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We show that the k-th eigenvalue of the Dirichlet Laplacian is strictly less
than the k-th eigenvalue of the classical Stokes operator (equivalently, of the
clamped buckling plate problem) for a bounded domain in the plane having
a locally Lipschitz boundary. For a C2 boundary, we show that eigenvalues
of the Stokes operator with Navier slip (friction) boundary conditions inter-
polate continuously between eigenvalues of the Dirichlet Laplacian and of
the classical Stokes operator.

1. Introduction

Let � be a bounded domain in R2 with locally Lipschitz boundary 0. Let σD

be the spectrum of the negative Laplacian with homogeneous Dirichlet boundary
conditions (which we refer to as the Dirichlet Laplacian) and let σS be the spectrum
of the Stokes operator with homogeneous Dirichlet boundary conditions (which we
refer to as the classical Stokes operator). Equivalently, σS is the set of eigenvalues
of the clamped buckling plate problem [Payne 1955; 1967; Friedlander 2004].
Each spectrum is discrete with

σD = {λ j }
∞

j=1, with 0< λ1 < λ2 ≤ · · · ,(1-1)

σS = {ν j }
∞

j=1, with 0< ν1 ≤ ν2 ≤ · · · ,(1-2)

each eigenvalue repeated according to its multiplicity.

Theorem 1.1. For all positive integers k, we have λk < νk .

Further, let γk(θ) be the k-th eigenvalue of the Stokes operator with boundary
conditions (1− θ)ω(u)+ θu · τ = u · n = 0, where ω(u) = ∂1u2

− ∂2u1 is the
vorticity of u, and τ and n are the tangential and normal unit vectors; see Section 8
for details.
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Theorem 1.2. If 0 is C2 and has a finite number of components, for each positive
integer k, the function γk is a strictly increasing continuous bijection from [0, 1]
onto [λk, νk].

Theorem 1.1 is the analogue of the inequality µk+1 < λk for k = 1, 2, . . . ,
proved by Filonov [2004]. Here, σN = {µ j }

∞

j=1 is the spectrum of the negative
Laplacian with homogeneous Neumann boundary conditions (which we refer to
as the Neumann Laplacian). Then σN is also discrete with 0 = µ1 < µ2 ≤ · · · .
Filonov’s inequality applies in Rd for d ≥ 2 and only requires that � have finite
measure and that its boundary have sufficient regularity that the embedding of
W 1(�) in L2(�) is compact, which is slightly weaker than our assumption that 0
is locally Lipschitz. Because of the need to integrate by parts, however, we require
the additional regularity.

Filonov’s strict inequality is a strengthening of the partial inequality µk+1 ≤ λk

proved by L. Friedlander in [1991] using very different techniques.
A fairly direct variational argument shows that λk ≤ νk ; see Remark 5.3 or

[Ashbaugh 2004, Equation (1.8)]. We are interested in the strict inequality.
For the unit disk, where one can calculate the eigenfunctions explicitly,

σD =
{

j2
nk : n = 0, 1 . . . , k = 1, 2, . . .

}
,

σS =
{

j2
nk : n = 1, 2 . . . , k = 1, 2, . . .

}
,

where jnk is the k-th positive zero of the Bessel function Jn of the first kind of
order n. Each eigenvalue has multiplicity 2 except for { j2

0k : k ∈ N} ⊆ σD and
{ j2

1k : k ∈ N} ⊆ σS , which have multiplicity 1. This gives the ordering

0< λ1 < λ2 = λ3 = ν1 < λ4 = λ5 = ν2 = ν3 < λ6 < · · · .

In this case we have λk+1 ≤ νk for all k, but λk+1 6< νk for k = 1. This leaves open
the possibility that λk+1 ≤ νk in full generality. This inequality was conjectured to
hold by L. E. Payne many years ago, but has remained unproved.

To prove Theorem 1.1 we adapt Filonov’s proof [2004] that µk+1<λk , which is
shockingly direct and simple. As we observed for a disk, λk+1 6< νk , which shows
that some aspect of Filonov’s approach must fail if we attempt to adapt it to obtain
Theorem 1.1. In fact, what fails is his use of a function of the form f = eiω·x with
|ω|2 = λ for λ > 0, which has the properties that 1 f +λ f = 0 and |∇ f |2 = λ| f |.
This serves as an “extra” function that increases the dimension of a subspace of
functions that he shows satisfy the bound in the variational formulation of the
eigenvalue problem for the Neumann Laplacian. There can be no such function
that will serve in general for us (else λk+1 < νk would hold in general), but we
describe the analogue of such a function in our setting in Section 7, show that
given its existence we obtain λk+1 ≤ νk , and explain why it fails to give λk+1 < νk .
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Our proof of λk <νk is largely a matter of transforming the eigenvalue problems
so that the Stokes operator can play the role the Dirichlet Laplacian plays for
Filonov and so that the Dirichlet Laplacian can play the role that the Neumann
Laplacian plays for Filonov.

The approach of [Friedlander 1991] can also be adapted to prove Theorem 1.1,
at least for C1-boundaries.

In Section 8, we show that when 0 is C2 and has a finite number of compo-
nents, one can interpolate continuously between λ j and ν j using the eigenvalues
of the negative Laplacian with Navier slip boundary conditions (Theorem 1.2).
These boundary conditions, originally defined by Navier, have recently received
considerable attention from fluid mechanics as a physically motivated replacement
for Dirichlet boundary conditions, as they allow a thorough characterization of the
boundary layer. See for instance [Clopeau et al. 1998; Lopes Filho et al. 2005;
Kelliher 2006; Iftimie and Planas 2006; Iftimie and Sueur 2006]. We also discuss
Neumann boundary conditions for the velocity and for the vorticity, and Robin
boundary conditions for the vorticity.

This paper is organized as follows. We describe the necessary function spaces,
trace operators, and related lemmas in Section 2. In Section 3, we define the classi-
cal Stokes operator and a variant of it using Lions boundary conditions (vanishing
vorticity on the boundary). We show that the eigenvalue problem for the classical
Stokes operator is equivalent to the eigenvalue problem for the clamped buckling
plate problem. We also describe the strong forms of the associated eigenvalue
problems in Section 3, giving the weak forms in Section 4. In Section 5 we de-
scribe the variational (min-max) formulations of the eigenvalue problems, using
these formulations in Section 6 to prove Theorem 1.1. In Section 7, we describe
the properties of the analogue of the function f used by Friedlander and Filonov
and prove that its existence would imply the inequality λk+1 ≤ νk . Finally, in
Section 8, we discuss Navier boundary conditions and prove Theorem 1.2.

For a vector field u we define u⊥ = (−u2, u1) and for a scalar field ψ we define
∇
⊥ψ = (−∂2ψ, ∂1ψ). Observe that (u⊥)⊥ =−u and (∇⊥)⊥ψ =−∇ψ . By ω(u)

we mean the vorticity (scalar curl) of u, that is, ω(u) = ∂1u2
− ∂2u1. We make

frequent use of the identities ∇⊥ω(u) = 1u and ω(u) = − div u⊥, the former
requiring that u be divergence-free.

Assumption. Unless specifically stated otherwise, we assume throughout that �
is a bounded domain whose boundary 0 is locally Lipschitz.

2. Function spaces and related facts

Let n be the outward-directed unit vector normal to 0, and let τ be the unit tangent
vector chosen so that (n, τ ) has the same orientation as the Cartesian unit vectors



102 JAMES P. KELLIHER

(e1, e2). These vectors are defined almost everywhere on 0 since 0 is locally
Lipschitz.

The spaces Ck,α(�), Ck,α(�), and W s(�) are the usual Hölder and L2-based
Sobolev spaces, with k an integer, 0 ≤ α ≤ 1, and s any real number. We need
to say a few words about these spaces, which can be defined in various equivalent
ways.

Define the norms

‖ f ‖Ck =

m∑
j=0

sup
�

sup
|β|= j
|Dβu|,

‖ f ‖Ck,α = ‖ f ‖Ck + sup
|β|=k

sup
x 6=y∈�

|Dβ f (x)− Dβ f (y)|
|x − y|α

for 0< α ≤ 1.

Define Ck(�) = Ck,0(�) and Ck,α(�) to be the spaces of functions finite under
their respective norms; Ck,α(�) is defined similarly. Here β is a multiindex.

When m ≥ 0 is an integer, W m(�) is the completion of the space of all C∞(�)
functions in the norm

‖ f ‖W m =

( ∑
|α|≤m

‖Dα f ‖2L2(�)

)1/2
,

where α is a multiindex. Equivalently, W m(�) is the space of all functions f such
that Dα f is in L2(�) for all |α| ≤ m. W m

0 (�) is defined similarly as the closure
of C∞0 (�) under the W m norm. (See for instance [Adams 1975, Section 3.1].)
W 1

0 (�) can equivalently be defined as all functions in W 1(�) whose boundary
trace is zero. W−m(�) is the dual space of W m

0 (�). Fractional Sobolev spaces
W s(�) can be defined for instance as in [Adams 1975, Theorem 7.48].

On �, we will only need integer-order Hölder and Sobolev spaces, but on 0 we
will need to use fractional spaces. Hölder spaces, however, can only be defined
when the boundary has sufficient regularity.

We define a bounded domain� (or its boundary ∂�) to be of class Ck,α for k≥0
an integer and 0≤ α≤ 1 if locally there exists a Ck,α diffeomorphism ψ that maps
� into the upper half-plane with ∂� being mapped to an open interval I . We say
that ϕ is in Ck,α(∂�) if ϕ ◦ψ−1 is in Ck,α(I ). We also write Ck for Ck,0. If � is a
Ck,α domain and ϕ lies in C j,β(∂�) for j+β≤ k+α, then there exists an extension
of ϕ to C j,β(�). See [Gilbarg and Trudinger 1977, Section 6.2] for more details.
The inverse operation of restricting to the boundary gives an equivalent definition
of Ck,α(∂�) as restrictions of functions in Ck,α(�).

When 0 is locally Lipschitz, we will only have need for W s(∂�) for s =±1/2
and 0. We define W 1/2(∂�) to be the image (a subspace of L2(∂�)) under the
unique continuous extension to W 1(�) of the map that restricts the value of a
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C∞(�) function to the boundary. The existence of this extension was proved
by Gagliardo [1957] (or see [Grisvard 1985, Theorem 1.5.1.3]). Alternately, we
could define W 1/2(�) intrinsically as in [Galdi 1994, Section II.3]. We define
W−1/2(∂�) to be the space dual to W 1/2(∂�) and let W 0(∂�)= L2(∂�).

