Pacific

Journal of

Mathematics

EIGENVALUES OF THE STOKES OPERATOR VERSUS THE DIRICHLET LAPLACIAN IN THE PLANE

James P. Kelliner

EIGENVALUES OF THE STOKES OPERATOR VERSUS THE DIRICHLET LAPLACIAN IN THE PLANE

James P. Kelliher

Abstract

We show that the \boldsymbol{k}-th eigenvalue of the Dirichlet Laplacian is strictly less than the k-th eigenvalue of the classical Stokes operator (equivalently, of the clamped buckling plate problem) for a bounded domain in the plane having a locally Lipschitz boundary. For a C^{2} boundary, we show that eigenvalues of the Stokes operator with Navier slip (friction) boundary conditions interpolate continuously between eigenvalues of the Dirichlet Laplacian and of the classical Stokes operator.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^{2} with locally Lipschitz boundary Γ. Let σ_{D} be the spectrum of the negative Laplacian with homogeneous Dirichlet boundary conditions (which we refer to as the Dirichlet Laplacian) and let σ_{S} be the spectrum of the Stokes operator with homogeneous Dirichlet boundary conditions (which we refer to as the classical Stokes operator). Equivalently, σ_{S} is the set of eigenvalues of the clamped buckling plate problem [Payne 1955; 1967; Friedlander 2004]. Each spectrum is discrete with

$$
\begin{align*}
\sigma_{D} & =\left\{\lambda_{j}\right\}_{j=1}^{\infty}, & & \text { with } 0<\lambda_{1}<\lambda_{2} \leq \cdots, \tag{1-1}\\
\sigma_{S} & =\left\{v_{j}\right\}_{j=1}^{\infty}, & & \text { with } 0<\nu_{1} \leq v_{2} \leq \cdots, \tag{1-2}
\end{align*}
$$

each eigenvalue repeated according to its multiplicity.
Theorem 1.1. For all positive integers k, we have $\lambda_{k}<\nu_{k}$.
Further, let $\gamma_{k}(\theta)$ be the k-th eigenvalue of the Stokes operator with boundary conditions $(1-\theta) \omega(u)+\theta u \cdot \boldsymbol{\tau}=u \cdot \boldsymbol{n}=0$, where $\omega(u)=\partial_{1} u^{2}-\partial_{2} u^{1}$ is the vorticity of u, and $\boldsymbol{\tau}$ and \boldsymbol{n} are the tangential and normal unit vectors; see Section 8 for details.

[^0]Theorem 1.2. If Γ is C^{2} and has a finite number of components, for each positive integer k, the function γ_{k} is a strictly increasing continuous bijection from [0, 1] onto $\left[\lambda_{k}, \nu_{k}\right]$.

Theorem 1.1 is the analogue of the inequality $\mu_{k+1}<\lambda_{k}$ for $k=1,2, \ldots$, proved by Filonov [2004]. Here, $\sigma_{N}=\left\{\mu_{j}\right\}_{j=1}^{\infty}$ is the spectrum of the negative Laplacian with homogeneous Neumann boundary conditions (which we refer to as the Neumann Laplacian). Then σ_{N} is also discrete with $0=\mu_{1}<\mu_{2} \leq \cdots$. Filonov's inequality applies in \mathbb{R}^{d} for $d \geq 2$ and only requires that Ω have finite measure and that its boundary have sufficient regularity that the embedding of $W^{1}(\Omega)$ in $L^{2}(\Omega)$ is compact, which is slightly weaker than our assumption that Γ is locally Lipschitz. Because of the need to integrate by parts, however, we require the additional regularity.

Filonov's strict inequality is a strengthening of the partial inequality $\mu_{k+1} \leq \lambda_{k}$ proved by L. Friedlander in [1991] using very different techniques.

A fairly direct variational argument shows that $\lambda_{k} \leq v_{k}$; see Remark 5.3 or [Ashbaugh 2004, Equation (1.8)]. We are interested in the strict inequality.

For the unit disk, where one can calculate the eigenfunctions explicitly,

$$
\begin{aligned}
\sigma_{D} & =\left\{j_{n k}^{2}: n=0,1 \ldots, k=1,2, \ldots\right\} \\
\sigma_{S} & =\left\{j_{n k}^{2}: n=1,2 \ldots, k=1,2, \ldots\right\},
\end{aligned}
$$

where $j_{n k}$ is the k-th positive zero of the Bessel function J_{n} of the first kind of order n. Each eigenvalue has multiplicity 2 except for $\left\{j_{0 k}^{2}: k \in \mathbb{N}\right\} \subseteq \sigma_{D}$ and $\left\{j_{1 k}^{2}: k \in \mathbb{N}\right\} \subseteq \sigma_{S}$, which have multiplicity 1 . This gives the ordering

$$
0<\lambda_{1}<\lambda_{2}=\lambda_{3}=v_{1}<\lambda_{4}=\lambda_{5}=v_{2}=v_{3}<\lambda_{6}<\cdots
$$

In this case we have $\lambda_{k+1} \leq v_{k}$ for all k, but $\lambda_{k+1} \nless v_{k}$ for $k=1$. This leaves open the possibility that $\lambda_{k+1} \leq v_{k}$ in full generality. This inequality was conjectured to hold by L. E. Payne many years ago, but has remained unproved.

To prove Theorem 1.1 we adapt Filonov's proof [2004] that $\mu_{k+1}<\lambda_{k}$, which is shockingly direct and simple. As we observed for a disk, $\lambda_{k+1} \nless v_{k}$, which shows that some aspect of Filonov's approach must fail if we attempt to adapt it to obtain Theorem 1.1. In fact, what fails is his use of a function of the form $f=e^{i \omega \cdot x}$ with $|\omega|^{2}=\lambda$ for $\lambda>0$, which has the properties that $\Delta f+\lambda f=0$ and $|\nabla f|^{2}=\lambda|f|$. This serves as an "extra" function that increases the dimension of a subspace of functions that he shows satisfy the bound in the variational formulation of the eigenvalue problem for the Neumann Laplacian. There can be no such function that will serve in general for us (else $\lambda_{k+1}<\nu_{k}$ would hold in general), but we describe the analogue of such a function in our setting in Section 7, show that given its existence we obtain $\lambda_{k+1} \leq \nu_{k}$, and explain why it fails to give $\lambda_{k+1}<\nu_{k}$.

Our proof of $\lambda_{k}<\nu_{k}$ is largely a matter of transforming the eigenvalue problems so that the Stokes operator can play the role the Dirichlet Laplacian plays for Filonov and so that the Dirichlet Laplacian can play the role that the Neumann Laplacian plays for Filonov.

The approach of [Friedlander 1991] can also be adapted to prove Theorem 1.1, at least for C^{1}-boundaries.

In Section 8 , we show that when Γ is C^{2} and has a finite number of components, one can interpolate continuously between λ_{j} and v_{j} using the eigenvalues of the negative Laplacian with Navier slip boundary conditions (Theorem 1.2). These boundary conditions, originally defined by Navier, have recently received considerable attention from fluid mechanics as a physically motivated replacement for Dirichlet boundary conditions, as they allow a thorough characterization of the boundary layer. See for instance [Clopeau et al. 1998; Lopes Filho et al. 2005; Kelliher 2006; Iftimie and Planas 2006; Iftimie and Sueur 2006]. We also discuss Neumann boundary conditions for the velocity and for the vorticity, and Robin boundary conditions for the vorticity.

This paper is organized as follows. We describe the necessary function spaces, trace operators, and related lemmas in Section 2. In Section 3, we define the classical Stokes operator and a variant of it using Lions boundary conditions (vanishing vorticity on the boundary). We show that the eigenvalue problem for the classical Stokes operator is equivalent to the eigenvalue problem for the clamped buckling plate problem. We also describe the strong forms of the associated eigenvalue problems in Section 3, giving the weak forms in Section 4. In Section 5 we describe the variational (min-max) formulations of the eigenvalue problems, using these formulations in Section 6 to prove Theorem 1.1. In Section 7, we describe the properties of the analogue of the function f used by Friedlander and Filonov and prove that its existence would imply the inequality $\lambda_{k+1} \leq v_{k}$. Finally, in Section 8 , we discuss Navier boundary conditions and prove Theorem 1.2.

For a vector field u we define $u^{\perp}=\left(-u^{2}, u^{1}\right)$ and for a scalar field ψ we define $\nabla^{\perp} \psi=\left(-\partial_{2} \psi, \partial_{1} \psi\right)$. Observe that $\left(u^{\perp}\right)^{\perp}=-u$ and $\left(\nabla^{\perp}\right)^{\perp} \psi=-\nabla \psi$. By $\omega(u)$ we mean the vorticity (scalar curl) of u, that is, $\omega(u)=\partial_{1} u^{2}-\partial_{2} u^{1}$. We make frequent use of the identities $\nabla^{\perp} \omega(u)=\Delta u$ and $\omega(u)=-\operatorname{div} u^{\perp}$, the former requiring that u be divergence-free.

Assumption. Unless specifically stated otherwise, we assume throughout that Ω is a bounded domain whose boundary Γ is locally Lipschitz.

2. Function spaces and related facts

Let \boldsymbol{n} be the outward-directed unit vector normal to Γ, and let $\boldsymbol{\tau}$ be the unit tangent vector chosen so that $(\boldsymbol{n}, \boldsymbol{\tau})$ has the same orientation as the Cartesian unit vectors
$\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$. These vectors are defined almost everywhere on Γ since Γ is locally Lipschitz.

The spaces $C^{k, \alpha}(\Omega), C^{k, \alpha}(\bar{\Omega})$, and $W^{s}(\Omega)$ are the usual Hölder and L^{2}-based Sobolev spaces, with k an integer, $0 \leq \alpha \leq 1$, and s any real number. We need to say a few words about these spaces, which can be defined in various equivalent ways.

Define the norms

$$
\begin{aligned}
\|f\|_{C^{k}} & =\sum_{j=0}^{m} \sup _{\Omega} \sup _{|\beta|=j}\left|D^{\beta} u\right| \\
\|f\|_{C^{k, \alpha}} & =\|f\|_{C^{k}}+\sup _{|\beta|=k} \sup _{x \neq y \in \Omega} \frac{\left|D^{\beta} f(x)-D^{\beta} f(y)\right|}{|x-y|^{\alpha}} \quad \text { for } 0<\alpha \leq 1
\end{aligned}
$$

Define $C^{k}(\Omega)=C^{k, 0}(\Omega)$ and $C^{k, \alpha}(\Omega)$ to be the spaces of functions finite under their respective norms; $C^{k, \alpha}(\bar{\Omega})$ is defined similarly. Here β is a multiindex.

When $m \geq 0$ is an integer, $W^{m}(\Omega)$ is the completion of the space of all $C^{\infty}(\Omega)$ functions in the norm

$$
\|f\|_{W^{m}}=\left(\sum_{|\alpha| \leq m}\left\|D^{\alpha} f\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

where α is a multiindex. Equivalently, $W^{m}(\Omega)$ is the space of all functions f such that $D^{\alpha} f$ is in $L^{2}(\Omega)$ for all $|\alpha| \leq m . W_{0}^{m}(\Omega)$ is defined similarly as the closure of $C_{0}^{\infty}(\Omega)$ under the W^{m} norm. (See for instance [Adams 1975, Section 3.1].) $W_{0}^{1}(\Omega)$ can equivalently be defined as all functions in $W^{1}(\Omega)$ whose boundary trace is zero. $W^{-m}(\Omega)$ is the dual space of $W_{0}^{m}(\Omega)$. Fractional Sobolev spaces $W^{s}(\Omega)$ can be defined for instance as in [Adams 1975, Theorem 7.48].

On Ω, we will only need integer-order Hölder and Sobolev spaces, but on Γ we will need to use fractional spaces. Hölder spaces, however, can only be defined when the boundary has sufficient regularity.

We define a bounded domain Ω (or its boundary $\partial \boldsymbol{\Omega}$) to be of class $C^{k, \alpha}$ for $k \geq 0$ an integer and $0 \leq \alpha \leq 1$ if locally there exists a $C^{k, \alpha}$ diffeomorphism ψ that maps Ω into the upper half-plane with $\partial \Omega$ being mapped to an open interval I. We say that φ is in $C^{k, \alpha}(\partial \Omega)$ if $\varphi \circ \psi^{-1}$ is in $C^{k, \alpha}(I)$. We also write C^{k} for $C^{k, 0}$. If Ω is a $C^{k, \alpha}$ domain and φ lies in $C^{j, \beta}(\partial \Omega)$ for $j+\beta \leq k+\alpha$, then there exists an extension of φ to $C^{j, \beta}(\bar{\Omega})$. See [Gilbarg and Trudinger 1977, Section 6.2] for more details. The inverse operation of restricting to the boundary gives an equivalent definition of $C^{k, \alpha}(\partial \Omega)$ as restrictions of functions in $C^{k, \alpha}(\bar{\Omega})$.

When Γ is locally Lipschitz, we will only have need for $W^{s}(\partial \Omega)$ for $s= \pm 1 / 2$ and 0 . We define $W^{1 / 2}(\partial \Omega)$ to be the image (a subspace of $L^{2}(\partial \Omega)$) under the unique continuous extension to $W^{1}(\Omega)$ of the map that restricts the value of a
$C^{\infty}(\bar{\Omega})$ function to the boundary. The existence of this extension was proved by Gagliardo [1957] (or see [Grisvard 1985, Theorem 1.5.1.3]). Alternately, we could define $W^{1 / 2}(\Omega)$ intrinsically as in [Galdi 1994, Section II.3]. We define $W^{-1 / 2}(\partial \Omega)$ to be the space dual to $W^{1 / 2}(\partial \Omega)$ and let $W^{0}(\partial \Omega)=L^{2}(\partial \Omega)$.

For C^{2} boundaries, we will need Corollary 2.2 and hence need to define $W^{s}(\partial \Omega)$ for all real s. We use the intrinsic definition of $W^{s}(\partial \Omega)$ due to J. L. Lions, which applies when the boundary is of class C^{m} for $m \geq 1$. This definition is similar to that for the Hölder spaces defined above, and requires for $s>0$ that each $\varphi \circ \psi^{-1}$ be of class $W^{s}(I)$, where I is the domain of ψ^{-1}. (See [Adams 1975, pages 215217] for details.) For $s<0$ we define $W^{s}(\partial \Omega)$ to be the dual space of $W^{-s}(\partial \Omega)$ and let $W^{0}(\partial \Omega)=L^{2}(\partial \Omega)$ as above. It follows from [Adams 1975, Theorem 7.53] that the two definitions of these spaces are equivalent for $0<s \leq m$ and hence for all real s. (Adams gives the proof only for $s=m-1 / 2$, from which it follows immediately for all $s=j-1 / 2$, where j is an integer with $1 \leq j \leq m$, since if $\partial \Omega$ is of class C^{m} it is of class C^{k} for all $1 \leq k \leq m$. We only need the equivalence for $m=2$ and $s=1 / 2$, so this will suffice.)
Lemma 2.1. Let D be any bounded domain in \mathbb{R}^{n} with C^{∞} boundary. Let φ lie in $C^{k, \alpha}(\bar{D})$ and f lie in $W^{s}(D)$ for $s>0$. Then φf lies in $W^{s}(D)$ as long as

$$
\begin{cases}k+\alpha \geq s & \text { if } s \text { is an integer }, \\ k+\alpha>s & \text { if } s \text { is not an integer } .\end{cases}
$$

Let g lie in $W^{s^{\prime}}(D)$. Then $f g$ lies in $W^{s}(D)$ if $s^{\prime}>s$ and $s^{\prime} \geq n / 2$ or if $s^{\prime} \geq s$ and $s^{\prime}>n / 2$.

Proof. This follows from [Galdi 1994, Theorems 1.4.1.1 and 1.4.4.2].
Corollary 2.2. Assume that Γ is of class $C^{k, \alpha}$. Let $\varphi \in C^{j, \beta}(\partial \Omega)$ for $j+\beta \leq k+\alpha$, and let $f \in W^{s}(\Gamma)$ for $s>0$. Then $\varphi f \in W^{s}(\Gamma)$ as long as

$$
\begin{cases}j+\beta \geq s & \text { if } s \text { is an integer } \\ j+\beta>s & \text { if } s \text { is not an integer. }\end{cases}
$$

If $f \in W^{s}(\Gamma)$ and $\varphi \in W^{s+\epsilon}(\Gamma)$ with $\epsilon>0$, then $\varphi f \in W^{s}(\Gamma)$ if $s \geq 1 / 2$.
Proof. Apply Lemma 2.1 to the functions $\varphi \circ \psi^{-1}$ and $f \circ \psi^{-1}$ with domain $D=I$.

