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KASHIWARA AND ZELEVINSKY INVOLUTIONS
IN AFFINE TYPE A

NICOLAS JACON AND CÉDRIC LECOUVEY

We describe how the Kashiwara involution ∗ on crystals of affine type A is
encoded by the combinatorics of aperiodic multisegments. This affords an
elementary proof that ∗ coincides with the Zelevinsky involution τ on the
set of simple modules for the affine Hecke algebras. We then give efficient
procedures for computing ∗ and τ . Remarkably, these procedures do not
use the underlying crystal structure. They also allow one to explicitly match
to each other the Ginzburg and Ariki parametrizations of simple modules
associated to affine and cyclotomic Hecke algebras, respectively.

1. Introduction

The Kashiwara involution ∗ in affine type A is a fundamental anti-isomorphism of
the quantum group Uv associated to the affine root system A(1)e−1. It induces a subtle
involution on Be(∞), the Kashiwara crystal corresponding to the negative part U−v
of Uv. The Zelevinsky involution yields an involution τ of the affine Hecke algebra
of type A. When q is specialized to an e-th root of 1, τ also induces an involution
on Be(∞). In this paper, we show by using the combinatorics of aperiodic mul-
tisegments that the Kashiwara and Zelevinsky involutions coincide on B(∞). We
also provide efficient procedures for computing these involutions. In addition, our
results yield an explicit matching of the Ginzburg and Ariki parametrizations of the
simple modules associated to affine and cyclotomic Hecke algebras respectively.

All our computations can be made independently of the crystal structure on
Be(∞). Moreover, they do not require the determination of i-induction or i-
restriction operations on simple modules.

We now describe the context and the results of the paper more precisely. The
Zelevinsky involution [1980] was introduced in connection with the representation
theory of the linear group GL(n, Fp) over the p-adic field Fp. Results of Mœglin
and Waldspurger [1986] then allow one to link it with a natural involution τ of the
affine type A Hecke algebra Ha

n(q) over the field F with generic parameter q . For
e≥ 2 an integer and q specialized at ξ , a primitive e-root of 1, it was conjectured in
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[Vignéras 1997] that this involution should be related to the modular representation
theory of GL(n, Fp). In the sequel we will refer to τ as the Zelevinsky involution
of Ha

n(ξ) (see Section 3 for a complete definition).
The involution τ induces an involution on the set of simple Ha

n(ξ)-modules.
There exist essentially two different parametrizations of these modules in the lit-
erature. In the geometric construction of Chriss and Ginzburg [1997], under the
assumption F=C, simple Ha

n(ξ)-modules are labeled by aperiodic multisegments.
These simple modules can also be regarded as simple modules associated to Ariki–
Koike algebras Hv

n(ξ). The Specht module theory developed by Dipper, James and
Mathas then provides a labeling of the simple Ha

n(ξ)-modules by Kleshchev multi-
partitions. Both constructions allow one to endow the set of simple Ha

n(ξ)-modules
with the structure of a crystal isomorphic to Be(∞). The Kashiwara crystal opera-
tors then yield the modular branching rules for the Ariki–Koike algebras and affine
Hecke algebras of type A [Ariki 2006; Ariki et al. 2008].

Grojnowski [1999] uses i-induction and i-restrictions operators to define an ab-
stract crystal structure on the set of simple Ha

n(ξ)-modules. He then proves that this
crystal is in fact isomorphic to Be(∞). This approach is valid over an arbitrary field
F and does not require the Specht module theory of Dipper, James and Mathas. This
notably allows the extension Grojnowski’s methods to the representation theory
of the cyclotomic Hecke–Clifford superalgebras [Brundan and Kleshchev 2001].
Nevertheless, this approach does not match up the abstract crystal obtained with
the labelings of the simple modules by aperiodic multisegments or Kleshchev mul-
tipartitions. Since the i-induction operation on simple modules is difficult to obtain
in general, it is also not really suited to explicit computations.

The identification of U−v with the composition subalgebra of the Hall algebra
associated to the cyclic quiver of type A(1)e yields two different structures of crys-
tal on the set of aperiodic multisegments. They both come from two different
parametrizations of the canonical basis of U−v which correspond under the anti-
isomorphism ρ on U−v switching the generators fi and f−i . In particular ρ pro-
vides an involution on the crystal Be(∞) which can be easily computed. The use
of the composition algebra also allows an explicit description of the structure of
Kashiwara crystal on the set of aperiodic multisegments. This was obtained in
[Leclerc et al. 1999] by Leclerc, Thibon and Vasserot. In addition, these authors
prove that the involution τ on Be(∞) satisfies the identity τ = ]◦ρ where ] is the
twofold symmetry on Be(∞) which switches the sign of each arrow.

In this paper, we first establish that the two crystal structures on aperiodic multi-
segments obtained by identifying U−v with the composition algebra correspond up
to conjugation by the Kashiwara involution ∗. This implies that ∗ = τ on Be(∞).
An equivalent identity can also be established by using [Grojnowski 1999] but, as
mentioned above, this approach requires subtle considerations on the representation
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theory of Ha
n(ξ) and does not allow one to compute ∗ = τ efficiently. Our proof,

in contrast, uses only elementary properties of crystal graphs and yields efficient
procedures for computing the involution ∗=τ . This notably allows us to generalize
an algorithm of Mœglin and Waldspurger that gives the Zelevinsky involution when
e =∞.

As a consequence, extending [Vazirani 2002], we completely solve the following
natural problem. Given a simple Ha

n(ξ)-module Lψ (with ψ an aperiodic multi-
segment ψ), we find all the Ariki–Koike algebras Hv

n(q) and the simple Hv
n(q)-

modules Dλ (with λ a Kleshchev multipartition) such that Dλ
' Lψ as Ha

n(ξ)-
modules. The procedure that yields the Kashiwara involution also allows the com-
putation of the commutor of A(1)e -crystals introduced in [Kamnitzer and Tingley
2009].

The paper is organized as follows. In Section 2, we review the identification of
U−v with the composition algebra and the two structures of crystal it gives on the set
of aperiodic multisegments. We also recall basic facts on the Kashiwara involution.
Section 3 is devoted to the definition of the Zelevinsky involution on the set of sim-
ple Ha

n(ξ)-modules and to results from [Leclerc et al. 1999]. In Section 4, we prove
the identity ∗ = τ . The problem of determining the algebras Hv

n(ξ) and the simple
Hv

n(ξ)-modules isomorphic to a given simple Ha
n(ξ)-module is studied in Section

5. In Sections 6 and 7, we give a simple combinatorial procedure for computing
the involutions τ, ρ and ] on Be(∞). We prove in fact that all these computations
can essentially be obtained from the Mullineux involution on e-regular partitions
and the crystal isomorphisms described in [Jacon and Lecouvey 2009a]. We also
investigate several consequences of our results.

2. Quantum groups and crystals in affine type A

The quantum group Uv. Let v be an indeterminate and e ≥ 2 an integer. Write
Uv(ŝle) for the quantum group of type A(1)e−1. This is an associative Q(v)-algebra
with generators ei , fi , ti , t−1

i , i ∈Z/eZ and ∂; a description of the relations satisfied
by these generators can be found in [Uglov 2000, §2.1]. Write {30, . . . , 3e−1, δ}

and {α0, . . . , αe−1} respectively for the set of fundamental weights and the set of
simple roots associated to Uv(ŝle). Let P be the weight lattice of Uv(ŝle). We
denote by Uv =U′v(ŝle) the subalgebra generated by ei , fi , ti , t−1

i , i ∈Z/eZ. Then
P = P/Zδ is the set of classical weights of Uv. For any i ∈ Z/eZ, we also denote
by 3i and αi the restriction of 3i and αi ∈ P to P∧. Let U−v be the subalgebra of
Uv generated by the fi ’s with i ∈ Z/eZ.

Aperiodic multisegments. We now turn to the set of aperiodic multisegments and
define its crystal structures.
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Definition 2.1. Let l ∈ Z>0 and i ∈ Z/eZ. The segment of length l and head i is
the sequence of consecutive residues [i, i+1, . . . , i+l−1]. We denote it by [i; l).
Similarly, the segment of length l and tail i is the sequence of consecutive residues
[i−l+1, . . . , i−1, i]. We denote it by (l; i].

Definition 2.2. A collection of segments is called a multisegment. If the collection
is the empty set, we call it the empty multisegment and denote it by ∅∅∅.

It is convenient to write a multisegment ψ in the form

ψ =
∑

i∈Z/eZ
l∈N>0

m[i;l)[i; l).

