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NONHOMOGENEOUS BOUNDARY VALUE PROBLEMS
FOR STATIONARY NAVIER–STOKES EQUATIONS

IN A MULTIPLY CONNECTED BOUNDED DOMAIN

HIDEO KOZONO AND TAKU YANAGISAWA

We consider the stationary Navier–Stokes equations on a multiply connected
bounded domain � in Rn for n = 2, 3 under nonhomogeneous boundary
conditions. We present a new sufficient condition for the existence of weak
solutions. This condition is a variational estimate described in terms of
the harmonic part of solenoidal extensions of the given boundary data; we
prove it by using the Helmholtz–Weyl decomposition of vector fields over
� satisfying adequate boundary conditions. We also study the validity of
Leray’s inequality for various assumptions about the symmetry of �.

1. Introduction and summary

We consider the stationary Navier–Stokes equations on a bounded domain� in Rn

for n = 2, 3 under nonhomogeneous boundary conditions:

(1-1)


−µ1v+ (v · ∇)v+∇ p = f in �,

div v = 0 in �,

v = β on ∂�.

Here v= v(x)= (v1(x), . . . , vn(x)) and p= p(x) denote the velocity and pressure
at x= (x1, . . . , xn)∈�, while f = f (x) and β=β(x)= (β1(x), . . . , βn(x)) denote
the given external force defined on � and the given boundary data defined on ∂�;
the coefficient of viscosity is µ > 0. We use standard notation for Laplacian,
gradient, divergence, and convective derivative:

1v =
∑n

j=1

∂2v

∂x j
2 , ∇ p =

(
∂p
∂x1

, . . . ,
∂p
∂xn

)
,

div v =
∑n

j=1

∂v j

∂x j
, (v · ∇)v =

∑n

j=1
v j
∂v
∂x j

.
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Throughout, we use conventional notation such as H m(�), H m
0 (�), H s(∂�),

W s,r (�) for m ∈ N, s > 0 and 1 ≤ r ≤ ∞ to denote the usual Sobolev spaces
for either scalar or vector functions. We denote by H 1

0,σ (�) the completion of
C∞0,σ (�) with respect to the Dirichlet norm ‖∇ · ‖L2(�), where C∞0,σ (�) is the set of
u ∈ C∞0 (�) for which div u = 0 in �; we define H 1

0,σ (�)
∗ to be the dual space of

H 1
0,σ (�), and 〈 · , · 〉 denotes the duality pairing between H 1

0,σ (�)
∗ and H 1

0,σ (�);
the inner product and the norm in L2(�) are denoted by ( · , · ) and ‖·‖, respectively.

We also impose throughout the following assumption on �.

Assumption \. (i) The boundary ∂� has connected components 00, 01, . . . , 0L ,
which are C∞ surfaces. The 01, . . . , 0L lie inside 00, and 0i ∩ 0 j = ∅ for
i 6= j .

(ii) There exist C∞ surfaces 61, . . . , 6N transverse to ∂� such that 6i ∩6 j =∅
for i 6= j , and such that �̇ = � \ 6 is a simply connected domain, where
6 =

⋃N
j=16 j .

In the n = 2 case, condition (ii) is always fulfilled and the numbers L in (i)
and N in (ii) are equal.

As a consequence of the incompressibility condition div v = 0 of (1-1), the
boundary data β is required to satisfy the general flux condition

(GF)
L∑

j=0

∫
0 j

β · ν d S = 0,

where ν is the outward unit normal to ∂�.
Suppose that β ∈ H 1/2(∂�) and f ∈ H 1

0,σ (�)
∗. We call v a weak solution of

(1-1) if v ∈ H 1(�) satisfies div v= 0 in �, v= β on ∂�, and the integral identity

(1-2) µ(∇v,∇φ)+ ((v · ∇)v, φ)= 〈 f, φ〉

for all φ ∈ H 1
0,σ (�). In this paper, we study the existence of weak solutions of

(1-1) under the condition (GF).
In his celebrated paper [1933], Leray showed that (1-1) has at least one weak

solution under the restricted flux condition

(RF)
∫
0 j

β · νd S = 0 for all j = 0, 1, . . . , L ,

which is clearly stronger than the general flux condition (GF). Several fundamental
results on the existence and regularity of solutions of (1-1) have since been shown
by Hopf [1957], Fujita [1961] and Ladyzhenskaya [1969] under the restricted flux
condition (RF). However, it is still unknown whether there exist solutions of (1-1)
with boundary data β satisfying only the general flux condition (GF).
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One of our main purposes is prove the existence of at least one weak solution
under a condition weaker than the restricted flux condition (RF). Our sufficient
condition takes the form of a variational estimate (see (1-8) of Theorem 1.3 below)
and reflects the topological properties of the domain� explicitly through the space
Vhar(�) of harmonic vector fields over �, defined as the set of h ∈ C∞(�) such
that div h = 0 and rot h = 0 in �, and h× ν = 0 on ∂�. The boundary condition
appearing in Vhar(�) is different from that usually used in the study of Navier–
Stokes equations; see for example [Temam 1979, Theorem 1.5].

In fact, by the Helmholtz–Weyl decomposition of Vhar(�)— see Theorem 2.1 —
we can show a useful criterion on solenoidal extensions of the boundary data β:

Proposition 1.1. Let � be a bounded domain in Rn for n = 2, 3 satisfying the
assumption (\). Suppose that the boundary data β ∈H 1/2(∂�) satisfies the general
flux condition (GF). Then there exists a solenoidal extension b∈ H 1(�) of β into�
such that

(1-3) div b = 0 in � and b = β on ∂�.

Also, any solenoidal extension b ∈ H 1(�) satisfying (1-3) is decomposed as

(1-4) b = h+ rot w,

where h ∈ Vhar(�) and w ∈ X2
σ (�)∩ H 2(�), and the following hold:

(I) The vector potential w in (1-4) obeys the estimate

(1-5) ‖w‖H2(�) ≤ c‖β‖H1/2(∂�),

where c is a constant depending only on �,

(II) the harmonic part h in (1-4) is given explicitly as

(1-6) h =
L∑
`=1

ψ`

L∑
j=1

α j`

L∑
k=1

α jk

∫
0k

β · ν d S.

Here {ψ1, . . . ψL} is the basis of Vhar(�) given below by Theorem 2.1(I) and
is related to q j by ψ j =∇q j for j = 1, . . . , L , while (α jk)1≤ j,k≤L is the L×L
regular matrix defined by

(1-7) α jk =

{
(1/
√
1 j−11 j )e jk if 1≤ k ≤ j,

0 if j + 1≤ k ≤ L ,

where e11 = 1 and e jk with 1≤ k ≤ j and j ≥ 2 denotes the ( j, k)-cofactor of
the matrix

C j =

 c11 . . . c1 j
...
. . .

...

c j1 . . . c j j

 for 1≤ j ≤ L
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with

c jk =

∫
0 j

∂qk

∂ν
d S = (ψ j , ψk) for j, k = 1, . . . , L ,

and
10 = 1 and 1 j = det C j for 1≤ j ≤ L .