Corollary 2.3. Assume that Γ is C^{2}. Then $g \tau$ and $g n$ are in $W^{1 / 2}(\Gamma)$ for any g in $W^{1 / 2}(\Gamma)$, and $u \cdot \tau$ and $u \cdot \boldsymbol{n}$ are in $W^{1 / 2}(\Gamma)$ for any u in $\left(W^{1 / 2}(\Gamma)\right)^{2}$.
Proof. Because Γ is $C^{2}, \boldsymbol{\tau}$ and \boldsymbol{n} are in $C^{1}=C^{1,0}$. But $1+0>1 / 2$, so the second condition in Corollary 2.2 applies in each case to give the result.

Let $\mathscr{V}=\left\{u \in\left(C_{0}^{\infty}(\Omega)\right)^{2}: \operatorname{div} u=0\right\}$ be the space of complex vector-valued divergence-free test functions on Ω. We let H be the completion of \mathscr{V} in $L^{2}(\Omega)$
and V be the completion of \mathscr{Q} in $W_{0}^{1}(\Omega)$. These definitions of H and V are valid for arbitrary domains. We will also find use for the space

$$
\begin{equation*}
E(\Omega)=\left\{v \in\left(L^{2}(\Omega)\right)^{2}: \operatorname{div} v \in L^{2}(\Omega)\right\} \tag{2-1}
\end{equation*}
$$

with $\|u\|_{E(\Omega)}=\|u\|_{L^{2}(\Omega)}+\|\operatorname{div} u\|_{L^{2}(\Omega)}$.
We use (\cdot, \cdot) to mean the inner product $(u, v)=\int_{\Omega} u \bar{v}$ in $L^{2}(\Omega)$ or sometimes to mean the pairing of v in a space Z with u in Z^{*} or of v in $\mathscr{D}(\Omega)$ with u in $\mathscr{D}^{\prime}(\Omega)$. Which is meant is stated if it is not clear from context.

The integrations by parts we will make are justified by Lemma 2.4, which is [Temam 1984, Theorem 1.2, page 7] for locally Lipschitz domains. (Temam states the theorem for C^{2} boundaries but the proof for locally Lipschitz boundaries is the same, using a trace operator for Lipschitz boundaries in place of that for C^{2} boundaries: see [Galdi 1994, pages 117-119, specifically Theorem 2.1, page 119].)
Lemma 2.4. There is an extension of the trace operator $\gamma_{n}:\left(C_{0}^{\infty}(\bar{\Omega})\right)^{2} \rightarrow C^{\infty}(\Gamma)$, $u \mapsto u \cdot \boldsymbol{n}$, on Γ to a continuous linear operator from $E(\Omega)$ onto $W^{-1 / 2}(\Gamma)$. The kernel of γ_{n} is the space $E_{0}(\Omega)$ - the completion of $C_{0}^{\infty}(\Omega)$ in the $E(\Omega)$ norm. For all u in $E(\Omega)$ and f in $W^{1}(\Omega)$,

$$
\begin{equation*}
(u, \nabla f)+(\operatorname{div} u, f)=\int_{\Gamma}(u \cdot \boldsymbol{n}) \bar{f} \tag{2-2}
\end{equation*}
$$

Remark 2.5. In (2-2) and in what follows we usually do not explicitly include the trace operators. On the right side of (2-2), for instance, $u \cdot \boldsymbol{n}$ is actually $\gamma_{\boldsymbol{n}} u$, which is thus in $W^{-1 / 2}(\Gamma)$, and f is actually $\gamma_{0} f$, where γ_{0} is the usual trace operator from $W^{s}(\Omega)$ to $W^{s-1 / 2}(\Gamma)$ for all $s>1 / 2$. Also, the boundary integral should more properly be written as a pairing in the duality between $W^{-1 / 2}(\Gamma)$ and $W^{1 / 2}(\Gamma)$ of $u \cdot \boldsymbol{n}$ and f.
Lemma 2.6. $W^{s}(\Omega)$ is compactly embedded in $W^{r}(\Omega)$ for all $s>r \geq 0$.
Proof. This is an instance of the Rellich-Kondrachov theorem. That it holds for a bounded domain with locally Lipschitz boundary follows, for instance, from the comments on [Adams 1975, page 67 and Theorem 6.2, page 144].

We will use several times a basic result of elliptic regularity theory:
Lemma 2.7. Let f lie in $W^{-1}(\Omega)$. There exists a unique ψ in $W_{0}^{1}(\Omega)$ that is a weak solution of $\Delta \psi=f$. Furthermore, $\|\psi\|_{W^{1}(\Omega)} \leq C\|f\|_{W^{-1}(\Omega)}$. When Γ is C^{2} and f is in $L^{2}(\Omega)$,

$$
\|\psi\|_{W^{2}(\Omega)} \leq C\|\Delta \psi\|_{L^{2}(\Omega)}
$$

Proof. See for instance [Kesavan 1989, pages 118-121] for general bounded open domains and [Evans 1998, Theorem 4 and the remark following it on page 317] for C^{2} boundaries.

Poincaré's inequality holds in both its classical forms:
Lemma 2.8. Let f lie in $W_{0}^{1}(\Omega)$ or else lie in $W^{1}(\Omega)$ with $\int_{\Omega} f=0$. Then there exists a constant C such that $\|f\|_{L^{2}(\Omega)} \leq C\|\nabla f\|_{L^{2}(\Omega)}$.
Proof. See [Galdi 1994, Theorem 4.1 on page 49, and Theorem 4.3 on page 54].
Since Γ is locally Lipschitzian, we can define

$$
\begin{aligned}
\hat{H} & =\left\{u \in\left(L^{2}(\Omega)\right)^{2}: \operatorname{div} u=0 \text { in } \Omega, \gamma_{n} u=0 \text { on } \Gamma\right\}, \\
\hat{V} & =\left\{u \in\left(W^{1}(\Omega)\right)^{2}: \operatorname{div} u=0 \text { in } \Omega, \gamma_{0} u=0 \text { on } \Gamma\right\} .
\end{aligned}
$$

By the continuity of the trace operators γ_{n} and γ_{0}, it follows that $H \subseteq \hat{H}$ and $V \subseteq \hat{V}$. When Γ is a bounded domain with locally Lipschitz boundary, $H=\hat{H}$ and $V=\hat{V}$. For $H=\hat{H}$, see [Temam 1984, Theorem 1.4 in Chapter 1]. That $V=\hat{V}$ is proved in [Maslennikova and Bogovskiĭ 1983]; see the comments of [Galdi 1994, page 148] and [Adams 1975, page 67].

Lemma 2.9. Assume that u is in $\left(\mathscr{D}^{\prime}(\Omega)\right)^{2}$ with $(u, v)=0$ for all v in \mathscr{V}. Then $u=\nabla$ p for some p in $\mathscr{D}^{\prime}(\Omega)$. If u is in $\left(L^{2}(\Omega)\right)^{2}$ then p is in $W^{1}(\Omega)$; if u is in H, then p is in $W^{1}(\Omega)$ and $\Delta p=0$.

Proof. For u in $\left(\mathscr{D}^{\prime}(\Omega)\right)^{2}$, see [Temam 1984, Proposition 1.1, page 10]. For u in $\left(L^{2}(\Omega)\right)^{2}$, the result is a combination of [Galdi 1994, Theorem 1.1, page 103, and Remark 4.1, page 54]; also see [Temam 1984, Remark 1.4, page 11].

We will also find a need for the spaces

$$
\begin{aligned}
& Y=Y^{1}=H \cap W^{1}(\Omega), \quad X=X^{1}=\left\{u \in H: \omega(u) \in L^{2}(\Omega)\right\}, \\
& Y^{2}=\left\{u \in Y: \omega \in W^{1}(\Omega)\right\}, \quad X^{2}=\left\{u \in H: \omega(u) \in W^{1}\right\}, \\
& Y_{0}^{2}=\left\{u \in Y: \omega(u) \in W_{0}^{1}\right\}, \quad X_{0}^{2}=\left\{u \in H: \omega(u) \in W_{0}^{1}\right\},
\end{aligned}
$$

with the obvious norms on each space. We give Y the $W^{1}(\Omega)$ norm, but place no norm on the other spaces. When Γ is C^{2} and has a finite number of components, the X and Y spaces coincide as in Corollary 2.16.

The average value of any vector u in H - and hence in all of our spaces - is zero, as can be seen by integrating $u \cdot e_{i}$ over Ω, where $e_{i}=\nabla x_{i}$ is a coordinate vector, and applying Lemma 2.4. Thus, Poincaré's inequality holds for Y and V so we can, and will, use $\|u\|_{Y}=\|u\|_{V}=\|\nabla u\|_{L^{2}(\Omega)}$ in place of the $W^{1}(\Omega)$ norm for these two spaces.

Let $H_{c}=\{v \in H: \omega(v)=0\}$ and, noting that H_{c} is a closed subspace of H, let H_{0} be the orthogonal complement of H_{c} in H. Thus, $H=H_{0} \oplus H_{c}$ is an orthogonal decomposition of H. Observe that $V \cap H_{0}=V$, and when Ω is simply connected, $H=H_{0}$.

Lemma 2.10. For any u in H_{0} there exists a stream function ψ in $W^{1}(\Omega)$ for u, that is, $u=\nabla^{\perp} \psi$, and ψ is unique up to the addition of a constant. Moreover,

$$
H_{0}=\left\{\nabla^{\perp} \psi: \psi \in W_{0}^{1}(\Omega)\right\}=\nabla^{\perp} W_{0}^{1}(\Omega)
$$

If u is in $H_{0} \cap Y$, then ψ can be taken to lie in $W_{0}^{1}(\Omega) \cap W^{2}(\Omega)$, and if u is in V, then ψ can be taken to lie in $W_{0}^{2}(\Omega)$.

Proof. Let u be in H_{0}, and let ψ in $W_{0}^{1}(\Omega)$ solve $\Delta \psi=\omega(u) \in W^{-1}(\Omega)$ as in Lemma 2.7. Letting $w=\nabla^{\perp} \psi \in L^{2}(\Omega)$, we have $\omega(w)=\Delta \psi=\omega(u)$, $\operatorname{div} w=0$, and $w \cdot \boldsymbol{n}=0$ on Γ, so w is in H. Thus, w is a vector in H with the same vorticity as u, meaning that $u-w$ is in H_{c}.

We claim that w is in H_{0}. To see this, let v be in H_{c}. Then

$$
(w, v)=\left(\nabla^{\perp} \psi, v\right)=\left(-\nabla \psi, v^{\perp}\right)=\left(\psi, \operatorname{div} v^{\perp}\right)+\int_{\Gamma}\left(v^{\perp} \cdot \boldsymbol{n}\right) \psi=0
$$

The last equality follows from $\operatorname{div} v^{\perp}=\omega(v)=0$ (showing also that v^{\perp} is in $E(\Omega)$ and allowing integration by parts via Lemma 2.4) and $\psi=0$ on Γ. Since this is true for all v in H_{c}, it follows that w is in H_{0}.

Thus, both u and w are in H_{0}, so $u-w$ is in H_{0}. But we already saw that $u-w$ is in H_{c}, so $u-w=0$.

What we have shown is both the existence of a stream function and the expression for H_{0}, the uniqueness of the stream function up to a constant being then immediate. The additional regularity of ψ for u in $H_{0} \cap Y$ or V follows simply because $\nabla \psi=-u^{\perp}$ is in $W^{1}(\Omega)$. For u in V it is also true that $\nabla \psi=0$ on Γ, so ψ can be taken to lie in $W_{0}^{2}(\Omega)$.

Closely related to Lemma 2.10 is Lemma 2.11, a form of the Biot-Savart law.
Lemma 2.11. The operator ω is a continuous linear bijection between the following pairs of spaces:

$$
H_{0} \text { and } W^{-1}(\Omega), \quad H_{0} \cap X \text { and } L^{2}(\Omega), \quad H_{0} \cap X_{0}^{2} \text { and } W_{0}^{1}(\Omega)
$$

Proof. That ω has the domains and ranges stated and that it is continuous follow directly from the definitions of the spaces.

For ω in $W^{-1}(\Omega)$, let ψ in $W_{0}^{1}(\Omega)$ solve $\Delta \psi=\omega$ on Ω as in Lemma 2.7, and let $u=\nabla^{\perp} \psi$. Then $\omega(u)=\omega$ and if $\omega(v)=\omega$ as well for v in H_{0}, then $\omega(u-v)=0$, implying that $u-v$ is in H_{c}. But $u-v$ is also in H_{0} so $u-v=0$. Thus, $u=\omega^{-1}(\omega)$ with $\|u\|_{H}=\|\nabla \psi\|_{L^{2}} \leq C\|\omega\|_{W^{-1}(\Omega)}$ by Lemma 2.7, showing that ω^{-1} is defined and bounded and hence continuous, since it is clearly linear.

For ω in $L^{2}(\Omega)$ or $W_{0}^{1}(\Omega)$ the same argument applies, though now we use either

$$
\begin{aligned}
\|u\|_{X} & =\|\nabla \psi\|_{L^{2}}+\|\omega(u)\|_{L^{2}} \leq C\|\omega\|_{L^{2}}+\|\omega\|_{L^{2}} \\
\text { or }\|u\|_{X_{0}^{2}} & =\|\nabla \psi\|_{L^{2}}+\|\omega(u)\|_{W^{1}} \leq C\|\omega\|_{L^{2}}+\|\omega\|_{W^{1}} \leq C\|\omega\|_{W^{1}}
\end{aligned}
$$

to demonstrate the continuity of ω^{-1}.
Corollary 2.12. X is dense and compactly embedded in H, and X_{0}^{2} is dense and compactly embedded in X.
Proof. Let $A=L^{2}(\Omega)$ and $B=W^{-1}(\Omega)$ or $A=W_{0}^{1}(\Omega)$ and $B=L^{2}(\Omega)$. In both cases, A is dense and compactly embedded in B. Density is transferred to the image spaces $\omega^{-1}(A)$ and $\omega^{-1}(B)$ by virtue of ω^{-1} being a continuous surjection. The property that the spaces are compactly embedded transfers to the image spaces by virtue of ω being bounded (since it is continuous linear) along with ω^{-1} being a continuous surjection.

We also have the following useful decomposition of $L^{2}(\Omega)$, variously named after some combination of Leray, Helmholtz, and Weyl.
Lemma 2.13. For any u in $\left(L^{2}(\Omega)\right)^{2}$, there exists a unique v in H and p in $W^{1}(\Omega)$ such that $u=v+\nabla p$.

Proof. This follows, for instance, from [Galdi 1994, Theorem 1.1, page 107], which holds for an arbitrary domain, along with Lemma 2.9.

The mapping $u \mapsto v$, with u and v as in Lemma 2.13, defines the Leray projector \mathscr{P} from $\left(L^{2}(\Omega)\right)^{2}$ onto H.

A slight strengthening of Poincaré's inequality holds on Y (and so on V) when Ω is simply connected:

Lemma 2.14. For any u in $H_{0} \cap X$,

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)} \leq C\|\omega(u)\|_{L^{2}(\Omega)}, \tag{2-3}
\end{equation*}
$$

and when Γ is C^{2},

$$
\begin{equation*}
\|\nabla u\|_{L^{2}(\Omega)} \leq C\|\omega(u)\|_{L^{2}(\Omega)} . \tag{2-4}
\end{equation*}
$$

Proof. As in the proof of Lemma 2.10, $u=\nabla^{\perp} \psi$ for ψ in $W_{0}^{1}(\Omega)$ with $\Delta \psi=\omega(u)$ in $L^{2}(\Omega)$, and $\|\psi\|_{L^{2}(\Omega)} \leq\|\psi\|_{W^{1}(\Omega)} \leq C\|\omega(u)\|_{L^{2}(\Omega)}$ by Lemma 2.7. But $\nabla \psi$ is in $E(\Omega)$ and ψ is in $W^{1}(\Omega)$ so by Lemma 2.4 we can integrate by parts to give $(\omega(u), \psi)=(\Delta \psi, \psi)=-(\nabla \psi, \nabla \psi)=-\|u\|_{L^{2}(\Omega)}^{2}$. Hence by the CauchySchwarz inequality,

$$
\|u\|_{L^{2}(\Omega)}^{2} \leq\|\psi\|_{L^{2}(\Omega)}\|\omega(u)\|_{L^{2}(\Omega)} \leq C\|\omega(u)\|_{L^{2}(\Omega)}^{2}
$$

giving Equation (2-3).

