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In this last article of the series on outer actions of a countable discrete
amenable group on approximately finite-dimensional factors, we analyze
outer actions of a countable discrete free abelian group on an approximately
finite-dimensional factor of type IIIλ with 0 < λ < 1 and compute outer
conjugacy invariants. As a byproduct, we discover the asymmetrization
technique for coboundary condition on a T-valued cocycle of a torsion-free
abelian group, which might have been known by group cohomologists. As
the asymmetrization technique gives us a very handy criterion for cobound-
aries, we present it here in detail.
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Introduction

This article concludes the series [Katayama and Takesaki 2003; 2004; 2007] on
the outer conjugacy classification of outer actions of a countable discrete amenable
group on an approximately finite-dimensional (AFD) factor, by examining outer
actions of a countable discrete abelian group G on an AFD factor Rλ of type IIIλ
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with 0 < λ < 1. Prior to the outer conjugacy classification theory, the cocycle
conjugacy classification theory of actions of a countable discrete amenable group
on an AFD factor had been completed through the work of many mathematicians
over three decades; see [Connes 1977; 1976b; 1975; Jones 1980; Jones and Take-
saki 1984; Ocneanu 1985; Katayama et al. 1998; 1997; Kawahigashi et al. 1992;
Sutherland and Takesaki 1985; 1989; 1998].

Unlike the general classification program in operator algebras, the outer conju-
gacy classification of a countable discrete amenable group on Rλ is almost smooth,
as shown in our series of previous work; see [Katayama and Takesaki 2007].
The only nonsmooth part of the classification theory stems from the classification
of subgroups N of G; for instance, the classification of subgroups of a torsion-
free abelian group of higher rank is nonsmooth. See [Sutherland 1985] for the
Borel parameterization of polish groups. When the modular automorphism part
N = α̇−1(Cntr(M)) of the outer action α̇ of G on Rλ is fixed, the set of invariants
becomes a compact abelian group. This is a rare case in the theory of operator
algebras. So we are encouraged to make a concrete analysis of outer conjugacy
classes of a countable discrete amenable group. Of course, without having a con-
crete data on the group G involved, we cannot make a fine analysis. So we take
a countable discrete free abelian group G and study its outer actions on Rλ and
identify the invariants completely. The justification of this restriction rests on the
fact that all outer actions of a countable discrete abelian group A can be viewed as
outer actions of G by pulling back the outer action via the quotient map G→ A.
Thanks to all hard analytic work on the cocycle conjugacy classification in the
past, as cited in the references, our work is very algebraic and indeed done by
cohomological computations.

We will begin by relating the discrete core of Rλ and the core of an AFD factor
R1 of type III1. This analysis will give us a simple model construction with given
invariants, which is presented here in Section 1. We first study single automor-
phisms and a pair of commuting automorphisms of Rλ. Then we will work on
the asymmetrization of a cocycle of a countable discrete abelian group; this will
provide a powerful tool for analysis of the third cohomology group H3(G,T).
The general theory of group cohomology is available to us today; for example
see [Brown 1994]. But, since we will need to work with individual cocycles to
analyze outer actions, we will need a tool to work with a cocycle directly beyond
the computation of the cohomology group. For example, we have to identify which
data of a given cocycle contributes to the modular automorphism part of the action
in question. Thus we will work on the cohomology group based on a very primitive
method of chasing cocycles, through which we discover the asymmetrization tech-
nique that provides us a handy criterion for the coboundary condition on a cocycle
of a torsion-free abelian group. In [Katayama and Takesaki 2003; 2004; 2007], we
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studied the outer conjugacy classification of countable discrete amenable group
outer actions by a resolution of the relevant third cocycle. In the abelian case, we
showed that there is a universal resolution group that takes care of all third cocycles
at once, which simplifies greatly the investigation of outer actions of a countable
discrete abelian group. The reduced modified HJR-sequence will provide us a tool
to chase the cocycles, along with the asymmetrization technique. The first step
of studying outer actions of a countable discrete abelian group G on a factor M

of type IIIλ with 0 < λ < 1 is to find a countable discrete amenable group H
and a surjective homomorphism πG : H → G such that the pull back π∗G(c) is a
coboundary; this process is called the resolution of a cocycle c ∈ Z3(G,T). Then
the outer action α̇ is identified with a lifting s∗H (α) of an action α of H through a
cross-section sH :G→ H of the homomorphism πG . Luckily, a countable discrete
abelian group G admits a universal resolution {H, πG}, a group H and a surjective
homomorphism πG :H→G such that π∗G(H

3(H,T))={1}. We construct the group
H via a relatively simple process from a countable discrete free abelian group G.
This makes it possible to reduce the study of an outer action α̇ of G to that of an
action α of H . Now, the action α of H does not lift to the discrete core M̃d if
mod(α) 6= 1. So we construct a central extension Hm of H by

0→ Z
n→zn

0 // Hm // H → 1

and work with the characteristic cohomology group 3(Hm, L ,M,T), where the
normal subgroup L is the inverse image L = π−1

G (N ) with N = α̇−1(Cntr(M)).
Thus we are going to investigate the reduced modified HJR-sequence

H2(H,T)
Res // 3(Hm, L ,M,T)

δ //

π∗m
��

Hout
m,s(G, N ,T)

Inf //

∂Gm
��

H3(H,T)

H2(H,T)
res // 3(H,M,T)

δHJR // H3(G,T)
π∗G // H3(H,T).

Here s is a fixed cross-section of the quotient map G → Q = G/N . The groups
appearing on the exact sequences above are all compact abelian groups and are
indeed computable as shown in this paper.

We cite [Brown 1994; Eilenberg and Mac Lane 1947; Mac Lane and Whitehead
1950; Huebschmann 1981; Jones 1980; Ratcliffe 1980] for the general cohomology
theory of abstract groups and [Sutherland 1980] for the cohomology theory related
to von Neumann algebras. See [Takesaki 1979; 2003a; 2003b] for the general
theory of von Neumann algebras. For information about the discrete core of a
factor of type IIIλ, see [Connes 1973; 1974; Connes and Takesaki 1977; Falcone
and Takesaki 1999; 2001].
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1. Simple examples and model construction

Factors of type IIIλ and type III1, and their cores. We begin with the following
folk theorem in the structure theory of factors of type III.

Theorem 1.1. Let {M0,1, τ, θ} be a factor of type II∞ equipped with faithful semi-
finite normal trace τ and trace scaling automorphism θ by λ with 0 < λ < 1, that
is, τ ◦ θ = λτ . Let M=Mθ

0,1 be the fixed point subalgebra of M0,1 by θ .

(i) The von Neumann algebra M is a factor of type IIIλ.
(ii) The triplet {M0,1, τ, θ} is conjugate to the discrete core of M.

(iii) For an automorphism α ∈ Aut(M0,1),

α(M)=M is equivalent to α ◦ θ = θ ◦ α.

(iv) Let Aut(M0,1,M) be the group of automorphisms of Aut(M0,1) leaving M

globally invariant. Then we have the exact sequence

0→ Z
n→θn

// Aut(M0,1,M)
α→α|M // Aut(M)→ 1.

(v) The subgroup {θn
: n ∈ Z} is the Galois group of the pair {M0,1,M} in the

sense that {θn
: n ∈ Z} = {a ∈ Aut(M0,1) : α(x)= x, x ∈M}.

(vi) If α∈Aut(M0,1,M), then the modulus modM0,1(α) as a member of Aut(M0,1)

gives the modulus modM(α) of the restriction α|M ∈ Aut(M) as

modM(α)= πT ′(modM0,1(α)) ∈ R/T ′Z,

where T ′ =− log λ, T = 2π/T ′ and πT ′ : s ∈ R 7→ ṡT ′ = s+ T ′Z ∈ R/T ′Z.

Proof. Statements (i) and (ii) are known in the general structure theory of a factor
of type III; see [Takesaki 2003a, Chapter XII, Sections 2 and 6].

We prove statement (v) first. Letψ be a generalized trace of M, that is, a faithful
semifinite normal weight on M such that ψ(1) = +∞ and σψT = id. Then the
covariant system {M0,1, θ} is conjugate to the dual system {Moσψ R/T Z,Z, σ̂ψ }.
Thus we may identify them, so that M0,1 admits a periodic one parameter unitary
group {uψ(s) : s ∈ R} with

uψ(T )= 1, θ(uψ(s))= λisuψ(s), and σψs = Ad(uψ(s))|M for s ∈ R.

Furthermore, the one parameter unitary group {uψ(s) : s ∈R} together with U(M)

generates the normalizer Ũ0(M) = {v ∈ U(M0,1) : vMv∗ =M}, giving the semi-
direct product decomposition Ũ0=U(M)oσψ R/T Z. Suppose that α ∈Aut(M0,1)

leaves M pointwise fixed. We then show that x ∈M and uψ(s)∗α(uψ(s)) for s ∈R

commute by calculating

xuψ(s)∗α(uψ(s))= uψ(s)∗uψ(s)xuψ(s)∗α(uψ(s))= uψ(s)∗σψs (x)α(u
ψ(s))

= uψ(s)∗α(σψs (x)u
ψ(s))= uψ(s)∗α(uψ(s)x)= uψ(s)∗α(uψ(s))x,
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so that uψ(s)∗α(uψ(s)) ∈M0,1 ∩M′ = C. Hence there exists a scalar µ(s) ∈ T

such that α(uψ(s))= µ(s)uψ(s) for s ∈ R. Since uψ(T )= 1, we have µ(T )= 1.
Since µ(s + t) = µ(s)µ(t) for s, t ∈ R, we have µ(s) = λins for s ∈ R and some
n ∈ Z. Since M together with {uψ(s) : s ∈R} generate the whole algebra M0,1, we
conclude that α = θn . This shows (v).

We next show (iii). Suppose that α ∈ Aut(M0,1) leaves M globally invariant.
Let β = αM = α|M be the automorphism of M obtained as the restriction of α
to M. Then the uniqueness of a generalized trace on M gives a scalar s ∈ R and a
unitary v ∈ U(M) such that e−sψ = ψ ◦ (Ad(v) ◦ β). This means that

mod(β)=mod(Ad(v) ◦ β)= ṡT ′ = s+ T ′Z ∈ R/T ′Z,

and that σψ and Ad(v) ◦ β commute. Hence it is possible to extend Ad(v) ◦ β to
the automorphism γ ∈ Aut{M0,1} such that

γ(uψ(t))= uψ(t) for t ∈ R and γ(x)= Ad(v) ◦ β(x) for x ∈M.

Now comparing α and γ on M, we find γ(x) = Ad(v) ◦ β(x) = Ad(v) ◦ α(x) for
x ∈M. From (v) it follows that α is of the form α= θn

◦Ad(v∗)◦γ for some n ∈Z.
Since θ commutes with both γ and Ad(v), α and θ commute. Hence α(M)=M

implies α ◦ θ = θ ◦ α. The reverse implication is trivial. This proves part (iii).
Part (iv) follows from (iii) and (v).
Let {M̃,R, τ, θ} be the noncommutative flow of weights on M, so that the co-

variant system {M0,1,Z, θ} is identified with {M∨{ψ isρ(−s) : s ∈R}, θT ′}, where
ρ(s) for s ∈ R is the one-parameter unitary group generating the center C of M̃

such that ρ(T )= ψ iT .
To prove (vi), fix a member α ∈ Aut(M0,1,M) and let m(α) = mod(α) ∈ R so

that τ ◦α= e−m(α)τ . Consider the crossed product M̃=M0,1oθZ∼=M⊗L(`2(Z))

and the generalized trace ϕ = τ ◦ E on M̃ given by

ϕ(x)= τ ◦ E(x)= τ
(∫

R/T Z

θ̂s(x) ds
)

for x ∈ M̃+.

With U ∈ U(M̃) the unitary corresponding to the crossed product M0,1 oθ Z, we
extend α to α̃ ∈ Aut(M̃) by α̃(x) = α(x) for x ∈M0,1 and α̃(U ) = U . Then we
have for each x ∈ M̃+

ϕ ◦ α̃(x)= τ
(∫

R/T Z

θ̂s(α̃(x)) ds
)
= τ

(
α
(∫

R/T Z

θ̂s(x) ds
))

= e−m(α)τ
(∫

R/T Z

θ̂s(x)ds
)
= e−m(α)ϕ(x).
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Hence we get

(1-1) mod(α̃)= [m(α)]T ′ =m(α)+ T ′Z ∈ R/T ′Z.

Since the covariant systems {M, α} and {M̃, α̃} are cocycle conjugate, we have
mod(α̃)=mod(α). This completes the proof. ♥

From now on we denote by R0 an approximately finite-dimensional factor of
type II1.

A factor M1 of type III1 generates a one-parameter family {Mλ : 0< λ ≤ 1} of
factors of type IIIλ, who share the same discrete core M0,1. So let M1 be a factor of
type III1, and let {M0,1, θs, s ∈ R} be the noncommutative flow of weights on M1,
that is, M0,1 is a factor of type II∞ equipped with a trace-scaling one-parameter
automorphism group {θs : s ∈ R} and a faithful semifinite normal trace τ such that
M1 =Mθ

0,1 and τ ◦ θs = e−sτ for s ∈ R. The following is a folk theorem in the
structure theory of type III.

Theorem 1.2. In the above context, fixing T ′ > 0, set λ = e−T ′ and T = 2π/T ′.
Let Mλ be the fixed point subalgebra M

θT ′

0,1 of M0,1 under the automorphism θT ′ .

(i) The subalgebra Mλ ⊂ M0,1 is a factor of type IIIλ, whose discrete core is
conjugate to the pair {M0,1, θT ′}.

(ii) The triplet {M0,1,Mλ, θT ′} is a Galois triplet in that

Gal(M0,1/Mλ)= {θ
n
T ′ : n ∈ Z},

where Gal(M/N) = {α ∈ Aut(M) : α|N = id} for any pair N ⊂ M of von
Neumann algebras. We have the exact sequence

1→ {θn
T ′ : n ∈ Z} // Aut(Mλ)m // Aut(Mλ)→ 1,

and
Aut(Mλ)m = {α̃ ∈ Aut(M0,1) : α̃(Mλ)=Mλ}

= {α̃ ∈ Aut(M0,1) : α̃ ◦ θT ′ = θT ′ ◦ α̃}.

(iii) Another pair {Mλ,M1} forms a Galois pair

Gal(Mλ/M1)= {θṡT ′
: ṡT ′ = s+ T ′Z ∈ R/T ′Z, s ∈ R},

that is, an α ∈ Aut(Mλ) is of the form α = θṡT ′
for some ṡT ′ ∈ R/T ′Z if and

only if α(x)= x for x ∈M1.

(iv) The modulus of θṡT ′
∈ Aut(Mλ) is precisely −ṡT ′ ∈ R/T ′Z itself , that is,

mod(θṡT ′
)=−ṡT ′ ∈ R/T ′Z.

If any of Mλ,M1 and M0,1 is approximately finite-dimensional, then all others are
approximately finite-dimensional, and the following statements hold:
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(v) If α ∈ Aut(Mλ) has aperiodic modulus m = mod(α), that is, if km 6= 0 for
every nonzero integer k ∈ Z or equivalently if {mod(α)}T ′/T ′ 6∈ Q, then α is
cocycle conjugate to θ−m.

(vi) If an automorphism α ∈ Aut(Mλ) has trivial asymptotic outer period, that
is, pa(α) = 0, then its cocycle conjugacy class is determined by its modulus
m = mod(α) ∈ R/T ′Z. In fact, the automorphism α is cocycle conjugate to
the automorphism θ−m ⊗ σ0 on Mλ

∼=Mλ ⊗R0, where σ0 ∈ Aut(R0) is any
aperiodic automorphism of the approximately finite-dimensional factor R0. If
m 6= 0, then θm ∼ θm⊗ σ0.

Proof. We prove statements (v) and (vi). Choose an automorphism α ∈ Aut(Mλ)

such that m = mod(α) is aperiodic. Let R0 be an AFD factor of type II1 realized
as the infinite tensor product of two by two matrix algebras

R0 =
∏⊗

n∈Z

{Mn, τn}

relative to the normalized traces τn = Tr /2 on Mn = M(2,C). Let σ0 be the
Bernoulli shift automorphism of R0, that is, the automorphism determined by

σ0

(∏⊗

n∈Z

xn

)
=

∏⊗

n∈Z

xn+1.

Then by the grand theorem of Connes [1975] (also [Takesaki 2003b, page 267])
α and α⊗ σ0 are cocycle conjugate under the identification of Mλ and Mλ ⊗R0

because the asymptotic outer period pa(α) of α is zero, that is, pa(α) = 0. The
same is true for θm, that is, θm ∼c θm⊗ σ0, where ∼c means the outer conjugacy.
Since mod(α1 ⊗ α2) = mod(α1)+mod(α2) on Mλ ⊗Mλ

∼= Mλ, we have α ∼c

α⊗ σ0 ∼c α⊗ θm⊗ θ−m ∼c σ0⊗ θ−m ∼c θ−m. This proves statement (v).
To prove (vi), suppose that p∈N is the period of m∈R/T ′Z, that is, the smallest

nonnegative integer with pm= 0. We assume that p 6= 0. Let {e j,k : 1≤ j, k ≤ p}
be the standard matrix units of the p × p matrix algebra M(p;C), and for each
n ∈ N set Mn =M(p;C). Also consider the diagonal unitary

un =
p∑

i=1
exp(2π i((i − 1)/p))ei,i ∈ U(p;C)⊂ Mn

of order p, that is, u p
n = 1. Now we identify the AFD factor R0 with the infinite

tensor product

R0 =
∏⊗

n∈N

{Mn, τn}, where τn =
1
n Tr,

and let
σp =

∏⊗

n∈N

Ad(un) ∈ Aut(R0) ∈ Aut(R0).
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Then the automorphism σp has the properties

σ k
p 6∈ Int(R0) for k = 1, . . . , p− 1, and σ p

p = id,

θm ∼c θm⊗ σp on Mλ
∼=Mλ⊗R0,

θm⊗ θ−m ∼c id⊗ id⊗σp on Mλ⊗Mλ
∼=Mλ⊗Mλ⊗R0,

σ0⊗ σp ∼c σ0 on R0⊗R0 ∼= R0.

If α ∈ Aut(Mλ) has the trivial asymptotic outer period pa(α) = 0, then the auto-
morphism α has the properties

α ∼c σp⊗α on Mλ
∼= R0⊗Mλ,

θm⊗α ∼c id⊗σ0 on Mλ⊗Mλ
∼=Mλ⊗R0,

θ−m⊗ σ0 ∼c θ−m⊗ θm⊗α ∼c σp⊗α ∼c α

under the isomorphisms Mλ ⊗ R0 ∼= Mλ ⊗Mλ ⊗Mλ
∼= R0 ⊗Mλ

∼= Mλ. This
completes the proof. ♥

Thus if mod(α) is aperiodic, or pa(α) = 0, then the grand theorem of Connes
[Connes 1975], or see [Takesaki 2003b, page 270], identifies the cocycle conjugacy
class of α ∈ Aut(Mλ). But if mod(α) has nontrivial period, and p1 = pa(α) 6= 0,
then the cocycle conjugacy class of α involves algebraic invariants. For example,
one has to consider the extension of α to the discrete core M̃λ,d on which α alone
cannot act. In fact, one has to consider a larger group Z2 than the integer group Z.

Invariants for single automorphisms. We consider a single automorphism of a
factor M of type IIIλ, which can be viewed as an action of the integer additive
group Z. As the integer group Z appears in many different roles, we denote it here
by G = Z. Let a1 be the generator of the group G, so that G = Za1. Sometimes
we view G as a multiplicative group, in which case G becomes G = {ak

1 : k ∈ Z}.
Since H2(G,T) = H3(G,T) = {1}, that is, the integer group is cohomologically
trivial, there is no distinction between the cocycle conjugacy problem and the outer
conjugacy problem of actions of G. Namely, an outer action α̇ of G always comes
from an action α of G, and outer conjugacy of the outer action α̇ of G is the same as
the cocycle conjugacy of the action α of G. Hence the obstruction Ob(α̇) of α̇ and
the characteristic invariant χ(α) of α are handily identified. The same is true for
the modular obstruction Obm(α̇) and the modular characteristic invariant χm(α).

Since the single automorphism cocycle conjugacy classification wasn’t handled
properly in [Katayama et al. 1998; 1997], and more importantly because the pre-
sentation of a single automorphism on a factor of type IIIλ in [Takesaki 2003b]
contains a minor mistake, we present it here in some detail.



OUTER ACTIONS OF A DISCRETE AMENABLE GROUP, III 65

In the case that the modulus m = mod(α) is aperiodic, the last theorem takes
care of the cocycle conjugacy of α, that is, it must be cocycle conjugate to θ−m.
So we handle only the case that {mod(α)}T ′ is rational multiple of T ′.

Suppose α−1(Cntr(M))= Zb1 and b1 = p1a1, with p1 ∈ N.
Choose a pair p1, q1 ∈ N of positive integers with q1 < p1 such that

m= (q1/p1)T ′+ T ′Z ∈ R/T ′Z for 0≤ q1 < p1.

