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Let F be either R or C. Let (π, V ) be an irreducible admissible smooth
Fréchet representation of GL2n(F). A Shalika functional φ : V → C is a
continuous linear functional such that for any g ∈GLn(F), A ∈Matn×n(F)
and v ∈ V we have

φ

[
π

( g A
0 g

)
v

]
= exp

(
2π iRe Tr(g−1 A)

)
φ(v).

In this paper we prove that the space of Shalika functionals on V is at most
one-dimensional.

For nonarchimedean F (of characteristic zero) this theorem was proved
by Jacquet and Rallis.

1. Introduction

Let F be either R or C. Let (π, V ) be an admissible smooth Fréchet representation
of GL2n(F). We assume that V is the canonical completion of an irreducible
Harish-Chandra (g, K )- module in the sense of Casselman and Wallach [Wallach
1992, Chapter 11]. A Shalika functional φ :V→C is a continuous linear functional
such that for any g ∈ GLn(F), A ∈Matn×n(F) and v ∈ V we have

φ

[
π
(g A

0 g

)
v

]
= exp

(
2π i Re(Tr(g−1 A))

)
φ(v).

In this paper we prove the following theorem.

Theorem 1.1. If (π, V ) is an irreducible admissible smooth Fréchet representation
of GL2n(F), the space of Shalika functionals on V is at most one-dimensional.

For nonarchimedean F of characteristic zero this theorem was proved in [Jacquet
and Rallis 1996]. The proof there is based on the fact (also proved in the same
paper) that (GL2n(F),GLn(F)×GLn(F)) is a Gelfand pair, and on the method of
[Friedberg and Jacquet 1993, Section 3] of integration of Shalika functionals.
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In the archimedean case those two ingredients also exist: the argument in [Fried-
berg and Jacquet 1993, Section 3] is also valid in this case, and the fact that
(GL2n(F),GLn(F)×GLn(F)) is a Gelfand pair is shown in [Aizenbud and Goure-
vitch 2009].

The proof we present here is similar to that in [Jacquet and Rallis 1996]. The
main difference is that we have to prove the continuity of a certain linear form.

Structure of the proof. We construct a linear map from the space of Shalika func-
tionals to the space of linear periods — that is, linear functionals on V invariant
under GLn(F)×GLn(F)— and prove this map’s injectivity. Hence uniqueness of
linear periods implies uniqueness of Shalika functionals. The uniqueness of linear
periods amounts to the fact, already mentioned, that (GL2n(F),GLn(F)×GLn(F))
is a Gelfand pair.

Structure of the paper. Section 2 fixes notation and terminology. In Section 3 we
describe a way of obtaining a linear period from a Shalika functional by integration,
as in [Friedberg and Jacquet 1993, Section 3]. In Section 4 we investigate the
properties of the obtained period. In Section 5 we explain how this implies the
uniqueness of Shalika functionals.

2. Notation and preliminaries

• Henceforth we fix an archimedean field F (that is, F is R or C).

• For a group G acting on a vector space V we denote by V G the space of G-
invariant vectors in V . For a character χ of G we denote by V G,χ the space
of (G, χ)-equivariant vectors in V .

• For a smooth real algebraic variety M we denote by S(M) the space of
Schwartz functions on M , that is, the space of smooth functions that are
rapidly decreasing as well as all their derivatives. For precise definition see,
for example, [Aizenbud and Gourevitch 2008].

• We fix a natural number n and write G := GL2n(F).

• We fix a norm on G by

‖g‖ :=
∑

1≤i, j≤2n

|gi j |
2
+

∑
1≤i, j≤2n

|(g−1)i j |
2.

• We set G1 :=

{(g 0
0 Id

) ∣∣ g ∈ GLn(F)
}
⊂ G.

• We denote by ν :GLn(F)→G1 the isomorphism defined by ν(g) :=
(g 0

0 Id

)
.
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Note that for any X ∈Mat(n× n, F), we have dν(X)=
(X 0

0 0

)
.