When Γ is C^{2}, using Lemma 2.7,

$$
\|\nabla u\|_{L^{2}(\Omega)}=\|\nabla \nabla \psi\|_{L^{2}(\Omega)} \leq\|\psi\|_{W^{2}(\Omega)} \leq C\|\Delta \psi\|_{L^{2}(\Omega)}=C\|\omega(u)\|_{L^{2}(\Omega)},
$$ giving Equation (2-4).

Corollary 2.15. If Γ is C^{2} and has a finite number of components, then any u in H with $\omega(u)$ in $L^{2}(\Omega)$ is also in Y, and

$$
\|\nabla u\|_{L^{2}(\Omega)} \leq C\left(\|\omega(u)\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right) .
$$

Proof. This follows from the basic estimate of elliptic regularity theory.
Corollary 2.16. When Γ is C^{2} and has a finite number of components,

$$
\begin{array}{ll}
X=Y, & X^{2}=Y^{2}=H \cap W^{2}(\Omega) \\
& X_{0}^{2}=Y_{0}^{2}=\left\{u \in H \cap W^{2}(\Omega): \omega(u)=0 \text { on } \Gamma\right\}
\end{array}
$$

Proof. The first identity follows from Corollary 2.15 and the second and third from the identity $\Delta u=\nabla^{\perp} \omega$ and Lemma 2.7.

We will find a need for the trace operator of Proposition 2.17 in Section 8.
Proposition 2.17. Assume that Γ is C^{2} and has a finite number of components, and let

$$
U=\left\{\omega \in L^{2}(\Omega): \Delta \omega \in L^{2}(\Omega)\right\}
$$

endowed with the norm $\|\omega\|_{U}=\|\omega\|_{L^{2}(\Omega)}+\|\Delta \omega\|_{L^{2}(\Omega)}$. There exists a linear continuous trace operator $\gamma_{\omega}: U \rightarrow W^{-1 / 2}(\Gamma)$ such that $\gamma_{\omega} \omega$ is the restriction of ω to Γ for all ω in $C^{\infty}(\bar{\Omega})$. For any α in $W_{0}^{1}(\Omega) \cap W^{2}(\Omega)$,

$$
\begin{equation*}
\left(\gamma_{\omega} \omega, \nabla \alpha \cdot \boldsymbol{n}\right)_{W^{-1 / 2}(\Gamma), W^{1 / 2}(\Gamma)}=(\Delta \alpha, \omega)-(\alpha, \Delta \omega) . \tag{2-5}
\end{equation*}
$$

Lemma 2.18. For any f in $L^{2}(\Omega)$ and a in $\left(W^{1 / 2}(\Gamma)\right)^{2}$ satisfying the compatibility condition

$$
\int_{\Omega} f=\int_{\Gamma} a \cdot \boldsymbol{n}
$$

there exists a (nonunique) solution v in $W^{1}(\Omega)$ to $\operatorname{div} v=f$ in Ω and $v=a$ on Γ.
Proof. This follows from [Galdi 1994, Lemma 3.2 on pages 126-127, Remark 3.3 on pages 128-129, and Exercise 3.4 on page 131]. See also the comment of [Adams 1975, page 67].

Lemma 2.19. Define $\gamma_{\tau}: Y \rightarrow L^{2}(\Gamma)$ by $\gamma_{\tau} v=\gamma_{0} v \cdot \tau$ for any v in Y. When Γ is $C^{2}, \quad \gamma_{\tau}$ maps Y onto $W^{1 / 2}(\Gamma)$. When Γ is C^{2} and has a finite number of components, $\gamma_{\tau}\left(H_{0} \cap Y\right)$ is dense in $W^{1 / 2}(\Gamma)$.

Proof. Assume that Γ is C^{2} and let g lie in $W^{1 / 2}(\Gamma)$. Then since Γ is $C^{2}, g \tau$ is also in $W^{1 / 2}(\Gamma)$ by Corollary 2.3, and by Lemma 2.18 there exists a vector field v in $W^{1}(\Omega)$ with $\operatorname{div} v=\int_{\Gamma} g \boldsymbol{\tau} \cdot \boldsymbol{n}=0$ and $v=g \boldsymbol{\tau}$ on Γ. Thus, in fact, v lies in Y, which shows that $\gamma_{\tau}(Y)$ maps onto $W^{1 / 2}(\Gamma)$. If Γ has a finite number of components, then $H_{c} \cap Y$ is finite-dimensional and so is its image under this map; hence the image of $H_{0} \cap Y$ is dense in $W^{1 / 2}(\Gamma)$.
Proof of Proposition 2.17. Assume first that $\omega \in C^{\infty}(\bar{\Omega})$, let $\alpha \in W_{0}^{1}(\Omega) \cap W^{2}(\Omega)$, and let $v=\nabla^{\perp} \alpha$, so that v lies in $H_{0} \cap Y$ with $\Delta \alpha=\omega(v)$. Then

$$
\begin{aligned}
(\alpha, \Delta \omega) & =-(\nabla \alpha, \nabla \omega)+\int_{\Gamma}(\nabla \bar{\omega} \cdot \boldsymbol{n}) \alpha=-(\nabla \alpha, \nabla \omega) \\
& =(\Delta \alpha, \omega)-\int_{\Gamma}(\nabla \bar{\alpha} \cdot \boldsymbol{n}) \omega=(\Delta \alpha, \omega)-\int_{\Gamma} \omega \bar{v} \cdot \boldsymbol{\tau}
\end{aligned}
$$

From this it follows that for any choice of v (equivalently, by Lemma 2.10, of α) with a given value of $\bar{v} \cdot \boldsymbol{\tau}$ on Γ, the value of $(\Delta \alpha, \omega)-(\alpha, \Delta \omega)$ is the same.

Now, because of Lemma 2.19, we can define $\gamma_{\omega}(\omega)$ to be that unique element of $W^{-1 / 2}(\Gamma)$ such that Equation (2-5) holds. This gives a linear mapping from U to $W^{-1 / 2}(\Gamma)$ whose restriction to $C^{\infty}(\bar{\Omega})$ is the classical trace.

To establish the continuity of this mapping, let a be any element of $W^{1 / 2}(\Gamma)$. If Ω is simply connected, then $a=v \cdot \boldsymbol{\tau}=\nabla^{\perp} \alpha \cdot \boldsymbol{\tau}=\nabla \alpha \cdot \boldsymbol{n}$ for some v in Y or equivalently for some α in $W_{0}^{1}(\Omega) \cap W^{2}(\Omega)$. Then

$$
\begin{gathered}
\left(\gamma_{\omega} \omega, a\right)_{W^{-1 / 2}(\Gamma), W^{1 / 2}(\Gamma)}=|(\Delta \alpha, \omega)-(\alpha, \Delta \omega)| \leq C\|\Delta \alpha\|_{L^{2}(\Omega)}\|\omega\|_{U} \\
\quad \leq C\|\nabla \alpha\|_{W^{1}(\Omega)}\|\omega\|_{U} \leq C\|\nabla \alpha\|_{W^{1 / 2}(\Gamma)}\|\omega\|_{U} \\
\quad=C\|\nabla \alpha \cdot \boldsymbol{n}\|_{W^{1 / 2}(\Gamma)}\|\omega\|_{U}=C\|a\|_{W^{1 / 2}(\Gamma)}\|\omega\|_{U} .
\end{gathered}
$$

Here, we Lemma 2.7 in the first and second inequalities and the continuity of the inverse of the standard trace operator in the third inequality. Also, the second-tolast equality holds because α has the constant value of zero on Γ, so $\nabla \alpha \cdot \boldsymbol{\tau}=0$ and $|\nabla \alpha|=|\nabla \alpha \cdot \boldsymbol{n}|$. This shows that the mapping is bounded and hence continuous.

When Ω is multiply connected, the argument is the same except that we must employ a simple density argument using Lemma 2.19.

3. Strong formulations of three eigenvalue problems

Assume for the moment that Γ is C^{2}. Then, given any u in $V \cap W^{2}(\Omega)$, the (classical) Stokes operator A_{S} applied to u is that unique element $A_{S} u$ of H such
that $\Delta u+A_{S} u=\nabla p$ for some harmonic pressure field p. Equivalently, $A_{S}=-\mathscr{P} \Delta$, \mathscr{P} being the Leray projector defined following Lemma 2.13. The operator A_{S} maps $V \cap W^{2}(\Omega)$ onto H (see for instance [Foias et al. 2001, pages 49-50] for more details), is strictly positive definite, self-adjoint, and as a map from V to V^{*}, the composition of A_{S}^{-1} with the inclusion map of V into V^{*} is compact. It follows that $\left\{u_{j}\right\}$ is complete in H (and in V) with corresponding eigenvalues $\left\{v_{j}\right\}$ satisfying $0<\nu_{1} \leq \nu_{2} \leq \cdots$ and $\nu_{j} \rightarrow \infty$ as $j \rightarrow \infty$. Also, the eigenfunctions are orthogonal in both H and V.

When Γ is only locally Lipschitz, $-\mathscr{P} \Delta$ is only known to be symmetric on $V \cap$ $W^{2}(\Omega)$, not self-adjoint. Thus, we define A_{S} to be the Friedrichs extension, as an operator on H, of $-\Delta$ defined on $V \cap C_{0}^{\infty}(\Omega)$. A concrete description of its domain, $D\left(A_{S}\right)$, in terms of more familiar spaces is not known, though $V \cap H^{2}(\Omega) \subseteq$ $D\left(A_{S}\right) \subseteq V$. In three dimensions, tighter inclusions have been obtained; see for instance [Brown and Shen 1995]. In any case, basic properties of the Friedrich extension insure that A_{S} is strictly positive definite, self-adjoint, and maps $D\left(A_{S}\right)$ bijectively onto H.

Definition 3.1. A strong eigenfunction $u_{j} \in V \cap X^{2}$ of A_{S} with eigenvalue $v_{j}>0$ satisfies, for some p_{j} in $W^{1}(\Omega)$,

$$
\left\{\begin{array}{rlrl}
\Delta u_{j}+v_{j} u_{j} & =\nabla p_{j}, & \Delta p_{j}=0, & \operatorname{div} u_{j}=0 \tag{3-1}\\
& & \text { in } \Omega \\
u_{j} & =0 & & \text { on } \Gamma .
\end{array}\right.
$$

Taking the curl of (3-1), we see that the vorticity $\omega_{j}=\omega\left(u_{j}\right)$ satisfies

$$
\left\{\begin{align*}
\Delta \omega_{j}+v_{j} \omega_{j}=0 & \text { in } \Omega \tag{3-2}\\
u_{j}=0 & \text { on } \Gamma .
\end{align*}\right.
$$

That is, ω_{j} is an eigenfunction of the negative Laplacian, but with boundary conditions on the velocity u_{j}.

Let ψ_{j} be the stream function for u_{j} given by Lemma 2.10, so $u_{j}=\nabla^{\perp} \psi_{j}$. Then $\omega_{j}=\Delta \psi_{j}$ and $\nabla \psi_{j}=-u_{j}^{\perp}=0$ on Γ. Since ψ_{j} is determined only up to a constant, we can then assume that $\psi_{j}=0$ on Γ. Thus, ψ_{j} satisfies

$$
\left\{\begin{align*}
\Delta \Delta \psi_{j}+v_{j} \Delta \psi_{j}=0 & \text { in } \Omega \tag{3-3}\\
\nabla \psi_{j} \cdot \boldsymbol{n}=\psi_{j}=0 & \text { on } \Gamma .
\end{align*}\right.
$$

This is the eigenvalue problem for the clamped buckling plate; see for instance [Payne 1967; Ashbaugh 2004].

Temam exploits the similar correspondence between the Stokes problem and the biharmonic problem in the proof of [Temam 1984, Proposition I.2.3] to get a relatively simple proof of the regularity of solutions to the Stokes problem in two dimensions with at least C^{2} regularity of the boundary. Also, as pointed out in
[Ashbaugh 2004], there is a similar correspondence between the eigenvalue problems for the Dirichlet Laplacian and (3-3) with the boundary condition $\nabla \psi_{j} \cdot \boldsymbol{n}=0$ replaced by $\Delta \psi_{j}=0$. We use this correspondence in the proof of Theorem 1.1, though we view the correspondence as being that given in Lemma 2.11, instead.

What we have shown is that given u_{j} satisfying (3-1), the corresponding stream function ψ_{j} satisfies (3-3). Conversely, given ψ_{j} satisfying (3-3), the functions $\omega_{j}=\Delta \psi_{j}$ and $u_{j}=\nabla^{\perp} \psi_{j}$ satisfy (3-2) and one can show, at least for sufficiently smooth boundaries, that u_{j} satisfies (3-1). Thus, the eigenvalue problems for the Stokes operator and the clamped buckling plate are equivalent.

Returning to (3-1), if we use instead the boundary conditions employed by J.-L. Lions [1969, pages 87-98] and P.-L. Lions [1996, pages 129-131], namely

$$
\begin{equation*}
u_{j} \cdot \boldsymbol{n}=0 \quad \text { and } \quad \omega_{j}=0 \text { on } \Gamma \tag{3-4}
\end{equation*}
$$

which we call Lions boundary conditions, we obtain the eigenvalue problem for the Dirichlet Laplacian of Definition 3.2.

Definition 3.2. A strong eigenfunction $\omega_{j} \in W_{0}^{1}(\Omega)$ of the Dirichlet Laplacian $-\Delta_{D}$ with eigenvalue $\lambda_{j}>0$ satisfies

$$
\left\{\begin{align*}
\Delta \omega_{j}+\lambda_{j} \omega_{j}=0 & \text { in } \Omega \tag{3-5}\\
\omega_{j}=0 & \text { on } \Gamma .
\end{align*}\right.
$$

Using Lemma 3.4, we can recover the divergence-free velocity u_{j} in X_{0}^{2} uniquely from a vorticity in $W_{0}^{1}(\Omega)$ under the constraint that $u_{j} \cdot \boldsymbol{n}=0$, leading to the eigenvalue problem in Definition 3.3 for an operator A_{L}, which we will call the Stokes operator with Lions boundary conditions. (We use λ_{j}^{*} in place of λ_{j} because of the presence of zero eigenvalues.)
Definition 3.3. A strong eigenfunction $u_{j} \in X_{0}^{2}$ of A_{L} with eigenvalue $\lambda_{j}^{*}>0$ satisfies

$$
\left\{\begin{array}{rll}
\Delta u_{j}+\lambda_{j}^{*} u_{j}=0, & \operatorname{div} u_{j}=0 & \text { in } \Omega, \tag{3-6}\\
u_{j} \cdot \boldsymbol{n}=0, & \omega\left(u_{j}\right)=0 & \text { on } \Gamma .
\end{array}\right.
$$

What we have done is to define the eigenvalue problem for the operator A_{L} before defining the operator itself. In fact, $A_{L}: X_{0}^{2} \rightarrow H$ with $A_{L} u=-\Delta u$. That is, A_{L} is simply the negative Laplacian on X_{0}^{2}.

To see that A_{L} is well defined, observe that $\Delta u \cdot \boldsymbol{n}=\nabla^{\perp} \omega(u) \cdot \boldsymbol{n}=-\nabla \omega(u) \cdot \boldsymbol{\tau}=0$ for any u in X_{0}^{2}, since $\omega(u)$ is constant (namely, zero) along Γ. (Another way of viewing this is that there is no need for a Leray projector in X_{0}^{2}, making the Stokes operator on X_{0}^{2} akin to the Stokes operator on $H \cap W^{2}(\Omega)$ for a periodic domain, which of course has no boundary. This is one reason that the use of the boundary conditions of (3-4) in [Lions 1969] and [Lions 1996] is so effective.)

Lemma 3.4. Given ω in $W_{0}^{1}(\Omega)$ that satisfies

$$
\left\{\begin{aligned}
\Delta \omega+\lambda \omega=0 & \text { in } \Omega \\
\omega=0 & \text { on } \Gamma
\end{aligned}\right.
$$

with $\lambda>0$, there exists a unique u in X_{0}^{2} such that $\omega=\omega(u)$ and

$$
\left\{\begin{aligned}
\Delta u+\lambda u=0, & \operatorname{div} u=0 \quad \text { in } \Omega, \\
u \cdot \boldsymbol{n}=0, & \omega(u)=0 \quad \text { on } \Gamma .
\end{aligned}\right.
$$

Proof. Let $v=\omega^{-1}(\omega)$, which lies in $H_{0} \cap X_{0}^{2}$ by Lemma 2.11. Then $\Delta v=\nabla^{\perp} \omega$ is in $L^{2}(\Omega)$, so $w=\Delta v+\lambda v$ is a divergence-free vector field in $L^{2}(\Omega)$. Hence, by Lemma 2.13, w=h+ $p p$ for a unique vector field h in H and an harmonic scalar field p in $W^{1}(\Omega)$ satisfying $\nabla p \cdot \boldsymbol{n}=w \cdot \boldsymbol{n}=\Delta v \cdot \boldsymbol{n}$ on Γ. (Since div $\Delta v=0$, Δv is in $E(\Omega)$, so $\Delta v \cdot \boldsymbol{n}$ is in $W^{-1 / 2}(\Gamma)$ by Lemma 2.9.)

