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A manifold obtained by k simultaneous symplectic blowups of CP2 of equal
sizes ε (where the size of CP1

⊂ CP2 is one) admits an effective two di-
mensional torus action if k ≤ 3. We show that it does not admit such an
action if k ≥ 4 and ε ≤ 1/(3k22k). For the proof, we show a correspondence
between the geometry of a symplectic toric four-manifold and the combina-
torics of its moment map image. We also use techniques from the theory of
J-holomorphic curves.

1. Introduction

Let a torus T` = (S1)` act effectively on a symplectic 2n-dimensional manifold
(M, ω). The action is called Hamiltonian if there exists a moment map, that is, a
map

8 : M→ (t`)
∗ = R`

that satisfies
d8i =−ι(ξi )ω

for i = 1, . . . , `, where ξ1, . . . , ξ` are the vector fields that generate the T`-action.
Unless said otherwise, we assume that M is compact and connected. The image
of the moment map,

1 :=8(M),
is then a convex polytope [Guillemin and Sternberg 1982].

If dim T` = 1
2 dim M , the triple (M, ω,8) is a symplectic toric manifold, and

the torus action is called toric. The moment map image is a Delzant polytope;
this means that the edges emanating from each vertex are generated by vectors
v1, . . . , vn that span the lattice Zn . By the Delzant theorem, (M, ω,8) is de-
termined by 1 up to an equivariant symplectomorphism. Conversely, given a
Delzant polytope 1 in Rn , Delzant [1988] constructs a symplectic toric manifold
(M1, ω1,81) whose moment map image is 1.
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As a result of Delzant’s theorem and a combinatorial analysis of Delzant poly-
gons, any symplectic toric four-manifold is obtained from either a standard CP2

or a Hirzebruch surface by a sequence of equivariant symplectic blowups. (See
Lemma 2.9.) However, it may be difficult to determine whether a given symplectic
four-dimensional manifold is symplectomorphic to such a manifold.

For instance, let (Mk, ωε) be a symplectic manifold obtained from (CP2, ωFS)

by k simultaneous symplectic blowups of equal sizes ε > 0. (Our normaliza-
tion convention for the Fubini–Study form ωFS is that the size of CP1 ⊂ CPn ,
(1/2π)

∫
CP1 ωFS, is equal to one.) If k ≥ 4, this manifold does not admit a toric

action that is consistent with the blowups, that is, the blowups cannot be performed
equivariantly. (See Lemma 2.8.) Does it admit any other toric action?

In [Karshon and Kessler 2007] we show that the answer is “no” when ε is 1/n
for an integer n. In this paper we show that the answer is “no” for ε ≤ 1/(3k22k),
as a corollary of the following theorem.

Theorem 1.1. If (Mk, ωε) is symplectomorphic to (M1, ω1), for a Delzant poly-
gon 1, and

ε ≤ 1
3k22k ,

then (M1, ω1,81) can be obtained from (CP2, ωFS) by k equivariant symplectic
blowups of equal size ε.

The theorem becomes false if we do not restrict ε; for ε> 1
2 , there is a toric action

on (M1, ωε) that is not consistent with the ε-blowup; see Remark 5.5. Theorem 1.1
can be strengthen to the case ε≤ 1

3 ; see [Pinsonnault 2008, Corollary 3.14; Kessler
2004, Theorem 3]. However, here we use different methods in the proof; in par-
ticular, our arguments illustrate explicitly the behavior of JT -holomorphic curves
and their moment map images. (JT denotes a T2-invariant complex structure on
the manifold that is compatible with the symplectic form.) These novel arguments
might be useful in other studies of torus actions on symplectic manifolds.

In proving Theorem 1.1, we apply Gromov’s compactness theorem for J-holo-
morphic curves to show the existence of JT -curves in the homology classes of
exceptional divisors obtained by the symplectic ε-blowups. In the case presented
here, (as opposed to the case ε = 1

n for an integer n), a priori these might be
nonsmooth cusp curves. We claim that in one of these homology classes there is a
smooth JT -holomorphic sphere. To prove this claim, we represent JT -holomorphic
spheres and cusp curves on the boundary of the moment map image, and reduce
the claim to a combinatorial claim on the moment map polygon. A key ingredient
is Lemma 4.3, saying that a JT -holomorphic sphere whose moment map image
avoids a neighbourhood of a vertex in the moment map polygon 1 can be pushed,
by a gradient flow, to a connected union of preimages of a chain of edges of 1.
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The geometry-combinatorics correspondence is established in Section 2 and
Section 4. The relevant results from Gromov’s theory of J-holomorphic curves
are recalled in Section 3.

To complete the proof of Theorem 1.1 by recursion, we need uniqueness of
symplectic blowdowns: symplectic blowdowns along homologous curves result in
symplectomorphic manifolds. This is shown in the appendix.

2. Reading geometric data from the moment map polygon

2.1. An important model for a Hamiltonian action is Cn with the standard sym-
plectic form, the standard Tn-action given by rotations of the coordinates, and the
moment map

(z1, . . . , zn) 7→ 1
2
(|z1|2, . . . , |zn|2).

The image of this moment map is the positive orthant,

Rn
+ = {(s1, . . . , sn) | s j ≥ 0 for all j }.

A Delzant polytope can be obtained by gluing open subsets of Rn+ by means of
elements of AGL(n,Z). (AGL(n,Z) is the group of affine transformations of Rn

that have the form x 7→ Ax + α with A ∈ GL(n,Z) and α ∈ Rn .) Similarly, a
symplectic toric manifold can be obtained by gluing open Tn-invariant subsets of
Cn by means of equivariant symplectomorphisms and reparametrizations of Tn .

2.2. The rational length of an interval d of rational slope in Rn is the unique num-
ber `= |d| such that the interval is AGL(n,Z)-congruent to an interval of length `
on a coordinate axis. In what follows, intervals are always measured by rational
length.

2.3. An almost complex structure on a 2n-dimensional manifold M is an automor-
phism of the tangent bundle, J : TM→ TM , such that J 2 =− Id. It is compatible
with a symplectic form ω if 〈u, v〉 = ω(u, Jv) is symmetric and positive defi-
nite. The first Chern class of the symplectic manifold (M, ω) is defined to be the
first Chern class of the complex vector bundle (TM, J ) and is denoted c1(TM).
This class is independent of the choice of compatible almost complex structure J
[McDuff and Salamon 1998, Section 2.6].