The space X2
σ (�) appearing in (1-4) is the set of w ∈W 1,2(�) such that divw= 0

in � and w · ν = 0 on ∂�.

Remark 1.2. In view of (1-6), the harmonic part h of b depends only on the basis
{ψ j }1≤ j≤L of Vhar(�) and the boundary integrals

∫
0 j
β · ν d S for j = 1, . . . , L .

Hence the harmonic part h is independent of the choice of the solenoidal exten-
sions b of the boundary data β. Also, h can be regarded as the projection of b onto
the relative de Rham cohomology Vhar(�) of �; see [Schwarz 1995, Section 2.6].

With the aid of Proposition 1.1, we can show our main theorem.

Theorem 1.3. For n = 2, 3, suppose � is a bounded domain in Rn satisfying the
assumption (\). Suppose that the boundary data β ∈H 1/2(∂�) satisfies the general
flux condition (GF), and the external force f is in H 1

0,σ (�)
∗. Let h be the harmonic

part of the solenoidal extension of β into � given by (1-6).
Then, if the estimate

(1-8) sup
z∈χ(�),∇z 6=0

(h, (z · ∇)z)
‖∇z‖2

< µ

holds, there exists at least one weak solution v ∈ H 1(�) of (1-1). Here

(1-9) χ(�)= {z ∈ H 1
0,σ (�) | ((z · ∇)z, ϕ)= 0 for all ϕ ∈ H 1

0,σ (�)}.

Remark 1.4. (1) The space χ(�) consists of weak solutions of the stationary
Euler equations with Dirichlet boundary condition (see Lemma 2.4). Such
a relation between the existence of weak solutions of (1-1) and the space
χ(�) above has been already used tacitly in [Leray 1933], [Amick 1984] and
[Kapitanskiı̆ and Piletskas 1983] .

(2) By using (1-6), it is not difficult to show that the restricted flux condition (RF)
is equivalent to the condition that h≡0 in�. Hence, the existence of solutions
of (1-1) under (RF), already proved in [Leray 1933; Hopf 1957; Fujita 1961;
Ladyzhenskaya 1969], can also be derived by applying Theorem 1.3.

As an immediate consequence of Theorem 1.3, we can show that if the harmonic
part h of the solenoidal extension of the boundary data β is small compared to the
viscosity µ, then there exist weak solutions of (1-1).

Corollary 1.5. Let �, f , β, and h be as in Theorem 1.3.
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(I) Let n = 3. If

(1-10) Cs‖h‖L3(�) < µ,

then there is a weak solution v ∈ H 1(�) of (1-1). Here Cs = 3−1/222/3π−2/3

is the best constant of the Sobolev embedding H 1(�) ↪→ L6(�).

(II) Let n = 2 and let 2< p <∞. If

(1-11) Cq3
−1/q
1 ‖h‖L p(�) < µ

holds for q = 2p/(p− 2), then there is a weak solution v ∈ H 1(�) of (1-1).
Here Cq is the best constant of the Gagliardo–Nirenberg inequality

(1-12) ‖u‖Lq (�) ≤ Cq‖u‖
2/q
L2(�)
‖∇u‖1−2/q

L2(�)
for all u ∈ H 1(�) and 2< q <∞,

and31 is the first eigenvalue of the minus Laplace operator−1 under Dirich-
let boundary conditions.

Remark 1.6. (1) Galdi [1994, Theorem VIII.4.1] showed in the n = 3 case that
weak solutions of (1-1) exist under a condition somewhat stronger than (1-10).
Namely, Galdi assumed that

L∑
j=1

k j

∣∣∣∫
0 j

β · νd S
∣∣∣< ν,

where k j for j = 1, . . . , L , are certain computable constants depending only
on the domain �. See also [Borchers and Pileckas 1994, Section 1].

(2) In [Kozono and Yanagisawa 2009b], we proved the result stated in (I) using
Hopf’s [1957] cut-off function technique and Proposition 1.1. However, the
result in (II) for the n = 2 case seems to be new.

Aside from the corollary above, the variational estimate (1-8) in Theorem 1.3
will give us deeper insight into the existence of weak solutions of (1-1). Indeed,
by using the variational estimate (1-8), we can systematically study the validity of
Leray’s inequality, whose definition we now recall; see [Takeshita 1993]. Suppose
that the boundary data β ∈ H 1/2(∂�) satisfies the general flux condition (GF). We
say Leray’s inequality (LI) holds for β (and �) if, for an arbitrary ε > 0, there is
a solenoidal extension bε of β into � such that div bε = 0 in � and bε = β on ∂�
and such that

(LI) |(u · ∇)bε, u)| ≤ ε‖∇u‖2

for all u ∈ H 1
0,σ (�).
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The validity of Leray’s inequality leads to an a priori bound of the Dirichlet
norm for all possible weak solutions of (1-1), from which the existence of weak
solutions of (1-1) immediately follows.

In Section 3, we first observe, by using the Helmholtz–Weyl decomposition
again, that if Leray’s inequality holds, the numerator (h, (z ·∇)z) appearing in the
variational estimate (1-8) always vanishes for all z ∈ χ(�); see Proposition 3.1. In
view of this observation, we review the results by Takeshita [1993], Amick [1984]
and Fujita [1998], and then give new results on the validity of Leray’s inequality
under several assumptions about the symmetry of the domain �,

This paper is organized as follows. In Section 2, we recall the Helmholtz–Weyl
decomposition of Vhar(�), which we then use to prove Proposition 1.1. Next, we
prove Theorem 1.3 with the aid of Leray and Schauder’s fixed point theorem via
reduction to absurdity; a key ingredient is Proposition 2.2, a simple observation
about the space χ(�) derived from Proposition 1.1. We then prove Corollary 1.5
by using Theorem 1.3. In Section 3, we study the validity of Leray’s inequality.
In the appendix, we outline for completeness the proof of the Helmholtz–Weyl
decomposition of vector fields over a two-dimensional bounded domain, since we
proved it only for the three-dimensional case in [Kozono and Yanagisawa 2009b].

2. Proof of Proposition 1.1, Theorem 1.3, and Corollary 1.5

We first give the Helmholtz–Weyl decomposition of the harmonic space Vhar(�).

Theorem 2.1. Suppose � is a bounded domain in Rn for n = 2, 3 that satisfies
assumption (\).

(I) The space Vhar(�) of harmonic vector fields is L-dimensional. A basis of
Vhar(�) is the set {ψ1, . . . , ψL} such that ψ j = ∇q j for j = 1, . . . , L where
q j solves the Dirichlet boundary value problem of the Laplace equation:

(2-1)

{
1q j = 0 in �,

q j |0i = δ j i for i = 0, 1, . . . , L .