• We set H :=
{(g 0

0 g

) ∣∣ g ∈ GLn(F)
}
⊂ G.

• We set U :=
{(Id A

0 Id

) ∣∣ A ∈Matn×n(F)
}
⊂ G.

• We denote by µ :Mat(n× n, F)→U the isomorphism defined by

µ(A) :=
(Id A

0 Id

)
.

Note that for any X ∈Mat(n× n, F), we have dµ(X)=
(0 X

0 0

)
.

• We define a homomorphism τ :U → F by

τ(µ(A)) := Tr(A).

• We letψ be the additive character of F defined byψ(x) := e2π i Re x . We define
an homomorphism 9 :U → F× by

9 := ψ ◦ τ.

We extend 9 to an homomorphism 9 : HU → F× trivial on H .

• We denote by K the standard maximal compact subgroup of G. Thus K =
O(2n) if F = R and K =U (2n) if F = C.

Admissible representations. We consider admissible smooth Fréchet representa-
tions of G, that is, smooth admissible representations (π, V ) of G such that V is
a Fréchet space and, for any continuous seminorm α on V , there exists another
continuous seminorm β on V and a natural number M such that for any g ∈ G,

α(π(g)v)≤ β(v)‖g‖M .

By the Casselman–Wallach theorem [Wallach 1992, Chapter 11], V may be
regarded as the canonical model of an irreducible Harish-Chandra (g, K )-module.
By the Casselman embedding theorem [Casselman 1980], V can be realized as a
closed subspace of a principal series representation. We denote by Ṽ the canonical
model of the contragredient Harish-Chandra (g, K )-module. It is a subspace of the
topological dual V ∗ of V .

3. Integration of Shalika functionals

In this section we fix:

• an irreducible admissible smooth Fréchet representation (π, V ) of G;

• a Shalika functional λ on V , that is, λ ∈ (V ∗)HU,9 .
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Theorem 3.1. There exists M ∈ R such that for any v ∈ V and over the region of
s ∈ C with Re s > M , the integral

Lλ,v(s) :=
∫

g∈G1

λ(π(g)v)|det g|s−1/2 dg

converges absolutely and is a holomorphic function of s.
Moreover, Lλ,v(s) has meromorphic continuation to the complex plane and is

a holomorphic multiple of the L-function Lπ of the representation π . Finally, for
any λ 6= 0 there exists v ∈ V such that Lλ,v = Lπ .

In [Friedberg and Jacquet 1993, Proposition 3.1] this theorem is proved under the
assumption that there exists a continuous seminorm β on V satisfying |λ(π(g)v)|≤
β(v) for any g ∈ G.

This may not be true in general. However:

Lemma 3.2. There exist M > 0 and a continuous seminorm β on V such that
|λ(π(g)v)| ≤ |det g|−Mβ(v) for any g ∈ G1.

Before proving the lemma, we check that, with its help, the proof of Theorem
3.1 is still valid. To that end, we first prove the following lemma, which is an
analog of [Friedberg and Jacquet 1993, Lemma 3.1].

Lemma 3.3. There is a continuous seminorm γ on V such that, for any v ∈ V ,

(∗) |λ(π(g)v)| ≤ |det b−1a|−Mγ (v) for g = u
( a 0

0 b

)
k,

with a, b∈GL(n, F), u ∈U , k ∈ K . For any v∈V, there is8v ∈S(Mat(n×n, F))
such that

|λ(π(g)v)| ≤8(b−1a)|det b−1a|−M ,

for g of the form given in (∗).

Proof. For the first assertion, we have λ(π(g)v) = 9(u)λ(π(ν(b−1a))π(k)v).
Hence

|λ(π(g)v)| ≤ |det b−1a|−Mβ(π(k)v).

There is another continuous seminorm γ such that, for all k ∈ K ,

β(π(k)v)≤ γ (v).