Form a group extension

(1-2)
Gm = {(g, s) ∈ G×R : gm= ṡT ′ = s+ T ′Z ∈ R/T ′Z}

0→ Z
k→(0,kT ′) // Gm

pr1 // G→ 0.

Set

(1-3)
z0 = (0, T ′), z1 = (a1, {m}T ′),

b1 = p1z1− q1z0, N = Zb1, Qm = Gm/N .

The group Gm is equipped with a distinguished homomorphism km = pr2 to R:

(1-4) km(g, s)= s ∈ R for (g, s) ∈ Gm.

Let πQ : g ∈ Gm 7→ ġ ∈ Qm be the quotient map and further set

(1-5) D1 = gcd(p1, q1), and r1 = p1/D1, s1 = q1/D1,

and find a pair u1, v1 ∈ Z of integers such that

1= r1u1− s1v1, or equivalently D1 = p1u1− q1v1,

which can be done through the Euclid algorithm. In the event that q1 = 0, the
modulus m is trivial, that is, m= 0 and Gm = G⊕Z.

Theorem 1.3 (invariants for a single automorphism with periodic modulus). Set
D1= gcd(p1, q1). If p1 and q1 are both nonzero, we have the following statements:

(i) The pair {z0, z1} is a free basis of Gm, so that every element g ∈Gm is written
uniquely in the form g = e0(g)z0+ e1(g)z1.

(ii) The group Gm admits another free basis {w0, w1} such that b1=D1w1. There-
fore N = D1Zw1 and

Qm = Zẇ0⊕Zẇ1,

D1ẇ1 = 0 in Qm ∼= Z⊕ZD1,

where the dotted notations indicate their images in the quotient group Qm.
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(iii) The character group Q̂m of Qm and the characteristic cohomology group
3(Gm, N ,T) are identified under the correspondence

(1-6) λχ (nb1; g)= χ(πQ(g))n for g ∈ Gm and χ ∈ Q̂m.

(iv) The character group Q̂m is given by the exact sequence

0→ Z2 // R⊕ ( 1
D1

Z)
exp(2π i ·) // T⊕ZD1 = Q̂m→ 0,

which describes the characteristic cohomology group 3(Gm, N ,T) as

(1-7) 3(Gm, N ,T)∼= T⊕ZD1 .

If χ(z0) is a root of unity, then the outer period po(α) of α is given as the product
p1so with so ∈ Z+ the smallest nonnegative integer s ∈ Z+ such that 1= χ(z0)

s . If
χ(z0) is not a root of unity, then the corresponding automorphism α is aperiodic,
that is, po(α)= 0.

Proof. (i) Since pr1(z1) = a1 and G is a free abelian group, the exact sequence
(1-2) splits along with the cross-section: m ∈ G 7→ mz1 ∈ Gm.

(ii) We set w0 = u1z0− v1z1 and w1 =−s1z0+ r1z1. Since z0 = r1w0+ v1w1 and
z1 = s1w0+ u1w1, the pair {w0, w1} is a free basis of Gm such that

Gm = Zw0+Zw1, b1 = D1w1, N = D1Zw1, Qm = Gm/N = Zẇ0⊕Zẇ1,

as we wanted.

(iii) Since H2(N ,T) = {1}, the second cocycle part of a characteristic cocycle in
Z(Gm, N ,T) is taken to be trivial, so that the λ-part vanishes on N and therefore
it is a character of Gm that vanishes on N and factors through the quotient map
πQ :Gm→Qm. Thus it is of the form λ(b1; g)=χ(πQ(g)) for g∈Gm and χ ∈ Q̂m.

(iv) It follows from (ii) that the character group Q̂m is parameterized by R⊕( 1
D1

Z):

χx,y(g)= exp(2π i(x f0(g)+ y f1(g))) for g = f0(g)w0+ f1(g)w1 ∈ Gm,

with (x, y) ∈ R⊕ ( 1
D1

Z). This gives the exact sequence

0→ Z2 // R⊕ ( 1
D1

Z)
(x,y)→χx,y // Q̂m = T⊕ZD1 → 0. ♥

Model construction. Suppose G is a fixed countable discrete amenable group and
let {H, πG} be a universal resolution group of the third cocycles of G, that is,
πG : H → G is a surjective homomorphism such that π∗G(Z

3(G,T)) ⊂ B3(H,T).
We require H to be a countable discrete amenable group. Let M = Ker(πG). Fix
a normal subgroup N of G, and set L = π−1

G (N ). With a fixed invariant homo-
morphism m ∈ HomG(N ,R/T ′Z) such that Ker(m) ⊃ N , we use the abbreviated
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notation m for m ◦ πG and form a group extension Hm via

0→ Z // Hm
πm // H → 1,

where Hm={(g, s)∈H×R :m(g)= ṡT ′= s+T ′Z∈R/T ′Z}, with πm(g, s)=g∈H
and k(g, s)= s ∈ R for (g, s) ∈ Hm. We get the reduced modified HJR-sequence

· · · // H2(H,T)
Res // 3(Hm, L ,M,T)

δ // Hout
m,s(G, N ,T)→ 1.

Thus every modular obstruction cocycle (c, ν) ∈ Zout
m,s(G, N ,T) is of the form

(c, ν)≡ δ(λ, µ) mod Bout
m,s(G, N ,T).

Consequently the construction of an outer action α̇ of G on an AFD factor Mλ of
type IIIλ with Obm(α̇)= ([c], ν)∈Hout

m,s(G, N ,T) is reduced to the construction of
an action αλ,µ of Hm such that

(αλ,µ)−1(Int(Mλ))⊃ M, χ(αλ,µ)= [λ,µ] ∈3(Hm, L ,M,T),

(αλ,µ)−1(Cnt(Mλ))= L , mod (αλ,µg )=m(πG(g)) for g ∈ Hm.

So fix a set of invariants (λ, µ)∈Z(Hm, L ,M,T) and m∈HomG(G,R/T ′Z) such
that Ker(m)⊃ N . We are going to construct the model action αλ,µ of Hm:

Step I. Let X be a countable but infinite set on which Hm acts freely from the left.
In the case that Hm is an infinite group, we take X to be Hm itself and let Hm act
on it by left multiplication. So the infinite set X is only needed when Hm is a finite
group, in which case X can be taken to be the product set X = Hm ×N and Hm

acts on the first component by left multiplication. Let {Mx , x ∈ X} be the set of
2× 2 matrix algebras M(2,C) indexed by elements x ∈ X .

Step II. We form the infinite tensor product R0 =
∏
⊗

x∈X {Mx , τx} relative to the
normalized trace

τx

(
a11 a12

a21 a22

)
=

1
2(a11+ a22).

Then we let σ 0 be the Bernoulli action of Hm on R0 that is determined by

σ 0
g

(∏⊗

x∈X

ax

)
=

∏⊗

x∈X

agx .

Step III. Form the twisted partial crossed product of R0 by N relative to the second
cocycle µ ∈ Z2(N ,T) and the action σ 0, that is, M0 = R0 oσ 0,µ N . Then let
{U (m) :m ∈ N } be the projective unitary representation of N to M0 corresponding
to the twisted crossed product, so that

U (g)U (h)= µ(g; h)U (gh) for g, h ∈ N ,

U (g)aU (g)∗ = σ 0
g (a) for a ∈ R0, g ∈ N .
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Let σ λ,µ be the action of Hm on M0 determined by

σ λ,µg (U (m))= λ(gmg−1
; g)U (gmg−1) for m ∈ N and g ∈ Hm,

σ λ,µg (a)= σ 0
g (a) for a ∈ R0 and g ∈ Hm.

Step IV. Let M0,1 be the AFD factor of type II∞ equipped with trace-scaling one
parameter automorphism group {θs : s ∈ R} and set R0,1 =M0,1⊗M0. We then
set the action α̃λ,µ by α̃λ,µg = θm(g)⊗σ

λ,µ
g on R0,1 for g ∈ Hm. Set R= (R0,1)

α̃z0 .
The automorphism α̃z0 = θT ′ ⊗ σ

λ,µ
z0 scales the trace τ by λ = e−T ′ , so the von

Neumann algebra R is an AFD factor of type IIIλ. Finally we define the action
αλ,µ by αλ,µg = α̃

λ,µ
g |R for g ∈ H ; this makes sense because α̃z0 acts trivially on R.

Theorem 1.4 (model action).
(i) The action α = αλ,µ constructed above has the invariants

N = α−1(Cnt(Rλ)),
mod (αg)=m(g) for g ∈ H,

χ(α)= [λ,µ] ∈3(Hm, L ,M,T),

να(g)= [T Log(λ(g; z0))/2π ]T ∈ R/T Z for g ∈ N .

(ii) Let sH : G → H be a cross-section of the homomorphism πG : H → G.
Then the outer action αλ,µsH of G has associated modular obstruction given by
δ([λ,µ])= [cλ,µ, νλ] ∈ Hout

m,s(G, N ,T).

The construction of (i) and (ii) exhausts all outer actions of G on the approxi-
mately finite-dimensional factor R of type IIIλ, up to outer conjugacy.

Proof. (i) Let α̃ denote the action α̃λ,µ of Hm on R0,1. Since R is the fixed point
subalgebra of R0,1 under the automorphism α̃z0 , the restriction α = α̃|R of α̃ to R

factors through the quotient group H = Hm/(Zz0). Hence α is indeed an action
of H . Since R0,1 is a factor of type II∞ and

τ ◦ α̃z0 = τ ◦ θm(z0) = e−m(z0)τ = e−T ′τ = λτ,

the fixed point subalgebra R is a factor of type IIIλ and the pair {R0,1, α̃z0} is the
discrete core of the factor R. Since R0,1 is AFD, R is as well by the grand theorem
of Connes [1976a]. As z0 is a central element of Hm, α̃(Hm) leaves R globally
invariant and hence its restriction to R makes sense. The inner part α̃(N ), which is
given by the projective representation {U (g) : g ∈ N }, leaves R globally invariant,
that is, U (g) for g ∈ N normalizes R; thus we have the inclusion U (N )⊂ Ũ0(R).
Hence N = α−1(Cnt(R)). As in (1-1), we have mod(αh) = m(h) for h ∈ H . If
g, g1, g2 ∈ N and h ∈ H , then

λ(g; h)=U∗(g)α̃h(U (h−1gh)), U (g1)U (g2)= µ(g1; g2)U (g1g2),

να(g)= ∂α̃z0
(U (g))=U (g)∗α̃z0(U (g))= λ(g; z0).
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Hence χ(α̃) = [λ,µ] ∈ 3(Hm, L ,M,T) as required. Finally viewing να as a
homomorphism of N into R/T Z, we get να ∈ HomG(N ,R/T Z) as stated.

(ii) The assertion follows from the construction of αλ,µ. ♥

Actions and outer actions of two commuting automorphisms on an AFD factor RRR

of type IIIλ. In this case, we have to consider the free abelian group G=Z2 of rank
two and its extension Gm∼=Z3 relative to a homomorphism m :G→R/T ′Z. We fix
a subgroup N of G, which is going to represent the inverse image α−1(Cnt(Mλ))

of the extended modular automorphism group. We assume that N is in the diagonal
form, that is, with a free basis {a1, a2} of G, the subgroup N is of the form N =
p1Za1 + p2Za2. Of course, one can choose p1 and p2 so that 0 ≤ p1 ≤ p2 and
p1 divides p2, but to go beyond the finite rank case, we don’t assume that p1 is a
divisor of p2, which might make the matter slightly more involved. In the case that
G =Z2, we have H3(G,T)= {1}, so every outer action of G comes from an action
of G. Since H2(G,T) ∼= T 6= {1}, the outer conjugacy class of an action is bigger
than the cocycle conjugacy class. To go further, we recall the reduced modified
HJR-exact sequence from [Katayama and Takesaki 2007, Theorem 3.11 page 116]:

H2(G,T)
ResQm // 3(Gm, N ,T)

δQm // Hout
α,s(G, N ,T)

InfQm // H3(G,T)= {1},

where Qm = Gm/N . Here since H3(G,T) = {1}, we don’t have to consider the
resolution group H and its subgroup M . To identify the subgroup N ⊂ G as a
subgroup of Gm, we need a little care. First, set

(1-8)

z0 = (0, T ′) ∈ Gm,

z1 = (a1, q1T ′/p1) ∈ Gm, z2 = (a2, q2T ′/p2),

b1 = (p1a1, 0)= p1z1− q1z0 ∈ Gm,

b2 = (p2a2, 0)= p2z2− q2z0 ∈ Gm,

N = Zb1+Zb2 ⊂ Gm = Zz0+Zz1+Zz2,

Qm = Gm/N .

This gives the following coordinate system in Gm and N :

(1-9)
g = e1,N (g)b1+ e2,N (g)b2 ∈ N , that is, ei,N (g)=

ei (g)
pi

for i = 1, 2,

h = ẽ0(h)z0+ ẽ1(h)z1+ ẽ2(h)z2 ∈ Gm.

Theorem 1.5 (invariant). Define Z and B by

(1-10) Z=
{
b = {b(i, j) : i = 1, 2, j = 0, 1, 2} ∈ R6

:

p j b(i, j)− q j b(i, 0) ∈ Z, i = 1, 2, j = 1, 2
}
,

B=
{
b ∈ Z : b(i, 0), b(i, i) ∈ Z, i = 1, 2, p2b(1, 2)+ p1b(2, 1) ∈ gcd(p1, p2)Z

}
,
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and to each b ∈ Z associate a cochain (λb, µb) ∈ Z(Gm, N ,T) by

(1-11)
λb(g; h)= exp

(
2π i

( ∑
i=1,2; j=0,1,2

b(i, j)ei,N (g)ẽ j (h)
))
,

µb(g1; g2)= 1 for g, g1, g2 ∈ N and h ∈ Gm.

Then the cochain (λb, µb) is a characteristic cocycle (λb, 1) ∈ Z(Gm, N ,T). The
modular obstruction cocycle (cb, νb)= δ(λb, 1) ∈ Zout

m,s(G, N ,T) corresponding to
(λb, 1) takes the form

(1-12)

cb(ġ1; ġ2; ġ3)= λb(nN(ġ2; ġ3); s(ġ3)) (where ġ1, ġ2, ġ3 ∈ Qm)

= exp
(

2π i
( ∑

i=1,2
j=0,1,2

b(i, j)ηpi ([ei (ġ2)]pi ; [ei (ġ3)]pi ){ẽ j (ġ1)}p j

pi

))
,

νb(g)=
[

T
∑

i=1,2

b(i, 0)ei,N (g)
]

T
∈ R/T Z for g ∈ N ,

where for the notations ηpi and nN we refer to definitions (3-8) and (3-14), and
furthermore {ẽ0(ġ1)}p0 = ẽ0(ġ1) ∈ Z for ġ1 ∈ Qm. The (i, j)-components Z(i, j)
and B(i, j) of Z and B give more precise information about the cocycles:

(i) For i = 1, 2, we have

(1-13)
Zb(i, i)= {z = (x, u) ∈ R2

: pi x − qi u ∈ Z},

Bb(i, i)= Z⊕Z.

The bicharacter λi,i
z on N ×Gm determined by

(1-14) λi,i
z (g; h)= exp(2π i(xei,N (g)ẽi (h)+ uei,N (g)ẽ0(h)))

for each pair g∈N and h∈Gm gives a characteristic cocycle of Z(Gm, N ,T).
It is a coboundary if and only if z is in Bb(i, i). The corresponding coho-
mology class [λi,i

z ] ∈3b(i, i) has the parameterization

(1-15)
[λi,i

z ] ∈3(i, i)∼ ([pi x − qi u]gcd(pi ,qi ), [−vi x + ui u]Z)

∈ Zgcd(pi ,qi )⊕ (R/Z),

where the integers ui and vi are determined by pi ui − qivi = gcd(pi , qi )

for i = 1, 2 through the Euclid algorithm. For the same i , the associated
modular obstruction cohomology class ([ci,i

z , ν
i,i
z ]) ∈ Hout

m,s(i, i) corresponds
to the class:

([pi x − qi u]gcd(pi ,qi ), [−vi x + ui u]Z) ∈ Zgcd(pi ,qi )⊕ (R/Z),

νi,i
z (g)= [T uei,N (g)]T ∈ R/T Z.
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(ii) With (i, j)= (1, 2),

(1-16)

Zb(i, j)=
{
(x, u, y, v) ∈ R4

: p j x − q j u ∈ Z, pi y− qiv ∈ Z
}
;

Bb(i, j)=
{
(x, u, y, v) ∈ Zb(i, j) : p j x + pi y ∈ gcd(pi , p j )Z,

u, v ∈ Z
}
.

For each element z= (x, u, y, v)∈Zb(i, j), the corresponding bicharacter λz

on N ×Gm determined by

(1-17)
λi, j

z (g; h)= exp
(
2π i(xei,N (g)ẽ j (h)+ ye j,N (g)ẽi (h))

)
× exp

(
2π i(uei,N (g)ẽ0(h)+ ve j,N (g)ẽ0(h))

)
,

for each pair g∈ N and h∈Gm is a characteristic cocycle in Z(Hm, L ,M,T).
It is a coboundary if and only if z belongs to Bb(i, j). The cohomology class
[λ

i, j
z ] ∈3b(i, j) of λz corresponds to the parameter class

(1-18)

[z] =

[mi, j (xr j,i + yri, j )− ni, j (us j,i + vsi, j )]Z
[yi, j (xr j,i + yri, j )+ xi, j (us j,i + vsi, j )]Z

[−uwi, j + vw j,i ]Z

∈

( 1

D(i, j)
Z
)/

Z

R/Z

R/Z

 ,
where the integers D(i, j), . . . , wi, j are those such that

(1-19)

D(i, j)= gcd(pi , p j , qi , q j ),

Di, j = gcd(pi , p j ), Ei, j = gcd(qi , q j ),

ri, j = pi/Di, j , r j,i = p j/Di, j

si, j = qi/Ei, j , s j,i = q j/Ei, j ,

mi, j = Di, j/D(i, j), ni, j = Ei, j/D(i, j),

qiwi, j + q jw j,i = Ei, j , xi, j Di, j + yi, j Ei, j = D(i, j).

The associated modular obstruction class ([ci, j
z ], ν

i, j
z ) ∈ Hout

m,s(i, j) corre-
sponds to the pair of classes

[z] ∈


( 1

D(i, j)
Z
)/

Z

R/Z

R/Z

 ,
νi, j

z (g)=
[
T
(

u
e1(g)

p1
+ v

e2(g)
p2

)]
T
∈ R/T Z for g ∈ N .

The proof of this special case is not much simpler than the general case, so we will
discuss later in the general free abelian group case; see Theorem 4.2.
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2. Asymmetrization

Set the notations X = Zn+1 = Z/(n + 1)Z and X1 = X\{1}. The signature of a
permutation σ is the sign of the product: sign(σ )= sign

{∏
i< j (σ ( j)−σ(i))

}
. Let

S be the cyclic permutation

(2-1) S = (2, 3, . . . , n, n+ 1, 1) ∈5(X),

whose signature is given by

(2-2) sign(S)= (−1)n.

Each element σ ∈5(X1) is identified with an element of 5(X) so that

σ = (1, σ (2), σ (3), . . . , σ (n), σ (n+ 1)) ∈5(X).

This identification of an element of 5(X1) with the corresponding element of
5(X) preserves the signature of σ . Then the total permutation group 5(X) is
the disjoint union of the translations {Sk5(X1) : 0≤ k ≤ n}, that is,

(2-3) 5(X)=
n⊔

k=0

Sk5(X1).

Definition 2.1. The asymmetrization AS ξ of ξ ∈ Cn(G, A) is defined by

(2-4) (AS ξ)(g1, g2, . . . , gn)=
∑

σ∈5(Zn)

sign(σ )ξ(gσ(1), gσ(2), . . . , gσ(n)).

Define πk : Gn+1
→ Gn by

(2-5) πk(g1, g2, . . . , gn, gn+1)

=


(g2, g3, . . . , gn, gn+1) for k = 0,
(g1, . . . , gk−1, gk gk+1, gk+2, . . . , gn+1) for 1≤ k ≤ n,
(g1, g2, . . . , gn) for k = n+ 1.

The boundary operation d ∈ Hom(Z(Gn+1),Z(Gn)) is then given by

(2-6) d =
n+1∑
k=0

(−1)k ◦ πk,

∂ξ = d∗ξ for ξ ∈Cn+1(G,T). We view the asymmetrization AS also as an element
of End(Z(Gn)) determined by

AS(g1, g2, . . . , gn)=
∑

σ∈5(Zn)

sign(σ )(gσ(1), gσ(2), . . . , gσ(n)).
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Lemma 2.2. The asymmetrization and the boundary operation are related by

AS ◦ d = 0 in Hom(Z(Gn+1),Z(Gn)).

