)= α}

of Es(K). We have decomposed E(K) into a disjoint union

(13) E(K)=
∐

(s,α)∈6r×Ens(k)

B◦s,α.

Note that Ps,0 ∈ B◦s,0. More generally, for each pair (s, α) with α 6= 0, select a point
Ps,α ∈ B◦s,α. It follows from Lemma 6 that the map

(14) νs,α : B◦s,α→ B◦(0, 1), P 7→ z(P − Ps,α)

is a homeomorphism of B◦s,α with the open unit disc B◦(0, 1) of K.
For each pair (s, α) ∈6r ×Ens(k), let B◦s,α denote the open Berkovich unit disc

associated to the open unit disc B◦s,α, and let B◦s,α ∪{ζs,α} denote the union of B◦s,α
with its associated Gauss point ζs,α, as described in Section 1.2. The Berkovich
analytic space E is the union of the circle 6 with the sets B◦s,α ∪ {ζs,α} over all
(s, α) ∈ 6r × Ens(k), where for each s ∈ 6r the points ζs,α are identified with
each other and with the point s ∈ 6r to form a single point s of E. Thus E can be
visualized as a collection of open Berkovich discs B◦s,α glued together along the
skeleton 6. We have a decomposition

(15) E \6 =
∐

(s,α)∈6r×Ens(k)

B◦s,α

of E \6 into its connected components B◦s,α. The homomorphism r : E(K)→ 6

defined in (12) extends to a strong deformation retraction r6 :E→6; in particular,
the fundamental group of E is isomorphic to π1(6)' Z.

Note that the parametrization of the sets B◦s,α by 6r × Ens(k) is noncanonical,
due to the arbitrary choice of each point Ps,α in B◦s,α.

1.5. The path metric. The path metric ρ(x, y) on E \ E(K) is the unique metric
that restricts to the canonical path metric on each connected component B◦ of
E \ E(K), as described in Section 1.2, and that in the multiplicative reduction
case restricts to the usual path metric on the circle 6 ' R/(log| jE |)Z. Under this
metric, each point of E(K) can be viewed as being at “infinite distance” from all
other points in E.

We caution that the metric topology on E\E(K) is not the same as the subspace
topology induced by the Hausdorff topology on E. However, the metric ρ(x, y)
and the topology on E are related to one another, as described in Section 1.7.
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1.6. The Néron function. Let λ : E(K)\{O}→R be the Néron function as defined
and normalized in [Silverman 1994, Section VI.1]. There exists a natural extension
of λ to a continuous function on E \ {O}; this extension is closely related to the
analytic structure of the space E, its skeleton 6, and the path metric ρ(x, y).

To describe this extension, we begin by defining two continuous functions

i : E×E→ R∪ {+∞} and j : E×E→ R.

Letting diag(E(K)) denote the diagonal of E(K)× E(K) in E×E, we first declare
that i(x, y)=+∞ if (x, y) ∈ diag(E(K)). For (x, y) ∈ E×E\diag(E(K)), define
i(x, y)= 0 if x and y are not both elements of the same connected component B◦

of E \6, as in one of the decompositions (11) or (15). On the other hand, if both
x and y are elements of the same connected component B◦, let x ∨ y ∈ E \ E(K)
be their least upper bound with respect to the partial order on B◦, and define

(16) i(x, y)= ρ(r6(x ∨ y), x ∨ y).

In other words, i(x, y) is the distance between x ∨ y and its nearest point on the
skeleton 6. Note that i(x, y) is nonnegative, finite outside of diag(E(K)), and
positive if and only if x and y lie in the same connected component of E \6. In
particular, if P, Q ∈ E(K) then

(17) i(P, Q) > 0 if and only if π(P)= π(Q) and r6(P)= r6(Q).

The number i(P, Q) is closely related to the intersection multiplicity of the two
points P, Q ∈ E(K) in the integral model E/O; for example, if E/K has good
reduction, (17) shows that i(P, Q)= 0 if and only if P and Q do not meet in E.

Finally we note that on E(K) the function i(P, Q) is related to the metric (6)
by i(P, Q) = − log d(P, Q); this is easy to see using the definitions (6) and (16)
and the rule (8).

Let j (x, y) be identically zero if E/K has good reduction. If E/K has multi-
plicative reduction, let `= log| jE | = log|1/q|> 0, let r6 : E→6 ' R/`Z denote
the retraction map, and define

(18) j (x, y)= 1
2`8((r6(x)− r6(y))/`),

where 8(t) = (t − [t])2 − (t − [t])+ 1/6 is the second periodic Bernoulli poly-
nomial. Regardless of the reduction type of E/K, we see that j (x, y) is bounded
and symmetric, it factors through the retraction r6 : E→6 onto the skeleton, and
j (x, y)= 1

12 log+| jE | if r6(x)= r6(y).
The function j (x, y) is natural when viewed in the context of the Laplacian on

6 as a metrized graph. In the language of [Baker and Rumely 2007, Section 1.8],
j (x, y) is the unique normalized Arakelov–Green’s function on the circle 6 with
respect to the uniform probability measure.
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Proposition 7. Let P and Q be distinct points in E(K). Then

(19) λ(P − Q)= i(P, Q)+ j (P, Q).

In view of this proposition we define a function λ : E × E → R ∪ {+∞} by
λ(x, y)= i(x, y)+ j (x, y). Thus λ(x, y)=+∞ if and only if (x, y)∈diag(E(K)),
and Proposition 7 states that λ(P, Q)= λ(P−Q) for distinct points P, Q ∈ E(K).
The decomposition (19) is analogous to the one Chinburg and Rumely [1993] in-
troduced in the context of the reduction graph associated to an arithmetic surface
over a discrete valuation ring; from the point of view of Berkovich analytic spaces,
this is closely related to the skeleton 6 of E.

Proof of Proposition 7. First suppose that E/K has good reduction. Then

(20) λ(P − Q)= 1
2 log+|x(P − Q)| = log+|z(P − Q)−1

|,

where z = −x/y is the local parameter at the origin associated to the integral
Weierstrass equation (4) in the variables x and y. The first identity in (20) is
proved in [Silverman 1994, Theorem VI.4.1].

To see the second identity in (20), let us abbreviate x= x(P−Q), y= y(P−Q),
and z = z(P − Q). First suppose that |x | > 1. Since the Weierstrass equation (4)
has coefficients in O, it follows from the ultrametric inequality that |y|2 = |x |3,
whereby |z−1

| = |y|/|x | = |x |1/2 > 1. This proves the second identity in (20) in
this case.