Definition 2.3. A multisegment ψ is aperiodic if, for every l ∈ Z>0, there exists
some i ∈ Z/eZ such that (l; i] does not appear in ψ . Equivalently, a multisegment
ψ is aperiodic if, for each l ∈ Z>0, there exists some i ∈ Z/eZ such that [i; l) does
not appear in ψ . We denote by 9e the set of aperiodic multisegments.

Let Be(∞) be the (abstract) crystal basis of U−v . By results of Ringel and
Lusztig, the algebra U−v is isomorphic to the composition algebra of the Hall
algebra associated to the cyclic quiver 0e of length e. This yields in particular
a natural parametrization of the vertices of Be(∞) by 9e. We can thus regard the
vertices of Be(∞) as aperiodic multisegments. The corresponding crystal structure
was described in [Leclerc et al. 1999, Theorem 4.1]. In fact we shall need in the
sequel two different structures of crystal on 9e. They are linked by the involution
ρ which negates all the segments of a given multisegment, that is, such that

(2-1) ψρ =
∑

i∈Z/eZ
l∈N>0

m[i;l)(l;−i]

for any multisegment ψ =
∑

i∈Z/eZ, l∈N>0
m[i;l)[i; l). The involution ρ has a nat-

ural algebraic interpretation since it also yields a linear automorphism of the Hall
algebra associated to 0e. Since we do not use Hall algebras in this paper, we only
recall below the two crystal structures relevant for our purpose.

Let ψ be a multisegment and let ψ≥l be the multisegment obtained from ψ

by deleting the segments of length less than l, for l ∈ Z>0. Denote by m[i;l) the
multiplicity of [i; l) in ψ . For any i ∈ Z/eZ, set

Ŝl,i =
∑
k≥l

(m[i+1;k)−m[i;k)).

Let l̂0 be the minimal value of l that attains minl>0 Ŝl,i .

Theorem 2.4. Let ψ be a multisegment, i ∈ Z/eZ and let l̂0 be as above. Then we
have

f̂iψ = ψl̂0,i ,
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where the multisegment ψl̂0,i is defined by

ψl̂0,i =

{
ψ + [i; 1) if l̂0 = 1,
ψ + [i; l̂0)− [i + 1; l̂0− 1) if l̂0 > 1.

The crystal structure on 9e obtained from the action of the operators f̂i , for
i ∈ Z/eZ, does not coincide with that initially described by Leclerc, Thibon and
Vasserot. The LTV crystal structure stated in [Leclerc et al. 1999] is obtained by
using the crystal operators

(2-2) f̃i = ρ ◦ f̂−i ◦ ρ, i ∈ Z/eZ

rather than the operators f̂i . More precisely, set Sl,i =
∑

k≥l(m(k;i−1]−m(k;i]). Let
l0 be the minimal l that attains minl>0 Sl,i . Then, the crystal structure correspond-
ing to the f̃i ’s is given as follows.

Theorem 2.5. Let ψ be a multisegment and let i ∈ Z/eZ and l0 be as above. Then
we have

f̃iψ = ψl0,i ,

where the multisegment ψl0,i is defined by

ψl0,i =

{
ψ + (1; i] if l0 = 1,
ψ + (l0; i] − (l0− 1; i − 1] if l0 > 1.

Let ψ be a multisegment. Then to compute ẽiψ , we proceed as follows. If
minl>0 Sl,i = 0, then ẽiψ = 0. Otherwise, let l0 be the maximal l that attains
minl>0 Sl,i . Then, ẽiψ is obtained from ψ by replacing (l0; i] with (l0−1; i−1].

In the sequel, we identify Be(∞) with the crystal structure obtained on 9e by
considering the operators f̃i , i ∈ Z/eZ (see also Remark 2.7). Then ρ induces
an involution on Be(∞) and the crystal operators f̃i and f̂i are related by (2-2).
We denote by wt(ψ) the weight of the aperiodic multisegment ψ considered as a
vertex of the crystal Be(∞). Set

(2-3) wt(ψ)=
∑

i∈Z/eZ

wti (ψ)3i .

For any i ∈ Z/eZ, define

εi (ψ)=max{k ∈ N | ẽk
i (u) 6= 0} and ϕi (ψ)= wti (ψ)+ εi (ψ).

The Kashiwara involution. The Kashiwara involution ∗ is the Uv(ŝle)-antiauto-
morphism such that q∗ = q and defined on the generators by

(2-4) e∗i = ei , f ∗i = fi , t∗i = t−1
i .
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Since ∗ stabilizes U−v , it induces an involution (also denoted ∗) on Be(∞) the
crystal graph of U−v . By setting for any vertex b ∈ Be(∞) and any i ∈ Z/eZ

(2-5) ẽ∗i (b)= ẽi (b∗)∗, f̃ ∗i (b)= f̃i (b∗)∗, ε∗i (b)= εi (b∗) and ϕ∗i (b)= b∗

we obtain another crystal structure on Be(∞) [Kashiwara 1995].
Let i ∈ Z/eZ and write Bi for the crystal with set of vertices {bi (k) | k ∈ Z} and

such that

wt(bi (k))= kαi , ε j (bi (k))=
{
−k if i = j,
−∞ if i 6= j,

ϕ j (bi (k))=
{

k if i = j,
−∞ if i 6= j,

ẽ j bi (k)=
{

bi (k+ 1) if i = j,
0 if i 6= j,

f̃ j bi (k)=
{

bi (k− 1) if i = j,
0 if i 6= j.

Set bi = bi (0).
Recall that on the tensor product B⊗B ′={b⊗b′ | b∈ B, b′ ∈ B ′} of the crystals

B and B ′, the action of ẽi and f̃i is given by

f̃i (u⊗ v)=
{

f̃i (u)⊗ v if ϕi (u) > εi (v),

u⊗ f̃i (v) if ϕi (u)≤ εi (v),
(2-6)

ẽi (u⊗ v)=
{

u⊗ ẽi (v) if ϕi (u) < εi (v),

ẽi (u)⊗ v if ϕi (u)≥ εi (v).
(2-7)

The embedding of crystals θi : Be(∞) ↪→ Be(∞)⊗ Bi which sends the highest-
weight vertex b∅∅∅ of Be(∞) on b∅∅∅⊗Bi allows one, at least theoretically, to compute
the action of the operators ẽ∗i and f̃ ∗i .

Proposition 2.6 [Kashiwara 1995, Proposition 8.1]. If b ∈ Be(∞) and ε∗i (b)=m,
then

(1) θi (b)= (̃e∗i )
mb⊗ f̃ m

i bi ,

(2) θi ( f̃ ∗i b)= (̃e∗i )
mb⊗ f̃ m+1

i bi and

(3) θi (̃e∗i b)= (̃e∗i )
mb⊗ f̃ m−1

i bi if m > 0 and θi (̃e∗i b)= 0 if m = 0.

Remark 2.7. (1) As already seen on pages 290–291, 9e is equipped with two
crystal structures. One is obtained from the action of the crystal operators f̂i

and the other is related to the operators f̃i and yields the Kashiwara crystal
graph structure Be(∞) on 9e. We shall see in Section 4 that the actions of f̂i

and f̃ ∗i coincide, for all i ∈ Z/eZ.

(2) Proposition 2.6 does not provide an efficient procedure for computing the
involution ∗. Indeed, to obtain θi (b), we have first to determine a path from b
to the highest-weight vertex of Be(∞). Moreover, computing a section of the
embedding θi is difficult in general.
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Crystals of Uv-modules of highest weight. Let l ∈N. A tuple v= (v0, . . . , vl−1)∈

Zl is called a multicharge and l is by definition its level. One can associate to v
the abstract Uv-irreducible module Ve(3v) with highest weight3v =3v0 (mod e)+

· · · + 3vl−1 (mod e). There exist distinct realizations of Ve(3v) as an irreducible
component of a Fock space Fve whose structure depends on v. As a C(v)-vector
space, the Fock space Fve of level l admits the set of all l-partitions as a natural
basis. Namely the underlying vector space is

Fe =
⊕
n≥0

⊕
λ∈5l,n

C(v)λ,

where 5l,n is the set of l-partitions with rank n. Consider v = (v0, . . . , vl−1) ∈

(Z/eZ)l . We write v ∈ v when vc ∈ vc for any c = 0, . . . , l − 1. As Uv-modules,
the Fock spaces Fve , v ∈ v are all isomorphic but with distinct actions for Uv. For
each of these actions, the empty l-partition ∅∅∅ = (∅, . . . ,∅) is a highest-weight
vector of highest weight 3v. We denote by Ve(v) the irreducible component with
highest-weight vector ∅∅∅ in Fve . The modules Ve(v) when v runs over v are all
isomorphic to the abstract module Ve(3v). However, the actions of the Chevalley
operators on these modules do not coincide in general.