For C2 boundaries, we will need Corollary 2.2 and hence need to define W s(∂�)

for all real s. We use the intrinsic definition of W s(∂�) due to J. L. Lions, which
applies when the boundary is of class Cm for m ≥ 1. This definition is similar to
that for the Hölder spaces defined above, and requires for s > 0 that each ϕ ◦ψ−1

be of class W s(I ), where I is the domain of ψ−1. (See [Adams 1975, pages 215–
217] for details.) For s < 0 we define W s(∂�) to be the dual space of W−s(∂�)

and let W 0(∂�)= L2(∂�) as above. It follows from [Adams 1975, Theorem 7.53]
that the two definitions of these spaces are equivalent for 0< s ≤m and hence for
all real s. (Adams gives the proof only for s = m − 1/2, from which it follows
immediately for all s = j−1/2, where j is an integer with 1≤ j ≤m, since if ∂�
is of class Cm it is of class Ck for all 1≤ k ≤m. We only need the equivalence for
m = 2 and s = 1/2, so this will suffice.)

Lemma 2.1. Let D be any bounded domain in Rn with C∞ boundary. Let ϕ lie in
Ck,α(D) and f lie in W s(D) for s > 0. Then ϕ f lies in W s(D) as long as{

k+α ≥ s if s is an integer,
k+α > s if s is not an integer.

Let g lie in W s′(D). Then f g lies in W s(D) if s ′ > s and s ′ ≥ n/2 or if s ′ ≥ s and
s ′ > n/2.

Proof. This follows from [Galdi 1994, Theorems 1.4.1.1 and 1.4.4.2]. �

Corollary 2.2. Assume that 0 is of class Ck,α. Let ϕ ∈C j,β(∂�) for j+β ≤ k+α,
and let f ∈W s(0) for s > 0. Then ϕ f ∈W s(0) as long as{

j +β ≥ s if s is an integer,
j +β > s if s is not an integer.

If f ∈W s(0) and ϕ ∈W s+ε(0) with ε > 0, then ϕ f ∈W s(0) if s ≥ 1/2.

Proof. Apply Lemma 2.1 to the functions ϕ◦ψ−1 and f ◦ψ−1 with domain D= I .
�

Corollary 2.3. Assume that 0 is C2. Then gτ and gn are in W 1/2(0) for any g in
W 1/2(0), and u · τ and u · n are in W 1/2(0) for any u in (W 1/2(0))2.

Proof. Because 0 is C2, τ and n are in C1
=C1,0. But 1+0> 1/2, so the second

condition in Corollary 2.2 applies in each case to give the result. �

Let V = {u ∈ (C∞0 (�))
2
: div u = 0} be the space of complex vector-valued

divergence-free test functions on �. We let H be the completion of V in L2(�)
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and V be the completion of V in W 1
0 (�). These definitions of H and V are valid

for arbitrary domains. We will also find use for the space

(2-1) E(�)=
{
v ∈ (L2(�))2 : div v ∈ L2(�)

}
with ‖u‖E(�) = ‖u‖L2(�)+‖div u‖L2(�).

We use ( · , · ) to mean the inner product (u, v)=
∫
� uv in L2(�) or sometimes

to mean the pairing of v in a space Z with u in Z∗ or of v in D(�) with u in D′(�).
Which is meant is stated if it is not clear from context.

The integrations by parts we will make are justified by Lemma 2.4, which is
[Temam 1984, Theorem 1.2, page 7] for locally Lipschitz domains. (Temam states
the theorem for C2 boundaries but the proof for locally Lipschitz boundaries is
the same, using a trace operator for Lipschitz boundaries in place of that for C2

boundaries: see [Galdi 1994, pages 117–119, specifically Theorem 2.1, page 119].)

Lemma 2.4. There is an extension of the trace operator γn : (C∞0 (�))
2
→C∞(0),

u 7→ u · n, on 0 to a continuous linear operator from E(�) onto W−1/2(0). The
kernel of γn is the space E0(�)— the completion of C∞0 (�) in the E(�) norm.
For all u in E(�) and f in W 1(�),

(2-2) (u,∇ f )+ (div u, f )=
∫
0

(u · n) f .

Remark 2.5. In (2-2) and in what follows we usually do not explicitly include the
trace operators. On the right side of (2-2), for instance, u ·n is actually γnu, which
is thus in W−1/2(0), and f is actually γ0 f , where γ0 is the usual trace operator
from W s(�) to W s−1/2(0) for all s>1/2. Also, the boundary integral should more
properly be written as a pairing in the duality between W−1/2(0) and W 1/2(0) of
u · n and f .

Lemma 2.6. W s(�) is compactly embedded in W r (�) for all s > r ≥ 0.

Proof. This is an instance of the Rellich–Kondrachov theorem. That it holds for
a bounded domain with locally Lipschitz boundary follows, for instance, from the
comments on [Adams 1975, page 67 and Theorem 6.2, page 144]. �

We will use several times a basic result of elliptic regularity theory:

Lemma 2.7. Let f lie in W−1(�). There exists a unique ψ in W 1
0 (�) that is a

weak solution of 1ψ = f . Furthermore, ‖ψ‖W 1(�) ≤ C‖ f ‖W−1(�). When 0 is C2

and f is in L2(�),
‖ψ‖W 2(�) ≤ C‖1ψ‖L2(�).

Proof. See for instance [Kesavan 1989, pages 118–121] for general bounded open
domains and [Evans 1998, Theorem 4 and the remark following it on page 317]
for C2 boundaries. �
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Poincaré’s inequality holds in both its classical forms:

Lemma 2.8. Let f lie in W 1
0 (�) or else lie in W 1(�) with

∫
� f = 0. Then there

exists a constant C such that ‖ f ‖L2(�) ≤ C‖∇ f ‖L2(�).

Proof. See [Galdi 1994, Theorem 4.1 on page 49, and Theorem 4.3 on page 54]. �

Since 0 is locally Lipschitzian, we can define

Ĥ =
{
u ∈ (L2(�))2 : div u = 0 in �, γnu = 0 on 0

}
,

V̂ =
{
u ∈ (W 1(�))2 : div u = 0 in �, γ0u = 0 on 0

}
.

By the continuity of the trace operators γn and γ0, it follows that H ⊆ Ĥ and
V ⊆ V̂ . When 0 is a bounded domain with locally Lipschitz boundary, H = Ĥ
and V = V̂ . For H = Ĥ , see [Temam 1984, Theorem 1.4 in Chapter 1]. That
V = V̂ is proved in [Maslennikova and Bogovskiı̆ 1983]; see the comments of
[Galdi 1994, page 148] and [Adams 1975, page 67].

Lemma 2.9. Assume that u is in (D′(�))2 with (u, v) = 0 for all v in V. Then
u = ∇ p for some p in D′(�). If u is in (L2(�))2 then p is in W 1(�); if u is in H ,
then p is in W 1(�) and 1p = 0.

Proof. For u in (D′(�))2, see [Temam 1984, Proposition 1.1, page 10]. For u in
(L2(�))2, the result is a combination of [Galdi 1994, Theorem 1.1, page 103, and
Remark 4.1, page 54]; also see [Temam 1984, Remark 1.4, page 11]. �

We will also find a need for the spaces

Y = Y 1
= H ∩W 1(�), X = X1

= {u ∈ H : ω(u) ∈ L2(�)},

Y 2
= {u ∈ Y : ω ∈W 1(�)}, X2

= {u ∈ H : ω(u) ∈W 1
},

Y 2
0 = {u ∈ Y : ω(u) ∈W 1

0 }, X2
0 = {u ∈ H : ω(u) ∈W 1

0 },

with the obvious norms on each space. We give Y the W 1(�) norm, but place no
norm on the other spaces. When 0 is C2 and has a finite number of components,
the X and Y spaces coincide as in Corollary 2.16.

The average value of any vector u in H — and hence in all of our spaces — is
zero, as can be seen by integrating u · ei over �, where ei = ∇xi is a coordinate
vector, and applying Lemma 2.4. Thus, Poincaré’s inequality holds for Y and V
so we can, and will, use ‖u‖Y = ‖u‖V = ‖∇u‖L2(�) in place of the W 1(�) norm
for these two spaces.

Let Hc = {v ∈ H : ω(v)= 0} and, noting that Hc is a closed subspace of H , let
H0 be the orthogonal complement of Hc in H . Thus, H = H0⊕Hc is an orthogonal
decomposition of H . Observe that V ∩ H0 = V , and when � is simply connected,
H = H0.
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Lemma 2.10. For any u in H0 there exists a stream function ψ in W 1(�) for u,
that is, u =∇⊥ψ , and ψ is unique up to the addition of a constant. Moreover,

H0 = {∇
⊥ψ : ψ ∈W 1

0 (�)} = ∇
⊥W 1

0 (�).

If u is in H0 ∩ Y , then ψ can be taken to lie in W 1
0 (�)∩W 2(�), and if u is in V ,

then ψ can be taken to lie in W 2
0 (�).

Proof. Let u be in H0, and let ψ in W 1
0 (�) solve 1ψ = ω(u) ∈ W−1(�) as in

Lemma 2.7. Letting w=∇⊥ψ ∈ L2(�), we have ω(w)=1ψ =ω(u), divw= 0,
and w ·n= 0 on 0, so w is in H . Thus, w is a vector in H with the same vorticity
as u, meaning that u−w is in Hc.

We claim that w is in H0. To see this, let v be in Hc. Then

(w, v)= (∇⊥ψ, v)= (−∇ψ, v⊥)= (ψ, div v⊥)+
∫
0

(v⊥ · n)ψ = 0.

The last equality follows from div v⊥=ω(v)= 0 (showing also that v⊥ is in E(�)
and allowing integration by parts via Lemma 2.4) and ψ = 0 on 0. Since this is
true for all v in Hc, it follows that w is in H0.

Thus, both u and w are in H0, so u−w is in H0. But we already saw that u−w
is in Hc, so u−w = 0.

What we have shown is both the existence of a stream function and the expres-
sion for H0, the uniqueness of the stream function up to a constant being then
immediate. The additional regularity of ψ for u in H0 ∩ Y or V follows simply
because ∇ψ =−u⊥ is in W 1(�). For u in V it is also true that ∇ψ = 0 on 0, so
ψ can be taken to lie in W 2

0 (�). �

Closely related to Lemma 2.10 is Lemma 2.11, a form of the Biot–Savart law.

Lemma 2.11. The operator ω is a continuous linear bijection between the follow-
ing pairs of spaces:

H0 and W−1(�), H0 ∩ X and L2(�), H0 ∩ X2
0 and W 1

0 (�).

Proof. That ω has the domains and ranges stated and that it is continuous follow
directly from the definitions of the spaces.

