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We obtain a characterization of property (T) for von Neumann algebras
in terms of 1-cohomology, similar to the Delorme–Guichardet theorem for
groups.

0. Introduction

The analogue of group representations in von Neumann algebras is the notion of
correspondences which is due to Connes [Connes 1982; 1980; Popa 1986], and
has been a very useful in defining notions such as property (T) and amenability for
von Neumann algebras. It is often useful to view group representations as positive
definite functions that we obtain through a GNS construction. Correspondences
of a von Neumann algebra N can also be viewed in two separate ways, as Hilbert
N-N bimodules H, or as completely positive maps φ : N→ N , and the equivalence
of these two descriptions is also realized via a GNS construction. This allows one
to characterize property (T) for von Neumann algebras in terms of completely
positive maps.

For a countable group G there is also a notion of conditionally negative defi-
nite functions ψ : G → C, which satisfy ψ(g−1) = ψ(g) and the condition that
for all n ∈ N, α1, α2, . . . , αn ∈ C and g1, g2, . . . , gn ∈ G, if

∑n
i=1 αi = 0 then∑n

i, j=1 α jαiψ(g−1
j gi ) ≤ 0. Real-valued conditionally negative definite functions

can be viewed as cocycles b ∈ B1(G, π), where π : G → O(H) is an orthogonal
representation of G; see [Bekka et al. 2008]. Real-valued conditionally negative
definite functions can also be viewed as generators of semigroups of positive def-
inite functions by Schoenberg’s theorem. These equivalences then make possible
certain connections between 1-cohomology, conditionally negative definite func-
tions, and positive definite deformations, for example the Delorme–Guichardet
theorem [Delorme 1977; Guichardet 1977], which states that a group has prop-
erty (T) of Kazhdan [1967] if and only if the first cohomology vanishes for any
unitary representation.
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It was Evans [1977] who introduced the notion of bounded conditionally com-
pletely positive/negative maps and related them to the study the infinitesimal gen-
erators of norm continuous semigroups of completely positive maps. He noted
that this definition gives an analogue to conditionally positive/negative definite
functions on groups. We will extend the notion of conditionally completely neg-
ative maps to unbounded maps and use a GNS type construction to alternately
view them as closable derivations into a Hilbert N -N bimodule. This is done in
the same spirit as [Sauvageot 1989; 1990], where Sauvageot makes a connection
between quantum Dirichlet forms and differential calculus. Indeed, it is shown in
Theorem 1.1 that conditionally completely negative maps are in fact extensions of
generators associated to completely Dirichlet forms; however we are coming from
a different perspective here and so we will present the correspondence between
conditionally completely negative maps and closable derivations in a way more
closely related to group theory.

In studying various properties of groups such as property (T) or the Haagerup
property, one can give a characterization of these properties in terms of bound-
edness conditions on conditionally negative definite functions (as, for example in
[Akemann and Walter 1981]); hence one would hope that this is possible for von
Neumann algebras as well.

We will show that one can indeed obtain a characterization of property (T) in this
way. The main result is that a separable finite factor has property (T) if and only
if the 1-cohomology spaces of closable derivations vanish whenever the domain
contains a non-0 set (see Section 3 for the definition of a non-0 set).

Theorem 0.1. Suppose that N is a separable finite factor. Then the following
conditions are equivalent:

(1) N has property (T).

(2) N does not have property 0, and given any weakly dense ∗-subalgebra N0 ⊂

N with 1 ∈ N0 such that N0 contains a non-0 set, every densely defined clos-
able derivation on N0 into a Hilbert N-N bimodule is inner.

(3) There exists a weakly dense ∗-subalgebra N0 ⊂ N such that N0 is countably
generated as a vector space and every closable derivation into a Hilbert N-N
bimodule whose domain contains N0 is inner.

This is the analogue to the Delorme–Guichardet theorem for groups. As a
corollary we obtain that if X1, . . . , Xn generate a finite factor with property (T),
and if at least one of the X j has diffuse spectrum, then the derivations ∂X i from
[Voiculescu 1998] cannot all be closable, and hence the conjugate variables cannot
all exist in L2(N , τ ).
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Corollary 0.2. Suppose that N is a finite factor with property (T). Let X1, . . . , Xn

generate N as a von Neumann algebra such that C[X1, . . . , Xn] contains a non-0
set in the sense of Definition 3.1. Then 8∗(X1, . . . , Xn)=∞.

We also give an application showing that man amalgamated, free products of
finite von Neumann algebras do not have property (T).

Theorem 0.3. Let N1 and N2 be finite von Neumann algebras with normal faithful
tracial states τ1 and τ2 respectively, and suppose that B is a common von Neumann
subalgebra such that τ1|B = τ2|B . If there are unitaries ui ∈ U(Ni ) such that
EB(ui )= 0 for i = 1, 2, then M = N1 ∗B N2 does not have property (T).

Other than the introduction there are four sections. Section 1 establishes the
definitions and notations and gives the connection between closable derivations,
conditionally completely negative maps, and semigroups of completely positive
maps. In Section 2, we characterize when a closable derivation is inner, in terms
of the conditionally completely negative map and the semigroup. In Section 3,
we state and prove the main theorem, Theorem 3.2, and in Section 4, we give the
application to amalgamated free products (Corollary 4.2).

1. A GNS-type construction

1.1. Conditionally completely negative maps. Let N be a finite von Neumann
algebra with normal faithful trace τ .

Definition. Suppose 9 : N → L1(N , τ ) is a ∗-preserving linear map whose do-
main is a weakly dense ∗-subalgebra D9 of N such that 1 ∈ D9 . Then 9 is a
conditionally completely negative (c.c.n.) map on N if,

(1.1.1) for all n ∈ N, x j , y j ∈ D9, and j ≤ n,
n∑

j=1

x j y j = 0 implies
n∑

i, j=1

y∗j9(x
∗

j xi )yi ≤ 0.

It is not hard to see that condition (1.1.1) can be replaced with the condition that

(1.1.1′) for all n ∈ N, x j , y j ∈ D9, and j ≤ n,
n∑

j=1

x j y j = 0 implies
n∑

i, j=1

τ(9(x∗j xi )yi y∗j )≤ 0.

