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We establish first order gradient estimates for positive solutions of the heat
equations on complete noncompact or closed Riemannian manifolds under
Ricci flows. These estimates improve Guenther’s results by weakening the
curvature constraints. We also obtain a result for arbitrary solutions on
closed manifolds under Ricci flows. As applications, we derive Harnack-
type inequalities and second order gradient estimates for positive solutions
of the heat equations under Ricci flow. The results in this paper can be
considered as generalizing the estimates of Li–Yau and J. Y. Li to the Ricci
flow setting.

1. Introduction

In this paper, we mainly generalize Li and Yau’s [1986] and Li’s [1991] gradient
estimates to positive solutions of the heat equation under Ricci flow. The Ricci
flow,

(1-1) ∂t gi j =−2 Rici j ,

was introduced by Hamilton [1982] to study the Poincaré conjecture on compact
three manifolds with positive Ricci curvature. Since then, in the series [1995; 1997;
1999], Hamilton created a well-developed theory of Ricci flow as an approach
to the Poincaré conjecture and the geometrization conjecture. In [2002; 2003],
Perelman brought in new ideas and completed the so-called Hamilton program.

Gradient estimates for solutions of the heat equation are very powerful tools in
analysis, as shown for example in [Li 1991; Li and Yau 1986]. Perelman [2002]
actually showed a gradient estimate for the fundamental solution of the conjugate
heat equation,

1u− Ru+ ∂t u = 0,

under Ricci flow on a closed Riemannian manifold M , where R is the scalar curva-
ture. Namely, let u be the fundamental solution of the equation above in M×[0, T ),
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and let f be the function such that u = (4πτ)−n/2e− f with τ = T − t . Then(
τ(21 f − |∇ f |2+ R)+ f − n

)
u ≤ 0 in M ×[0, T ).

Equivalently,
|∇u|2

u2 −
uτ
u
− R ≤ n

τ
+

ln u
τ
+

n
2

ln(4πτ)
τ

.

This estimate is important in the proof of Perelman. Recently, Kuang and Zhang
[2008] established a gradient estimate that works for all positive solutions of the
conjugate heat equation under Ricci flow on a closed manifold. (Here and through-
out we say that a Riemannian manifold is closed if it is compact without boundary.)
As an immediate consequence, they get a Harnack-type inequality. By supposing
a lower bound on the Ricci curvature, Zhang [2006] established local gradient
estimates for positive solutions of the heat equation under the backward Ricci flow
∂t gi j = 2 Rici j on a closed Riemannian manifold. Under stronger curvature con-
straints, Guenther [2002] had already established gradient estimates for positive
solutions of the heat equation under Ricci flow on a closed manifold. Using this
result, she derived a Harnack-type inequality and found a lower bound for the heat
kernel under Ricci flow. Here heat kernel means the fundamental solution of the
heat equation under Ricci flow, whose existence and basic properties Guenther also
proved. We weaken her curvature constraints in Section 2 using the method of Li
and Yau [1986]. We also get corresponding estimates for complete noncompact
manifolds under Ricci flows. All of these results are generalizations of Li and
Yau’s gradient estimates.

Interesting in their own right, higher order gradient estimates for heat kernels
on complete noncompact Riemannian manifolds under Ricci flows are also closely
related with the boundedness of the Riesz transform and the Sobolev inequality.
Zhang [2007] found that the noncollapsing result, which is critical in Perelman’s
proof of the Poincaré conjecture, follows immediately from the Sobolev inequality
under Ricci flow. Li [1994] used the boundedness of the Riesz transform to prove
the Sobolev inequality on Riemannian manifold with some constraints, so it is nat-
ural to try to prove with a similar method the Sobolev inequality under Ricci flow.
In that method, an important step, completed [Li 1991], is to prove an estimate
for ∇X∇Y H(x, y, t), where H(x, y, t) is the heat kernel and ∇X and ∇Y are the
gradient operator in the variables x and y. However, difficulties arise in using this
method to get the generalization of this estimate under Ricci flow, since in this
case the heat kernel has properties different from what it had in the fixed metric
case. As a consequence of the first order results in Section 2, in Section 3 we get
the generalization of Li’s [1991] second order gradient estimate for the positive
solution u(x, t) of the heat equation under Ricci flow. Let M be a complete non-
compact Riemannian manifold with initial metric g(0). Assume that g(t) evolves
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by Equation (1-1) and its first order covariant derivatives are bounded by k1 and k2.
Then we have (the notation is defined in later sections)

|∇
2u(x, t)|
u(x, t)

+α
|∇u(x, t)|2

u2(x, t)
− 5α

ut(x, t)
u(x, t)

≤ C(k1+ k2/3
2 + 1/t).