But $\Delta v \cdot \boldsymbol{n}=\nabla^{\perp} \omega(v) \cdot \boldsymbol{n}=\nabla^{\perp} \omega \cdot \boldsymbol{n}=-\nabla \omega \cdot \boldsymbol{\tau}=0$ on Γ, where ω has the constant value of zero. Thus, $\Delta p=0$ in Ω with $\nabla p \cdot \boldsymbol{n}=0$ on Γ, so $\nabla p \equiv 0$, and thus $w=h$ and so lies in H. Also, $\omega(w)=\Delta \omega(v)+\lambda \omega(v)=\Delta \omega+\lambda \omega=0$.

Then $u=v-(1 / \lambda) w$ is in H and using $\Delta w=\nabla^{\perp} \omega(w)=0$, we see that

$$
\Delta u+\lambda u=\Delta v+\lambda v-w=w-w=0
$$

which gives the boundary value problem for u in the statement of the lemma.

4. Weak formulations of the eigenvalue problems

To establish in Proposition 4.10 the existence of the eigenfunctions in Section 3, we work with their weak formulation, then show that these weak formulations are equivalent to those of Section 3 (for A_{S}, though, only when the boundary or the eigenfunctions are sufficiently regular). The formulations for A_{S} and A_{L} are modeled along the lines of the formulation in Definition 4.2 for the Dirichlet Laplacian, which is classical; see for instance [Henrot 2006, Chapter 1].

Definition 4.1. The vector field u_{j} in V is a weak eigenfunction of A_{S} with eigenvalue $v_{j}>0$ if

$$
\left(\omega\left(u_{j}\right), \omega(v)\right)-v_{j}\left(u_{j}, v\right)=0 \quad \text { for all } v \in V
$$

Definition 4.2. The scalar field ω_{j} in $W_{0}^{1}(\Omega)$ is a weak eigenfunction for the Dirichlet Laplacian with eigenvalue $\lambda_{j}>0$ if

$$
\left(\nabla \omega_{j}, \nabla \alpha\right)-\lambda_{j}\left(\omega_{j}, \alpha\right)=0 \quad \text { for all } \alpha \in W_{0}^{1}(\Omega)
$$

Definition 4.3. The vector field u_{j} in $H_{0} \cap X$ is a weak eigenfunction for A_{L} for $\lambda_{j}^{*}>0$ if

$$
\begin{equation*}
\left(\omega\left(u_{j}\right), \omega(v)\right)-\lambda_{j}^{*}\left(u_{j}, v\right)=0 \quad \text { for all } v \in H_{0} \cap X \tag{4-1}
\end{equation*}
$$

Any vector in H_{c} is an eigenfunction of A_{L} with zero eigenvalue.
Proposition 4.4. In Definition 4.3, the eigenfunction u_{j} for $\lambda_{j}^{*}>0$ and the test function v can be taken to lie in X.
Proof. Suppose we change Definition 4.3 to assume that u_{j} and the test function v lie in X. Then in particular,

$$
\left(\omega\left(u_{j}\right), \omega(v)\right)-\lambda_{j}^{*}\left(u_{j}, v\right)=-\lambda_{j}^{*}\left(u_{j}, v\right)=0 \quad \text { for all } v \in H_{c} .
$$

That is, u_{j} is normal to any vector in H_{c} and so lies in $H_{0} \cap X$. But then knowing that u_{j} lies in $H_{0} \cap X$, it follows that $\left(\omega\left(u_{j}\right), \omega(v)\right)-\lambda_{j}^{*}\left(u_{j}, v\right)=0$ for any v in H_{c}; that is, one need only use test functions in $H_{0} \cap X$. Thus, the more stringent requirement for being a weak eigenfunction of A_{L} reduces to the less stringent requirement, meaning that the two are equivalent.
Proposition 4.5. A strong eigenfunction of A_{S} is a weak eigenfunction of $A_{S} ; a$ weak eigenfunction of A_{S} lying in X^{2} is a strong eigenfunction of A_{S}.

Proof. If u_{j} is a strong eigenfunction of A_{S} as in Definition 3.1, then applying Corollary A.1, we have for all v in V

$$
\begin{equation*}
\left(\omega\left(u_{j}\right), \omega(v)\right)-v_{j}\left(u_{j}, v\right)=-\left(\Delta u_{j}+v_{j} u_{j}, v\right)=-\left(\nabla p_{j}, v\right)=0 \tag{4-2}
\end{equation*}
$$

Thus, u_{j} is a weak eigenfunction of A_{S} as in Definition 4.1.
Conversely, suppose u_{j} is a weak eigenfunction of A_{S} as in Definition 4.1 such that $\omega\left(u_{j}\right)$ lies in $W^{1}(\Omega)$. Letting v lie in V, we have $\left(\omega\left(u_{j}\right), \omega(v)\right)-v_{j}\left(u_{j}, v\right)=0$, and u_{j} and v have sufficient regularity to apply Corollary A. 1 as above to give $\left(\Delta u_{j}+v_{j} u, v\right)=0$ for all v in V. From Lemma 2.9 we see that $\Delta u_{j}+v_{j} u=\nabla p_{j}$ for some harmonic pressure field p_{j} in $W^{1}(\Omega)$, since $\Delta u_{j}+v_{j} u$ is in $L^{2}(\Omega)$. This shows that u_{j} is a strong eigenfunction of A_{S} as in Definition 3.1.
Proposition 4.6. Definitions 3.2 and 4.2 are equivalent as, too, are Definitions 3.3 and 4.3. When Γ is C^{2}, Definitions 3.1 and 4.1 are equivalent.

Proof. If u_{j} is a strong eigenfunction of A_{L} as in Definition 3.3, then by virtue of Corollary A.1, we have for all v in $W^{1}(\Omega)$

$$
\begin{align*}
\left(\omega\left(u_{j}\right), \omega(v)\right)-\lambda_{j}^{*}\left(u_{j}, v\right) & =-\left(\Delta u_{j}, v\right)+\int_{\Gamma} \omega\left(u_{j}\right) \bar{v} \cdot \boldsymbol{\tau}-\lambda_{j}^{*}\left(u_{j}, v\right) \tag{4-3}\\
& =-\left(\Delta u_{j}+\lambda_{j}^{*} u_{j}, v\right)=0
\end{align*}
$$

It follows that u_{j} is a weak eigenfunction of A_{L} as in Definition 4.3.

Now suppose that u_{j} is a weak eigenfunction of A_{L} as in Definition 4.3. Let ψ_{j} be the stream function for u_{j} lying in $W_{0}^{1}(\Omega)$ given by Lemma 2.10. Then for all v in X,

$$
\begin{aligned}
\left(u_{j}, v\right) & =\left(\nabla^{\perp} \psi_{j}, v\right)=-\left(\nabla \psi_{j}, v^{\perp}\right)=\left(\psi_{j}, \operatorname{div} v^{\perp}\right)-\int_{\Gamma}\left(v^{\perp} \cdot \boldsymbol{n}\right) \psi_{j} \\
& =-\left(\psi_{j}, \omega(v)\right)
\end{aligned}
$$

Hence, by virtue of Proposition 4.4, we have for all v in X

$$
\left(\omega\left(u_{j}\right)+\lambda_{j}^{*} \psi_{j}, \omega(v)\right)=\left(\Delta \psi_{j}+\lambda_{j}^{*} \psi_{j}, \omega(v)\right)=0
$$

Then $\Delta \psi_{j}+\lambda_{j}^{*} \psi_{j}=0$ since by Lemma $2.11 \omega(v)$ ranges over all of $L^{2}(\Omega)$, so $\omega_{j}=-\lambda_{j}^{*} \psi_{j}$ lies in $W_{0}^{1}(\Omega)$. Thus, $\Delta u_{j}=\nabla^{\perp} \omega_{j}$ is in $L^{2}(\Omega)$, so u_{j} is a strong eigenfunction of A_{L} as in Definition 3.3.

A strong eigenfunction of A_{S} is a weak eigenfunction of A_{S} by Proposition 4.5.
Suppose that u_{j} is a weak eigenfunction of A_{S} as in Definition 4.1 and that Γ is C^{2}. Let v lie in \mathscr{V}. Then

$$
\begin{aligned}
\left(\omega\left(u_{j}\right), \omega(v)\right) & =-\left(\omega\left(u_{j}\right), \operatorname{div} v^{\perp}\right)=\left(\nabla \omega\left(u_{j}\right), v^{\perp}\right)=-\left(\nabla^{\perp} \omega\left(u_{j}\right), v\right) \\
& =-\left(\Delta u_{j}, v\right)
\end{aligned}
$$

Hence $\left(\Delta u_{j}+v_{j} u_{j}, v\right)=0$ for all $v \in \mathscr{V}$, so by Lemma 2.9

$$
\begin{equation*}
\Delta u_{j}+v_{j} u_{j}=\nabla p_{j} \quad \text { for some } p_{j} \text { in } \mathscr{D}^{\prime}(\Omega) \tag{4-4}
\end{equation*}
$$

Now, by [Temam 1984, Proposition I.2.3], there exists w in $V \cap W^{2}(\Omega)$ and q in $W^{1}(\Omega)$ satisfying $\Delta w+v_{j} u_{j}=\nabla q$. (Only here do we require Γ to be C^{2}.)

Define the bilinear form a on $V \times V$ by $a(u, v)=(\omega(u), \omega(v))$. Then by Corollary A.3, $a(u, v)=(\nabla u, \nabla v)$, so $a(u, u)=\|u\|_{V}^{2}$, and we can apply the LaxMilgram theorem to conclude that $w=u_{j}$. Hence, u_{j} is in $V \cap W^{2}(\Omega)$, showing that it is a strong eigenfunction of A_{S}.

That a strong eigenfunction of $-\Delta_{D}$ is weak is classical. It is also classical that for a weak eigenfunction, ω_{j} is in $C^{\infty}(\Omega)$, which is enough to conclude that $\Delta \omega_{j}$ is in $L^{2}(\Omega)$.
Remark 4.7. When Γ is C^{2}, in fact the eigenfunctions of A_{L} and A_{S} lie in $W^{2}(\Omega)$, as can seen for A_{L} by the proof of Proposition 4.6 and for A_{S} by, for instance, [Temam 1984, Proposition I.2.3].

Proposition 4.8. There exists a bijection between the strong eigenfunctions of A_{L} having positive eigenvalues and the weak eigenfunctions of the Dirichlet Laplacian, with a corresponding bijection between the eigenvalues.
Proof. By Lemma 2.11 for any u in $H_{0} \cap X_{0}^{2}$, there exists $\omega(u)$ in $W_{0}^{1}(\Omega)$, and this gives a bijection between the spaces. Also by Lemma 2.11 and its proof, for any v
in $H_{0} \cap X_{0}^{2}$ there exists $\omega(v)$ in $W_{0}^{1}(\Omega)$, and associated to v is its stream function ψ in $W_{0}^{1}(\Omega)$ with $\Delta \psi=\omega(v)$. With u, v, and ψ as above,

$$
\begin{aligned}
\frac{(\nabla \omega, \nabla \psi)}{(\omega, \psi)} & =\frac{-(\omega, \Delta \psi)+\int_{\Gamma}(\nabla \psi \cdot \boldsymbol{n}) \omega}{-\left(\operatorname{div} u^{\perp}, \psi\right)} \\
& =\frac{-(\omega(u), \omega(v))}{\left(u^{\perp}, \nabla \psi\right)-\int_{\Gamma}\left(u^{\perp} \cdot \boldsymbol{n}\right) \psi}=\frac{-(\omega(u), \omega(v))}{-\left(u, \nabla^{\perp} \psi\right)}=\frac{(\omega(u), \omega(v))}{(u, v)}
\end{aligned}
$$

We applied Lemma 2.4 twice, the first time using ω in $W_{0}^{1}(\Omega)$ with $\nabla \psi$ in $E(\Omega)$ and the second time using ψ in $W_{0}^{1}(\Omega)$ with u^{\perp} in $E(\Omega)$.

By the bijections above, this shows that if ω is a weak eigenfunction of $-\Delta_{D}$, then $u=\omega^{-1}(\omega)$ is a weak eigenfunction of A_{L} (also using Corollary 2.12) that lies in X_{0}^{2}, and hence is a strong eigenfunction of the A_{L} by Proposition 4.6. The converse follows from the same equality.

Corollary 4.9. There exists a bijection between the weak eigenfunctions of A_{L} having positive eigenvalues and the weak eigenfunctions of the Dirichlet Laplacian, with a corresponding bijection between the eigenvalues: $\lambda_{k}^{*}=\lambda_{k}$ for all k.

Proof. Combine Propositions 4.6 and 4.8.
Proposition 4.10. There exists a sequence of weak eigenfunctions for each of our three eigenvalue problems with spectra increasing to infinity as in Equation (1-1) for $-\Delta_{D}$ and A_{S} and with

$$
\sigma_{L}=\left\{\lambda_{j}\right\}_{j=1}^{\infty}, \quad \text { where } 0<\lambda_{1}<\lambda_{2} \leq \cdots
$$

If Ω is multiply connected, σ_{L} will also include 0 . The eigenfunctions of $-\Delta_{D}$ form an orthonormal basis of both $L^{2}(\Omega)$ and $W_{0}^{1}(\Omega)$, while those of A_{S} form an orthogonal basis of both H and V. The eigenfunctions of A_{L} lie in $C^{\infty}(\Omega) \cap X_{0}^{2}$ and form an orthogonal basis of both H and X. The eigenfunctions of $-\Delta_{D}$ are in $C^{\infty}(\Omega) \cap W^{2}(\Omega)$.

Proof. To prove the existence of eigenfunctions of A_{S}, let G be the inverse of A_{S}. Let u and v be in H. Since A_{S} is a bijection from $D\left(A_{S}\right)$ onto H, there exists w in $D\left(A_{S}\right)$ such that $v=A_{S} w$ and $w=G v$. Then because A_{S} is self-adjoint,

$$
(G u, v)=\left(G u, A_{S} w\right)=\left(A_{S} G u, w\right)=(u, w)=(u, G v),
$$

showing that G is symmetric and hence, being defined on all of H, self-adjoint. The calculation above also shows that $(G u, u)=\left(A_{S} G u, G u\right)=\|\nabla G u\|_{L^{2}(\Omega)}^{2}$, which is positive for all nonzero u in H.

But V is compactly embedded in H by Lemma 2.6 , so G, viewed as a map from H to H, is compact. Therefore, G is a compact, positive, self-adjoint operator. The spectral theorem thus gives a complete set of eigenfunctions in H and a discrete
set of eigenvalues decreasing to zero; applying G to these eigenfunctions and using the reciprocal of the eigenvalues gives the eigenfunctions and eigenvalues of A_{S} in the usual way.

The results for $-\Delta_{D}$ are classical; those for A_{L} then follow from Corollary 4.9 or they can be proved directly using an argument similar to that above.

Remark 4.11. Because the strong form $\Delta u_{j}+\lambda_{j}^{*} u_{j}=\nabla p_{j}$ of the eigenvalue problem for A_{S} has a nonzero pressure, the classical interior regularity argument for $-\Delta_{D}$ cannot be made for A_{S}. To obtain further regularity, one must assume a more regular boundary.