If φ : N → N is completely positive and k ∈ N , then 9(x)= k∗x + xk−φ(x)
gives a map that is c.c.n. and bounded. If δ : N→ L2(N , τ ) is a derivation, then δ
is c.c.n. Also if 9 is a c.c.n. map and α : N→ N is a τ -preserving automorphism,
then 9 ′ = α ◦9 ◦α−1 is another c.c.n. map.
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One can check that if 91 and 92 are c.c.n. such that D91∩D92 is weakly dense
in N , and if s, t ≥ 0, then 9 = s91 + t92 is c.c.n. Also if {9t }t is a family of
c.c.n. maps on the same domain and 9 is the pointwise ‖ · ‖1-limit of {9t }t , then
9 is c.c.n.

We say that 9 is symmetric if τ(9(x)y)= τ(x9(y)) for all x, y ∈ D9 . We say
that 9 is conservative if τ ◦9 = 0. We also say that 9 is closable if the quadratic
form q on L2(N , τ ) given by D(q) = D9 and q(x) = τ(9(x)x∗) is closable.
Note that we will see in Section 1.3 that if 9 : D9 → L2(N , τ ) ⊂ L1(N , τ ) is a
conservative symmetric c.c.n. map, then 9 is automatically closable.

If 9 is a conservative symmetric c.c.n. map, then τ(9(1)x)= τ(9(x))= 0 for
all x ∈ D9 ; hence 9(1)= 0. Also, if 9 is symmetric and 9(1)≥ 0, then given any
x ∈ D9 , if we let x1 = x , x2 = 1, y1 =−1, and y2 = x , then the above condition
implies that τ(9(x)x∗) ≥ 0, so that we actually have positivity instead of just the
symmetry condition.

1.2. Closable derivations. Let H be a Hilbert N -N bimodule. A derivation of N
is a (possibly unbounded) map δ : N→H defined on a weakly dense ∗-subalgebra
Dδ of N such that 1 ∈ Dδ, and such that δ(xy)= xδ(y)+ δ(x)y for all x, y ∈ Dδ.
The map δ is closable if it is closable as an operator from L2(N , τ ) to H.

The map δ is inner if δ(x) = xξ − ξ x for some ξ ∈ H. It is spanning if
spDδδ(Dδ)=H, and it is real if

〈xδ(y), δ(z)〉H = 〈δ(z∗), δ(y∗)x∗〉H for all x, y, z ∈ Dδ.

If δ′ : Dδ→H′ is another derivation, then we say that δ and δ′ are equivalent if
there exists a unitary map U :H→H′ such that U (xδ(y)z)= xU (δ(y))z= xδ′(y)z
for all x, y, z ∈ Dδ.

Recall that if H is a Hilbert N -N bimodule, then we can define the adjoint
bimodule H◦, where H◦ is the conjugate Hilbert space of H and the bimodule
structure is given by xξ ◦y = (y∗ξ x∗)◦. If δ : Dδ → H is a closable derivation,
then we may define the adjoint derivation δ◦ : Dδ→H◦ by setting δ◦(x)= δ(x∗)◦;
then δ◦ is a closable derivation and the derivations 1

2(δ+δ
◦) and 1

2(δ−δ
◦) are real

derivations from Dδ to H⊕H◦.

1.3. From conditionally completely negative maps to closable derivations. Let
9 be a conservative symmetric c.c.n. map on N with domain D9 . We associate to
9 a derivation in the following way (compare with [Sauvageot 1989]):

Let

H0 =

{ n∑
i=1

xi ⊗ yi ∈ D9 ⊗ D9

∣∣∣ n∑
i=1

xi yi = 0
}
.
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Define a sesquilinear form on H0 by

〈 n∑
i=1

x ′i ⊗ y′i ,
m∑

j=1

x j ⊗ y j

〉
9
=−

1
2

n∑
i=1

m∑
j=1

τ(9(x∗j x ′i )y
′

i y∗j ).

The positivity of 〈 · , · 〉9 is equivalent to the c.c.n. condition on 9. Let H be the
closure of H0 after we mod out by the kernel of 〈 · , · 〉9 . If p=

∑n
k=1 xk⊗ yk such

that
∑n

k=1 xk yk = 0, then

x 7→ −1
2

n∑
i, j=1

τ(x∗j xxi9(yi y∗j )) and y 7→ −1
2

n∑
i, j=1

τ(9(x∗j xi )yi yy∗j )

are both positive normal functionals on N with norm 〈p, p〉9 . We also have left
and right commuting actions of D9 on H0 given by

xpy = x
( n∑

k=1

xk ⊗ yk

)
y =

n∑
k=1

(xxk)⊗ (yk y),

and by the preceding remarks we have, for all x, y ∈ D9 ,

〈xp, xp〉9 = 〈x∗xp, p〉9 ≤ ‖x∗x‖〈p, p〉9 = ‖x‖2〈p, p〉9,

〈py, py〉9 ≤ ‖y‖2〈p, p〉9 .

Hence the above actions of D9 pass to commuting left and right actions on H, and
they extend to left and right actions of N on H given by the formulas

〈
x
[∑n

i=1 x ′i ⊗ y′i
]
,
[∑m

j=1 x j ⊗ y j
]〉

H
=

n∑
i=1

m∑
j=1

τ(x∗j xx ′i9(y
′

i y∗j )),

〈[∑n
i=1 x ′i ⊗ y′i

]
y,
[∑m

j=1 x j ⊗ y j
]〉

H
=

n∑
i=1

m∑
j=1

τ(9(x∗j x ′i )y
′

i yy∗j ).

Since the above forms are normal, the left and right actions commute and are
normal, thus making H into a Hilbert N -N bimodule.