The module Fve admits a crystal graph Bve labeled by l-partitions. We now recall
the crystal structures on Bve and Be(v), the crystal associated to Ve(v). We omit the
description of the Uv-module structures on Fve and Ve(v), which are not needed in
our proofs; see [Jimbo et al. 1991] for a full account.

Let λ = (λ0, . . . , λl−1) be an l-partition, which we identify with its Young
diagram. The nodes of λ are the triplets γ = (a, b, c) where c ∈ {0, . . . , l − 1}
and a, b are respectively the row and column indices of the node γ in λc. The
content of γ is the integer c (γ) = b − a + vc and the residue res(γ) of γ is the
element of Z/eZ such that

(2-8) res(γ)≡ c(γ) (mod e).

We say that γ is an i-node of λ when res(γ)≡ i (mod e). This node is removable
when γ = (a, b, c) ∈ λ and λ\{γ} is an l-partition. Similarly γ is addable when
γ= (a, b, c) /∈ λ and λ∪ {γ} is an l-partition.

The crystal structure on Bve (and in fact, the Uv-module structure on Fve itself)
is conditioned by the total order ≺v on the set of addable and removable i-nodes
of the multipartitions. Consider γ1= (a1, b1, c1) and γ2= (a2, b2, c2), two i-nodes
in λ. We define the order ≺v by setting

γ1 ≺v γ2⇐⇒

{
c(γ1) < c(γ2) or
c(γ1)= c(γ2) and c1 > c2.
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Starting from any l-partition λ, consider its set of addable and removable i-nodes.
Let wi be the word obtained first by writing the addable and removable i-nodes
of λ in increasing order with respect to ≺v, encoding each addable i-node by the
letter A and each removable i-node by the letter R. Write w̃i = Ar Rs for the word
derived from wi by deleting as many factors R A as possible. If r > 0, let γ be the
rightmost addable i-node in w̃i . When w̃i 6=∅, the node γ is called the good i-node.

Proposition 2.8. The crystal graph Bve of Fve is the graph with

(1) as vertices, the l-partitions;

(2) as edges, λ
i
→ µ if and only if µ is obtained by adding to λ its good i-node.

For each i ∈ Z/eZ, we set εi (λ)= s and ϕi (λ)= r .

Since Ve(v) is the irreducible module with highest-weight vector ∅∅∅ in Fve , its
crystal graph Be(v) can be realized as the connected component of the highest-
weight vertex ∅∅∅ in Bv

e . The vertices of Be(v) are labeled by the so-called Uglov
l-partitions associated to v.

Set

(2-9) Vl = {v = (v0, . . . , vl−1) ∈ Zl
| v0 ≤ · · · ≤ vl−1 and vl−1− v0 < e}.

Definition 2.9. Assume that v ∈Vl . The l-partition λ= (λ0, . . . , λl−1) is called a
FLOTW l-partition associated to v if, for all i = 1, 2, . . . , we have

(2-10) λ
j
i ≥ λ

j+1
i+v j+1−v j

for all j = 0, . . . , l − 2 and λl−1
i ≥ λ0

i+e+v0−vl−1
,

and for all k > 0, among the residues appearing in λ at the right ends of rows of
length k, at least one element of {0, 1, . . . , e− 1} does not occur.

The set of FLOTW l-partitions associated to v is denoted by 8e(v). (The
acronym comes from the names of the authors of [Foda et al. 1999].)

The following result was obtained by Jimbo, Misra, Miwa and Okado, but the
presentation we adopt here comes from [Foda et al. 1999].

Proposition 2.10 [Jimbo et al. 1991]. When v ∈ Vl , the set of vertices of Be(v)

coincides with the set of FLOTW l-partitions associated to v.

Consider v ∈ Vl and λ ∈ 8e(v). We associate to each nonzero part λc
i of λ the

segment

(2-11) [(1− i + vc) (mod e), (2− i + vc) (mod e), . . . , (λc
i − i + vc) (mod e)].

The multisegment fv(λ) is then the formal sum of all the segments associated to
the parts λc

i of λ. Since fv(λ) is aperiodic by Definition 2.9, we get a well defined
map

(2-12) fv : Be(v)→9e.
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Example 2.11. Let e = 4 and consider the FLOTW bipartition (2.1, 1) associated
to v = (0, 1). Then

fv(2.1, 1)= [0, 1] + [3] + [1].

Let v = (0, 1, 3) and consider the FLOTW 3-partition (2, 1, 1). We have

fv(2, 1, 1)= [0, 1] + [1] + [3].

Let T3 = {t3} be the crystal defined by wt(t3v )=3, εi (t3v )= ϕi (t3v )=−∞
and ẽi t3v = f̃i t3v = 0. We have a unique crystal embedding Be(v) ↪→ Be(∞)⊗T3.

Theorem 2.12 [Ariki et al. 2008]. For any v ∈ Vl , the map fv coincides with the
unique crystal embedding Be(v) ↪→ Be(∞)⊗ T3.

According to Proposition 8.2 in [Kashiwara 1995], we have

fv(8e(v))= {ψ ∈9e | εi (ψ
∗)≤ ri for any i ∈ Z/eZ,

where ri is the number of entries in v equal to i and ψ∗ is the image of ψ under
the Kashiwara involution of the crystal Be(∞).

Given any ψ ∈9e, write v(ψ) for the element of Vl defined by the conditions

(2-13) ri = εi (ψ
∗)= ε∗i (ψ) for any i ∈ Z/eZ.

Then, by the previous considerations, there exists a unique l-partition λ(ψ) =
(λ0, . . . , λl−1) ∈8e(v(ψ)) such that

(2-14) fv(ψ)(λ(ψ))= ψ.

3. The Zelevinsky involution of Ha
n(q)

Three natural involutions on Ha
n(q). Denote by Hn(q) the Hecke algebra of type

A with parameter q over the field F. This is the unital associative F-algebra gener-
ated by T1,. . . , Tn−1 and the relations

Ti Ti+1Ti = Ti+1Ti Ti+1 (i = 1, . . . , n− 2),

Ti T j = T j Ti (| j − i |> 1),

(Ti − q)(Ti + 1)= 0 (i = 1, . . . , n− 1).

The affine Hecke algebra Ha
n(q) is the F-algebra which as an F-module is isomor-

phic to
Hn(q)⊗R F[X±1

1 , . . . , X±1
n ].

The algebra structure is obtained by requiring that Hn(q) and F[X±1
1 , . . . , X±1

n ]

are both subalgebras and for any i = 1, . . . , n

Ti X i Ti = q X i+1, Ti X j = X j Ti if i 6= j.
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In the sequel, we assume that q = ξ is a primitive e-th root of the unity and write
Ha

n(ξ) for the affine Hecke algebra with parameter ξ . We have three involutive
automorphisms τ , [ and ] on Ha

n(ξ). There are defined on the generators by

(3-1)

T τ
i =−ξT−1

n−i , X τ
j = Xn+1− j .

T [
i = Tn−i , X [

j = X−1
n+1− j .

T ]
i =−ξT−1

i , X ]
j = X−1

j .

The involution ] was considered in [Iwahori and Matsumoto 1965] and the involu-
tion τ , called the Zelevinsky involution, in [Mœglin and Waldspurger 1986]. One
can easily check that they are connected as follows:

(3-2) xτ = (x[)] = (x])[ for all x ∈Ha
n(ξ).

The involutions τ, ] and [ on Be(∞). We denote by Moda
n the category of finite-

dimensional Ha
n(ξ)-modules such that for j = 1, . . . , n the eigenvalues of X j are

powers of ξ .
For any multisegment ψ =

∑
i∈Z/eZ,l∈N>0

m(l;i](l; i], we write

|ψ | =
∑

i∈Z/eZ
l∈N>0

lm(l;i].

The geometric realization of Ha
n(ξ) due to Ginzburg allows one to label the simple

Ha
n(ξ)-modules in Moda

n by the aperiodic multisegments such that |ψ | = n. We do
not use Ginzburg’s construction in the sequel and just refer to [Chriss and Ginzburg
1997] for a complete exposition or a short review; see also [Ariki et al. 2008;
Leclerc et al. 1999]. Let Lψ be the simple Ha

n(ξ)-module corresponding to ψ
under this parametrization.