Now consider the case |x |≤1. It suffices to show that |z−1
|≤1, which will imply

that both log+|x | and log+|z−1
| vanish, completing the proof of the second identity

in (20). Suppose on the contrary that |z−1
|>1. Then |z|<1, and therefore |w(z)|<

1, wherew(Z)∈O[[Z ]] is the power series expansion of the function z 7→w=−1/y
on E(K) at z = 0, as discussed in the proof of Lemma 6. Thus |y|−1

= |w| < 1,
whereby |y|> 1. But since |x | ≤ 1, it follows from the ultrametric inequality that
the left side of the Weierstrass equation (4) has absolute value |y|2 > 1, while the
right side of (4) has absolute value ≤ 1. The contradiction proves that |z−1

| ≤ 1,
as desired, and completes the proof of the second identity in (20).

We will now use (20) to prove (19). By definition j (P, Q)= 0, and i(P, Q)= 0
if P and Q are not both elements of the same disc B◦α as defined in Section 1.3.
On the other hand, suppose P and Q are elements of B◦α, let να : B◦α → B◦(0, 1)
denote the homeomorphism (9), and let να(P) ∨ να(Q) denote their least upper
bound in B◦(0, 1). Then

(21)

i(P, Q)= ρ(r6(να(P)∨ να(Q)), να(P)∨ να(Q))
=− log|να(P)− να(Q)| (by (8))
=− log|z(P − Pα)− z(Q− Pα)|
= − log|z(P − Q)|> 0 (by Lemma 6).
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It follows that λ(P − Q) = log+|z(P − Q)−1
| = i(P, Q) = i(P, Q)+ j (P, Q),

completing the proof of (19) in the good reduction case.
We now turn to the case that E/K has multiplicative reduction. Denote by

φ : K×/qZ ∼−→ E(K) the Tate isomorphism. By periodicity we may select an
element u ∈ K× \ {1} such that φ(u)= P − Q and |q|< |u| ≤ 1. We are going to
calculate the sum i(P, Q)+ j (P, Q) in three separate cases.

Case 1: |q|< |u|< 1. In this case, r6(P) 6= r6(Q) by (12), whereby i(P, Q)= 0
by (17). It follows from the definition (12) of the retraction map r6 and from the
definition (18) of j (P, Q) that

(22) i(P, Q)+ j (P, Q)= j (P, Q)= 1
2 log|1/q|8

( log|1/u|
log|1/q|

)
.

Case 2: |u| = 1 and |u − 1| = 1. In this case r6(P) = r6(Q) by (12), whereby
j (P, Q) = 1

12 log|1/q|. As explained in Section 1.1, the condition |u − 1| = 1
means that P − Q does not reduce to the identity element of Ens(k), whereby
π(P) 6= π(Q). Thus i(P, Q)= 0 by (17), and so we have

(23) i(P, Q)+ j (P, Q)= j (P, Q)= 1
12 log|1/q|.

Case 3: |u| = 1 and |u − 1| < 1. We again have r6(P) = r6(Q) by (12), and
thus j (P, Q) = 1

12 log|1/q|. Writing the point P − Q in the affine coordinates
(x, y) ∈ K2 associated to the Weierstrass equation (5), and letting z = −x/y, we
have

(24) i(P, Q)=− log|z| = − log|u− 1|.

The first identity in (24) follows from the exact same calculation (21) used in the
good reduction case. To see the second identity in (24), we note that the coordi-
nates x = X (u, q) and y = Y (u, q) are defined via certain convergent series; see
[Silverman 1994, Theorem V.3.1(c)]. Our assumptions that |u| = 1 and |u−1|< 1,
along with the ultrametric inequality, imply that |x | = |X (u, q)| = |u − 1|−2 and
|y| = |Y (u, q)| = |u−1|−3, whereby |z| = |x |/|y| = |u−1|, and the second identity
in (24) follows. We have shown that

(25) i(P, Q)+ j (P, Q)=− log|u− 1| + 1
12 log|1/q|.

To complete the proof of (19) in the multiplicative reduction case, we observe
that the right sides of the identities (22), (23), and (25) coincide with the formulas
for λ(P − Q) given in [Silverman 1994, Theorem VI.4.2(b)]. �

1.7. Connected metrized subgraphs of E \ E(K) containing 6. Given a finite
subset S of E\ (6∪E(K)), there exists a unique smallest path-connected subset 0
of E containing 6 ∪ S. Each set 0 so arising inherits from the path metric ρ(x, y)
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the structure of a connected metrized graph, and the induced topology on each such
subgraph 0 is closely related to the topology on E. These metrized subgraphs 0
of E are the basic analytic objects of study in this paper, and so in this section we
will give a detailed description of their properties.

First, for each point b in E \ (6 ∪ E(K)), let [r6(b), b] denote the line segment
in E from r6(b) ∈ 6 to b, and recall from Section 1.2 that [r6(b), b] is isometric
(with respect to the path metric ρ(x, y) on E \ E(K)) to a closed real interval of
length ρ(r6(b), b)> 0. Given a (possibly empty) finite subset S of E\(6∪E(K)),
define a subset 0 of E by

(26) 0 =6 ∪
⋃
b∈S

[r6(b), b]

The path metric ρ(x, y) endows the set0 with the structure of a connected metrized
graph, and in particular 0 carries a compact Hausdorff topology. Define a map
r0 : E→ 0 as follows. Set r0(x)= x if x ∈ 0, but if x 6∈ 0, let B◦ ⊂ E \6 denote
the open Berkovich disc containing x , as in either (11) or (15). Define r0(x) to
be the unique smallest element in [r6(x), x] (with respect to the partial order ≤
on B◦) that is contained in 0. We note for future use that if x, y are two points in
the same connected component B◦ of E \6, then

(27) r0(x)∨ r0(y)= r0(x ∨ y),

where ∨ denotes the least upper bound with respect to the partial order ≤ on B◦.
Let U be a subset of 0 that is open with respect to the metrized graph topology.

Then the set r−1
0 (U ) is an open subset of E, and the collection of such sets r−1

0 (U ),
over all connected metrized subgraphs 0 of E \ E(K) containing 6 and all open
subsets U of 0, form a base of open sets for the topology on E. Under this topology
E is a path-connected, compact, Hausdorff space, the map r0 : E→ 0 is a strong
deformation retraction, and E(K) is a dense subspace of E (see [Berkovich 1990,
Chapter 4] and [Baker 2008, Section 5]).