Proof. Define Q ∈ Hom(Z(Gn+1),Z(Gn)) and R ∈ Hom(Z(Gn+1),Z(Gn)) by

Q =
∑

σ∈5(X1)

n+1∑
j=1

(
sign(S j−1σ)π0S j−1σ + (−1)n+1 sign(S jσ)πn+1S jσ

)
,

Rg =
∑

σ∈5(X1)

n+1∑
j=1

sign(S jσ)

n∑
k=1

(−1)kπk S jσg for g ∈ Gn+1.

So we have AS ◦ d = Q+ R. We know that

π0S j−1σ = πn+1S jσ for 1≤ j ≤ n,

sign(S j−1σ)π0S j−1σ + (−1)n+1 sign(S jσ)πn+1S jσ

= (−1)n( j−1) sign(σ )π0S j−1σ + (−1)n+1(−1)nj sign(σ )πn+1S jσ = 0.

Thus we get Q = 0.
We need the notation σk,k+1 for the flip of k and k+ 1:

σk,k+1 = (1, 2, . . . , k− 2, k− 1, k+ 1, k, k+ 2, k+ 3, . . . , n+ 1) ∈5(X).

Then we get

sign(σk,k+1ρ)πkσk,k+1ρg+ sign(ρ)πkρg = 0 for ρ ∈5(X) and 1≤ k ≤ n.

Hence we come to

R =
∑

σ∈5(X1)

n+1∑
j=1

sign(S jσ)

n∑
k=1

(−1)kπk S jσ

=

n∑
k=1

(−1)k
n+1∑
j=1

∑
σ∈5(X1)

sign(S jσ)πk S jσ =

n∑
k=1

(−1)k
∑

ρ∈5(X)

sign(ρ)πkρ

=

n∑
k=1

(−1)k
∑

ρ∈50(X)

(sign(ρ)πkρ+ sign(σk,k+1ρ)πkσk,k+1ρ)= 0,

where50(X) is the group of even permutations of X , that is, the alternating group.
Therefore we conclude AS ◦ d = Q+ R = 0. ♥

Let A be a G-module with action α. We recall the dimension shifting theorem
and the dimension shift map ∂ . First, a new G-module Ã is defined through the
following:
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(i) Map(G,A) is the module AG of all A-valued functions on G with pointwise
addition.

(ii) The group A is the submodule of Map(G,A) of constant A-valued functions.

(iii) The action α of G on A extends to the enlarged additive group Map(G,A) by

(αh f )(g)= αh( f (gh)) for f ∈Map(G,A) and g, h ∈ G.

(iv) Finally Ã is the quotient G-module Ã=Map(G,A)/A.

Thus we obtain the equivariant short exact sequence

(2-7) 0→A // Map(G,A) // Ã→ 0.

The short exact sequence (2-7) splits as follows:

(i) First, set j ( f )(g)= f (g)− f (e) for f ∈Map(G,A) and g∈G, where e∈G is
the neutral element of G. Then the map j is a homomorphism of Map(G,A)
onto the subgroup Map0(G,A) of all A-valued functions on G vanishing at e.
Then we get Ker( j) = A ⊂ Map(G,A), so that the map j is viewed as a
bijection from Ã onto Map0(G,A).

(ii) The map j transforms the action α̃ of G on Ã to the action, denoted by α̃ again,
on Map0(G,A) defined by (α̃h f )(g) = αh( f (gh))− αh( f (h)) for g, h ∈ G
and f ∈Map0(G,A).

With the map j , we will identify Ã and Map0(G,A). Thus we have a short exact
sequence

0→A
i // Map(G,A)

j
←−

s

// Ã=Map0(G,A)→ 0.

Let s denote the embedding of Ã=Map0(G,A) ↪→Map(G,A), which is a right
inverse of the map j . If ũ ∈ Zn−1

α (G, Ã), then

0= ∂G ũ = j (∂̃Gs(ũ)),

where ∂̃G means the coboundary operator in Cn
α̃(G,Map(G,A)), so that we have

∂Gs(ũ)∈Zn
α(G,A). We denote the cohomology class [∂̃Gs(ũ)] ∈Hn

α(G,A) by ∂[ũ]
for each [ũ] ∈ Hn−1

α̃ (G, Ã). It is known as the dimension shift theorem that the
map ∂ is an isomorphism of Hn−1

α̃ (G, Ã) onto Hn
α(G,A).

Definition 2.3. Suppose that the group G admits a torsion-free central element
z0 ∈ G. A cocycle c ∈ Zn

α(G,A) is said to be of the standard form (relative to the
central element z0) if

(i) for each k1, . . . , kn ∈ Z and g1, g2, . . . , gn ∈ G,

(2-8) c(zk1
0 g1, . . . , zkn

0 gn)= αg1(dc(k1; g2, . . . , gn))+ c(g1, g2, . . . , gn);
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(ii) the map k ∈ Z 7→ dc(k; g2, g3, . . . , gn) ∈ A belongs to Z1
αz0
(Z,A) for each

g2, g3, . . . , gn ∈ G, that is,

(2-9) dc(k+ `; g2, g3, . . . , gn)= dc(k; g2, g3, . . . , gn)

+αk
z0
(dc(`; g2, g3, . . . , gn)).

(iii) For each k ∈ Z and g1, g2, . . . , gn ∈ G, we have

(2-10) (∂Gdc)(k; g1, g2, . . . , gn)= α
k
z0
(c(g1, g2, . . . , gn))− c(g1, g2, . . . , gn).

Remark 2.4. If we choose dc so that

c(z0g1, zk2
0 g2, . . . , zkn

0 gn)= αg1(dc(g2, g3, . . . , gn))+ c(g1, g2, . . . , gn),

(∂Gdc)(g1, g2, . . . , gn)= αz0(c(g1, g2, . . . , gn))− c(g1, g2, . . . , gn)

and we define dc(k; g2, g3, . . . , gn) inductively by

(2-11) dc(k; g2, g3, . . . , gn)=dc(g2, g3, . . . , gn)+αz0(dc(k−1; g2, g3, . . . , gn)),

Then the cocycle identity (2-8) for c(g2, g3, . . . , gn) and dc(k; g2, g3, . . . , gn) can
be fulfilled automatically.

In the sequel, we often write dc(g2, g3, . . . , gn) for the d-part of a standard
cocycle c without referring to the first variable k in dc(k; g2, g3, . . . , gn).

Lemma 2.5. In the above context, every cocycle c ∈ Zn
α(G,A) is cohomologous to

a cocycle cs of the standard form.

Proof. For n = 1, the cocycle identity c(zk
0g) = αg(c(zk

0))+ c(g) for k ∈ Z and
g ∈G shows that with dc(k)= c(zk

0) the cochains dc and c satisfy Definition 2.3(i).
Now we have

αk
z0
(c(g))− c(g)= c(zk

0g)− c(zk
0)− c(g)= c(g)+αg(c(zk

0))− c(zk
0)− c(g)

= αg(dc(k))− dc(k)= (∂Gdc)(k; g),

which shows the property of Definition 2.3(iii) for c and dc.
Now assume our claim is valid for 1, . . . , n− 1 and for any G-module {A, α}.
Choose an equivariant short exact sequence

0→A
i // M

j
←−

s

// Ã→ 0

such that Hn
α(G,M)= {0} for n ≥ 1, and the cross-section s : Ã→ M is a homo-

morphism of Ã into M , but is not equivariant. Then ∂Gs :Zn−1
α (G, Ã)→Zn

α(G,A)
gives rise to an isomorphism ∂ :Hn−1

α (G, Ã)→Hn
α(G,A). For a standard cocycle
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c̃ ∈ Zn−1
α (G, Ã), we set, for each zk1

0 g1, . . . , zkn−1
0 gn−1 ∈ G,

c̄(zk1
0 g1, . . . , zkn−1

0 gn−1)= αg1(s(dc̃(k1; g2, g3, . . . , gn−1)))

+ s(c̃(g1, g2, g3, . . . , gn−1)).

Since j (c̄)= c̃, we have c = ∂G c̄ ∈ Zn
α(G,A). We then compute

c(zk1
0 g1, . . . , z

kn
0 gn)= (∂G c̄)(zk1

0 g1, . . . , z
kn
0 gn)

= α
z

k1
0 g1

(
c̄(zk2

0 g2, z
k3
0 g3, . . . , z

kn
0 gn)

)
+

n−1∑
j=1

(−1) j c̄(zk1
0 g1, . . . , z

k j
0 g j z

k j+1
0 g j+1, . . . ,gn)

+ (−1)n c̄(zk1
0 g1, . . . , z

kn−1
0 gn−1)

= α
z

k1
0 g1

(
αg2(s(dc̃(k2;g3, . . . ,gn)))+ c̄(g2,g3, . . . ,gn)

)
−
(
αg1g2(s(dc̃(k1+ k2;g3, . . . ,gn)))+ c̄(g1g2,g3, . . . ,gn)

)
+

n−1∑
j=2

(−1) j(αg1(s(dc̃(k1;g2, . . . ,g j g j+1, . . . ,gn)))

+ c̄(g1, . . . ,g j g j+1, . . . ,gn)
)

+ (−1)nαg1

(
s(dc̃(k1;g2,g3, . . . ,gn−1))

)
+ (−1)n c̄(g1,g2,g3, . . . ,gn−1)

= (∂G c̄)(g1,g2, . . . ,gn)+αz
k1
0 g1
(αg2(s(dc̃(k2;g3, . . . ,gn))))

+αg1

(
αk1

z0
(c̄(g2,g3, . . . ,gn))− c̄(g2,g3, . . . ,gn)

)
−αg1g2

(
s(dc̃(k1;g3, . . . ,gn))+α

k1
z0
(s(dc̃(k2;g3, . . . ,gn)))

)
+

n−1∑
j=2

(−1) jαg1(s(dc̃(k1;g2, . . . ,g j g j+1, . . . ,gn)))

+ (−1)n
(
αg1(s(dc̃(k1;g2,g3, . . . ,gn−1)))

)
= (∂G c̄)(g1,g2, . . . ,gn)

+αg1

(
αk1

z0
(c̄(g2,g3, . . . ,gn))− c̄(g2,g3, . . . ,gn)−αg2

(
s(dc̃(k1;g3, . . . ,gn))

)
+

n−1∑
j=2

(−1) js(dc̃(k1;g2, . . . ,g j g j+1, . . . ,gn))

+ (−1)n(s(dc̃(k1;g2,g3, . . . ,gn−1)))
)

= (∂G c̄)(g1,g2, . . . ,gn)

+αg1

(
αk1

z0

(
c̄(g2,g3, . . . ,gn)− c̄(g2,g3, . . . ,gn)

)
− ∂G(s ◦ dc̃)(k1;g2,g3, . . . ,gn)

)
.
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Consequently, we get

c(zk1
0 g1, . . . , zkn

0 gn)= αg1(dc(k1; g2, g3, . . . , gn))+ c(g1, g2, . . . , gn)

with

c(g1, g2, . . . , gn)= (∂G c̄)(g1, g2, . . . , gn),

dc(g2, g3, . . . , gn)= αz0(c̄(g2, g3, . . . , gn))− c̄(g2, g3, . . . , gn)

− ∂G(s ◦ dc̃)(g2, g3, . . . , gn).

We now check the requirement (2-10) for dc and c:

αz0(c(g1, g2, . . . , gn))− c(g1, g2, . . . , gn)

= αz0(∂G c̄(g1, g2, . . . , gn))− ∂G c̄(g1, g2, . . . , gn)

= ∂G

(
αz0(c̄(g1, g2, . . . , gn))− c̄(g1, g2, . . . , gn)

)
= ∂G

(
dc(g2, g3, . . . , gn)+ ∂Gs ◦ dc̃(g2, g3, . . . , gn)

)
= ∂Gdc(g2, g3, . . . , gn).

Thus the cocycle c is standard. ♥

We now state the main result on the asymmetrization, which extends the work
of Olesen, Pedersen, and Takesaki [Olesen et al. 1980]:

Theorem 2.6. Let Q be a countable torsion-free abelian group.

(i) The asymmetrization AS maps the group Zn(Q,T) of T-valued n-th cocycles
onto the compact group Xn(Q,T) of all asymmetric multicharacters on n
variables of Q.

(ii) The following sequence is exact for each n ∈ N:

1→ Bn(Q,T) // Zn(Q,T)
AS // Xn(Q,T)→ 1.

Consequently,

Hn(Zm,T)∼= Xn(Zm,T)∼=

{
Tm!/(n!(m−n)!) if m ≥ n
0 if m < n.

More generally, if Q is a countable torsion-free abelian group, then the co-
homology group Hn(Q,T) is naturally isomorphic to the Pontrjagin–Kampen
dual of the n-th exterior power Q ∧ Q ∧ · · · ∧ Q of Q.

(iii) The group Xn(Q,T) is a subgroup of Zn(Q,T) such that

Zn(Q,T)= Xn(Q,T)Bn(Q,T), Xn(Q,T)∩Bn(Q,T)= Ker(Power n!),

and AS c = cn! for c ∈ Xn(Q,T).
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Remark 2.7. If the group Q has torsion, then the theorem fails as seen in the case
that Q = Zp = Z/pZ for p ≥ 2, H3(Q,T)∼= Zp and X3(Q,T)= {0}.

For the proof, we need some preparation. First, if n = 1, then the claim is
trivially true for any abelian group Q with no assumption on torsion. We then
assume the claim is true for cocycle dimension 1, . . . , n− 1 with n ∈ N fixed and
for any torsion-free abelian group Q. With this induction hypothesis, we prepare
a couple of lemmas for cocycle dimension n.

Lemma 2.8. (i) If M is an abelian group such that a cocycle c ∈ Zn(M,T) is
a coboundary if and only if AS c = 1, then the same is true for the product
group Q = M ×Z.

(ii) If M is an abelian group such that the asymmetrization AS c of each cocycle
c ∈ Zn(M,T) is a multicharacter, then the same is true for the product group
Q = M ×Z.

Proof. Let z0 denote the element of Q corresponding to the product decomposition
Q = M ×Z, so that every element q ∈ Q is written uniquely in the form q = mzk

0
for m ∈ M and k ∈ Z.

(i) In Lemma 2.2, we proved the triviality of the asymmetrization of a cobound-
ary. Thus we prove the converse. Suppose AS c = 1 for c ∈ Zn(Q,T). By
Lemma 2.5 the cocycle c is cohomologous to a cocycle cs of standard form, and
AS cs = AS c = 1 by Lemma 2.2. So we may and do assume that c is standard:

c( p̃1, p̃2, . . . , p̃n)= dc(p2, p3, . . . , pn)
`1cM(p1, p2, . . . , pn),

where p̃i = pi z
`i
0 ∈ Q = M×Z. As Q does not act on T, the d-part dc is a cocycle

in Zn−1(Q,T).
We look at the asymmetrization of c:

(AS c)( p̃1, p̃2, . . . , p̃n)=
∏
σ∈Sn

(
dc(pσ(2), pσ(3), . . . , pσ(n))`σ(1)

× cM(pσ(1), pσ(2), . . . , pσ(n))
)sign σ

=

∏
σ∈Sn

dc(pσ(2), pσ(3), . . . , pσ(n))`σ(1) sign σ

×

∏
σ∈Sn

cM(pσ(1), pσ(2), . . . , pσ(n))sign σ ,

that is,

(2-12) (AS c)( p̃1, p̃2, . . . , p̃n)=
∏
σ∈Sn

dc(pσ(2), pσ(3), . . . , pσ(n))`σ(1) sign σ

× (AS cM)(p1, p2, . . . , pn).
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To compute the first term of the above expression, we take a closer look at the
permutation group Sn . In particular, we have to pay attention to the fact that the
first term in the variables of dc is missing. To this end, we fix k with 1 ≤ k ≤ n,
which represents the missing term in dc, and consider the cyclic permutation

Sn−1(k)= (1, 2, . . . , k− 1, k+ 1, . . . , n) ∈5({1, 2, . . . , k− 1, k+ 1, . . . , n}).

For σ = (k, σ (2), σ (3), . . . , σ (n)) ∈ Sn , define ρ, ρ̃ and σ̃ through

ρ = S(n−k+1)σ

=

(
1 2 · · · k− 1 k k+ 1 · · · n

σ(n− k+ 2) σ (n− k+ 3) · · · σ(n) k σ(2) · · · σ(n− k+ 1)

)
,

ρ̃ =

(
1 2 · · · k− 1 k+ 1 · · · n

σ(n− k+ 2) σ (n− k+ 3) · · · σ(n) σ (2) · · · σ(n− k+ 1)

)
,

σ̃ = Sn−1(k)k−1ρ̃

=

(
1 2 · · · k− 1 k+ 1 · · · n

σ(2) σ (3) · · · σ(k) σ (k+ 1) · · · σ(n)

)
= (σ (2), σ (3), . . . , σ (n)).

Then observing sign ρ̃ = sign ρ, we compute

sign σ = sign Sk−1 sign ρ = (−1)(n−1)(k−1) sign ρ̃

= (−1)(n−1)(k−1) sign(Sn−1(k)n−k) sign σ̃

= (−1)(n−1)(k−1)+(n−2)(n−k) sign σ̃ = (−1)k−1 sign σ̃ .

Hence the first term of (2-12) becomes∏
σ∈Sn

(
dc(pσ(2), pσ(3), . . . , pσ(n))

)`σ(1) sign σ

=

n∏
k=1

( ∏
σ̃∈Sn−1(k)

(
dc(pσ̃ (1), pσ̃ (2), . . . , pσ̃ (n−1))

)sign σ̃
)`k(−1)k−1

=

n∏
k=1

(
(AS dc)(p1, p2, . . . ,

`pk, . . . , pn)
)`k(−1)k−1

where the notation ` stands for removing the corresponding variable. Thus (2-12)
is replaced by

(2-12′) (AS c)( p̃1, p̃2, . . . , p̃n)

=

n∏
k=1

(
(AS dc)(p1, p2, . . . ,

`pk, . . . , pn)
)`k(−1)k−1

× (AS cM)(p1, p2, . . . , pn).
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The condition AS c = 1 yields that AS cM = 1 with `k = 0 for k = 1, . . . , n and
AS dc = 1 with `1 = 1 and `k = 0 for k = 2, . . . , n and p1 = e. Hence cM and dc

are both coboundaries by the induction hypothesis. Choose b ∈ Cn−1(M,T) and
a ∈ Cn−2(M,T) such that cM = ∂Mb and dc = ∂Ma. Then the cocycle c has the
form

c( p̃1, p̃2, . . . , p̃n)= dc(p2, p3, . . . , pn)
`1c(p1, p2, . . . , pn)

= ((∂Ma)(p2, p3, . . . , pn))
`1 (∂Mb)(p1, p2, . . . , pn).

Setting f ( p̃1, p̃2, . . . , p̃n−1)= a(p2, p3, . . . , pn−1)
−`1b(p1, p2, . . . , pn−1) where

p̃i = z`i
0 pi ∈ Q for i = 1, . . . , n− 1, we compute

(∂Q f )( p̃1, p̃2, . . . , p̃n)

= f ( p̃2, p̃3, . . . , p̃n)×

n−1∏
k=1

f ( p̃1, . . . , p̃k p̃k+1, . . . , p̃n)
(−1)k

× f ( p̃1, p̃2, . . . , p̃n−1)
(−1)n

= a(p3, . . . , pn)
−`2a(p3, . . . , pn)

`1+`2

×

n−1∏
k=2

a(p2, . . . , pk pk+1, . . . , pn)
−`1(−1)k

× a(p2, p3, . . . , pn−1)
−`1(−1)n

× b(p2, p3, . . . , pn)×

n−1∏
k=1

b(p1, . . . , pk pk+1, . . . , pn)
(−1)k

× b(p1, p3, . . . , pn)
(−1)n

= a(p3, . . . , pn)
`1

n−1∏
k=2

a(p2, . . . , pk pk+1, . . . , pn)
−`1(−1)k

× a(p2, p3, . . . , pn−1)
−`1(−1)n

× (∂Mb)(p1, p2, . . . , pn)

= ((∂Ma)(p2, p3, . . . , pn))
`1 (∂Mb)(p1, p2, . . . , pn)

= c( p̃1, p̃2, . . . , p̃n).

Therefore c is a coboundary. This completes the proof of part (i).
(ii) Fix a standard cocycle c ∈ Zn(Q,T) by

c( p̃1, p̃2, . . . , p̃n)= dc(p2, p3, . . . , pn)
`1c(p1, p2, . . . , pn)

with dc ∈ Zn−1(M,T) and cM ∈ Zn(M,T). Observing that AS cM and AS dc are
both multicharacters by the assumptions, we compute with (2-12′), for q̃1 = q1zk1

0 ,
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(AS c)( p̃1q̃1, p̃2, . . . , p̃n)

= (AS dc)(p2, . . . , pn)
`1+k1

×

n∏
j=2

(
(AS dc)(p1q1, p2, . . . ,

`p j , . . . , pn)
)` j (−1) j−1

× (AS cM)(p1q1, p2, . . . , pn)

= (AS dc)(p2, . . . , pn)
`1

×

n∏
j=2

(
(AS dc)(p1, p2, . . . ,

`p j , . . . , pn)
)` j (−1) j−1

× (AS dc)(p2, . . . , pn)
k1

×

n∏
j=2

(
(AS dc)(q1, p2, . . . ,

`p j , . . . , pn)
)` j (−1) j−1

× (AS cM)(p1, p2, . . . , pn)(AS cM)(q1, p2, . . . , pn)

= (AS c)( p̃1, p̃2, . . . , p̃n)(AS c)(q̃1, p̃2, . . . , p̃n).