For ω in W−1(�), let ψ in W 1
0 (�) solve1ψ =ω on� as in Lemma 2.7, and let

u =∇⊥ψ . Then ω(u)=ω and if ω(v)=ω as well for v in H0, then ω(u−v)= 0,
implying that u−v is in Hc. But u−v is also in H0 so u−v= 0. Thus, u=ω−1(ω)

with ‖u‖H = ‖∇ψ‖L2 ≤C‖ω‖W−1(�) by Lemma 2.7, showing that ω−1 is defined
and bounded and hence continuous, since it is clearly linear.
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For ω in L2(�) or W 1
0 (�) the same argument applies, though now we use either

‖u‖X = ‖∇ψ‖L2 +‖ω(u)‖L2 ≤ C‖ω‖L2 +‖ω‖L2

or ‖u‖X2
0
= ‖∇ψ‖L2 +‖ω(u)‖W 1 ≤ C‖ω‖L2 +‖ω‖W 1 ≤ C‖ω‖W 1

to demonstrate the continuity of ω−1. �

Corollary 2.12. X is dense and compactly embedded in H , and X2
0 is dense and

compactly embedded in X.

Proof. Let A = L2(�) and B = W−1(�) or A = W 1
0 (�) and B = L2(�). In

both cases, A is dense and compactly embedded in B. Density is transferred to the
image spaces ω−1(A) and ω−1(B) by virtue of ω−1 being a continuous surjection.
The property that the spaces are compactly embedded transfers to the image spaces
by virtue of ω being bounded (since it is continuous linear) along with ω−1 being
a continuous surjection. �

We also have the following useful decomposition of L2(�), variously named
after some combination of Leray, Helmholtz, and Weyl.

Lemma 2.13. For any u in (L2(�))2, there exists a unique v in H and p in W 1(�)

such that u = v+∇ p.

Proof. This follows, for instance, from [Galdi 1994, Theorem 1.1, page 107],
which holds for an arbitrary domain, along with Lemma 2.9. �

The mapping u 7→v, with u and v as in Lemma 2.13, defines the Leray projector
P from (L2(�))2 onto H .

A slight strengthening of Poincaré’s inequality holds on Y (and so on V ) when
� is simply connected:

Lemma 2.14. For any u in H0 ∩ X ,

‖u‖L2(�) ≤ C‖ω(u)‖L2(�),(2-3)

and when 0 is C2,

‖∇u‖L2(�) ≤ C‖ω(u)‖L2(�).(2-4)

Proof. As in the proof of Lemma 2.10, u=∇⊥ψ for ψ in W 1
0 (�) with1ψ =ω(u)

in L2(�), and ‖ψ‖L2(�) ≤ ‖ψ‖W 1(�) ≤ C‖ω(u)‖L2(�) by Lemma 2.7. But ∇ψ
is in E(�) and ψ is in W 1(�) so by Lemma 2.4 we can integrate by parts to
give (ω(u), ψ) = (1ψ,ψ) = −(∇ψ,∇ψ) = −‖u‖2L2(�)

. Hence by the Cauchy–
Schwarz inequality,

‖u‖2L2(�) ≤ ‖ψ‖L2(�)‖ω(u)‖L2(�) ≤ C‖ω(u)‖2L2(�),

giving Equation (2-3).
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When 0 is C2, using Lemma 2.7,

‖∇u‖L2(�) = ‖∇∇ψ‖L2(�) ≤ ‖ψ‖W 2(�) ≤ C‖1ψ‖L2(�) = C‖ω(u)‖L2(�),

giving Equation (2-4). �

Corollary 2.15. If 0 is C2 and has a finite number of components, then any u in H
with ω(u) in L2(�) is also in Y , and

‖∇u‖L2(�) ≤ C(‖ω(u)‖L2(�)+‖u‖L2(�)).

Proof. This follows from the basic estimate of elliptic regularity theory. �

Corollary 2.16. When 0 is C2 and has a finite number of components,

X = Y, X2
= Y 2

= H ∩W 2(�),

X2
0 = Y 2

0 =
{
u ∈ H ∩W 2(�) : ω(u)= 0 on 0

}
.

Proof. The first identity follows from Corollary 2.15 and the second and third from
the identity 1u =∇⊥ω and Lemma 2.7. �

We will find a need for the trace operator of Proposition 2.17 in Section 8.

Proposition 2.17. Assume that 0 is C2 and has a finite number of components,
and let

U =
{
ω ∈ L2(�) : 1ω ∈ L2(�)

}
endowed with the norm ‖ω‖U = ‖ω‖L2(�) + ‖1ω‖L2(�). There exists a linear
continuous trace operator γω : U → W−1/2(0) such that γωω is the restriction
of ω to 0 for all ω in C∞(�). For any α in W 1

0 (�)∩W 2(�),

(γωω,∇α · n)W−1/2(0),W 1/2(0) = (1α, ω)− (α,1ω).(2-5)

Lemma 2.18. For any f in L2(�) and a in (W 1/2(0))2 satisfying the compatibility
condition ∫

�

f =
∫
0

a · n,

there exists a (nonunique) solution v in W 1(�) to div v = f in � and v = a on 0.

Proof. This follows from [Galdi 1994, Lemma 3.2 on pages 126–127, Remark 3.3
on pages 128–129, and Exercise 3.4 on page 131]. See also the comment of
[Adams 1975, page 67]. �
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Lemma 2.19. Define γτ : Y → L2(0) by γτv = γ0v · τ for any v in Y . When
0 is C2, γτ maps Y onto W 1/2(0). When 0 is C2 and has a finite number of
components, γτ (H0 ∩ Y ) is dense in W 1/2(0).

Proof. Assume that 0 is C2 and let g lie in W 1/2(0). Then since 0 is C2, gτ is
also in W 1/2(0) by Corollary 2.3, and by Lemma 2.18 there exists a vector field
v in W 1(�) with div v =

∫
0 gτ · n = 0 and v = gτ on 0. Thus, in fact, v lies

in Y , which shows that γτ (Y ) maps onto W 1/2(0). If 0 has a finite number of
components, then Hc ∩Y is finite-dimensional and so is its image under this map;
hence the image of H0 ∩ Y is dense in W 1/2(0). �

Proof of Proposition 2.17. Assume first that ω ∈C∞(�), let α ∈W 1
0 (�)∩W 2(�),

and let v =∇⊥α, so that v lies in H0 ∩ Y with 1α = ω(v). Then

(α,1ω)=−(∇α,∇ω)+

∫
0

(∇ω · n)α =−(∇α,∇ω)

= (1α, ω)−

∫
0

(∇α · n)ω = (1α, ω)−
∫
0

ωv · τ .

From this it follows that for any choice of v (equivalently, by Lemma 2.10, of α)
with a given value of v · τ on 0, the value of (1α, ω)− (α,1ω) is the same.

Now, because of Lemma 2.19, we can define γω(ω) to be that unique element
of W−1/2(0) such that Equation (2-5) holds. This gives a linear mapping from U
to W−1/2(0) whose restriction to C∞(�) is the classical trace.

To establish the continuity of this mapping, let a be any element of W 1/2(0).
If � is simply connected, then a = v · τ = ∇⊥α · τ = ∇α · n for some v in Y or
equivalently for some α in W 1

0 (�)∩W 2(�). Then

(γωω, a)W−1/2(0),W 1/2(0) = |(1α, ω)− (α,1ω)| ≤ C‖1α‖L2(�)‖ω‖U

≤ C‖∇α‖W 1(�)‖ω‖U ≤ C‖∇α‖W 1/2(0)‖ω‖U

= C‖∇α · n‖W 1/2(0)‖ω‖U = C‖a‖W 1/2(0)‖ω‖U .

Here, we Lemma 2.7 in the first and second inequalities and the continuity of the
inverse of the standard trace operator in the third inequality. Also, the second-to-
last equality holds because α has the constant value of zero on 0, so ∇α ·τ = 0 and
|∇α| = |∇α · n|. This shows that the mapping is bounded and hence continuous.

When � is multiply connected, the argument is the same except that we must
employ a simple density argument using Lemma 2.19. �

3. Strong formulations of three eigenvalue problems

Assume for the moment that 0 is C2. Then, given any u in V ∩ W 2(�), the
(classical) Stokes operator AS applied to u is that unique element ASu of H such
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that1u+ASu=∇ p for some harmonic pressure field p. Equivalently, AS=−P1,
P being the Leray projector defined following Lemma 2.13. The operator AS maps
V ∩ W 2(�) onto H (see for instance [Foias et al. 2001, pages 49–50] for more
details), is strictly positive definite, self-adjoint, and as a map from V to V ∗, the
composition of A−1

S with the inclusion map of V into V ∗ is compact. It follows that
{u j } is complete in H (and in V ) with corresponding eigenvalues {ν j } satisfying
0<ν1≤ ν2≤ · · · and ν j→∞ as j→∞. Also, the eigenfunctions are orthogonal
in both H and V .

When 0 is only locally Lipschitz, −P1 is only known to be symmetric on V ∩
W 2(�), not self-adjoint. Thus, we define AS to be the Friedrichs extension, as an
operator on H , of−1 defined on V∩C∞0 (�). A concrete description of its domain,
D(AS), in terms of more familiar spaces is not known, though V ∩ H 2(�) ⊆

D(AS) ⊆ V . In three dimensions, tighter inclusions have been obtained; see for
instance [Brown and Shen 1995]. In any case, basic properties of the Friedrich
extension insure that AS is strictly positive definite, self-adjoint, and maps D(AS)

bijectively onto H .

Definition 3.1. A strong eigenfunction u j ∈ V ∩ X2 of AS with eigenvalue ν j > 0
satisfies, for some p j in W 1(�),

(3-1)
{
1u j + ν j u j =∇ p j , 1p j = 0, div u j = 0 in �,

u j = 0 on 0.

Taking the curl of (3-1), we see that the vorticity ω j = ω(u j ) satisfies

(3-2)
{
1ω j + ν jω j = 0 in �,

u j = 0 on 0.

That is, ω j is an eigenfunction of the negative Laplacian, but with boundary con-
ditions on the velocity u j .

Let ψ j be the stream function for u j given by Lemma 2.10, so u j = ∇
⊥ψ j .

Then ω j =1ψ j and ∇ψ j =−u⊥j = 0 on 0. Since ψ j is determined only up to a
constant, we can then assume that ψ j = 0 on 0. Thus, ψ j satisfies

(3-3)
{
11ψ j + ν j1ψ j = 0 in �,

∇ψ j · n= ψ j = 0 on 0.

This is the eigenvalue problem for the clamped buckling plate; see for instance
[Payne 1967; Ashbaugh 2004].