In fact, the estimate for ∇X∇Y H(x, y, t) and the second order gradient estimate
for u(x, t) are proved similarly in [Li 1991]. The main difference is that the latter
doesn’t depend on the special properties of the heat kernel.

For closed Riemannian manifolds under Ricci flows, we get a gradient estimate
for arbitrary solutions of the heat equation at the end of Section 2.

We will use the following notations: We denote by ∇ and 1 the gradient and
Laplacian–Beltrami operator under the metric g(t); by C a positive constant that
may change from line to line; by d(x, y, t) the geodesic distance between x, y ∈M
under g(t); and by ψ(r) a C2 function on [0,+∞), such that

(1-2) ψ(r)=
{

1 if r ∈ [0, 1],
0 if r ∈ [2,+∞),

and

(1-3) 0≤ ψ(r)≤ 1, ψ ′(r)≤ 0, ψ ′′(r)≥−C,
|ψ ′(r)|2

ψ(r)
≤ C,

where C is an absolute constant. When we say that u(x, t) is a solution to the heat
equation, we mean u is a solution that is C2 in x and C1 in t .

2. The first order gradient estimates

In this section, we prove the first order gradient estimates. We will denote

ft(x, t)= ∂t f (x, t)=
∂ f (x, t)
∂t

for a function f on M × [0, T ], where T is a positive constant. We give a local
version gradient estimate first.

Theorem 1. Let g(t) be a solution to the Ricci flow on a Riemannian manifold Mn

with n≥2 for t in some time interval [0, T ], and suppose−K0≤Ric≤K1 for some
positive constants K0 and K1 and all t ∈[0, T ]. Let M be complete under the initial
metric g(0). Given x0 ∈ M and R > 0, let u be a positive solution to the equation
(1− ∂t)u(x, t) = 0 in the cube Q2R,T := {(x, t) | d(x, x0, t) ≤ 2R, 0 ≤ t ≤ T }.
Then for (x, t) ∈ Q R,T , we have

(2-1)
|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤ C
(

K1+ K0+
1
t
+

1
R2

)
for any α > 1, where C depends on n and α only.
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More explicitly, we have

(2-2)
|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤
nα2

t
+

Cα2

R2

(
R
√

K0+
α2

α−1

)
+

nα3

α−1
K0+ n3/2α2(K0+ K1)+Cα2K1,

for any α > 1, where C depends on n only.

As in the proof in [Li and Yau 1986], let f = log u, and let

F = t
(
|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

)
= t (|∇ f |2−α ft).

Lemma 1. Suppose (M, g(t)) satisfies the hypotheses of Theorem 1. We have

(2-3) (1− ∂t)F ≥−2∇ f · ∇F + t
n
(|∇ f |2− ft)

2
− (|∇ f |2−α ft)

− 2αK0t |∇ f |2− tα2n2(K0+ K1)
2.

Proof. For a given time t , choose {x1, x2, . . . , xn} to be a normal coordinate system
at a fixed point. The subscripts i and j will denote covariant derivatives in the xi

and x j directions. We will compute at the fixed point.
By a direct computation, we obtain

1F = t
(

2
∑
i, j

f 2
i j + 2

∑
i, j

fi f j j i + 2
∑
i, j

Rici j fi f j −α(1 f )t + 2α
∑
i, j

Rici j fi j

)
,

where we have used the Ricci identity and the formula

(2-4) 1( ft)= (1 f )t − 2〈Ric,Hess( f )〉.

On the other hand, we have

Ft = (|∇ f |2−α ft)+ t
(

2
∑
i, j

Rici j fi f j + 2
∑

i

fti fi −α ft t

)
.

Then noting that (1− ∂t) f =−|∇ f |2, we arrive at

(2-5) (1− ∂t)F =−2∇ f · ∇F + 2t
(∑

f 2
i j +α

∑
Rici j fi j

)
+ 2αt Ric(∇ f,∇ f )− (|∇ f |2−α ft).