5. Min-max formulations of the eigenvalue problems

Proposition 5.1. Let

$$
\begin{aligned}
S_{k} & =\text { the span of the first } k \text { eigenfunctions of } A_{S} \\
L_{k} & =\text { the span of the first } k \text { eigenfunctions of } A_{L} \\
D_{k} & =\text { the span of the first } k \text { eigenfunctions of }-\Delta_{D}
\end{aligned}
$$

with $S_{0}=L_{0}=D_{0}=\{0\}$. Then

$$
\begin{aligned}
v_{k} & =\min \left\{R_{S}(u): u \in S_{k-1}^{\perp} \cap V \backslash\{0\}\right\} \\
\lambda_{k} & =\min \left\{R_{D}(\omega): \omega \in D_{k-1}^{\perp} \cap W_{0}^{1}(\Omega) \backslash\{0\}\right\} \\
& =\min \left\{R_{L}(u): u \in L_{k-1}^{\perp} \cap H_{0} \cap X \backslash\{0\}\right\} \\
& =\min \left\{R_{L}(u): u \in L_{k-1}^{\perp} \cap H_{0} \cap X_{0}^{2} \backslash\{0\}\right\},
\end{aligned}
$$

where the Rayleigh quotients are

$$
R_{S}(u)=R_{L}(u)=\|\omega(u)\|_{L^{2}(\Omega)}^{2} /\|u\|_{L^{2}(\Omega)}^{2}, \quad R_{D}(\omega)=\|\nabla \omega\|_{L^{2}(\Omega)}^{2} /\|\omega\|_{L^{2}(\Omega)}^{2}
$$

Proof. The form of the Rayleigh coefficient for v_{k} and the form in the first two expressions for λ_{k} come from the weak formulations of the eigenvalue problems in Definitions 4.1-4.3. The third expression for λ_{k} follows from the bijection in Lemma 2.11 and by noting that if u is any element of X_{0}^{2}, then $R_{L}(u)=R_{D}(\omega(u))$, as in the proof of Proposition 4.8.

Defining four functions mapping \mathbb{R} to \mathbb{Z} by

$$
\begin{array}{ll}
N_{S}(\lambda)=\#\left\{j \in \mathbb{N}: v_{j}<\lambda\right\}, & N_{L}(\lambda)=\#\left\{j \in \mathbb{N}: \lambda_{j}<\lambda\right\} \\
\bar{N}_{S}(\lambda)=\#\left\{j \in \mathbb{N}: v_{j} \leq \lambda\right\}, & \bar{N}_{L}(\lambda)=\#\left\{j \in \mathbb{N}: \lambda_{j} \leq \lambda\right\}
\end{array}
$$

we have an immediate corollary of Proposition 5.1:

Corollary 5.2. $\bar{N}_{S}(\lambda)=\max _{Z \subseteq V}\left\{\operatorname{dim} Z: R_{S}(u) \leq \lambda\right.$ for all $\left.u \in Z\right\}$,

$$
\begin{aligned}
\bar{N}_{L}(\lambda) & =\max _{Z \subseteq H_{0} \cap X_{0}^{2}}\left\{\operatorname{dim} Z: R_{L}(u) \leq \lambda \text { for all } u \in Z\right\} \\
& =\max _{Z \subseteq H_{0} \cap X}\left\{\operatorname{dim} Z: R_{L}(u) \leq \lambda \text { for all } u \in Z\right\}
\end{aligned}
$$

Remark 5.3. By Corollary A.3, $R_{S}(u)=\|\nabla u\|_{L^{2}(\Omega)}^{2} /\|u\|_{L^{2}(\Omega)}^{2}$, so $\lambda_{k} \leq v_{k}$ follows from Corollary 5.2. Strict inequality, however, is not so immediate.

6. Proof of Theorem 1.1

Lemma 6.1 is the analogue of the (only) lemma in [Filonov 2004] and, in fact, follows from it. For completeness we give the full proof.

Lemma 6.1. For all λ in \mathbb{R},

$$
V \cap \operatorname{ker}\left\{A_{L}-\lambda\right\} \cap X_{0}^{2}=\{0\} .
$$

Proof. Let u be in $V \cap \operatorname{ker}\left\{A_{L}-\lambda\right\} \cap X_{0}^{2}=\operatorname{ker}\left\{A_{S}-\lambda\right\} \cap X_{0}^{2}$, where we used Proposition 4.5. Then

$$
\left\{\begin{array}{rlrlrl}
\Delta u+\lambda u & =\nabla p, & \operatorname{div} u & =0, & \Delta \omega+\lambda \omega=0 & \\
\text { in } \Omega, \\
u & =0, & & \omega & =0, &
\end{array}\right.
$$

Because $\omega=0$ on $\Gamma, \nabla p=0$ on Ω by Lemma 3.4. Hence, $\nabla \omega=-(\Delta u)^{\perp}=\lambda u^{\perp}=0$ on Γ. Thus, ω extended by 0 to all of \mathbb{R}^{2} lies in $W^{1}\left(\mathbb{R}^{2}\right)$. Then for all ψ in $\mathscr{S}\left(\mathbb{R}^{2}\right)$,

$$
\begin{gathered}
(-\Delta \omega, \psi)_{\mathscr{Y}^{\prime}\left(\mathbb{R}^{2}\right), \mathscr{S}\left(\mathbb{R}^{2}\right)}=(\nabla \omega, \nabla \psi)_{\mathscr{Y}^{\prime}\left(\mathbb{R}^{2}\right), \mathscr{Y}\left(\mathbb{R}^{2}\right)}=\int_{\mathbb{R}^{2}} \nabla \omega \cdot \nabla \bar{\psi} \\
=\int_{\Omega} \nabla \omega \cdot \nabla \bar{\psi}=-\int_{\Omega} \Delta \omega \bar{\psi}+\int_{\Gamma}(\nabla \omega \cdot \boldsymbol{n}) \bar{\psi} \\
=\lambda \int_{\Omega} \omega \bar{\psi}=\lambda \int_{\mathbb{R}^{2}} \omega \bar{\psi}=(\lambda \omega, \psi)_{\mathscr{Y}^{\prime}\left(\mathbb{R}^{2}\right), \mathscr{Y}\left(\mathbb{R}^{2}\right)},
\end{gathered}
$$

which shows that $\Delta \omega=-\lambda \omega$ as distributions. But ω is in $W^{1}\left(\mathbb{R}^{2}\right)$ so, in fact, $\Delta \omega$ is in $W^{1}\left(\mathbb{R}^{2}\right)$ and $\Delta \omega+\lambda \omega=0$ on \mathbb{R}^{2}. Moreover, ω vanishes outside of Ω. But the Laplacian is hypoelliptic so ω is real analytic and hence vanishes on all of \mathbb{R}^{2}.

Now, were Ω simply connected it would follow immediately that $u \equiv 0$. In any case, observe that $\omega \equiv 0$ implies $\Delta u=\nabla^{\perp} \omega \equiv 0$. But $\Delta u=-\lambda u$, so $u \equiv 0$.

Proof of Theorem 1.1. Let $\lambda>0$ and choose a subspace F of V of dimension $\bar{N}_{S}(\lambda)$ with

$$
\begin{equation*}
\|\omega(u)\|_{L^{2}(\Omega)}^{2} \leq \lambda\|u\|_{L^{2}(\Omega)}^{2} \quad \text { for all } u \in F \tag{6-1}
\end{equation*}
$$

This is possible by the variational formulation of the eigenvalue problem for A_{S} in Corollary 5.2. By Lemma 6.1,

$$
G=F \oplus\left(\operatorname{ker}\left\{A_{L}-\lambda\right\} \cap X_{0}^{2}\right)
$$

is a direct sum and so has dimension $\bar{N}_{S}(\lambda)+\operatorname{dim} \operatorname{ker}\left\{-\Delta_{D}-\lambda\right\}$, where we used Propositions 4.5 and 4.8. (Either of the vector spaces above could contain only 0 .)

For any $u \in F$ and $v \in \operatorname{ker}\left\{A_{L}-\lambda\right\} \cap X_{0}^{2}$,

$$
\begin{aligned}
\|\omega(u+v)\|_{L^{2}(\Omega)}^{2} & =\|\omega(u)\|_{L^{2}(\Omega)}^{2}+\|\omega(v)\|_{L^{2}(\Omega)}^{2}+2 \operatorname{Re}(\omega(u), \omega(v)) \\
& =\|\omega(u)\|_{L^{2}(\Omega)}^{2}+\|\omega(v)\|_{L^{2}(\Omega)}^{2}+2 \lambda \operatorname{Re}(u, v),
\end{aligned}
$$

because $(\omega(u), \omega(v))=\lambda(u, v)$ by Definition 4.3.
Also by Definition 4.3,

$$
\|\omega(v)\|_{L^{2}(\Omega)}^{2}=\lambda\|v\|_{L^{2}(\Omega)}^{2},
$$

and combined with Equation (6-1) this gives

$$
\|\omega(u+v)\|_{L^{2}(\Omega)}^{2} \leq \lambda\|u\|_{L^{2}(\Omega)}^{2}+\lambda\|v\|_{L^{2}(\Omega)}^{2}+2 \lambda \operatorname{Re}(u, v)=\lambda\|u+v\|_{L^{2}(\Omega)}^{2}
$$

Then it follows by the variational formulation of the eigenvalue problem for A_{L} in Corollary 5.2 that

$$
\bar{N}_{L}(\lambda) \geq \operatorname{dim} G=\bar{N}_{S}(\lambda)+\operatorname{dim} \operatorname{ker}\left\{-\Delta_{D}-\lambda\right\}
$$

so

$$
N_{L}(\lambda)=\bar{N}_{L}(\lambda)-\operatorname{dim} \operatorname{ker}\left\{-\Delta_{D}-\lambda\right\} \geq \bar{N}_{S}(\lambda)
$$

Setting $\lambda=v_{k}$ gives $N_{L}\left(v_{k}\right) \geq \bar{N}_{S}\left(v_{k}\right) \geq k$. In words, there are at least k eigenvalues in σ_{D} (counted according to multiplicity) strictly less than v_{k}; that is, $\lambda_{k}<\nu_{k}$.

7. Toward the inequality $\lambda_{k+1} \leq \boldsymbol{v}_{\boldsymbol{k}}$

Theorem 7.1. For each k in \mathbb{N}, define $U_{R}^{k}=\left(v_{k}, x\right)$, where x is the smallest element of $\left(\sigma_{S} \cup \sigma_{D}\right) \cap\left(v_{k}, \infty\right)$, and define $U_{L}^{k}=\left(y, \lambda_{k}\right)$, where y is the largest element of $\left(\sigma_{S} \cup \sigma_{D}\right) \cap\left(-\infty, \lambda_{k}\right)$. Let $y=-\infty$ if $k=1$.) Suppose that for some λ in U_{R}^{k} there exists a nonzero vector field w in X^{2} and a scalar field q in $W^{1}(\Omega)$ satisfying the underdetermined problem

$$
\left\{\begin{array}{rlrl}
\Delta w+\lambda w & =\nabla q, & \operatorname{div} w=0 & \tag{7-1}\\
\text { on } \Omega, \\
w \cdot \boldsymbol{n} & =0 & & \text { on } \Gamma,
\end{array}\right.
$$

but with the constraint

$$
\begin{equation*}
\int_{\Gamma} \omega(w) \bar{w} \cdot \boldsymbol{\tau}=\|\omega(w)\|_{L^{2}(\Omega)}^{2}-\lambda\|w\|_{L^{2}(\Omega)}^{2} \leq 0 \tag{7-2}
\end{equation*}
$$

Then $\lambda_{k+1} \leq v_{k}$. If for each k there exist λ in U_{L}^{k} a nonzero vector field w in X^{2} and a scalar field q in $W^{1}(\Omega)$ satisfying (7-1) and (7-2), then $\lambda_{k+1} \leq v_{k}$ for all k.
Proof. Observe first that $\int_{\Gamma} \omega(w) \bar{w} \cdot \boldsymbol{\tau}=\|\omega(w)\|_{L^{2}(\Omega)}^{2}-\lambda\|w\|_{L^{2}(\Omega)}^{2}$ follows from Corollary A.1.

Assume that λ in U_{R}^{k} and w and q are as in (7-1) and (7-2). Let the set F be defined as in the proof of Lemma 6.1, but let $G=F \oplus \operatorname{span}\{w\}$. This is a direct sum since otherwise w would be in span F, meaning that it would vanish on Γ and so would actually be an eigenfunction of A_{S}; but this is impossible since λ is not in σ_{S} by assumption. The dimension of G is $\bar{N}_{S}(\lambda)+1$.

Then for any u in F and c in \mathbb{C},

$$
\|\omega(u+c w)\|_{L^{2}}^{2}=\|\omega(u)\|_{L^{2}}^{2}+\|\omega(c w)\|_{L^{2}}^{2}+2 \operatorname{Re}(\omega(u), \omega(c w))
$$

But by Corollary A.1,

$$
(\omega(u), \omega(w))=-(\Delta w, u)=(\lambda w, u)-(\nabla q, u)=\lambda(u, w)
$$

and $\|\omega(w)\|_{L^{2}}^{2} \leq \lambda\|w\|_{L^{2}}^{2}$ by (7-2). Also, $\|\omega(u)\|_{L^{2}}^{2} \leq \lambda\|u\|_{L^{2}}^{2}$, so we can conclude that

$$
\|\omega(u+c w)\|_{L^{2}}^{2} \leq \lambda\|u\|_{L^{2}}^{2}+\lambda\|c w\|_{L^{2}}^{2}+2 \lambda \operatorname{Re}(u, c w)=\lambda\|u+c w\|_{L^{2}}^{2} .
$$

Then it follows by the variational formulation of the eigenvalue problem for A_{L} in Corollary 5.2 that $\bar{N}_{L}(\lambda) \geq \operatorname{dim} G=\bar{N}_{S}(\lambda)+1$.

Because λ is larger than ν_{k} but smaller than any eigenvalue in $\left(\sigma_{D} \cup \sigma_{S}\right) \cap(\lambda, \infty)$, $N_{L}(\lambda)=\bar{N}_{L}\left(\nu_{k}\right)$ and $\bar{N}_{S}(\lambda)=\bar{N}_{S}\left(v_{k}\right)$, so $\bar{N}_{L}\left(v_{k}\right) \geq \bar{N}_{S}\left(v_{k}\right)+1 \geq k+1$. In other words, there are at least $k+1$ eigenvalues in σ_{D} (counted according to multiplicity) less than or equal to v_{k}; that is, $\lambda_{k+1} \leq v_{k}$. This establishes the result for λ in U_{R}^{k}.

Now assume that for all k there exists a λ in U_{L}^{k} with w and q as in (7-1) and (7-2). Given j in \mathbb{N}, let δ be the lowest eigenvalue greater than v_{j} in $\sigma_{S} \cup \sigma_{D}$. If δ is in σ_{S}, then $\delta=v_{n}$ for some $n>j$, and if $\lambda_{n+1} \leq v_{n}$ then it will follow that $\lambda_{j+1} \leq v_{j}$ since there are no eigenvalues in σ_{D} between v_{j} and v_{n} (though v_{j}, v_{n}, or both might also be in σ_{D}). We can continue this line of reasoning until eventually we reach a value of j such that the next lowest eigenvalue δ in $\sigma_{S} \cup \sigma_{D}$ is in σ_{D} (δ might also be in σ_{S}, but this will not affect our argument). Then $\delta=\lambda_{n}$ for some n in \mathbb{N}.

Then by assumption there is some λ in U_{L}^{n} with w and q as in (7-1) and (7-2). But this λ is also in U_{R}^{j}, so we conclude that $\lambda_{j+1} \leq v_{j}$, and from our argument above, this inequality holds, then, for all j in \mathbb{N}.

Remark 7.2. For λ in σ_{D}, even if a w exists satisfying the conditions in (7-1) and (7-2), w might be an eigenfunction of A_{L} and so lie in $\operatorname{ker}\left\{A_{L}-\lambda\right\}$. This means that we cannot extend the argument along the lines in the proof of Theorem 1.1,
since $\operatorname{span}\{w\}$ might not be linearly independent of the set G in the proof of that theorem. This prevents us from concluding that $\lambda_{k+1}<v_{k}$ for all k, which is in any case not true in general.

The difficulty with applying Theorem 7.1 is that it is relatively easy to find vector fields w satisfying the given conditions in a left neighborhood of v_{k}, or perhaps in a right neighborhood of λ_{k}, but hard to find ones in the required neighborhoods. We give an example in Section 8.

8. Proof of Theorem 1.2 and related issues

Navier slip boundary conditions for the Stokes operator provide a physically justifiable alternative to the classical no-slip boundary conditions used to define A_{S}. To the extent possible, we will work with these boundary conditions with a locally Lipschitz boundary, but we will find that they are really only of use when the boundary is C^{2} and has a finite number of components. (Observe that under this assumption, by Corollary 2.16, the distinctions we have been making between the X spaces and the Y spaces disappear.)