Temam exploits the similar correspondence between the Stokes problem and
the biharmonic problem in the proof of [Temam 1984, Proposition I.2.3] to get a
relatively simple proof of the regularity of solutions to the Stokes problem in two
dimensions with at least C2 regularity of the boundary. Also, as pointed out in
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[Ashbaugh 2004], there is a similar correspondence between the eigenvalue prob-
lems for the Dirichlet Laplacian and (3-3) with the boundary condition ∇ψ j ·n= 0
replaced by 1ψ j = 0. We use this correspondence in the proof of Theorem 1.1,
though we view the correspondence as being that given in Lemma 2.11, instead.

What we have shown is that given u j satisfying (3-1), the corresponding stream
function ψ j satisfies (3-3). Conversely, given ψ j satisfying (3-3), the functions
ω j =1ψ j and u j =∇

⊥ψ j satisfy (3-2) and one can show, at least for sufficiently
smooth boundaries, that u j satisfies (3-1). Thus, the eigenvalue problems for the
Stokes operator and the clamped buckling plate are equivalent.

Returning to (3-1), if we use instead the boundary conditions employed by J.-L.
Lions [1969, pages 87–98] and P.-L. Lions [1996, pages 129–131], namely

(3-4) u j · n= 0 and ω j = 0 on 0,

which we call Lions boundary conditions, we obtain the eigenvalue problem for
the Dirichlet Laplacian of Definition 3.2.

Definition 3.2. A strong eigenfunction ω j ∈ W 1
0 (�) of the Dirichlet Laplacian

−1D with eigenvalue λ j > 0 satisfies

(3-5)
{
1ω j + λ jω j = 0 in �,

ω j = 0 on 0.

Using Lemma 3.4, we can recover the divergence-free velocity u j in X2
0 uniquely

from a vorticity in W 1
0 (�) under the constraint that u j · n = 0, leading to the

eigenvalue problem in Definition 3.3 for an operator AL , which we will call the
Stokes operator with Lions boundary conditions. (We use λ∗j in place of λ j because
of the presence of zero eigenvalues.)

Definition 3.3. A strong eigenfunction u j ∈ X2
0 of AL with eigenvalue λ∗j > 0

satisfies

(3-6)
{
1u j + λ

∗

j u j = 0, div u j = 0 in �,

u j · n= 0, ω(u j )= 0 on 0.

What we have done is to define the eigenvalue problem for the operator AL

before defining the operator itself. In fact, AL : X2
0→ H with ALu =−1u. That

is, AL is simply the negative Laplacian on X2
0 .

To see that AL is well defined, observe that1u·n=∇⊥ω(u)·n=−∇ω(u)·τ =0
for any u in X2

0 , since ω(u) is constant (namely, zero) along 0. (Another way of
viewing this is that there is no need for a Leray projector in X2

0 , making the Stokes
operator on X2

0 akin to the Stokes operator on H ∩W 2(�) for a periodic domain,
which of course has no boundary. This is one reason that the use of the boundary
conditions of (3-4) in [Lions 1969] and [Lions 1996] is so effective.)
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Lemma 3.4. Given ω in W 1
0 (�) that satisfies{
1ω+ λω = 0 in �,

ω = 0 on 0

with λ > 0, there exists a unique u in X2
0 such that ω = ω(u) and{

1u+ λu = 0, div u = 0 in �,

u · n= 0, ω(u)= 0 on 0.

Proof. Let v = ω−1(ω), which lies in H0 ∩ X2
0 by Lemma 2.11. Then 1v = ∇⊥ω

is in L2(�), so w = 1v + λv is a divergence-free vector field in L2(�). Hence,
by Lemma 2.13, w = h +∇ p for a unique vector field h in H and an harmonic
scalar field p in W 1(�) satisfying ∇ p ·n=w ·n=1v ·n on 0. (Since div1v= 0,
1v is in E(�), so 1v · n is in W−1/2(0) by Lemma 2.9.)

But 1v · n = ∇⊥ω(v) · n = ∇⊥ω · n = −∇ω · τ = 0 on 0, where ω has the
constant value of zero. Thus, 1p = 0 in � with ∇ p · n = 0 on 0, so ∇ p ≡ 0, and
thus w = h and so lies in H . Also, ω(w)=1ω(v)+ λω(v)=1ω+ λω = 0.

Then u = v− (1/λ)w is in H and using 1w =∇⊥ω(w)= 0, we see that

1u+ λu =1v+ λv−w = w−w = 0,

which gives the boundary value problem for u in the statement of the lemma. �

4. Weak formulations of the eigenvalue problems

To establish in Proposition 4.10 the existence of the eigenfunctions in Section 3,
we work with their weak formulation, then show that these weak formulations
are equivalent to those of Section 3 (for AS , though, only when the boundary
or the eigenfunctions are sufficiently regular). The formulations for AS and AL

are modeled along the lines of the formulation in Definition 4.2 for the Dirichlet
Laplacian, which is classical; see for instance [Henrot 2006, Chapter 1].

Definition 4.1. The vector field u j in V is a weak eigenfunction of AS with eigen-
value ν j > 0 if

(ω(u j ), ω(v))− ν j (u j , v)= 0 for all v ∈ V .

Definition 4.2. The scalar field ω j in W 1
0 (�) is a weak eigenfunction for the

Dirichlet Laplacian with eigenvalue λ j > 0 if

(∇ω j ,∇α)− λ j (ω j , α)= 0 for all α ∈W 1
0 (�).
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Definition 4.3. The vector field u j in H0 ∩ X is a weak eigenfunction for AL for
λ∗j > 0 if

(ω(u j ), ω(v))− λ
∗

j (u j , v)= 0 for all v ∈ H0 ∩ X.(4-1)

Any vector in Hc is an eigenfunction of AL with zero eigenvalue.

Proposition 4.4. In Definition 4.3, the eigenfunction u j for λ∗j > 0 and the test
function v can be taken to lie in X.

Proof. Suppose we change Definition 4.3 to assume that u j and the test function v
lie in X . Then in particular,

(ω(u j ), ω(v))− λ
∗

j (u j , v)=−λ
∗

j (u j , v)= 0 for all v ∈ Hc.

That is, u j is normal to any vector in Hc and so lies in H0 ∩ X . But then knowing
that u j lies in H0 ∩ X , it follows that (ω(u j ), ω(v)) − λ

∗

j (u j , v) = 0 for any v
in Hc; that is, one need only use test functions in H0∩ X . Thus, the more stringent
requirement for being a weak eigenfunction of AL reduces to the less stringent
requirement, meaning that the two are equivalent. �

Proposition 4.5. A strong eigenfunction of AS is a weak eigenfunction of AS; a
weak eigenfunction of AS lying in X2 is a strong eigenfunction of AS .

Proof. If u j is a strong eigenfunction of AS as in Definition 3.1, then applying
Corollary A.1, we have for all v in V

(4-2) (ω(u j ), ω(v))− ν j (u j , v)=−(1u j + ν j u j , v)=−(∇ p j , v)= 0.

Thus, u j is a weak eigenfunction of AS as in Definition 4.1.
Conversely, suppose u j is a weak eigenfunction of AS as in Definition 4.1 such

thatω(u j ) lies in W 1(�). Letting v lie in V , we have (ω(u j ), ω(v))−ν j (u j , v)=0,
and u j and v have sufficient regularity to apply Corollary A.1 as above to give
(1u j+ν j u, v)= 0 for all v in V . From Lemma 2.9 we see that 1u j+ν j u =∇ p j

for some harmonic pressure field p j in W 1(�), since 1u j+ν j u is in L2(�). This
shows that u j is a strong eigenfunction of AS as in Definition 3.1. �

Proposition 4.6. Definitions 3.2 and 4.2 are equivalent as, too, are Definitions 3.3
and 4.3. When 0 is C2, Definitions 3.1 and 4.1 are equivalent.

Proof. If u j is a strong eigenfunction of AL as in Definition 3.3, then by virtue of
Corollary A.1, we have for all v in W 1(�)

(4-3)
(ω(u j ), ω(v))− λ

∗

j (u j , v)=−(1u j , v)+

∫
0

ω(u j )v · τ − λ
∗

j (u j , v)

=−(1u j + λ
∗

j u j , v)= 0.

It follows that u j is a weak eigenfunction of AL as in Definition 4.3.
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Now suppose that u j is a weak eigenfunction of AL as in Definition 4.3. Let ψ j

be the stream function for u j lying in W 1
0 (�) given by Lemma 2.10. Then for all

v in X ,

(u j , v)= (∇
⊥ψ j , v)=−(∇ψ j , v

⊥)= (ψ j , div v⊥)−
∫
0

(v⊥ · n)ψ j

=−(ψ j , ω(v)).

Hence, by virtue of Proposition 4.4, we have for all v in X

(ω(u j )+ λ
∗

jψ j , ω(v))= (1ψ j + λ
∗

jψ j , ω(v))= 0.

Then 1ψ j + λ
∗

jψ j = 0 since by Lemma 2.11 ω(v) ranges over all of L2(�), so
ω j = −λ

∗

jψ j lies in W 1
0 (�). Thus, 1u j = ∇

⊥ω j is in L2(�), so u j is a strong
eigenfunction of AL as in Definition 3.3.

A strong eigenfunction of AS is a weak eigenfunction of AS by Proposition 4.5.
Suppose that u j is a weak eigenfunction of AS as in Definition 4.1 and that 0

is C2. Let v lie in V. Then

(ω(u j ), ω(v))=−(ω(u j ), div v⊥)= (∇ω(u j ), v
⊥)=−(∇⊥ω(u j ), v)

=−(1u j , v).

Hence (1u j + ν j u j , v)= 0 for all v ∈ V, so by Lemma 2.9

(4-4) 1u j + ν j u j =∇ p j for some p j in D′(�).

Now, by [Temam 1984, Proposition I.2.3], there exists w in V ∩W 2(�) and q in
W 1(�) satisfying 1w+ ν j u j =∇q . (Only here do we require 0 to be C2.)

Define the bilinear form a on V × V by a(u, v) = (ω(u), ω(v)). Then by
Corollary A.3, a(u, v)= (∇u,∇v), so a(u, u)=‖u‖2V , and we can apply the Lax–
Milgram theorem to conclude that w = u j . Hence, u j is in V ∩W 2(�), showing
that it is a strong eigenfunction of AS .

That a strong eigenfunction of −1D is weak is classical. It is also classical that
for a weak eigenfunction, ω j is in C∞(�), which is enough to conclude that 1ω j

is in L2(�). �

Remark 4.7. When 0 is C2, in fact the eigenfunctions of AL and AS lie in W 2(�),
as can seen for AL by the proof of Proposition 4.6 and for AS by, for instance,
[Temam 1984, Proposition I.2.3].