Because
(
Rici j

)
n×n is a real symmetric matrix, we obtain

(2-6) −K0− K1 ≤ Rici j ≤ K1+ K0

from −K0≤Ric≤ K1. Applying those bounds and Young’s inequality in the form

|Rici j | | fi j | ≤
α
2

Ric2
i j +

1
2α

f 2
i j ,
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we conclude

(2-7) (1− ∂t)F ≥−2∇ f · ∇F + t
∑

f 2
i j − tα2n2(K0+ K1)

2

− 2αK0t |∇ f |2− (|∇ f |2−α ft).

The lemma is completed with the help of the inequality∑
i, j

f 2
i j ≥

∑
i

f 2
i i ≥

1
n
(1 f )2 = 1

n
(|∇ f |2− ft)

2. �

Proof of Theorem 1. Bounded Ricci curvature implies that g(t) is uniformly equiv-
alent to the initial metric g(0) (see [Chow et al. 2006, Corollary 6.11]), that is,

e−2K1T g(0)≤ g(t)≤ e2K0T g(0).

By definition, we know that (M, g(t)) is also complete for t ∈ [0, T ].
Let

ϕ(x, t)= ϕ(d(x, x0, t))= ψ
(

d(x, x0, t)
R

)
= ψ

(
ρ(x, t)

R

)
,

where ρ(x, t) = d(x, x0, t). For the purpose of applying the maximum principle,
the argument of [Calabi 1958] allows us to assume that the function ϕ(x, t), with
support in Q2R,T , is C2 at the maximum point.

For any 0< T1 ≤ T , let (x1, t1) be the point in Q2R,T1 at which ϕF achieves its
maximum value. We can assume that this value is positive, because otherwise the
proof is trivial. Then at the point (x1, t1), we have

(2-8) ∇(ϕF)= F∇ϕ+ϕ∇F = 0, 1(ϕF)≤ 0, ∂t(ϕF)≥ 0.

Therefore,

(2-9) 0≥ (1− ∂t)(ϕF)

= (1ϕ)F +ϕ(1− ∂t)F −ϕt F + 2∇ϕ∇F.

Using the Laplacian comparison theorem, we have

1ϕ ≥−
C
R2 −

C
R

√
K0.

By the evolution formula of the geodesic length under Ricci flow (see [Chow and
Knopf 2004]), we calculate

−Fϕt =−Fψ ′
( ρ

R

) 1
R

dρ
dt
= Fψ ′

( ρ
R

) 1
R

∫
γt1

Ric(S, S) ds

≥ Fψ ′
( ρ

R

) 1
R

K1ρ ≥ Fψ ′
( ρ

R

)
K1 ≥−F

√
C K1,
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where γt1 is the geodesic connecting x and x0 under the metric g(t1), S is the
unit tangent vector to γt1 , and ds is the element of arc length. Substituting the two
inequalities above into (2-9) and using (2-8), we obtain

(2-10) 0≥
(
−

C
R2 −

C
R

√
K0

)
F −
√

C K1 F +ϕ(1− ∂t)F.

Applying Lemma 1 to this inequality yields

(2-11) 0≥
(
−

C
R2−

C
R

√
K0

)
F−
√

C K1 F−2
√

C
R
√
ϕ |∇ f |F+

t1
n
ϕ(|∇ f |2− ft)

2

−ϕ(|∇ f |2−α ft)− 2αK0t1ϕ|∇ f |2− t1α2n2ϕ(K1+ K0)
2.

The following computation is almost the same as one in [Li and Yau 1986].
Multiplying through by ϕt1 and setting y = ϕ|∇ f |2 and z = ϕ ft , Equation (2-11)
becomes

(2-12) 0≥ t1
(
−

C
R2 −

C
R

√
K0

)
(ϕF)−

√
C K1t1(ϕF)− 2

√
C

R
t2
1 y1/2(y−αz)

+
t2
1

n
(y− z)2− 2αK0t2

1 y−ϕ2 F − t2
1α

2n2ϕ2(K0+ K1)
2.

Using the inequality ax2
− bx ≥−b2/(4a) for a, b > 0, one obtains

t2
1

n
(y− z)2− 2

√
C

R
t2
1 y1/2(y−αz)− 2αK0t2

1 y

=
t2
1

n

(
1
α2 (y−αz)2+

(
α−1
α

)2
y2
−2αnK0 y+

(
2α−1
α2 y− 2n

√
C

R
y1/2

)
(y−αz)

)
≥

t2
1

n

(
1
α2 (y−αz)2−

α4n2K 2
0

(α− 1)2
−

α2n2C
2(α−1)R2 (y−αz)

)
.