Lemma 2.4. Let (M, ω) be a compact connected symplectic four-manifold. Let
8 : M→ R2 be a moment map for a toric action, and let 1 be its image.

(1) The moment map preimage of a vertex of1 is a fixed point for the torus action,
and the moment map image of a fixed point is a vertex of 1.
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(2) Let d be an edge of 1 of rational length `. Then its preimage, 8−1(d), is a
symplectically embedded 2-sphere in M of symplectic area∫

8−1(d)
ω = 2π`.

(3) The (rational) perimeter of 1 is

perimeter1= 1
2π

∫
M
ω∧ c1(TM).

(4) The area of 1 is
1

(2π)2

∫
M

1
2!ω∧ω.

For proof, see [Karshon et al. 2007, Lemma 2.2 and Lemma 2.10].

Example 2.5. Figure 1 shows examples of Delzant polygons with three and four
edges. On the left there is a Delzant triangle,

1λ = {(x1, x2) | x1 ≥ 0, x2 ≥ 0, x1+ x2 ≤ λ}.
This is the moment map image of the standard toric action (a, b) · [z0 : z1 : z2] =
[z0 : az1 : bz2] on CP2, with the Fubini–Study symplectic form normalized so that
the symplectic area of CP1 ⊂ CP2 is 2πλ. The rational lengths of all its edges
is λ.

λ ab

F

slope=−1/k

S

N

F

Figure 1. A Delzant triangle, 1λ, and a Hirzebruch trapezoid, Hirza,b,k .

On the right there is a Hirzebruch trapezoid,

Hirza,b,k =
{
(x1, x2)

∣∣∣ − b
2
≤ x2 ≤ b

2
, 0≤ x1 ≤ a− kx2

}
,

where b is the height of the trapezoid, a is its average width, and k is a nonnegative
integer such that the east edge has slope −1/k or is vertical if k = 0. We assume
that a≥ b and that a−k b

2 > 0. This trapezoid is a moment map image of a standard
toric action on a Hirzebruch surface. The rational lengths of its west and east edges
are b; the rational lengths of its north and south edges are a± kb/2.

2.6. Let 1 be a Delzant polytope in Rn , let v be a vertex of 1, and let δ > 0 be
smaller than the rational lengths of the edges emanating from v. The edges of 1
emanating from v have the form {v+sα j | 0≤ s≤ ` j } where the vectors α1, . . . , αn
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generate the lattice Zn and δ < ` j for all j . The corner chopping of size δ of 1
at v is the polytope 1̃ obtained from 1 by intersecting with the half-space

{ v+ s1α1+ · · ·+ snαn | s1+ · · ·+ sn ≥ δ}.
See, for example, the chopping of the top right corner in Figure 2. The resulting
polytope 1̃ is again a Delzant polytope. The corner chopping operation commutes
with AGL(n,Z)-congruence: if 1̃ is obtained from1 by a corner chopping of size
δ > 0 at a vertex v ∈1 then, for any g ∈AGL(n,Z), the polytope g(1̃) is obtained
from the polytope g(1) by a corner chopping of size δ at the vertex g(v).

l1

l2
l2−δ

1
1̃

l1−δ
δ

Figure 2. Corner chopping.

2.7. Recall that a blowup of size ε=r2/2 of a 2n-dimensional symplectic manifold
(M, ω) is a new symplectic manifold (M̃, ω̃) that is constructed in the following
way. Let �⊂ Cn be an open subset that contains a ball about the origin of radius
greater than r , and let i : �→ M be a symplectomorphism onto an open subset
of M . (We consider Cn with the standard symplectic form.) The standard sym-
plectic blowup of � of size r2/2 is obtained by removing the open ball B2n(r)
of radius r about the origin and collapsing its boundary along the Hopf fibration
∂B2n(r)→ CPn−1; the resulting space is naturally a smooth symplectic manifold
[McDuff and Salamon 1998, Section 7.1]. This blowup transports to M through i .
The resulting copy of (CPn−1, εωFS) in M̃ is called the exceptional divisor.

If M admits an action of a torus T`, and i : �→ M is T`-equivariant, where
T` acts on � through some homomorphism T` → U (n), then the torus action
naturally extends to the symplectic blowup of M obtained from i , and the blowup
is equivariant. If the action on M is Hamiltonian, its moment map naturally extends
to the blowup; in the case `= n we call this a toric blowup.

The moment map image of the standard symplectic blowup of Cn of size ε is
obtained from the moment map image Rn+ of Cn by corner chopping of size ε. See
Figure 3 for n = 2.

A toric blowup of size ε of a symplectic toric manifold (M, ω,8) at a fixed
point p amounts to chopping off a corner of size ε of its moment map image 1 at
the vertex v =8(p) to get a new polytope 1̃. The preimage of the resulting new
facet in 1̃ is the exceptional divisor in M̃ .
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|z1|2+|z2|2≥r
2

ǫ

|z2|2/2

ǫ

ǫ

|z1|2/2

Figure 3. Blowup of C2 of size ε = r2/2.

We restrict our attention to symplectic toric manifolds of dimension 4. Chopping
off a corner of size ε of a polygon 1 can be done if and only if there exist two
adjacent edges in 1 whose rational lengths are both strictly greater than ε. As
a result, starting from a Delzant triangle of size 1 we can perform one corner
chopping of size ε > 0 if and only if ε < 1, two or three corner choppings of size
ε > 0 if and only if ε < 1

2 , and no more than three corner choppings of the same
size. Therefore:

Lemma 2.8. (CP2, ωFS) admits a toric blowup of size ε > 0 if and only if ε < 1.
(CP2, ωFS) admits two or three toric blowups of size ε > 0 if and only if ε < 1

2 .
(CP2, ωFS) does not admit four or more toric blowups of equal sizes.

For a detailed proof, see [Karshon and Kessler 2007, Lemma 3.1].
In R2, all Delzant polygons can be obtained by a simple recursive recipe:

Lemma 2.9. (1) Let1 be a Delzant polygon with three edges. Then there exists a
unique λ> 0 such that1 is AGL(2,Z)-congruent to the Delzant triangle1λ.
(See Example 2.5.)