We do not claim that the sets [r6(b), b] (b ∈ S) in the union (26) are pairwise
disjoint; any one of them may be contained in another, or any two of them may
coincide on some initial subsegment. On the other hand, we may write any such
connected subgraph 0 of E \ E(K) containing 6 as a disjoint union

(28) 0 =6q (a1, b1] q · · · q (aM , bM ],

where each (am, bm] is a subset of E that is isometric to a half-open real interval
of length ρ(am, bm) > 0. Recall that the length of the skeleton is `(6)= log+| jE |,
and thus the length of 0 is `(0)= log+| jE | +

∑M
m=1 ρ(am, bm). Thus `(0)= 0 if

and only if E/K has good reduction and 0 =6.
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Assuming for the rest of this section that `(0) > 0, denote by m0 the uniform
measure on0 with respect to the metric ρ(x, y). Thus if F :0→R is m0-integrable
we have, ∫

0

F(x)dm0(x)=
∫
6

F(x)dm6(x)+
M∑

m=1

∫
(am ,bm ]

F(x)dx,

where the first term on the right side is present only in the multiplicative reduction
case, and dx is the uniform (Lebesgue) measure on (am, bm] for each 1≤m ≤ M .
Denote by L2(0) the space of square m0-integrable, real-valued functions on 0,
with norm ‖F‖L2(0) = {

∫
0|F |

2dm0}
1/2.

1.8. The discreteness of torsion. We conclude this preliminary section with a
lemma. We will only need it for a global application in Section 4, but as it is
purely local we include it here.

Lemma 8. The torsion subgroup E(K)tor is discrete in E(K).

This is well known, at least in the characteristic-zero case where it follows at
once from properties of the formal logarithm. The following proof holds in arbi-
trary characteristic and was pointed out to us by Felipe Voloch.

Proof of Lemma 8. By translation it suffices to show that the origin O ∈ E(K) has
a torsion-free open neighborhood U . Let B◦ be the kernel of reduction associated
to an integral Weierstrass equation for E , let z : B◦→ Ê(M) be the isomorphism
of Lemma 6, where Ê(M) denotes the formal group over M with formal group law
F(Z1, Z2) ∈O[[Z1, Z2]] associated to the Weierstrass equation.

If the characteristic of the residue field k is zero, then Ê(M) is torsion free [Sil-
verman 1986, IV.3.2(b)], and so we may take U = B◦ itself. Thus we may assume
char(k)= p 6= 0; then Ê(M) has only p-torsion [Silverman 1986, IV.3.2(b)]. The
multiplication-by-p map [p] : Ê(M)→ Ê(M) is given by [p](z) = pz + · · · if
char(K)= 0, and by [p](z)= az p

+ · · · for some a ∈O if char(K)= p. In either
case it is easy to see that [p](B(0, R))⊆ B(0, R) for all sufficiently small R > 0,
where B(0, R) = {z ∈ M | |z| ≤ R}. Since the set E[p] of p-torsion on E(K) is
finite, if we take R small enough we may assume that [p](B(0, R))⊆ B(0, R) and
that B(0, R) contains no p-torsion other than 0.

Suppose that B(0, R) contains a point z of exact order pr with r ≥ 2. Then
[pr−1

](z) is nonzero, has order p, and is in B(0, R) since [p](B(0, R))⊆ B(0, R).
This contradicts the fact that B(0, R) contains no p-torsion other than 0. Thus
B(0, R) contains no nonzero p-power torsion, so it is torsion-free. Let U be the
pullback of B(0, R) under the isomorphism z : B◦→ Ê(M). �
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2. The main local inequality

Overview. We continue with the notation of the last section. In this section we will
define the canonical measure µ on E, and we will prove the main local result of
this paper, which is a bound on the error term when testing the µ-equidistribution
of a set Z against a certain class of test functions on E.

2.1. The space S(E,R) of test functions. Let C(E,R) denote the Banach space
of continuous real-valued functions on E, equipped with the supremum norm. We
will now define a dense subspace S(E,R) of C(E,R) that will serve as our space
of test functions.

First, let 0 be a connected metrized subgraph of E\ E(K) containing 6, and let
F :0→R be a function. Given x ∈ (r6(b), b), where 0 is written as in (26), define
the derivative F ′(x) of F at x via the usual difference quotient limit, assuming it
exists, by identifying (r6(b), b) with an open real interval. If E/K has multiplica-
tive reduction and x ∈6, define F ′(x) similarly by identifying 6 'R/(log| jE |)Z.
Thus the derivative F ′(x), assuming it exists, has an unambiguous meaning for
m0-almost all x ∈ 0. Define S0(E,R) to be the space of functions F : E→ R

satisfying the following conditions:

• F factors through the retraction map r0 : E→ 0; thus F = F ◦ r0.

• F is continuous on 0 with respect to its metrized graph topology.

• The derivative F ′ exists m0-almost everywhere on 0, and F ′ ∈ L2(0).

We call S0(E,R) the space of test functions associated to 0.
Now define S(E,R)=

⋃
0 S0(E,R), the union over all connected metrized sub-

graphs 0 of E \ E(K) containing 6. It follows from the definition of the topology
on E that S(E,R) ⊂ C(E,R), and it is straightforward to show using the Stone–
Weierstrass theorem that S(E,R) is dense in C(E,R).

2.2. The canonical measure and the local discrepancy. The canonical measureµ
on E is the unique positive unit Borel measure that is supported on the skeleton 6,
and that when restricted to 6 is given by

µ=

{
the Dirac measure at the point 6 if | jE | ≤ 1,
the normalized uniform measure (log| jE |)

−1m6 if | jE |> 1.

Let Z = {P1, . . . , PN } be a set of N distinct points in E(K). The local discrep-
ancy of the set Z is defined by

(29) D(Z)= 1
N 2

∑
1≤m,n≤N

m 6=n

λ(Pm − Pn)+
1

12N
log+| jE |.
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By the decomposition (19) and the fact that j (x, x)= 1
12 log+| jE | for all x ∈ E, we

also have

(30) D(Z)= 1
N 2

∑
1≤m,n≤N

m 6=n

i(Pm, Pn)+
1

N 2

∑
1≤m,n≤N

j (Pm, Pn).

We shall see that D(Z) is nonnegative, and that it gives a quantitative measure of
the µ-equidistribution of the set Z . This notion of local discrepancy was intro-
duced in [Baker and Petsche 2005] to study equidistribution on elliptic curves over
number fields.

2.3. Fourier analysis on R/`Z. For the proof of our main equidistribution result,
and again for one of our global applications in Section 4, we will use Fourier
analysis on the circle group R/`Z, where ` > 0. In this section we will recall the
basic theory and prove a lemma.