To define Navier boundary conditions in the classical sense, we must assume that Γ is C^{2}. (Here, as elsewhere in this paper, $C^{1,1}$ would suffice, but introduces added complexities we wish to avoid.) The Navier conditions can be written in the form

$$
\begin{equation*}
\omega(u)=(2 \kappa-\alpha) u \cdot \tau \quad \text { on } \Gamma, \tag{8-1}
\end{equation*}
$$

where κ is the curvature of the boundary and α is any function in $L^{\infty}(\Gamma)$.
If u in $H \cap W^{2}(\Omega)$ satisfies Equation (8-1) then by Corollary A.1,

$$
(-\Delta u, v)=(\omega(u), \omega(v))-\int_{\Gamma}(2 \kappa-\alpha) u \cdot \bar{v} \quad \text { for any } v \text { in } X
$$

Let $H_{V}=\left\{u \in H \cap W^{2}(\Omega): \omega(u)=(2 \kappa-\alpha) u \cdot \tau\right.$ on $\left.\Gamma\right\}$, endowed with the same norm as Y. We define the operator $A_{V}: Y \rightarrow H$ by requiring that

$$
\begin{equation*}
\left(A_{V} u, v\right)=(\omega(u), \omega(v))+\int_{\Gamma}(\alpha-2 \kappa) u \cdot \bar{v}=(\nabla u, \nabla v)+\int_{\Gamma}(\alpha-\kappa) u \cdot \bar{v} \tag{8-2}
\end{equation*}
$$

for all v in Y. The second equality (which gives the form of the operator A defined on [Kelliher 2006, page 218]) follows from Lemma A.2, Lemma A.4, and the density of $\left(C^{1}(\Omega)\right)^{2}$ in Y.

Now assume that Ω is bounded and Γ is locally Lipschitz. Then the curvature is no longer defined, so we replace the function $\alpha-2 \kappa$ with a function f lying in $L^{\infty}(\Gamma)$, though we lose in this way the physical meaning. In place of (8-1), we
have

$$
\begin{align*}
\omega(u)+f u \cdot \boldsymbol{\tau} & =0 \quad \text { on } \Gamma, \tag{8-3}\\
\left(A_{V} u, v\right) & =(\omega(u), \omega(v))+\int_{\Gamma} f u \cdot \bar{v} . \tag{8-4}
\end{align*}
$$

Observe that the second expression for A_{V} in (8-2) now has insufficient regularity, so it no longer applies.

Definition 8.1. A vector field $u_{j} \in X^{2}$ is a strong eigenfunction of A_{V} with eigenvalue γ_{j} if

$$
\left\{\begin{aligned}
\Delta u_{j}+\gamma_{j} u_{j} & =\nabla p_{j}, & \Delta p_{j}=0, & \operatorname{div} u_{j}=0
\end{aligned} \quad \begin{array}{lrl}
& \text { in } \Omega, \\
u_{j} \cdot \boldsymbol{n} & =0, & \\
\omega\left(u_{j}\right)+f u_{j} \cdot \boldsymbol{\tau}=0 & & \text { on } \Gamma .
\end{array}\right.
$$

Definition 8.2. The vector field u_{j} in X is a weak eigenfunction of A_{V} with eigenvalue γ_{j} if

$$
\left(\omega\left(u_{j}\right), \omega(v)\right)+\int_{\Gamma} f u_{j} \cdot \bar{v}-\gamma_{j}\left(u_{j}, v\right)=0 \quad \text { for all } v \in X
$$

Proposition 8.3. If u_{j} is a strong eigenfunction of A_{V}, then it is a weak eigenfunction of A_{V}. If u_{j} is a weak eigenfunction of A_{V} that happens to be in X^{2} and satisfy $\omega\left(u_{j}\right)+f u_{j} \cdot \boldsymbol{\tau}=0$ on Γ, then u_{j} is a strong eigenfunction of A_{V}.

Proof. Strong implies weak follows by the integration by parts performed above. For the reverse implication, assume that u_{j} is a weak eigenfunction of A_{V} lying in X^{2}. Then choosing v to lie in V, it follows that

$$
\left(\omega\left(u_{j}\right), \omega(v)\right)-\gamma_{j}\left(u_{j}, v\right)=0 \quad \text { for all } v \in V
$$

Applying Corollary A. 1 gives $\left(\Delta u_{j}+\gamma_{j} u_{j}, v\right)=0$ for all $v \in V$, and we conclude that $\Delta u_{j}+\gamma_{j} u_{j}=\nabla p_{j}$ for some harmonic field p in $W^{1}(\Omega)$ by Lemma 2.9.

When Γ is C^{2} and has a finite number of components, we can consider the special case $\alpha=\kappa$, which gives $\omega\left(u_{j}\right)=\kappa u_{j} \cdot \boldsymbol{\tau}$. It follows from Lemma A. 5 that $\nabla u_{j} \boldsymbol{n} \cdot \bar{v}=0$ for any v in X. More simply, we can write this as $\nabla u_{j} \boldsymbol{n} \cdot \boldsymbol{\tau}=0$. These boundary conditions imply that $\left(-\Delta u_{j}, v\right)=\left(\nabla u_{j}, \nabla v\right)$ for all v in X, (or we can take advantage of the second form of $\left(A_{V} u, u\right)$ in (8-2)), and we can explicitly define such eigenfunctions as follows, though we need no longer assume that the boundary is C^{2} :

Definition 8.4. A vector field $u_{j} \in X^{2}$ is a strong eigenfunction of A_{N} if

$$
\left\{\begin{array}{rlrl}
\Delta u_{j}+\beta_{j} u_{j} & =\nabla p_{j}, & \Delta p_{j}=0, & \\
\operatorname{div} u_{j}=0 & & \text { in } \Omega, \\
u_{j} \cdot \boldsymbol{n} & =0, \quad \nabla u_{j} \boldsymbol{n} \cdot \boldsymbol{\tau}=0 & & \text { on } \Gamma .
\end{array}\right.
$$

Definition 8.5. A vector field u_{j} in X is a weak eigenfunction of A_{N} if

$$
\left(\nabla u_{j}, \nabla v\right)-\beta_{j}\left(u_{j}, v\right)=0 \quad \text { for all } v \in X
$$

We also have the following min-max formulations for the eigenvalues of A_{V} and the special case of A_{N}.

Proposition 8.6. Let
$V_{k}=$ the span of the first keigenfunctions of A_{V},
$N_{k}=$ the span of the first keigenfunctions of A_{N},
with $V_{0}=N_{0}=\{0\}$. Then

$$
\begin{aligned}
& \gamma_{k}=\min \left\{R_{V}(u): u \in V_{k-1}^{\perp} \cap X \backslash\{0\}\right\}, \\
& \beta_{k}=\min \left\{R_{N}(u): u \in N_{k-1}^{\perp} \cap X \backslash\{0\}\right\},
\end{aligned}
$$

where

$$
R_{V}(u)=\frac{\|\omega(u)\|_{L^{2}(\Omega)}^{2}+\int_{\Gamma} f|u|^{2}}{\|u\|_{L^{2}(\Omega)}^{2}}, \quad R_{N}(u)=\frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{2}(\Omega)}^{2}} .
$$

The eigenvalues are real with $0=\beta_{1} \leq \beta_{2} \leq \cdots$ and, when f is nonnegative, $0<\gamma_{1} \leq \gamma_{2} \leq \cdots$ with $\gamma_{k} \rightarrow \infty$.
Proof. Define the operator $T: X \rightarrow X$ by $T=\left(i I+A_{V}\right)^{-1} \circ j$, where I is the identity map, j is the inclusion map from X to X^{*} (which is compact by Corollary 2.12), and $i=\sqrt{-1}$. Then since $\left(i I+A_{V}\right)^{-1}$ is bounded (its norm can be no greater than 1) T is compact, and the spectral theorem provides us with eigenvalues of T accumulating at zero. To each eigenvalue λ of T there corresponds an eigenvalue $\gamma=\mu^{-1}-i$ of A_{V}. But A_{V} is self-adjoint, so γ is real. And when f is nonnegative, since $R_{V}(u)$ is nonnegative, $0<\gamma_{1} \leq \gamma_{2} \leq \cdots$ with $\gamma_{k} \rightarrow \infty$.

Defining two functions mapping \mathbb{R} to \mathbb{Z} by

$$
\bar{N}_{V}(\lambda)=\#\left\{j \in \mathbb{N}: \gamma_{j} \leq \lambda\right\} \quad \text { and } \quad \bar{N}_{N}(\lambda)=\#\left\{j \in \mathbb{N}: \beta_{j} \leq \lambda\right\}
$$

we have an immediate corollary of Proposition 8.6:
Corollary 8.7. $\bar{N}_{V}(\lambda)=\max _{Z \subseteq X}\left\{\operatorname{dim} Z: R_{V}(u) \leq \lambda\right.$ for all $\left.u \in Z\right\}$,

$$
\bar{N}_{N}(\lambda)=\max _{Z \subseteq X}\left\{\operatorname{dim} Z: R_{N}(u) \leq \lambda \text { for all } u \in Z\right\}
$$

Proposition 8.8. Assume Γ is C^{2} and has a finite number of components and

$$
\begin{equation*}
f \in C^{1 / 2+\epsilon}(\Gamma)+W^{1 / 2+\epsilon}(\Gamma) . \tag{8-5}
\end{equation*}
$$

A weak eigenfunction of A_{V} is a strong eigenfunction of A_{V}. In particular, a weak eigenfunction u_{j} of A_{V} satisfies $\omega\left(u_{j}\right)+f u_{j} \cdot \boldsymbol{\tau}=0$ on Γ.

Proof. Suppose that u is a weak eigenfunction of A_{V} as in Definition 8.2 with $\omega=\omega(u)$. Then for any v in \mathscr{V} integration by parts gives $(\Delta u+\lambda u, v)=0$, so $\Delta u+\lambda u=\nabla p$ by Lemma 2.9, equality holding in terms of distributions. Taking the curl, it follows that $\Delta \omega=-\lambda \omega$, so ω is in U of Proposition 2.17, since ω is in L^{2}. Thus, by Proposition 2.17, ω is well defined on Γ as an element of $W^{-1 / 2}(\Gamma)$.

Let v be any vector in $H_{0} \cap Y$, and let α be its associated stream function lying in $W_{0}^{1}(\Omega) \cap W^{2}(\Omega)$ given by Lemma 2.10 , so that $\Delta \alpha=\omega(v)$ is in $L^{2}(\Omega)$. Thus, again by Proposition 2.17, since $\nabla \alpha \cdot \boldsymbol{n}=-v \cdot \boldsymbol{\tau}$,

$$
\begin{aligned}
\left(\gamma_{\omega} \omega, v \cdot \boldsymbol{\tau}\right)_{W^{-1 / 2}(\Gamma), W^{1 / 2}(\Gamma)} & =(\alpha, \Delta \omega)-(\omega(v), \omega) \\
& =-\lambda(\alpha, \omega)-(\omega(v), \omega)=\lambda(u, v)-(\omega(v), \omega)
\end{aligned}
$$

Here we used

$$
(\alpha, \omega)=-\left(\alpha, \operatorname{div} u^{\perp}\right)=\left(\nabla \alpha, u^{\perp}\right)+\int_{\Gamma}\left(u^{\perp} \cdot \boldsymbol{n}\right) \alpha=-(v, u)
$$

noting that we had enough regularity to apply Corollary A.1.
But because u is a weak eigenfunction of A_{V}, also

$$
(f u \cdot \boldsymbol{\tau}, v \cdot \boldsymbol{\tau})_{W^{-1 / 2}(\Gamma), W^{1 / 2}(\Gamma)}=\lambda(u, v)-(\omega(v), \omega) .
$$

Thus, the two boundary integrals are equal, and because of Lemma 2.19, we can conclude that $\omega=-f u \cdot \tau$ on Γ, and in particular that ω is in $W^{1 / 2}(\Gamma)$. (By Corollaries 2.2 and 2.3 and (8-5) we know $f u \cdot \boldsymbol{\tau}$ is in $W^{1 / 2}(\Gamma)$.) From this gain of regularity on the boundary, along with $\Delta \omega=-\lambda \omega \in L^{2}(\Omega)$, we conclude ω is in $W^{1}(\Omega)$, from which it follows that u is a strong solution to A_{V} as in Definition 8.1.

The origin of this proof was the proof of [Clopeau et al. 1998, Lemma 2.2].
We have the following simple extension of Lemma 6.1:
Lemma 8.9. If Γ is C^{2} and has a finite number of components and (8-5) holds, then $V \cap \operatorname{ker}\left\{A_{V}-\lambda\right\}=\{0\}$ for all λ in \mathbb{R}.

Proof. By Proposition 8.8, u is a strong eigenfunction of A_{V} and hence satisfies $\omega(u)=-f u \cdot \tau=0$ on Γ, and so is a strong eigenfunction of A_{L}. But then $u=0$ by Lemma 6.1.

Restricting our attention to the case where f is nonnegative and constant on Γ (in which case (8-5) holds), we can write the boundary conditions in Definition 8.1 as $(1-\theta) \omega\left(u_{j}\right)+\theta u_{j} \cdot \boldsymbol{\tau}=0$ on Γ, where θ lies in $[0,1]$. When $\theta=0$, we have the special case of Lions boundary conditions and when $\theta=1$ we have Dirichlet boundary conditions on the velocity. In Definition $8.2, f=\theta /(1-\theta)$ for θ in $[0,1)$. With this parameterization, we can view γ_{j} as a function of θ. That is, $\gamma_{j}(\theta)$ is the j-th eigenvalue of A_{V} (or A_{L} or A_{S}) so, for instance, to each eigenvalue $\gamma_{j}(\theta)$ of multiplicity k there will be exactly k values of n for which $\gamma_{n}(\theta)=\gamma_{j}(\theta)$.

Because f is constant on Γ, it is certainly in $C^{1}(\Gamma)$, which is a requirement of Proposition 8.8.
Proposition 8.10. Assume that Γ is C^{2} and has a finite number of components. For all j in \mathbb{N}, the function $\gamma_{j}:[0,1) \rightarrow\left[\lambda_{j}, v_{j}\right)$ and is strictly increasing and continuous.
Proof. To show that $\gamma_{j}(\theta)<v_{j}$ for θ in $[0,1)$ we repeat the proof of Theorem 1.1 using $G=F \oplus \operatorname{ker}\left\{A_{V}-\lambda\right\}$ in place of $F \oplus \operatorname{ker}\left(\left\{A_{L}-\lambda\right\} \cap X_{0}^{2}\right)$. Let $u \in F$ and $v \in \operatorname{ker}\left\{A_{V}-\lambda\right\}$. Then because v is a weak eigenfunction of A_{V} as in Definition 8.2 and u is zero on the boundary, letting $z=f=\theta /(1-\theta)$, we have

$$
(\omega(u), \omega(v))=\lambda(u, v)-z \int_{\Gamma} v \cdot \bar{u}=\lambda(u, v)
$$

Thus,

$$
\begin{aligned}
\|\omega(u+v)\|_{L^{2}(\Omega)}^{2} & =\|\omega(u)\|_{L^{2}(\Omega)}^{2}+\|\omega(v)\|_{L^{2}(\Omega)}^{2}+2 \operatorname{Re}(\omega(u), \omega(v)) \\
& =\|\omega(u)\|_{L^{2}(\Omega)}^{2}+\|\omega(v)\|_{L^{2}(\Omega)}^{2}+2 \lambda \operatorname{Re}(u, v),
\end{aligned}
$$

as was the case for A_{L}. Now, however,

$$
\|\omega(v)\|_{L^{2}(\Omega)}^{2}=\lambda\|v\|_{L^{2}(\Omega)}^{2}-z \int_{\Gamma}|v|^{2}=\lambda\|v\|_{L^{2}(\Omega)}^{2}-z \int_{\Gamma}|u+v|^{2}
$$

and combined with (6-1) this gives

$$
\begin{aligned}
\|\omega(u+v)\|_{L^{2}(\Omega)}^{2} & \leq \lambda\|u\|_{L^{2}(\Omega)}^{2}+\lambda\|v\|_{L^{2}(\Omega)}^{2}+2 \lambda \operatorname{Re}(u, v)-z \int_{\Gamma}|u+v|^{2} \\
& =\lambda\|u+v\|_{L^{2}(\Omega)}^{2}-z \int_{\Gamma}|u+v|^{2}
\end{aligned}
$$

Thus, $R_{V}(u+v) \leq \lambda$, and the proof of $\gamma_{j}(\theta)<v_{j}$ is completed as in the proof of Theorem 1.1.

The argument that γ_{j} is strictly increasing on $[0,1)$ is more direct, because the variational formulations in Corollary 8.7 for different values of θ all involve maximums over subspaces of the same space Y. (That γ_{j} is nondecreasing on $[0,1)$ follows immediately from the principle of monotonicity, as in [Weinstein and Stenger 1972, Theorem 2.5.1, page 21].)

For θ in $[0,1)$, write A_{V}^{θ} for the operator A_{V} and similarly for R_{V}^{θ} and \bar{N}_{V}^{θ}. In particular, $A_{L}=A_{V}^{0}$. Let $f(\theta)=\theta /(1-\theta)$, which we note is an increasing function of θ on $[0,1)$.