Hence (2-12) becomes

(2-13) 1
nα2 (ϕF)2− (ϕF)

(
1+ C

R2 t1+
C
R

√
K0t1+

Cnα2t1
2(α−1)R2 +

√
C K1t1

)
−

(
nK 2

0α
4t2

1

(α− 1)2
+ t2

1α
2n2ϕ2(K1+ K0)

2
)
≤ 0.

We apply the quadratic formula and then arrive at

(2-14) ϕF(x1, t1)≤ nα2
+

Cnα2

R2

(
R
√

K0+
α2

α−1

)
t1+
√

Cnα2K1t1

+
nα3t1
α− 1

K0+ t1ϕn3/2(K0+ K1)α
2.

This estimate for ϕF is also correct on {(x, T1) | d(x, x0, T1)≤ 2R} since t1 ≤ T1.
Since T1 is arbitrary in 0< T1≤ T , we have completed the proof of Theorem 1. �
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The local result above implies a global one.

Corollary 1. Let (M, g(0)) be a complete noncompact Riemannian manifold with-
out boundary, and suppose g(t) evolves by Ricci flow in such a way that −K0 ≤

Ric≤K1 for t ∈[0, T ]. Let u be a positive solution to the equation (1−∂t)u(x, t)=
0. Then for (x, t) ∈ M × (0, T ], we have

(2-15)
|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤
nα2

t
+C(K1+ K0),

for any α > 1, where C depends on n and α only.

Proof. By the uniform equivalence of g(t), we know that (M, g(t)) is complete
noncompact for t ∈ [0, T ]. Then let R→+∞ in (2-2). �

Remark 1. When (M, g(0)) is a complete noncompact Riemannian manifold, Shi
[1989] gives a sufficient condition for the short time existence of the Ricci flow: It
suffices that the curvature tensor {Ri jkl} of g(0) satisfies

|Ri jkl |
2
≤ κ on M,

where 0< κ <+∞ is a constant.

Using Lemma 1, we can also derive a similar gradient estimate on a closed
Riemannian manifold.

Theorem 2. Let (M, g(t)) be a closed Riemannian manifold, where g(t) evolves
by Ricci flow in such a way that −K0 ≤ Ric ≤ K1 for t ∈ [0, T ]. If u is a positive
solution to the equation (1− ∂t)u(x, t)= 0, then for (x, t) ∈ M × (0, T ], we have

|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤
nα2

t
+

nα3K0
α−1

+ n3/2α2(K0+ K1),(2-16)

for any α > 1, where C depends on n and α only.

Proof. Let notations F and f be as above. Set

F(x, t)= F(x, t)− nα3K0
α−1

t − n3/2α2(K0+ K1)t.

If F(x, t)≤ nα2 for any (x, t) ∈ M × (0, T ], then the theorem is proved.
If (2-16) doesn’t hold, then at the maximal point (x0, t0) of F(x, t), we have

F(x0, t0) > nα2. Noting F(x, 0) = 0, we know here t0 > 0. Then applying the
maximal principle, we have at the point (x0, t0) that

(2-17) ∇F(x0, t0)= 0, 1F(x0, t0)≤ 0, ∂
∂t

F(x0, t0)≥ 0.

Therefore we obtain

(2-18) 0≥ (1− ∂t)F ≥ (1− ∂t)F.
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Using Lemma 1 and the trick in calculating (2-11), we get

(2-19) 0≥
t0

nα2

(F
t0

)2
−

(F
t0

)
−

nα4K 2
0

(α− 1)2
t0− t0α2n2(K0+ K1)

2

+
2t0
n
α−1
α2 |∇ f |2 F

t0
.

Since
F
t0
=

F
t0
+

nα3K0
α−1

+ n3/2α2(K0+ K1) > 0,

we get the inequality

(2-20)
t0

nα2

(F
t0

)2
−

(F
t0

)
−

nα4K 2
0

(α− 1)2
t0− t0α2n2(K0+ K1)

2
≤ 0.

Again the quadratic formula gives

(2-21) F
t0
≤

nα2

t0
+

nα3K0

α− 1
+ n3/2α2(K0+ K1).