Given a Lebesgue integrable function F :R/`Z→R, its k-th Fourier coefficient
is defined by F̂(k) = `−1

∫ `
0 F(x)e−2π ikx/`dx , and its Fourier series is given by

F(x) ∼
∑

k∈Z F̂(k)e2π ikx/`. If
∑

k∈Z|F̂(k)| < +∞, then the right side converges
absolutely and the symbol “∼” can be interpreted as an equality. Assuming F is
square integrable on R/`Z, Parseval’s formula `−1

∫ `
0 |F(x)|

2dx =
∑

k∈Z|F̂(k)|
2

holds. The convolution F ∗ G : R/`Z→ R of two functions F,G : R/`Z→ R

is defined by F ∗ G(x) = `−1
∫ `

0 F(y)G(x − y)dy and has Fourier coefficients
F̂ ∗G(k)= F̂(k)Ĝ(k).

Let9(x)= x−[x]−1/2 and8(x)= (x−[x])2−(x−[x])+1/6 be the first and
second Z-periodic Bernoulli polynomials respectively, and let9`(x)=9(x/`) and
8`(x)=8(x/`) denote their `-periodic analogues. Then 9̂`(0)= 8̂`(0)=0, while
9̂`(k) = −1/(2π ik) and 8̂`(k) = 1/(2π2k2) for k 6= 0; thus 8 has an absolutely
convergent Fourier series but 9 does not.

Lemma 9. Suppose that F : R/`Z→ R is continuous and differentiable almost
everywhere, and that F ′ is Lebesgue integrable. Given N (possibly indistinct)
points p1, . . . , pN ∈ R/`Z, define G : R/`Z→ R, x 7→ −N−1∑N

n=19`(pn − x).
Then

(31) 1
N

N∑
n=1

F(pn)−
1
`

∫ `

0
F(x)dx =

∫ `

0
F ′(x)G(x)dx

and

(32)
∫ `

0
|G(x)|2dx = `

2N 2

∑
1≤i, j≤N

8`(pi − p j ).
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Proof. We have F(x)− F̂(0)=−`F ′ ∗9`(x) for all x ∈ R/`Z; this follows from
integration by parts, or alternatively by noting that F̂ ′(k) = (2π ik/`)F̂(k) and
comparing the Fourier coefficients of both sides. Thus

1
N

N∑
n=1

(F(pn)− F̂(0))=− `
N

N∑
n=1

F ′ ∗9`(pn)

=

∫ `

0
F ′(x)

(
−1
N

N∑
n=1

9`(pn − x)
)

dx =
∫ `

0
F ′(x)G(x)dx,

which implies (31). Note that

Ĝ(k)=− 1
2π ik

( 1
N

N∑
n=1

e−2π ikpn/`
)

for k 6= 0 and Ĝ(0)= 0, and thus by Parseval’s formula, we get (32) by

1
`

∫ `

0
|G(x)|2dx =

∑
k 6=0

1
4π2k2

∣∣∣ 1
N

N∑
n=1

e−2π ikpn/`
∣∣∣2

=
1

2N 2

∑
1≤i, j≤N

∑
k 6=0

1
2π2k2 e2π ik(pi−p j )/`

=
1

2N 2

∑
1≤i, j≤N

8`(pi − p j ). �

2.4. The main local inequality. We can now state the main local results of this
paper. First, given a connected metrized subgraph 0 of E \ E(K) containing 6,
written as in (26), define

(33) `0(0)=max
b∈S

ρ(r6(b), b).

In other words, `0(0) is the greatest distance of any point x ∈0 to the skeleton 6;
thus `0(0)= 0 if and only if 0 =6.

Theorem 10. Let F ∈ S0(E,R) be a test function associated to a connected
metrized subgraph 0 of E \ E(K) containing 6. Let Z be a nonempty finite subset
of E(K). Then

(34)
∣∣∣∣ 1
|Z |

∑
P∈Z

F(P)−
∫

Fdµ
∣∣∣∣≤ ‖F ′‖L2(0)

(
D(Z)+ `0(0)

|Z |

)1/2
.

Proof. First, if 0 consists of a single point, F is constant since F = F ◦ r0 factors
through 0. In this case the left side of (34) vanishes, and as the right side is
nonnegative, the theorem is trivial. So we may now assume that `(0) > 0, or
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equivalently that either E/K has multiplicative reduction or that 0\6 is nonempty.
Let Z = {P1, . . . , PN }. We are going to define a piecewise continuous function
G : 0 → R, depending on the graph 0 and the set Z but not otherwise on the
function F , that satisfies the identity

(35) 1
N

N∑
n=1

F(Pn)−

∫
Fdµ=

∫
0

F ′(x)G(x)dm0(x)

and the inequality

(36) ‖G‖2L2(0) ≤ D(Z)+ `0(0)/N .

The inequality (34) will then follow immediately from Cauchy’s inequality.
We first define G on the skeleton 6. This is only necessary in the multiplicative

reduction case, since in the good reduction case 6 has m0-measure zero. Suppos-
ing that E/K has multiplicative reduction, we may identify6'R/`Z as described
in Section 1.4, where `= log| jE |>0. Thusµ= (1/`)m6 is the normalized uniform
measure on 6. For each 1 ≤ n ≤ N , let pn = r6(Pn) ∈ 6, and define G : 6→ R

as in Lemma 9. Then

(37) 1
N

N∑
n=1

F(r6(Pn))−

∫
Fdµ=

∫
6

F ′(x)G(x)dm0(x)

by (31), and since j (P, Q) factors through the retraction map r6 :E→6, we have

(38)

∫
6

|G(x)|2dm0(x)=
1

N 2

∑
1≤m,n≤N

j (r6(Pm), r6(Pn))

=
1

N 2

∑
1≤m,n≤N

j (Pm, Pn)

by (32). If 0=6 then the proof of the theorem is complete, since (37) implies (35),
and (36) follows from (38) and the fact that the right side of (38) is at most D(Z)
by (30). Note that (38) and the decomposition (30), along with the nonnegativity
of i(x, y), shows that local discrepancy D(Z) is nonnegative.