Proposition 4.8. There exists a bijection between the strong eigenfunctions of AL

having positive eigenvalues and the weak eigenfunctions of the Dirichlet Lapla-
cian, with a corresponding bijection between the eigenvalues.

Proof. By Lemma 2.11 for any u in H0∩ X2
0 , there exists ω(u) in W 1

0 (�), and this
gives a bijection between the spaces. Also by Lemma 2.11 and its proof, for any v
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in H0 ∩ X2
0 there exists ω(v) in W 1

0 (�), and associated to v is its stream function
ψ in W 1

0 (�) with 1ψ = ω(v). With u, v, and ψ as above,

(∇ω,∇ψ)

(ω,ψ)
=
−(ω,1ψ)+

∫
0(∇ψ · n)ω

−(div u⊥, ψ)

=
−(ω(u), ω(v))

(u⊥,∇ψ)−
∫
0(u
⊥ · n)ψ

=
−(ω(u), ω(v))
−(u,∇⊥ψ)

=
(ω(u), ω(v))

(u, v)
.

We applied Lemma 2.4 twice, the first time using ω in W 1
0 (�) with ∇ψ in E(�)

and the second time using ψ in W 1
0 (�) with u⊥ in E(�).

By the bijections above, this shows that if ω is a weak eigenfunction of −1D ,
then u = ω−1(ω) is a weak eigenfunction of AL (also using Corollary 2.12) that
lies in X2

0 , and hence is a strong eigenfunction of the AL by Proposition 4.6. The
converse follows from the same equality. �

Corollary 4.9. There exists a bijection between the weak eigenfunctions of AL

having positive eigenvalues and the weak eigenfunctions of the Dirichlet Lapla-
cian, with a corresponding bijection between the eigenvalues: λ∗k = λk for all k.

Proof. Combine Propositions 4.6 and 4.8. �

Proposition 4.10. There exists a sequence of weak eigenfunctions for each of our
three eigenvalue problems with spectra increasing to infinity as in Equation (1-1)
for −1D and AS and with

σL = {λ j }
∞

j=1, where 0< λ1 < λ2 ≤ · · · .

If � is multiply connected, σL will also include 0. The eigenfunctions of −1D

form an orthonormal basis of both L2(�) and W 1
0 (�), while those of AS form an

orthogonal basis of both H and V . The eigenfunctions of AL lie in C∞(�)∩ X2
0

and form an orthogonal basis of both H and X. The eigenfunctions of−1D are in
C∞(�)∩W 2(�).

Proof. To prove the existence of eigenfunctions of AS , let G be the inverse of AS .
Let u and v be in H . Since AS is a bijection from D(AS) onto H , there exists w
in D(AS) such that v = ASw and w = Gv. Then because AS is self-adjoint,

(Gu, v)= (Gu, ASw)= (ASGu, w)= (u, w)= (u,Gv),

showing that G is symmetric and hence, being defined on all of H , self-adjoint.
The calculation above also shows that (Gu, u) = (ASGu,Gu) = ‖∇Gu‖2L2(�)

,
which is positive for all nonzero u in H .

But V is compactly embedded in H by Lemma 2.6, so G, viewed as a map from
H to H , is compact. Therefore, G is a compact, positive, self-adjoint operator. The
spectral theorem thus gives a complete set of eigenfunctions in H and a discrete
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set of eigenvalues decreasing to zero; applying G to these eigenfunctions and using
the reciprocal of the eigenvalues gives the eigenfunctions and eigenvalues of AS

in the usual way.
The results for −1D are classical; those for AL then follow from Corollary 4.9

or they can be proved directly using an argument similar to that above. �

Remark 4.11. Because the strong form 1u j + λ
∗

j u j = ∇ p j of the eigenvalue
problem for AS has a nonzero pressure, the classical interior regularity argument
for −1D cannot be made for AS . To obtain further regularity, one must assume a
more regular boundary.

5. Min-max formulations of the eigenvalue problems

Proposition 5.1. Let

Sk = the span of the first k eigenfunctions of AS,

Lk = the span of the first k eigenfunctions of AL ,

Dk = the span of the first k eigenfunctions of −1D,

with S0 = L0 = D0 = {0}. Then

νk =min{RS(u) : u ∈ S⊥k−1 ∩ V \ {0}},

λk =min{RD(ω) : ω ∈ D⊥k−1 ∩W 1
0 (�) \ {0}}

=min{RL(u) : u ∈ L⊥k−1 ∩ H0 ∩ X \ {0}}

=min{RL(u) : u ∈ L⊥k−1 ∩ H0 ∩ X2
0 \ {0}},

where the Rayleigh quotients are

RS(u)= RL(u)= ‖ω(u)‖2L2(�)/‖u‖
2
L2(�), RD(ω)= ‖∇ω‖

2
L2(�)/‖ω‖

2
L2(�).

Proof. The form of the Rayleigh coefficient for νk and the form in the first two
expressions for λk come from the weak formulations of the eigenvalue problems
in Definitions 4.1–4.3. The third expression for λk follows from the bijection in
Lemma 2.11 and by noting that if u is any element of X2

0 , then RL(u)= RD(ω(u)),
as in the proof of Proposition 4.8. �

Defining four functions mapping R to Z by

NS(λ)= #{ j ∈ N : ν j < λ}, NL(λ)= #{ j ∈ N : λ j < λ},

N S(λ)= #{ j ∈ N : ν j ≤ λ}, N L(λ)= #{ j ∈ N : λ j ≤ λ},

we have an immediate corollary of Proposition 5.1:
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Corollary 5.2. N S(λ)=max
Z⊆V
{dim Z : RS(u)≤ λ for all u ∈ Z},

N L(λ)= max
Z⊆H0∩X2

0

{dim Z : RL(u)≤ λ for all u ∈ Z}

= max
Z⊆H0∩X

{dim Z : RL(u)≤ λ for all u ∈ Z}.

Remark 5.3. By Corollary A.3, RS(u)=‖∇u‖2L2(�)
/‖u‖2L2(�)

, so λk ≤ νk follows
from Corollary 5.2. Strict inequality, however, is not so immediate.

6. Proof of Theorem 1.1

Lemma 6.1 is the analogue of the (only) lemma in [Filonov 2004] and, in fact,
follows from it. For completeness we give the full proof.

Lemma 6.1. For all λ in R,

V ∩ ker{AL − λ} ∩ X2
0 = {0}.

Proof. Let u be in V ∩ ker{AL − λ} ∩ X2
0 = ker{AS − λ} ∩ X2

0 , where we used
Proposition 4.5. Then{

1u+ λu =∇ p, div u = 0, 1ω+ λω = 0 in �,

u = 0, ω = 0, on 0.

Becauseω=0 on0,∇ p=0 on� by Lemma 3.4. Hence,∇ω=−(1u)⊥=λu⊥=0
on 0. Thus, ω extended by 0 to all of R2 lies in W 1(R2). Then for all ψ in S(R2),

(−1ω,ψ)S′(R2),S(R2) = (∇ω,∇ψ)S′(R2),S(R2) =

∫
R2
∇ω · ∇ψ

=

∫
�

∇ω · ∇ψ =−

∫
�

1ωψ +

∫
0

(∇ω · n)ψ

= λ

∫
�

ωψ = λ

∫
R2
ωψ = (λω,ψ)S′(R2),S(R2),

which shows that 1ω=−λω as distributions. But ω is in W 1(R2) so, in fact, 1ω
is in W 1(R2) and 1ω+ λω = 0 on R2. Moreover, ω vanishes outside of �. But
the Laplacian is hypoelliptic so ω is real analytic and hence vanishes on all of R2.

Now, were � simply connected it would follow immediately that u ≡ 0. In any
case, observe that ω ≡ 0 implies 1u =∇⊥ω ≡ 0. But 1u =−λu, so u ≡ 0. �

Proof of Theorem 1.1. Let λ > 0 and choose a subspace F of V of dimension
N S(λ) with

(6-1) ‖ω(u)‖2L2(�) ≤ λ‖u‖
2
L2(�) for all u ∈ F.



118 JAMES P. KELLIHER

This is possible by the variational formulation of the eigenvalue problem for AS in
Corollary 5.2. By Lemma 6.1,

G = F ⊕ (ker{AL − λ} ∩ X2
0)

is a direct sum and so has dimension N S(λ)+ dim ker{−1D −λ}, where we used
Propositions 4.5 and 4.8. (Either of the vector spaces above could contain only 0.)

For any u ∈ F and v ∈ ker{AL − λ} ∩ X2
0 ,

‖ω(u+ v)‖2L2(�) = ‖ω(u)‖
2
L2(�)+‖ω(v)‖

2
L2(�)+ 2 Re(ω(u), ω(v))

= ‖ω(u)‖2L2(�)+‖ω(v)‖
2
L2(�)+ 2λRe(u, v),

because (ω(u), ω(v))= λ(u, v) by Definition 4.3.
Also by Definition 4.3,

‖ω(v)‖2L2(�) = λ‖v‖
2
L2(�),

and combined with Equation (6-1) this gives

‖ω(u+ v)‖2L2(�) ≤ λ‖u‖
2
L2(�)+ λ‖v‖

2
L2(�)+ 2λRe(u, v)= λ‖u+ v‖2L2(�).

Then it follows by the variational formulation of the eigenvalue problem for AL

in Corollary 5.2 that

N L(λ)≥ dim G = N S(λ)+ dim ker{−1D − λ},

so
NL(λ)= N L(λ)− dim ker{−1D − λ} ≥ N S(λ).

Setting λ=νk gives NL(νk)≥ N S(νk)≥ k. In words, there are at least k eigenvalues
in σD (counted according to multiplicity) strictly less than νk ; that is, λk < νk . �

7. Toward the inequality λk+1 ≤ νk

Theorem 7.1. For each k in N, define U k
R= (νk, x), where x is the smallest element

of (σS ∪ σD)∩ (νk,∞), and define U k
L = (y, λk), where y is the largest element of

(σS∪σD)∩(−∞, λk). (Let y=−∞ if k= 1.) Suppose that for some λ in U k
R there

exists a nonzero vector field w in X2 and a scalar field q in W 1(�) satisfying the
underdetermined problem

(7-1)
{
1w+ λw =∇q, divw = 0 on �,

w · n= 0 on 0,

but with the constraint∫
0

ω(w)w · τ = ‖ω(w)‖2L2(�)− λ‖w‖
2
L2(�) ≤ 0.(7-2)
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Then λk+1 ≤ νk . If for each k there exist λ in U k
L a nonzero vector field w in X2

and a scalar field q in W 1(�) satisfying (7-1) and (7-2), then λk+1 ≤ νk for all k.