(II) Let 1< r <∞. For every u ∈ Lr (�), there exist an h ∈ Vhar(�), a w ∈ X r
σ (�)

and a p ∈W 1,r
0 (�) such that u is decomposed as

(2-2) u = h+ rot w+∇ p in �,

and the triplet {h, w, p} in (2-2) satisfies the estimate

(2-3) ‖h‖Lr (�)+‖w‖W 1,r (�)+‖∇ p‖Lr (�) ≤ C‖u‖Lr (�),

where C is a constant depending only on � and r. This decomposition is
unique in that if u = h̃ + rot w̃ + ∇ p̃ with h̃ ∈ Vhar(�), w̃ ∈ X r

σ (�) and
p̃ ∈W 1,r

0 (�), then h = h̃, rot w = rot w̃ and ∇ p =∇ p̃.
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(III) Let 1 < r <∞ and s ≥ 1. If u ∈ W s,r (�) for 1 < r <∞, then the w and p
appearing in (2-2) satisfy

w ∈ X r
σ (�)∩W s+1,r (�) and p ∈W 1,r

0 (�)∩W s+1,r (�),

and the triplet {h, w, p} in (2-2) satisfies

(2-4) ‖h‖W s,r (�)+‖w‖W s+1,r (�)+‖∇ p‖W s,r (�) ≤ C‖u‖W s,r (�),

where C is a constant depending only on �, s and r.

The space X r
σ (�) appearing in statements (II) and (III) is the set ofw∈W 1,r (�)

such that divw = 0 in � and w · ν = 0 on ∂�. When n = 2, rot w in (2-2) should
be read as rot w = (∂w/∂x2,−∂w/∂x1) for a scalar function w, and the spaces
Vhar(�) and X r

σ (�) should be replaced by Ṽhar(�) and W 1,r
0 (�), respectively,

where Ṽhar(�) is the set of h ∈ C∞(�) such that div h = 0, Rot h = 0 in �
and h ∧ ν = 0 on ∂�, with Rot h = ∂h2/∂x1− ∂h1/∂x2 and h ∧ ν = h2ν1− h1ν2.

Proof of Theorem 2.1. In n = 3 case, parts (I) and (II) were proved as [Kozono
and Yanagisawa 2009c, Theorem 1 part (3) and Theorem 3 part (2)], and see also
[Bendali et al. 1985]. To prove part (III), we observe that the scalar potential p
and the vector potential w in (2-2) are the solutions of two elliptic boundary value
problems

(2-5)

{
1p = div u in �,

p = 0 on ∂�,

and

(2-6)


rot rot w = rot u in �,

divw = 0 in �,

rot w× ν = u× ν on ∂�,

w · ν = 0 on ∂�.

In addition, since −1= rot rot − grad div, we find that (2-6) implies that

(2-7)


−1w = rot u in �,

rot w× ν = u× ν on ∂�,

w · ν = 0 on ∂�.

This casts (2-6) into the form of an elliptic boundary value system with comple-
menting boundary conditions in the sense of Agmon, Douglis and Nirenberg; see
[Kozono and Yanagisawa 2009c, Lemma 4.3(2)]. Hence, part (III) follows by
applying the regularity theorem of [Agmon et al. 1964] to the boundary value
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problems (2-5) and (2-7). The proof of Theorem 2.1 in case when n = 2 will be
separately given in a more general setting in the appendix. �

By using Theorem 2.1, we can prove Proposition 1.1.

Proof of Proposition 1.1. Step 1. Since β ∈ H 1/2(∂�) satisfies (GF), it is well
known that there exists a solenoidal extension b ∈ H 1(�) of β into � satisfying
(1-3) and

(2-8) ‖b‖W 1,2(�) ≤ c‖β‖H1/2(∂�),

where c is a constant depending only on �; see for example [Ladyzhenskaya and
Solonnikov 1978].

Step 2. For the solenoidal extension b obtained in the preceding step, we apply
Theorem 2.1 with r = 2 to obtain b= h+ rot w+∇ p, where w ∈ X2

σ (�)∩H 2(�),
h ∈ Vhar(�), and p ∈W 1,2

0 (�). However, since

1p = div h+ div(rot w)+ div(∇ p)= div b = 0 in �,

and p= 0 on ∂�, we can conclude that p= 0 in �. Therefore, b= h+ rot w. The
estimate (1-5) follows from the estimates (2-4) with s = 1, r = 2 of Theorem 2.1
and (2-8).

Step 3. By orthogonalization of the basis {ψ j }
L
j=1 of Vhar(�) from Theorem 2.1(I),

we obtain an orthonormal basis

(2-9) ϕ j (x)=
L∑

k=1

α jkψk(x) for j = 1, . . . , L ,

where the α jk are the same constants as in (1-7).
By virtue of Theorem 2.1(I), we then see from (2-9) that the harmonic part h of

the solenoidal extension b is given as

(2-10)

h =
L∑

j=1

(b, ϕ j )ϕ j =

L∑
j=1

(
b,

L∑
k=1

α jkψk

)
ϕ j =

L∑
j,k=1

α jk(b,∇qk)ϕ j

=−

L∑
j,k=1

α jk(div b, qk)ϕ j +

L∑
j,k=1

α jkϕ j

∫
∂�

(β · ν)qk d S

=

L∑
j,k=1

α jkϕ j

∫
0k

β · ν d S.
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Furthermore, referring to (2-9) again, we have

(2-11)

h =
L∑

j,k=1

α jkϕ j

∫
0k

β · ν d S.

=

L∑
j,k=1

α jk

L∑
`=1

α j`ψ`

∫
0k

β · ν d S

=

L∑
`=1

ψ`

L∑
j=1

α j`

L∑
k=1

α jk

∫
0k

β · ν d S.

This proves (1-6) and thereby Proposition 1.1. �

Proof of Theorem 1.3. The following proposition is crucial for proving Theorem 1.3
and is also part of Section 3’s investigation of Leray’s inequality.

Proposition 2.2. Suppose that β ∈ H 1/2(∂�) satisfies (GF). Let b ∈ H 1(�) be
an arbitrary solenoidal extension of β into � satisfying (1-3), and let h be the
harmonic part of b. Then

(2-12) (b, (z · ∇)z)= (h, (z · ∇)z) for all z ∈ χ(�).

We postpone the proof of Proposition 2.2 to the end of this section. Let b be the
solenoidal extension of β given by Proposition 1.1. Taking u= v−b, we are going
to seek a weak solution u ∈ H 1

0,σ (�) that satisfies

(2-13) µ(∇u,∇φ)+ ((b · ∇)u+ (u · ∇)b+ (u · ∇)u, φ)= 〈F, φ〉

for all φ ∈ H 1
0,σ (�), where F =µ1b−(b ·∇)b+ f . For this purpose, we introduce

a parameter λ ∈ [0, 1/µ] and the equation

(2-14) (∇uλ,∇φ)+ λ((b · ∇)uλ+ (uλ · ∇)b+ (uλ · ∇)uλ, φ)= 1
µ
〈F, φ〉,

and put

(2-15) S(λ)= {uλ ∈ H 1
0,σ (�) | u

λsatisfies (2-14) for all φ ∈ H 1
0,σ (�)}.