We will now define G on 0 \6, which we may assume is nonempty since the
0 =6 case has been settled. Define G : 0 \6→ R by

G(x)= 1
N

N∑
n=1

χ
[r6(Pn),r0(Pn)]

(x).
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Thus N G(x) counts the number of points Pn in Z such that x lies in the subsegment
of 0 from r6(Pn) to r0(Pn). Since r0(Pn)= r6(Pn) if r0(Pn) ∈6, we have

(39) 1
N

N∑
n=1

F(r0(Pn))−
1
N

N∑
n=1

F(r6(Pn))=

∫
0\6

F ′(x)G(x)dm0(x)

by elementary calculus.
For each n, let us abbreviate σn = r6(Pn) ∈ 6 and γn = r0(Pn) ∈ 0. Given

two (possibly equal) points Pm and Pn in Z , if they are elements of two distinct
connected components of E \6, then the intersection [σm, γm] ∩ [σn, γn] either is
the empty set or contains only the single point σ = σm = σn . In either case the
intersection has m0-measure zero, and i(Pm, Pn)= 0. On the other hand, suppose
that Pm and Pn are elements of the same connected component B◦ of E \6. Then
σm = σn (= σ ) and

[σm, γm] ∩ [σn, γn] = [σ, γm ∨ γn] = [σ, r0(Pm ∨ Pn)] (by (27))

⊆ [σ, Pm ∨ Pn].

Recall that ρ(σ, Pm ∨ Pn) = i(Pm, Pn) by definition for m 6= n. When m = n,
we use the inequality ρ(σ, r0(Pm ∨ Pn)) ≤ `0(0) by the definition (33) of `0(0).
Summing over all pairs, we have

(40)

∫
0\6

|G(x)|2dm0(x)=
1

N 2

∑
1≤m,n≤N

∫
0\6

χ
[σm ,γm ]

(x)χ
[σn,γn]

(x)dm0(x)

=
1

N 2

∑
1≤m,n≤N

∫
0\6

χ
[σm ,γm ]∩[σn,γn]

(x)dm0(x)

≤
1

N 2

∑
m 6=n

i(Pm, Pn)+
`0(0)

N
.

The identities (37) and (39) imply (35), the identities (30) and (38) along with the
inequality (40) imply (36), and Cauchy’s inequality completes the proof of (34). �

3. The global equidistribution theorem

3.1. Global function fields. Let K be a field having a set MK of inequivalent,
nontrivial, discrete valuations on it such that

• {v ∈ MK | v(a) 6= 0} is finite for each a ∈ K×;

•
∑

v∈MK
v(a)= 0 for each a ∈ K× (product formula);

• [L : K ] =
∑

w |v[Lw : Kv] for each finite extension L/K and each v ∈ MK

(local degree formula).
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The sum in the local degree formula is over all valuations w on L whose restriction
to K coincides with v ∈MK (in this case we write w |v), and Kv (respectively Lw)
denotes the completion of K at v (respectively L at w). We refer to the elements
of MK as places of K , and instead of the additive valuation v, we will usually
use the corresponding nonarchimedean absolute value | · |v = e−v(·). We will call
a field K satisfying these axioms a global function field. The most commonly
encountered example is given by the field K = k(C) of rational functions on an
integral, proper, geometrically connected curve C defined over an arbitrary field k;
in this case the places of K correspond to the scheme-theoretic closed points of C .
There are other examples, however; see [Bombieri and Gubler 2006, Section 1.4.6]
and [Lang 1983, Section 2.3].

The local degree formula always holds for separable finite extensions L/K
[Bombieri and Gubler 2006, Corollary 1.3.2]. The referee pointed out that even
when L/K is inseparable and the local degree formula fails, a suitable product
formula can be recovered for L , provided one renormalizes the valuations w ∈ ML

appropriately. This is worked out in [Bombieri and Gubler 2006, Section 1.4] and
[Serre 1989, Section 2.1].

We will now summarize the basic properties of global function fields; for de-
tailed proofs see [Lang 1983]. First, it follows from the local degree formula
that the product formula holds in the form

∏
w∈ML
|a|[Lw :Kw]

w = 1 for each finite
extension L/K , where ML denotes the set of absolute values on L restricting to an
absolute value in MK .

Given a finite extension L/K , define the constant field of L by

L0 = {a ∈ L | |a|w ≤ 1 for all w ∈ ML}.

It follows from the ultrametric inequality and the product formula that L0 is a
subfield of L , and that |a|w = 1 for all a ∈ L×0 and all w ∈ ML . Let K be the
algebraic closure of K , and let K 0 =

⋃
L/K L0 denote the constant field of K .

For each v ∈ MK , let Kv denote the completion of the algebraic closure K v of
Kv; the absolute value | · |v extends uniquely to the field Kv, which is complete
and algebraically closed [Bosch et al. 1984, Section 3.4]. Given a finite extension
L/K and a place v ∈ MK , each K -embedding ε : L ↪→Kv determines a valuation
w ∈ ML over v by | · |w = |ε( · )|v, and conversely every place w ∈ ML arises in
this way. If ε, δ : L ↪→ Kv are two such K -embeddings, they determine the same
element w ∈ ML if and only if ε = σ ◦ δ for some σ in the group Aut(Kv/Kv) of
continuous Kv-automorphisms of Kv.

Finally, suppose that L/K is a finite normal extension, and suppose that ε, δ :
L ↪→ Kv are two K -embeddings. Then ε(L) = δ(L), and therefore ε = δ ◦ α for
some α ∈ Aut(L/K ).
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3.2. The absolute Weil height. The absolute Weil height h :P1(K )→R is defined
as follows. Given a point x = (x0 : x1) ∈ P1(K ), select a finite extension L/K
containing the coordinates of x , and set

(41) h(x)=
∑
w∈ML

[Lw : Kw]

[L : K ]
log max{|x0|w, |x1|w}.

By the product formula and the local degree formula, the value of h(x) does not
depend on the choice of coordinates or the choice of L containing them. We also
denote by h : K → R the affine height given by h(x) = h(1 : x) for x ∈ K . It is
easy to check that h(x)≥ 0 for all x ∈ K , with h(x)= 0 if and only if x ∈ K 0.

3.3. Elliptic curves and the Néron–Tate height. Let E/K be an elliptic curve
over K . The Néron–Tate height function ĥ : E(K )→ R is defined by

ĥ(P)= 1
2 lim

n→+∞

h(x(n P))
n2 ,

where x : E(K )→P1(K ) is the x-coordinate function associated to a Weierstrass
equation for E/K . For the proofs of the following basic facts about ĥ are found in
[Silverman 1986, Section VIII.9]; strictly speaking this text treats the number field
case only, although the arguments work in the function field setting. For a general
treatment of Néron–Tate heights on abelian varieties over arbitrary global fields,
see [Bombieri and Gubler 2006, Section 9.2].

The Néron–Tate height function satisfies ĥ(P) = (1/2)h(x(P)) + O(1) and
ĥ(n P) = n2ĥ(P) for all P ∈ E(K ), and in fact ĥ can be characterized as the
unique function satisfying these two properties. The definition of ĥ is independent
of the x-coordinate function used to define it.