The three involutions τ, [, ] on Ha
n(ξ) induce involutions on the set of simple

Ha
n(ξ)-modules that we will denote in the same way. This yields involutions on

the set of aperiodic multisegments (also denoted by τ , [ and ]) satisfying

Lτψ = Lψτ , L[ψ = Lψ[, L]ψ = Lψ]

for each aperiodic multisegment ψ . Thus we have three involutions on the vertices
of Be(∞). By (3-2), they satisfy the relation

(3-3) τ = ] ◦ [= [ ◦ ].

By [Leclerc et al. 1999, §2.4], the involution [ is given by

(3-4) ψ =
∑

i∈Z/eZ
l∈N>0

m(l;i][i; l) ⇒ ψ[ =
∑

i∈Z/eZ
l∈N>0

m(l;i](l;−i].
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By comparing with the action (2-1) of ρ on Be(∞), this immediately gives:

Lemma 3.1. The involutions ρ and [ coincide on Be(∞), and their action is given
by (3-4).

Since the action of ρ = [ on Be(∞) is immediate, it is indifferent to describe
τ or ] on Be(∞). The following proposition makes explicit the involution ] on
Be(∞).

Theorem 3.2 [Leclerc et al. 1999]. Let ψ be an aperiodic multisegment. Then ψ]

is the aperiodic multisegment obtained from ψ by the twofold symmetry i↔−i in
the graph Be(∞).

4. The equality ∗ = τ on Be(∞)

The aim of this section is to prove that ∗ and τ coincide on Be(∞).

Theorem 4.1. f̃ ∗j (ψ)= f̂ j (ψ) for any multisegment ψ ∈9e and any j ∈ Z/eZ.

Before proving the theorem, we see how it implies the desired equality ∗ = τ :

Corollary 4.2. The involutions ∗ and τ coincide on Be(∞).

Proof. Let ψ ∈ 9e. There exist i1, . . . , in in Z/eZ such that ψ = f̃i1 . . . f̃in ∅.
Hence, we obtain

ψ∗ = f̃ ∗i1
. . . f̃ ∗in

∅ = f̂i1 . . . f̂in ∅.
Using (2-2), this gives

ψ∗ = ρ( f̃−i1 . . . f̃−in ∅) = (ψ
])ρ = (ψρ)] = ψτ ,

where the two last equalities follow from Lemma 3.1 and (3-3). �

To prove Theorem 4.1, we proceed by induction on |ψ |. Using Proposition 2.6,
we shall see that it suffices to establish the equivalence

f̃i f̂ j (ψ)= f̂ j f̃i (ψ) ⇐⇒ f̃i f̃ ∗j (ψ)= f̃ ∗j f̃i (ψ)

for any i, j ∈Z/eZ. Now, by definition, the operator f̃i adds an entry i on the right
end, and f̂ j an entry j at the left end, of one of the segments of ψ . This will imply:

(∗) f̃i f̂ j (ψ)= f̂ j f̃i (ψ) except possibly when i = j and f̃i (ψ)=ψ+[i] or f̂i (ψ)=

ψ + [i].

On the other hand, it is easy to derive from Proposition 2.6 that

f̃i f̃ ∗j (ψ)= f̃ ∗j f̃i (ψ) except possibly when i = j and f̃i (ψ)= ψ +[i] or f̃ ∗i (ψ)=
ψ + [i].

The case where the operators do not commute being easily tractable, this will
imply Theorem 4.1.
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More on the crystal operators f̃i and f̂i . We begin with refinements of the actions
of the operators f̃i and f̂i . In [Ariki et al. 2008], we have obtained an alternative
description of the action of the crystal operators on 9e. Consider ψ ∈ 9e and
i ∈ Z/eZ. We encode segments in ψ with tail i by the symbol R, and those
with tail i − 1 by A. For any nonnegative integer l, write wi,l = Rm(l;i] Am(l;i−1] ,
where m(l;i] and m(l;i−1] are the number of segments (l; i] and (l; i−1] in ψ . Set
wi =

∏
l≥1wi,l . Write w̃i = Aai (ψ)Rri (ψ) for the word derived from wi by deleting

as many factors R A as possible. If ai (ψ) > 0, denote by l0,i (ψ) > 0 the length of
the rightmost segment A in w̃i . If ai (ψ) = 0, set l0,i (ψ) = 0. When there is no
risk of confusion, we simply write l0 instead of l0,i (ψ).

Lemma 4.3 [Ariki et al. 2008]. With the notation above we have εi (ψ) = ri (ψ)

and

f̃iψ =

{
ψ+(l0; i]−(l0−1; i−1] if ai (ψ) > 0,
ψ+(1; i] if ai (ψ)= 0.

We can compute similarly the action of the crystal operators f̂i (with i ∈ Z/eZ)
on ψ . We encode the segments in ψ with head i by the symbol R̂ and those
with head i+1 by Â. For any nonnegative integer l, write ŵi,l = R̂m[i;l) Âm[i+1;l)

where m[i;l) and m[i+1;l) are the number of segments [i; l) and [i + 1; l) in ψ . Set
ŵi =

∏
l≥1 ŵi,l . Write wi = Ââi (ψ) R̂r̂i (ψ) for the word derived from ŵi by deleting

as many factors R̂ Â as possible. If âi (ψ) > 0, let l̂0,i (ψ) > 0 be length of the
rightmost segment Â in wi . If âi (ψ)= 0, set l̂0,i (ψ)= 0. When there is no risk of
confusion, we also simply write l̂0 instead of l̂0,i (ψ).

Lemma 4.4. With the notation above, plus ε̂i (ψ)=max{p | êp
i (ψ) 6= 0}, we have

ε̂i (ψ)= r̂i (ψ) and

(4-1) f̂iψ =

{
ψ+[i; l̂0)−[i+1; l̂0−1) if âi (ψ) > 0,
ψ+[i; 1) if âi (ψ)= 0.

Remark 4.5. By [Grojnowski 1999, Theorem 9.13], for any i ∈Z/eZ, the integers
εi (ψ) = ri (ψ) and ε̂i (ψ) = r̂i (ψ) give the maximal size of a Jordan block with
eigenvalue ξ i corresponding to the action of the generator Xn and X1, respectively,
on the simple Ha

n(ξ)-module Lψ .

Equality of the crystal operators f̃ ∗i and f̂i . Our purpose is now to establish the
equality

(4-2) f̃ ∗i (ψ)= f̂i (ψ) for any ψ ∈9e.

This is achieved by showing that the relations f̃ ∗i f̃ jψ= f̃ j f̃ ∗i ψ and f̂i f̃ jψ= f̃ j f̂iψ

are both equivalent to a very simple condition on ψ .
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Lemma 4.6. Fix i ∈ Z/eZ.

(1) Consider ψ, χ ∈9e such that ψ = f̂iχ and fix j ∈ Z/eZ. Then

l0, j (χ) 6= l0, j (ψ) ⇐⇒ i = j, âi (χ)= 0 and ai (χ)= 1.

(2) Consider ψ, χ ∈9e such that ψ = f̃iχ and fix j ∈ Z/eZ. Then

l̂0, j (χ) 6= l̂0, j (ψ) ⇐⇒ i = j, ai (χ)= 0 and âi (χ)= 1.

Proof. We prove (1); the arguments for (2) are similar. Assume first that l̂0,i (χ)=

l̂0 > 1. Hence âi (χ) > 0 and ψ = χ−[i+1, . . . , i+l̂0−1]+[i, . . . , i+l̂0−1]. If j
is distinct (mod e) from i+l̂0−1 and i+l̂0, then neither [i+1, . . . , i+l̂0−1] nor
[i, . . . , i+l̂0−1] are segments A or R for j . We have w j (ψ) = w j (χ) and then
l0, j (χ)= l0, j (ψ). Thus we can restrict ourselves to the cases j ≡ i+l̂0−1 (mod e)
and j ≡ i+l̂0 (mod e). We write

ŵi (χ)= · · · [i, . . . , i+l̂0−2]m[i,...,i+̂l0−2][i+1, . . . , i+l̂0−1]m[i+1,...,i+̂l0−1]

[i, . . . , i+l̂0−1]m[i,...,i+̂l0−1][i+1, . . . , i+l̂0]
m
[i+1,...,i+̂l0] · · ·

where we have only shown the segments of length l̂0−1 and l̂0 of ŵi (χ). Since
ψ = f̂iχ , we have

ŵi (ψ)= · · · [i, . . . , i+l̂0−2]m[i,...,i+̂l0−2][i+1, . . . , i+l̂0−1]m[i+1,...,i+̂l0−1]−1

[i, . . . , i+l̂0−1]m[i,...,i+̂l0−1]+1
[i+1, . . . , i+l̂0]

m
[i+1,...,i+̂l0] · · ·

In particular, by (4-1), we must have

m
[i,...,i+̂l0−2] < m

[i+1,...,i+̂l0−1] and m
[i,...,i+̂l0−1] ≥ m

[i+1,...,i+̂l0]
.