If we can uniformly bound the Dirichlet norm of all uλ ∈ S(λ) as in Lemma 2.3,
then (see for example [Ladyzhenskaya 1969] and [Kapitanskiı̆ and Piletskas 1983])
the existence of existence of weak solutions u ∈ H 1

0,σ (�) satisfying (2-13) for all
φ ∈ H 1

0,σ (�) will easily follow from Leray and Schauder’s fixed point theorem and
the homotopy invariance of the degree of the Leray–Schauder mapping.

Lemma 2.3. If the estimate (1-8) in Theorem 1.3 holds, there exists a constant M
such that ‖∇uλ‖ ≤ M for all uλ ∈ S(λ), and for all λ ∈ [0, 1/µ].
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Proof of Lemma 2.3. We proceed by reduction to absurdity. Suppose that there exist
sequences {u j }

∞

j=1 ⊂ H 1
0,σ (�) and {λ j }

∞

j=1 ⊂ [0, 1/µ] satisfying ‖∇u j‖→∞ and
λ j → λ0 ∈ [0, 1/µ] as j→∞, and

(2-16) (∇u j ,∇φ)+ λ j ((b · ∇)u j + (u j · ∇)b+ (u j · ∇)u j , φ)=
1
µ
〈F, φ〉

for all φ ∈ H 1
0,σ (�). Setting φ = u j in (2-16), we have by integration by parts

‖∇u j‖
2
+ λ j ((u j · ∇)b, u j )=

1
µ
〈F, u j 〉,

because b satisfies (1-3) and because u j ∈ H 1
0,σ (�). We then put w j = u j/N j with

N j = ‖∇u j‖ to obtain

(2-17) 1+ λ j ((w j · ∇)b, w j )=
1
µN j
〈F, w j 〉.

Furthermore, since ‖∇w j‖ = 1, we see that the limit w ∈ H 1
0,σ (�) of {w j }

∞

j=1
exists in the sense that

(2-18) ∇w j →∇w weakly in L2(�) and w j → w strongly in L4(�),

as j→∞. Therefore, letting j→∞ in (2-17), we find by (2-18) that

(2-19) 1+ λ0((w · ∇)b, w)= 0.

On the other hand, multiplying both sides of (2-16) by N−2
j gives

1
N j
(∇w j ,∇φ)+

λ j

N j
((b ·∇)w j+(w j ·∇)b, φ)+λ j ((w j ·∇)w j , φ)=

1
µN 2

j
〈F, φ〉,

for all φ ∈ H 1
0,σ (�). Letting j → ∞ in the above, we can also deduce from

(2-18) that λ0((w · ∇)w, φ) = 0. Since we find by (2-19) that λ0 6= 0, we have
((w · ∇)w, φ)= 0 for all φ ∈ H 1

0,σ (�), which implies that w ∈ χ(�).
Consequently, if (1-8) in Theorem 1.3 holds, then by Proposition 2.2, we can

see from (2-19) that

1= λ0(b, (w · ∇)w)= λ0(h, (w · ∇)w) < µλ0‖∇w‖
2
≤ ‖∇w‖2,

which contradicts ‖∇w‖≤1. This proves Lemma 2.3 and thereby Theorem 1.3. �

Proof of Corollary 1.5. In case when n= 3, by Hölder’s inequality and the Sobolev
embedding theorem we have

(h, (z · ∇)z)≤ ‖h‖L3(�)‖z‖L6(�)‖∇z‖L2(�) ≤ Cs‖h‖L3(�)‖∇z‖2L2(�),

for every z ∈ H 1
0,σ (�), where Cs is the best constant of the Sobolev embedding

H 1(�) ↪→ L6(�). Therefore, if the condition (1-10) is fulfilled, we see from this
inequality that the estimate (1-8) holds.
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In case when n = 2, we combine the inequalities of Hölder, Poincaré, and
Gagliardo and Nirenberg to show that

(2-20)

(h, (z · ∇)z)≤ ‖h‖L p(�)‖z‖Lq (�)‖∇z‖L2(�)

≤ Cq‖h‖L p(�)‖z‖
2/q
L2(�)
‖∇z‖2−2/q

L2(�)

≤ Cq3
−1/q
1 ‖h‖L p(�)‖∇z‖2L2(�),

for all 2 < p < ∞ and 1/q = 1/2− 1/p, where Cq is the best constant of the
Gagliardo–Nirenberg inequality (1-12) and 31 is the first eigenvalue of −1 under
Dirichlet boundary conditions. Note that 2< q <∞ since 2< p<∞. Therefore,
if (1-11) is satisfied, the estimate (1-8) readily follows from (2-20). �

It remains to prove Proposition 2.2. The following lemma regarding the space
χ(�) is a slight modification of the result previously proved by Ladyzhenskaya,
Kapitanskiı̆ and Piletskas; see also [Amick 1984].

Lemma 2.4 [Kapitanskiı̆ and Piletskas 1983]. For any z ∈ χ(�), there exists a
scalar function q ∈W 1,3/2(�) satisfying

(2-21) (z · ∇)z+∇q = 0 in �.

Furthermore, the trace γ (q) ∈W 1/3,3/2(∂�) satisfies

(2-22) γ (q)|0 j = c j for j = 0, 1, . . . , L ,

where c j is a constant that may depend on j .

Proof of Lemma 2.4. Since z ∈ H 1(�), by Hölder’s inequality and the Sobolev
embedding theorem we see that (z · ∇)z ∈ L3/2(�). Since ((z · ∇)z, ϕ)= 0 for all
ϕ ∈ H 1

0,σ (�), by applying the Helmholtz decomposition for L3/2(�), we can see
that there exists a scalar function q ∈ W 1,3/2(�) satisfying (z · ∇)z = −∇q in �.
That the trace γ (q) takes the constant value c j on each boundary component 0 j

for j = 0, 1, . . . , L is proved in [Kapitanskiı̆ and Piletskas 1983, Lemma 4]. �

Proof of Proposition 2.2. Since the boundary data β satisfies (GF), we can see by
Proposition 1.1 that the solenoidal extension b ∈ H 1(�) of β into � decomposes
as b = h + rot w, with h ∈ Vhar(�) and w ∈ X2

σ (�)∩ H 2(�). Therefore, in view
of Lemma 2.4, one has by integration by parts

(b, (z · ∇)z)= (h+ rot w, (z · ∇)z)

= (h, (z · ∇)z)− (rot w,∇q)

= (h, (z · ∇)z)+
∫
∂�

(ν×∇γ (q)) ·w d S = (h, (z · ∇)z)

for all z ∈χ(�), because γ (q)|0 j = c j for j =0, 1, . . . , L , and ν×∇ is a tangential
differentiation on the boundary. �
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3. The validity of Leray’s inequality

We begin with a simple but important observation about the relation between the
validity of Leray’s inequality and the variational estimate (1-8).

Proposition 3.1. Let � be a bounded domain in Rn for n = 2, 3 satisfying the
assumption (\). Suppose that the boundary data β ∈H 1/2(∂�) satisfies the general
flux condition (GF). If Leray’s inequality (LI) holds for β, then

(3-1) (h, (z · ∇)z)= 0 for all z ∈ χ(�).