This implies F(x0, t0)≤ nα2, a contradiction. So (2-16) holds. �

Remark 2. In Corollary 1 and Theorem 2, if K0 = 0, we can let α→ 1.

In fact, the Theorem 2 improves the gradient inequality in [Guenther 2002],
which requires the boundedness of the gradient of scalar curvature in addition to
the boundedness of the Ricci curvature. Beginning with this result, we can do
things similar to what was done in [Guenther 2002], such as deriving Harnack-
type inequalities.

Corollary 2. Let (M, g(0)) be a complete noncompact Riemannian manifold with-
out boundary or a closed Riemannian manifold, and suppose g(t) evolves by Ricci
flow for t ∈ [0, T ] in such a way that−K0 ≤Ric≤ K1. If u is a positive solution to
the equation (1− ∂t)u(x, t) = 0, then for any points (x, t1), (y, t2) ∈ M × (0, T ]
such that t1 < t2, we have

(2-22) u(x, t1)≤ u(y, t2)
( t2

t1

)2nε
exp

(∫ 1

0

ε|γ′(s)|2σ
2(t2− t1)

ds+C
t2− t1

2ε
(K1+ K0)

)
,

for any ε > 1/2, where C depends on n and ε only, γ(s) is a smooth curve con-
necting x and y with γ(1)= x and γ(0)= y, and |γ′(s)|σ is the length of the vector
γ′(s) at time σ = (1− s)t2+ st1.

Proof. First note that the gradient estimates in Corollary 1 and Theorem 2 can both
be written as

(2-23)
|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤
nα2

t
+Cn,α(K1+ K0).
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Define l(s)= ln u(γ(s), (1− s)t2+ st1). It is easy to see that l(0)= ln u(y, t2) and
l(1)= ln u(x, t1). Direct calculation gives

∂l(s)
∂s
= (t2− t1)

(
∇u
u

γ′(s)
t2− t1

−
ut

u

)
≤
ε|γ′(s)|2σ
2(t2− t1)

+
t2− t1

2ε

(
C(K1+ K0)+

4ε2n
σ(s)

)
.

Integrating this inequality over γ(s), we have

ln
u(x, t1)
u(y, t2)

=

∫ 1

0

∂l(s)
∂s

ds

≤

∫ 1

0

ε|γ′(s)|2σ
2(t2− t1)

ds+C
t2− t1

2ε
(K1+ K0)+ 2εn ln(t2/t1). �

We can also get a gradient estimate for an arbitrary solution of the heat equation
under Ricci flow on a closed manifold without any curvature conditions. The aux-
iliary function F we take in the following proof is inspired by Hamilton’s [1995]
proof of Shi’s [1989] derivative estimates.

Theorem 3. Let (M, g(t)) be a closed Riemannian manifold, where g(t) solves
the Ricci flow for t ∈ [0, T ]. If u solves 1u− ∂t u = 0, then

(2-24) |∇u(x, t)|2 ≤ 1
2t

(
max
x∈M

u2(x, 0)− u2(x, t)
)

for (x, t) ∈ M ×[0, T ].

Proof. Since ∂t u =1u, we have

∂t(|∇u|2)= 2 Ric(∇u,∇u)+ 2〈∇u,∇(1u)〉.

Using Bochner’s formula, this becomes

(2-25) ∂t(|∇u|2)=1(|∇u|2)− 2|∇2u|2.

On the other hand,

(2-26) ∂t(u2)=1(u2)− 2|∇u|2.

Let F = t |∇u|2+ Au2, where A is a constant to be fixed. Then combining (2-25)
and (2-26) gives

(2-27)

∂t F = |∇u|2+ t (1(|∇u|2)− 2|∇2u|2)+ A(1(u2)− 2|∇u|2)

≤1F + (1− 2A)|∇u|2.

Setting A = 1/2 and applying maximum principle, we conclude

(2-28) F(x, t)≤max
x∈M

F(x, 0)= 1
2 max

x∈M
u2(x, 0).

This inequality implies the theorem. �
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Remark 3. For a positive solution of the heat equation u on closed manifolds
under Ricci flow, Zhang [2006] gives a stronger estimate,

(2-29)
|∇u|

u
≤

√
1
t

√
ln M

u
,

where M = maxx∈M u(x, 0). Similar to the fact that the interpolation inequality
follows from this estimate in [Zhang 2006], here we get for any x, y ∈ M and
0< t ≤ T that

(2-30) u(x, t)≤ u(y, t)+

√
C
2

d(x, y, t)
√

t
,

where C =maxx∈M u2(x, 0).