Define δ9 : D9→H by x 7→ [x⊗1−1⊗ x]. Then δ9 is a derivation such that,
for all x, y ∈ D9 ,

〈δ9(x), δ9(y)〉H = 〈x ⊗ 1− 1⊗ x, y⊗ 1− 1⊗ y〉9

=−
1
2τ(9(y

∗x))+ 1
2τ(9(x)y

∗)+ 1
2τ(9(y

∗)x)− 1
2τ(9(1)xy∗)

= τ(9(x)y∗).
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Also δ9 is real since, for all x, y, z ∈ D9 ,

〈xδ9(y), δ9(z)〉H = 〈xy⊗ 1− x ⊗ y, z⊗ 1− 1⊗ z〉9

=−
1
2τ(9(z

∗xy))+ 1
2τ(9(xy)z∗)+ 1

2τ(9(z
∗x)y)− 1

2τ(9(x)yz∗)

=−
1
2τ(9(1)z

∗xy)+ 1
2τ(9(z

∗)xy)+ 1
2τ(9(y)z

∗x)− 1
2τ(9(yz∗)x)

= 〈1⊗ z∗− z∗⊗ 1, 1⊗ y∗x∗− y∗⊗ x∗〉9 = 〈δ9(z∗), δ9(y∗)x∗〉H.

It follows that δ9 is closable if 9 is. Also if 9 : D9→ L2(N , τ )⊂ L1(N , τ ), then
we would have D9 = D(δ∗9δ9), which would show that δ (and hence also 9) is
closable.

We will also assume that δ9 is spanning by restricting to spD9δ(D9)⊂H.
It is not really much of a restriction that 9(1)= 0, since if 9 is any symmetric

c.c.n. map with 9(1)∈ L2(N , τ ), then 9 ′(x)=9(x)− 1
29(1)x−

1
2 x9(1) defines

a symmetric c.c.n. map with 9 ′(1)= 0.

1.4. From closable derivations to conditionally completely negative maps. Let
H be a Hilbert N -N bimodule, and suppose that δ : N → H is a closable real
derivation defined on a weakly dense ∗-subalgebra Dδ of N with 1 ∈ Dδ.

Define

D9 =
{

x ∈ D(δ)∩ N | y 7→ 〈δ(x), δ(y∗)〉 gives a normal linear functional on N
}
.

Then by [Sauvageot 1990; Davies and Lindsay 1992], D(δ)∩N is a ∗-subalgebra,
and hence one can show that D9 is a dense ∗-subalgebra of N . We define the map
9δ : D9 → L1(N , τ ) by letting 9δ(x) be the Radon–Nikodym derivative of the
normal linear functional y 7→ 〈δ(x), δ(y∗)〉. Since δ is closable, 9δ is also.

Since δ is real, 9δ is a symmetric ∗-preserving map such that τ ◦9 = 0, and if
n ∈ N and x1, x2, . . . , xn, y1, yx , . . . , yn ∈ D9 such that

∑n
i=1 xi yi = 0, then

n∑
i, j=1

τ(9(x∗j xi )yi y∗j )=
n∑

i, j=1

〈δ(x∗j xi ), δ(y j y∗i )〉H

=

n∑
i, j=1

〈x∗j δ(xi ), y jδ(y∗i )+ δ(y j )y∗i 〉H+〈δ(x
∗

j )xi , y jδ(y∗i )+ δ(y j )y∗i 〉H

=

n∑
i, j=1

〈δ(xi )yi , x jδ(y j )〉H+〈xiδ(yi ), δ(x j )y j 〉H =−2
∥∥∥ n∑

i=1

δ(xi )yi

∥∥∥2

H
≤ 0.

Hence 9δ is a conservative symmetric c.c.n. map on D9 .
Note that if we restrict ourselves to closable derivations that are spanning, then

an easy calculation shows that the constructions above are inverses of each other
in the sense that 9δ9 |D9 =9 and δ9δ ∼= δ.
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1.5. Closable derivations and c.c.n. maps from groups. Let 0 be a discrete
group, (C, τ0) a finite von Neumann algebra with a normal faithful trace, and
σ a cocycle action of 0 on (C, τ0) by τ0-preserving automorphisms. Denote
by N = C × σ0 the corresponding cross-product algebra with trace τ given by
τ(6cgug) = τ0(ce), where cg ∈ C and {ug}g ⊂ N denote the canonical unitaries
implementing the action σ on C .

Let (π0,H0) be a unitary or orthogonal representation of 0, and let b : 0→H0

be an (additive) cocycle of 0, that is, b(gh) = π0(g)b(h)+ b(g) for all g, h ∈ 0.
Set Hπ0 to be the Hilbert space H0⊗RL2(N , τ ) if π0 is an orthogonal representation
and H0⊗CL2(N , τ ) if π0 is a unitary representation. We let N act on the right
of Hπ0 by (ξ ⊗ x̂)y = ξ ⊗ (x̂ y) for x, y ∈ N and ξ ∈ H0 and on the left by
c(ξ ⊗ x̂)= ξ ⊗ (ĉx) and ug(ξ ⊗ x̂)= (π0(g)ξ)⊗ (ûgx) for c ∈ C , x ∈ N , g ∈ 0,
and ξ ∈H0. Let D0 be the ∗-subalgebra generated by C and {ug}g. We define δb

by δb(cgug)= cgδb(ug)= b(g)⊗ ĉgug for cg ∈C and g ∈0; then we can extend δb

linearly so that δb is a derivation on D0. If (π0,H0) is an orthogonal representation
and 1g denotes the Dirac delta function at g, then

〈cugδb(uh), δb(uk)〉 = 〈π0(g)b(h), b(k)〉〈ĉuguh, ûk〉

= 〈−π0(g)π0(h)b(h−1),−π0(k)b(k−1)〉〈ĉuguh, ûk〉1k(gh)

= 〈b(k−1), b(h−1)〉〈û∗k , û∗hu∗gc∗〉

= 〈δb(u∗k), δb(u∗h)u
∗

gc∗〉,

for all g, h, k ∈ 0 and c ∈ C , thus showing that δb is real.
Also we have∣∣〈δb(cgug), δb(

∑
h∈0 dhuh)〉

∣∣= ∣∣∑h∈0〈b(g), b(h)〉〈ĉgug, d̂huh〉
∣∣

= ‖b(g)‖2
∣∣〈ĉgug,

∑
h∈0 d̂huh〉

∣∣
≤ ‖b(g)‖2‖cg‖

∥∥∑
h∈0 dhuh

∥∥
1,

for all g ∈ 0, cg ∈ C and
∑

h∈0 dhuh ∈ D0. Hence if x =
∑

g∈0 cgug ∈ D0 and
y ∈ D0, then |〈δb(x), δb(y)〉| ≤ (

∑
g∈0‖b(g)‖

2
‖cg‖)‖y‖1. In particular this shows

that δb is closable.
Now suppose that ψ : 0 → C is a real-valued conditionally negative definite

function on 0 such that ψ(e) = 0, and let (πψ , bπ ) be the representation and
cocycle that correspond to ψ through the GNS construction [Bekka et al. 2008].
Let (H, δ) denote the Hilbert N -N bimodule and closable derivation constructed
out of (πψ , bπ ) as above, and let9 be the symmetric c.c.n. map associated to (H, δ)
as in Section 1.4. Then a calculation shows that9(

