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TOSHIO SAITO AND MASAKAZU TERAGAITO

We show that there exist infinitely many pairs of distinct knots in the 3-
sphere such that each pair can yield homeomorphic lens spaces by the same
Dehn surgery. Moreover, each knot of the pair can be chosen to be a torus
knot, a satellite knot or a hyperbolic knot, except that both cannot be satel-
lite knots simultaneously. This exception is shown to be unavoidable by the
classical theory of binary quadratic forms.

1. Introduction

For a knot K in the 3-sphere S3, let K (m/n) denote the closed oriented 3-manifold
obtained by m/n-Dehn surgery on K , that is, K (m/n) is the union of the knot
exterior E(K )= S3

− int N (K ) and a solid torus V in such a way that the meridian
of V is attached to a loop on ∂E(K ) with slope m/n. In this paper, all 3-manifolds
are oriented, and two knots in S3 are said to be equivalent if there is an orientation-
preserving homeomorphism of S3 sending one to the other.

For a fixed slope m/n, m/n-surgery can be regarded as a map from the set of the
equivalence classes of knots to that of 3-manifolds. There are many results on the
injectivity of this map. Lickorish [1976] gave two nonequivalent knots on which
(−1)-surgeries yield the same homology sphere. Brakes [1980] showed that for
any integer n ≥ 2, there exist n distinct knots on which 1-surgeries yield the same
3-manifold. See also [Kawauchi 1996; Livingston 1982; Teragaito 1994]. Finally,
Osoinach [1998; 2006] showed the existence of 3-manifolds, in fact, a hyperbolic
3-manifold and a toroidal manifold, which can be obtained from infinitely many
hyperbolic knots by 0-surgery. By using Osoinach’s construction, Teragaito [2007]
gave a Seifert fibered manifold over the 2-sphere with three exceptional fibers that
can be obtained from infinitely many hyperbolic knots by 4-surgery. Thus it is
natural to ask whether there exists a lens space that can be obtained from infinitely
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many knots by the same Dehn surgery. Although we do not know the answer yet,
we feel that it is negative based on our computer experiments. In fact, as far as we
know, at most two knots can yield homeomorphic lens spaces by the same Dehn
surgery.

We should note that Berge’s table [1990s] shows that among the lens spaces
with fundamental groups of order up to 500, there are 32 that admit two knots
yielding S3 by Dehn surgery. This strongly suggests that many lens spaces can
be obtained from nonequivalent knots in S3 by the same Dehn surgery. In this
paper, we study whether a pair of nonequivalent knots can yield homeomorphic lens
spaces, ignoring orientations, by the same Dehn surgery. We should be attentive to
this orientation convention. Let U be the unknot and K a knot in S3. By using Floer
homology for Seiberg–Witten monopoles, it is proved in [Kronheimer et al. 2007]
that if there exists an orientation-preserving homeomorphism between K (m/n)
and U (m/n), then K is trivial. In other words, if K (m/n) is homeomorphic to
the lens space L(m, n) under an orientation-preserving homeomorphism, then K
is trivial. Here, the preservation of orientation is important, because 5-surgery
on the right-handed trefoil yields L(5, 4) = L(5,−1). From our point of view,
the right-handed trefoil and the unknot yield homeomorphic lens spaces under the
same 5-surgery.

As a consequence of the cyclic surgery theorem [Culler et al. 1987], any non-
trivial amphicheiral knot has no Dehn surgery yielding a lens space, and the pair
of a knot and its mirror image cannot yield homeomorphic lens spaces by the same
Dehn surgery. Also, only torus knots admit nonintegral lens space surgeries.

Our first result is the following. We recall that all knots are classified into three
families: torus knots, satellite knots, and hyperbolic knots.

Theorem 1.1. There exist infinitely many pairs {K1, K2} of nonequivalent knots
in S3 such that m-surgeries on them yield homeomorphic lens spaces for some
integer m. Also, Ki can be chosen to be a torus knot, a satellite knot or a hyperbolic
knot, except that K1 and K2 cannot be satellite knots simultaneously.

The exceptional case in Theorem 1.1 is unavoidable as shown in Corollary 1.3,
which is obtained as a consequence of the next theorem.

Theorem 1.2. (1) There exist infinitely many pairs of nonequivalent torus knots
in S3 such that some half-integral surgeries on them yield homeomorphic lens
spaces.

(2) Let K1 and K2 be nonequivalent torus knots. Suppose a slope r corresponds
to a lens space surgery for both K1 and K2. If the slope r runs at least three
times in the longitudinal direction, then r-surgeries on K1 and K2 cannot
yield homeomorphic lens spaces.
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Corollary 1.3. Nonequivalent satellite knots cannot yield homeomorphic lens
spaces by the same Dehn surgery.

Question 1.4. Is there a lens space that can be obtained from three nonequivalent
knots in S3 by the same Dehn surgery?