Using these properties of ĥ, we see that ĥ(P)≥ 0 for all P ∈ E(K ), and

(42) P ∈ E(K )tor implies ĥ(P)= 0.

However, unlike in the number field case, the converse of (42) may fail. For exam-
ple, if E is defined over the constant field K0 of K , then every point in E(K 0) has
canonical height zero, and E(K 0)may contain nontorsion points (if K0 is infinite).
See Lang [Lang 1983, Section 6.5] and Baker [Baker 2009, Appendix B] for results
that imply the converse to (42) under certain conditions on E/K .

Finally, we note for future use a fundamental property of the Néron–Tate height,
the parallelogram law

(43) ĥ(P + Q)+ ĥ(P − Q)= 2ĥ(P)+ 2ĥ(Q) for P, Q ∈ E(K ).

3.4. Local height functions. For each place v ∈ MK , we may consider E as an
elliptic curve over Kv, and we generally affix a subscript v to each local object
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associated to E/Kv introduced in Sections 1 and 2. Thus Ev denotes the Berkovich
analytic space associated to E/Kv and λv : E(Kv) \ {O} → R is the Néron local
height function discussed in Section 1.6; likewise for iv, jv, 6v, µv, etc.

Let L/K be a finite extension. For eachw∈ML , let λw :E(Lw)\{O}→R denote
the associated Néron local height function. By the uniqueness of such functions, if
the place w corresponds to the K -embedding ε : L ↪→Kv, then λw( · )= λv(ε( · )).

Given a global point P ∈ E(L) \ {O}, we have a decomposition

(44) ĥ(P)=
∑
w∈ML

[Lw : Kw]

[L : K ]
λw(P)

of the global height into local terms. For the proof of (44) see [Silverman 1994,
Section VI.2] (the proof is written for number fields but works in this setting) or
[Call and Silverman 1993].

3.5. The global equidistribution theorem. In this section we will prove the quan-
titative global equidistribution result Theorem 2 along with its qualitative corollary
Corollary 3. Recall that the height ĥ(Z) of a nonempty finite subset Z of E(K )
is defined to be the average ĥ(Z) = |Z |−1∑

P∈Z ĥ(P) of the height of its points.
The following is a more precise statement of Theorem 2.

Theorem 11. Let E/K be an elliptic curve over a global function field, let v ∈MK

be a place of K , and let ε : K ↪→ Kv be a K -embedding. Let Z be a nonempty
finite Aut(K/K )-stable subset of E(K ), and let F ∈ S(Ev,R) be a test function
on Ev with associated connected metrized subgraph 0 containing 6v. Then∣∣∣∣ 1
|Z |

∑
P∈Z

F(ε(P))−
∫

Fdµv

∣∣∣∣≤ ‖F ′‖L2(0)

(
4ĥ(Z)+

h( jE)

12|Z |
+
`0(0)

|Z |

)1/2

.

Proof. Let L/K be a finite normal extension such that Z = {P1, . . . , PN } ⊆ E(L).
Given a place w ∈ ML corresponding to some K -embedding δ : L ↪→ Ku , where
u ∈ MK is the place below w, define Dw(Z) = Du(δ(Z)), where Du denotes the
local discrepancy defined on subsets of E(Ku), as in Section 2.2.

We are going to bound the sum D =
∑

w∈ML
([Lw : Kw]/[L : K ])Dw(Z) from

above globally and from below locally. First the global bound:

(45)

D =
∑
w∈ML

[Lw : Kw]

[L : K ]

(
1

N 2

∑
m 6=n

λw(Pm − Pn)+
log+| jE |w

12N

)

=
1

N 2

∑
1≤m,n≤N

ĥ(Pm − Pn)+
h( jE)

12N

≤
1

N 2

∑
1≤m,n≤N

(2ĥ(Pm)+ 2ĥ(Pn))+
h( jE)

12N
= 4ĥ(Z)+

h( jE)

12N
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by the decompositions (41) and (44), the parallelogram law, and the nonnegativity
of the height ĥ. At places w ∈ ML with w - v, we use the trivial lower bound
Dw(Z)≥ 0 stemming from the fact that the local discrepancy (29) is nonnegative.

Finally, we treat the places w ∈ ML such that w |v. We first observe that
Dw(Z) = Dv(ε(Z)) for all w |v, where ε : L ↪→ Kv is the fixed K -embedding in
the statement of the theorem. (Proof: Any w |v is induced by some K -embedding
δ : L ↪→ Kv, and since L/K is normal, δ = ε ◦ α for some α ∈ Aut(L/K ). By
hypothesis Z is Aut(L/K )-invariant.) We deduce from the local degree formula
that

∑
w |v([Lw : Kv]/[L : K ])Dw(Z) = Dv(ε(Z)), and assembling (45) with the

local considerations we have Dv(ε(Z)) ≤ 4ĥ(Z) + h( jE)/12N . The inequality
stated in Theorem 11 now follows from (34). �

Proof of Corollary 3. Let F : Ev → R be a continuous function, and let θ > 0.
Since S(Ev,R) is dense in C(Ev,R) (with respect to the supremum norm), there
exists a function F∗ ∈S(Ev,R) such that |F(x)− F∗(x)| ≤ θ for all x ∈ Ev. Since
ĥ(Zn)→ 0 and |Zn| → +∞, it follows from Theorem 11 that the desired limit
formula (1) holds with F replaced by F∗. Using the triangle inequality, we have∣∣∣∣ 1
|Zn|

∑
P∈Zn

F(ε(P))−
∫

Fdµv

∣∣∣∣≤ ∣∣∣∣ 1
|Zn|

∑
P∈Zn

(F(ε(P))− F∗(ε(P)))
∣∣∣∣

+

∣∣∣∣ 1
|Zn|

∑
P∈Zn

F∗(ε(P))−
∫

F∗dµv

∣∣∣∣
+

∣∣∣∫ (F∗− F)dµv
∣∣∣,

and since
∫

1dµv = 1 and |F(x)− F∗(x)| ≤ θ we deduce that

(46) lim sup
n→+∞

∣∣∣∣ 1
|Zn|

∑
P∈Zn

F(ε(P))−
∫

Fdµv

∣∣∣∣≤ 2θ.