∑
g cgug)=

∑
g ψ(g)cgug, and

in fact it is easy to show that this equation still describes a c.c.n. map even if ψ is
not real valued.
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Conversely, if (H, δ) is a Hilbert N -N bimodule and a closable derivation such
that δ is defined on the ∗-subalgebra generated by C and {ug}g, then we can asso-
ciate to it a representation π0 on H0 = sp{δ(ug)u∗g | g ∈ 0} by π0(g)ξ ′ = ugξ

′u∗g
for ξ ′ ∈H0. Also we may associate to δ a group cocycle b on 0 by b(g)= δ(ug)u∗g
for g ∈ 0. If 9 is a c.c.n. map that is also defined on the ∗-subalgebra generated
by C and {ug}g, then we can associate to it a conditionally negative definite func-
tion ψ by ψ(g) = τ(9(ug)u∗g). Furthermore if δ is real, then by taking only the
real span above, we see that H0 is a real Hilbert space and π0 is an orthogonal
representation; also ψ is real valued if and only if 9 is symmetric, and if (H, δ)
and 9 correspond to each other as in Sections 1.3 and 1.4, then (π0, b) and ψ
correspond to each other via the GNS construction.

1.6. Examples from free probability. We now have two main examples of clos-
able derivations, those that are inner, and those that come from cocycles on groups.
Voiculescu [1998; 1999] uses certain derivations in a key role for his nonmicro-
states approach to free entropy and mutual free information. These derivations will
give us more examples of closable derivations under certain circumstances.

1.6.1. The derivation ∂X from [Voiculescu 1998]. Let B ⊂ N be a ∗-subalgebra
with 1 ∈ B and X = X∗ ∈ N . If we denote by B[X ] the subalgebra generated by
B and X , and if X and B are algebraically free (that is, they do not satisfy any
nontrivial algebraic relations), then there is a well-defined unique derivation

∂X : B[X ] → B[X ]⊗ B[X ] ⊂ L2(N , τ )⊗ L2(N , τ )

such that ∂X (X)= 1⊗ 1 and ∂X (b)= 0 for all b ∈ B.
We note that if ∂X is inner, then identifying L2(N , τ ) ⊗ L2(N , τ ) with the

Hilbert–Schmidt operators gives the existence of a Hilbert–Schmidt operator that
commutes with B. Therefore if B contains a diffuse element (that is, one generating
a von Neumann algebra without minimal projections), then ∂X is not inner.

From [Voiculescu 1998], the conjugate variable J (X :B) of X with respect to B
is an element in L1(W ∗(B[X ]), τ ) such that τ(J (X :B)m)= τ ⊗ τ(∂X (m)) for all
m ∈ B[X ], that is, J (X :B)= ∂∗X (1⊗ 1).

If J (X :B) exists and is in L2(N , τ ) (as in the case when we perturb a set
of generators by free semicircular elements), then ∂X is a closable derivation by
[Voiculescu 1998, Corollary 4.2]

1.6.2. The derivation δA:B from [Voiculescu 1999]. Suppose A, B ⊂ N are two
∗-subalgebras with 1 ∈ A, B. If we denote by A ∨ B the subalgebra generated
by A and B, and if A and B are algebraically free, then we may define a unique
derivation

δA:B : A∨ B→ (A∨ B)⊗ (A∨ B)⊂ L2(N , τ )⊗ L2(N , τ )
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by δA:B(a)= a⊗ 1− 1⊗ a for all a ∈ A, and δA:B(b)= 0 for all b ∈ B.
For the same reason as above, if B contains a diffuse element and A 6= C, then

the derivation is not inner.
Recall from [Voiculescu 1999] that the liberation gradient j (A :B) of (A, B) is

an element in L1(W ∗(A∪ B), τ ) such that τ( j (A :B)m)= τ ⊗ τ(δA:B(m)) for all
m ∈ A∨ B, that is, j (A :B)= δ∗A:B(1⊗ 1).

If j (A :B) exists and is in L2(N , τ ), then δA:B is a closable derivation by
[Voiculescu 1999, Corollary 6.3]

1.7. Generators of completely positive semigroups. Suppose N is a finite von
Neumann algebra with normal faithful trace τ . A weak*-continuous semigroup
{φt }t≥0 on N is said to be symmetric if τ(xφt(y)) = τ(φt(x)y) for all x, y ∈ N ,
and completely Markovian if each φt is a unital c.p. map on N . We denote by 1
the generator of a symmetric completely Markovian semigroup {φt }t≥0 on N , that
is, 1 is the densely defined operator on N described by

D(1)= {x ∈ N : (x −φt(x))/t has a weak limit as t→ 0},

and 1(x)= limt→0(x−φt(x))/t . We also let 1 denote the generator of the corre-
sponding semigroup on L2(N , τ ). Then 1 describes a completely Dirichlet form
[Davies and Lindsay 1992] on L2(N , τ ) by

D(E)= D(11/2) and E(x)= ‖11/2(x)‖22.

From [Davies and Lindsay 1992], D(E)∩N is a weakly dense ∗-subalgebra, and
hence it follows from [Sauvageot 1989] that there exists a Hilbert N -N bimodule H

and a closable derivation δ : D(E) ∩ N → H such that E(x) = ‖δ(x)‖2 for all
x ∈ D(E) ∩ N . Conversely it follows from [Sauvageot 1990] that if D(δ) is a
weakly dense ∗-subalgebra with 1∈D(δ) and δ :D(δ)→H is a closable derivation,
then the closure of the quadratic form given by ‖δ(x)‖2 is completely Dirichlet on
L2(N , τ ) and hence generates a symmetric completely Markovian semigroup as
above (see also [Cipriani and Sauvageot 2003]).

From Sections 1.3 and 1.4 and from the remarks above, we obtain the following.

