Vol. 243, No. 2, 2009

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Kashiwara and Zelevinsky involutions in affine type A

Nicolas Jacon and Cédric Lecouvey

Vol. 243 (2009), No. 2, 287–311
Abstract

We describe how the Kashiwara involution on crystals of affine type A is encoded by the combinatorics of aperiodic multisegments. This affords an elementary proof that coincides with the Zelevinsky involution τ on the set of simple modules for the affine Hecke algebras. We then give efficient procedures for computing and τ. Remarkably, these procedures do not use the underlying crystal structure. They also allow one to explicitly match to each other the Ginzburg and Ariki parametrizations of simple modules associated to affine and cyclotomic Hecke algebras, respectively.

Keywords
affine Hecke algebra, Zelevinsky involution, crystals, Kashiwara involution
Mathematical Subject Classification 2000
Primary: 20C08, 20C20, 81R50
Milestones
Received: 1 December 2008
Revised: 22 April 2009
Accepted: 24 April 2009
Published: 1 December 2009
Authors
Nicolas Jacon
Université de Franche-Comté
Equipe d’algébre et de théorie des nombres
UFR Sciences et Techniques
16 Route de Gray
25030 Besançon
France
Cédric Lecouvey
Université du Littoral —Côte d’Opale
Laboratoire de mathématiques pures et appliquées Joseph Liouville
Centre Universitaire de la Mi-Voix
B.P. 699
62228 Calais
France