Now suppose that θ and θ^{\prime} are in $[0,1)$ with $\theta<\theta^{\prime}$. Let $\lambda>0$ and choose a subspace F of Y of dimension $\bar{N}_{V}^{\theta^{\prime}}(\lambda)$ with $R_{V}^{\theta^{\prime}} \leq \lambda$; that is,

$$
\begin{equation*}
\|\omega(u)\|_{L^{2}(\Omega)}^{2}+\int_{\Gamma} f\left(\theta^{\prime}\right)|u|^{2} \leq \lambda\|u\|_{L^{2}(\Omega)}^{2} \quad \text { for all } u \in F \tag{8-6}
\end{equation*}
$$

which is possible by Corollary 8.7. Let $G=F \oplus \operatorname{ker}\left\{A_{V}^{\theta}-\lambda\right\}$. This is, in fact, a direct sum, since if a nonzero u lies in both F and $\operatorname{ker}\left\{A_{V}^{\theta}-\lambda\right\}$, then from (8-6) and Definition 8.2 it follows that

$$
\int_{\Gamma}\left(f\left(\theta^{\prime}\right)-f(\theta)\right)|u|^{2} \leq 0 .
$$

But $f\left(\theta^{\prime}\right)-f(\theta)$ is a positive constant on Γ, so in fact $u=0$ on Γ and hence lies in V. It follows from Lemma 8.9 that u is identically zero.

This shows that G has at least one more element than F when $\lambda=\gamma_{j}(\theta)$. But then setting $Z=F$ in the definition of $\bar{N}_{V}^{\theta}\left(\gamma_{j}(\theta)\right)$ in Corollary 8.7, we see because $R_{V}^{\theta} \leq R_{V}^{\theta^{\prime}}$ that $\bar{N}_{V}^{\theta}\left(\gamma_{j}(\theta)\right) \geq \operatorname{dim} G>\operatorname{dim} F=\bar{N}_{V}^{\theta^{\prime}}\left(\gamma_{j}(\theta)\right)$, which means that $\gamma_{j}(\theta)<\gamma_{j}\left(\theta^{\prime}\right)$.

This shows that γ_{j} is strictly increasing. To show that it is continuous, fix θ in $[0,1)$, and let Z be any subspace of Y that achieves the maximum in the expression for $k=\bar{N}_{V}^{\theta}\left(\gamma_{k}(\theta)\right)$ in Corollary 8.7. Here we assume that if λ_{k} is a multiple eigenvalue, k is the largest such index.

Choose a basis $\left(v_{1}, \ldots, v_{k}\right)$ for Z and observe that because $R_{V}(u)=R_{V}(c u)$ for any nonzero constant c,

$$
\sup _{u \in Z} R_{V}^{\theta^{\prime}}(u)=\max _{u \in Z^{\prime}} R_{V}^{\theta^{\prime}}(u) \quad \text { for any } \theta^{\prime} \text { in }[0,1)
$$

where

$$
Z^{\prime}=\left\{c_{1} v_{1}+\cdots+c_{k} v_{k}: c_{1}, \ldots, c_{k} \in \mathbb{C},\left|c_{1}\right|^{2}+\cdots+\left|c_{k}\right|^{2}=1\right\}
$$

Now, the map from the complex k-sphere to \mathbb{R} defined by $\left(c_{1}, \ldots, c_{k}\right) \mapsto \| c_{1} v_{1}+$ $\cdots+c_{k} v_{k} \|_{L^{2}(\Omega)}$ is continuous and so achieves its minimum a, which is the same as the minimum of $\|u\|_{L^{2}(\Omega)}$ on Z^{\prime}. Because (v_{1}, \ldots, v_{k}) is independent, a must be positive. Similarly, $\|u\|_{Y}$ achieves its maximum $b>0$ on Z^{\prime}.

Thus, on Z^{\prime} and so on Z, for any $\theta^{\prime}>\theta$,

$$
\begin{aligned}
R_{V}^{\theta^{\prime}}(u)-R_{V}^{\theta}(u)=\frac{\left(f\left(\theta^{\prime}\right)-f(\theta)\right) \int_{\Gamma}|u|^{2}}{\|u\|_{L^{2}(\Omega)}^{2}} & \leq C a^{-2}\|u\|_{Y}^{2}\left(f\left(\theta^{\prime}\right)-f(\theta)\right) \\
& \leq C a^{-2} b^{2}\left(f\left(\theta^{\prime}\right)-f(\theta)\right)
\end{aligned}
$$

where we used the standard trace inequality $\|u\|_{L^{2}(\Gamma)} \leq C\|u\|_{L^{2}(\Omega)}^{1 / 2}\|\nabla u\|_{L^{2}(\Omega)}^{1 / 2}$ for u in Y, followed by Poincaré's inequality. But this shows that

$$
\bar{N}_{V}^{\theta^{\prime}}(\lambda) \geq \bar{N}_{V}^{\theta}\left(\gamma_{k}(\theta)\right) \quad \text { for } \lambda=\gamma_{k}(\theta)+C a^{-2} b^{2}\left(f\left(\theta^{\prime}\right)-f(\theta)\right) .
$$

Since we already know that $\gamma_{k}\left(\theta^{\prime}\right)>\gamma_{k}(\theta)$ it follows that

$$
\left|\gamma_{k}\left(\theta^{\prime}\right)-\gamma_{k}(\theta)\right| \leq C a^{-2} b^{2}\left(f\left(\theta^{\prime}\right)-f(\theta)\right)
$$

meaning that γ_{k} is continuous on $[0,1)$.
The first part of Theorem 8.11 is Theorem 1.2.
Theorem 8.11. Assume that Γ is C^{2} and has a finite number of components. For all j in \mathbb{N}, the function $\gamma_{j}:[0,1] \rightarrow\left[\lambda_{j}, v_{j}\right]$ is a strictly increasing continuous bijection. Also, (7-2) holds for any eigenfunction of A_{V}.

Proof. For any value of θ in $(0,1)$, we let $w=w(\theta)$ be any eigenfunction of A_{V} with eigenvalue $\gamma_{j}(\theta)$, normalized so that $\|w\|_{H}=\|w\|_{L^{2}(\Omega)}=1$. We know from Proposition 8.10 that $\gamma_{j}(\theta)$ strictly increases continuously from λ_{j} at $\theta=0$ and remains bounded by v_{j}. Formally, as $\theta \rightarrow 1, w$ becomes an eigenfunction of A_{S}, since w must approach zero on the boundary so that $\omega(w)=(\theta /(1-\theta)) w \cdot \boldsymbol{\tau}$ can remain finite. We now make this formal argument rigorous.

Letting $z=f=\theta /(1-\theta)$, we have

$$
\|w\|_{L^{2}(\Gamma)}^{2}=\int_{\Gamma}(w \cdot \boldsymbol{\tau})(\bar{w} \cdot \boldsymbol{\tau})=-z^{-1} \int_{\Gamma} \omega(w) \bar{w} \cdot \boldsymbol{\tau}
$$

the boundary integral being well defined because of Proposition 8.8. Then

$$
\int_{\Gamma} \omega(w) \bar{w} \cdot \boldsymbol{\tau}=-z\|w\|_{L^{2}(\Gamma)}^{2} \leq 0
$$

so (7-2) holds.
Moreover, from Definition 8.2,

$$
\|\omega(w)\|_{L^{2}(\Omega)}^{2}+z\|w\|_{L^{2}(\Gamma)}^{2}=\gamma_{j}(\theta)\|w\|_{L^{2}(\Omega)}^{2}=\gamma_{j}(\theta)
$$

From this we conclude two things. First, that

$$
\begin{equation*}
\|w\|_{L^{2}(\Gamma)}^{2}=\frac{\gamma_{j}(\theta)-\|\omega(w)\|_{L^{2}(\Omega)}^{2}}{z} \leq \frac{v_{j}}{z} \tag{8-7}
\end{equation*}
$$

since $\gamma_{j}(\theta)<\nu_{j}$. Second, that $\|\omega(w)\|_{L^{2}(\Omega)} \leq \gamma_{j}(\theta)^{1 / 2}$ and hence that $\|w\|_{Y} \leq C$ because $\gamma_{j}(\theta)<\nu_{j}$ and by virtue of Corollary 2.15.

Now letting the parameter θ vary over the set $\{1-1 / n: n \in \mathbb{N}\}$, we get a sequence $\left(u^{n}\right)$ of eigenfunctions $u^{n}=w(1-1 / n)$ of A_{V}, with eigenvalues $\gamma^{n}=\gamma_{j}(1-1 / n)$. By the observations above, $\left(u^{n}\right)$ is a bounded sequence in Y. But Y is compactly embedded in H by Lemma 2.6 (or by Corollaries 2.12 and 2.16), so there exists a subsequence of $\left(u^{n}\right)$ that converges strongly in H. Since this subsequence is bounded in Y, which is a separable, reflexive Banach space, taking a further subsequence, and relabeling it $\left(u^{n}\right)$, we conclude that $u^{n} \rightarrow u$ strongly in H and weak* in Y to some vector field u in Y with $\|u\|_{H}=1$ (so u is nonzero).

Furthermore, $\left\|u^{n}\right\|_{W^{1 / 2}(\Gamma)} \leq C\left\|u^{n}\right\|_{Y} \leq C$, so $\left(u^{n}\right)$ is bounded in $W^{1 / 2}(\Gamma)$, which is compactly embedded in $L^{2}(\Gamma)$, and hence extracting a subsequence and relabeling once more, we conclude that also $u^{n} \rightarrow u$ strongly in $L^{2}(\Gamma)$. But since $z \rightarrow \infty$ as $n \rightarrow \infty$, we have $u^{n} \rightarrow u=0$ in $L^{2}(\Gamma)$ by (8-7).

Then by Definition 8.2, $\left(\omega\left(u^{n}\right), \omega(v)\right)-\gamma^{n}\left(u^{n}, v\right)=0$ for any v in V. Letting $\gamma=\lim _{n \rightarrow \infty} \gamma^{n}$ (the limit exists because γ^{n} is a bounded increasing sequence of real numbers), we have $\left(\omega\left(u^{n}\right), \omega(v)\right)-\gamma\left(u^{n}, v\right)=\left(\gamma^{n}-\gamma\right)\left(u^{n}, v\right)$. Since $\left|\left(u^{n}, v\right)\right| \leq\left\|u^{n}\right\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)} \leq C$, the right side converges to zero. Since $u^{n} \rightarrow u$ strongly in $L^{2}(\Omega),\left(u^{n}, v\right) \rightarrow(u, v)$. Since $u^{n} \rightarrow u$ weak * in Y,

$$
\left(\omega\left(u_{n}\right), \omega(v)\right)=\left(\nabla u_{n}, \nabla v\right) \rightarrow(\nabla u, \nabla v)=(\omega(u), \omega(v))
$$

where we used Corollary A.3. We conclude that $(\omega(u), \omega(v))-\gamma(u, v)=0$ and thus that u is a weak eigenfunction of A_{S} with eigenvalue $\gamma \leq v_{j}$.

What we have shown is that $\gamma_{j}:[0,1] \rightarrow\left[\lambda_{j}, \nu_{k}\right]$ for some $k \leq j$ and that γ_{j} is strictly increasing and continuous on all of $[0,1]$. To show that $k=j$, we first observe that if $\gamma_{k}(1)=\gamma_{m}(1)=v_{j}$ for some $k \neq m$, then the eigenvalue v_{j} has multiplicity at least 2 . To see this, we repeat the compactness argument above, this time choosing the original sequence of eigenvectors $\left(u^{k, n}\right)_{n=1}^{\infty}$ and $\left(u^{m, n}\right)_{n=1}^{\infty}$ such that $u^{k, n}$ is orthogonal in $L^{2}(\Omega)$ to $u^{m, n}$, which we can always do even if they lie in the same eigenspace. We showed above that $u^{k, n} \rightarrow u$ and $u^{m, n} \rightarrow w$ in $L^{2}(\Omega)$ for some u and w that are eigenvectors of A_{S}. It is elementary to see, then, that $(u, w)=0$, which shows that v_{j} has multiplicity at least two.

Similarly, the multiplicity of the eigenvalue v_{j} is at least as high as the number of distinct values of k for which $\gamma_{k}(1)=v_{j}$. This means that the total number of eigenvalues of A_{S} including multiplicity reached by $\gamma_{j}(1)$ for some j with $1 \leq j \leq k$ is at least k. But it can be no more than k since $\gamma_{j}(1)=v_{m}$ for some $m \leq j \leq k$. Thus, the first k eigenvalues of A_{L} according to multiplicity are mapped via γ_{j} for $j=1, \ldots, k$ into the first k eigenvalues of A_{S}, showing that $\gamma_{j}:[0,1] \rightarrow\left[\lambda_{j}, v_{j}\right]$ for all $j=1, \ldots, k$ and hence for all j in \mathbb{N}, since k was arbitrary.

To round out the picture of how the eigenvalues for different boundary conditions compare, we consider the eigenfunctions of the negative Laplacian with Robin boundary conditions on the vorticity. For simplicity, we restrict our attention to constant coefficients, writing the boundary conditions in terms of a parameter θ lying in $[0,1]$, and stating only the strong form:

Definition 8.12. An eigenfunction $\omega_{j} \in W_{0}^{1}(\Omega)$ of the Dirichlet Laplacian with Robin boundary conditions satisfies

$$
\left\{\begin{aligned}
\Delta \omega_{j}+\eta_{j} \omega_{j}=0 & \text { in } \Omega, \\
(1-\theta) \nabla \omega_{j} \cdot \boldsymbol{n}+\theta \omega_{j}=0 & \text { on } \Gamma .
\end{aligned}\right.
$$

The analogue for divergence-free vector fields leads to the eigenvalue problem for a Stokes operator A_{R} with Robin boundary conditions:
Definition 8.13. An eigenfunction $u_{j} \in X^{2}$ of A_{R} satisfies $A_{R} u_{j}=\lambda_{j}^{*} u_{j}$ or, equivalently,

$$
\left\{\begin{array}{rlrl}
\Delta u_{j}+\eta_{j}^{*} u_{j} & =\nabla p_{j}, & \operatorname{div} u_{j}=0 & \\
\text { in } \Omega, \\
u_{j} \cdot \boldsymbol{n} & =0, & (1-\theta) \nabla \omega_{j} \cdot \boldsymbol{n}+\theta \omega_{j}=0 & \\
\text { on } \Gamma .
\end{array}\right.
$$

A value of $\theta=1$ gives the operator A_{L}, and $\theta=0$ gives Neumann boundary conditions on the vorticity.

Taking the vorticity of u_{j} in Definition 8.13 shows that a strong eigenfunction of A_{R} corresponds to a strong eigenfunction of the Dirichlet Laplacian with Robin boundary conditions. Also, the equivalent of Lemma 3.4 for Robin boundary conditions on ω shows that to each strong eigenfunction of the Dirichlet Laplacian with Robin boundary conditions there corresponds a strong eigenfunctions of A_{R}. Thus, there is a bijection between the eigenfunctions and eigenvalues; that is, $\eta_{j}^{*}=\eta_{j}$. Moreover, η_{j} is continuous on $[0,1)$, because the bilinear form associated to Definition 8.12 is continuous with θ; see [Filonov 2004].
Proposition 8.14. For all j in \mathbb{N}, the function $\eta_{j}:[0,1) \rightarrow\left[\mu_{j}, \lambda_{j}\right)$ and is strictly increasing.

Proof. The proof goes like that of Proposition 8.10, making adaptations of Filonov's proof of his theorem that parallel those in the proof of Proposition 8.10.

Theorem 8.15. For all j in \mathbb{N}, the function $\eta_{j}:[0,1] \rightarrow\left[\mu_{j}, \lambda_{j}\right]$ is continuous and strictly increasing.

Proof. The proof parallels that of Theorem 8.11.
The addendum of [Filonov 2004] considers Robin boundary conditions as in Definition 8.12 with, in effect, θ negative. In that case, $\eta_{j+1}(\theta)<\lambda_{j}$ for all j in \mathbb{N}.