Theorem 1.1. Let N0 ⊂ N be a weakly dense ∗-subalgebra with 1 ∈ N0, and
suppose9 : N0→ L1(N , τ ) is a closable, conservative, symmetric c.c.n. map such
that 9−1(L2(N , τ )) is weakly dense in N. Then 1=9|9−1(L2(N ,τ )) is closable
as a densely defined operator on L2(N , τ ), and 1 is the generator of a symmetric
completely Markovian semigroup on N. Conversely, if1 is the generator of a sym-
metric completely Markovian semigroup on N , then 1 extends to a conservative,
symmetric c.c.n. map9 : N0→ L1(N , τ ), where N0 is the ∗-subalgebra generated
by D(1).
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2. A characterization of inner derivations

Let N be a finite von Neumann algebra with normal faithful trace τ . Given a
symmetric c.c.n. map 9 on N , we will now give a characterization of when 9 is
norm bounded.

Theorem 2.1. Let 9 : D9 → L1(N , τ ) be a closable, conservative, symmetric
c.c.n. map with weakly dense domain D9 . Let δ : D9→H be the closable deriva-
tion associated with 9. Then the following conditions are equivalent:

(a) δ extends to an everywhere-defined derivation δ′ that is inner and such that for
any x ∈ N there exists a constant Cx > 0 such that |〈δ′(x), δ′(y)〉| ≤ Cx‖y‖1
for all y ∈ N.

(b) There exists a constant C > 0 such that |〈δ(x), δ(y)〉| ≤ C‖x‖‖y‖1 for all
x, y ∈ D9 .

(c) 9 is norm bounded on (D9)1.

(d) The image of 9 is contained in N ⊂ L1(N , τ ), and −9 extends to a mapping
that generates a norm continuous semigroup of normal c.p. maps.

(e) There exists a k ∈ N and a normal c.p. map φ : N→ N with the property that
9(x)= k∗x + xk−φ(x) for all x ∈ D9 .

Proof. (a) implies (c): Let δ′ be the everywhere-defined extension of δ, and let9 ′ be
the c.c.n. map associated with δ′. Since for any x ∈ N there exists a constant Cx >0
such that |〈δ′(x), δ′(y)〉|≤Cx‖y‖1 for all y ∈ N , the image of9 ′ is contained in N .
Also since 9 ′(1)= 0 we have 9 ′(x∗x)− x∗9 ′(x)−9 ′(x∗)x ≤ 0 for all x ∈ D9 ′ ,
and so −9 ′ is a dissipation [Lindblad 1976; Kishimoto 1976]. Since −9 ′ is also
everywhere-defined, it is bounded by [Kishimoto 1976, Theorem 1].

(b) is equivalent to (c): If (b) holds, then for all x, y ∈ D9 ,

|τ(9(x)y∗)| = |〈δ(x), δ(y)〉| ≤ C‖x‖‖y‖1.

So by taking the supremum over all y ∈ D9 such that ‖y‖1 ≤ 1, we find that
‖9(x)‖ ≤ C‖x‖ for all x ∈ D9 .

Suppose now 9 is bounded by C > 0. Then for all x, y ∈ D9 ,

|〈δ(x), δ(y)〉| = |τ(9(x)y∗)| ≤ ‖9(x)‖‖y‖1 ≤ C‖x‖‖y‖1.

(c) implies (d): This follows from [Evans 1977, Proposition 2.10].

(d) implies (e): This is [Christensen and Evans 1979, Theorem 3.1].

(e) implies (a): Suppose that for k ∈ N and φ c.p., we have 9(x) = k∗x + xk −
φ(x) for all x ∈ N . Let φ′ = τ(φ(1))−1φ, and let (H, ξ) be the pointed Hilbert
N -bimodule associated with φ′. Hence if we set δ′(x)= (τ (φ(1))/2)1/2[x, ξ ], then
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we have δ′ ∼= δ. By replacing k with 1
2(k + k∗) and φ with 1

2(φ + φ
∗), we may

assume that φ is symmetric; it is then easy to verify that there exists a constant
C > 0 such that |〈δ′(x), δ′(y)〉| ≤ C‖x‖‖y‖1 for all x, y ∈ N . Hence δ′ gives an
everywhere-defined extension of δ satisfying the required properties. �

Our next result is in the same spirit as Theorem 2.1. It provides several equiva-
lent conditions for a closable derivation to be inner.

Theorem 2.2. Let 9 : D9 → L1(N , τ ) be a closable, conservative, symmetric
c.c.n. map with weakly dense domain D9 . Let δ : D9→H be the closable deriva-
tion associated with 9. Then the following conditions are equivalent:

(α) δ is inner.

(β) δ is bounded on (D9)1.

(γ) 9 is ‖ · ‖1-bounded on (D9)1.

(δ) 9 can be approximated uniformly by c.p. maps in the sense that, for all ε > 0,
there exists a k ∈ N and a normal c.p. map φ such that

‖9(x)− k∗x − xk+φ(x)‖1 ≤ ε‖x‖ for all x ∈ D9 .

Proof. (α) implies (δ): Suppose there is a ξ ∈ H such that δ(x) = xξ − ξ x for
all x ∈ D9 . Let ε > 0. Since the subspace of “left and right bounded” vectors is
dense in H, we may choose ξ0 ∈H so that there exists a constant C > 0 such that
‖xξ0‖ ≤ C‖x‖2 for all x ∈ N , ‖ξ0‖ ≤ ‖ξ‖, and also ‖ξ − ξ0‖< ε/8‖ξ‖. Since ξ0

is “bounded”, we may let φξ0 be the normal c.p. map associated with ξ0/‖ξ0‖. Let
φ = 2‖ξ0‖

2φξ0 , and let k = φ(1)/2.
Note that since δ is real, ξ0 is real also, that is, 〈xξ0, ξ0 y〉 = 〈y∗ξ0, ξ0x∗〉 for

all x, y ∈ N .
Then if x, y ∈ D9 , we have

τ((9(x)− k∗x − xk+φ(x))y∗)

= τ(9(x)y∗)− 1
2τ(φ(1)xy∗)− 1

2τ(xφ(1)y
∗)+ τ(φ(x)y∗)

= 〈δ(x), δ(y)〉− 〈xy∗ξ0, ξ0〉− 〈y∗xξ0, ξ0〉+ 2〈xξ0 y∗, ξ0〉

= 〈xξ − ξ x, yξ − ξ y〉− 〈xξ0− ξ0x, yξ0− ξ0 y〉.