(2) Let 1 be a Delzant polygon with four or more edges. Let s be the nonnega-
tive integer such that the number of edges is 4+ s. Then there exist positive
numbers a ≥ b> 0, an integer 0≤ k ≤ 2a/b, and positive numbers δ1, . . . , δs ,
such that 1 is AGL(2,Z)-congruent to a Delzant polygon that is obtained
from the Hirzebruch trapezoid Hirza,b,k (see Example 2.5) by a sequence of
corner choppings of sizes δ1, . . . , δs .

Proof. See [Fulton 1993, Section 2.5 and Notes to Chapter 2]. �



TORUS ACTIONS ON SMALL BLOWUPS OF CP2 139

2.10. For any Delzant polygon 1, consider the free Abelian group generated by
its edges:

Z[edges of 1].
The “length functional”

Z[edges of 1] → R

is the homomorphism that associates to each basis element its rational length. If
1i+1 is obtained from 1i by a corner chopping, we consider the injective homo-
morphism

(1) Z[edges of 1i ] ↪→ Z[edges of 1i+1]
whose restriction to the generators is defined in the following way. If d is an edge
of1 that does not touch the corner that was chopped, then d is mapped to the edge
of 1i+1 with the same outward normal vector. If d is an edge of 1i that touches
the corner that was chopped, then d is mapped to d+e where e is the new edge of
1i+1, created in the chopping.

The definition of corner chopping in 2.6 implies that the homomorphism (1)
respects the length homomorphisms.

By induction and the definition of corner chopping we get the following lemma.

Lemma 2.11. Let

10,11, . . . ,1s

be a sequence of Delzant polygons such that, for each i , the polygon1i is obtained
from the polygon 1i−1 by a corner chopping of size δi .

(1) The image of an edge d of 1 j by s − j iterations of homomorphism (1) is
a linear combination

∑`
i=0 mi ci , such that c0, . . . , c` are edges of 1s whose

union Ud is connected, ` ≤ (s − j), and for 0 ≤ i ≤ `, the coefficient mi is a
nonnegative integer that is less than or equal to 2s− j ; we say that d is given
by the chain Ud with multiplicities m0, . . . ,m`.

(2) area1s = area10− 1
2δ

2
1 − · · ·− 1

2δ
2
s .

(3) perimeter1s = perimeter10− δ1− · · ·− δs .

Lemma 2.12. Let (M, ω,8) be a four-dimensional symplectic toric manifold,
with moment-map polygon 1 of n edges. Then there are n − 2 edges of 1 whose
union is connected, such that the classes of their 8-preimages form a basis to
H2(M;Z). Moreover, for any n − 2 edges of 1 whose union is connected, the
classes of their preimages form a basis to H2(M;Z).
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Proof. By Lemma 2.9, we can prove this by induction. In the induction step,
suppose that (M̃, ω̃, 8̃) with moment map polygon 1̃ of n + 1 edges is obtained
by a toric blowup of (M, ω,8) with moment map polygon 1. Let B1 be a set
of n − 2 edges of 1 whose union is connected, such that the classes of their 8-
preimages form a basis to H2(M;Z). If B1 consists of an edge that touches the
corner that was chopped, set B1̃ to be the edges of 1̃with the same outward normal
vector as the edges in B1 plus the new edge e of 1̃, created in the chopping. If
none of the edges in B1 touches the corner that was chopped, set B1̃ to be the
edges of 1̃ with the same outward normal vector as the edges in B1 plus one of
the edges adjacent to e in 1̃. �

Corollary 2.13. Let (M, ω,8) be a four-dimensional symplectic toric manifold,
with moment-map polygon 1. The number of edges of 1 is equal to the second
Betti number dim H2(M) plus two.

By the Delzant theorem, every toric action on CP2 is obtained from a symplec-
tomorphism of CP2 with a symplectic toric manifold M1 that is associated to a
Delzant polygon1. By Corollary 2.13,1must be a triangle. By part (1) of Lemma
2.9, 1 is AGL(2,Z)-congruent to a Delzant triangle 1λ. (See Example 2.5.) By
our normalization convention for the Fubini–Study form, λ= 1. It follows that:

Lemma 2.14. Every toric T2-action on CP2 is equivariantly symplectomorphic to
the standard action.

3. J-holomorphic spheres in symplectic 4-manifolds

In this section we will highlight results from the theory of J-holomorphic curves
that we will use for the proof of Lemma 4.3, and to show uniqueness of symplectic
blowdowns in the appendix.

Let (M, ω) be a compact symplectic manifold. Let J = J(M, ω) be the space
of almost complex structures on M that are compatible with ω. The space J

is contractible [McDuff and Salamon 1998]. Given J ∈ J, a parametrized J -
holomorphic sphere is a map u : CP1→ M , such that du : T CP1→ TM satisfies
the Cauchy–Riemann equation du ◦ i = J ◦ du. Such a u represents a homology
class in H2(M;Z) that we denote [u]. A J -holomorphic sphere is called simple if
it cannot be factored through a branched covering of CP1. One similarly defines a
holomorphic curve in (M, J ) whose domain is a Riemann surface other than CP1.

For any class A ∈ H2(M;Z), consider the universal moduli space of simple
parametrized holomorphic spheres in the class A,

M(A,J)= {(u, J ) | J ∈ J, u :CP1→ M is simple J -holomorphic, and [u] = A},
and the projection map

pA :M(A,J)→ J.



TORUS ACTIONS ON SMALL BLOWUPS OF CP2 141

For a fixed J ∈ J, we denote by M(A, J ) the space p−1
A (J ).

The automorphism group PSL(2,C) of CP1 acts on M(A,J) by reparametriza-
tions. The quotient M(A,J)/PSL(2,C) is the space of unparametrized J-holo-
morphic spheres representing A ∈ H2(M).

Lemma 3.1. Let 0 6= A ∈ H2(M;Z). The action of G = PSL(2,C) on M(A,J) is
free and proper.

Proof. For any sphere u ∈ M(A,J), the stabilizer Gu = {ψ ∈G | u ◦ ψ = u} is
trivial, since u is simple; this proves that the action is free.

We now need to show that the action map (u, ψ) 7→ (u, u◦ψ) is proper. Let K ⊂
M(A,J)×M(A,J) be a compact subset. Without loss of generality K = K1×K2,
where K1 and K2 are compact in M(A,J). Because M(A,J) is Hausdorff and first
countable, it is enough to show that for every sequence {(un, ψn)} in the preimage
of K1×K2 there exists a subsequence such that {ψn} converges uniformly and {un}
converges in the C∞ topology. Take such a sequence {un, ψn}. Because un ∈ K1

and K1 is compact, after passing to a subsequence we may assume that {un} C∞-
converges.