Since θ > 0 is arbitrary, the left side of (46) is zero, completing the proof of (1). �

4. The finiteness of S-integral torsion points

Introduction. In this section we will prove Theorem 5. For convenience we will
restate the theorem below. Let K be a global function field and let E/K be an
elliptic curve. Given a place v of K and a point R ∈ E(Kv), define

(47) Mv(R)= inf
P ∈ E(Kv)tor

dv(P, R),

where dv is the v-adic metric on E(Kv) defined in Section 1.1. Thus Mv(R)
measures the distance between R and its nearest torsion point in E(Kv). Plainly
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Mv(R) = 0 if R is a torsion point, but if R is nontorsion, then the discrete-
ness of E(Kv)tor (by Lemma 8) and the definition of the metric dv shows that
0< Mv(R)≤ 1. If Q ∈ E(K ) is a global point, define

(48) Mv(Q)= inf
ε

Mv(ε(Q)) and mv(Q)=− log Mv(Q),

the first being the infimum over all K -embeddings ε : K ↪→ Kv; clearly we have
0 < Mv(Q) ≤ 1 if Q is nontorsion, since Q has only finitely many embeddings
into E(Kv). Thus mv(Q) is nonnegative, and finite provided Q is nontorsion.

Theorem 12. Let E/K be an elliptic curve over a global function field. Let (2)
be a Weierstrass equation for E/K , let S be a finite set of places of K such that
(2) is defined over OS , and such that |1|v = 1 for all v 6∈ S, where 1 ∈ K is the
discriminant of (2). Let E/OS denote the associated S-integral Weierstrass model
for E. If Q is a point in E(K ) with ĥ(Q) > 0, then

(49) |E(OS, Q)tor| ≤
1

ĥ(Q)2

(
|S|h( jE)

12
+

∑
v∈S

mv(Q)
)2

.

Our proof follows the strategy used by Baker, Ih and Rumely [Baker et al. 2008]
in the number field case, with some slight differences. The idea is to use the
equidistribution theorem at each place v ∈ S, testing a large set of global torsion
points against truncated Néron local height functions.

4.1. Truncated Néron local height functions. Fix a place v of K . In order to
prove Theorem 12 we will use certain test functions in the space S(Ev,R) that
are formed by truncating linear combinations of Néron local height functions. The
work in this section is entirely local, and thus we suppress the dependence on the
place v in all of our notation.

Let R be a nonempty finite subset of E(K), and define F : E \R→ R by

F(x)= 1
|R|

∑
R∈R

λ(x − R).

Note that F is continuous on E \R but has logarithmic singularities at the points
of R. However, fix a constant m > 0 and define the truncated function G : E→ R

by

G(x)= 1
|R|

∑
R∈R

( j (x, R)+ i∗(x, R)),

where i∗(x, R) = min{i(x, R),m}. For each R ∈R, let κR be the unique point in
the infinitely long line segment [r6(R), R] in E that satisfies ρ(r6(R), κR) = m.
Let

0 =6 ∪
(⋃

R∈R

[r6(R), κR]

)
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be the smallest connected metrized subgraph of E \ E(K) that contains 6 and all
of the κR .

Lemma 13. The function G : E → R is in the space S0(E,R) of test functions
associated to 0, `0(0)= m, and

(50) ‖G ′‖2L2(0) ≤
1

12 log+| jE | +m.

Proof. To show that G ∈S0(E,R), we must show that G=G◦r0, where r0 :E→0

is the retraction map. Fix a point x ∈ E; we are going to show that for each R ∈R,

(51) i∗(x, R)= i∗(r0(x), R).

Since the function j (x, y) factors through the retraction map r6 : E → 6, and
therefore the map r0 : E→0 as well, this will complete the proof that G =G ◦r0.

First, suppose that x and R are elements of the same connected component B◦

of E\6 as in the decomposition (11) or (15). Then set xR = x∨ R, the least upper
bound of x and R with respect to the partial order on B◦. If xR ∈ [r6(R), κR], then
i(x, R)= ρ(r6(xR), xR)≤ ρ(r6(xR), κR)=m, and since xR = x∨R= r0(x)∨R,
we have i(x, R) = i(r0(x), R). Since both of these quantities are at most m, we
deduce (51) in this case. On the other hand, suppose that xR 6∈ [r6(R), κR]. Then
by a similar argument as above, both i(x, R) and i(r0(x), R) are greater than m,
whereby both sides of (51) are equal to m. Finally, if x and R are not both elements
of the same connected component B◦ of E \6, then both sides of (51) vanish; the
proof that G = G ◦ r0 is complete. The other axioms satisfied by functions in
S0(E,R) are trivially verified for G. The equality `0(0)=m follows at once from
the fact that ρ(r6(R), κR)= m for all R ∈R.

Finally, we are going to show that

(52) ‖G ′‖2L2(6) ≤
1
12 log+| jE | and ‖G ′‖2L2(0\6) ≤ m,

which together imply (50). First, both sides of the first inequality in (52) vanish in
the good reduction case, so we may assume that E/K has multiplicative reduction;
thus ` := log| jE | > 0. Since each i(x, R) (R ∈ R) vanishes on the skeleton, for
x ∈6 ' R/`Z we have

G(x)= 1
|R|

∑
R∈R

j (x, R)= 1
|R|

∑
R∈R

`
2
8
( x−r6(R)

`

)
,

and since 8′(x) = 29(x), we deduce that G ′(x) = |R|−1∑
R∈R9`(x − r6(R));

here we are using the notation of Section 2.3. Therefore Ĝ ′(0)= 0 and for k 6= 0,

Ĝ ′(k)= −1
2π ik

( 1
|R|

∑
R∈R

e−2π ikr6(R)/`
)
;
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in particular |Ĝ ′(k)| ≤ 1/2π |k| for k 6= 0. It follows from Parseval’s formula that∫ `

0
|G ′(x)|2dx = `

∑
k∈Z

|Ĝ ′(k)|2 ≤ `
∑
k 6=0

1
4π2k2 =

1
12`,

which proves the first inequality in (52) in this case.
To prove the second, fix R ∈ R, and identify the line segment [r6(R), κR],

which by the definition of κR has length m, with the real interval [0,m]. Defining
gR : [r6(R), κR] → R by gR(x) = i(x, R), we have gR(x) = ρ(r6(R), x) = x ,
and thus g′R(x) ≡ 1 on [r6(R), κR]. Therefore

∫
[r6(R),κR]

|g′R(x)|
2dm0(x) = m.