Hence,

|〈9(x)− k∗x − xk+φ(x), y〉|

≤ ‖xξ − ξ x‖‖yξ − ξ y− yξ0+ ξ0 y‖+‖yξ0− ξ0 y‖‖xξ − ξ x − xξ0+ ξ0x‖

≤ 4‖x‖‖ξ‖‖y‖‖ξ − ξ0‖+ 4‖y‖‖ξ0‖‖x‖‖ξ − ξ0‖

≤ ε‖x‖‖y‖.

The desired result follows by taking the supremum over all y ∈ (D9)1.
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(δ) implies (γ): Let k ∈ N and φ c.p. such that ‖9(x)−k∗x− xk+φ(x)‖1 ≤ ‖x‖.
By [Popa 2006, 1.1.2], ‖φ(x)‖2≤‖φ(1)‖2‖x‖ for all x ∈ N . Hence, for all x ∈D9 ,

‖9(x)‖1 ≤ ‖9(x)− k∗x − xk+φ(x)‖1+‖k∗x − xk+φ(x)‖2

≤ (1+ 2‖k‖2+‖φ(1)‖2)‖x‖.

Thus 9 is bounded in ‖·‖1 on (D9)1.

(γ) implies (β): If ‖9(x)‖1 ≤ C‖x‖ for all x ∈ D9 , then

‖δ(x)‖2 = τ(9(x)x∗)≤ ‖9(x)‖1‖x‖ ≤ C‖x‖2 for all x ∈ D9 .

(β) implies (α): Since δ is bounded on (D9)1, we may extend δ to a derivation on
the C∗-algebra A that is generated by D9 . Let X = {δ(u)u∗ | u ∈U(A)}. For each
v ∈U(A), we let v act on H by v ·ξ = vξ+δ(v). Let ξ0 be the center of the set X .
Then since ‖v · ξ −v ·η‖ = ‖ξ −η‖ = ‖ξv−ηv‖ for all ξ, η ∈H, the center of the
set v · X is v · ξ0, and the center of the set Xv is ξ0v. Further we have v · X = Xv,
and thus v ·ξ0= ξ0v. Since v was arbitrary and every x ∈ A is a linear combination
of unitaries, we have δ(x)= ξ0x − xξ0 for all x ∈ A. �

In general, 9 may be unbounded in ‖ · ‖1 even if ‖φt(x)− x‖2 converges to 0
uniformly on N1. However, the next section shows that this cannot happen if N
has property (T) and the domain of 9 contains a “critical set” as in [Connes and
Jones 1985, Proposition 1].

3. Property (T) in terms of closable derivations

Suppose M is a finite von Neumann algebra with countable decomposable center.
We will say that M has property (T) if the inclusion (M ⊂ M) is rigid in the sense
of [Popa 2006]; that is, M has property (T) if and only if there exists a normal
faithful tracial state τ ′ on M such that one of these equivalent conditions hold:

• For all ε > 0, there exists a finite F ′ ⊂ M and a δ′ > 0 such that if H is a
Hilbert M-M bimodule with a vector ξ ∈H satisfying the conditions

‖〈 · ξ, ξ〉− τ ′‖ ≤ δ′, ‖〈ξ · , ξ〉− τ ′‖ ≤ δ′, ‖yξ − ξ y‖ ≤ δ′ for all y ∈ F ′,

then there exists a ξ0 ∈H such that ‖ξ0− ξ‖ ≤ ε and xξ0 = ξ0x for all x ∈ M .

• For all ε > 0, there exists a finite F ⊂ M and a δ > 0 such that if φ : M→ M
is a normal, completely positive map with

τ ′ ◦φ ≤ τ ′, φ(1)≤ 1, ‖φ(y)− y‖2 ≤ δ for all y ∈ F,

then ‖φ(x)− x‖2 ≤ ε for all x ∈ M with ‖x‖ ≤ 1.
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Furthermore, Popa [2006] showed that the above definition is independent of the
trace τ ′, and in the case when N is a factor, this agrees with the original definition
in [Connes and Jones 1985].

In this section we will obtain a characterization of property (T) in terms of certain
boundedness conditions on c.c.n. maps. Since we are dealing with unbounded
maps, the domain of a map will be of crucial importance. We will thus want to
consider c.c.n. maps whose domain contains a “critical set”, which by [Popa 1986,
Remark 4.1.6] motivates the following.

Definition 3.1. Suppose that N is a II1 factor, and let N0 ⊂ N be a weakly dense
∗-subalgebra of N with 1 ∈ N0. Then N0 contains a non-0 set if there is a finite
F ⊂ N0 and a K > 0 such that for all ξ ∈ L2(N , τ ), if 〈ξ, 1〉 = 0 then we have
‖ξ‖22 ≤ K

∑
x∈F‖xξ − ξ x‖22.

Note that by [Connes 1976, Lemma 2.4] one can check that N0 has a non-0 set
if and only if there exists a finitely generated subgroup G ⊂ Int C∗(N0) such that
there is no nonnormal G-invariant state on N . Also it follows from the definition
that N ⊂ N contains a non-0 set if and only if N does not have property 0 of
[Murray and von Neumann 1943]. Also, if 3 is a countable ICC group, then by
[Effros 1975] 3 is not inner amenable if and only if C3 contains a non-0 set.

We now come to the main result, which is to give several equivalent character-
izations of property (T); in particular we obtain a 1-cohomology characterization
of property (T), which is the analogue of the Delorme–Guichardet theorem from
group theory.

Theorem 3.2. Suppose that N is a separable finite factor with normal faithful
trace τ . Let N0 ⊂ N be a weakly dense ∗-subalgebra such that 1 ∈ N0 and N0 is
countably generated as a vector space. Consider the following conditions:

(a) N has property (T).

(b) There exists a finite F ⊂ N0 and a K > 0 such that if H is a Hilbert N-N
bimodule with ξ ∈ H and if δξ = maxx∈F {‖xξ − ξ x‖}, then there exists a
ξ0 ∈H such that xξ0 = ξ0x for all x ∈ N and ‖ξ0− ξ‖ ≤ δξK .