By [McDuff and Salamon 2004, Lemma D.1.2], if the sequence ψn does not
have a uniformly convergent subsequence, then there exist points x, y ∈ CP1 and
a subsequence ψµ which converges to the point y uniformly in compact subsets of
CP1 \ {x}. In particular ψµ converges to a point on a half sphere, hence uµ ◦ψµ,
restricted to a half sphere, converge to a constant map. However, the sequence
of holomorphic spheres {un ◦ ψn}, (as a sequence in the compact subset K2 of
M(A,J)), has a C∞-convergent (hence u.c.s.-convergent) subsequence whose limit
is in the nontrivial homology class A, and we get a contradiction. �

Gromov [1985] introduced a notion of weak convergence of a sequence of holo-
morphic curves. This notion is preserved under reparametrization of the curve, and
it implies convergence in homology. Gromov’s compactness theorem guarantees
that, given a converging sequence of almost complex structures, a corresponding
sequence of holomorphic curves with bounded symplectic area has a weakly con-
verging subsequence. The limit under weak convergence might not be a curve; it
might be a cusp curve, that is, a connected union of holomorphic curves. As a
result of Gromov’s compactness, we have the following lemma.

Lemma 3.2. Let {Jn} ⊂ J be a sequence of almost complex structures that con-
verges in the C∞ topology to an almost complex structure J∞ ∈ J. For each n, let
fn : CP1→ M be a parametrized Jn-holomorphic sphere. Suppose that the set of
areas ω([ fn]) is bounded. Then one of the following two possibilities occurs.

(1) There exist a J∞-holomorphic sphere u : CP1 → M and elements An ∈
PSL(2,C) such that a subsequence of the fn ◦ An’s converges to u in the C∞
topology. In particular, there exist infinitely many n’s for which [ fn] = [u].
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(2) There exist two or more J∞-holomorphic spheres u` :CP1→M that are non-
constant and simple and positive integers m`, for `= 1, . . . , L, and infinitely
many n’s for which

[ fn] =
L∑
`=1

m`[u`] in H2(M).

For details, see [Karshon et al. 2007, Lemma A.3].
In the proof of Lemma 4.3, we will use the following Lemma.

Lemma 3.3. Let (M, ω) be a closed symplectic four-manifold. Let E ∈ H2(M;Z)
be a homology class that can be represented by an embedded symplectic sphere
and such that c1(TM)(E)= 1. Then for every J ∈ J there exists a J -holomorphic
cusp curve in the class E.

To deduce the lemma from Gromov’s compactness we need the existence of a
dense set U ⊂J such that for any J ∈U , the class E is represented by an embedded
J -holomorphic sphere.

For any positive number K , let

NK = {A ∈ H2(M;Z) | A 6= 0, c1(TM)(A)≤ 0, and ω(A) < K }.
The importance of this set lies in the fact that if a homology class E with ω(E)≤ K
and c1(TM)(E)≤1 is represented by a J-holomorphic cusp curve with two or more
components, then at least one of these components must lie in a homology class in
NK ; see Lemma A.5 in [Karshon et al. 2007]. Let

UK = J r
⋃

A∈NK

image pA.

Let (M, ω) be a compact symplectic four-manifold. Then the subset UK ⊂ J is
open, dense, and path connected. This is proved in [McDuff 1990, Lemma 3.1;
1991, Section 3] and presented in [Karshon et al. 2007, Lemma A.8 and Lemma
A.10]. The following is also shown in [Karshon et al. 2007, Lemma A.12].

Lemma 3.4. Let (M, ω) be a compact symplectic four-manifold. Let E ∈ H2(M)
be a homology class that can be represented by an embedded symplectic sphere
and such that c1(TM)(E)= 1.

(1) The projection map pE :M(E,J)→ J is open.

(2) Let K ≥ ω(E). Then, for any J ∈ UK , the class E is represented by an
embedded J -holomorphic sphere.

Lemma 3.3 now follows.
For the proof of Theorem 1.1, we also need the following lemmas.
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Lemma 3.5. Let (M, ω) be a compact symplectic four-manifold. Let A∈H2(M;Z)
be a homology class which is represented by an embedded symplectic sphere C.

(1) There exists an almost complex structure J0 ∈ J for which C is a J0-holo-
morphic sphere.

(2) For any J ∈J and any simple parametrized J -holomorphic sphere f :CP1→
M in the class A, the map f is an embedding.

plus 1pt plus 1pt The lemma is a consequence of the adjunction formula. For
details and references see, for example, [Karshon and Kessler 2007, Lemma 5.3].

Lemma 3.6. Let (M, ω) be a compact symplectic four-manifold. Let A∈H2(M;Z)
be a homology class that is represented by an embedded symplectic sphere, and
such that c1(TM)(A)= 1. Let J ∈ image pA, and (u, J ) ∈M(A, J ).

If A = ∑n
i=1 mi [ui ], where each component ui is a simple parametrized J -

holomorphic sphere and mi ∈N, then all the components but one must be constants,
and the nonconstant component differs from u by reparametrization of CP1.

Proof. By Lemma 3.5, u is an embedding, so the adjunction equality

0= 2+ A · A− c1(TM)(A)

holds; since c1(TM)(A)=1 this implies A·A=−1. If n>1 and there is more than
one nonconstant component, then for 1≤ i ≤ n, ω([u]) >ω([ui ]) so u 6= ui , hence
by positivity of intersections of J-holomorphic spheres in a four-manifold [McDuff
and Salamon 2004, Theorem 2.6.3], [ui ] · [u] ≥ 0. Thus 0≤∑n

i=1 mi ([ui ] · [u])=
A · A, in contradiction to A · A =−1.

Thus, all the components but one must be constants. By a similar argument, the
nonconstant component differs from u at most by reparametrization of CP1. �

Lemma 3.7. Let (M, ω) be a closed symplectic four-manifold. Let E ∈ H2(M;Z)
be a homology class that can be represented by an embedded symplectic sphere
and such that c1(TM)(E)= 1. Let

UE = image pE .

(1) UE ⊂ J is open, dense, and path connected. Between any two elements in UE

there is a path in UE that is transversal to pE .

(2) The map
p̃E :M(E,J)/PSL(2,C)→UE

induced from the projection map pE is proper.