Proof. Observe first that
∫
0 ω(w)w · τ = ‖ω(w)‖

2
L2(�)
− λ‖w‖2L2(�)

follows from
Corollary A.1.

Assume that λ in U k
R and w and q are as in (7-1) and (7-2). Let the set F be

defined as in the proof of Lemma 6.1, but let G = F ⊕ span{w}. This is a direct
sum since otherwise w would be in span F , meaning that it would vanish on 0 and
so would actually be an eigenfunction of AS; but this is impossible since λ is not
in σS by assumption. The dimension of G is N S(λ)+ 1.

Then for any u in F and c in C,

‖ω(u+ cw)‖2L2 = ‖ω(u)‖2L2 +‖ω(cw)‖2L2 + 2 Re(ω(u), ω(cw)).

But by Corollary A.1,

(ω(u), ω(w))=−(1w, u)= (λw, u)− (∇q, u)= λ(u, w)

and ‖ω(w)‖2L2 ≤ λ‖w‖
2
L2 by (7-2). Also, ‖ω(u)‖2L2 ≤ λ‖u‖2L2 , so we can conclude

that

‖ω(u+ cw)‖2L2 ≤ λ‖u‖2L2 + λ‖cw‖2L2 + 2λRe(u, cw)= λ‖u+ cw‖2L2 .

Then it follows by the variational formulation of the eigenvalue problem for AL

in Corollary 5.2 that N L(λ)≥ dim G = N S(λ)+ 1.
Because λ is larger than νk but smaller than any eigenvalue in (σD∪σS)∩(λ,∞),

NL(λ)= N L(νk) and N S(λ)= N S(νk), so N L(νk)≥ N S(νk)+1≥ k+1. In other
words, there are at least k+1 eigenvalues in σD (counted according to multiplicity)
less than or equal to νk ; that is, λk+1 ≤ νk . This establishes the result for λ in U k

R .
Now assume that for all k there exists a λ in U k

L with w and q as in (7-1)
and (7-2). Given j in N, let δ be the lowest eigenvalue greater than ν j in σS ∪σD .
If δ is in σS , then δ = νn for some n > j , and if λn+1 ≤ νn then it will follow
that λ j+1 ≤ ν j since there are no eigenvalues in σD between ν j and νn (though
ν j , νn , or both might also be in σD). We can continue this line of reasoning until
eventually we reach a value of j such that the next lowest eigenvalue δ in σS ∪σD

is in σD (δ might also be in σS , but this will not affect our argument). Then δ = λn

for some n in N.
Then by assumption there is some λ in U n

L with w and q as in (7-1) and (7-2).
But this λ is also in U j

R , so we conclude that λ j+1 ≤ ν j , and from our argument
above, this inequality holds, then, for all j in N. �

Remark 7.2. For λ in σD , even if a w exists satisfying the conditions in (7-1)
and (7-2),w might be an eigenfunction of AL and so lie in ker{AL−λ}. This means
that we cannot extend the argument along the lines in the proof of Theorem 1.1,
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since span{w} might not be linearly independent of the set G in the proof of that
theorem. This prevents us from concluding that λk+1 < νk for all k, which is in
any case not true in general.

The difficulty with applying Theorem 7.1 is that it is relatively easy to find vector
fields w satisfying the given conditions in a left neighborhood of νk , or perhaps in
a right neighborhood of λk , but hard to find ones in the required neighborhoods.
We give an example in Section 8.

8. Proof of Theorem 1.2 and related issues

Navier slip boundary conditions for the Stokes operator provide a physically jus-
tifiable alternative to the classical no-slip boundary conditions used to define AS .
To the extent possible, we will work with these boundary conditions with a locally
Lipschitz boundary, but we will find that they are really only of use when the
boundary is C2 and has a finite number of components. (Observe that under this
assumption, by Corollary 2.16, the distinctions we have been making between the
X spaces and the Y spaces disappear.)

To define Navier boundary conditions in the classical sense, we must assume
that 0 is C2. (Here, as elsewhere in this paper, C1,1 would suffice, but introduces
added complexities we wish to avoid.) The Navier conditions can be written in the
form

(8-1) ω(u)= (2κ −α)u · τ on 0,

where κ is the curvature of the boundary and α is any function in L∞(0).
If u in H ∩W 2(�) satisfies Equation (8-1) then by Corollary A.1,

(−1u, v)= (ω(u), ω(v))−
∫
0

(2κ −α)u · v for any v in X .

Let HV = {u ∈ H ∩W 2(�) : ω(u) = (2κ − α)u · τ on 0}, endowed with the
same norm as Y . We define the operator AV : Y → H by requiring that

(8-2) (AV u, v)= (ω(u), ω(v))+
∫
0

(α− 2κ)u · v = (∇u,∇v)+
∫
0

(α− κ)u · v,

for all v in Y . The second equality (which gives the form of the operator A defined
on [Kelliher 2006, page 218]) follows from Lemma A.2, Lemma A.4, and the
density of (C1(�))2 in Y .

Now assume that � is bounded and 0 is locally Lipschitz. Then the curvature
is no longer defined, so we replace the function α− 2κ with a function f lying in
L∞(0), though we lose in this way the physical meaning. In place of (8-1), we
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have

ω(u)+ f u · τ = 0 on 0,(8-3)

(AV u, v)= (ω(u), ω(v))+
∫
0

f u · v.(8-4)

Observe that the second expression for AV in (8-2) now has insufficient regularity,
so it no longer applies.

Definition 8.1. A vector field u j ∈ X2 is a strong eigenfunction of AV with eigen-
value γ j if {

1u j + γ j u j =∇ p j , 1p j = 0, div u j = 0 in �,

u j · n= 0, ω(u j )+ f u j · τ = 0 on 0.

Definition 8.2. The vector field u j in X is a weak eigenfunction of AV with eigen-
value γ j if

(ω(u j ), ω(v))+

∫
0

f u j · v− γ j (u j , v)= 0 for all v ∈ X.

Proposition 8.3. If u j is a strong eigenfunction of AV , then it is a weak eigen-
function of AV . If u j is a weak eigenfunction of AV that happens to be in X2 and
satisfy ω(u j )+ f u j · τ = 0 on 0, then u j is a strong eigenfunction of AV .

Proof. Strong implies weak follows by the integration by parts performed above.
For the reverse implication, assume that u j is a weak eigenfunction of AV lying
in X2. Then choosing v to lie in V , it follows that

(ω(u j ), ω(v))− γ j (u j , v)= 0 for all v ∈ V .

Applying Corollary A.1 gives (1u j +γ j u j , v)= 0 for all v ∈ V , and we conclude
that 1u j + γ j u j =∇ p j for some harmonic field p in W 1(�) by Lemma 2.9. �

When 0 is C2 and has a finite number of components, we can consider the
special case α = κ , which gives ω(u j )= κu j · τ . It follows from Lemma A.5 that
∇u j n · v = 0 for any v in X . More simply, we can write this as ∇u j n · τ = 0.
These boundary conditions imply that (−1u j , v) = (∇u j ,∇v) for all v in X ,
(or we can take advantage of the second form of (AV u, u) in (8-2)), and we can
explicitly define such eigenfunctions as follows, though we need no longer assume
that the boundary is C2:

Definition 8.4. A vector field u j ∈ X2 is a strong eigenfunction of AN if{
1u j +β j u j =∇ p j , 1p j = 0, div u j = 0 in �,

u j · n= 0, ∇u j n · τ = 0 on 0.
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Definition 8.5. A vector field u j in X is a weak eigenfunction of AN if

(∇u j ,∇v)−β j (u j , v)= 0 for all v ∈ X.

We also have the following min-max formulations for the eigenvalues of AV

and the special case of AN .

Proposition 8.6. Let

Vk = the span of the first keigenfunctions of AV ,

Nk = the span of the first keigenfunctions of AN ,

with V0 = N0 = {0}. Then

γk =min{RV (u) : u ∈ V⊥k−1 ∩ X \ {0}},

βk =min{RN (u) : u ∈ N⊥k−1 ∩ X \ {0}},

where

RV (u)=
‖ω(u)‖2L2(�)

+
∫
0 f |u|2

‖u‖2L2(�)

, RN (u)=
‖∇u‖2L2(�)

‖u‖2L2(�)

.

The eigenvalues are real with 0 = β1 ≤ β2 ≤ · · · and, when f is nonnegative,
0< γ1 ≤ γ2 ≤ · · · with γk→∞.

Proof. Define the operator T : X → X by T = (i I + AV )
−1
◦ j , where I is

the identity map, j is the inclusion map from X to X∗ (which is compact by
Corollary 2.12), and i =

√
−1. Then since (i I + AV )

−1 is bounded (its norm
can be no greater than 1) T is compact, and the spectral theorem provides us with
eigenvalues of T accumulating at zero. To each eigenvalue λ of T there corresponds
an eigenvalue γ = µ−1

− i of AV . But AV is self-adjoint, so γ is real. And when
f is nonnegative, since RV (u) is nonnegative, 0<γ1 ≤ γ2 ≤ · · · with γk→∞. �

Defining two functions mapping R to Z by

N V (λ)= #{ j ∈ N : γ j ≤ λ} and N N (λ)= #{ j ∈ N : β j ≤ λ},

we have an immediate corollary of Proposition 8.6:

Corollary 8.7. N V (λ)=max
Z⊆X
{dim Z : RV (u)≤ λ for all u ∈ Z},

N N (λ)=max
Z⊆X
{dim Z : RN (u)≤ λ for all u ∈ Z}.

Proposition 8.8. Assume 0 is C2 and has a finite number of components and

(8-5) f ∈ C1/2+ε(0)+W 1/2+ε(0).

A weak eigenfunction of AV is a strong eigenfunction of AV . In particular, a weak
eigenfunction u j of AV satisfies ω(u j )+ f u j · τ = 0 on 0.
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Proof. Suppose that u is a weak eigenfunction of AV as in Definition 8.2 with
ω = ω(u). Then for any v in V integration by parts gives (1u + λu, v) = 0, so
1u+λu=∇ p by Lemma 2.9, equality holding in terms of distributions. Taking the
curl, it follows that 1ω=−λω, so ω is in U of Proposition 2.17, since ω is in L2.
Thus, by Proposition 2.17, ω is well defined on 0 as an element of W−1/2(0).