When j = (i+l̂0−1) (mod e), [i+1, . . . , i+l̂0−1] and [i, . . . , i+l̂0−1] are of
type R for j . Hence, by considering only the segments of lengths l̂0−1 and l̂0, we
can write

w j (χ)= · · · [i+1, . . . , i+l̂0−1]m[i+1,...,i+̂l0−1][i, . . . , i+l̂0−2]m[i,...,i+̂l0−2]

[i, . . . , i+l̂0−1]m[i,...,i+̂l0−1][i−1, . . . , i+l̂0−2]m[i−1,...,i+̂l0−2] · · · ,

w j (ψ)= · · · [i+1, . . . , i+l̂0−1]m[i+1,...,i+̂l0−1]−1
[i, . . . , i+l̂0−2]m[i,...,i+̂l0−2]

[i, . . . , i+l̂0−1]m[i,...,i+̂l0−1]+1[i−1, . . . , i+l̂0−2]m[i−1,...,i+̂l0−2] · · · .

Since m
[i,...,i+̂l0−2]<m

[i+1,...,i+̂l0−1], the cancellation procedures of the factors R A
in w j (χ) and w j (ψ) yield the same final word. Hence w̃ j (ψ) = w̃ j (χ) and we
have also l0, j (χ)= l0, j (ψ)= 1.

When j = (i+l̂0) (mod e), [i+1, . . . , i+l̂0−1] and [i, . . . , i+l̂0−1] are of type
A for j . We obtain also w̃ j (ψ) = w̃ j (χ) by considering the segments of lengths
l̂0−1 and l̂0. Thus l0, j (χ)= l0, j (ψ).
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Observe that we have always w̃ j (ψ) = w̃ j (χ) for any j ∈ Z/eZ when l̂0 > 1.
In particular,

(4-3) âi (χ) > 0 H⇒ a j (χ)= a j ( f̂iχ) for any j ∈ Z/eZ.

Now assume l̂0 = 1, that is, ψ = χ+[i]. Write

ŵi (χ)= [i]m[i][i+1]m[i+1] · · · and ŵi (ψ)= [i]m[i]+1
[i+1]m[i+1] · · · ,

with m[i] ≥ m[i+1].
When j = i+1 (mod e), [i] is of type A for j and [i+1] is of type R. Thus we

can write

w j (χ)= [i+1]m[i+1][i]m[i] · · · and w j (ψ)= [i+1]m[i+1][i]m[i]+1
· · · .

Since m[i] ≥ m[i+1], the rightmost segments A in w̃ j (χ) and w̃ j (ψ) are the same
and we still have l0, j (χ)= l0, j (ψ).

When j = i (mod e), [i] is of type R for j . Observe that âi (χ)= 0. Set w̃i (χ)=

Aai (χ)Rri (χ). Then w̃i (ψ) is obtained by applying the cancellation procedure of the
factors R A to the word w = R Aai (χ)Rri (χ). Clearly, l0, j (χ) 6= l0, j (ψ) if and only
if ai (χ)= 1, for in this case l0, j (χ) > 1 and l0, j (ψ)= 1. �

Proposition 4.7. For any χ ∈9e and i, j ∈ Z/eZ, we have

f̃i f̂ jχ 6= f̂ j f̃iχ ⇐⇒ i = j and ai (χ)+ âi (χ)= 1.

Proof. Assume i 6= j , or i = j and ai (χ)+âi (χ) > 1. By Lemma 4.6, we have
l̂0, j (χ)= l̂0, j ( f̃iχ)= l̂0 and l0,i (χ)= l0,i ( f̂ jχ)= l0. Hence

f̃i f̂ jχ = χ+[ j; l̂0)+(l0; i]−[ j+1; l̂0−1)−(l0−1; i−1] = f̂ j f̃iχ

with [ j+1; l̂0−1)=∅ if l̂0 = 1 and (l0−1; i−1] =∅ if l0 = 1.
Now, assume i = j , ai (χ)= 1 and âi (χ)= 0. We have

f̃i f̂iχ = χ+2[i] and f̂i f̃iχ = χ+[i]+[i−l0+1, . . . , i]−[i−l0+1, . . . , i−1]

with l0 = l0,i (χ) > 1. Similarly, if we assume i = j , ai (χ)= 1 and âi (χ)= 0, we
obtain

f̂i f̃iχ = χ+2[i] and f̃i f̂iχ = χ+[i]+[i+1, . . . , i+l̂0−1]−[i, . . . , i+l̂0−1]

with l̂0 = l̂0,i (χ) > 1. In both cases, f̃i f̂ jχ 6= f̂i f̃iχ , which completes the proof.
Observe that we then have

(4-4) f̃i f̂iχ = ( f̂i )
2χ and f̂i f̃iχ = ( f̃i )

2χ. �
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Proposition 4.8. Consider ψ ∈9e and i, j ∈ Z/eZ.

(1) If i 6= j , we have f̃i f̃ ∗j ψ = f̃ ∗j f̃iψ .

(2) If i = j , set m = ε∗i (ψ). Then

f̃i f̃ ∗i ψ 6= f̃ ∗i f̃iψ ⇐⇒ ϕi ((̃e∗i )
mψ)= ε∗i (ψ)+ 1.

Proof. (1) This is a classical property of crystals. Write θ j (ψ) = (̃e∗j )
mψ ⊗ f̃ m

j b j

where m = ε∗j (ψ). Then by (2-6), we have θ j ( f̃iψ) = f̃i (̃e∗j )
mψ ⊗ f̃ m

j b j for
i 6= j . By Proposition 2.6, we obtain θ j ( f̃ ∗j f̃iψ) = f̃i (̃e∗j )

mψ ⊗ f̃ m+1
j b j . We

have also θ j ( f̃ ∗j ψ)= (̃e
∗

j )
mψ ⊗ f̃ m+1

j b j and since i 6= j , this yields θ j ( f̃i f̃ ∗j ψ)=
f̃i (̃e∗j )

mψ⊗ f̃ m+1
j b j . Hence θ j ( f̃i f̃ ∗j ψ)=θ j ( f̃ ∗j f̃iψ) and we have f̃i f̃ ∗j ψ= f̃ ∗j f̃iψ

because θ j is an embedding of crystals.

(2) Using the same arguments, we derive

θi ( f̃i f̃ ∗i ψ)=
{

f̃i (̃e∗i )
mψ ⊗ f̃ m+1

i bi if ϕi ((̃e∗i )
mψ) > m+ 1,

(̃e∗i )
mψ ⊗ f̃ m+2

i bi if ϕi ((̃e∗i )
mψ)≤ m+ 1,

θi ( f̃ ∗i f̃iψ)=

{
f̃i (̃e∗i )

mψ ⊗ f̃ m+1
i bi if ϕi ((̃e∗i )

mψ) > m,
(̃e∗i )

mψ ⊗ f̃ m+2
i bi if ϕi ((̃e∗i )

mψ)≤ m.

Thus we obtain θi ( f̃i f̃ ∗i ψ)=θi ( f̃ ∗i f̃iψ) except when ϕi ((̃e∗i )
mψ)=m+1. Observe

that we have in this case

(4-5) f̃i f̃ ∗i ψ = ( f̃ ∗i )
2ψ 6= ( f̃i )

2ψ = f̃ ∗i f̃iψ. �

Lemma 4.9. Consider ψ ∈9e and i ∈ Z/eZ. Set wt(ψ)=
∑

i∈Z/eZ

wti (ψ)3i . Then

wti (ψ)= ai (ψ)− ri (ψ)+ âi (ψ)− r̂i (ψ),(4-6)

ϕi (ψ)= ai (ψ)+ âi (ψ)− r̂i (ψ).(4-7)

Proof. For the first equality, set ψ =
∑

l≥1 m(l;i](l; i] =
∑

l≥1 m[i;l)[i; l). During
the cancellation procedures described just before and just after Lemma 4.3, pairs
of segments (R, A) or (R̂, Â) are deleted. Thus assertion 1 is equivalent to the
equality wti (ψ)=1i (ψ), where

(4-8) 1i (ψ)=
∑
l≥1

m(l;i−1]−m(l;i]+
∑
l≥1

m[i+1;l)−m[i;l).