(c) Every densely defined closable derivation on N0 is inner.

(d) Every closable, conservative, symmetric c.c.n. map on N0 is bounded in ‖ · ‖1
on (N0)1.

(e) There exists a finite F ′ ⊂ N0 and a K ′ > 0 such that if φ : N → N is a c.p.
map with φ(1)≤ 1, τ ◦φ≤ τ , and φ=φ∗, and if δ′φ =maxx∈F ′{‖x−φ(x)‖2},
then τ((y−φ(y))y∗)≤ K ′δ′φ for all y ∈ (N )1.

Then (b)⇒ (c)⇒ (d)⇒ (e)⇒ (a). If moreover N0 contains a non-0 set, then
also (a)⇒ (b).
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Proof. (b) implies (c). Let δ : N0 → H be a closable derivation, and note that
by Section 1.2, we may assume that δ is real. Let φt : N → N be the semigroup
of normal symmetric c.p. maps associated with δ. Then for all y ∈ N0, we have
‖δ(y)‖2 = limt→∞ τ(

1
t (y−φt(y))y∗).

Let (Ht , ξt) be the pointed correspondence obtained from φt . Then since φt is
unital and symmetric, ‖yξt−ξt y‖22= 2τ((y−φt(y))y∗) for all y ∈ N . Let F ⊂ N0

and K > 0 be as in (b), and let C = sup0<t≤1,x∈F τ((x −φt(x))x∗)/t . Then

‖δ(y)‖2 = lim
t→0

τ(1
t (y−φt(y))y∗)

= lim
t→0
‖yξt − ξt y‖22/2t

≤ 2 sup
0<t≤1
x∈F

‖xξt − ξt x‖22K 2/t = 4 sup
0<t≤1
x∈F

τ((x −φt(x))x∗)K 2/t = 4C K 2

for all y ∈ (N0)1. Thus δ is inner by Theorem 2.2.

(c) implies (d). This follows from Theorem 2.2.

(d) implies (e). Let {xn}n∈N be a sequence in (N0)1 such that N0 = sp{xn}n∈N. If
(e) does not hold, then for each k ∈ N there exists a c.p. map φk : N → N such
that φk(1) ≤ 1, τ ◦ φk ≤ τ , and φk = φ

∗

k , and there exists a yk ∈ (N0)1 such that
τ((yk −φk(yk))y∗k ) > 4kδ′k , where δ′k =max j≤k{‖x j −φk(x j )‖2}.

Let 9k = (id−φk)/δ
′

k , and let 9 =
∑
∞

k=1 2−k9k . Then since N0 = sp{xn}n∈N,
9 : N0→ L2(N , τ ) is a well-defined symmetric c.c.n. map with 9(1) ≥ 0. Also
since φk(1)≤ 1, τ ◦φk ≤ τ , and φk = φ

∗

k , if we let (Hk, ξk) be the pointed Hilbert
N -N bimodule corresponding to φk then, for all x ∈ N ,

2τ((x −φk(x))x∗)≥ τ ◦φk(x∗x)+ τ(x∗xφk(1))− 2τ(φ(x)x∗)

= ‖xξk − ξk x‖2 ≥ 0.

Thus

‖9(yk)‖1 ≥ τ(9(yk)y∗k )≥ 2−kτ((yk −φk(yk)y∗k )/δ
′

k > 2k for all k ∈ N.

Hence if we let 9 ′(x)= 9(x)− x9(1)/2−9(1)x/2, then 9 ′ is a closable, con-
servative, symmetric c.c.n. map that is unbounded in ‖ · ‖1 on (N0)1.

(e) implies (a). Let F ′ and K ′ be as in (e), and let ε > 0. Suppose φ : N → N is a
c.p. map such that φ(1) ≤ 1, τ ◦ φ ≤ τ , φ = φ∗, and ‖x − φ(x)‖2 < ε2/2K ′ for
all x ∈ F ′. Let (Hφ, ξφ) be the pointed Hilbert N -N bimodule associated with φ.
Then since ‖φ(1)‖2 ≤ 1 by [Popa 2006, Lemma 1.1.3], we have

‖y−φ(y)‖22≤‖yξφ−ξφ y‖2= 2τ((y−φ(y))y∗)≤ 2K ′δ′φ <ε
2 for all y ∈ (N )1.

Hence N has property (T) by [Peterson and Popa 2005, Lemma 3].



1-COHOMOLOGY OF PROPERTY (T) IN VON NEUMANN ALGEBRAS 195

(a) implies (b). If N0 contains a non-0 set, then [Popa 1986, Remark 4.1.6] shows
that [Connes and Jones 1985, Proposition 1] applies to give the desired result. �

The proof in Theorem 3.2 that (d) implies (e) can be suitably adapted to the
case of inclusions of σ -compact and locally compact groups, thus showing that
an inclusion of groups has relative property (T) if and only if “δ depends linearly
on ε”, answering a question of Jolissaint — see [2005, Theorem 1.2].

Let B ⊂ N with 1 ∈ B be a ∗-subalgebra, and suppose X = X ∈ N . Recall
from [Voiculescu 1998] that a dual operator to (X ;B) in L2(N , τ ) is an operator
Y ∈B(L2(N , τ )) such that

[B, Y ] = 0 and [X, Y ] = P1,

where P1 is the orthogonal projection onto C1.

Corollary 3.3. Suppose N is a separable finite factor with property (T), let B⊂M
with 1 ∈ B be a ∗-subalgebra, and let X = X∗ ∈ N such that B[X ] generates N as
a von Neumann algebra. Suppose that B is diffuse and B[X ] contains a non-0
set. Then the conjugate variable J (X :B) does not exist in L2(N , τ ), that is,
8∗(X :B)=∞. Also (X ;B) does not have a dual operator in L2(N , τ ).

Proof. If the conjugate variables J (X :B) did exist in L2(N , τ ), then we would
have, as in Section 1.6.1, a closable derivation on B[X ] that is not inner. Therefore
by Theorem 3.2 this cannot happen.