The first assertion follows.
For the second assertion, we go through the proof of [Friedberg and Jacquet

1993, Lemma 3.1] (which is the estimate above with M = 0) and arrive at once at
the present estimate. �
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The proof of Theorem 3.1 is still valid. The only modification is that we need to
check that, under our weaker assumption, two integrals in [Friedberg and Jacquet
1993] which depend on s ∈ C, are still absolutely convergent for Re s� 0.

The first integral is integral [Friedberg and Jacquet 1993, 45]:∫
λ(π(g)v)8(g)|det g|s+n−1/2 d×g,

where 8 ∈ S(Mat(2n× 2n, F)). We write

g =
(a x

0 b

)
k.

Then
d×g = |det a|−n d×a d×b dx dk.

By Lemma 3.3, the integral of the absolute value is bounded by∫
|det a|Re s−M−1/2

|det b|Re s+M+n−1/2
∣∣∣∣8 [(a x

0 b

)
k
]∣∣∣∣ d×a d×b dx dk.

This does converge absolutely for Re s� 0.
The second integral is integral [Friedberg and Jacquet 1993, 48]. It has the form∫

λ

[
π
(a 0

0 Id

)
π(x)v

]
|det a|s−1/2 d×a dµ(x),

where µ is the measure on SL(2n, F) defined by∫
f (x)dµ(x)=

∫
f
[(b−1 0

0 Id

)(Id u
0 Id

)(Id 0
0 b

)
k
]
ϒ(u,b−1,b;k) |detb|n d×b du dk.

In this formula k is integrated over K ′ = K ∩ SL(2n, F) and the function ϒ is
in S(Mat(n× n, F)3× K ′). The integral of the absolute value of the integrand is
bounded by∫
8v(ab−2) |det ab−2

|
−M
|ϒ |(u, b−1, b; k)|det b|n d×b du dk |det a|Re s−1/2 d×a.

After changing a to ab2, the integral decomposes into a product:∫
8v(a)|det a|Re s−M−1/2 d×a×

∫
|ϒ |(u, b−1, b; k)|det b|n+2 Re s−1 d×b du dk.

The first integral converges for Re s� 0. The second integral converges for all s.
It remains to prove Lemma 3.2. We will prove something more general:

Lemma 3.4. There exists M0 > 0 such that, for any polynomial P on the real
vector space Mat(n×n, F), there exists a continuous seminorm βP on V such that
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for any g ∈ GLn(F) we have

|λ (π(ν(g))v) | ≤ βP(v)
1
|P(g)|

|det g|−M0 .

Proof. We have λ
(
π(µ(X))v

)
= ψ(Tr X)λ(v) for all X ∈Mat(n× n, F). Hence

λ
(
dπ(dµ(X))v

)
= 2π i Re(Tr X)λ(v) for all X ∈Mat(n× n, F),

which implies

λ
(
π(ν(g)) dπ(dµ(X))v

)
= 2π i Re Tr(gX)λ

(
π(ν(g))v

)
for all X∈Mat(n× n, F) and g∈ GLn(F).

Similarly, if Q is a polynomial on the real vector space Mat(n× n, F), there is an
element X Q of the enveloping algebra of gl2n(F) such that

λ(π(ν(g)) dπ(X Q)v)= Q(g)λ(π(ν(g))v) for all g ∈ GLn(F).

We know that there exist a continuous seminorm β on V and a natural number M
such that |λ(π(g)v)| ≤ β(v)‖g‖M for any g ∈ G. Therefore for any g ∈ GLn(F)
we have∣∣Q(g)λ(π(ν(g))v)∣∣= ∣∣λ(π(ν(g)) dπ(µ(X Q))v)

∣∣≤ β(dπ(X Q)v)‖ν(g)‖M .

Note that ‖ν(g)‖M
= P0(g)|det g|−2M for a suitable polynomial P0 on the real

vector space Mat(n× n, F). Therefore, we have, with M0 = 2M ,∣∣λ(π(ν(g))v)∣∣≤ β(dπ(X Q)v)
P0(g)
|Q(g)|

|det g|−M0 .