Here h, the harmonic part of an arbitrary solenoidal extension b ∈ H 1(�) of β
into �, is as given in (1-6).

Proof of Proposition 3.1. Assume that (LI) holds for β ∈ H 1/2(∂�) satisfy-
ing (GF). Then, as in the proof of Proposition 1.1, it follows from the Helmholtz–
Weyl decomposition that any solenoidal extension bε of β into � decomposes as
bε=h+rot wε, where h∈Vhar(�),wε ∈ X2

σ (�)∩H 2(�). Referring to Remark 1.2,
we find that h is independent of ε. Whereas, by Proposition 2.2 we have

(bε, (z · ∇)z)= (h, (z · ∇)z) for all z ∈ χ(�).

Therefore, since (LI) holds for β, we see that for an arbitrary ε > 0,

(3-2) |(h, (z · ∇)z)| = |(bε, (z · ∇)z)| = |((z · ∇)bε, z)| ≤ ε‖∇z‖2.

Since h is independent of ε, we can conclude from (3-2) that

(h, (z · ∇)z)= 0 for all z ∈ χ(�). �

The validity of (3-1) for all z ∈ χ(�) implies the estimate (1-8) in Theorem 1.3;
we are immediately led from Proposition 3.1 and Theorem 1.3 to this:

Corollary 3.2. Let � and β be as in Proposition 3.1. If Leray’s inequality (LI)
holds for β, then there exists at least one weak solution v ∈ H 1(�) of (1-1).

Remark 3.3. Let β ∈ H 1/2(∂�) satisfy the restricted flux condition (RF) and let
b ∈ H 1(�) be an arbitrary solenoidal extension of β into �. Since (RF) implies
that the harmonic part h of b vanishes on �, as mentioned in Remark 1.4(2), we
can see in a way similar to the proof of Proposition 3.1 that

b = rot w for some w ∈ X2
σ (�)∩ H 2(�).

Therefore, via Hopf’s cut-off function technique [1957], we can conclude that
Leray’s inequality holds for all β ∈ H 1/2(∂�) satisfying (RF).

In view of Remark 3.3, one might ask whether Leray’s inequality (LI) holds
for all β ∈ H 1/2(∂�) satisfying only the general flux condition (GF). According to
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Takeshita [1993], the answer is no. We will give another proof of Takeshita’s result
by using the following corollary, which is just the contrapositive of Proposition 3.1.

Corollary 3.4. Let �, β and h be as in Proposition 3.1. If there exists a vector
field z0 ∈ χ(�) such that

(3-3) (h, (z0 · ∇)z0) 6= 0,

then Leray’s inequality (LI) does not hold for β.

Following [Takeshita 1993], we consider the case when � is an annulus in R2

given by �= {x ∈ R2
| R1 < |x |< R0} with 0< R1 < R2. We put

00 = {x ∈ R2
| |x | = R0} and 01 = {x ∈ R2

| |x | = R1}.

Then, from Theorem 2.1(I), one can see that dim Vhar(�) = 1 and the base of
Vhar(�) is given by

h = − x
2π |x |2

∫
01

β · ν d S.

Take z0= f (|x |)eθ , with nontrivial function f (y)∈C∞0 ((R1, R0)) and unit angular
vector eθ . Then it is easy to see that z0 is in H 1

0,σ (�) and (z0 · ∇)z0 =−∇q0(|x |)
with q0(r)=

∫ r
R1

f 2(s)/s ds. Hence, we see that z0 ∈ χ(�). In addition, we have

(h, (z0 · ∇)z0)=−((z0 · ∇)h, z0)

=
1

2π

∫
01

β · ν d S
( ∫

�

|z0|
2

|x |2
dx −

∫
�

(er · z0)
2

|x |
dx
)

=

∫
01

β · ν d S
∫ R0

R1

f 2(r)
r2 dr,

where er = x/|x |. Therefore, if
∫
01
β ·ν d S 6=0, then (h, (z0 ·∇)z0) 6=0. Combining

Corollary 3.4 and Remark 3.3 then gives another proof of Takeshita’s result.

Proposition 3.5 [Takeshita 1993]. Let � be an annulus domain in R2 as above.
Suppose β ∈ H 1/2(∂�) satisfies the general flux condition (GF). Then Leray’s
inequality (LI) holds for β if and only if β satisfies the restricted flux condition
(RF) as ∫

00

β · ν d S =
∫
01

β · ν d S = 0.

Remark 3.6. Takeshita [1993, Theorem 2] presented a more general statement:
Let � be a bounded domain in Rn with n ≥ 2 and smooth boundary 0 =

⋃L
j=1 0 j ,

where the 0 j are the connected components of 0. Assume that for each such
component there exists a diffeomorphism 8 j of Sn−1

× [0, 1] into � such that
8 j (Sn−1

×{0})=0 j and8 j (Sn−1
×{1}) is a sphere contained in�. Suppose that

β ∈ H 1/2(∂�) satisfies (GF). Then (LI) holds for β if and only if β satisfies (RF).
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Recently, Kobayashi [2009] gave an elementary proof for Takeshita’s statement
in the two-dimensional case. In [Kozono and Yanagisawa 2009a], we will give a
generalization of Takeshita’s statement in the three-dimensional case.

From Proposition 3.5 we see that constructive proofs relying on (LI) do not
show the existence of weak solutions of (1-1) under the general flux condition
(GF) when � is an annulus. This fact, however, does not mean the nonexistence
of weak solutions of (1-1).

In fact, Amick [1984] showed the existence of weak solutions of (1-1) under
(GF) for a class of symmetric domains �⊂ R2, which includes annuli.

Definition 3.7 [Amick 1984]. We say �⊂ R2 has type A symmetry if

(i) � is symmetric with respect to the x1-axis;

(ii) the boundary ∂� has L+1 connected components 00, 01, . . . , 0L , which are
C∞ surfaces that each intersect the x1-axis; the 01, . . . , 0L lie inside 00; and
0i ∩0 j = φ for i 6= j .

A vector field u = (u1, u2) is said to be symmetric (with respect to the x1-axis)
if u1 is an even function of x2 and u2 is an odd function of x2.

Theorem 3.8 [Amick 1984]. Suppose � is a bounded domain in R2 with type A
symmetry and smooth boundary. Suppose that the boundary data βS

∈ H 1/2(∂�)

is symmetric and satisfies the general flux condition (GF), and the external force
f S
∈ H 1

0,σ (�)
∗ is also symmetric. Then there exists at least one symmetric weak

solution vS
∈ H 1(�) of (1-1) with β = βS and f = f S .

Amick proved Theorem 3.8 by showing a uniform a priori estimate similar to
Lemma 2.3, via reduction of absurdity. The following lemma on the symmetric
vector fields of χ(�) was crucial. Define χ S(�) to be the space of all symmetric
zS
∈ H 1

0,σ (�) such that ((zS
· ∇)zS, ϕ)= 0 for all φ ∈ H 1

0,σ (�).