Let v be any vector in H0 ∩Y , and let α be its associated stream function lying
in W 1

0 (�)∩W 2(�) given by Lemma 2.10, so that 1α = ω(v) is in L2(�). Thus,
again by Proposition 2.17, since ∇α · n=−v · τ ,

(γωω, v · τ )W−1/2(0),W 1/2(0) = (α,1ω)− (ω(v), ω)

=−λ(α, ω)− (ω(v), ω)= λ(u, v)− (ω(v), ω).

Here we used

(α, ω)=−(α, div u⊥)= (∇α, u⊥)+
∫
0

(u⊥ · n)α =−(v, u),

noting that we had enough regularity to apply Corollary A.1.
But because u is a weak eigenfunction of AV , also

( f u · τ , v · τ )W−1/2(0),W 1/2(0) = λ(u, v)− (ω(v), ω).

Thus, the two boundary integrals are equal, and because of Lemma 2.19, we can
conclude that ω = − f u · τ on 0, and in particular that ω is in W 1/2(0). (By
Corollaries 2.2 and 2.3 and (8-5) we know f u ·τ is in W 1/2(0).) From this gain of
regularity on the boundary, along with 1ω = −λω ∈ L2(�), we conclude ω is in
W 1(�), from which it follows that u is a strong solution to AV as in Definition 8.1.

The origin of this proof was the proof of [Clopeau et al. 1998, Lemma 2.2]. �

We have the following simple extension of Lemma 6.1:

Lemma 8.9. If 0 is C2 and has a finite number of components and (8-5) holds,
then V ∩ ker{AV − λ} = {0} for all λ in R.

Proof. By Proposition 8.8, u is a strong eigenfunction of AV and hence satisfies
ω(u)=− f u · τ = 0 on 0, and so is a strong eigenfunction of AL . But then u = 0
by Lemma 6.1. �

Restricting our attention to the case where f is nonnegative and constant on 0
(in which case (8-5) holds), we can write the boundary conditions in Definition 8.1
as (1− θ)ω(u j )+ θu j · τ = 0 on 0, where θ lies in [0, 1]. When θ = 0, we have
the special case of Lions boundary conditions and when θ = 1 we have Dirichlet
boundary conditions on the velocity. In Definition 8.2, f = θ/(1−θ) for θ in [0, 1).
With this parameterization, we can view γ j as a function of θ . That is, γ j (θ) is the
j-th eigenvalue of AV (or AL or AS) so, for instance, to each eigenvalue γ j (θ) of
multiplicity k there will be exactly k values of n for which γn(θ)= γ j (θ).



124 JAMES P. KELLIHER

Because f is constant on 0, it is certainly in C1(0), which is a requirement of
Proposition 8.8.

Proposition 8.10. Assume that 0 is C2 and has a finite number of components.
For all j in N, the function γ j : [0, 1) → [λ j , ν j ) and is strictly increasing and
continuous.

Proof. To show that γ j (θ) < ν j for θ in [0, 1) we repeat the proof of Theorem 1.1
using G = F ⊕ ker{AV − λ} in place of F ⊕ ker({AL − λ} ∩ X2

0). Let u ∈ F and
v∈ker{AV−λ}. Then because v is a weak eigenfunction of AV as in Definition 8.2
and u is zero on the boundary, letting z = f = θ/(1− θ), we have

(ω(u), ω(v))= λ(u, v)− z
∫
0

v · u = λ(u, v).

Thus,

‖ω(u+ v)‖2L2(�) = ‖ω(u)‖
2
L2(�)+‖ω(v)‖

2
L2(�)+ 2 Re(ω(u), ω(v))

= ‖ω(u)‖2L2(�)+‖ω(v)‖
2
L2(�)+ 2λRe(u, v),

as was the case for AL . Now, however,

‖ω(v)‖2L2(�) = λ‖v‖
2
L2(�)− z

∫
0

|v|2 = λ‖v‖2L2(�)− z
∫
0

|u+ v|2,

and combined with (6-1) this gives

‖ω(u+ v)‖2L2(�) ≤ λ‖u‖
2
L2(�)+ λ‖v‖

2
L2(�)+ 2λRe(u, v)− z

∫
0

|u+ v|2

= λ‖u+ v‖2L2(�)− z
∫
0

|u+ v|2.

Thus, RV (u+ v) ≤ λ, and the proof of γ j (θ) < ν j is completed as in the proof of
Theorem 1.1.

The argument that γ j is strictly increasing on [0, 1) is more direct, because
the variational formulations in Corollary 8.7 for different values of θ all involve
maximums over subspaces of the same space Y . (That γ j is nondecreasing on
[0, 1) follows immediately from the principle of monotonicity, as in [Weinstein
and Stenger 1972, Theorem 2.5.1, page 21].)

For θ in [0, 1), write AθV for the operator AV and similarly for RθV and N θ
V .

In particular, AL = A0
V . Let f (θ) = θ/(1− θ), which we note is an increasing

function of θ on [0, 1).
Now suppose that θ and θ ′ are in [0, 1) with θ < θ ′. Let λ > 0 and choose a

subspace F of Y of dimension N θ ′

V (λ) with Rθ
′

V ≤ λ; that is,

‖ω(u)‖2L2(�)+

∫
0

f (θ ′)|u|2 ≤ λ‖u‖2L2(�) for all u ∈ F,(8-6)
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which is possible by Corollary 8.7. Let G = F ⊕ ker{AθV − λ}. This is, in fact, a
direct sum, since if a nonzero u lies in both F and ker{AθV − λ}, then from (8-6)
and Definition 8.2 it follows that∫

0

( f (θ ′)− f (θ))|u|2 ≤ 0.

But f (θ ′)− f (θ) is a positive constant on 0, so in fact u = 0 on 0 and hence lies
in V . It follows from Lemma 8.9 that u is identically zero.

This shows that G has at least one more element than F when λ = γ j (θ). But
then setting Z = F in the definition of N θ

V (γ j (θ)) in Corollary 8.7, we see because
RθV ≤ Rθ

′

V that N θ
V (γ j (θ)) ≥ dim G > dim F = N θ ′

V (γ j (θ)), which means that
γ j (θ) < γ j (θ

′).
This shows that γ j is strictly increasing. To show that it is continuous, fix θ in
[0, 1), and let Z be any subspace of Y that achieves the maximum in the expression
for k = N θ

V (γk(θ)) in Corollary 8.7. Here we assume that if λk is a multiple
eigenvalue, k is the largest such index.

Choose a basis (v1, . . . , vk) for Z and observe that because RV (u) = RV (cu)
for any nonzero constant c,

sup
u∈Z

Rθ
′

V (u)=max
u∈Z ′

Rθ
′

V (u) for any θ ′ in [0, 1),

where

Z ′ =
{
c1v1+ · · ·+ ckvk : c1, . . . , ck ∈ C, |c1|

2
+ · · ·+ |ck |

2
= 1

}
.

Now, the map from the complex k-sphere to R defined by (c1, . . . , ck) 7→‖c1v1+

· · · + ckvk‖L2(�) is continuous and so achieves its minimum a, which is the same
as the minimum of ‖u‖L2(�) on Z ′. Because (v1, . . . , vk) is independent, a must
be positive. Similarly, ‖u‖Y achieves its maximum b > 0 on Z ′.

Thus, on Z ′ and so on Z , for any θ ′ > θ ,

Rθ
′

V (u)− RθV (u)=
( f (θ ′)− f (θ))

∫
0|u|

2

‖u‖2L2(�)

≤ Ca−2
‖u‖2Y ( f (θ ′)− f (θ))

≤ Ca−2b2( f (θ ′)− f (θ)),

where we used the standard trace inequality ‖u‖L2(0) ≤ C‖u‖1/2L2(�)
‖∇u‖1/2L2(�)

for
u in Y , followed by Poincaré’s inequality. But this shows that

N θ ′

V (λ)≥ N θ
V (γk(θ)) for λ= γk(θ)+Ca−2b2( f (θ ′)− f (θ)).

Since we already know that γk(θ
′) > γk(θ) it follows that

|γk(θ
′)− γk(θ)| ≤ Ca−2b2( f (θ ′)− f (θ)),
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meaning that γk is continuous on [0, 1). �

The first part of Theorem 8.11 is Theorem 1.2.

Theorem 8.11. Assume that 0 is C2 and has a finite number of components. For
all j in N, the function γ j : [0, 1] → [λ j , ν j ] is a strictly increasing continuous
bijection. Also, (7-2) holds for any eigenfunction of AV .

Proof. For any value of θ in (0, 1), we let w = w(θ) be any eigenfunction of AV

with eigenvalue γ j (θ), normalized so that ‖w‖H = ‖w‖L2(�) = 1. We know from
Proposition 8.10 that γ j (θ) strictly increases continuously from λ j at θ = 0 and
remains bounded by ν j . Formally, as θ → 1, w becomes an eigenfunction of AS ,
since w must approach zero on the boundary so that ω(w)= (θ/(1− θ))w · τ can
remain finite. We now make this formal argument rigorous.

Letting z = f = θ/(1− θ), we have

‖w‖2L2(0) =

∫
0

(w · τ )(w · τ )=−z−1
∫
0

ω(w)w · τ ,

the boundary integral being well defined because of Proposition 8.8. Then∫
0

ω(w)w · τ =−z‖w‖2L2(0) ≤ 0,

so (7-2) holds.
Moreover, from Definition 8.2,

‖ω(w)‖2L2(�)+ z‖w‖2L2(0) = γ j (θ)‖w‖
2
L2(�) = γ j (θ).

From this we conclude two things. First, that

(8-7) ‖w‖2L2(0) =

γ j (θ)−‖ω(w)‖
2
L2(�)

z
≤
ν j

z
,

since γ j (θ) < ν j . Second, that ‖ω(w)‖L2(�) ≤ γ j (θ)
1/2 and hence that ‖w‖Y ≤ C

because γ j (θ) < ν j and by virtue of Corollary 2.15.
Now letting the parameter θ vary over the set {1−1/n : n∈N}, we get a sequence

(un) of eigenfunctions un
=w(1−1/n) of AV , with eigenvalues γ n

= γ j (1−1/n).
By the observations above, (un) is a bounded sequence in Y . But Y is compactly
embedded in H by Lemma 2.6 (or by Corollaries 2.12 and 2.16), so there exists
a subsequence of (un) that converges strongly in H . Since this subsequence is
bounded in Y , which is a separable, reflexive Banach space, taking a further sub-
sequence, and relabeling it (un), we conclude that un

→u strongly in H and weak∗

in Y to some vector field u in Y with ‖u‖H = 1 (so u is nonzero).
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Furthermore, ‖un
‖W 1/2(0)≤C‖un

‖Y ≤C , so (un) is bounded in W 1/2(0), which
is compactly embedded in L2(0), and hence extracting a subsequence and relabel-
ing once more, we conclude that also un

→ u strongly in L2(0). But since z→∞
as n→∞, we have un

→ u = 0 in L2(0) by (8-7).
Then by Definition 8.2, (ω(un), ω(v))− γ n(un, v)= 0 for any v in V . Letting

γ = limn→∞ γ
n (the limit exists because γ n is a bounded increasing sequence

of real numbers), we have (ω(un), ω(v)) − γ (un, v) = (γ n
− γ )(un, v). Since

|(un, v)| ≤ ‖un
‖L2(�)‖v‖L2(�) ≤C , the right side converges to zero. Since un

→ u
strongly in L2(�), (un, v)→ (u, v). Since un

→ u weak∗ in Y ,

(ω(un), ω(v))= (∇un,∇v)→ (∇u,∇v)= (ω(u), ω(v)),

where we used Corollary A.3. We conclude that (ω(u), ω(v))− γ (u, v) = 0 and
thus that u is a weak eigenfunction of AS with eigenvalue γ ≤ ν j .