3. The second order gradient estimates

Using Corollary 1, we can generalize to the Ricci flow setting the second order
gradient estimate for the positive solution of the heat equation in [Li 1991].

Theorem 4. Let g(t) be a solution to the Ricci flow on a Riemannian manifold Mn

with n ≥ 2 for t in some time interval [0, T ]. Assume that (M, g(0)) is a complete
noncompact manifold without boundary. Suppose the curvature tensor and its first
order covariant derivatives are bounded throughout by k1 and k2, respectively. Let
u be a positive solution to (1− ∂t)u(x, t)= 0. Then for (x, t) ∈ M × (0, T ],

(3-1)
|∇

2u(x, t)|
u(x, t)

+α
|∇u(x, t)|2

u2(x, t)
− 5α

ut(x, t)
u(x, t)

≤ C
(

k1+ k2/3
2 +

1
t

)
,

for any α > 1, where C depends on n and α only.

To prove the theorem, we set

F(x, y, t)= t F1 = t
(
|∇

2u(x, t)|
u(x, t)

+α
|∇u(x, t)|2

u2(x, t)
−β

ut(x, t)
u(x, t)

)
,

where β is a constant to be fixed.

Lemma 2. Suppose (M, g(t)) satisfies the hypotheses of Theorem 4. Then for
sufficiently small δ > 0 and γ− 1> 0 and some ε > 0, we have

(1− ∂t)F ≥ − 2∇F · ∇ log u+ δα
t

F2
+ 2δαβF ut

u
− 2δα2 F

|∇u|2

u2

−Ck1 F −
Ck2

1

4(γ− 1)2
t −Ck4/3

2 t − 4βεn2k2
1 t − F/t

− 2Ct
(

4δα3
+

δ
2α(1−δ)2

)(1
t
+ k1

)2
,
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where β = 5α and C depends on n and α.

Proof. As in the proof of Lemma 1, choose {x1, x2, . . . , xn} to be a normal coordi-
nate system at a fixed point. Subscripts i , j and k will denote covariant derivatives
in the xi , x j and xk directions.

We will calculate the evolution equation for F1. The computation is a little long,
so we divide it into three parts.

Part 1. We calculate the equation for |∇2u|/u.
It follows from [Li 1991] that

1

(
|∇

2u|
u

)
=

∑
u2

i jk +
∑

ui j ui jkk

u|∇2u|
− 2

∑
ui j ui jkuk

u2|∇2u|
−

∑
k

(∑
i j ui j ui jk

)2

u|∇2u|3
(3-2)

−
|∇

2u|1u
u2 + 2

|∇
2u||∇u|2

u3 ,

∂t

(
|∇

2u|
u

)
=
∂t(|∇

2u|2)
2u|∇2u|

−
|∇

2u|ut

u2 .(3-3)

Noting the metric evolves by the Ricci flow, we have

∂t(|∇
2u|2)= 4

∑
Ric(∇u j ,∇u j )+ 2

∑
ui j t ui j ,

ui j t = ∂t(ui j −0
l
i j ul)= uti j +

∑
l ul(∇i Ric jl +∇ j Ricil −∇l Rici j ).

The Ricci identity gives

ui jkk = ukki j+
∑

l

(
Rkikl, j ul+ Rkiklul j+ Rk jilulk+ Rk jkluli+ Ri jkl,kul+ Ri jklulk

)
.

Combining the above and using the Schwarz inequality, we conclude

(1− ∂t)

(
|∇

2u|
u

)
≥−2∇

(
|∇

2u|
u

)
· ∇ log u−Ck1

|∇
2u|
u
−Ck2

|∇u|
u
.