The fact that (X ;B) does not have a dual operator in L2(N , τ ) then follows
directly from [Voiculescu 1998]. �

4. Property (T) and amalgamated free products

We include here an application of the above ideas, showing that a large class of
amalgamated free products do not have property (T). We first prove that if N has
property (T), then even though a c.c.n. maps may be unbounded on some domains,
it must still satisfy a certain condition on its rate of growth.

Theorem 4.1. Suppose N is a finite von Neumann algebra with normal faithful
tracial state τ . If N has property (T) and 9 : D9 → L2(N , τ ) ⊂ L1(N , τ ) is a
conservative, symmetric c.c.n. map, then any sequence {xn}n in (D9)1 such that
‖9(xn)‖2→∞ satisfies ‖9(xn)‖2/‖9(xn)‖→ 0.

Proof. Let {8t }t be the semigroup of unital normal symmetric c.p. maps associated
with 9 as in Section 1.7, and for each β > 0, let εβ = supt≤β,x∈N1

‖8t(x)− x‖2.
Since N has property (T), we know εβ→ 0 as β→ 0.
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For all β > 0 and x ∈ (D9)1, we have∫ β

0
8t ◦9(x)dt = lim

s→0

∫ β

0
8t((8s(x)− x)/s)dt

= lim
s→0

1
s

(∫ β

0
8t+s(x)dt −

∫ β

0
8t(x)dt

)
= lim

s→0

1
s

(∫ β+s

s
8t(x)dt −

∫ β

0
8t(x)dt

)
= lim

s→0

1
s

( ∫ β+s

β

8t(x)dt −
∫ s

0
8t(x)dt

)
=8β(x)− x .

Hence for all x ∈ (D9)1,

‖9(x)‖2 ≤
∥∥∥ 1
β

∫ β

0
8t ◦9(x)dt

∥∥∥
2
+

∥∥∥ 1
β

∫ β

0
(8t ◦9(x)−9(x))dt

∥∥∥
2

≤
εβ

β
+

1
β

∫ β

0

∥∥(8t ◦9(x)−9(x))
∥∥

2dt

≤
εβ

β
+‖9(x)‖ 1

β

∫ β

0
εt dt ≤

εβ

β
+‖9(x)‖εβ .

Thus εβ ≥ ‖9(x)‖2β/(1+‖9(x)‖β), and since εβ→ 0 the result follows. �

Corollary 4.2. Let N1 and N2 be finite von Neumann algebras with normal faithful
tracial states τ1 and τ2, respectively, and suppose B is a common von Neumann
subalgebra such that τ1|B = τ2|B . Suppose also that there are unitaries ui ∈U(Ni )

such that EB(ui )= 0 for i = 1, 2. Then M = N1 ∗B N2 does not have property (T).

Proof. Let τ = τ1 ∗B τ2 be the trace for M , and let H = L2(M, τ )⊗B L2(M, τ ).
Define δ to be the unique derivation from the algebraic amalgamated free product
to H that satisfies δ(a)= a⊗B 1−1⊗B a for all a ∈ N1, and δ(b)= 0 for all b∈ N2.
By [Nica et al. 2002, Corollary 5.4], δ∗(1⊗B 1) = 0. In particular and just as in
the nonamalgamated case, δ is a closable derivation. Furthermore if u1 and u2 are
the unitaries as above and z ∈ N0, then 〈δ((u1u2)

n), δ(z)〉 is equal to

n−1∑
j=0

〈(u1u2)
j u1⊗B u2(u1u2)

n− j−1
− (u1u2)

j
⊗B (u1u2)

n− j , δ(z)〉

=

n−1∑
j=0

〈1⊗B 1, u∗1(u
∗

2u∗1)
jδ(z)(u∗2u∗1)

n− j−1u∗2− (u
∗

2u∗1)
jδ(z)(u∗2u∗1)

n− j
〉,
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also, for each 0≤ j < n, we may use the Leibniz rule for the derivation to rewrite
(u∗2u∗1)

jδ(z)(u∗2u∗1)
n− j as the sum

(3)

δ((u∗2u∗1)
j z(u∗2u∗1)

n− j )+

−

j−1∑
k=0

(u∗2u∗1)
ku∗2δ(u

∗

1)(u
∗

2u∗1)
j−k−1z(u∗2u∗1)

n− j
+

−

n− j−1∑
i=0

(u∗2u∗1)
j z(u∗2u∗1)

i u∗2δ(u
∗

1)(u
∗

2u∗1)
n− j−i−1.

However when we take the inner product with 1⊗B 1, the first term will be 0 as
mentioned above, and by freeness (since u1 and u2 have expectation 0) the other
terms will be 0, except, when i = n− j−1 in the third term. In that case, we have

−〈1⊗B 1, (u∗2u∗1)
j z(u∗2u∗1)

n− j−1u∗2δ(u
∗

1)〉 = −〈1⊗B 1, (u∗2u∗1)
j z(u∗2u∗1)

n− j
⊗B 1〉

= −τ(EB((u1u2)
n− j z∗(u1u2)

j )).

Similarly,

〈1⊗B 1, u∗1(u
∗

2u∗1)
jδ(z)(u∗2u∗1)

n− j−1u∗2〉 = τ(EB(u2(u1u2)
n− j−1z∗(u1u2)

j u1)).

Hence from the above equalities we get

〈δ((u1u2)
n), δ(z)〉 =

n−1∑
j=0

τ(u2(u1u2)
n− j−1z∗(u1u2)

j u1+ (u1u2)
n− j z∗(u1u2)

j )

= 2nτ((u1u2)
nz∗).

In particular, the c.c.n. map 9 associated with δ has 9((u1u2)
n) = 2n(u1u2)

n ,
and so ‖9((u1u2)

n)‖2 → ∞ but ‖9((u1u2)
n)‖2/‖9((u1u2)

n)‖ 6→ 0; hence M
does not have property (T) by Theorem 4.1. �

Note that we only used the fact that u1 and u2 are unitaries to insure that
2n‖(u1u2)

n
‖2 →∞. Also note that the conditions of Corollary 4.2 are satisfied

when M is a free product (with amalgamation over C) as well as when M is a
group von Neumann algebra coming from an amalgamated free product of groups.
We also mention that from the calculation above we are able to compute explic-
itly the semigroup of c.p. maps that δ generates — it is the semigroup given by
φt = (e−2t id+ (1− e−2t)EB) ∗B id.
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