Thus AS c is indeed multiplicative on the first variable, so that it is an asymmetric
multicharacter of Q = M ×Z. ♥

Lemma 2.9. Suppose that c ∈ Zn(Q,T) has a trivial asymmetrization, that is,
AS c = 1. Assume the following:

(a) M is a finitely generated subgroup of Q;

(b) a0 is in Q but not M ;

(c) f ∈ Cn−1(M,T) cobounds the restriction cM of c to M , that is, ∂M f = cM .

Then the cochain f has an extension to the subgroup N = 〈M, a0〉 generated by
M and a0 such that ∂N f = cN , where cN is the restriction of c to the subgroup N.

Proof. To apply the structure theory of abelian groups, we use the additive group
operation in the group Q. From the general theory of abelian groups, it follows that
M and N are both free abelian groups and there exists a free basis {z1, z2, . . . , zm}

of N and nonnegative integers {p1, p2, . . . , pr } ⊂ Z+ for 1 ≤ r ≤ m, such that
N = 〈z1, z2, . . . , zm〉 and M = 〈p1z1, . . . , pr zr 〉. With the assumption for n − 1,
every (n− 1)-cocycle µ ∈ Zn−1(M,T) is cohomologous to an asymmetric multi-
character µa, that is, there exist ai1,i2,...,ir ∈ R such that

µa(g1, g2, . . . , gn−1)=

exp
(

2π i
∑

i j∈{1,2,...,r}
1≤i1<i2<···<in−1≤n−1

ai1,i2,...,in−1

(
ei1,M ∧ ei2,M ∧ · · · ∧ ein−1,M

)
(g1, g2, . . . , gn−1)

)
,
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where {ei,M : 1 ≤ i ≤ r} is the coordinate system of M relative to the basis
{p1z1, . . . , pr zr }. Setting

νa(g1, g2, . . . , gn−1)=

exp
(

2π i
∑

i j∈{1,2,...,r}
1≤i1<i2<···<in−1≤n−1

ai1,i2,...,in−1

pi1 pi2 · · · pin−1

(
ei1 ∧ei2 ∧· · ·∧ein−1

)
(g1, g2, . . . , gn−1)

)
,

where {ei : 1 ≤ i ≤ m} is the coordinate system of N in the basis {z1, . . . , zm},
we obtain an extension ν of µa. Choose ξ ∈ Cn−2(M,T) so that µ = (∂Mξ)µa,
and extend ξ to a cochain ξ ∈ Cn−2(N ,T). Then the second cocycle (∂Nξ)ν gives
an extension of the original (n− 1)-cocycle µ ∈ Zn−1(M,T). Thus we obtain the
surjectivity of the restriction map res : µ ∈ Zn−1(N ,T) 7→ µM ∈ Zn−1(M,T), that
is, the exactness of the sequence

Zn−1(N ,T)
res // Zn−1(M,T)→ 1.

By induction on generators, Lemma 2.9 yields that the restriction cN of c to N
is a coboundary. Hence there exists ξ ∈ Cn−1(N ,T) such that cN = ∂Nξ . Then we
have ∂M f = cM = ∂MξM , so µM = ξ

−1
M f ∈ Zn−1(M,T). By the first arguments,

we can extend µM to an element ν ∈ Zn−1(N ,T). Set f = νξ ∈ Cn−1(N ,T). The
newly defined cochain f on N extends the original f ∈Cn−1(M,T) and cobounds
the cocycle cN , that is, ∂N f = (∂Nν)(∂Nξ)= ∂Nξ = cN . ♥

We may now complete the proof of Theorem 2.6 by proceeding from cocycle
dimension 1, . . . , n− 1 to the cocycle dimension n.

Proof of Theorem 2.6. Suppose that c ∈ Zn(Q,T) and AS c = 1. Let {zk : k ∈
N} be a sequence of generators of Q and let Mm = 〈z1, z2, . . . , zm〉 for m ∈ N.

The sequence {Mm} is then increasing and Q =
⋃

Mm . The triviality assumption
AS c = 1 and Lemma 2.8(i) yield that the restriction cm of the cocycle c to each
Mm is a coboundary, so that there exists fm ∈Cn−1(Mm,T) such that cm = ∂Mm fm .
The last lemma however allows us to choose the sequence { fm} so that each fm

is an extension of the previous fm−1. Hence the sequence { fm} gives a cochain
f ∈ Cn−1(Q,T) such that f |Mm = fm for m ∈ N, and therefore ∂Q f = c. Thus
we conclude that Ker(AS) ⊂ Bn(Q,T). The inclusion Ker(AS) ⊃ Bn(Q,T) was
proved in Lemma 2.2. Hence Ker(AS)= Bn(Q,T).

Lemma 2.8(ii) for {Mm}m∈N yields that the asymmetrization AS c is a multi-
character for any c ∈ Zn(Q,T).

Set ca=AS c for an arbitrary cocycle c ∈Zn(Q,T). Then ca ∈ Xn(Q,T). Since
Q is torsion free, the group Xn(Q,T) is indefinitely divisible. So the n!-fold power
mapping ξ ∈ Xn(Q,T) 7→ ξ n!

∈ Xn(Q,T) is surjective. But the asymmetrization
AS on Xn(Q,T) is precisely the n!-fold power. Hence there exists ξ ∈ Xn(Q,T)
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such that AS ξ = ξ n!
= ca. Now we have AS(ξ−1c) = ξ−n!ca = 1. Therefore

ξ−1c ∈ Bn(Q,T). Consequently, we conclude

Zn(Q,T)= Xn(Q,T)Bn(Q,T),

Xn(Q,T)∩Bn(Q,T)= Xn(Q,T)∩Ker(AS)= {c ∈ Xn(Q,T) : cn!
= 1}. ♥

Corollary 2.10. If G is a discrete abelian group, then the asymmetrization of every
n-cocycle c ∈ Zn(G,T) is a multicharacter, that is, AS c ∈ Xn(G,T).

Proof. Let F be a free abelian group large enough so that there exists a surjective
homomorphism π : F→G. Consider the pull back π∗(c) and its asymmetrization,
ASπ∗(c)= π∗(AS c). It follows from Theorem 2.6 that the pull back π∗(AS c) is
a multicharacter of F ; consequently the original asymmetrization AS c is a multi-
character of G. ♥

3. Universal resolution for a countable discrete abelian group

We discuss a universal resolution group for a countable discrete abelian group.
We consider only the case that the abelian group under consideration has infinitely
many generators since the finitely generated case can be covered by the infinite
generator case. Let G = Z<N be the free abelian group of a finite sequences of
integers, that is, every element g ∈ G is of the form

g = (g1, g2, . . . , gi , . . . , g`, 0, 0, . . . ) for gi ∈ Z,

with `= `(g) ∈ N, the index of the last nonzero term of g ∈ Z<N. With

(3-1) ai = (0, 0, . . . , 0, 1, 0, 0, . . . ),

where the 1 is in the i-th slot, every element g ∈ Z<N is written uniquely

(3-2) g =
∑
i∈N

ei (g)ai .

We call {ai : i ∈N} the standard basis of Z<N. We also fix a subgroup N of G that
is generated by a sequence {pi ai : i ∈N} with pi ∈ Z+ and i ∈N. We will use the
matrix

P =


p1 0 0 · · ·
0 p2 0 · · ·
0 0 p3 · · ·
...

...
...
. . .

 , so that N = PZ<N.
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Let M be the additive group of upper triangular matrices with integer coeffi-
cients, that is,

M =

m =


0 m12 m13 m14 · · ·

0 0 m23 m24 · · ·

0 0 0
. . . · · ·

...
...

...
. . . · · ·

 : mi, j ∈ Z

 ,
and set e j,k(m)=m jk for j < k and m ∈M . For i < j , let ai ∧a j be the element of
M such that ek,`(ai ∧a j )= δikδ j`, that is, the matrix with only (i, j)-component 1
and all others 0; equivalently ai ∧a j with i < j is the (i, j)-matrix unit of M . Let
nM be the M-valued second cocycle of G defined by

(3-3)

e j,k(nM(g; h))= e j (g)ek(h) for g, h ∈ G and 1≤ j < k,

nM(g; h)=


0 e1(g)e2(h) e1(g)e3(h) e1(g)e4(h) · · ·
0 0 e2(g)e3(h) e2(g)e4(h) · · ·
0 0

. . . e3(g)e4(h) · · ·...
...

. . .
... · · ·

 .
Let H be the group extension of G associated with nM ∈ Z2(G,M):

H = M ×nM G and L = M ×nM N .

The group operation in H is given by (m, g)(n, h)= (m+n+nM(g; h), g+h) for
(m, g), (n, h) ∈ H . The inverse (m, g)−1 is given by

(m, g)−1
= (−m+ nM(g,−g),−g)

because (0, 0) = (m, g)(m′, g′) = (m + m′ + nM(g; g′), g + g′), g′ = −g and
m′ = −m + nM(g; g). To determine the commutator subgroup [H, H ], we take
(m, g), (n, h) ∈ H and compute

(m, g)(n, h)(m, g)−1(n, h)−1

= (m, g)(n, h)(−m+ nM(g; g),−g)(−n+ nM(h; h);−h)

= (m+ n+ nM(g, h), g+ h)

× (−m− n+ nM(g; g)+ nM(h; h)+ nM(g; h),−g− h)

= (nM(g; h)+ nM(g; g)+ nM(h; h)+ nM(g; h)+ nM(g+ h;−(g+ h)), 0)

= (nM(g; h)− nM(h; g), 0)

=

(∑
j<k

(e j (g)ek(h)− e j (h)ek(g))(a j ∧ ak), 0
)
.

Lemma 3.1. The commutator subgroup [H, H ] of H is the center M of H.
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Proof. From the computation above, it follows that for each pair j < k

sH (a j )sH (ak)sH (a j )
−1sH (ak)

−1
= a j ∧ ak,

with sH the cross-section of π0 : (m, g)∈ H 7→ g ∈G given by sH (g)= (0, g)∈ H
for g ∈ G. Thus [H, H ] contains the generators a j ∧ ak for j < k of M . ♥

Theorem 3.2. The pair {H, π0} is a universal resolution of the third cocycle group
Z3(G,T) of G. If K is a countable discrete abelian group, then for any surjective
homomorphism π :Z<N

→ K , the composed map πK = π ◦π0 : H→ K makes the
pair {H, πK } a universal resolution of the third cocycle group Z3(K ,T).

Proof. Since Z<N is a free abelian group on countably infinite generators, there
exists a surjective homomorphism from G to any countable abelian group K . So
it is sufficient to prove that

π∗0 (Z
3(G,T))⊂ B3(H,T).

For each triplet ξ, η, ζ ∈Hom(G,R), we define a multihomomorphism, called the
tensor product and denoted by ξ ⊗ η⊗ ζ ∈ C3(G,R), as follows:

(ξ ⊗ η⊗ ζ )(g; h; k)= ξ(g)η(h)ζ(k) for g, h, k ∈ G.

Then the tensor product ξ ⊗ η⊗ ζ generates the third cocycle group Z3(G,R) up
to coboundary, that is,〈{

ξ ⊗ η⊗ ζ : ξ, η, ζ ∈ Hom(G,R)
}〉
+B3(G,R)= Z3(G,R).

Now for each pair η, ζ ∈ Hom(G,R), we define a cochain Bη,ζ ∈ C1(H,R) by

(3-4) Bη,ζ (g)=
∑
j<k

η(a j )ζ(ak)e j,k(m0(g)) for g = (m0(g), π0(g)) ∈ H.

Then we have(
∂H(π

∗

0 ξ ⊗ Bη,ζ )
)
(g1; g2; g3)

= ξ(π0(g2))Bη,ζ (g3)− ξ(π0(g1)+π0(g2))Bη,ζ (g3)

+ ξ(π0(g1))Bη,ζ (g2g3)− ξ(π0(g1))Bη,ζ (g2)

=−ξ(π0(g1))Bη,ζ (g3)+ ξ(π0(g1))
(∑

j<k η(a j )ζ(ak)e j,k(m0(g2g3))
)

− ξ(π0(g1))Bη,ζ (g2)

=−ξ(π0(g1))Bη,ζ (g3)

+ ξ(π0(g1))
(∑

j<k η(a j )ζ(ak)(e j,k(m0(g2)+m0(g3)+π
∗

0 nM(g2; g3))
)

− ξ(π0(g1)Bη,ζ (g2)

= ξ(π0(g1))
(∑

j<k η(a j )ζ(ak)e j (π0(g2))ek(π0(g3))
)
.
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Choosing ξ, η, ζ ∈ Hom(G,T) to be ξ = ei , η = e j and ζ = ek for i < j < k, we
obtain

π∗0 (ei ⊗ e j ⊗ ek)= ∂H(π
∗

0 ei ⊗ Be j ,ek ).

Every third cocycle in Z3(G,T) is cohomologous to a cocycle ca ∈ Z3(G,T) of
the form

(3-5) ca(g1; g2; g3)= exp
(

2π i
( ∑

i< j<k

a(i, j, k)ei (g1)e j (g2)ek(g3)
))
.

So with ba ∈ C2(H,T) defined by

(3-6) ba(g1; g2)= exp
(

2π i
( ∑

i< j<k

a(i, j, k)ei (π0(g1))Be j ,ek (g3)
))
,

we have

(3-7) π∗0 ca = ∂H ba.

Hence we get π∗0 (Z
3(G,T)) ⊂ B3(H,T), from which we conclude that the pair

{H, π0} is a universal resolution of Z3(G,T). ♥

Remark 3.3. The µ-part of every characteristic cocycle (λ, µ) ∈ Z(H,M,T) is
trivial.

Proof. Since MGH is central, λ is a bicharacter of M×H ; in particular λ(m, · ) is a
character of H for every m∈M . Hence it must vanish on the commutator subgroup,
that is, λ(m, n)= 1 for all m, n ∈ M . Thus µ ∈ Z2(M,T) is a coboundary. ♥

Consider (λ, µ) ∈ Z(H, L ,T) with L = M ×nM N . We may and do assume the
triviality µM = 1 of the restriction of µ to M . We then have the corresponding
crossed extension

1→ T // E
j
←−

u

// L→ 1

The triviality of µM means that the cross-section u is multiplicative on M , that is,
u(mn)= u(m)u(n) for m, n ∈ M . Here we use the multiplicative group operation
since M sits in the noncommutative group H .

Lemma 3.4. If sH is a cross-section of the quotient map π0 : H → Z<N
= H/M

with nM = ∂sH ∈ Z2(Z<N,M), then each characteristic cocycle in Z(H, L ,M,T)

is cohomologous to the one (λ, µ) ∈ Z(H, L ,M,T) such that

λ(m; nsH (h))= λ(m; sH (h)) for m, n ∈ M, h ∈ Z<N,

µ(msH (g); nsH (h))= λ(n; sH (g))µ(sH (g); sH (h)) for m, n ∈ M, g, h ∈ N .
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Proof. In the crossed extension E ∈ Xext(Hm, L ,M,T) associated with (λ, µ) ∈
Z(Hm, L ,M,T) given by 1→ T→ E→ L→ 1, we redefine the cross-section u
for m ∈ M and g ∈ N as u(msH (g)) = u(m)u(sH (g)), so that µ(m; sH (g)) = 1.
We now compute, for m, n ∈ M and h ∈ Z<N,

λ(m; nsH (h))u(m)= αnsH (h)(u(m))= u(n)αsH (h)(u(m))u(n)
−1

= λ(m; sH (h))u(mn)u(n)−1

= λ(m; sH (h))u(m);

for g, h ∈ N , we complete the proof with the computation

µ(msH (g); nsH (h))u(msH (g)nsH (h))

= u(msH (g))u(nsH (h))

= u(m)u(sH (g))u(n)u(sH (h)))

= u(m)αsH (g)(u(n))u(sH (g))u(sH (h))

= λ(n; sH (g))u(m)u(n)µ(sH (g); sH (h))u(sH (g)sH (h))

= λ(n; sH (g))u(mn)µ(sH (g); sH (h))u(sH (g)sH (h))

= λ(n; sH (g))µ(sH (g); sH (h))u(msH (g)nsH (h)). ♥

Groups G, Hm, Gm and Qm. First, we fix notations. To work on the quotient
group Z/pZ= Zp with p ∈ N and p ≥ 2, we set

(3-8)
[i]p = i + pZ ∈ Zp, where i = np+{i}p, 0≤ {i}p < p,

ηp([i]p, [ j]p)= {i}p +{ j}p −{i + j}p =
{

0 if {i}p +{ j}p < p,
p if {i}p +{ j}p ≥ p.

We shall call the pZ-valued cocycle ηp ∈ Z2(Zp, pZ) the Gauss cocycle, which
can be written

(3-8′) ηp([i]p, [ j]p)= p
([ i + j

p

]
−

[ i
p

]
−

[ j
p

])
,

where [x] for x ∈ R is the largest integer less than or equal to x .
Given a homomorphism m of the group G to R/T ′Z such that Ker(m)⊃ N , we

consider the group extension

Gm = {(g, s) ∈ G×R : ṡT ′ = s+ T ′Z=m(g) ∈ R/T ′Z},

0→ Z
n→zn

0 // Gm
πm // G→ 1,
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where z0 = (0, T ′) ∈ Gm. Identifying m with m ◦ π0 ∈ Hom(H,R/T ′Z), we also
form a group extension

Hm = {(h, s) ∈ H ×R :m(h)= ṡT ′ ∈ R/T ′Z}

= {(m, g, s) ∈ M ×G×R :m(g)= ṡT ′ ∈ R/T ′Z},

0→ Z
n→zn

0 // Hm // H → 1,

where the central element z0= (1, T ′)∈ Hm appears in both Gm and Hm. We hope
that this abuse of notation for two distinct elements in the different groups will not
cause a headache later; it is just like the zero elements in ring theory.

By the assumption N ⊂Ker(m), the homomorphism m factors through the quo-
tient group Q=G/N , so that it is also viewed as a homomorphism of Q→R/T ′Z;
therefore we can form the group extension Qm as before, which sits on the follow-
ing commutative diagram of exact sequences:

1

��

1

��
0

��

// sm(N )

��

// N

��

// 0

0 // Z // Gm

πQ ↑s

��

πm

←−
sm

// G

πQ ↑s

��

// 1

0 // Z

��

// Qm

��

π̇m

←−
ṡm

// Q

��

// 1

0 1 1

From the assumption Ker(m) ⊃ N , it follows that m(pi ai ) = 0, so that there
exists an integer qi ∈ Z with 0≤ qi < pi such that

(3-9)
mi = {m(ai )}T ′ = qi T ′/pi ∈ ((T ′/pi )Z),

m(ai )= ṁi =mi +T′Z ∈ R/T ′Z.

For g ∈ G, we set

(3-10)

Gm 3 zi =

{
(ai ,mi ) if i 6= 0,
(0, T ′) if i = 0,

sm(g)=
∑
i∈N

ei (g)zi =

(
g,
∑
i∈N

ei (g)mi

)
= (g, n(g)),

n(g)=
∑
i∈N

ei (g)mi .
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Then Gm decomposes as

(3-11)

Gm = Zz0⊕ sm(G)=
∑⊕

i∈N0

Zzi , where N0 = N∪ {0},

g̃ = ẽ0(g̃)z0+
∑
i∈N

ẽi (g̃)zi ∈ Gm;

g̃ = (g, s)= (0, ẽ0(g, s)T ′)+
(∑

i∈N

ẽi (g̃)ai ,
∑
i∈N

ẽi (g̃)mi

)
= (0, ẽ0(g, s)T ′)+

∑
i∈N

ẽi (g̃)zi ;

ẽ0(g, s)= (s− n(g))/T ′ ∈ Z,

ẽi (g, s)= ei (g) for i ∈ N.

In particular, if g ∈ N , we have g= (g, 0)=−(n(g)/T ′)z0+
∑

i∈N ei (g)zi , so that

ẽ0(g)=−n(g)/T ′ 6= 0 unless n(g)=
∑
i∈N

ei (g)mi = 0.

We then have m(g) = [n(g)]T ′ ∈ R/T ′Z. Setting b j = p j a j for j ∈ N, we write
every g ∈ N uniquely in the form

(3-12) g =
∑
j∈N

e j (g)
p j

b j =
∑
j∈N

e j,N (g)b j ,

where e j,N (g)= e j (g)/p j ; also in Hm we have

(3-13) b j = p j z j − p j m j z0 = p j z j − q j z0.

Remark. The element (ai , 0) is not a member of Gm.