We proceed by induction on |ψ |. For ψ = ∅, (4-8) is satisfied. Now assume the
equalities (4-8) hold for any i ∈ Z/eZ with |ψ | = n. Set ψ ′ = f̃ jψ . We have
wt(ψ ′)= wt(ψ)−α j . Since α j = 23 j −3 j+1−3 j−1, this gives

(4-9) wti (ψ ′)=


wti (ψ) if i /∈ { j − 1, j, j + 1},
wti (ψ)− 2 if i = j,
wti (ψ)+ 1 if i ∈ { j − 1, j + 1}.
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The multisegment ψ ′ is obtained by adding the segments [ j] to ψ or by replacing
a segment (l − 1; j − 1] in ψ by the segment (l, j]. This shows that the relations
(4-9) are also satisfied by the1i (ψ

′)’s. Hence1i (ψ
′)=wti (ψ ′) for any i ∈Z/eZ.

Proof of (4-7): By (2-3), we have wti (ψ) = ϕi (ψ)− εi (ψ). Lemma 4.3 then
gives wti (ψ)= ϕi (ψ)− ri (ψ). Thus ϕi (ψ)= ai (ψ)+ âi (ψ)− r̂i (ψ) by (4-6). �

To prove (4-2), we proceed by induction on n = |ψ |. We easily check that
f̃ ∗i (∅∅∅)= f̂i (∅∅∅)=[i] for the empty multisegment. Now assume that f̃ ∗i (ψ)= f̂i (ψ)

for any multisegment ψ ∈9e such that |ψ | ≤ n.

Proposition 4.10. Under the induction hypothesis we have, for any χ ∈ 9e such
that |χ | ≤ n,

(4-10) f̃i f̂ jχ 6= f̂ j f̃iχ ⇐⇒ f̃i f̃ ∗j χ 6= f̃ ∗j f̃iχ ⇐⇒ i = j and ai (χ)+ âi (χ)= 1.

Proof. Note first that the proposition does not follow directly from the induction
hypothesis for

∣∣ f̃ jχ
∣∣= n+ 1. By this induction hypothesis, we have (̃e∗i )

ε∗i (χ)χ =

(̂ei )̂
ri (χ)χ . Set χ ′ = (̂ei )̂

r j (χ)χ . Formula (4-7) gives

ϕi (χ
′)= ai (χ

′)+ âi (χ
′)− r̂i (χ

′)= ai (χ
′)+ âi (χ)+ r̂i (χ),

for we have r̂i (χ
′) = 0 and âi (χ

′) = âi (χ)+ r̂i (χ). Observe that ε∗i (χ) = r̂i (χ)

be the induction hypothesis. Moreover, we have ai (χ) = ai (χ
′) by (4-3), since

âi (ϕ) > 0 for any ϕ = (̂ei )
aχ with a ∈ {1, . . . , r̂ j (χ)}. This gives the equivalences

ϕi (χ
′)= ε∗i (χ)+ 1 ⇐⇒ ai (χ

′)+ âi (χ)= 1 ⇐⇒ ai (χ)+ âi (χ)= 1.

Now Propositions 4.7 and 4.8 yield (4-10). �

We are now able to prove the main result of this section.

Theorem 4.11. For any multisegmentψ ∈9e and any j ∈Z/eZ, we have f̃ ∗j (ψ)=
f̂ j (ψ).

Proof. We argue by induction on n = |ψ |. We already know that for all j ∈ Z/eZ,
we have f̃ ∗j (∅) = f̂ j (∅) = [ j]. Now assume f̃ ∗j χ = f̂ jχ for any j ∈ Z/eZ and
any χ ∈9e such that |χ | ≤ n. Consider ψ ∈9e such that |ψ | = n+1.There exists
i ∈ Z/eZ and χ ∈9e such that ψ = f̃iχ and |χ | = n.

When i 6= j or ai (χ)+ âi (χ)> 1, we have by Proposition 4.10 f̃ ∗j ψ = f̃ ∗j f̃iχ =

f̃i f̃ ∗j χ . By our induction hypothesis, we can thus write f̃ ∗j ψ = f̃i f̂ jχ . Since
ai (χ)+ âi (χ) > 1, this finally gives f̃ ∗j ψ = f̂ j f̃iχ = f̂ jψ .

When i = j and ai (χ)+ âi (χ)= 1, we obtain f̃ ∗i ψ = f̃ ∗i f̃iχ = f̃i
2ψ by (4-5).

Similarly, we have f̂iψ = f̂i f̃iχ = f̃i
2ψ by (4-4). Thus f̃ ∗i ψ = f̂iψ . �

Remark 4.12. Theorem 4.1 and Proposition 4.10 imply, for any ψ ∈9e, that

f̃i f̃ ∗j ψ = f̃ ∗j f̃iψ ⇐⇒ i 6= j or ai (ψ)+ âi (ψ) > 1.
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5. Affine Hecke algebra of type A and Ariki–Koike algebras

Identification of simple modules. Let v = (v0, . . . , vl−1) ∈ Vl . The Ariki–Koike
algebra Hv

n(ξ) is the quotient Ha
n(ξ)/Iv where Iv =

〈
Pv =

∏l−1
i=0(X1− ξ

vi )
〉
. Then

each simple Hv
n(ξ)-module is isomorphic to a simple Ha

n(ξ)-module of Moda
n .

By the Specht module theory developed by Dipper, James and Mathas [Dipper
et al. 1998], the simple Hv

n(ξ)-modules are parametrized by certain l-partitions of
n called Kleshchev multipartitions. Let8K

e (v) be the set of Kleshchev l-partitions.
Given µ in 8K

e (v), write Dµ for the simple Hv
n(ξ)-module associated to µ under

this parametrization. In fact, we shall need in the sequel the parametrization of
the simple Hv

n(ξ)-modules by FLOTW l-partitions. The correspondence between
the parametrizations by Kleshchev and FLOTW l-partitions has been detailed in
[Jacon and Lecouvey 2009a]. In particular, the bijection

(5-1) 0 :8e(v)→8K
e (v)

is an isomorphism of Uv-crystals which can easily be made explicit. This means
that, given any λ in 8e(v), we can compute 0(λ) directly from λ without using
the crystal structures on 8e(v) and 8K

e (v). We then set D̃λ
= D0(λ). This gives

the natural labeling

Irr(Hv
n(ξ))= {D̃

λ
| λ ∈8e(v)},

which coincides with the parametrization of the simple Hv
n(ξ)-modules in terms of

Geck–Rouquier canonical basic set obtained in [Jacon 2004].
The simple Ha

n(ξ)-module Lψ with ψ ∈ 9e isomorphic to D̃λ is given by the
following result:

Theorem 5.1 [Ariki et al. 2008, Theorem 6.2]. For λ∈8e(v)we have D̃λ
' L fv(λ),

where fv is the crystal embedding of Theorem 2.12.

Conversely, given any simple Ha
n(ξ)-module Lψ , it is natural to search for the

Ariki–Koike algebras Hv
n(ξ) with v in Vl and the simple Hv

n(ξ)-module D̃λ such
that D̃λ

' Lψ . This problem turns out to be more complicated. Indeed we have
first to determine all the multicharges v such that f −1

v (ψ) 6=∅ and next we need to
compute the l-partition λ satisfying fv(λ)=ψ . Note that λ is necessarily unique for
a given v since fv is injective. We will then say that v is an admissible multicharge
with respect to ψ when f −1

v (ψ) 6= ∅. Then λ = f −1
v (ψ) is its corresponding

admissible multipartition. In the next paragraphs, we shall completely solve the
problem of determining all the admissible multicharges and FLOTW multiparti-
tions associated to an aperiodic multisegment ψ . To obtain the corresponding
Kleshchev multipartition, it then suffices to apply 0.
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Admissible multicharges. Letψ ∈9e. To find a multicharge v such that f −1
v (ψ) 6=

∅, we compute ε∗i (ψ) for all i ∈ Z/eZ by using the equality ε∗i (ψ)= r̂i (ψ) estab-
lished in Theorem 4.1. For a multicharge v in Vl and i ∈ Z/eZ, let κi (v) be the
nonnegative integers such that

v = (0, . . . , 0︸ ︷︷ ︸
κ0(v)

, 1, . . . , 1︸ ︷︷ ︸
κ1(v)

, . . . , e− 1, . . . , e− 1︸ ︷︷ ︸
κe−1(v)

).