Part 2. We calculate the equation for |∇u|2/u2. A direct computation shows

(1− ∂t)

(
α
|∇u|2

u2

)

= 2α

∑
u2

i j

u2 + 2α
∑

ui u j j i

u2 + 2α
Ric(∇u,∇u)

u2 − 8α
∑

ui j ui u j

u3 − 2α
∑

u2
i u j j

u3

+ 6α

∑
u2

i u2
j

u4 − 2α
Ric(∇u,∇u)

u2 − 2α
∑

ui ui t

u2 + 2α
∑

u2
i ut

u3

= 2α

∑
u2

i j

u2 − 8α
∑

ui j ui u j

u3 + 6α

∑
u2

i u2
j

u4

=−2∇
(
α
|∇u|2

u2

)
· ∇ log u+ 2α

∑
u2

i j

u2 − 4α
∑

ui j ui u j

u3 + 2α

∑
u2

i u2
j

u4 .
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In the above, the two Ricci curvature terms generated by the Ricci identity and the
evolution of the metric are canceled. Applying Young’s inequality, that is,

4α
∑

ui j ui u j

u3 ≤ 2(1− δ)α

∑
u2

i j

u2 +
2α

1−δ

(∑
u2

i

u2

)2

for any 0< δ < 1,

we conclude

(1− ∂t)

(
α
|∇u|2

u2

)
≥−2∇

(
α
|∇u|2

u2

)
· ∇ log u+ 2δα

∑
u2

i j

u2 −
2δα
1−δ

(∑
u2

i

u2

)2

.

Part 3. Using the formula (2-4) and Young’s inequality, we get for any ε > 0,

(1− ∂t)
(
β

ut

u

)
≥−2∇

(
β

ut

u

)
· ∇ log u−

β

ε

∑
u2

i j

u2 −βε
∑

Ric2
i j .

Combining Parts 1–3 and using (2-6), we obtain for any 0< δ < 1 and ε > 0

(3-4) (1−∂t)F1 ≥−2∇F1 ·∇ log u−Ck1
|∇

2u|
u
+

(
δα−

β

ε

)∑ u2
i j

u2 + δα

∑
u2

i j

u2

−
2δα
1−δ

(∑
u2

i

u2

)2

−Ck2
|∇u|

u
− 4βεn2k2

1 .

By the definition of F1, we have

(3-5)
|∇

2u|
u
≤ F1+β

ut

u
,

and∑
u2

i j

u2 =

(
F1−α

|∇u|2

u2 +β
ut

u

)2

= F2
1 +α

2
(∑

u2
i

u2

)2

+β2 u2
t

u2 + 2βF1
ut

u
− 2αF1

∑
u2

i

u2 − 2αβ
∑

u2
i

u2

ut

u
.(3-6)

Inserting (3-5) and (3-6) into (3-4) and applying Young’s inequality to separate the
mixed items, we arrive at

(3-7) (1− ∂t)F1 ≥−2∇F1 · ∇ log u−Ck1 F1−
1
4Ck2

1/(γ− 1)2

+
( 1

2δαβ
2
−Cβ2(γ− 1)2

)u2
t

u2 +

(
δα−

β

ε

)∑ u2
i j

u2

−

(
4δα3
+

δ
2α(1−δ)2

)(∑ u2
i

u2

)2

+ δαF2
1

+ 2δαβF1
ut

u
− 2δα2 F1

∑
u2

i

u2 −Cδ−1/3k4/3
2 − 4βεn2k2

1,

for any γ− 1> 0.
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Using the inequality

(3-8)
(
|∇u|2

u2

)2

≤ 2
(
|∇u|2

u2 − γ
ut

u

)2

+ 2γ2u2
t /u

2,

we calculate

(3-9)
( 1

2δαβ
2
−Cβ2(γ− 1)2

)u2
t

u2 −

(
4δα3
+

δ
2α(1−δ)2

)(∑
u2

i

u2

)2

≥

(
1
2δαβ

2
− 2γ2

(
4δα3
+

δ
2α(1−δ)2

)
−Cβ2(γ− 1)2

)
u2

t

u2

− 2
(

4δα3
+

δ
2α(1−δ)2

)(
|∇u|2

u2 − γ
ut

u

)2

.

Setting β = 5α, we check that

1
2δαβ

2
− 2γ2

(
4δα3
+

δ
2α(1−δ)2

)
−Cβ2(γ− 1)2

= 8δα3( 25
16 − γ

2)
−

δ

α(1− δ)2
γ2
−Cβ2(γ− 1)2

≥ 0 when δ > 0 and γ− 1> 0 are sufficiently small.

Then we can take ε ≥ 5/δ such that δα−β/ε ≥ 0.
Consequently, (3-7) becomes

(3-10) (1− ∂t)F1 ≥−2∇F1 · ∇ log u−Ck1 F1−
Ck2

1

4(γ− 1)2
+ δαF2

1

− 2
(

4δα3
+

δ
2α(1−δ)2

)(
|∇u|2

u2 − γ
ut

u

)
+ 2δαβF1ut/u− 2δα2 F1

∑
u2

i

u2 −Ck4/3
2 − 4βεn2k2

1 .