We may take Q of the form Q = P0 P , where P is another polynomial. Since
v 7→ β(dπ(X Q)v) is a continuous seminorm, the lemma follows. �

4. Properties of Lλ,v

Theorem 4.1. Let (π, V ) be an irreducible admissible smooth Fréchet represen-
tation of G. Fix a Shalika functional λ ∈ (V ∗)HU,9 and a vector v ∈ V . For any
polynomial p, the product p(s)Lλ,v(s) is bounded at infinity on every vertical strip
of finite width.

This is an immediate consequence of the next two results:

Lemma 4.2 [Friedberg and Jacquet 1993, Section 3.3]. For Re(s) large enough,
Lλ,v(s) is a finite sum of functions of the type

Lu,ξ,8(s) :=
∫

g∈G
8(g)ξ(π(g)u)|det g|s+n−1/2 dg,

where 8 ∈ S(Mat(2n× 2n, F)), u ∈ V , ξ ∈ V ∗.
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Theorem 4.3. Let (π, V ) be an irreducible admissible smooth Fréchet represen-
tation of G. Let 8 ∈ S(Mat(2n× 2n, F)), u ∈ V and ξ ∈ Ṽ . Then Lu,ξ,8(s) has
a meromorphic continuation to C whose product by any polynomial is bounded
at infinity on any vertical strip. The continuation is a holomorphic multiple of
Lπ (s)= L(s, π). It satisfies the functional equation∫

8̂(g)ξ(π(t g−1)u)|det g|1−s+n−1/2 dg = γ (s, π, ψ)Lu,ξ,8(s)

where γ (s, π, ψ) := ε(s, π, ψ)
L(1− s, π̃)

L(s, π)
and

8̂(X) :=
∫

Mat(2n×2n,F)
8(Y )ψ(tr(XY t)) dY.

These assertions remain true if ξ is in V ∗, the topological dual of V .

This theorem is proved in [Godement and Jacquet 1972] in slightly narrower
generality: the vectors u and ξ are K -finite and the function 8 is the product of
a Gaussian function and a polynomial. For the reader’s convenience we indicate
how to extend the result to our context. We need the following lemma.

Lemma 4.4. Let T ⊂ G be the torus of diagonal matrices. We will also regard T
as the subset (F×)2n of F2n . Let χ : T → C× be a multiplicative character. Let
(π, V ) be the corresponding representation of principal series of G. Let v ∈ V and
ξ ∈ Ṽ . Let 8 be a Schwartz function on Mat(2n× 2n, F).

Then there exists a Schwartz function φ ∈ S(F2n) such that∫
g∈G

8(g)ξ(π(g)v)|det g|s+n−1/2 dg =
∫

t∈T
φ(t)χ(t)|det t |sdt

for any s ∈ C such that the integral on the right converges absolutely.

Proof. Let N denote the group of upper triangular matrices with unit diagonal.
Set B = T N and let δB be the module of the group B. Realize V as the space of
smooth functions on G that satisfy f (tg) = χ(t) f (g)δ1/2

B (t) and f (ug) = f (g)
for any t ∈ T and u ∈ N . Realize also Ṽ in the corresponding way. Then

ξ(π(g)v)=
∫

k∈K
v(kg)ξ(k) dk,

where K is the standard maximal compact subgroup. Now∫
G
8(g)ξ(π(g)v)|det g|s+(n−1)/2 dg

=

∫
G

∫
K
8(g)v(kg)ξ(k)|det g|s(n−1)/2 dg dk

=

∫
G

∫
K
8(k−1g)v(g)ξ(k)|det g|s+(n−1)/2 dg dk.
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To compute this integral we set

g =

a1 u1,2 · · · u1,2n
0 a2 · · · u2,2n. . .
0 0 · · · a2n

 k ′.

Then

dg = |a1|
1−2n
|a2|

2−2n
· · · |a2n−1|

−1
⊗ d×ai ⊗ dui, j dk ′.