Next we define a cross-section ṡm : Q→ Qm so that the diagram
Gm G

sm
oo

Qm

s

OO

Q
ṡm

oo

s

OO

commutes. First, we set

ġ = g+ N ∈ Q = G/N for g ∈ G, s(q)=
∑
i∈N

{ei (q)}pi ai for q ∈ Q,

ȧi = πQm(ai ), żi = (ȧi ,mi ),

ṡm(q)=
∑
i∈N

{ei (q)}pi żi =
∑
i∈N

{ei (q)}pi (ȧi ,mi )=
(

q,
∑
i∈N

{ei (q)}pi mi

)
,

s(q, s)= (s(q), s) ∈ Gm for (q, s) ∈ Qm.
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The cross-section s : Qm→ Gm gives rise to an N -valued cocycle

(3-14) nN = ∂Qs ∈ Z2(Qm, N ),

which is given by

nN(q̃1; q̃2)= s(q1, s1)+ s(q2, s2)− s(q1+ q2, s1+ s2)

= (s(q1)+ s(q2)− s(q1+ q2), 0)

=

(∑
i∈N

ηpi ([ei (q1)]pi ; [ei (q2)]pi )ai , 0
)

=

∑
i∈N

(ηpi ([ei (q1)]pi ; [ei (q2)]pi )ai , 0) ∈ N = N ×{0}

for each pair q̃1 = (q1, s1), q̃2 = (q2, s2) ∈ Qm.
For each element h = (m, g) ∈ H with m ∈ M and g ∈ G, we write m =m0(h)

and g = πG(h). Then we have L = π−1
G (N ) and

m0(gh)= m0(g)+m0(h)+ nM(πG(g);πG(h)) for g, h ∈ H.

For short, we write ei, j (g̃)= ei, j (m0(g)) for g̃ = (m0(g), g, s) ∈ Hm and i, j ∈N.
With sH (g)= (0, g) ∈ H for each g ∈ G, we have

nM(g; h)= sH (g)+ sH (h)− sH (g+ h)= ∂GsH (g; h) for g, h ∈ G.

With ṡ = sH ◦ s, we obtain a cross-section ṡ of πQ ◦ πG : H → Q = H/L , which
gives rise to an L-valued second cocycle nL ∈ Z2(Q, L); for q1, q2 ∈ Q, it is

(3-15)

nL(q1; q2)= ṡ(q1)ṡ(q2)ṡ(q1+ q2)
−1

= sH
(
s(q1)

)
sH
(
s(q2)

)
sH
(
s(q1+ q2)

)
−1

= nM

(
s(q1); s(q2)

)
sH
(
s(q1)+ s(q2)

)
sH
(
s(q1+ q2)

)
−1

= nM

(
s(q1); s(q2)

)
sH
(
nN(q1; q2)+ s(q1+ q2)

)
sH
(
s(q1+ q2)

)
−1

= nM

(
s(q1); s(q2)

)
nM

(
nN(q1; q2); s(q1+ q2)

)
−1sH

(
nN(q1; q2)

)
.

We further compute the ( j, k)- and k-components as

(3-16)

e j,k
(
nM(s(q1); s(q2))

)
= e j (s(q1))ek(s(q2))

= {e j (q1)}p j {ek(q2)}pk ,

e j,k
(
nM(nN(q1; q2); s(q1+ q2))

)
= e j (nN(q1; q2))ek(s(q1+ q2))

= ηp j ([e j (q1)]p j ; [e j (q2)]p j ){ek(q1+ q2)}pk ,

ek
(
sH (nN(q1; q2))

)
= ηpk ([ek(q1)]pk ; [ek(q2)]pk ).
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Since
Hm = M ×π∗m(nM )

(∑⊕

i∈N

Zzi ⊕Zz0

)
,

for each h = (m, g) ∈ H , we set

(3-17) sm(h)= (m, sm(g))=
(

m,
∑
i∈N

ei (g)zi

)
=

(
m, g,

∑
i∈N

ei (g)mi

)
,

and we identify ` = (m, Pg) ∈ L with (m, Pg, 0) ∈ Hm, so that L is a subgroup
of Hm, while H is not.

4. The characteristic cohomology group 3(Hm, L, M,T)

Since H is a universal resolution group for G=Z<N, every third cohomology class
[c] ∈ H3(G,T) is of the form [c] = δHJR[λ,µ] for some [λ,µ] ∈3(H,M,T). So
every outer action α̇ of G on a factor M of type IIIλ comes from an action α of H ,
that is, the outer action α̇ is given by

(4-1) α̇g = αsH (g) for g ∈ G.

But the action α of H does not give rise to an action of H on the reduced (discrete)
core M̃d . Instead, the action α of H on M gives rise naturally to an action, denoted
by the same notation α, of Hm on M̃d , where

m(h)= mod (αh) ∈ R/T ′Z for h ∈ H.

If N = α̇−1(Cntr(M)))⊂G, then L =α−1(Cntr(M)). We make a basic assumption
on the subgroup N that

N = PG = PZ<N.

In the case that G is finitely generated free abelian group, the fundamental structure
theorem for finitely generated abelian groups guarantees that every subgroup of G
is of this form.

We study first the characteristic cohomology group 3(Hm, L ,M,T) and mod-
ified HJR-map δ :3(Hm, L ,M,T)→ Hout

m,s(G, N ,T).
We introduce a series of notations first:

(4-2)

N0 = N∪ {0} = Z+,

10 = {(i, j, k) ∈ N3
0 : i < j < k} ∪ {(i, i, k) ∈ N3

0; i < k}
∪ {(k, i, k) ∈ N3

0 : i < k},
1=10 ∩N3.

For each g ∈ Hm, let m0(g) be the M-component of g, that is,

(4-3) m0(g)= gsH (πG(g))−1
∈ M for g ∈ Hm.
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We regard ei and e j,k as functions defined on Hm by fixing the coordinate system

(4-4) g̃ =
( ∑

1≤ j<k

e j,k(g)(a j ∧ ak),
∑
i∈N0

ẽi (g̃)zi

)
∈ Hm, with g = πm(g̃) ∈ H.

We then introduce a cochain B jk ∈ C1(Hm,R) defined for h ∈ Hm by

(4-5) B jk(h)=


−e j,k(m0(h)) if j < k,
−

1
2(e j e j )(h) if j = k,

ek, j (m0(h))− (e j ek)(h) if j > k,

The cochain enjoys the property

(4-6) ∂H B jk = π
∗

0 (e j ⊗ ek) for j, k ∈ N.

We continue to define the following cochains for each a ∈ RN3
0 :

Xa(i, j, k)= a(i, j, k)e j,k ⊗ ei + a( j, i, k)ei,k ⊗ e j + a(k, i, j)ei, j ⊗ ek,

Xa(i, k)= a(i, i, k)ei,k ⊗ ei + a(k, i, k)ei,k ⊗ ek,

Ya(i, j, k)= a(i, j, k)
(
Bi j ⊗ ek + ek ⊗ B j i − Bik ⊗ e j − e j ⊗ Bki

)
+ a( j, i, k)

(
B j i ⊗ ek + ek ⊗ Bi j − B jk ⊗ ei − ei ⊗ Bk j

)
+ a(k, i, j)

(
Bki ⊗ e j + e j ⊗ Bik − Bk j ⊗ ei − ei ⊗ B jk

)
,

Ya(i, k)= a(i, i, k)(Bi i ⊗ ek + ek ⊗ Bi i − Bik ⊗ ei − ei ⊗ Bki )

+ a(k, i, k)(Bki ⊗ ek + ek ⊗ Bik − Bkk ⊗ ei − ei ⊗ Bkk),

Z( · · · )(g; h)= Y ( · · · )(m0(h); g),

Za(i, j, k)= a(i, j, k)
(
e j ⊗ ei,k − ek ⊗ ei, j

)
+ a( j, i, k)

(
ek ⊗ ei, j + ei ⊗ e j,k

)
+ a(k, i, j)

(
e j ⊗ ei,k − ei ⊗ e j,k

)
,

Za(i, k)= a(i, i, k)ei ⊗ ei,k + a(k, i, k)ek ⊗ ei,k;

fi, j,k = 2(ei e j )⊗ ek − 3ei ⊗ (e j ek)+ e j ⊗ (ei ek)

− 2(ei ek)⊗ e j − ek ⊗ (ei e j ),

Ua(i, j, k)= 1
6

(
a(i, j, k) fi, j,k + a( j, i, k) f j,i,k + a(k, i, j) fk,i, j

− (AS a)(i, j, k) fi, j,k
)
,

Ua(i, k)=−a(i, i, k)Bi i ⊗ ek + a(k, i, k)(Bkk ⊗ ei − ek ⊗ (ei ek)),

Va(i, j, k)= Za(i, j, k)+π∗GUa(i, j, k),

Va(i, k)= Za(i, k)+π∗GUa(i, k).
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The infinite summations

(4-7)

Xa =
∑

i< j<k

Xa(i, j, k)+
∑
i<k

Xa(i, k),

Ya =
∑

i< j<k

Ya(i, j, k)+
∑
i<k

Ya(i, k),

Ua =
∑

i< j<k

Ua(i, j, k)+
∑
i<k

Ua(i, k),

Va =
∑

i< j<k

Va(i, j, k)+
∑
i<k

Va(i, k),

Za =
∑

i< j<k

Za(i, j, k)+
∑
i<k

Za(i, k)

will become all finite sums as soon as variables from M or Hm are fed in. So no
divergence problem in the infinite sums will occur.

The cochain fi, j,k relates basic cocycles ei⊗e j⊗ek and the asymmetric trichar-
acter

deti jk = (ei ⊗ e j ⊗ ek + e j ⊗ ek ⊗ ei + ek ⊗ ei ⊗ e j )

− (e j ⊗ ei ⊗ ek + ei ⊗ ek ⊗ e j + ek ⊗ e j ⊗ ei )= ei ∧ e j ∧ ek

as

(4-8) deti jk = ∂L fi, j,k + 6ei ⊗ e j ⊗ ek for i < j < k,

which can be confirmed by a direct computation.
Let Z be the set of all pairs (a, b) of functions a : (i, j, k)∈N3

7→ a(i, j, k)∈R

and b : (i, j) ∈ N2
0 7→ b(i, j) ∈ R such that a satisfies

(4-9Z-a)

a(i, j, k)= 0 for j, k ∈ N0 with j ≥ k,

a(0, j, k)= 0 for every j, k ∈ N0,

(AS a)(i, j, k)= a(i, j, k)− a( j, i, k)+ a(k, i, j)

∈

( 1
gcd(pi , p j , pk)

Z
)
.

and b satisfies

(4-9Z-b)
b(i, j)p j − b(i, 0)q j ∈ Z for i, j ∈ N with i < j,

b(0, j)= 0 for j ∈ N0.

Let Za be the set of a ∈RN3
satisfying (4-9Z-a), and let Zb be the set of all b ∈RN2

0

satisfying (4-9Z-b). So we have Z= Za ⊕Zb.
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Let B be the subgroup of Z consisting of all those (a, b)∈Z such that a satisfies
the coboundary condition

(4-9B-a)

a(i, j, k), a(k, i, j), a( j, i, k) ∈ Z if i < j < k,

a(i, i, k) ∈ 2Z if i < k,

a(k, i, k) ∈ 2Z if i < k,

and b satisfies the coboundary condition

(4-9B-b)

b(i, j)
pi
+

b( j, i)
p j
∈

( 1
pi

Z
)
+

( 1
p j

Z
)
=

( 1
lcm(pi , p j )

Z
)

if i < j,

b(i, 0) ∈ Z and b(i, i) ∈ Z if i ∈ N.

Let Ba (respectively Bb) be the set of all b ∈ RN2
0 satisfying (4-9B-a) (respectively

(4-9B-b)). Thus we have B = Ba ⊕Bb. Set Ha = Za/Ba and Hb = Zb/Bb. With
D(i, j, k)= gcd(pi , p j , pk) for each triplet i < j < k with i, j, k ∈ N, we set

Za(i, j, k)= {(u, v, w) ∈ R3
: u− v+w ∈ ((1/D(i, j, k))Z)},

Ba(i, j, k)= Z⊕Z⊕Z,

where u = a(i, j, k), v = a( j, i, k) and w = a(k, i, j). For a pair i, k ∈ N with
i < k, we set

Za(i, k)= {(x, y) ∈ R2
} = R⊕R and Ba(i, k)= (2Z)⊕ (2Z),

where x = a(i, i, k) and y = a(k, i, k). We then naturally define

3a(i, j, k)= Za(i, j, k)/Ba(i, j, k)

∼=

(( 1
D(i, j, k)

Z
) /

Z
)
⊕R/Z⊕R/Z for i < j < k,

3a(i, k)= Za(i, k)/Ba(i, k)= R/(2Z)⊕R/(2Z) for i < k.

Here the second isomorphism above can be seen easily by considering the matrix

A =

1 −1 1
0 1 0
0 0 1

 ∈ SL(3,Z).

For each ordered pair i, j ∈ N with i < j , we put Di, j = gcd(pi , p j ) and define

(4-10)

Zb(i, j)= {(x, u, y, v) ∈ R4
: p j x − q j u ∈ Z, pi y− qiv ∈ Z},

Bb(i, j)= {(x, u, y, v) ∈ Zb(i, j) : p j x + pi y ∈ Di, j Z, u, v ∈ Z},

Zb(i, i)= {z = (x, u) ∈ R2
: pi x − qi u ∈ Z}, Bb(i, i)= Z⊕Z,

3b(i, j)= Zb(i, j)/Bb(i, j), 3b(i, i)= Zb(i, i)/Bb(i, i).
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Definition 4.1. To each (a, b) ∈ Z we associate a cochain (λa,b, µa) defined by

(4-11)

λa,b(g; h)= exp(2π i((Ya + XAS a)(g; h)))

× exp
(
2π i

(∑
i∈N, j∈N0

b(i, j)ei,N (g)ẽ j (h)
))
,

ηa(g; h)= exp(2π i(Ya(g; h))),

µa(g; h)= exp(2π iVa(g; h))

= λa,b(m0(h); g) exp(2π iUa(πG(g);πG(h)))

for each (g, h)∈ L×Hm. In the case that b= 0 (respectively a = 0) we denote the
corresponding cochains by (λa, µa) (respectively λb). Let Za (respectively Ba) be
the set of {(λa, µa) : a ∈Za} (respectively {(λb, 1) : b ∈Zb}), and let3=3a⊕3b,
3a = Za/Ba and 3b = Zb/Bb.

Theorem 4.2. (a) The cochain (λa, µa) is a characteristic cocycle belonging to
Z(Hm, L ,M,T) and the correspondence a ∈ Za 7→ (λa, µa) ∈ Za gives the
following commutative diagram of exact sequences:

(4-12a)

0

��
0→ Ba

��

// a ∈ Za

��

// [a] ∈ Ha→ 0

��
0→ Ba // (λa, µa) ∈ Za // [λa, µa] ∈3a→ 1

��
0

(b) The correspondence b ∈ Zb 7→ (λb, 1) ∈ Zb gives the following commutative
diagram of exact sequences:

(4-12b)

0

��
0→ Bb

��

// b ∈ Zb

��

// [b] ∈ Hb→ 0

��
0→ Bb // (λb, 1) ∈ Zb // [λb] ∈3b→ 1

��
0

(c) The characteristic cohomology group3(Hm, L ,M,T)=3a⊕3b has further
fine structure:
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(i) The group 3a has the Cartesian product decomposition

(4-13a) 3a =
∏

i< j<k

3a(i, j, k)⊕
∏
i< j

3a(i, j),

where 3a(i, j, k)∼= ZD(i, j,k)⊕R/Z⊕R/Z,

D(i, j, k)= gcd(pi , p j , pk),

3a(i, j)∼= R/(2Z)⊕R/(2Z).

(ii) The fiber product decomposition of 3b is the family {3b(i, j) : i, j ∈ N}

and each group 3b(i, j) is described by

(4-13a)
3b(i, j)∼= Z/(gcd(pi , p j , qi , q j )Z)⊕ (R/Z)⊕ (R/Z) for i < j,

3b(i, i)∼= Z/(gcd(pi , qi )Z)⊕ (R/Z).

The group 3b(i, j) is equipped with three homomorphisms, and 3b(i, i)
has two:

(4-14)

πi j :3b(i, j)→
( 1

D(i, j)
Z
)/

Z,

π i
i, j :3b(i, j)→ R/Z, π

j
i, j :3b(i, j)→ R/Z,

πi i :3b(i, i)→ (1/pi )Z/Z, π i
i :3b(i, i)→ R/Z,

These are such that for each z = (x, u, y, v) ∈ Zb(i, j)

(4-15)

πi j ([λz])= [mi, j (xr j,i + yri, j )− ni, j (us j,i + vsi, j )]Z,

π i
i, j ([λz])= [u]Z, π

j
i, j ([λz])= [v]Z,

πi i ([λz])= [pi x − qi u]Z, π i
i ([λz])= [u]Z,

where

(4-16)

D(i, j)= gcd(pi , p j , qi , q j ),

Di, j = gcd(pi , p j ), Ei, j = gcd(qi , q j ),

ri, j = pi/Di, j , r j,i = p j/Di, j si, j = qi/Ei, j , s j,i = q j/Ei, j ,

mi, j = Di, j/D(i, j), ni, j = Ei, j/D(i, j),

qiwi, j + q jw j,i = Ei, j , xi, j Di, j + yi, j Ei, j = D(i, j).

The group 3b is the fiber product of {3b(i, j) : i, j ∈ N} relative to the
maps {π i

i, j , π
j

i, j , π
i
i : i, j ∈N} in the sense that3b is the group of all those

λb ∈
∏
(i, j)∈N2 3b(i, j) such that

(4-17) π i
i, j [λb(i, j)] = π i

i [λb(i, i)] = π i
ki [λb(k, i)] for i, j, k ∈ N.
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We will prove the theorem in several steps.
First, we observe that the asymmetrization of fi, j,k is given by

(4-18)

AS fi, j,k = 2(ei e j )∧ ek − 3ei ∧ (e j ek)+ e j ∧ (ei ek)

− 2(ei ek)∧ e j − ek ∧ (ei e j )

= 3
(
(e j ek)∧ ei − (ei ek)∧ e j + (ei e j )∧ ek

)
.

Lemma 4.3. (i) The difference Xa−Ya is equal to XAS a on M × Hm. In partic-
ular, if the integers

ei, j (m)ek(g), e j,k(m)ei (g), ei,k(m)e j (g), e j,k(m)ei (g)

are all divisible by gcd(pi , p j , pk), then for each a ∈ Z

Ya(i, j, k)(m; g)≡ Xa(i, j, k)(m; g) mod Z for m ∈ M and g ∈ Hm.

Therefore, if either g ∈ L or m ∈ L ∧ Hm, then

(4-19)
Xa(i, j, k)(m; g)≡ Ya(i, j, k)(m; g) mod Z,

Xa(i, j, k)(h1 ∧ g; h2)≡ Ya(i, j, k)(h1 ∧ g; h2) mod Z

for each h1, h2 ∈ Hm.

(ii) For every m ∈ M and g ∈ Hm and i < k we have

(4-20) Xa(i, k)(m; g)= Ya(i, k)(m; g).

Proof. (i) We simply compute for i < j < k:

(Xa(i, j, k)− Ya(i, j, k))(m; g)

= a(i, j, k)e j,k(m)ei (g)+ a( j, i, k)ei,k(m)e j (g)

+ a(k, i, j)ei, j (m)ek(g)

− a(i, j, k)(ei,k(m)e j (g)− ei, j (m)ek(g))

− a( j, i, k)(ei, j (m)ek(g)+ e j,k(m)ei (g))

− a(k, i, j)(ei,k(m)e j (g)− e j,k(m)ei (g))

= (a(i, j, k)− a( j, i, k)+ a(k, i, j))

× (e j,k(m)ei (g)− ei,k(m)e j (g)+ ei, j (m)ek(g)).

Thus we conclude (Xa − Ya)(m; g)= XAS a(m; g) for m ∈ M and g ∈ Hm.

(ii) The assertion follows from an easy direct computation. ♥
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Lemma 4.4. If a ∈ R1 is asymmetric modulo ((1/(pi p j pk))Z) in that

(4-21) (AS a)(i, j, k)= a(i, j, k)− a( j, i, k)+ a(k, i, j) ∈ ((1/(pi p j pk))Z)

for each triplet i < j < k, then the cochain µa of (4-11), that is,

µa(g; h)= exp(2π i(Va(g; h))) for g, h ∈ L ,

is a second cocycle µa ∈ Z2(L ,T).