For any θ,

$$
\begin{aligned}
& \left\|\nabla p_{j}\right\|_{L^{2}(\Omega)}^{2}-\int_{\Gamma}\left(\nabla \omega_{j} \cdot \boldsymbol{n}\right) \omega_{j} \\
& \quad=\left\|\Delta u_{j}\right\|_{L^{2}(\Omega)}^{2}-\eta_{j}(\theta)\left\|u_{j}\right\|_{L^{2}(\Omega)}^{2}-\int_{\Omega} \Delta \omega\left(u_{j}\right) \omega\left(u_{j}\right)-\left\|\nabla \omega\left(u_{j}\right)\right\|_{L^{2}(\Omega)}^{2} \\
& \quad=\eta_{j}(\theta)\left(\left\|\omega\left(u_{j}\right)\right\|_{L^{2}(\Omega)}^{2}-\eta_{j}(\theta)\left\|u_{j}\right\|_{L^{2}(\Omega)}^{2}\right)
\end{aligned}
$$

Thus, (7-2) holds for an eigenfunction of $A_{L}(\theta=1)$, where $\nabla p_{j} \equiv 0$ and $\omega_{j}=0$ on Γ, and fails for an eigenfunction of the Stokes operator with Neumann boundary conditions on the vorticity (A_{R} for $\theta=0$), where $\nabla p_{j} \not \equiv 0$ and $\nabla \omega_{j} \cdot \boldsymbol{n}=0$ on Γ. For θ in $(0,1)$, it is not clear whether (7-2) holds or not, leaving open the possibility that the inequality $\lambda_{j+1} \leq v_{j}$ could be proved by showing that (7-2) holds for all θ in some left neighborhood of 1 for each λ_{j}.

In any case, for all j we have the inequalities

$$
\begin{aligned}
\mu_{j}<\eta_{j}(\theta) & <\lambda_{j}<\gamma_{j}\left(\theta^{\prime}\right)<v_{j} \quad \text { for all } \theta, \theta^{\prime} \text { in }(0,1) \\
\mu_{j+1} & <\lambda_{j}<\beta_{j}<v_{j}
\end{aligned}
$$

Appendix A. Various lemmas

Corollary A. 1 is a corollary of Lemma 2.4 and is the main tool we use to prove the equivalence of the weak and strong formulations of our eigenvalue problems. The conditions in this corollary for equality to hold are the weakest possible to insure that each factor lies in the correct space for each term to be finite.

Corollary A.1. Assume that Ω is a bounded domain with locally Lipschitz boundary. For any divergence-free distribution u for which $\omega(u)$ is in $W^{1}(\Omega)$ and any v in $L^{2}(\Omega)$ with $\omega(v)$ in $L^{2}(\Omega)$,

$$
(\omega(u), \omega(v))=-(\Delta u, v)+\int_{\Gamma} \omega(u) \bar{v} \cdot \boldsymbol{\tau}
$$

Proof. The vector field v is in $E(\Omega)$ because v^{\perp} is in $L^{2}(\Omega)$ and $\operatorname{div} v^{\perp}=-\omega(v)$ is in $L^{2}(\Omega)$. Thus, $\omega(u)$ lying in $W^{1}(\Omega)$, we can apply Lemma 2.4 to obtain

$$
(\omega(u), \omega(v))=-\left(\omega(u), \operatorname{div} v^{\perp}\right)=\left(\nabla \omega(u), v^{\perp}\right)-\int_{\Gamma} \omega(u)\left(\bar{v}^{\perp} \cdot \boldsymbol{n}\right) .
$$

But $\left(\nabla \omega(u), v^{\perp}\right)=-\left(\nabla^{\perp} \omega(u), v\right)=(-\Delta u, v)$ and $\left(\bar{v}^{\perp} \cdot \boldsymbol{n}\right)=-\bar{v} \cdot \boldsymbol{\tau}$, from which the result follows.

Lemma A.2. Assume that Ω is a bounded domain with locally Lipschitz boundary. If u is in $W^{1}(\Omega)$ with $\operatorname{div} u=0$ and v is in $\left(C^{1}(\Omega)\right)^{2}$, then

$$
(\omega(u), \omega(v))=(\nabla u, \nabla v)-\int_{\Gamma}(\nabla u \bar{v}) \cdot \boldsymbol{n} .
$$

Proof. We have

$$
\begin{aligned}
\omega(u) \omega(\bar{v})= & \left(\partial_{1} u^{2}-\partial_{2} u^{1}\right)\left(\partial_{1} \bar{v}^{2}-\partial_{2} \bar{v}^{1}\right) \\
= & \partial_{1} u^{2} \partial_{1} \bar{v}^{2}+\partial_{2} u^{1} \partial_{2} \bar{v}^{1}-\left(\partial_{1} u^{2} \partial_{2} \bar{v}^{1}+\partial_{2} u^{1} \partial_{1} \bar{v}^{2}\right) \\
= & \partial_{1} u^{2} \partial_{1} \bar{v}^{2}+\partial_{2} u^{1} \partial_{2} \bar{v}^{1}+\partial_{1} u^{1} \partial_{1} \bar{v}^{1}+\partial_{2} u^{2} \partial_{2} \bar{v}^{2} \\
& \quad-\left(\partial_{1} u^{2} \partial_{2} \bar{v}^{1}+\partial_{2} u^{1} \partial_{1} \bar{v}^{2}+\partial_{1} u^{1} \partial_{1} \bar{v}^{1}+\partial_{2} u^{2} \partial_{2} \bar{v}^{2}\right) \\
= & \partial_{i} u^{j} \partial_{i} \bar{v}^{j}-\partial_{i} u^{j} \partial_{j} \bar{v}^{i}=\nabla u \cdot \nabla \bar{v}-(\nabla u)^{T} \cdot \nabla \bar{v} .
\end{aligned}
$$

Since $\operatorname{div} u=0$, we have $(\nabla u)^{T} \cdot \nabla \bar{v}=\partial_{i} u^{j} \partial_{j} \bar{v}^{i}=\partial_{j}\left(\partial_{i} u^{j} \bar{v}^{i}\right)=\operatorname{div}(\nabla u \bar{v})$. But $\nabla u \bar{v}$ is in $L^{2}(\Omega)$ and $\|\operatorname{div}(\nabla u \bar{v})\|_{L^{2}(\Omega)} \leq\|\nabla u\|_{L^{2}(\Omega)}\|\nabla v\|_{L^{\infty}(\Omega)}$ is finite, so $\nabla u \bar{v}$
is in $E(\Omega)$ and we can apply Lemma 2.4 to give

$$
(\omega(u), \omega(v))=(\nabla u, \nabla v)-\int_{\Omega} \operatorname{div}(\nabla u \bar{v})=(\nabla u, \nabla v)-\int_{\Gamma}(\nabla u \bar{v}) \cdot \boldsymbol{n}
$$

Corollary A.3. Assume that Ω is a bounded domain with locally Lipschitz boundary. For all u in $W^{1}(\Omega)$ with $\operatorname{div} u=0$ and all v in V,

$$
(\omega(u), \omega(v))=(\nabla u, \nabla v)
$$

Proof. This follows from Lemma A. 2 and the density of $C^{1}(\Omega)$ in $W^{1}(\Omega)$.
Lemma A.4. Assume that Γ is C^{2}. For all u in $H \cap W^{2}(\Omega)$ and v in Y, we have

$$
\nabla u v \cdot \boldsymbol{n}=-\kappa u \cdot v .
$$

Proof. Because $u \cdot \boldsymbol{n}$ has a constant value (of zero) along Γ,

$$
0=\frac{\partial}{\partial \boldsymbol{\tau}}(u \cdot \boldsymbol{n})=\frac{\partial u}{\partial \boldsymbol{\tau}} \cdot \boldsymbol{n}+u \cdot \frac{\partial \boldsymbol{n}}{\partial \boldsymbol{\tau}}=\nabla u \boldsymbol{\tau} \cdot \boldsymbol{n}+\kappa u \cdot \boldsymbol{\tau} .
$$

But $v=(v \cdot \boldsymbol{\tau}) \boldsymbol{\tau}$, so multiplying both sides of the above inequality by $v \cdot \boldsymbol{\tau}$ completes the proof.
Lemma A.5. Assume that Γ is C^{2}. For all u in $H \cap W^{2}(\Omega)$ and v in Y, we have

$$
\nabla u \boldsymbol{n} \cdot v=\omega(u) v \cdot \boldsymbol{\tau}-\kappa u \cdot v .
$$

Proof. Writing

$$
\boldsymbol{n}=\binom{n^{1}}{n^{2}} \quad \text { and } \quad \boldsymbol{\tau}=\binom{-n^{2}}{n^{1}}
$$

with $\left(n^{1}\right)^{2}+\left(n^{2}\right)^{2}=1$, we have

$\nabla u \boldsymbol{n} \cdot \boldsymbol{\tau}-\nabla u \boldsymbol{\tau} \cdot \boldsymbol{n}$

$$
\begin{aligned}
& =\left(\left(\begin{array}{ll}
\partial_{1} u^{1} & \partial_{2} u^{1} \\
\partial_{1} u^{2} & \partial_{2} u^{2}
\end{array}\right)\binom{n^{1}}{n^{2}}\right) \cdot\binom{-n^{2}}{n^{1}}-\left(\left(\begin{array}{cc}
\partial_{1} u^{1} & \partial_{2} u^{1} \\
\partial_{1} u^{2} & \partial_{2} u^{2}
\end{array}\right)\binom{-n^{2}}{n^{1}}\right) \cdot\binom{n^{1}}{n^{2}} \\
& =\binom{\partial_{1} u^{1} n^{1}+\partial_{2} u^{1} n^{2}}{\partial_{1} u^{2} n^{1}+\partial_{2} u^{2} n^{2}} \cdot\binom{-n^{2}}{n^{1}}-\binom{-\partial_{1} u^{1} n^{2}+\partial_{2} u^{1} n^{1}}{-\partial_{1} u^{2} n^{2}+\partial_{2} u^{2} n^{1}} \cdot\binom{n^{1}}{n^{2}} \\
& =-\partial_{1} u^{1} n^{1} n^{2}-\partial_{2} u^{1}\left(n^{2}\right)^{2}+\partial_{1} u^{2}\left(n^{1}\right)^{2}+\partial_{2} u^{2} n^{1} n^{2} \\
& \quad+\partial_{1} u^{1} n^{1} n^{2}-\partial_{2} u^{1}\left(n^{1}\right)^{2}+\partial_{1} u^{2}\left(n^{2}\right)^{2}-\partial_{2} u^{2} n^{1} n^{2} \\
& =\left(\left(n^{1}\right)^{2}+\left(n^{2}\right)\right)\left(\partial_{1} u^{2}-\partial_{2} u\right)=\omega(u) .
\end{aligned}
$$

Thus by Lemma A.4,

$$
\nabla u \boldsymbol{n} \cdot \boldsymbol{\tau}=\omega(u)+\nabla u \boldsymbol{\tau} \cdot \boldsymbol{n}=\omega(u)-\kappa u \cdot \boldsymbol{\tau},
$$

and multiplying both sides by $v \cdot \boldsymbol{\tau}$ completes the proof.

Acknowledgments

I would like to thank Leonid Friedlander and Mark Ashbaugh for helpful comments, and James Stafney for a number of illuminating discussions.

References

[Adams 1975] R. A. Adams, Sobolev spaces, Pure and Applied Mathematics 65, Academic Press, New York-London, 1975. MR 56 \#9247 Zbl 0314.46030
[Ashbaugh 2004] M. S. Ashbaugh, "On universal inequalities for the low eigenvalues of the buckling problem", pp. 13-31 in Partial differential equations and inverse problems, edited by C. Conca et al., Contemp. Math. 362, Amer. Math. Soc., Providence, RI, 2004. MR 2006f:35198 Zbl 1062.35050
[Brown and Shen 1995] R. M. Brown and Z. Shen, "Estimates for the Stokes operator in Lipschitz domains", Indiana Univ. Math. J. 44:4 (1995), 1183-1206. MR 97c:35152 Zbl 0858.35098
[Clopeau et al. 1998] T. Clopeau, A. Mikelić, and R. Robert, "On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions", Nonlinearity 11:6 (1998), 1625-1636. MR 99g:35102 Zbl 0911.76014
[Evans 1998] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 1998. MR 99e:35001 Zbl 0902.35002
[Filonov 2004] N. Filonov, "On an inequality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator", Algebra i Analiz 16:2 (2004), 172-176. In Russian; translated in St. Petersburg Math. J. 16:2 (2005), 413-416. MR 2005f:35228
[Foias et al. 2001] C. Foias, O. Manley, R. Rosa, and R. Temam, Navier-Stokes equations and turbulence, Encyclopedia of Mathematics and its Applications 83, Cambridge University Press, 2001. MR 2003a:76001 Zbl 0994.35002
[Friedlander 1991] L. Friedlander, "Some inequalities between Dirichlet and Neumann eigenvalues", Arch. Rational Mech. Anal. 116:2 (1991), 153-160. MR 93h:35146 Zbl 0789.35124
[Friedlander 2004] L. Friedlander, "Remarks on the membrane and buckling eigenvalues for planar domains", Mosc. Math. J. 4:2 (2004), 369-375, 535. MR 2005m:35204 Zbl 1072.35134
[Gagliardo 1957] E. Gagliardo, "Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili", Rend. Sem. Mat. Univ. Padova 27 (1957), 284-305. MR 21 \#1525 Zbl 0087.10902
[Galdi 1994] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, I: Linearized steady problems, Springer Tracts in Natural Philosophy 38, Springer, New York, 1994. MR 95i:35216a Zbl 0949.35004
[Gilbarg and Trudinger 1977] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften 224, Springer, Berlin, 1977. MR 57 \#13109 Zbl 0361.35003
[Grisvard 1985] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24, Pitman, Boston, MA, 1985. MR 86m:35044 Zbl 0695.35060
[Henrot 2006] A. Henrot, Extremum problems for eigenvalues of elliptic operators, Birkhäuser, Basel, 2006. MR 2007h:35242 Zbl 1109.35081
[Iftimie and Planas 2006] D. Iftimie and G. Planas, "Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions", Nonlinearity 19:4 (2006), 899-918. MR 2007c:35130 Zbl 1169.35365
[Iftimie and Sueur 2006] D. Iftimie and F. Sueur, "Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions", preprint, Centre Interfacultaire Bernoulli, 2006, Available at http://infoscience.epfl.ch/search.py?recid=126262.
[Kelliher 2006] J. P. Kelliher, "Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane", SIAM J. Math. Anal. 38:1 (2006), 210-232. MR 2007a:35118 Zbl 05029418
[Kesavan 1989] S. Kesavan, Topics in functional analysis and applications, Wiley, New York, 1989. MR 90m:46002 Zbl 0666.46001
[Lions 1969] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. MR 41 \#4326 Zbl 0189.40603
[Lions 1996] P.-L. Lions, Mathematical topics in fluid mechanics, I: Incompressible models, Oxford Lecture Series in Mathematics and its Applications 3, Oxford University Press, New York, 1996. MR 98b:76001 Zbl 0866.76002
[Lopes Filho et al. 2005] M. C. Lopes Filho, H. J. Nussenzveig Lopes, and G. Planas, "On the inviscid limit for two-dimensional incompressible flow with Navier friction condition", SIAM J. Math. Anal. 36:4 (2005), 1130-1141. MR 2005k:76026 Zbl 1084.35060
[Maslennikova and Bogovskiĭ 1983] V. N. Maslennikova and M. E. Bogovskiŭ, "Approximation of potential and solenoidal vector fields", Sibirsk. Mat. Zh. $24: 5$ (1983), 149-171. In Russian; translated in Sib. Math. J. 24, 768-787. MR 85j:46052 Zbl 0599.46045
[Payne 1955] L. E. Payne, "Inequalities for eigenvalues of membranes and plates", J. Rational Mech. Anal. 4 (1955), 517-529. MR 17,42a Zbl 0064.34802
[Payne 1967] L. E. Payne, "Isoperimetric inequalities and their applications", SIAM Rev. 9 (1967), 453-488. MR 36 \#2058 Zbl 0154.12602
[Temam 1984] R. Temam, Navier-Stokes equations: Theory and numerical analysis, 3rd ed., Studies in Mathematics and its Applications 2, North-Holland, Amsterdam, 1984. MR 86m:76003 Zbl 0568.35002
[Weinstein and Stenger 1972] A. Weinstein and W. Stenger, Methods of intermediate problems for eigenvalues: Theory and ramifications, Mathematics in Science and Engineering 89, Academic Press, New York, 1972. MR 57 \#17469 Zbl 0291.49034

Received December 5, 2008. Revised July 24, 2009.
James P. Kelliher
Department of Mathematics
University of California
900 University Avenue
RIVERSIDE, CA 92521
United States
kelliher@math.ucr.edu

[^0]: MSC2000: 35P99.
 Keywords: Laplacian, Stokes operator, eigenvalues, clamped buckling plate.
 This work was funded in part by NSF grant DMS-0705586. Part of the work was performed while the author was at Brown University.