Extending the definition of gR by declaring that gR(x)= 0 for all x 6∈ [r6(R), κR],
we have G ′(x)= |R|−1∑

R∈R g′R(x) for x ∈ 0 \6, and thus∫
0\6

|G ′(x)|2dm0(x)=
∫
0\6

∣∣∣ 1
|R|

∑
R∈R

g′R(x)
∣∣∣2dm0(x)

=
1
|R|2

∑
Q,R∈R

∫
0\6

g′Q(x)g
′

R(x)dm0(x)

≤
1
|R|2

∑
Q,R∈R

m = m,

which is the second inequality in (52). �

4.2. The proofs of Theorems 4 and 12.

Proof of Theorem 4. This follows immediately from Theorem 12 since enlarging
the set S only makes the set E(OS, Q)tor larger. �

Proof of Theorem 12. Note that the set E(OS, Q)tor is Aut(K/K )-invariant. Given
a finite Aut(K/K )-invariant subset Z of E(OS, Q)tor, we are going to show that
|Z | is at most the right side of (49), which will prove the theorem. We may assume
that Z is nonempty, for if E(OS, Q)tor is empty the theorem is trivial.

Let Q be the set of Aut(K/K )-conjugates of Q, and let L/K be a finite normal
extension such that Q∪ Z ⊆ E(L). For each w ∈ ML , define

3w(Z ,Q)=
1
|Q||Z |

∑
P∈Z

∑
R∈Q

λw(P − R),

and for each v ∈ MK , let 3v(Z ,Q)=
∑

w |v([Lw : Kv]/[L : K ])3w(Z ,Q). Thus

(53) ĥ(Q)= 1
|Q||Z |

∑
P∈Z

∑
R∈Q

ĥ(P − R)=
∑
v∈MK

3v(Z ,Q)

by (44); here we have used the fact that ĥ(P − R) = ĥ(R) = ĥ(Q) for all P ∈ Z
and R ∈Q, since the points P in Z are torsion points and ĥ is Aut(K/K )-invariant.
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We will use the S-integrality hypothesis to show that

(54) 3v(Z ,Q)= 0 for all v ∈ MK \ S,

and we will use equidistribution (Theorem 11) to show that

(55) 3v(Z ,Q)≤ |Z |−1/2( 1
12 h( jE)+mv(Q)

)
for all v ∈ S.

Assuming these two claims hold for now, we deduce from (53) that

ĥ(Q)≤
∑
v∈S

|Z |−1/2( 1
12 h( jE)+mv(Q)

)
= |Z |−1/2( 1

12 |S|h( jE)+
∑

v∈S mv(Q)
)
,

and the desired inequality (49) follows immediately, completing the proof of the
theorem. Moreover, our assumption that Z is nonempty ensures that the set S is
nonempty; for if S were empty, then (53) and (54) would contradict the assumption
that ĥ(Q) > 0. In other words, this shows that E(OS, Q)tor is empty if S is empty.

We will now show (54). Assuming v ∈ MK \ S, the Weierstrass equation (2)
is defined over OS with |1|v = 1 and | jE |v ≤ 1. Thus the model E/OS has good
reduction at v, meaning the fiber Ev/kv is an elliptic curve over the residue field
kv = Ov/Mv, and the associated reduction map πv : E(Kv)→ Ev(kv) is a group
homomorphism. Since the Zariski closure in E of each point P in Z does not meet
the Zariski closure of Q, this means that πv(ε(P)) 6=πv(ε(R)) for every embedding
ε : L ↪→ Kv and every R ∈ Q. Thus if w |v is a place of L corresponding to the
embedding ε, then λw(P−R)=λv(ε(P)−ε(R))= iv(ε(P), ε(R))=0 by (17) and
Proposition 7. We conclude that3w(Z ,Q)= 0 for all w |v, and thus3v(Z ,Q)= 0
for all v ∈ MK \ S, which is (54).

It now remains only to prove (55). Assume that v ∈ S, and fix once and for all
a K -embedding ε : K ↪→ Kv. We claim that for each place w |v of L ,

(56) 3v(Z ,Q)=3w(Z ,Q)=
1
|Q||Z |

∑
P∈Z

∑
R∈Q

λv(ε(P)− ε(R)).

To see this fact, note that each place w |v of L arises from some K -embedding
δ : K ↪→Kv where λw( · )= λv(δ( · )). Since L/K is a normal extension, δ = ε ◦α
for some α∈Aut(L/K ), and therefore since both Z and Q are Aut(L/K )-invariant,
the second identity in (56) follows. The first identity in (56) follows from the local
degree formula and the fact that the right side is independent of w |v.

Define a Fv : Ev \ ε(Q)→ R, x 7→ |Q|−1∑
R∈Q λv(x − ε(R)). Note that Fv is

continuous on Ev \ ε(Q) but has logarithmic singularities at the points of ε(Q). To
get around this we define the truncated function Gv : Ev→ R by

(57) Gv(x)=
1
|Q|

∑
R∈Q

( jv(x, R)+ i∗v (x, R)),
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where i∗v (x, R) = min{iv(x, R),mv(Q)}, and where mv(Q) is defined in (48).
Therefore, using that iv(P, Q)=− log dv(P, Q) from Section 1.6, we still have

(58) Gv(P)= Fv(P) for all P ∈ E(Kv)tor.

Note that 0 ≤ mv(Q) < +∞ since Q is nontorsion. By its definition, mv(Q) is
the minimal constant at which to truncate iv(x, R) such that (58) holds. Also Fv
and Gv agree on the skeleton 6v of Ev. In particular

∫
Gvdµv =

∫
Fvdµv = 0,

since the canonical measure µv is supported on 6v, and
∫
λv(x, y)dµv(x) =∫

jv(x, y)dµv(x) =
∫
6v

jv(x, y)dm6v (x) = 0 for all y ∈ Ev; here we have used
that iv(x, y)= 0 for x ∈6v.

For each R ∈ Q, let κR ∈ Ev be the unique point in the (infinitely long) line
segment [r6v (ε(R), ε(R)] that satisfies ρ(r6v (ε(R)), κR)= mv(Q). Let

0v =6v ∪
(⋃

R∈Q

[r6v (ε(R)), κR]

)
be the smallest connected subgraph of Ev containing 6v and all of the points κR .
By Lemma 13, Gv is a test function in the space S0v (Ev,R) associated to the
connected metrized subgraph 0v of Ev,

(59) ‖G ′v‖
2
L2(0v)

≤
1
12 log+| jE |v +mv(Q)≤ 1

12 h( jE)+mv(Q),

and `0(0v)= mv(Q). Applying (56), Theorem 11, and the fact that
∫

Gvdµv = 0
and ĥ(Z)= 0, we get (55) by

3v(Z ,Q)= |Z |−1∑
P∈Z Fv(ε(P))= |Z |−1∑

P∈Z Gv(ε(P))

≤ ‖G ′v‖L2(0v)

( 1
12 |Z |

−1h( jE)+ |Z |−1`0(0v)
)1/2

≤ |Z |−1/2( 1
12 h( jE)+mv(Q)

)
. �
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