(3) For J0, J1 ∈UE , the sets M(E, J0)/PSL(2,C) and M(E, J1)/PSL(2,C) con-
sist each of a single point, and there exists a path {Jt }0≤t≤1 such that

W(E; {Jt })= {(ut , Jt) | ut ∈M(E, Jt)}/PSL(2,C)

is a compact one-dimensional manifold, and each ut is an embedding.
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Proof. (1) Since pE is an open map by Lemma 3.4(1), its image UE is an open set
in J. Set K = ω(E). By part (2) of Lemma 3.4, UK ⊆ UE . Since UK is dense in
J, so is UE . Since UE is open, J locally path connected, and UK is dense in UE

and path connected, we get that UE is path connected.
By the regularity criterion of Hofer–Lizan–Sikorav [1997], any element in UE

is a regular value for pE . A path between regular values for pE can be perturbed to
a path with the same endpoints that is transversal to pE ; see [McDuff and Salamon
2004, Theorem 3.1.7(ii); Karshon et al. 2007, Lemma A.9(d)].

(2) This follows from Gromov’s compactness in the following way. Let D ⊂ UE

be a compact subset. We need to show that p−1
E (D)/PSL(2,C) is compact. Be-

cause M(E,J) is Hausdorff and first countable, it is enough to show that for every
sequence {( fn, Jn)} in p−1

E (D) there exists a subsequence that, after reparametriza-
tion, has a limit in p−1

E (D) in the C∞ topology.
Take such a sequence, {( fn, Jn)}. Because Jn ∈ D and D is compact and con-

tained in UE , after passing to a subsequence we may assume that {Jn} converges to
J∞ ∈ UE . Each fn is a Jn-holomorphic sphere in the class E . Suppose that there
exists a subsequence that, after reparametrization, converges to some u :CP1→M
in the C∞ topology. Then u must be in the class E and it must be J∞-holomorphic.
If u is not simple, we get a contradiction to Lemma 3.6. Then the pair (u, J∞) is
in the moduli space M(E,J), and since J∞ ∈ D, this pair is in p−1

E (D).
Now suppose that there does not exist such a subsequence. Then there exist two

or more nonconstant simple J∞-holomorphic spheres u` : CP1→ M and positive
integers m` such that

∑
m`[u`] = E , by Lemma 3.2. This contradicts Lemma 3.6.

(3) For J ∈UE = image pE , the set M(E, J )= p−1
E (J ) 6=∅. Hence, by Lemma 3.6,

the set M(E, J )/PSL(2,C) consists of a single point. For J0, J1 ∈UE , by part (1),
there is a path {Jt } in UE from J0 to J1, that is transversal to pE . Hence, by [McDuff
and Salamon 2004, Theorem 3.1.7], W∗(E; {Jt }) = {(ut , Jt) | ut ∈M(E, Jt)} is
a manifold of dimension 1 + 6 = 1 + indexpE . By Lemma 3.1, the action of
PSL(2,C) on W∗(E; {Jt }) is free and proper, thus

W(E; {Jt })= {(ut , Jt) | ut ∈M(E, Jt)}/PSL(2,C)

is a manifold of dimension one. W(E; {Jt }) is the inverse image of the path {Jt }
under the map p̃E , hence, by part (2), it is compact.

By Lemma 3.5, each ut is an embedding. �

4. Representing JT -holomorphic curves on the moment map polygon

Notation. For (M, ω,8), let JT denote a Tn-invariant complex structure on M that
is compatible with ω. By Delzant’s construction [1988], such a structure exists.
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Claim 4.1. Let (M, ω,8) be a four-dimensional symplectic toric manifold, with
moment-map polygon1. The preimage under8 of an edge d of1 is an embedded
JT -holomorphic sphere.

Proof. By part (2) of Lemma 2.4, Y = 8−1(d) is a symplectically embedded 2-
sphere in M . Being a connected component of a fixed point set of a holomorphic
S1-action, T Y = JT T Y . As an almost complex manifold of real dimension two,
(Y, JT |T Y ) is a complex manifold. Thus the embedded sphere Y is an embedded
holomorphic sphere in the complex manifold (M, JT ). �

Lemma 4.2. Let (M, ω,8) be a four-dimensional symplectic toric manifold, with
moment-map polygon 1.

• Any JT -holomorphic sphere is homologous in H2(M;Z) to a linear combina-
tion with coefficients in N of inverse images under 8 of edges of 1.

• For any set S of n − 2 edges whose union is connected, any simple JT -
holomorphic sphere C that is not the preimage of an edge of1 is homologous
to a linear combination with coefficients in N of preimages of edges of 1
whose union is connected and that are contained in S; if the intersection of C
with each of the two edges of 1 that are not in S is positive, then all the n−2
edges of S appear with positive coefficients in this linear combination.

Proof.

• Let9 be an S1-moment map obtained by composing8with projection in a ra-
tional direction along which there is not any edge of1. Denote by vmin (vmax)
the vertex of minimal (maximal) value of that projection. Let D1, . . . , Dm be
a chain of 8-preimages of edges between vmin and vmax. Let D′1, . . . , D′m′
be the other chain of 8-preimages of edges between vmin and vmax.

Without loss of generality we assume that C is a simple JT -holomorphic
sphere that is not the 8-preimage of an edge of 1. By Lemma 2.12, in
H2(M;Z)

[C] =
m∑

i=1

ai Di +
m′∑
j=1

b j D′ j , with a1 = b1 = 0.

Adapting the proof of Lemma C.6 in [Karshon 1999] we get that

(2) ai+1/ki+1 ≥ ai/ki ≥ 0, for 1≤ i < m (1≤ i < m′),

where ki is the order of the stabilizer of the i-th sphere in a chain.
Notice that (2) implies that

a` > 0⇒ ai > 0 for all `≤ i ≤ m,

b` > 0⇒ b j > 0 for all `≤ j ≤ m′.
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Hence, C is homologous in H2(M;Z) to a linear combination with coefficients
in N of inverse images under 8 of, at most n− 2, edges of 1 whose union is
connected.