Then
f −1
v (ψ) 6=∅ ⇐⇒ κi (v)≥ ε

∗

i (ψ) for all i ∈ Z/eZ.

Observe that the multicharge v(ψ) with κi (v(ψ)) = ε
∗

i (ψ) (defined at the end of
Section 2, page 295) is the multicharge of minimal level among all the admissible
multicharges. It is of particular interest for the computation of the involution ] as
we shall see.

Admissible multipartitions. Consider ψ ∈ 9e, l ∈ N and an admissible multi-
charge v ∈ Vl with respect to ψ . The aim of this section is to give a simple
procedure for computing the admissible l-partition λ∈8e(v) associated to ψ (i.e.,
such that fv(λ)= ψ).

We begin with a general lemma on FLOTW l-partitions. Consider v ∈ Vl and
λ∈8e(v) a nonempty l-partition. Let m be the length of the minimal nonzero part
of λ. Let µ be the l-partition obtained by deleting in λ the parts of length m.

Lemma 5.2. The l-partition µ belongs to 8e(v).

Proof. Assume that µ /∈8e(v). Then one of the following situations happens.

(i) There exists c ∈ {0, 1, . . . , l − 1} and i ∈ N such that µc
i < µ

c+1
i+vc+1−vc

. This
implies in particular that µc+1

i+vc+1−vc
6= 0. Since λ belongs to 8e(v), we have

λc
i ≥ λ

c+1
i+vc+1−vc

. Thus λc+1
i+vc+1−vc

= µc+1
i+vc+1−vc

, λc
i = m and µc

i = 0. We have
λc+1

i+vc+1−vc
6= 0 and λc+1

i+vc+1−vc
≤m. This contradicts the fact that µ is obtained

from λ by deleting the minimal nonzero parts.

(ii) There exists i ∈ N such that µl−1
i < µ0

i+v0−vl−1+e. We obtain a contradiction
similarly. �

For ψ ∈ 9e, define l1 > · · · > lr > 0 as the decreasing sequence of (distinct)
lengths of the segments appearing in ψ . For any t = 1, . . . , r , write at for the
number of segments in ψ with length lt . Set ψ0 =∅∅∅ the empty multisegment and
ψr = ψ . For any 1 ≤ t ≤ r − 1 let ψt be the multisegment obtained from ψ by
deleting successively the segments of length lt+1, . . . , lr . Clearly ψt is aperiodic.

Assume λ∈8e(v) is associated toψ . Since fv(λ)=ψ , the sequence l1> · · ·> lr
is also the decreasing sequence of distinct parts appearing in λ. Moreover, for ant
t = 1, . . . , r , λ contains at parts equal to lt . Set λ[r ] = λ. Let λ[t], t = 0, . . . , r−1
be the l-partitions obtained by deleting successively the parts of lengths lr , . . . , lt+1
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in λ. By Lemma 5.2, the l-partitions λ[t], t = 0, . . . , r − 1, all belong to 8e(v).
Since fv(λ)=ψ we must also have fv(λ[t])=ψt for any t=0, . . . , r , by definition
of the map fv (see (2-11)).

We are going to compute λ from ψ by induction on the lengths l1 > · · ·> lr > 0
of the segments of ψ . To do this, we have to determine the sequence of l-partitions
λ[t], t = 0, . . . , r associated to the segments ψt , t = 0, . . . , r . We have λ[0] =∅∅∅.
Thus, it suffices to explain how λ[t+1] ∈8e(v) can be obtained from λ[t] ∈8e(v).

The l-partition λ[t+1] is constructed by adding at+1 parts of lengths lt+1 to λ[t]
such that the parts added give segments [kt+1; lt+1) in the correspondence (2-11).
Since the nonzero parts λ[t] are greater to lt+1, these new parts can only appear at
the bottom of the partitions composing λ[t]. The procedure for computing λ[t+1]
from λ[t] consists of three steps:

(a) For c = 0, . . . , l − 1, consider the integers

ic =min{a ∈ N | λ[t]ca = 0},

that is, the sequence of depths of the partitions appearing in λ.

(b) Let c1, c2, . . . , cp ∈ {0, . . . , l − 1} be such that

kt+1 ≡ 1− ic1 + vc1 ≡ · · · ≡ 1− icp + vcp (mod e),

with p≥at+1. These integers must exist by (2-11), since f −1
v(ψ)(ψt+1) 6=∅. Without

loss of generality, we can assume c1 J · · · J cp, where J is the total order on
{0, . . . , l − 1} such that

(5-2) cJ c′ ⇐⇒
{
vc− ic < vc′ − ic′ or
vc− ic = vc′ − ic′ and c < c′ as integers.

(c) The problem reduces to determining at+1 partitions among the partitions λ[t]c f ,
f =1, . . . , p, which, once completed with a part lt+1, yield an l-partition of8e(v).
Set S[t+1] = {(c1, ic1), . . . , (cat+1, icat+1

)}. Let λ̂[t+1] be the l-partition defined
by

λ̂[t+1]ci =
{
λ[t]ci if (c, i) /∈ S[t+1],
lt+1 if (c, i) ∈ S[t+1].

So λ̂[t+1] is obtained by adding at+1 parts lt+1 at the bottom of the partitions λ[t]c

with c ∈ {c1, . . . , cat+1}. This means that the new parts are added at the bottom of
the at+1 first partitions considered following (5-2).

Lemma 5.3. With the notation above, λ̂[t+1] = λ[t+1].

Proof. It suffices to prove that λ̂[t+1] belongs to 8e(v). Indeed, this will give
fv (̂λ[t+1]) = fv(λ[t+1]) = ψt+1, and thus λ̂[t+1] = λ[t+1], since fv is an
embedding. The second condition in Definition 2.9 of a FLOTW l-partition is
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clearly satisfied, since the multisegment ψt+1 is aperiodic. We have to check the
first condition. So assume for a contradiction that λ̂[t+1] does not satisfy (2-10).

(a) Suppose first that λ̂[t+1]si < λ̂[t+1]s+1
i+vs+1−vs

, where s ∈ {1, . . . , l − 1} and i
is a nonnegative integer. Since λ[t] ∈ 8e(v), we have λ̂[t+1]si = λ[t]

s
i = 0 and

λ[t]s+1
i+vs+1−vs

= 0, λ̂[t+1]s+1
i+vs+1−vs

= lt+1. Thus (s+1, i+vs+1−vs)∈ S[t+1]. We
have two cases to consider.

• Assume i + vs+1− vs > 1 and

λ̂[t+1]s+1
i+vs+1−vs−1 = λ[t]

s+1
i+vs+1−vs−1 > 0.

Then i = 1 or λ̂[t+1]si−1 6= 0. Indeed we must have λ̂[t+1]si−1 = λ̂[t]
s
i−1 ≥

λ[t]s+1
i+vs+1−vs−1 because λ[t] belongs to8e(v). We have (s+1, i+vs+1−vs)∈

S[t+1]. In particular , kt+1 ≡ vs+1− (i+vs+1−vs)+1≡ vs− i+1 (mod e).
Since λ[t]si = 0, this means that (s, i) ∈ S[t+1]. But this is a contradiction,
because by the second choice in (5-2), we should have λ̂[t+1]si = lt+1 6= 0.

• Assume i + vs+1− vs = 1; then i = 1 and we have vs+1 = vs . Thus (s, i) ∈
S[t+1] and we derive a contradiction similarly.

(b) Now suppose we have λ̂[t+1]l−1
i > λ̂[t+1]0i+v0−vl−1+e. The proof is analogous.

We obtain that (l−1, i) ∈ S[t+1] and (0, i+v0−vl−1+e) ∈ S[t+1]. This contra-
dicts the first choice in (5-2). �

By using the procedure above, we are now able to compute the l-partitions λ[t],
t = 1, . . . , r , from ψ and from its associated admissible multicharge v. This gives
a recursive algorithm for computing the admissible l-partition λ from ψ .

Example 5.4. Let e = 4. We consider the aperiodic multisegment

ψ = [0; 6)+ [0; 5)+ [3; 5)+ [1; 4)+ 2[3; 3)+ [0; 3)+ [2; 2)+ [2; 1).