Lemma 3.9 [Amick 1984]. Suppose � is the domain from Theorem 3.8. Suppose
that zS

∈ χ S(�) and q S
∈ W 1,3/2(�) is the scalar function given in Lemma 2.4

satisfying
(zS
· ∇)zS

+∇q S
= 0 in �.

Then the trace γ (q S) obeys

(3-4) γ (q S)|0 j = C for j = 0, 1, . . . , L ,

where C is a constant independent of j .

On the other hand, by retracing the proof of Theorem 1.3, we get the following
variant of it in the symmetric case.
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Theorem 3.10. Let� be a bounded domain in R2 that satisfies assumption (\) and
is symmetric with respect to the x1-axis. Suppose that βS

∈ H 1/2(∂�) is symmetric
and satisfies (GF), and the external force f S

∈ H 1
0,σ (�)

∗ is also symmetric.
Then, if

(3-5) sup
zS∈χ S(�),∇zS 6=0

(hS, (zS
· ∇)zS)

‖∇zS‖2
< µ,

there exists at least one symmetric weak solution vS
∈ H 1(�) of (1-1) with β = βS

and f = f S .
Here hS is the harmonic part of an arbitrary solenoidal extension of βS into �

defined by (1-6) with β replaced by βS .

Another proof of Theorem 3.8. Let bS
∈ H 1(�) be an arbitrary solenoidal extension

of βS into � and let hs be its harmonic part given by (1-6). Using (3-4) and
Proposition 2.2, one can see by integration by parts that for all zS

∈ χ S(�)

(hS, (zS
· ∇)zS)= (bS, (zS

· ∇)zS)

=−(bS,∇q S)

=−

∫
∂�

(βS
· ν)γ (q S) d S =−C

∫
∂�

βS
· ν d S = 0,

because βS satisfies (GF). Thus (3-5) holds for all zS
∈ χ S(�), and hence we have

Theorem 3.8 just by applying Theorem 3.10. �

From Takeshita’s statement in Remark 3.6, and from the fact that the proof
of Theorem 3.10 still relies on reduction to absurdity, one might be tempted to
conclude that even when the domain has type A symmetry and all the data is
symmetric, it is still hard to give a constructive proof for the existence of weak
solutions of (1-1). However, Fujita [1998] succeeded in giving such a proof by
showing that Leray’s inequality holds if we consider only symmetric test functions
u ∈ H 1

0,σ (�) in (LI).
To make the argument clear, we introduce the symmetric Leray inequality (SLI).

Suppose that � is symmetric with respect to the x1-axis, and the boundary data
βS
∈ H 1/2(∂�) satisfies (GF) and is symmetric. We say that the symmetric Leray

inequality holds for βS (and �) if, for arbitrary ε > 0, there exists a symmetric
solenoidal extension bS

ε ∈ H 1(�) of βS into � satisfying the inequality

(SLI) |(uS
· ∇)bS

ε , uS)| ≤ ε‖∇uS
‖

2

for all symmetric uS
∈ H 1

0,σ (�).

Theorem 3.11 [Fujita 1998]. Suppose that � and the boundary data βS are as in
Theorem 3.8. Then the symmetric Leray inequality (SLI) holds for βS .
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On the other hand, it is easy to see that the argument that proved Proposition 3.1
yields the following in the symmetric case.

Proposition 3.12. Let � be a bounded domain in R2 that satisfies assumption (\)
and that is symmetric with respect to the x1-axis. Suppose that the boundary data
βS
∈ H 1/2(∂�) satisfies the general flux condition (GF) and is symmetric.
Then, if the symmetric Leray inequality (SLI) holds for βS , we have

(3-6) (hS, (zS
· ∇)zS)= 0 for all zS

∈ χ S(�).

Here hS is the harmonic part of an arbitrary solenoidal extension of βS into �.

Therefore, we can prove the Amick’s result in Theorem 3.8 by just combining
Theorem 3.11 with Proposition 3.12 and Theorem 3.10.

Definition 3.13. We say �⊂ R2 has type B symmetry if

(i) � is symmetric with respect to the x1-axis;

(ii) the boundary ∂� has 2M+1 connected components 00, 01, . . . , 02M , which
are C∞ surfaces; the components 01, . . . , 02M lie inside 00 and 0i ∩0 j = φ

for i 6= j ; and

(iii) the components 02 j−1 and 02 j for j = 1, . . . ,M are symmetric to each other
with respect to the x1-axis.

Under this symmetry, we will show that the symmetric Leray inequality does not
hold for general symmetric boundary data βS satisfying (GF), given an additional
geometric condition involving the basis of Vhar(�) and the space χ(�).

The following criterion is similar to Corollary 3.4, and is the contrapositive of
Proposition 3.12.

Corollary 3.14. Let � and βS be as in Proposition 3.12. If there exists a vector
field zS

0 ∈ χ
S(�) such that

(3-7) (hS, (zS
0 · ∇)z

S
0 ) 6= 0,

then the symmetric Leray inequality (SLI) does not hold for βS .

Let� be a bounded domain in R2 with type B symmetry, and let βS
∈ H 1/2(∂�)

satisfy (GF) and be symmetric. We consider first the simplest case that M = 1,
which means that ∂� consists of connected components 00, 01 and 02; these are
C∞ surfaces such that 01 and 02 lie inside of 00, and 01 and 02 are symmetric to
each other with respect to the x1-axis. We wish to show that there exists a vector
field zS

0 ∈ χ
S(�) satisfying (3-7) under an additional geometric condition, when

the boundary data βS does not satisfy (RF). So we first study Vhar(�). Let q1 be a
solution of (2-1) with j = 1 and L = 2, so that

(3-8) 1q1 = 0 in �, q1|0 j= δ1 j for j = 0, 1, 2,
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and define q2 = q2(x1, x2) by q2(x1, x2) = q1(x1,−x2). Since 01 and 02 are
symmetric to each other with respect to the x1-axis, we find that the q2 above is a
solution of (2-1) with j = 2 and L = 2. Hence, we can see that a basis {ψ1, ψ2} of
Vhar(�) is given by

(3-9) ψ1(x)=∇q1(x), ψ2(x)=∇q2(x)=
(
∂q1

∂x1
,−
∂q1

∂x2

)
(x1,−x2).

From (1-6), we can see that the harmonic part hS of an arbitrary solenoidal exten-
sion of βS into � is described as

hS
=

2∑
`=1

ψ`

2∑
j=1

α j`

2∑
k=1

α jk

∫
0k

βS
· ν d S

=

2∑
`=1

∇q`
2∑

j=`

α j`

j∑
k=1

α jk

∫
0k

βS
· ν d S

=∇q1

(
α2

11

∫
01

βS
· ν d S+α2

21

∫
01

βS
· ν d S+α21α22

∫
02

βS
· ν d S

)
+∇q2

(
α22α21

∫
01

βS
· ν d S+α2

22

∫
02

βS
· ν d S

)
= ((α2

11+α
2
22+α21α22)∇q1+ (α22α21+α

2
22)∇q2)

∫
01

β · ν d S.