• It is enough to observe that for any set S of n − 2 edges whose union is
connected, there is an S1-moment map 9, obtained by composing 8 with
projection in a rational direction along which there is not any edge of 1, such
that the vertex vmin is the vertex between the two edges of 1 that are not in S.
Then the previous proof gives the required. �

Lemma 4.3. Let (M, ω,8) be a four-dimensional symplectic toric manifold with
moment-map polygon1. Let JT be a T2-invariant ω-compatible complex structure
on M , and gT be the Riemannian metric defined by (ω, JT ). Let i∗ be a projection
in a rational direction along which there is not any edge of 1. Let vmin be the
vertex of 1 of minimal value of that projection.

Let C be a JT -holomorphic sphere such that 8(C) avoids the vertex vmin. Let
α and β be the points of 8(C) on the boundary of 1, that are closest to vmin from
left and right. Let vα and vβ be the vertices following α and β. Then the gradient
flow of 9 = i∗ ◦ 8 with respect to gT carries C to a family of JT -holomorphic
spheres; this family weakly converges to a connected union of preimages of edges
of1 (maybe with multiplicities). These edges form a chain that we denote LC . The
vertices of LC closest to vmin from left and right are vα and vβ .

Proof. The function 9 = i∗ ◦ 8 : M → R is a moment map associated with a
Hamiltonian action on (M, ω) of S1 embedded in T2 by i : S1 ↪→ T2.

Let ξM be the vector field generating the S1-action. The gradient flow ηt of 9
with respect to the invariant metric gT is generated by −JT ξM . This flow is equi-
variant with respect to the action, that is, for each t , the diffeomorphism ηt :M→M
is T2-equivariant. Consequently, it sends a set that is a 8-preimage of a vertex or
a 8-preimage of an edge to itself.

Set L to be the chain of edges of 1 that do not touch vmin. Let

B = {p ∈ M : i∗ ◦8(p) > r}

for some i∗(vmin) < r <min{i∗(v′), i∗(v′′)}, where v′ (v′′) is the vertex following
vmin immediately from the left (right). Then

⋂
t>0(ηt(B)) ⊇ 8−1L . On the other

hand, a point p ∈ B that is not in 8−1(L), is sent to vmin by the gradient flow ηt

as t → −∞, that is, for t ′ big enough, q = η−t ′(p) is not in B. Since ηt ′ is a
diffeomorphism, there cannot be b ∈ B such that ηt ′(b) = ηt ′(q) = η0(p) = p, in
particular, p is not in the intersection

⋂
t>0(ηt(B)). So⋂

t>0

(ηt(B))=8−1(L).
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We choose B big enough such that, for some complex coordinates, the complexified
toric action on M−B is the standard action of the complex torus on an open subset
of C2. In particular, for t1, t2 close to 0, if t1 > t2 > 0, ηt1(M − B)⊃ ηt2(M − B),
hence ηt1(B) ⊂ ηt2(B). Since ηt is a flow, (that is, a homomorphism from (R,+)
to (Diff, ◦)), this implies that for any t1 > t2 > 0, ηt1(B) ⊂ ηt2(B), that is, ηt is
monotonic on B.

Now, choose B such that, in addition to the above, its image contains 8(C).
Consider a sequence {Ci }, where Ci = ηi (C), with discrete i →∞. Each Ci is
a JT -holomorphic sphere in the homology class [C]. By Gromov’s compactness
theorem, there is a subsequence {Cµ} that weakly converges to a JT -holomorphic
(maybe nonsmooth) cusp curve C ′ in [C]. In particular, each point in the limit C ′
is the limit of a sequence of points in {Cµ}, hence, since Cµ= ηµ(C)⊂ ηµ(B), and
ηt is monotonic on B, we get that C ′ ⊂ ∩µ(ηµ(B)) ⊂ 8−1(L). Thus, since each
edge preimage is an irreducible JT -holomorphic sphere in the complex manifold
(M, JT ) (by Claim 4.1), the irreducible components of C ′ are preimages of edges
in L . We conclude that the cusp curve C ′ is a connected union of preimages of the
edges of a subchain LC of L , with positive multiplicities.

Let pα (pβ) be the preimage of vα (vβ) in M . The chain LC includes vα and
vβ , as the limits of ηµ(pα) and ηµ(pβ). Assume a vertex v on LC is closer to vmin

from the left than vα. Let ev be the edge that touches v from below. Then LC

intersects ev at v, hence 8−1(LC) intersects 8−1(ev) at the point 8−1(v), maybe
with multiplicities. However C ∩8−1(ev) = ∅, in contradiction to [8−1(LC)] =
[C]. Similarly, the vertex on LC closest to vmin from the right is vβ . �

Claim 4.4. Let (M, ω,8) be a four-dimensional symplectic toric manifold with
moment-map polygon 1.

Every JT -cusp curve C is homologous in H2(M;Z) to a linear combination
with coefficients in N of preimages of edges of 1 whose union is connected. In
particular, C is homologous to a T2-invariant JT -cusp curve.

We already know that a JT -cusp curve C is homologous to a linear combination
with coefficients in N of preimages of edges of 1 (by applying the first part of
Lemma 4.2 to the components of the cusp curve). However, the union of these
edges might not be connected. The “connected” part that we add here plays an
important role in the proof of Theorem 1.1.

Proof. Let i∗ be a projection in a rational direction along which there is not any edge
of 1. Let vmin be the vertex of 1 of minimal value of i∗. If for any component
of C that is not a 8-preimage of an edge of 1, the moment map image avoids
a neighbourhood of vmin, then the claim follows from Lemma 4.3 (and the fact
that C is connected). Otherwise, there is such a component D; by positivity of
intersections, the intersection number of D with the preimage of each of the two
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edges adjacent to vmin is positive. Thus, by the second part of Lemma 4.2, D is
homologous to a linear combination with coefficients in N of 8-preimages of all
the edges of 1 but the two adjacent to vmin. By the first part of Lemma 4.2, each
component of C is homologous to a linear combination of 8-preimages of edges
of 1 with coefficients in N. Combining such representatives of D and the other
components of C gives the claim. �

Lemma 4.5. Let (M, ω,8) be a symplectic toric four-manifold with moment map
polygon 1. Let C be an embedded symplectic sphere in (M, ω) which satisfies
c1(TM)(C)= 1.

Then C is homologous in H2(M;Z) to a linear combination with coefficients
in N of preimages of edges of 1 whose union is connected.