We have ŵ0(ψ) = R̂ Â R̂ R̂, ŵ1(ψ) = Â Â R̂, ŵ2(ψ) = R̂ R̂ Â Â Â and ŵ3(ψ) =

R̂ R̂ Â R̂ R̂ Â. This gives

ε∗0(ψ)= 2, ε∗1(ψ)= 1, ε∗2(ψ)= 0, ε∗3(ψ)= 0.

Thus the multicharge (0, 0, 1) is an admissible multicharge. Actually this is the
one with minimal level. We now use the algorithm to compute the associated
admissible l-partition λ. Using the same notation, we successively obtain

λ[0] = (∅,∅), λ[1] = (6,∅,∅), λ[2] = (6.5, 5,∅), λ[3] = (6.5, 5, 4),

λ[4]= (6.5, 5.3, 4.3.3), λ[5]= (6.5.2, 5.3, 4.3.3), λ[6]= (6.5.2, 5.3.1, 4.3.3).
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This last is the admissible 3-partition associated to the multicharge (0, 0, 1) and
ψ . We easily check that

f(0,0,1)(6.5.2, 5.3.1, 4.3.3)= ψ.

This means that the modules Lψ and D̃λ are isomorphic.
The multicharge (0, 0, 1, 2, 3) is another example of an admissible multicharge

(with level 5) and its associated admissible multipartition is

λ= (6.3, 5.3, 4.3, 2, 5.1).

6. Computation of the involution ]

The generalized Mullineux involution. The twofold symmetry i ↔−i defines a
skew crystal isomorphism from Be(v) to Be(v

]), where v = (v0, . . . , vl−1) and
v] = (−vl−1, . . . ,−v0) belong to Vl ; see (2-9). Given λ ∈ 8e(v), write mv

l (λ) ∈

8e(v
]) for the image of λ under this skew isomorphism. Ford and Kleshchev

[1997] proved that for l = 1, the map mv
l reduces to the Mullineux involution m1

on e-restricted partitions. Thus we call mv
l the generalized Mullineux involution.

From the start of Section 5 we know that the set8K
e (v) of Kleshchev l-partitions

also has the structure of an affine crystal isomorphic to Be(v). In particular the
twofold symmetry i ↔−i also defines a bijection mv,K

l from 8K
e (v) to 8K

e (v
]).

In [Jacon and Lecouvey 2009b], we gave an explicit procedure for finding mv,K
l .

Given λ = (λ0, . . . , λl−1) ∈ 8K
e (v), the l-partition µ = mv,K

l (λ) is obtained by
computing first

ν = (m1(λ
0), . . . ,m1(λ

l−1)),

i.e., the l-partition obtained by applying the Mullineux map to each partition of
λ. In general ν does not belong to 8K

e (v
]) and we have to apply a straightening

algorithm, detailed in §4.3 of the cited paper, to obtain µ.
Now recall from (5-1) the bijection (in fact a crystal isomorphism)

0 :8e(v)→8K
e (v),

which can be made explicit by using the results in [Jacon and Lecouvey 2009a].
This allows one to compute the map mv

l , since

(6-1) mv
l = 0

−1
◦mv,K

l ◦0.

Remark 6.1. The previous procedure yielding the generalized Mullineux map mv
l

can be optimized. In particular the conjugation by 0 can be avoided. Nevertheless,
the pattern of the computation remains essentially the same: it uses the original
Mullineux map m1 and the results in [Jacon and Lecouvey 2009a] on affine crystal
isomorphisms. Since it requires technical combinatorial developments that are not
essential for our purposes, we omit it here.
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Remark 6.2. In the case e = ∞, the map 0 is the identity and m1 is simply
the conjugation operation on the partitions. As observed in [Jacon and Lecouvey
2009b, §4.4], the algorithm for computing mv

l =mv,K
l then simplifies considerably.

The algorithm. Let ψ ∈ 9e. To compute ψ], we first determine an admissible
multicharge v with respect to ψ and the associated admissible multipartition λ.
Then we apply the above algorithm to compute mv

l (λ). It turns out that the com-
plexity of this algorithm considerably increases with the level of v. Hence, the
use of the admissible multicharge v(ψ) with minimal level is preferable. Let us
summarize the different steps of the procedure we have to apply to compute ψ]:

(1) For i ∈ Z/eZ, we compute ε∗i (ψ) using Theorem 4.1, which gives the equal-
ities ε∗i (ψ)= r̂i (ψ) for all i ∈ Z/eZ. We then put

v(ψ)= (0, . . . , 0︸ ︷︷ ︸
ε∗0(v)

, 1, . . . , 1︸ ︷︷ ︸
ε∗1(v)

, . . . , e− 1, . . . , e− 1︸ ︷︷ ︸
ε∗e−1(v)

).

By Theorem 4.1, v(ψ) is an admissible multicharge in Vl .

(2) Using the procedure in the previous section (pages 304–306), we compute the
admissible FLOTW multipartition λ(ψ) with respect to v(λ) and ψ .

(3) We compute the image mv
l (λ(ψ)) of λ(ψ) under the generalized Mullineux

involution (page 307).

(4) We finally obtain the aperiodic multisegment ψ] = fv(ψ)(mv
l (λ(ψ))) by ap-

plying the map (2-12) defined on page 294.

Remark 6.3. In the case e = ∞, our algorithm for computing the Zelevinsky
involution is essentially equivalent to that described in [Mœglin and Waldspurger
1986], except we use multipartitions rather than multisegments.

7. Further remarks

Computation of the Kashiwara involution. We established in Section 4 that the
crystal operators f̃ ∗i and f̂i coincide for any i ∈ Z/eZ. Given ψ ∈ 9e, we can
thus compute ψ∗ by determining a path ψ = f̃i1 · · · f̃in∅∅∅ in Be(∞) from the empty
multisegment to ψ . We then have ψ∗ = f̂i1 · · · f̂in∅∅∅.

By combining the algorithm described in Section 6 for computing ] with the
relation ∗ = τ = ρ ◦ ], we obtain another procedure computing ∗ on Be(∞), not
requiring the determination of a path in the crystal Be(∞).

Example 7.1. For e = 2, the involution ] is just the identity, so the Kashiwara
involution coincides with ρ on Be(∞).
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Crystal commutor for Be(v)⊗Be(v
′). Kamnitzer and Tingley [2009] introduced a

crystal commutor for any symmetrizable Kac–Moody algebra. Recall that a crystal
commutor for Be(v)⊗ Be(v

′) is a crystal isomorphism

σv,v′ : Be(v)⊗ Be(v
′)→ Be(v

′)⊗ Be(v).

This isomorphism is unique if and only if Be(v)⊗ Be(v
′) does not contain two

isomorphic connected components, that is, if the decomposition of the correspond-
ing tensor product is without multiplicity. Such a crystal commutor is defined by
specifying the images of the highest-weight vertices of Be(v)⊗Be(v

′). It is easy to
verify, using (2-7), that the highest-weight vertices of Be(v)⊗ Be(v

′) are precisely
the vertices of the form ∅∅∅ ⊗ λ, with λ ∈ Be(v

′), such that εi (λ) ≤ ri for any
i ∈ Z/eZ (ri is the number of entries in v equal to i). Denote by Hv,v′ the set of
highest-weight vertices in Be(v)⊗ Be(v

′).
For any λ∈ Be(v), write for short λ∗= λ( fv′(λ)∗), where λ is defined by (2-14).

Since ∗ is an involution, we have λ∗ ∈ Be(w), where w ∈ Vl is the multicharge
having εi (λ) entries equal to i and level l=

∑
i∈Z/eZ εi (λ). The condition εi (λ)≤ri

for any i ∈Z/eZ then implies that λ∗∈ Be(v). We have the following theorem which
is the main result of [Kamnitzer and Tingley 2009].

Theorem 7.2. (1) Assume ∅∅∅⊗λ ∈Hv,v′ . Then ∅∅∅⊗λ∗ ∈Hv′,v.

(2) The map σv,v′ :Hv,v′→Hv′,v taking ∅∅∅⊗λ to ∅∅∅⊗λ∗ defines a crystal commutor
for Be(v)⊗ Be(v

′).

The results from Sections 4 and 6 then allow one to compute the crystal com-
mutor of Kamnitzer and Tingley for affine type A crystals.

Example 7.3. Assume e = 2. The crystal commutor σv,v′ satisfies

σv,v′(∅∅∅⊗λ)= (∅∅∅⊗λ(ρ ◦ fv′(λ)) for any ∅∅∅⊗λ∈Hv,v′ .
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