Proof. Observing

(∂Lµa)(g1; g2; g3)= exp(2π i(∂L Va(g1; g2; g3))) for g1, g2, g3 ∈ L ,

we compute the coboundary of Va:

∂L Va(i, j, k)= ∂L Za(i, j, k)+ ∂LUa(i, j, k)

= a(i, j, k)(e j ⊗ ei ⊗ ek − ek ⊗ ei ⊗ e j )

+ a( j, i, k)(ek ⊗ ei ⊗ e j + ei ⊗ e j ⊗ ek)

+ a(k, i, j)(e j ⊗ ei ⊗ ek − ei ⊗ e j ⊗ ek)

+
1
6∂L

(
a(i, j, k) fi, j,k + a( j, i, k) f j,i,k + a(k, i, j) fk,i, j

− (AS a)(i, j, k) fi, j,k
)

= a(i, j, k)(e j ⊗ ei ⊗ ek − ek ⊗ ei ⊗ e j )

+ a( j, i, k)(ek ⊗ ei ⊗ e j + ei ⊗ e j ⊗ ek)

+ a(k, i, j)(e j ⊗ ei ⊗ ek − ei ⊗ e j ⊗ ek)

+
1
6

(
a(i, j, k)(deti jk −6ei ⊗ e j ⊗ ek)

+ a( j, i, k)(det j ik −6e j ⊗ ei ⊗ ek)

+ a(k, i, j)(detki j −6ek ⊗ ei ⊗ e j )

− (AS a)(i, j, k)(deti jk −6ei ⊗ e j ⊗ ek)
)

≡−(AS a)(i, j, k)(ei ⊗ e j ⊗ ek − e j ⊗ ei ⊗ ek + ek ⊗ ei ⊗ e j )

≡ 0 mod Z on L × L × L ,

since ei ⊗ e j ⊗ ek takes values in pi p j pkZ on L × L × L . Also we have

∂L Va(i, k)= ∂L Za(i, k)+ ∂LUa(i, k)

= a(i, i, k)ei ⊗ ei ⊗ ek + a(k, i, k)ek ⊗ ei ⊗ ek − a(i, i, k)ei ⊗ ei ⊗ ek

+ a(k, i, k)(ek ⊗ ek ⊗ ei − ek ⊗ (ei ⊗ ek + ek ⊗ ei ))

= 0.

Hence µa is a second cocycle on L . ♥



OUTER ACTIONS OF A DISCRETE AMENABLE GROUP, III 99

Lemma 4.5. (i) For every (a, b) ∈ Z, the pair {λa,b, µa} is a characteristic co-
cycle in Z(Hm, L ,M,T).

(ii) Every characteristic cocycle (λ, µ) ∈ Z(Hm, L ,M,T) is cohomologous to
some (λa,b, µa).

(iii) The characteristic cocycle {λa,b, µa} ∈ Z(Hm, L ,M,T) is a coboundary if
and only if (a, b) ∈ B.

Proof. (i) We first check the cocycle identities for g, g1, g2∈ L and h, h1, h2∈Hm:

((∂L ⊗ id)λa,b)(g1; g2; h)= µa(h−1g1h; h−1g2h)/µa(g1; g2)(a)

= λa,b(g2 ∧ h; g1),

((id⊗∂Hm)λa,b)(g; h1; h2)= 1/λa,b(g∧ h1; h2)(b)

= λa,b(h1 ∧ g; h2),

λa,b(g; h)= µa(h; h−1gh)/µa(g; h) for g, h ∈ L .(c)

Second, we compute for g1, g2 ∈ L and h ∈ Hm that

Xa(i, j, k)(g2 ∧ h; g1)

= a(i, j, k)e j,k(g2 ∧ h)ei (g1)+ a( j, i, k)ei,k(g2 ∧ h)e j (g1)

+ a(k, i, j)ei, j (g2 ∧ h)ek(g1)

= a(i, j, k)ei (g1)(e j (g2)ek(h)− ek(g2)e j (h))

+ a( j, i, k)e j (g1)(ei (g2)ei (h)− ek(g2)ei (h))

+ a(k, i, j)ek(g1)(ei (g2)e j (h)− e j (g2)ei (h))

=
(
a(i, j, k)ei ⊗ (e j ⊗ ek − ek ⊗ e j )+ a( j, i, k)e j ⊗ (ei ⊗ ei − ek ⊗ ei )

+ a(k, i, j)ek ⊗
(
ei ⊗ e j − e j ⊗ ei

))
(g1; g2; h).

On the other hand, we have

(4-22) (∂L ⊗ id)Ya(i, j, k)= a(i, j, k)(ei ⊗ e j ⊗ ek − ei ⊗ ek ⊗ e j )

+ a( j, i, k)(e j ⊗ ei ⊗ ek − e j ⊗ ek ⊗ ei )

+ a(k, i, j)(ek ⊗ ei ⊗ e j − ek ⊗ e j ⊗ ei ).

Since XAS a(i, j, k)(g2∧h; g1)≡ 0 mod Z, Lemma 4.3 yields, for each g1, g2 ∈ L
and h ∈ Hm,(

(∂L ⊗ id)Ya(i, j, k)
)
(g1; g2; h)= Xa(i, j, k)(g2 ∧ h; g1)

≡ Ya(i, j, k)(g2 ∧ h; g1) mod Z.

Similarly, we have

((∂L ⊗ id)Ya(i, k))(g1, g2; h)≡ Ya(i, k)(g2 ∧ h; g1) mod Z.
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Next, we have

(4-23)

Xa(i, j, k)(h1 ∧ g; h2)

= a(i, j, k)e j,k(h1 ∧ g)ei (h2)+ a( j, i, k)ei,k(h1 ∧ g)e j (h2)

+ a(k, i, j)ei, j (h1 ∧ g)ek(h2)

=
(
a(i, j, k)(ek ⊗ e j − e j ⊗ ek)⊗ ei

+ a( j, i, k)(ek ⊗ ei − ei ⊗ ek)⊗ e j

+ a(k, i, j)(e j ⊗ ei − ei ⊗ e j )⊗ ek
)
(g; h1; h2),

(id⊗∂Hm)Ya(i, j, k)(g; h1; h2)

=
(
a(i, j, k)(ek ⊗ e j ⊗ ei − e j ⊗ ek ⊗ ei )

+ a( j, i, k)(ek ⊗ ei ⊗ e j − ei ⊗ ek ⊗ e j )

+ a(k, i, j)(e j ⊗ ei ⊗ ek − ei ⊗ e j ⊗ ek)
)
(g; h1; h2)

= Xa(i, j, k)(h1 ∧ g; h2)

and (id⊗∂Hm)XAS a(i, j, k) = 0. Hence Lemma 4.3 again yields, for each g ∈ L
and h1, h2 ∈ Hm,

(id⊗∂Hm)(Ya(i, j, k)+ XAS a(i, j, k))(g; h1; h2)

≡ (Ya(i, j, k)+ XAS a(i, j, k))(h1 ∧ g; h2) mod Z.

Similarly, we get ((id⊗∂Hm)Ya(i, k))(g, h1; h2) = Ya(i, k)(h1 ∧ g; h2) for g ∈ L
and h1, h2 ∈ Hm, and XAS a(i, k) = 0. Thus so far we have established formulas
(a) and (b).

Now we work on (c). Fixing g, h ∈ L , we compute its right hand side as

µa(h; h−1gh)
µa(g; h)

=
µa(h; (g∧ h)g)

µa(g; h)
= λa(g∧ h; h)

µa(h; g)
µa(g; h)

= λa(g∧ h; h)
µa(m0(h)sH (h);m0(g)sH (g))
µa(m0(g)sH (g);m0(h)sH (h))

= exp(2π i(Xa(g∧ h; h)))(exp(2π i(AS Va(h; g))))

= exp(2π i((Ya + XAS a)(g∧ h; h)))(exp(2π i(AS Va(h; g))).

Next we prove that

λa(sH (g); sH (h))= λa(g∧ h; h)(ASµa)(sH (h); sH (g)) for g, h ∈ N .

First we observe that

XAS a(g; h)≡ 0 mod Z for g, h ∈ L .
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To prove (c), we ignore the term XAS a and compute

Xa(i, j, k)(g∧ h; h)

= a(i, j, k)e j,k(g∧ h)ei (h)+ a( j, i, k)ei,k(g∧ h)e j (h)

+ a(k, i, j)ei, j (g∧ h)ek(h)

=
(
a(i, j, k)(e j ⊗ (ekei )− ek ⊗ (e j ei ))

+ a( j, i, k)(ei ⊗ (eke j )− ek ⊗ (ei e j ))

+ a(k, i, j)(ei ⊗ (e j ek)− e j ⊗ (ei ek))
)
(g; h),

and also

Xa(i, k)(g∧ h; h)= a(i, i, k)(ei (g)ek(h)− ek(g)ei (h))ei (h)

+ a(k, i, k)(ei (g)ek(h)− ek(g)ei (h))ek(h)

= a(i, i, k)(ei ⊗ (ei ek)− ek ⊗ e2
i )(g; h)

+ a(k, i, k)(ei ⊗ e2
k − ek ⊗ (ei ek))(g; h).

Next we determine the asymmetrization of Ua(i, j, k) based on (4-18):

AS Ua(i, j, k)= 1
6(a(i, j, k)AS fi, j,k + a( j, i, k)AS f j,i,k + a(k, i, j)AS fk,i, j

− (AS a)(i, j, k)AS fi, j,k)

=
1
2

(
a(i, j, k)((e j ek)∧ ei − (ei ek)∧ e j + (ei e j )∧ ek)

+ a( j, i, k)((ei ek)∧ e j − (e j ek)∧ ei + (ei e j )∧ ek)

+ a(k, i, j)((ei e j )∧ ek − (e j ek)∧ ei + (ei ek)∧ e j )

− (a(i, j, k)− a( j, i, k)+ a(k, i, j))

× ((e j ek)∧ ei − (ei ek)∧ e j + (ei e j )∧ ek)
)

=
1
2

(
a( j, i, k)((ei ek)∧ e j − (e j ek)∧ ei + (ei e j )∧ ek)

+ a(k, i, j)((ei e j )∧ ek − (e j ek)∧ ei + (ei ek)∧ e j )

+ (a( j, i, k)− a(k, i, j))

× ((e j ek)∧ ei − (ei ek)∧ e j + (ei e j )∧ ek)
)

=−a(k, i, j)(e j ek)∧ ei + a(k, i, j)(ei ek)∧ e j

+ a( j, i, k)(ei e j )∧ ek .

Hence we get

(4-24) AS Ua(i, j, k)=−a(k, i, j)((e j ek)⊗ ei − ei ⊗ (e j ek))

+ a(k, i, j)((ei ek)⊗ e j − e j ⊗ (ei ek))

+ a( j, i, k)((ei e j )⊗ ek − ek ⊗ (ei e j )).
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We also check the asymmetrization of Ua(i, k):

AS Ua(i, k)= a(i, i, k)ek ∧ Bi i + a(k, i, k)(Bkk ∧ ei − ek ∧ (ei ek))

=
1
2a(i, i, k)(e2

i ⊗ ek − ek ⊗ e2
i )+

1
2a(k, i, k)(ei ⊗ e2

k − e2
k ⊗ ei )

+ a(k, i, k)((ei ek)⊗ ek − ek ⊗ (ei ek)).

We then combine these with the above computations for Xa(i, j, k), paying atten-
tion to the order of variables in the first and second term:1

Xa(i, j, k)(g∧ h; h)+AS Ua(i, j, k)(sH (h); sH (g))

= a(i, j, k)(e j ⊗ (ekei )− ek ⊗ (e j ei ))

+ a( j, i, k)(ei ⊗ (eke j )− ek ⊗ (ei e j ))

+ a(k, i, j)(ei ⊗ (e j ek)− e j ⊗ (ei ek))

+
(
a(k, i, j)(e j ek)∧ ei − a(k, i, j)(ei ek)∧ e j

− a( j, i, k)(ei e j )∧ ek
)

= a(i, j, k)(e j ⊗ (ekei )− ek ⊗ (e j ei ))

+ a( j, i, k)
(
ei ⊗ (eke j )− ek ⊗ (ei e j )− (ei e j )∧ ek

)
+ a(k, i, j)

(
ei ⊗ (e j ek)− e j ⊗ (ei ek)+ (e j ek)∧ ei − (ei ek)∧ e j

)
= a(i, j, k)(e j ⊗ (ekei )− ek ⊗ (e j ei ))

+ a( j, i, k)
(
ei ⊗ (eke j )− ek ⊗ (ei e j )− (ei e j )⊗ ek + ek ⊗ (ei e j )

)
+ a(k, i, j)

(
ei ⊗ (e j ek)− e j ⊗ (ei ek)+ (e j ek)⊗ ei

− ei ⊗ (e j ek)− (ei ek)⊗ e j + e j ⊗ (ei ek)
)

= a(i, j, k)(e j ⊗ (ekei )− ek ⊗ (e j ei ))

+ a( j, i, k)(ei ⊗ (eke j )− (ei e j )⊗ ek)

+ a(k, i, j)((e j ek)⊗ ei − (ei ek)⊗ e j ).

and

Xa(i, k)(g∧ h; h)+AS Ua(i, k)(sH (h); sH (g))

= a(i, i, k)(ei ⊗ (ei ek)− ek ⊗ e2
i )

+ a(k, i, k)(ei ⊗ e2
k − ek ⊗ (ei ek))

+
1
2a(i, i, k)(ek ⊗ e2

i − e2
i ⊗ ek)+

1
2a(k, i, k)(e2

k ⊗ ei − ei ⊗ e2
k)

+ a(k, i, k)(ek ⊗ (ei ek)− (ei ek)⊗ ek)

= a(i, i, k)
(
ei ⊗ (ei ek)−

1
2(ek ⊗ e2

i + e2
i ⊗ ek)

)
+ a(k, i, k)

( 1
2(ei ⊗ e2

k + e2
k ⊗ ei )− (ei ek)⊗ ek

)
.

1In the first term, the variables g and h appear in this order, but in the second they appear in the
opposite order.
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We now compare these with Ya(i, j, k):

Ya(i, j, k)(sH (g); sH (h))

= a(i, j, k)(e j ⊗ (ei ek)− ek ⊗ (ei e j ))

+ a( j, i, k)(ei ⊗ (e j ek)− (ei e j )⊗ ek)

+ a(k, i, j)((e j ek)⊗ ei − (ekei )⊗ e j )

= Xa(i, j, k)(g∧ h; h)+AS Ua(i, j, k)(sH (h); sH (g))

≡ Ya(i, j, k)(g∧ h; h)+AS Ua(i, j, k)(sH (h); sH (g)),

and

Ya(i, k)(sH (g); sH (h))

=
(
a(i, i, k)(Bi i ⊗ ek + ek ⊗ Bi i − Bik ⊗ ei − ei ⊗ Bki )

+ a(k, i, k)(Bki ⊗ ek + ek ⊗ Bik − Bkk ⊗ ei − ei ⊗ Bkk)
)

= a(i, i, k)
(
ei ⊗ (ei ek)−

1
2(ek ⊗ e2

i + e2
i ⊗ ek)

)
+ a(k, i, k)

( 1
2(ei ⊗ e2

k + e2
k ⊗ ei )− (ei ek)⊗ ek

)
= Xa(i, k)(g∧ h; h)+AS Ua(i, k)(sH (h); sH (g))

= Ya(i, k)(g∧ h; h)+AS Ua(i, k)(sH (h); sH (g)).

Therefore, we have

λa,b(sH (g); sH (h))= λa,b(g∧ h; h)
µa(sH (h); sH (g))
µa(sH (g); sH (h))

.

Since we have Ya(mg; nh) = Ya(m; h)+ Ya(g; n)+ Ya(g; h) for every m, n ∈ M
and g, h ∈ Hm, we get, for each m, n ∈ M and g, h ∈ N ,

λa,b(msH (g); nsH (h))

= λa,b(m; sH (h))λa,b(sH (g); n)λa,b(sH (g); sH (h))

=
λa,b(m; sH (h))
λa,b(n; sH (g))

λa,b(g∧ h; h)
µa(sH (h); sH (g))
µa(sH (g); sH (h))

=
µa(nsH (h); (nsH (h))−1msH (g)nsH (h))

µa(msH (g); nsH (h))
.

This proves the cocycle identity (c). Consequently {λa,b, µa} is a characteristic
cocycle in Z(Hm, L ,M,T).

(ii) Suppose that (λ, µ)∈Z(Hm, L ,M,T). Since M is central in Hm, the λ-part
is a bicharacter on M × Hm, so there exists an a = {a(i, j, k)} ∈ R1 such that

λ(m; h)= exp
(

2π i
(∑

i, j<k

a(i, j, k)e j,k(m)ei (h)
))

for m ∈ M and h ∈ Hm.
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As [Hm, Hm] =M , for each fixed m ∈M the character λ(m; · ) on Hm must vanish
on M , that is, λ(m; n) = 1 for m, n ∈ M . Thus the restriction µM of the second
cocycle µ to M is a coboundary. Hence, replacing µ by a cohomologous cocycle
if necessary, we may and do assume that µM = 1. Now consider the corresponding
E ∈ Xext(Hm, L ,M,T), with diagram

1→ T // E
j
←−
s j

// L→ 1.

Redefining the cross-section s j as s j (msH (g)) = s j (m)s j (sH (g)) for m ∈ M and
g ∈ N , we may and do assume that µ(m; g) = 1 for m ∈ M and g ∈ L . Now we
compute the second cocycle µ with m, n ∈ M and g, h ∈ L:

µ(mg; nh)s j (mgnh)= s j (mg)s j (ng)= s j (m)s j (g)s j (n)s j (h)

= s j (m)λ(n; g)s j (n)s j (g)s j (h)

= λ(n; g)µ(g; h)s j (m)s j (n)s j (gh)

= λ(n; g)µ(g; h)s j (mngh)= λ(n; g)µ(g; h)s j (mgnh),

which gives µ(mg; nh)= λ(n; g)µ(g; h) for m, n ∈M and g, h ∈ L . In particular,
we have

µ(g; h)= λ(m0(h); g)µ(sH (πG(g)); sH (πG(h)) for g, h ∈ L ,

where m0(h) = hsH (πG(h))−1
∈ M . Now with g1, g2, g3 ∈ N , we compute the

coboundary:

(4-25)

1= (∂Lµ)(sH (g1); sH (g2); sH (g3))

=
µ(sH (g2); sH (g3))µ(sH (g1); sH (g2)sH (g3))

µ(sH (g1)sH (g2); sH (g3))µ(sH (g1); sH (g2))

=
µ(sH (g2); sH (g3))µ(sH (g1); nM(g2; g3)sH (g2+ g3))

µ(nM(g1; g2)sH (g1+ g2); sH (g3))µ(sH (g1); sH (g2))

= λ(nM(g2; g3); sH (g1))
µ(sH (g2); sH (g3))µ(sH (g1); sH (g2+ g3))

µ(sH (g1+ g2); sH (g3))µ(sH (g1); sH (g2))
.

Thus the cocycle ca ∈ Z3(N ,T) given by

ca(g1; g2; g3)= λ(nM(g2; g3); g1)

= exp
(

2π i
(∑

i, j<k

a(i, j, k)e j,k(nM(g2; g3))ei (g1)
))

= exp
(

2π i
(∑

i, j<k

a(i, j, k)ei (g1)e j (g2)ek(g3)
))
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is a coboundary in Z3(N ,T). Thus we get, for every g1, g2, g3 ∈ N ,

1= (AS ca)(g1, g2, g3)

= exp
(

2π i
(∑

i, j<k

a(i, j, k)
∑

σ∈5(i, j,k)

sign(σ )ei (gσ(i))e j (gσ( j))ek(gσ(k))
))

= exp
(

2π i
(∑

i, j<k

a(i, j, k) deti jk(g1; g2; g3)
))

= exp
(

2π i
( ∑
(i, j,k)∈1

(AS a)(i, j, k) deti jk(g1, g2, g3)
))
.

Thus the coefficient a={a(i, j, k)}∈R1 is asymmetric in the sense of Lemma 4.4,
so that it gives the second cocycle µa = exp(2π iVa) ∈ Z2(L ,T). Then the cocycle
µµ−1

a ∈ Z2(L ,T) falls in the subgroup π∗G(Z
2(N ,T))⊂ B2(L ,T) because

µ(msH (g); nsH (h))= λ(n; sH (g))µ(sH (g); sH (h))

=
µa(msH (g); nsH (h))
µa(sH (g); sH (h))

µ(sH (g); sH (h))

=
µ(sH (g); sH (h))
µa(sH (g); sH (h))

µa(msH (g); nsH (h)),

µ−1
a µ= π∗G ◦ s

∗

H (µµ
−1
a ) ∈ π∗G(Z

2(N ,T)).

Thus there exists a cochain f ∈ C1(L ,T) such that

µa(g; h)= µ(g; h)
f (g) f (h)

f (gh)
for g, h ∈ L .

Since 1=µ(m; h)=µa(m; h) for m ∈M and h ∈ L , we have f (mh)= f (m) f (h).
Since (∂1 f )(m; h)= 1 for m ∈ M and h ∈ Hm, we have ∂ f (λ, µ)= (λ, µa).