We set

φ(a1, . . . , a2n) :=

∫
8

k−1

a1 u1,2 · · · u1,2n
0 a2 · · · u2,2n. . .
0 0 · · · a2n

 k ′

 v(k ′)ξ(k) dk dk ′⊗ dui, j .

Clearly φ is a Schwartz function on F2n and∫
g∈G

8(g)ξ(π(g)v)|det g|s+(n−1)/2dg =
∫

t∈T
φ(t)χ(t)|det t |sdt

for any s ∈ C such that the integral on the right converges. �

Proof of Theorem 4.3. The representation (π, V ) is a subrepresentation of a princi-
pal series representation determined by a character χ of T and the representation
(π̃, Ṽ ) is then a quotient of the representation determined by χ−1. For u ∈ V and
ξ ∈ Ṽ (or ξ in the principal series determined by χ−1) we have

Lu,ξ,8(s)

=

∫
(a1,...,a2n)∈F×2n

φ(a1, a2, . . . , a2n)χ1(a1)|a1|
s . . . χ2n(a2n)|a2n|

s d×a1 . . . d×a2n.

The right side extends to a meromorphic function of s and the product of this
function by any polynomial is bounded at infinity in any vertical strip. Moreover,
the function φ depends continuously on 8, u ∈ V, ξ ∈ Ṽ . Therefore the analytic
continuation depends continuously on 8, v ∈ V, ξ ∈ Ṽ . By continuity, it has the
properties stated in the Theorem. To extend further to the case where ξ is in the
topological dual V ∗ we appeal to the Dixmier–Malliavin Lemma [1978] applied
to the representation of SL2n(F) on S(Mat2n×2n(F)) defined by

g18(X) :=8(g−1
1 X).

Thus we may assume 8 is of the form

8(X)=
∫

SL2n(F)
81(g−1

1 X) f (g1) dg1,
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where f1 is a C∞ function of compact support on SL2n(F). Then

Lu,ξ,8 = Lu,ξ1,81, where ξ1(v) := ξ(π( f1)v).

Now ξ1 is in Ṽ and our assertion follows. �

Remark 4.5. The previous result with ξ ∈ V ∗ is used without comment in formula
(57) of [Friedberg and Jacquet 1993]. This is why we included a sketch of the
proof.

Theorem 4.6. There exists M > 0 such that, for any even integer M ′ ≥ 2 and any
polynomial p on C, there exists a seminorm β on V such that∣∣pLλ,v|M ′+M+iR

∣∣≤ β(v).
Lemma 4.7. There exists M>0 such that, for any even integer M ′≥2, there exists
a continuous seminorm β on V such that |Lλ,v(s)| ≤ β(v) for Re s = M ′+M.

Proof. From Lemma 3.4 we know that there exists M0 > 0 and for any polynomial
P on Mat(n× n, F) a continuous seminorm βP such that

λ (π(ν(g))v)≤ βP(v)
1
|P(g)|

|det g|−M0 .

Let M := 1
2 + n2

+M0. Let M ′ ≥ 2 be an even integer and let s ∈ C with Re s =
M +M ′. Let

P(X)= |det X |M
′
∏
i, j

(1+ X i j X i j ).

Let

β(v) := βP(v)

∫
X∈Mat(n×n,F)

d X∏
i, j (1+ X i j X i j )

.

Now

|Lλ,v| =
∣∣∣∣∫

GLn(F)
λ(π(ν(g))v)|det g|s−1/2 dg

∣∣∣∣
≤

∫
GLn(F)

βP(v)
1
|P(g)|

|det g|−M0 |det g|n
2
+M ′+M0 dg

=

∫
GLn(F)

βP(v)
1
|P(g)|

|det g|n
2
+M ′ dg

=

∫
X∈Mat(n×n,F)

βP(v)
1

|P(X)|
|det X |M

′

d X = β(v). �

Proof of Theorem 4.6. For any g ∈ GLn(F) we have

Lλ,π(ν(g))v(s)= |det g|1/2−s Lλ,v(s).
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We can apply this to g = exp(t X), with t ∈ R and X ∈Mat(n× n, F). We get

Lλ,π(ν(g))v(s)= |det exp(t X)|1/2−s Lλ,v(s).