We complete the lemma by applying Corollary 1 and noting that

(1− ∂t)F = t (1− ∂t)F1− F1. �

Proof of Theorem 4. As in the proof of Theorem 1, (M, g(t)) is complete for
t ∈ [0, T ]. Let

ρ(x, t)= d(x, x0, t) and ϕ(x, t)= ψ(ρ(x, t)/R).

Let ϕF(x, t) := ψ(ρ(x, t)/R)F(x, t), where (x, t) ∈ Q2R,T . Suppose (x1, t1) is
the point where ϕF achieves its maximum in Q2R,T1 , where 0< T1 ≤ T .
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If |∇2u(x1, t1)| = 0, then by Corollary 1, we have

(ϕF)(x1, t1)= ϕt1

(
α
|∇u|2

u2 −β
ut

u

)
≤ Cn,α,β (k1t1+ 1) ,(3-11)

which implies (3-1).
Using the arguments of [Calabi 1958] and [Li 1991], we can assume that ϕF is

smooth at (x1, t1) and that ϕF(x1, t1) > 0.
As in the proof of Theorem 1, at the point (x1, t1), we have

(3-12)
0≥ (1− ∂t)(ϕF)

≥

(
−

C
R2 −

C
R

√
k1

)
F −Ck1 F +ϕ(1X − ∂t)F.

Applying Lemma 2 and Young’s inequality, we obtain for s > 0 that

(3-13) 0≥
(
−

C
R2 −

C
R

√
k1

)
F −Ck1 F −

F |∇ϕ|2

2sϕ
− 2Fsϕ

|∇u|2

u2

−Ck1ϕF + δα
t1
ϕF2
− 2Cϕt1

(
4δα3
+

δ
2α(1−δ)2

)
(1/t1+ k1)

2

+ 2δαβϕFut/u− 2δα2ϕF
∑

u2
i

u2 −
Ck2

1

4(γ− 1)2
ϕt1

−Ck4/3
2 ϕt1− 4βεn2ϕt1k2

1 −ϕF/t1.

Using Corollary 1, we have

(3-14) 2δαβϕFut/u− 2δα2ϕF
∑

u2
i

u2 − 2Fsϕ
|∇u|2

u2

≥ (2δαβ − 2sγ− 2δα2γ)ϕFut/u−C(2δα2
+ 2s)ϕF(1/t1+ K1).

Observe that 2δαβ−2sγ−2δα2γ = 0 when we set s = δα2(4/γ−1). Then (3-13)
becomes

(3-15) 0≥ δα
t1
ϕF2
−ϕFC(2s+2δα2) (1/t1+ k1)−

C F
2s R2 +

(
−

C
R2 −

C
R

√
k1

)
F

−Ck1 F −Ck1ϕF −ϕF/t1−
Ck2

1

4(γ− 1)2
ϕt1− 4βεn2ϕt1k2

1

−Ck4/3
2 ϕt1− 2Cϕt1

(
4δα3
+

δ
2α(1−δ)2

)
(1/t1+ k1)

2.
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Multiplying through by ϕt1 and using 0≤ ϕ ≤ 1, we have

(3-16) 0≥ δα(ϕF)2− (ϕF)
(( C

R2 +
C
R

√
k1

)
t1+ (8Cδα2/γ)(1/t1+ k1)t1

)
− (ϕF)

(
Ct1

2δα2(4/γ− 1)R2 + (1+Ck1t1)
)
−

Ck2
1

4(γ− 1)2
t2
1

− 2C
(

4δα3
+

δ
2α(1−δ)2

)
(1/t1+ k1)

2t2
1 − 4βεn2k1t2

1 −Ck4/3
2 t2

1 .

Applying the quadratic formula, we get

ϕF(x1, t1)≤ C(1+ k1t1+ k2/3
2 t1+ (C/R2)t1).(3-17)

By an argument similar to one in the proof of Theorem 1, we conclude

F1(x, t)≤ C(k1+ k2/3
2 + 1/t + 1/R2) in Q R,T ,(3-18)

where C depends on n and α. Because M is noncompact, we can let R→+∞.
This completes the proof of Theorem 4. �
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