Proof. By Lemma 3.3 there exists a JT -holomorphic cusp curve in the class [C].
Now apply Claim 4.4. �

5. No toric action on (Mk, ωε) for k > 3 and small ε

For ε > 0, denote by
(Mk, ωε)

a symplectic manifold that is obtained from (CP2, ωFS) by k simultaneous sym-
plectic blowups of equal sizes ε. For description of symplectic blowup, see 2.7.
The k simultaneous blowups are obtained from embeddings i1 :�1→ M, . . . ,
ik :�k→ M whose images are disjoint. We denote by E1, . . . , Ek the homology
classes in H2(Mk;Z) of the exceptional divisors obtained by the blowups, and by
L the homology class of a line CP1 ⊂ Mk .

5.1. By McDuff and Polterovich [1994], for k≤8 there exists a symplectic blowup
of CP2 k times by size ε if and only if ε satisfies the following conditions. If
k = 2, 3, 4: ε < 1

2 . If k = 5, 6: ε < 2
5 . If k = 7: ε < 3

8 . If k = 8: ε < 6
17 . According

to Biran [1997], for k ≥ 9, there exist k symplectic blowups of equal sizes ε if and
only if ε satisfies the volume constraint, that is, ε < 1/

√
k.

Assume that (Mk, ωε) admits a toric action with moment map polygon 1. By
Lemma 4.5, each Ei can be represented by a linear combination with coefficients
in N of preimages of edges of 1. We call the union of these edges, with the N-
multiplicities, a1-representative of Ei . If this union is connected, we call it a con-
nected1-representative. We observe the following properties of1-representatives
of E1, . . . , Ek .

Claim 5.2. Assume that (Mk, ωε) admits a toric action with moment map image1.
Choose 1-representatives for E1, . . . , Ek . For m ≤ k, the number of edges in the
union of the 1-representatives of m different Ei ’s is > m, unless each of these
1-representatives is a single edge with multiplicity one.
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Proof. Assume that the union of the chosen 1-representatives of E1, . . . , Em

(without loss of generality) is a subset of the set of edges C1, . . . ,Cm , that is,
in H2(Mk;Z), for 1≤ i ≤ m,

(3) Ei =
m∑

j=1

ai
j [8−1C j ], ai

j ∈ 0∪N.

Denote by A the m×m matrix of the coefficients ai
j . Since the homology classes

E1, . . . , Em are independent, the matrix A is invertible (over R). We get that

(4) ([8−1C1], . . . , [8−1Cm])t = A−1(E1, . . . , Em)
t .

The homology classes L , E1, . . . , Ek form a basis of H2(Mk;Z), therefore each
[8−1C j ] = d j L +∑i b j

i Ei , with unique integers as coefficients. The coefficients
do not change if we write [8−1C j ] as a linear combination of L , Ei in H2(Mk;R).
By this and (4), all the entries of A−1 are in Z, so in H2(Mk;Z),

[8−1C j ] =
m∑

i=1

b j
i Ei , b j

i ∈ Z.

Since the size of each Ei is ε we deduce that the length |C j | of each C j is an integer
multiple of ε. Since |C j | > 0, it must be a multiple of ε by N j ∈ N. However,
by (3), for 1≤ i ≤ m,

ε =
m∑

j=1

ai
j |C j |, ai

j ∈ 0∪N.

Thus

ε =
m∑

j=1

ai
j N jε, ai

j ∈ 0∪N, N j ∈ N.

We get that in each line (and each column) of (the invertible matrix) A there is 1 in
one entry and 0 in each of the other entries, that is, each of the 1-representatives
is a single edge with multiplicity one. �

Claim 5.3. Assume that (Mk, ωε) admits a toric action with moment map image1.
Choose connected 1-representatives for E1, . . . , Ek . Denote their union by U. If
none of the chosen connected 1-representatives is a single edge of 1 with multi-
plicity one, then U is connected and consists of at least k+ 1 edges.

Proof. By Claim 5.2, U consists of more than k edges. Assume that U is discon-
nected. Then it consists of at most k + 1 edges, hence it consists of exactly k + 1
edges out of the k+ 3 edges of 1. Since none of the 1-representatives is a single
edge, Claim 5.2 implies that the m j edges of a connected component j support
at most m j − 1 of the Ei ’s. Thus the nonconnected k + 1 edges support at most
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j=1 (m j − 1) = k + 1− c < k of these classes, where c > 1 is the number of

connected components, and we get a contradiction. �

For a convex polygon 1 in R2, we denote by

(M1, ω1,81)

a symplectic toric manifold whose moment map image is 1.
The main ingredient of the proof of Theorem 1.1 is:

Claim 5.4. If (Mk, ωε) is symplectomorphic to (M1, ω1), and

ε ≤ 1
3k22k ,

then one of the classes E1, . . . , Ek is realized by an embedded T2-invariant sym-
plectic exceptional sphere; equivariantly blowing down along it yields (Mk−1, ωε)

with a toric action.

Proof. If k ≥ 1, the moment map image 1 is a Delzant polygon of k + 3 ≥ 4
edges, so by Lemma 2.9, up to AGL(2,Z)-congruence, it is obtained by (k − 1)
corner-choppings of sizes (δ1, . . . , δk−1) from a standard Hirzebruch trapezoid 6
with west and east edges Fw, Fe, south edge S, north edge N , and slope −1/d .

By part (1) of Lemma 2.11,

(5) |S| + |N |< 2k perimeter1,

and Fw and Fe are given by two disjoint connected unions of edges of 1 with
multiplicities ≤ 2k .

For each class Ei , we choose a connected 1-representative, that is a connected
union of edges (with multiplicities in N) whose preimage is in Ei . Assume that
none of these 1-representatives is a single edge of 1 with multiplicity one. By
Claim 5.3, the union U of these 1-representatives is connected and consists of at
least k + 1 edges of the k + 3 edges of 1. Then, (at least) one of the two chains
of edges giving Fw and Fe as above is contained in U : the connected at most two
edges that are not in U can overlap at most one chain giving Fw or Fe, since the
two chains are separated at each end by an edge. Thus

(6) |F | = |Fw| = |Fe| ≤ 2kkε.

Then

1
2(1−kε2)= area1= 1

2(|S|+|N |)|F |−
k−1∑
i=1

1
2δi

2 ≤ 1
2 2k |F | perimeter1−

k−1∑
i=1

1
2δi

2

= 1
2 2k(3−kε)|F |−

k−1∑
i=1

1
2δi

2 ≤ 1
2 2k(3−kε)2kkε−

k−1∑
i=1

1
2δi

2.
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The first (in)equality holds by part (4) of Lemma 2.4, the second holds by part (2)
of Lemma 2.11, the third inequality holds by Equation (5), the fourth follows from
part (3) of Lemma 2.4 and the fact that the Poincare dual to c1(T Mk) equals 3L−∑k

i=1 Ei , and the last holds by Equation (6).
We get that

1− kε2 ≤ 22k(3− kε)(kε)≤ 22k(3kε− kε2).