In the last equality above, we used the fact that
∫
01
βS
·ν d S=

∫
02
βS
·ν d S, which

follows from the symmetry of βS and � with respect to the x1-axis. Therefore, it
holds for all zS

∈ χ S(�) that

(hS, (zS
· ∇)zS)=

(
(α2

11+α
2
21+α21α22)(∇q1, (zS

· ∇)zS)

+ (α22α21+α
2
22)(∇q2, (zS

· ∇)zS)
) ∫

01

β · ν d S.

We put here kS
i = (z

S
· ∇)zS

i for i = 1, 2. Since zS is symmetric, we find that k1

and k2 are even and odd, respectively, with respect of x2. Hence, by (3-9) and a
change of variables, we have

(∇q2, (zS
· ∇)zS)=

∫
�

(∂q1

∂x1
(x1,−x2)kS

1 (x1, x2)−
∂q1

∂x2
(x1,−x2)kS

2 (x1, x2)
)

dx

=

∫
�

(∂q1

∂x1
(x1, x2)kS

1 (x1,−x2)−
∂q1

∂x2
(x1, x2)kS

2 (x1,−x2)
)

dx

=

∫
�

(∂q1

∂x1
(x1, x2)kS

1 (x1, x2)+
∂q1

∂x2
(x1, x2)kS

2 (x1, x2)
)

dx

= (∇q1, (zS
· ∇)zS).
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The last two displayed equation then give

(hS, (zS
· ∇)zS)= (α2

11+α
2
21+ 2α21α22+α

2
22)(∇q1, (zS

· ∇)zS)

∫
01

βS
· ν d S

= (α2
11+ (α21+α22)

2)(∇q1, (zS
· ∇)zS)

∫
01

βS
· ν d S.

By definition, α11 6= 0. Therefore, by Corollary 3.14, the result above gives a
theorem:

Theorem 3.15. Let� be a bounded domain in R2 with type B symmetry and M=1.
Suppose that the boundary data βS

∈ H 1/2(∂�) is symmetric and satisfies the
general flux condition (GF) as∫

00

βS
· ν d S+

∫
01

βS
· ν d S+

∫
02

βS
· ν d S = 0

but does not satisfy the restricted flux condition (RF), which means that at least one
of these three integrals does not vanish. If there exists a vector field zS

0 ∈ χ
S(�)

such that

(3-10) (∇q1, (zS
0 · ∇)z

S
0 ) 6= 0,

then the symmetric Leray inequality (SLI) does not hold for βS . Here q1 is the
harmonic function defined by (3-8).

Remark 3.16. By integration by parts, the condition (3-10) is rewritten as

(∇q1, (zS
0 · ∇)z

S
0 )=−((z

S
0 · ∇)∇q1, zS

0 )

=−

2∑
i, j=1

∫
�

∂2q1

∂xi∂x j
(zS

0 )i (z
S
0 ) j dx =−

∫
�

Hess(q1)[zS
0 ] dx,

where (zS
0 ) j denotes the j-th component of zS

0 and Hess(q1)[zS
0 ] stands for the

quadratic form of zS
0 associated with the Hessian matrix of q1. However, because

of our lack of our knowledge of the space of χ(�), it seems difficult to check the
validity of (3-10) so far.

We next study bounded domains � ⊂ R2 with type B symmetry and M ≥ 2.
Suppose βS

∈ H 1/2(∂�) is symmetric and satisfies the general flux condition (GF).
As before, we let q2 j−1 for j = 1, . . . ,M solve the boundary value problem

(3-11)

{
1q2 j−1 = 0 in �,

q2 j−1|0i = δ2 j−1,i for i = 0, 1, . . . , 2M,

and we define q2 j by q2 j (x1, x2) = q2 j−1(x1,−x2) for j = 1, . . . ,M . By the
reasoning from the M = 1 case, we then see that these q2 j solve the boundary
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value problem

(3-12)

{
1q2 j = 0 in �,

q2 j |0i = δ2 j,i for i = 0, 1, . . . , 2M.

It follows from Theorem 2.1(I) that the set {ψ1, . . . , ψ2M}, where

ψ2 j−1(x)=∇q2 j−1(x),

ψ2 j (x)=∇q2 j (x)=
(
∂q2 j−1

∂x1
,−
∂q2 j−1

∂x2

)
(x1,−x2) for j = 1, . . . ,M,

is a basis of Vhar(�). In the same way as on page 143, one can also see that

(∇q2 j−1, (zS
· ∇)zS)= (∇q2 j , (zS

· ∇)zS) for j = 1, . . . ,M.

Therefore, by noting the fact that
∫
02 j−1

βS
·ν d S=

∫
02 j
βS
·ν d S for j = 1, . . . ,M ,

we can derive from the above that

(3-13) (hS, (zS
· ∇)zS)

=

2M∑
i=1

(∇qi , (zS
· ∇)zS)

2M∑
j=1

α j i

2M∑
k=1

α jk

∫
0k

βS
· ν d S

=

M∑
`=1

(∇q2`−1, (zS
· ∇)zS)

2M∑
j=1

α j,2`−1

2M∑
k=1

α jk

∫
0k

βS
· ν d S

+

M∑
`=1

(∇q2`, (zS
· ∇)zS)

2M∑
j=1

α j,2`

2M∑
k=1

α jk

∫
0k

βS
· ν d S

=

M∑
`=1

(∇q2`−1, (zS
· ∇)zS)

2M∑
j=1

(α j,2`−1+α j,2`)

2M∑
k=1

α jk

∫
0k

βS
· ν d S

=

M∑
`=1

(∇q2`−1, (zS
· ∇)zS)

×

2M∑
j=1

M∑
k=1

(α j,2`−1+α j,2`)(α j,2k−1+α j,2k)

∫
02k−1

βS
· ν d S

Now for `= 1, . . . ,M , we put

(3-14) p`[βS
] =

2M∑
j=1

M∑
k=1

(α j,2`−1+α j,2`)(α j,2k−1+α j,2k)

∫
02k−1

βS
· ν d S
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and q`[zS
] = (∇q2`−1, (zS

· ∇)zS). Then we can rewrite (3-13) as

(3-15) (hS, (zS
· ∇)zS)= 〈P[βS

], Q[zS
]〉RM ,

where

P[βS
] = (p1[β

S
], . . . , pM [β

S
]) and Q[zS

] = (q1[zS
], . . . , qM [zS

]),

and 〈 · , · 〉RM denotes the inner product in RM . The next lemma shows that the
triviality of P[βS

] implies the restricted flux condition (RF).

Lemma 3.17. Let� be a bounded domain in R2 with type B symmetry and M ≥ 2.
Suppose βS

∈ H 1/2(∂�) is symmetric and satisfies the general flux condition (GF).
Then, P[βS

] = 0 if and only if the restricted flux condition (RF) holds as∫
0 j

βS
· ν d S = 0 for all j = 0, 1, . . . , 2M.