What we have shown is that γ j : [0, 1] → [λ j , νk] for some k ≤ j and that γ j

is strictly increasing and continuous on all of [0, 1]. To show that k = j , we first
observe that if γk(1) = γm(1) = ν j for some k 6= m, then the eigenvalue ν j has
multiplicity at least 2. To see this, we repeat the compactness argument above, this
time choosing the original sequence of eigenvectors (uk,n)∞n=1 and (um,n)∞n=1 such
that uk,n is orthogonal in L2(�) to um,n , which we can always do even if they lie
in the same eigenspace. We showed above that uk,n

→ u and um,n
→w in L2(�)

for some u and w that are eigenvectors of AS . It is elementary to see, then, that
(u, w)= 0, which shows that ν j has multiplicity at least two.

Similarly, the multiplicity of the eigenvalue ν j is at least as high as the number
of distinct values of k for which γk(1) = ν j . This means that the total number of
eigenvalues of AS including multiplicity reached by γ j (1) for some j with 1≤ j≤k
is at least k. But it can be no more than k since γ j (1) = νm for some m ≤ j ≤ k.
Thus, the first k eigenvalues of AL according to multiplicity are mapped via γ j for
j = 1, . . . , k into the first k eigenvalues of AS , showing that γ j : [0, 1] → [λ j , ν j ]

for all j = 1, . . . , k and hence for all j in N, since k was arbitrary. �

To round out the picture of how the eigenvalues for different boundary conditions
compare, we consider the eigenfunctions of the negative Laplacian with Robin
boundary conditions on the vorticity. For simplicity, we restrict our attention to
constant coefficients, writing the boundary conditions in terms of a parameter θ
lying in [0, 1], and stating only the strong form:

Definition 8.12. An eigenfunction ω j ∈ W 1
0 (�) of the Dirichlet Laplacian with

Robin boundary conditions satisfies{
1ω j + η jω j = 0 in �,

(1− θ)∇ω j · n+ θω j = 0 on 0.
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The analogue for divergence-free vector fields leads to the eigenvalue problem
for a Stokes operator AR with Robin boundary conditions:

Definition 8.13. An eigenfunction u j ∈ X2 of AR satisfies ARu j =λ
∗

j u j or, equiv-
alently, {

1u j + η
∗

j u j =∇ p j , div u j = 0 in �,

u j · n= 0, (1− θ)∇ω j · n+ θω j = 0 on 0.
A value of θ = 1 gives the operator AL , and θ = 0 gives Neumann boundary

conditions on the vorticity.
Taking the vorticity of u j in Definition 8.13 shows that a strong eigenfunction

of AR corresponds to a strong eigenfunction of the Dirichlet Laplacian with Robin
boundary conditions. Also, the equivalent of Lemma 3.4 for Robin boundary
conditions on ω shows that to each strong eigenfunction of the Dirichlet Lapla-
cian with Robin boundary conditions there corresponds a strong eigenfunctions of
AR . Thus, there is a bijection between the eigenfunctions and eigenvalues; that is,
η∗j =η j . Moreover, η j is continuous on [0, 1), because the bilinear form associated
to Definition 8.12 is continuous with θ ; see [Filonov 2004].

Proposition 8.14. For all j in N, the function η j : [0, 1)→[µ j , λ j ) and is strictly
increasing.

Proof. The proof goes like that of Proposition 8.10, making adaptations of Filonov’s
proof of his theorem that parallel those in the proof of Proposition 8.10. �

Theorem 8.15. For all j in N, the function η j : [0, 1] → [µ j , λ j ] is continuous
and strictly increasing.

Proof. The proof parallels that of Theorem 8.11. �

The addendum of [Filonov 2004] considers Robin boundary conditions as in
Definition 8.12 with, in effect, θ negative. In that case, η j+1(θ)< λ j for all j in N.

For any θ ,

‖∇ p j‖
2
L2(�)−

∫
0

(∇ω j · n)ω j

= ‖1u j‖
2
L2(�)− η j (θ)‖u j‖

2
L2(�)−

∫
�

1ω(u j )ω(u j )−‖∇ω(u j )‖
2
L2(�)

= η j (θ)
(
‖ω(u j )‖

2
L2(�)− η j (θ)‖u j‖

2
L2(�)

)
.

Thus, (7-2) holds for an eigenfunction of AL (θ = 1), where ∇ p j ≡ 0 and ω j = 0
on 0, and fails for an eigenfunction of the Stokes operator with Neumann boundary
conditions on the vorticity (AR for θ = 0), where ∇ p j 6≡ 0 and ∇ω j · n= 0 on 0.
For θ in (0, 1), it is not clear whether (7-2) holds or not, leaving open the possibility
that the inequality λ j+1 ≤ ν j could be proved by showing that (7-2) holds for all θ
in some left neighborhood of 1 for each λ j .
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In any case, for all j we have the inequalities

µ j < η j (θ) < λ j < γ j (θ
′) < ν j for all θ , θ ′ in (0, 1),

µ j+1 < λ j < β j < ν j .

Appendix A. Various lemmas

Corollary A.1 is a corollary of Lemma 2.4 and is the main tool we use to prove the
equivalence of the weak and strong formulations of our eigenvalue problems. The
conditions in this corollary for equality to hold are the weakest possible to insure
that each factor lies in the correct space for each term to be finite.

Corollary A.1. Assume that � is a bounded domain with locally Lipschitz bound-
ary. For any divergence-free distribution u for which ω(u) is in W 1(�) and any v
in L2(�) with ω(v) in L2(�),

(ω(u), ω(v))=−(1u, v)+
∫
0

ω(u)v · τ .

Proof. The vector field v is in E(�) because v⊥ is in L2(�) and div v⊥ =−ω(v)
is in L2(�). Thus, ω(u) lying in W 1(�), we can apply Lemma 2.4 to obtain

(ω(u), ω(v))=−(ω(u), div v⊥)= (∇ω(u), v⊥)−
∫
0

ω(u)(v⊥ · n).

But (∇ω(u), v⊥)=−(∇⊥ω(u), v)= (−1u, v) and (v⊥ ·n)=−v ·τ , from which
the result follows. �

Lemma A.2. Assume that� is a bounded domain with locally Lipschitz boundary.
If u is in W 1(�) with div u = 0 and v is in (C1(�))2, then

(ω(u), ω(v))= (∇u,∇v)−
∫
0

(∇uv) · n.

Proof. We have

ω(u)ω(v)= (∂1u2
− ∂2u1)(∂1v

2
− ∂2v

1)

= ∂1u2∂1v
2
+ ∂2u1∂2v

1
− (∂1u2∂2v

1
+ ∂2u1∂1v

2)

= ∂1u2∂1v
2
+ ∂2u1∂2v

1
+ ∂1u1∂1v

1
+ ∂2u2∂2v

2

− (∂1u2∂2v
1
+ ∂2u1∂1v

2
+ ∂1u1∂1v

1
+ ∂2u2∂2v

2)

= ∂i u j∂iv
j
− ∂i u j∂ jv

i
=∇u · ∇v− (∇u)T · ∇v.

Since div u = 0, we have (∇u)T · ∇v = ∂i u j∂ jv
i
= ∂ j (∂i u jvi ) = div(∇uv). But

∇uv is in L2(�) and ‖div(∇uv)‖L2(�) ≤ ‖∇u‖L2(�)‖∇v‖L∞(�) is finite, so ∇uv
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is in E(�) and we can apply Lemma 2.4 to give

(ω(u), ω(v))= (∇u,∇v)−
∫
�

div(∇uv)= (∇u,∇v)−
∫
0

(∇uv) · n. �

Corollary A.3. Assume that � is a bounded domain with locally Lipschitz bound-
ary. For all u in W 1(�) with div u = 0 and all v in V ,

(ω(u), ω(v))= (∇u,∇v).

Proof. This follows from Lemma A.2 and the density of C1(�) in W 1(�). �

Lemma A.4. Assume that 0 is C2. For all u in H ∩W 2(�) and v in Y , we have

∇uv · n=−κu · v.

Proof. Because u · n has a constant value (of zero) along 0,

0= ∂
∂τ
(u · n)= ∂u

∂τ
· n+ u · ∂n

∂τ
=∇uτ · n+ κu · τ .

But v= (v·τ )τ , so multiplying both sides of the above inequality by v·τ completes
the proof. �

Lemma A.5. Assume that 0 is C2. For all u in H ∩W 2(�) and v in Y , we have

∇un · v = ω(u)v · τ − κu · v.

Proof. Writing

n=
(

n1

n2

)
and τ =

(
−n2

n1

)
with (n1)2+ (n2)2 = 1, we have

∇un · τ −∇uτ · n

=

((
∂1u1 ∂2u1

∂1u2 ∂2u2

)(
n1

n2

))
·

(
−n2

n1

)
−

((
∂1u1 ∂2u1

∂1u2 ∂2u2

)(
−n2

n1

))
·

(
n1

n2

)

=

(
∂1u1n1

+ ∂2u1n2

∂1u2n1
+ ∂2u2n2

)
·

(
−n2

n1

)
−

(
−∂1u1n2

+ ∂2u1n1

−∂1u2n2
+ ∂2u2n1

)
·

(
n1

n2

)
=−∂1u1n1n2

− ∂2u1(n2)2+ ∂1u2(n1)2+ ∂2u2n1n2

+ ∂1u1n1n2
− ∂2u1(n1)2+ ∂1u2(n2)2− ∂2u2n1n2

= ((n1)2+ (n2))(∂1u2
− ∂2u)= ω(u).

Thus by Lemma A.4,

∇un · τ = ω(u)+∇uτ · n= ω(u)− κu · τ ,

and multiplying both sides by v · τ completes the proof. �
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