Next we look at one of the cocycle identities, for g1, g2 ∈ L and h ∈ Hm:

λ(g1g2; h)= λ(g1; h)λ(g2; h)
µa(g1; g2)

µa(h−1g1h; h−1g2h)

=
1

λ(g2∧h; g1)
λ(g1; h)λ(g2; h)

= λ(h ∧ g2; g1)λ(g1; h)λ(g2; h)

= exp
(

2π i
(∑

i, j<k

a(i, j, k)ei (g1)e j,k(h ∧ g2)
))
λ(g1; h)λ(g2; h),

which gives the partial coboundary condition

(∂L ⊗ id)λ= exp
(

2π i
(∑

i, j<k

a(i, j, k)ei ⊗ (e j ⊗ ek − ek ⊗ e j )
))
.
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Another cocycle identity for g ∈ L and h1, h2 ∈ Hm is

λ(g; h1h2)= λ(g; h1)λ(h−1
1 gh1; h2),

= λ(g∧ h1; h2)λ(g; h1)λ(g; h2)

= exp
(

2π i
(∑

i, j<k

a(i, j, k)e j,k(g∧ h1)ei (h2)
))
λ(g; h1)λ(g; h2);

this gives the second partial coboundary condition

(id⊗∂Hm)λ= exp
(

2π i
(∑

i, j<k

a(i, j, k)(ek ⊗ e j − e j ⊗ ek)⊗ ei

))
.

Setting ηa = exp(2π i(Ya)), we obtain, by (4-22) and (4-23),

(∂L ⊗ id)λ= (∂L ⊗ id)ηa and (id⊗∂Hm)λ= (id⊗∂Hm)ηa.

Therefore the cochain ηaλ= χ is a bicharacter on L×Hm. Since M = [Hm, Hm],
the bicharacter χ vanishes on L ×M , that is, λ(m; g) = ηa(m; g) for m ∈ M and
g ∈ L . Thus we get

1= λ(m; g)ηa(m; g)= exp(2π i(Xa(m; g)− Ya(m; g)))

= exp(2π i(XAS a(m; g)))= λAS a(m; g),

which is equivalent to the fact that (AS a)(i, j, k) ∈ ((1/gcd(pi , p j , pk))Z). Thus
we conclude the cocycle condition (4-9Z-a) on the parameter {a(i, j, k)}. There-
fore the coefficient a ∈ R1 satisfies the requirement for the element (a, 0) ∈ Z .
Consequently, it follows from (i) that (λa,0, µa) ∈ Z(Hm, L ,M,T). Then the co-
cycle identity (c) for (λa,0, µa) yields that

λ(g; h)=
µa(h; h−1gh)
µa(g; h)

= λa,0(g; h)= ηa(g; h) for g, h ∈ L .

Thus the bicharacter χ = ηaλ on L× Hm vanishes on L× L . Since Lemma 4.3(i)
yields for each m ∈ M and h ∈ Hm that

χ(m; h)= λ(m; h)ηa(m; h)= λa(m; h)ηa(m; h)

= λAS a(m; h)= exp
(

2π i
(∑

i, j<k

(AS a)(i, j, k)e j,k(m)ei (h)
))
,

we conclude that χ is of the form

χ(g; h)= χ0(πG(g);πG(h)) exp
(

2π i
( ∑

i< j<k

(AS a)(i, j, k)e j,k(g)ei (h)
))
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for g ∈ L and h ∈ Hm, where χ0 is a bicharacter on N ×Gm and πG : Hm→ Gm

the quotient map with M = Ker(πG). We choose b(i, j) ∈ R so that

exp(2π i(b(i, j)))= χ0(bi ; z j ) for i ∈ N and j ∈ N0.

Then we must have

1= χ0(bi ; b j )= χ0(bi ; p j z j − q j z0)= exp(2π i(b(i, j)p j − b(i, 0)q j )),

so that b(i, j) ∈ R for i ∈ N and j ∈ N0 satisfies the condition

b(i, j)p j ≡ b(i, 0)q j mod Z for i, j ∈ N.

Hence χ0 is written in the form

χ0(g; h̃)= exp
(

2π i
(∑

i, j∈N

b(i, j)ei,N (g)e j (h̃)+
∑
i∈N

b(i, 0)ei,N (g)ẽ0(h̃)
))

for each pair g ∈ N and h̃ ∈ Hm, where each coefficient b(i, j) satisfies

b(i, j)p j − b(i, 0)q j ∈ Z for i, j ∈ N and b(0, i)= 0 for i ∈ N0.

Consequently the pair (a, b) is a member of Z and we conclude that (λ, µ) is
cohomologous to the characteristic cocycle (λa,b, µa) ∈ Z(Hm, L ,M,T).

(iii) Suppose (λ, µ) = (λa,b, µa) = ∂ f with f ∈ C1(L ,T). Since µM = 1 and
µa(m; g)= 1 for m ∈ M and g ∈ L , we have f (mg)= f (m) f (g) for m ∈ M and
g ∈ L , so that the restriction of f to M is of the form

fc(m)= exp
(

2π i
( ∑

1≤i< j

c(i, j)ei, j (m)
))

for m ∈ M.

Since M is central in Hm, we have for every pair (m, g) ∈ M × Hm

1=
fc(g−1mg)

fc(m)
= λ(m; g)= exp

(
2π i

(∑
i, j<k

a(i, j, k)e j,k(m)ei (g)
))
,

which yields the integrality condition a(i, j, k) ∈ Z for every (i, j, k) ∈ 1. that
λa(m; h) = 1 for m ∈ M and h ∈ Hm. Since χ = 1 on L × L , for every g, h ∈ L
we have

1= λ0,b(g; h)= λa(m0(g); h)λ0,b(sH (g); h)= λ(g; h)

= f (h−1gh)/ f (g)= fc(g∧ h);

c(i, j) ∈
( 1

pi p j
Z
)

for i, j ∈ N.

This computation also shows that

λ0,b(g; h)= fc(g∧ h) for g ∈ L and h ∈ Hm.
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Furthermore, we have for each m, n ∈ M and g, h ∈ L

µa(mg; nh)= λa,b(n; g)µa(g; h)= µa(g; h),

so that µa is of the form µa = π
∗
G(µ̃) with

µ̃a(g; h)= exp(2π i(Ua(g; h))) for g, h ∈ N .

Since λa(nM(g2; g3); g1)=1 for g1, g2, g3∈Hm, we have µ̃a ∈Z2(N ,T) by (4-25).
We first compute for each g, h ∈ L that

(ASµa)(g; h)=
f (g) f (h)

f (gh)
f (hg)

f (g) f (h)
=

f (hgh−1h)
f (gh)

= fc(h ∧ g)= 1.

Since AS Ua(i, j, k) is also integer valued, we have

ASµa = exp
(

2π i
(∑

i<k

AS Ua(i, k)
))

= exp
(

2π i
(∑

i<k

(1
2a(i, i, k)(e2

i ⊗ ek − ek ⊗ e2
i )
)))

× exp
(

2π i
(∑

i<k

1
2a(k, i, k)(ei ⊗ e2

k − e2
k ⊗ ei )

))
= 1.

Thus we get

a(i, i, k), a(k, i, k) ∈ 2Z and Ua(i, k)≡ 0 mod Z.

Consequently, µ̃a is a coboundary as a member of Z2(N ,T). Hence there exists a
cochain f̃ ∈ C1(N ,T) such that

f (g) f (h)
f (gh)

= µa(g; h)= µ̃a(πG(g);πG(h))=
f̃ (πG(g)) f̃ (πG(h))

f̃ (πG(gh))
.

Thus f is of the form

f (g)= fc(m0(g)) f (sH (g))= χ(g) f̃ (πG(g)) for g ∈ L ,

fc(m)= χ(m) for m ∈ M.

where χ ∈ Hom(L ,T). Since L/[L , L] ∼= M/P M P ⊕ N , the homomorphism χ

is of the form

χ(g)= exp
(

2π i
(∑

j<k

c( j, k)e j,k(g)+
∑
k∈N0

c(k)ẽk(g)
))

for g ∈ L ,

where
c(i, j) ∈

( 1
pi p j

Z
)

for i < j and c(k) ∈ R.
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Since Ya is integer valued, the λ part becomes for g ∈ N and h ∈ Hm

λ(g; h)= exp
(

2π i
( ∑

j∈N,k∈N0

b( j, k)e j,N (g)ẽk(h)
))
,

=
f (h−1gh)

f (g)
=

f ((g∧ h)g)
f (g)

= fc(g∧ h)

= exp
(

2π i
( ∑

1≤ j<k

c( j, k)e j,k(g∧ h)
))

= exp
(

2π i
( ∑

1≤ j<k

c( j, k)
(
e j (g)ek(h)− ek(g)e j (h)

)))
= exp

(
2π i

( ∑
1≤ j<k

c( j, k)
(

p j e j,N (g)ek(h)− pkek,N (g)e j (h)
)))

.

Hence we conclude that for j < k and i ∈ N

b(i, 0) ∈ Z, b( j, k)≡ c( j, k)p j mod Z,

b(i, i) ∈ Z, b(k, j)≡−c( j, k)pk mod Z.

Thus we have for i < j

b(i, j)= c(i, j)pi +mi, j for some mi, j ∈ Z,

b( j, i)=−c(i, j)p j +m j,i for some m j,i ∈ Z,

b(i, j)
pi
+

b( j, i)
p j
=

mi, j

pi
+

m j,i

p j
∈

( 1
pi

Z
)
+

( 1
p j

Z
)
=

( 1
lcm(pi , p j )

Z
)
.

Conversely suppose (a, b) ∈ B, that is,

a(i, j, k) ∈ Z for i < j < k and a(i, i, k), a(k, i, k) ∈ 2Z for i < k,

and b(i, j)/pi + b( j, i)/p j ∈ ((1/lcm(pi , p j ))Z); also b(i, i) ∈ Z and b(i, 0) ∈ Z

for i ∈ N. So we can write

b(i, j)
pi
+

b( j, i)
p j
=

mi, j

pi
+

m j,i

p j
for some mi, j ,m j,i ∈ Z.

Set c(i, j)= b(i, j)/pi −mi, j/pi for i < j and c(i, i)= b(i, i), so that

b( j, i)
p j
=−c(i, j)+

m j,i

p j
.
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Then we have∑
i, j∈N

b(i, j)ei,N (g)e j (h)

≡

∑
i< j

c(i, j)
(

pi ei,N (g)e j (h)− p j e j,N (g)ei (h)
)

mod Z,

=

∑
i< j

c(i, j)ei, j (g∧ h).

Thus with fc(g)= exp
(
2π i

(∑
1≤i< j c(i, j)ei, j (g)

))
for g ∈ L , we have

exp
(

2π i
(∑

i, j

b(i, j)ei,N (g)e j (h)
))
=

fc(h−1gh)
fc(g)

= ∂1 fc(g; h),

where ei,N (g)means ei,N ◦πG . We then compute the coboundary of fc for g, h ∈ L
as

(∂L fc)(g; h)=
fc(g) fc(h)

fc(gh)

= exp
(

2π i
(∑

i< j

c(i, j)(ei, j (g)+ ei, j (h)− ei, j (gh))
))

= exp
(
−2π i

(∑
i< j

c(i, j)ei (g)e j (h)
))
= 1,

because ei (g) ∈ pi Z and e j (h) ∈ p j Z if g, h ∈ L and

pi c(i, j)p j = b(i, j)p j −mi, j p j ≡ b(i, 0)q j ≡ 0 mod Z.

As a(i, j, k) ∈ Z for every triplet (i, j, k) ∈1, we get trivially

λa,0 = 1, µ̃a = s∗Hµa ∈ Z2(N ,T), and µa = π
∗

G(µ̃a).

Since ∂NUa(i, j, k) for i < j < k is integer valued, the cochain

µ̃i jk
a = exp(2π i(Ua(i, j, k)))

belongs to Z2(N ,T). Since AS Ua(i, j, k) is integer valued by (4-24), AS µ̃i jk
a = 1

and therefore µ̃i jk
a ∈ B2(N ,T). Because µ̃ik

a = exp(2π i(Ua(i, k))) = 1 for i < k,
we conclude that µ̃a ∈ B2(N ,T). Thus there exists a cochain f̃ ∈ C1(N ,T) such
that µ̃a = ∂N f̃ . Define a cochain f ∈ C1(L ,T) by f = (π∗G f̃ ) fc. Then we get for
each pair g ∈ L and h ∈ Hm

(∂1 f )(g; h)=
f (h−1gh)

f (g)
=

f̃ (πG(h−1gh)) fc(h−1gh)

f̃ (πG(g)) fc(g)
=

fc(h−1gh)
fc(g)

= λa,b(g; h)
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and for g, h ∈ L

(∂2 f )(g; h)=
f̃ (πG(g)) fc(g) f̃ (πG(h)) fc(h)

f̃ (πG(gh)) fc(gh)

= ∂L fc(g; h)(∂N f̃ )(πG(g);πG(h))= µ̃a(πG(g);πG(h))= µa(g; h).

Therefore we conclude ∂ f = {λa,b, µa} ∈ B(Hm, L ,M,T). ♥

Lemma 4.6. The cocycle λb corresponding to b ∈ Zb does not depend on the M-
component, that is,

λb(mg; nh̃)= λb(g; h̃) for m, n ∈ M, g ∈ L and h̃ ∈ Hm.

We will view λb as a bicharacter on N ×Gm rather than on L × Hm.

(i) For i ∈ Z, set

Zb(i, i)= {z = (x, u) ∈ R2
: pi x − qi u ∈ Z} and Bb(i, i)= Z⊕Z.

The bicharacter λi,i
z on N ×Gm determined by

λi,i
z (g; h)= exp(2π i(xei,N (g)ẽi (h)+ uei,N (g)ẽ0(h))) for g ∈ N and h ∈ Gm,

gives a characteristic cocycle of Z(Hm, L ,M,T). It is a coboundary if and
only if z is in Bb(i, i). The corresponding cohomology class [λi,i

z ] ∈ 3b(i, i)
is given by

[λi,i
z ] = ([pi x − qi u]gcd(pi ,qi ), [−vi x + ui u]Z) ∈ Zgcd(pi ,qi )⊕ (R/Z),

where the integers ui and vi are determined by pi ui − qivi = gcd(pi , qi )

through the Euclid algorithm.

(ii) Fix a pair i, j ∈ N of indices and set

Zb(i, j)= {(x, u, y, v) ∈ R4
: p j x − q j u ∈ Z, pi y− qiv ∈ Z},

Bb(i, j)= {(x, u, y, v) ∈ Zb(i, j) : p j x + pi y ∈ gcd(pi , p j )Z, u, v ∈ Z}.

To each element z = (x, u, y, v) ∈ Zb(i, j), there corresponds a bicharacter
λz on N ×Gm determined by

λi, j
z (g; h)= exp(2π i(xei,N (g)ẽ j (h)+ ye j,N (g)ẽi (h)))

× exp(2π i(uei,N (g)ẽ0(h)+ ve j,N (g)ẽ0(h))) for g ∈ N and h ∈ Gm,

which is a characteristic cocycle in Z(Hm, L ,M,T). It is a coboundary if and
only if z ∈ Bb(i, j). The cohomology class [λi, j

z ] ∈3b(i, j) of λz corresponds
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to the parameter class

[z] =

[mi, j (xr j,i + yri, j )− ni, j (us j,i + vsi, j )]Z
[yi, j (xr j,i + yri, j )+ xi, j (us j,i + vsi, j )]Z

[−uwi, j + vw j,i ]Z

 ∈

( 1

D(i, j)
Z
)/

Z

R/Z

R/Z

 ,
where D(i, j), . . . , w j,i are given in (4-17) of Theorem 4.2.

Proof. (i) Set Di = gcd(pi , qi ); set ri = pi/Di and si = qi/Di , and choose integers
ui , vi ∈Z so that ri ui−sivi = 1, where such a pair (ui , vi )∈Z2 can be determined
through the Euclid algorithm. Next we set e1 = (1, 0) and e2 = (0, 1). Set

f1 = ui e1+ vi e2 and f2 = si e1+ ri e2,

so that e1 = ri f1− vi f2 and e2 =−si f1+ ui f2. Then Zb(i, i) is given by

Zb(i, i)=
( 1

Di
Z
)

f1+R f2,

and Bb(i, i)= Ze1+Ze2 = Z f1+Z f2, so that

3b(i, i)= Zb(i, i)/Bb(i, i)∼=
( 1

Di
Z
/

Z
)

ḟ1⊕ (R/Z) ḟ2,

where the dotted elements indicate the corresponding elements in the quotient
group 3b(i, i). Now we chase the parameter:

z = xe1+ ue2 = x(ri f1− vi f2)+ u(−si f1+ ui f2)

= (ri x − si u) f1+ (−vi x + ui u) f2;

ż = [ri x − si u]Z ḟ1+ [−vi x + ui u]Z ḟ2,

and

λi,i
z (g; h̃)= exp(2π i((xei,N (g)ei (h̃)+ uei,N (g)e0(h̃))))

for each pair g ∈ N and h̃ ∈ Gm.
(ii) First we fix the standard basis {e1, . . . , e4} of R4 and set

g0 = ri, j e1− r j,i e3 and g1 = u j,i e1+ ui, j e3,

where we choose ui, j , u j,i ∈ Z so that ri, j ui, j + r j,i u j,i = 1. Since

e1 = ui, j g0+ r j,i g1 and e2 =−u j,i g0+ ri, j g1,

we have Ze1+Ze3 = Zg0+Zg1. Also we have

Bb(i, j)+Rg0 = Rg0+Zg1+Ze2+Ze4.



OUTER ACTIONS OF A DISCRETE AMENABLE GROUP, III 113

Consider an integer 3× 4 matrix

T =

mi, jr j,i −ni, j s j,i mi, jri, j −ni, j si, j

yi, jr j,i xi, j s j,i yi, jri, j xi, j si, j

0 −wi, j 0 w j,i

 .
We claim that

T (Zb(i, j)+Rg0)=
( 1

D(i, j)
Z
)
⊕R⊕R.

To prove the claim, for each vector z = xe1 + ue2 + ye3 + ve4 ∈ R4, we simply
compute

T g0 = 0,

T z =

mi, jr j,i −ni, j s j,i mi, jri, j −ni, j si, j

yi, jr j,i xi, j s j,i yi, jri, j xi, j si, j

0 −wi, j 0 w j,i




x
u
y
v


=

mi, j (xr j,i + yri, j )− ni, j (us j,i + vsi, j )

yi, j (xr j,i + yri, j )+ xi, j (us j,i + vsi, j )

−uwi, j + vw j,i

 .
Suppose

k
D(i, j)

= mi, j (xr j,i + yri, j )− ni, j (us j,i + vsi, j ) ∈
( 1

D(i, j)

)
Z.

Then we have

k = (mi, j (xr j,i + yri, j )− ni, j (us j,i + vsi, j ))D(i, j)

= (x p j − uq j )+ (y pi − vqi )

= ((x + tri, j )p j − uq j )+ ((y− tr j,i )pi − vqi ).

A choice of t ∈R, such that (x+ tri, j )p j −uq j is an integer, yields the integrality
of the other term (y− tr j,i )pi −vqi , so that z+ tg0 ∈ Zb(i, j). Now we prove that

T−1Z3
= Bb(i, j)+Rg0.

Since T is a matrix with integer coefficients and the generators g1, e2, e4 are all
integer vectors, we have T (Bb(i, j))⊂Z3. Conversely, suppose that T z ∈Z3. Then
we have

k = mi, j (xr j,i + yri, j )− ni, j (us j,i + vsi, j ) ∈ Z,

`= yi, j (xr j,i + yri, j )+ xi, j (us j,i + vsi, j ) ∈ Z,

m =−uwi, j + vw j,i ∈ Z.
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Hence we get

xr j,i + yri, j = xi, j k+ ni, j` ∈ Z, n = us j,i + vsi, j =−yi, j k+mi, j` ∈ Z,

u = nw j,i −msi, j ∈ Z, v = nwi, j +ms j,i ∈ Z,

x p j + y pi = (xr j,i + yri, j )Di, j ∈ Di, j Z.

Therefore z ∈ Bb(i, j)+Rg0.
Consequently, we conclude

3b(i, j)∼= Zb(i, j)/Bb(i, j)∼=
(( 1

D(i, j)
Z
)/

Z
)
⊕ (R/Z)⊕ (R/Z),

in the sense that the cohomology class [λi, j
z ] ∈3b(i, j) corresponds to

[z] =

[mi, j (xr j,i + yri, j )− ni, j (us j,i + vsi, j )]Z
[yi, j (xr j,i + yri, j )+ xi, j (us j,i + vsi, j )]Z

[−uwi, j + vw j,i ]Z

 ∈
((1/D(i, j))Z)/Z

R/Z

R/Z

 .
For each i, j ∈ N, define maps π i

i : 3b(i, i)→ R/Z, π i
i, j : 3b(i, j)→ R/Z,

π
j

i, j :3b(i, j)→ R/Z and πi j :3b(i, j)→ ((1/D(i, j))Z)/Z by

π i
i ([λ

i,i
z ])= [u]Z ∈ R/Z and πi i ([λ

i,i
z ])= [xri − usi ]Z ∈ ((1/Di )Z)/Z

for each z = (x, u) ∈ Zb(i, i), and

π i
i, j ([λ

i, j
z ])= [u]Z ∈ R/Z, π

j
i, j ([λ

i, j
z ])= [v]Z ∈ R/Z,

πi j ([λ
i, j
z ])= [mi, j (xr j,i + yri, j )− ni, j (us j,i + vsi, j )]Z ∈

( 1
D(i, j)

Z
)/

Z

for each z = (x, u, y, v) ∈ Zb(i, j). The maps π i
i, j and π j

i, j are both well defined
because the coboundary condition on z implies the integrality of u and v.