Differentiating with respect to t at t = 0, we get

Lλ,dπ(dν(X))v(s)= ( 1
2 − s)c(X)Lλ,v(s),

where c(X) = Tr X if F = R and c(X) = 2 Re Tr X if F = C. Similarly, for any
polynomial p on C there exists X p in the universal enveloping algebra of gl2n(F)
such that

Lλ,dπ(X p)v(s)= p(s)Lλ,v(s).

The theorem follows now from Lemma 4.7. �

Notation 4.8. Define another representation π θ on the same space V by π θ (g) :=
π((gt)−1). Recall that π θ ∼= π̃ .

For any Shalika functional λ : π→ C we define λθ : π θ → C by

λθ (v) := λ

(
π
( 0nn Idnn

− Idnn 0nn

)
v

)
.

It is easy to see that λθ is a Shalika functional for the representation π θ .

Theorem 4.9 [Friedberg and Jacquet 1993, Proposition 3.3].

γ (s, π, ψ)Lπλ,v(s)= Lπ
θ

λθ ,v(1− s).

Using this and Theorem 4.6 we obtain:

Corollary 4.10. There exists N < 0 such that for any odd integer N ′ ≤ −1 and
any polynomial p on C there exists a seminorm β on V such that

|pLλ,v|N ′+N+iR| ≤ β(v).

5. Uniqueness of Shalika functionals

Theorem 5.1. Let (π, V ) be an irreducible admissible representation of G. Let λ
be a Shalika functional. Then the functional L(λ) : V → C defined by

L(λ)(v) :=
Lλ,v
Lπ

(1
2

)
is continuous.

Proof. By Theorem 4.6 we choose M > 1 such that for any polynomial p there
exists a seminorm β on V such that

∣∣pLλ,v|M+iR
∣∣ ≤ β(v). By Corollary 4.10 we

choose N < 0 such for any polynomial p there exists a seminorm β ′ on V such
that |pLλ,v|N+iR | ≤ β

′(v). Let q be a polynomial such that the multiset of poles
of 1/q (with multiplicities) coincides with the multiset of poles of Lπ |[N ,M]+iR.
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Here, [N ,M]+ iR denotes the strip N ≤Re(s)≤ M . It is enough to show that the
map L ′(λ) defined by L ′(λ)(v) := Lλ,vq(1/2) is continuous. Now there exists a
seminorm α on V such that, for any v ∈ V ,∣∣q Lλ,v|M+iR

∣∣≤ α(v) and
∣∣q Lλ,v|N+iR

∣∣≤ α(v).
By Theorem 4.1, for any v ∈ V , there exists 1 such that |q Lλ,v(s)| ≤ α(v) if
s ∈[N ,M]+iR and |Im s|≥1. Now by the maximal modulus principle L ′(λ)(v)≤
α(v) for any v ∈ V . �

Theorem 3.1 then implies:

Proposition 5.2. Let (π, V ) be an irreducible admissible representation of G.
Then the map L : (V ∗)HU,9

→ (V ∗)H G1 defined by

L(λ)(v) :=
Lλ,v
Lπ

(1
2

)
is a monomorphism.

As mentioned in the introduction, the pair (GL2n,GLn ×GLn) is a Gelfand pair,
by [Aizenbud and Gourevitch 2009, Theorem 8.2.4]; that is,

dim(V ∗)GLn(F)×GLn(F) ≤ 1.

Putting this together with the preceding proposition, we obtain the promised result:

Theorem 1.1. If (π, V ) is an irreducible admissible smooth Fréchet representation
of GL2n(F), the space (V ∗)HU,9 of Shalika functionals on V has dimension at
most 1.
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