So, 1≤ 22k3kε−kε2(22k−1), thus 1< 3k22kε, in contradiction to the assumption
on ε. Therefore, (at least) one of the classes E1, . . . , Ek is represented by the
inverse image under the moment map of a single edge of 1 with multiplicity one.
By Claim 4.1, such a representative CT is an embedded JT -holomorphic sphere.
It is T2-invariant: let a ∈T2; because T2 is connected, [aCT ] = [CT ]; by positivity
of intersections and since Ei · Ei = −1, aCT and CT must coincide. Because CT

is an embedded JT -sphere and JT is compatible with ωε , CT is symplectic.
Without loss of generality, the class E1 is represented by such a JT -holomorphic

sphere CT . Set J0 to be an almost complex structure on (Mk, ωε) for which the
exceptional divisors obtained by the symplectic blowups are disjoint embedded
J0-holomorphic spheres S1, . . . , Sk that represent the classes E1, . . . , Ek . (Such a
structure exists by Lemma 3.5.) By Lemma A.1 in the appendix, the symplectic
manifold resulting from (Mk, ωε) by blowing down along CT is symplectomor-
phic to the symplectic manifold obtained by blowing down along S1, which is
(Mk−1, ωε). �

Proof of Theorem 1.1. Assume that (Mk, ωε) is symplectomorphic to (M1, ω1)

and ε ≤ 1/(3k22k). After k iterations of Claim 5.4, we get CP2 with a toric action.
By Lemma 2.14, this manifold is equivariantly symplectomorphic to CP2 with its
standard toric action. By reversing our steps we get CP2 blown up equivariantly k
times by equal sizes ε. �

Remark 5.5. Theorem 1.1 becomes false if we do not restrict ε. For ε > 1
2 , let

(M1, ωε,81) be CP2 blown up equivariantly by size ε. The moment map image
is obtained by chopping off a corner of size ε from a Delzant triangle of edge-
size 1, to get a trapezoid Hirz(1+ε)/2,1−ε,1, that is, of height (1− ε), average width
(1+ε)/2, and slope−1. Let (N , ω2,82) be a Hirzebruch surface whose image is a
trapezoid Hirz(1+ε)/2,1−ε,3 (Notice that the north edge is then of size 2ε−1, which
is > 0 if and only if ε > 1

2 .) See Figure 4. Since these Hirzebruch trapezoids have
the same average width and height and the inverse of their slopes differ by 2, the
corresponding manifolds are isomorphic as symplectic manifolds with Hamiltonian
S1-action (by [Karshon 2003, Lemma 3]), however they are not isomorphic as
symplectic toric manifolds (their moment map polygons are not equivalent).

Theorem 1.1 and Lemma 2.8 yield the following corollary.
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Figure 4. Symplectomorphic but not equivariantly symplecto-
morphic symplectic toric manifolds.

Corollary 5.6. (Mk, ωε) with ε ≤ 1/(3k22k) admits a toric action if and only if
k ≤ 3.

By the sharpness of the constrains listed in 5.1, when ε≤ 1/(3k22k) there exists
a symplectic blowup of CP2 k times by size ε.

Since H 1(Mk,R)= {0}, any effective (S1)2-action on (Mk, ωε) is toric.

Corollary 5.7. (Mk, ωε) with ε≤1/(3k22k) admits an effective (S1)2-action if and
only if k ≤ 3.

Appendix: Uniqueness of blowdown

Lemma A.1. Let (M, ω) be a compact four-dimensional symplectic manifold. Let
J0, J1 ∈ J. Let A be a class in H2(M;Z) such that c1(TM)(A)= 1 and ω(A) > 0.
Assume that A is represented by an embedded J0-holomorphic sphere C0 and by
an embedded J1-holomorphic sphere C1.

Then for i = 0, 1, there are neighbourhoods Ui of Ci , each symplectomorphic
to a tubular neighbourhood of CP1, and a symplectomorphism φ of (M, ω), that
sends (U0,C0) to (U1,C1), and induces the identity map on H2(M;Z).
Proof. By part (3) of Lemma 3.7, there is a smooth family (with parameter 0≤ t≤1)
of Jt -holomorphic embeddings ρt from CP1 to the manifold. Their images are all
in the homology class A. Notice that the pullbacks of ω to CP1 by the homotopic
maps are all in the same cohomology class. Hence, by Moser, there is a family
of diffeomorphisms φt : CP1 → CP1, starting at the identity map, that satisfy
φ∗t (ρ∗0 (ω))= ρ∗t (ω). Hence we may assume that ρ0 is a symplectic embedding of
the standard CP1 and compose the embeddings {ρt } on the family {φt } to get a one-
parameter family of symplectic embeddings of the standard CP1 into M . Moreover,
using a parametrized version of Weinstein’s tubular neighbourhood theorem, this
family can be extended to a one-parameter family of symplectic embeddings σt

of a neighbourhood of CP1 (as the zero-section) in the tautological bundle with a
symplectic form, into M ; denote the image of σt by Ut .
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We get a “partial flow” that moves along the neighbourhoods Ut . Differentiating
it by t gives vector fields X t , defined at Ut . The Lie derivative LieX t ω is 0. By
Cartan’s formula,

LieX t ω = d(ιX tω)+ (ιX t )dω = dιX tω,

where the last equality holds since ω is closed. Thus the one form ιX tω on Ut

is closed. Therefore, and since CP1 is simply connected, when we consider X t

as a vector field defined at a neighbourhood of CP1 × [0, 1] ⊆ M × [0, 1], we
get a function h defined on a (maybe smaller) neighbourhood of CP1 × [0, 1] ⊆
M×[0, 1], such that ιX tω=dht . Using partition of unity in M×[0, 1], we expand h
to a smooth function H :M×[0, 1]→R, whose restriction to a small neighborhood
of image ρt coincides with ht .

This gives a Hamiltonian flow on M , thus a family of symplectomorphisms
{αt }0≤t≤1, starting from the identity map. Take α1 to be φ. �
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