Let 3b be the set of all

λb = {λb(i, i), λb(i, j)} ∈
∏
i∈N

3b(i, i)×
∏
i< j

i, j∈N

3b(i, j)

such that π i
i (λb(i, i))=π i

i, j (λb(i, j))=π i
ki (λb(k, i)) for all i, j, k ∈N. Finally we

have 3(Hm, L ,M,T)=3a ⊕3b. This completes the proof. ♥

Remark 4.7. The direct sum homomorphism πi j⊕π
i
i, j⊕π

j
i, j is a homomorphism

of 3a(i, j) onto the direct sum group:

3b(i, j)
πi j⊕π

i
i, j⊕π

j
i, j //
(( 1

D(i, j)
Z
)/

Z
)
⊕ (R/Z)⊕ (R/Z).
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By multiplying πi i (λz) by Di , we get

Diπi i ([λz])= [x pi − uqi ]Di Z ∈ Z/(Di Z).

Similarly, we have

D(i, j)πi j (λz)= [(x p j + y pi )− (uq j + vqi )]D(i, j) ∈ Z/(D(i, j)Z).

The kernel of πi j ⊕π
i
i, j ⊕π

j
i, j is given by

Ker(πi j ⊕π
i
i, j ⊕π

j
i, j )=


{0}( 1

mi, j
Z
)/

Z

{0}

 .
At the parameter level, the kernel is described as follows:

[λz] ∈ Ker(πi j ⊕π
i
i, j ⊕π

j
i, j ) if and only if x p j + y pi ∈ D(i, j)Z, u, v ∈ Z.

5. The reduced modified HJR-sequence

We are now going to investigate the reduced modified HJR-exact sequence

(5-1)

...

��

...

��
H2(H,T)

Res
��

H2(H,T)

res
��

3(Hm, L ,M,T)

δ

��

res // 3(H,M,T)

δHJR
��

Hout
m,s(G, N ,T)

Inf
��

∂Qm // H3(G,T)

inf
��

H3(H,T) H3(H,T)

We refer to [Katayama and Takesaki 2007, page 116] for details. We first discuss
the second cohomology group Z2(H,T) and the restriction map Res. Each second
cocycle µ∈Z2(H,T) gives rise to a group extension equipped with a cross-section

1→ T // E
j
←−
s j

// H → 1
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such that s j (g)s j (h)= µ(g; h)s j (gh) for g, h ∈ H . With

λµ(g; h)= µ(h; h−1gh)/µ(g; h) for g, h ∈ H,

we obtain a characteristic cocycle (λµ, µ) ∈ Z(H, H,T). This corresponds to the
case that P = 1 in the previous section. So we set

(5-2)
Z2
=
{
a ∈ RN3

: a(i, j, k)= 0 if j ≥ k, (AS a)(i, j, k) ∈ Z
}
,

B2
=
{
a ∈ Z2

: a(i, j, k) ∈ Z, a(i, i, k), a(k, i, k) ∈ 2Z
}
.

Theorem 5.1. (i) Each element a ∈ Z2 gives rise to a cocycle

(5-3) µa = exp(2π iVa) ∈ Z2(H,T)

and the diagram

1 // B2

��

// a ∈ Z2

��

// [a] ∈ H2 // 1

1 // B2(H,T) // µa ∈ Z2(H,T) // [λa] ∈ H2(H,T) // 1

describes the second cohomology H2(H,T). More precisely, with

Z2(i, j, k)= {(x, y, z) ∈ R3
: x − y+ z ∈ Z}, Z2(i, k)= R2,

B2(i, j, k)= Z3, B2(i, k)= (2Z)2,

H2(i, j, k)= Z2(i, j, k)/B2(i, j, k), H2(i, k)= Z2(i, k)/B2(i, k)

for each triplet i < j < k (respectively pair i < k) and

a(i, j, k)= x, a( j, i, k)= y, a(k, i, j)= z,

(respectively a(i, i, k)= x, a(k, i, k)= y),

we set
µi jk

a = exp(2π i(Va(i, j, k))) ∈ Z2(H,T),

µik
a = exp(2π i(Va(i, k))) ∈ Z2(H,T).

Then we have

Z2(H,T)=
∏

i< j<k

Z2(i, j, k)×
∏
i<k

Z2(i, k),

B2(H,T)=
∏

i< j<k

B2(i, j, k)×
∏
i<k

B2(i, k),

µa =

( ∏
i< j<k

µi jk
a

)(∏
i<k

µik
a

)
∈ Z2(H,T),
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H2(H,T)∼=
∏

i< j<k

H2(i, j, k)×
∏
i<k

H2(i, k),

[µa] = ([µ
i jk
a ], [µ

ik
a ] : i < j < k and i < k) ∈ H2(H,T).

Each H2(i, j, k) for i < j < k, (respectively H2(i, k) for i < k), is given by

H2(i, j, k)∼= (R/Z)⊕ (R/Z),

(respectively H2(i, k)∼= (R/2Z)⊕ (R/2Z)).

Proof. Most of the claims have been proved already except the claim for the struc-
ture of H2(i, j, k). To prove this, it is convenient to introduce a matrix

A =

1 −1 1
0 1 0
0 0 1

 ∈ SL(3,Z), for which A−1
=

1 1 −1
0 1 0
0 0 1

 .
We then observe that AZ2(i, j, k)= (Z⊕R⊕R) and AB2

= Z3; we conclude

H2(i, j, k)∼= {0}⊕ (R/Z)⊕ (R/Z). ♥

Theorem 5.2. (i) Each second cocycle µa ∈ Z2(H,T) for a ∈ Z2 gives the cor-
responding characteristic cocycle

Res(µa)= (λa, µa)= π
∗

m(λa|L×Hm, µa|L) ∈ Z(Hm, L ,M,T).

The image Res(Z2(H,T)) is therefore given by

Res(Z2(H,T))= {(λa, µa) : a ∈ Za, (AS a)(i, j, k) ∈ Z, i < j < k}.

The (i, j, k)-component Res(i, j, k) of the restriction map Res gives rise to
the following commutative diagram of short exact sequences:

1

��

1

��
B2(i, j, k)= Z3

��

Xa(i, j,k)−→Xa(i, j,k) // Ba(i, j, k)= Z3

��
Z2(i, j, k)= A−1(Z⊕R2)

��

Xa(i, j,k)−→Xa(i, j,k)// Za(i, j, k)= A−1((1/D)Z⊕R2)

��
H2(i, j, k)= {0}⊕T2

��

Res(i, j,k) // 3a(i, j, k)= ZD ⊕T2

��
1 0,
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where D = D(i, j, k)= gcd(pi , p j , pk). Also the restriction map Resa(i, k) :
H2(i, k)→3a(i, k) is given by

1

��

1

��
B2(i, k)= (2Z)2

��

Xa(i,k)−→Xa(i,k) // Ba(i, k)= (2Z)2

��
Z2(i, k)= R2

��

Xa(i,k)−→Xa(i,k) // Za(i, k)= R2

��
H2(i, k)= (R/2Z)2

��

Res(i,k) // 3a(i, k)= (R/2Z)2

��
1 1

Consequently, we get

3a(i, j, k)/Res(i, j, k)(H2(i, j, k))∼= Z/(DZ),

3a(i, k)/Res(i, k)(H2(i, k))∼= {0}.

(ii) The modified HJR-map δ : 3(Hm, L ,M,T)→ Hout
m,s(G, N ,T) enjoys these

properties:
(a) The (i, j, k)-component and (i, k)-component of Ker(δ) are given by

Ker(δ)i jk = {0}⊕ (R/Z)⊕ (R/Z),

Ker(δ)ik = (R/2Z)⊕ (R/2Z)=3a(i, k).

(b) The image δ([λa, µa]) ∈ Hout
m,s(G, N ,T) for a ∈ Za depends only on the

asymmetrization AS a, that is,

δ([λa, µa])= δ([λâ, 1]),

where

(5-4)
â(i, j, k)= (AS a)(i, j, k) ∈ ((1/D)Z) for i < j < k,

â( j, i, k)= â(k, i, j)= â(i, i, k)= â(i, j, j)= â(k, i, k)= 0.

(c) Set Zâ = {a ∈ Za : a satisfies the requirement (5-4)}. If a ∈ Zâ , then the
image ca = δ(λa, 1) ∈ Zout(Gm, N ,T) under the modified HJR-map δ is
in the pull back π∗m(H

3(Q,T)) and given by

(5-5) ca(q̃1, q̃2, q̃3)= ca(q1, q2, q3)

= exp
(

2π i
( ∑

i< j<k

a(i, j, k){ei (q1)}pi {e j (q2)}p j {ek(q3)}pk

))
for each q̃1 = (q1, s1), q̃2 = (q2, s2) and q̃3 = (q3, s3) ∈ Qm.
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(d) The modified HJR-map δHJR is injective on3b and Ker(δ) is precisely the
connected component of 3(Hm, L ,M,T). If b ∈ Zb, then

[cb, νb] = δ(λb, 1) ∈ Zout
m,s(G, N ,T)

is given by

(5-6) cb(q̃1, q̃2, q̃3)= exp
(

2π i
( ∑

i∈N, j∈N0

b(i, j)ei,N (nN(q̃2; q̃3))ẽ j (s(q̃1))
))

where

(5-7)

ei,N (nN(q̃2; q̃3))= ηpi ([ei (q2)]pi ; [ei (q3)]pi )/pi ,

ẽi (s(q̃1))= {ei (q1)}pi for i ≥ 1,

ẽ0(s(q̃1))= ẽ0(q1).

The d-part dcb of cb is given by νb:

(5-8)

dcb(q2; q3)= exp
(

2π i
(∑

j∈N

b( j, 0)ηp j ([e j (q2)]p j ; [e j (q3)]p j )/p j

))
= exp

(
2π i

(
{νb(nN(q2; q3))}T /T

))
,

νb(g)= πT

(
T
∑
j∈N

b( j, 0)e j,N (g)
)
∈ R/T Z for g ∈ N ,

where πT : s ∈ R 7→ sT = s+ T Z ∈ R/T Z is the quotient map.

The modular obstruction group Hout
m,s(G, N ,T) looks like

(5-9) Hout
m,s(G, N ,T)= Hout

a ⊕Hout
b and Hout

b
∼=3b,

δ([λa, µa])= [cAS a] ∈
∏

i< j<k

(( 1
gcd(pi , p j , pk)

Z
)/

Z
)

for a ∈ Za,

[cb, νb] = δ([λb, 1]) for νb ∈ Hom(N ,R/T Z),

[ci,i
b ] = ([pi b(i, i)− qi b(i, 0)]Di Z, [−vi b(i, i)+ ui b(i, 0)]Z)

∈ Z/(Di Z)⊕R/Z,

[ci, j
b ] =

[mi, j (b(i, j)r j,i + b( j, i)ri, j )− ni, j (b(i, 0)s j,i + b( j, 0)si, j )]Z
[yi, j (b(i, j)r j,i + b( j, i)ri, j )+ xi, j (b(i, 0)s j,i + b( j, 0)si, j )]Z

[−b(i, 0)wi, j + b( j, 0)w j,i ]Z


∈

((1/D(i, j))Z)/Z
R/Z

R/Z

 , where D(i, j)= gcd(pi , p j , qi , q j ).
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(iii) The map ∂Qm : Hout
m,s(G, N ,T) → H3(G,T) in the modified HJR-exact se-

quence above is given by

(5-10)

∂Qm([câ][cbνb])= [cG
â ] ∈ H3(G,T)= X3(G,T) for â ∈ Zâ,

where cG
â = exp

(
2π i

( ∑
i< j<k

(AS a)(i, j, k)ei ⊗ e j ⊗ ek

))
,

∂Qm(H
out
m,s(G, N ,T))= π∗Q(H

3(Q,T)).

Proof. (i) The assertion has been already proved.
(ii) For each i < j < k, let D(i, j, k)= gcd(pi , p j , pk) ∈ Z. Fix a ∈ Za , that is,

a ∈ R1 such that

(AS a)(i, j, k)= a(i, j, k)− a( j, i, k)+ a(k, i, j) ∈ ((1/D(i, j, k))Z),

a(i, j, k)= 0 if j ≥ k.

Set

za(i, j, k)=

a(i, j, k)
a( j, i, k)
a(k, i, j)

 ∈ Za = A−1

((1/D(i, j, k))Z)
R

R

 .
Then we get

Aza(i, j, k)=

(AS a)(i, j, k)
a( j, i, k)
a(k, i, j)

 ∈
(1/D(i, j, k))Z

R

R


ABa(i, j, k)= Z3,

so that

[λi, j,k
a , µi jk

a ] ∼

[(AS a)(i, j, k)]Z
[a( j, i, k)]Z
[a(k, i, j)]Z

 ∈
((1/D(i, j, k))Z)

R/Z

R/Z

 .
If (AS a)(i, j, k) ∈ Z, the second cocycle µi jk

a extends to a second cocycle on H ,
which gives (λi, j,k

a , µ
i, j,k
a ) = Res(µi, j,k

a ). Since Range(Res) = Ker(δ), the image
δ(λ

i, j,k
a , µ

i, j,k
a ) depends only on the first term (AS a)(i, j, k) of Aza(i, j, k). Hence

we conclude δ([λa, µa])= δ([λâ], 1). We also have3a(i, k)=Res(i, k)(H2(i, k)),
so that the map δ kills the entire 3a(i, k). This proves (ii)(a) and (ii)(b).

(ii)(c) Set ca = δ(λa, µa) with a ∈ Zâ . We then look at the crossed extension
Eλa,µa ∈ Xext(Hm, L ,M,T), given by

1→ T // E
j
←−
s j

// L→ 1.
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Since

a(i, j, k) ∈
( 1

gcd(pi , p j , pk)
Z
)

and ei (g) ∈ pi Z for g ∈ L ,

we have µa = 1. Hence observing that λa(g; h̃) = 1 for every g ∈ L ∧ Hm and
h̃ ∈ Hm, we get from (3-15) and (3-16) that

ca(q̃1, q̃2, q̃3)= αs(q̃1)(s j (nL(q̃2; q̃3)))s j (nL(q̃1; q̃2q̃3))

×{s j (nL(q̃1; q̃2))s j (nL(q̃1q̃2; q̃3))}
−1

= λa(s(q̃1)nL(q̃2; q̃3)s(q̃1)
−1
; s(q̃1))

= λa((s(q̃1)∧ nL(q̃2; q̃3))nL(q̃2; q̃3); s(q̃1))

= λa(s(q̃1)∧ nL(q̃2; q̃3); s(q̃1))λa(nL(q̃2; q̃3); s(q̃1))

= λa(nL(q̃2; q̃3); s(q̃1))

= exp
(

2π i
( ∑

i< j<k

a(i, j, k)e j,k(nL(q̃2; q̃3))ei (s(q̃1))
))

= exp
(

2π i
( ∑

i< j<k

a(i, j, k){ei (q̃1)}pi {e j (q̃2)}p j {ek(q̃3)}pk

))
= exp

(
2π i

( ∑
i< j<k

a(i, j, k){ei (q1)}pi {e j (q2)}p j {ek(q3)}pk

))
= ca(q1; q2; q3)

for each q̃1 = (q1, s1), q̃2 = (q̃2, s2) and q̃3 = (q3, s3) ∈ Qm. The assertion (ii)(c)
follows.

(ii)(d) Since Res(H2(H,T)) ∩3b = {0}, the modified HJR-map δ is injective
on 3b. Now fix b ∈ Zb. Since µb = 1 and λb(m; h̃)= 1 for every pair m ∈ M and
h̃ ∈ Hm, we have, as in (ii)(c),

cb(q̃1; q̃2; q̃3)= λb(nN(q2; q3); s(q̃1))

= exp
(

2π i
( ∑

i∈N, j∈N0

b(i, j)ei,N (nN(q2; q3))ẽ j (s(q̃1))
))

= exp
(

2π i
(∑

i, j∈N

b(i, j)ei,N (nN(q2; q3))e j (s(q1))
))

× exp
(

2π i
(∑

i∈N

b(i, 0)ei,N (nN(q2; q3))ẽ0(q̃1)
))
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where ei,N (nN(q2; q3)) is given by (5-7). Also we compute

dcb(q2; q3)= λb(nN(q2; q3); z0)= exp
(

2π i
(νb(nN(q2; q3))

T

))
= exp

(
2π i

(∑
i∈N

b(i, 0)ei,N (nN(q2; q3))
))
,

νb(g)= πT

(
T
∑
i∈N

b(i, 0)ei,N (g)
)
∈ R/T Z for g ∈ N ,

with πT : s ∈ R 7→ sT = s+ T Z ∈ R/T Z the quotient map.
The last assertion, (5-9), on Hout

m,s(G, N ,T) follows almost automatically from
the above computations and Lemma 4.6 in the last section.

(iii) We now compute the map

∂πm : H
out
m,s(G, N ,T)→ H3(G,T).

We continue to work on the cocycle (λa,b, 1) for a ∈ Zâ whose restriction to
{Hm, K } gives rise to the crossed extension U ∈ Xext(Hm, K ,T), given by

1→ T // U
j
←−
s j

// K → 1,

where the group K is given by

K = Ker(νb ◦ πG)=
{
g ∈ L :

∑
i∈N b( j, 0)e j,N (g) ∈ Z

}
.

Then the third cocycle cG ∈ Z3(G,T),

cG(g1; g2; g3)= αsH (g1)(s j (nM(g2; g3)))s j (nM(g1; g2g3))

×
(
s j (nM(g1; g2))s j (nM(g1g2; g3))

)−1

= λa,b(nM(g2; g3); g1)= λa(nM(g2; g3); g1)

= exp
(

2π i
( ∑

i< j<k

a(i, j, k)ei (g1)e j (g2)ek(g3)
))

= cG
a (g1; g2; g3) for g1, g2, g3 ∈ G,

is precisely the image ∂πm
◦ δ(λa,b, 1). ♥

6. Concluding remark

The history of cocycle (respectively outer) conjugacy analysis of group actions and
group outer actions on an AFD factor goes back to the seminal work of Connes
[1977; 1976b]. Steady progress was then made over the course of three decades;
see especially the work of V. F. R. Jones [1980] and A. Ocneanu [1985].
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We have now computed the invariants, which determine the outer conjugacy
class, of an outer action of a countable discrete abelian group on an AFD factor
of type IIIλ for 0 < λ < 1. The reduction of outer conjugacy analysis of an outer
action of a countable discrete amenable group on an AFD factor of type IIIλ down
to the associated complete invariants was successfully carried out in [Katayama
and Takesaki 2003; 2004; 2007]. As we have shown here, the invariants can be
computed as soon as the group is specified, except in the case of type III0.

Toward the one parameter automorphism group. After completing the classifi-
cation of cocycle (respectively outer) conjugacy of countable discrete amenable
group (respectively outer) actions on an AFD factor, it is natural to consider the
same problem for a continuous group. The first step is obviously to study the one-
parameter automorphism group {αt : t ∈R} of an approximately finite-dimensional
factor R0 of type II1. Indeed, Y. Kawahigashi [1989; 1990; 1991b; 1991a] has
already classified, up to cocycle (or stable) conjugacy, most one parameter auto-
morphism groups of R0 constructed from concrete data; this was extended to the
case of type III by U. K. Hui [2002]. However the general ones with full Connes
spectrum are left untouched. One of difficulties is the lack of a technique that would
allow us to create a one cocycle {us : s ∈R} for a projection p ∈ Proj(R0) such that
the perturbed one-parameter automorphism group {Ad(ut) ◦ αt : t ∈ R} leaves the
projection p invariant; this would allow us to localize analysis of the action. If a
projection p∈Proj(R0) is differentiable relative to α, then the associated derivation
δα generates a desired cocycle. But we don’t know the answer to this:

Question. Does the C∗-algebra

A = {x ∈ R0 : lim
t→0
‖x −αt(x)‖ = 0}

contain a nontrivial projection?

If p∈Proj(A), then for each smooth function f ∈C∞c (R)with compact support,
the element

p( f )= α f (p)=
∫

R

f (t)αt(p)dt

is smooth, and one can choose f so that ‖p− p( f )‖ is arbitrarily small, so that
Sp(p( f )) is concentrated on a neighborhood of the two points {0, 1}; this allows us
to generate a nontrivial differentiable projection q near p via the contour integral

q = 1
2π i

∮
|z−1|=r

(z− p( f ))−1dz.

On the other hand, thanks to the exponential functional calculus, one can gener-
ate plenty of differentiable unitaries. For example, if h ∈ As.a, then for a real-valued
smooth function f , we get a differentiable unitary element exp(i f (h)) of A that can
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stay near the unitary exp(ih) in norm. Hence the group of differentiable unitaries
is σ ∗-strongly dense in the unitary group U(R0).
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