Proof of Lemma 3.17. We first observe from (3-14) that

(3-16)

tP[βS
] =

( 2M∑
j=1

(α j,2`−1+α j,2`)(α j,2k−1+α j,2k)
∣∣∣ ` ↓ 1, . . . ,M, k→ 1, . . . ,M

)

×

(∫
02k−1

βS
· ν d S

∣∣∣ k ↓ 1, . . . ,M
)
.

On the other hand, a straightforward calculation yields

det
( 2M∑

j=1

(α j,2`−1+α j,2`)(α j,2k−1+α j,2k)
∣∣∣ ` ↓ 1, . . . ,M, k→ 1, . . . ,M

)

=

∑
1≤ j1<···< jM≤2M

( ∑
σ=

( j1,..., jM
k1,...,kM

) sgn(σ )(αk1,1+αk1,2) · · · (αkM ,2M−1+αkM ,2M)

)2

,

where sgn(σ ) is the sign of the permutation σ . It is easy to see that the right side of
this equation contains the term (α11α33 · · ·α2M−1,2M−1)

2, which is positive by the
definition of the α jk in Proposition 1.1. Hence, the determinant above is nonzero.
Therefore, it follows from (3-16) that P[βS

] = 0 if and only if∫
02 j−1

βS
· ν d S = 0 for all j = 1, . . . ,M.

It is easy to see that this is equivalent to (RF) since βS and � are symmetric with
respect to the x1-axis and βS satisfies (GF). This proves Lemma 3.17. �

Accordingly, using Corollary 3.14 again and referring to Lemma 3.17, we have
the following theorem.
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Theorem 3.18. Let� be a bounded domain in R2 with type B symmetry and M≥2.
Suppose that the boundary data βS

∈ H 1/2(∂�) is symmetric and satisfies the
general flux condition (GF) as

2M∑
j=0

∫
0 j

βS
· ν d S = 0,

but does not satisfy the restricted flux condition (RF), which means that at least one
of the integrals in the previous expression does not vanish. If there exists a vector
fields zS

0 ∈ χ
S(�) such that

(3-17) 〈P[βS
], Q[zS

0 ]〉RM 6= 0,

then the symmetric Leray inequality (SLI) does not hold for βS .

Remark 3.19. As can seen from the argument above, it is not difficult to generalize
Theorem 3.18 to the case of Rn with n ≥ 3.

Appendix

We here outline a proof of the Helmholtz–Weyl decomposition of vector fields over
two-dimensional bounded domains; this decomposition is more general than the
n = 2 case of Theorem 2.1. In this appendix, we let

X̃har(�)= {h ∈ C∞(�) | div h = 0,Rot h = 0 in �, h · ν = 0 on ∂�},

Ṽhar(�)= {h ∈ C∞(�) | div h = 0,Rot h = 0 in �, h ∧ ν = 0 on ∂�},

where Rot h = ∂h2/∂x1 − ∂h1/∂x2 and h ∧ ν = h2ν1 − h1ν2 for a vector-valued
function h = (h1, h2), and rot w = (∂w/∂x2,−∂w/∂x1) for a scalar function w.

The aim here is to show the following theorem.

Theorem 3.20. Let � be a bounded domain in R2 satisfying the assumption (\).

(I) The spaces X̃har(�) and Ṽhar(�) are L-dimensional. Furthermore, a basis
{ϕ1, . . . , ϕL} of X̃har(�) and a basis {ψ1, . . . , ψL} of Ṽhar(�) are given by

ϕ j = rot q j and ψ j = grad q j for j = 1, . . . , L ,

respectively, where the q j are solutions of the following Dirichlet boundary
value problem for the Laplace equation:

1q j = 0 in � and q j |0i = δi j for i = 0, 1, . . . , L .

(II) Let 1< r <∞. For every u ∈ Lr (�),

(a) there exists an h ∈ X̃har(�), a w ∈W 1,r
0 (�) and a p ∈W 1,r (�) such that

u = h+ rot w+∇ p in �, or
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(b) there exists an h ∈ Ṽhar(�), a w ∈ W 1,r (�) and a p ∈ W 1,r
0 (�) such that

u = h+ rot w+∇ p in �.

In both cases (a) and (b), the triplet {h, w, p} is subject to the estimate

(3-18) ‖h‖Lr (�)+‖w‖W 1,r (�)+‖∇ p‖Lr (�) ≤ C‖u‖Lr (�),

where C is a constant depending only on � and r. The decompositions in (a)
and (b) are unique in the same sense as in Theorem 2.1(II).

(III) Let 1< r <∞ and s ≥ 1. If u ∈ W s,r (�), then the w and p appearing in the
decomposition (a) or (b) gain further regularity such that

w ∈W 1,r
0 (�)∩W s+1,r (�) and p ∈W s+1,r (�) in case (a),

or

w ∈W s+1,r (�) and p ∈W 1,r
0 (�)∩W s+1,r (�) in case (b).

In both cases (a) and (b), the triplet {h, w, p} is subject to the estimate

(3-19) ‖h‖W s,r (�)+‖w‖W s+1,r (�)+‖∇ p‖W s,r (�) ≤ C‖u‖W s,r (�),

where C is a constant depending only on �, s and r.

Proof. The proof proceeds in almost the same way as in [Kozono and Yanagisawa
2009c, Theorem 1]; we call this “our other paper” here. Our other paper studied
only the case of three-dimensional bounded domains. Here we will point out only
the differences.

Given a vector field u ∈ Lr (�), it is not difficult to see that the scalar functions
p and w appearing in case (a) or (b) formally satisfy the following boundary value
problems: In case (a), 

1p = div u in �,

∂p
∂ν
= u · ν on ∂�,

(3-20)

{
Rot rot w = Rot u in �,

w = 0 on ∂�,
(3-21)

and in case (b) {
1p = div u in �,

p = 0 on ∂�,
(3-22) Rot rot w = Rot u in �,

∂w
∂ν
= u ∧ ν on ∂�.

(3-23)
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Since the governing boundary value problems (3-20) and (3-22) for p are the same
as those in the three-dimensional case, we need only investigate the governing
boundary value problems (3-21) and (3-23) for w. As in our other paper, we are
readily led to weak formulations of solutions of (3-21) and (3-23): In case (a), a
scalar function w ∈W 1,r

0 (�) is said to be a weak solution of (3-21) if

(3-24) (rot w, rot ϕ)= (u, rot ϕ)

for any scalar functions ϕ ∈ W 1,r ′
0 (�) with r ′ = r/(r − 1); in case (b), a scalar

function w ∈W 1,r (�) is a weak solution of (3-23), if

(3-25) (rot w, rot ϕ)= (u, rot ϕ)

for any scalar functions ϕ ∈W 1,r ′(�) with r ′ = r/(r − 1).
Then we can easily see that the same procedure from our other paper still works

to establish the Lr -variational inequalities associated with the weak formulations
(3-24) and (3-25). By using those Lr -variational inequalities, we achieve the exis-
tence of weak solutions of (3-21) and (3-23). The rest of the proof is word-for-word
repetition of the proof in our other paper. �
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