Based on a computer experiment, we conjecture that the answer is negative.
The paper is organized as follows. In Section 2, we give infinitely many pairs

of torus knots that yield homeomorphic lens spaces. After establishing one result
concerning a divisibility of integers by using the classical theory of integral binary
quadratic forms in Section 3, we prove Theorem 1.2 and Corollary 1.3 in Section 4.
In Section 5, we review one special class of doubly primitive knots. In Section 6,
we construct by using tangles infinitely many pairs of hyperbolic knots that yield
homeomorphic lens spaces. Finally, Section 7 completes the proof of Theorem 1.1
by treating the case where the knots of a pair belong to different classes.

2. Torus knots

Here, we give infinitely many pairs of torus knots that yield homeomorphic lens
spaces by the same integral Dehn surgery.

Recall that the Fibonacci numbers are defined by the recurrence equation

Fn+2 = Fn+1+ Fn with F0 = 0 and F1 = 1.

We make use of Cassini’s identity (see [Graham et al. 1994])

Fk−1 Fk+1− F2
k = (−1)k for k > 0.

Let an = Fn+2 and bn = Fn+3+ Fn+1 for n ≥ 1.

Lemma 2.1. For any n ≥ 1,

an+1bn + (−1)n+1
= anbn+1+ (−1)n.

Proof. By using Cassini’s identity,

an+1bn + (−1)n+1
= Fn+3(Fn+3+ Fn+1)+ (−1)n+1

= F2
n+3+ Fn+3 Fn+1+ (−1)n+1

= F2
n+3+ F2

n+2.

Similarly,

anbn+1+ (−1)n = Fn+2(Fn+4+ Fn+2)+ (−1)n

= Fn+2 Fn+4+ F2
n+2+ (−1)n = F2

n+3+ F2
n+2. �

As seen from Cassini’s identity, two successive Fibonacci numbers are relatively
prime. Then it is easy to see that gcd(an+1, bn)= gcd(an, bn+1)= 1.
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Proposition 2.2. For n ≥ 1, let K be the torus knot of type (an+1, bn), and K ′ the
torus knot of type (an, bn+1). Let m= an+1bn+(−1)n+1 (= anbn+1+(−1)n). Then
K and K ′ are not equivalent, and m-surgery on K and K ′ yields homeomorphic
lens spaces.

Proof. K and K ′ are not equivalent since an <an+1<bn <bn+1. By [Moser 1971],
m-surgery on K and K ′ yields the lens spaces L(an+1bn + (−1)n+1, a2

n+1) and
L(anbn+1+ (−1)n, a2

n), respectively. Since a2
n +a2

n+1 = F2
n+2+ F2

n+3 =m as seen
in the proof of Lemma 2.1, a2

n + a2
n+1 ≡ 0 (mod m). Thus these lens spaces are

homeomorphic. �

3. Binary quadratic form

In this section, we prove Proposition 3.1, which will be used in Section 4. For its
proof, we quickly review the classical theory of integral binary quadratic forms.
See [Flath 1989], for example.

Let f (x, y) = Ax2
+ Bxy + Cy2 be an integral binary quadratic form with

discriminant 1= B2
− 4AC . For our purposes, it is enough to assume that 1 is a

positive nonsquare. Let m be a nonzero integer. Then there is a finite algorithm to
find all integral solutions (x, y) ∈ Z2 of f (x, y)= m, as described below.

Let S={(x, y)∈Z2
| f (x, y)=m} be the set of integral solutions of f (x, y)=m.

Set

ρ =

{1
2

√
1 if 1≡ 0 (mod 4),

1
2(1+

√
1) if 1≡ 1 (mod 4).

Let us consider the ring O1 = {x + yρ | x, y ∈ Z}. Let O×1 be the group of units
of O1, and let O×1,1 = {α ∈ O×1 | N (α) = 1} be the subgroup of units for norm 1.
Note that the norm N (α) of α = x + yρ is given

N (α)=
{

x2
−

1
41y2 if 1≡ 0 (mod 4),

x2
+ xy− 1

4(1− 1)y2 if 1≡ 1 (mod 4).

In fact, O×1,1 corresponds to the solution set of the Pell equation N (α) = 1. Then
O×1,1 acts on the set S. It is well known that the number of O×1,1-orbits in S is
finite. Since O×1,1 is infinite, the orbit of each solution is infinite, so S is infinite
unless S=∅. The action is explicitly given by the formulas

(x ′, y′)=


(x, y)

(
u− 1

2 Bv Av
−Cv u+ 1

2 Bv

)
if 1≡ 0 (mod 4),

(x, y)
(

u+ 1
2(1− B)v Av
−Cv u+ 1

2(1+ B)v

)
if 1≡ 1 (mod 4),

for u+ vρ ∈ O×1,1 and (x, y) ∈ S.
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Let τ be the smallest unit of O×1,1 that is greater than 1. Then every O×1,1-orbit
of integral solutions of f (x, y)= m contains a solution (x, y) ∈ Z2 such that

0≤ y ≤U =
{
|(Am/1)(τ + τ̄ − 2)|1/2 if Am > 0,
|(Am/1)(τ + τ̄ + 2)|1/2 if Am < 0,

where τ̄ is the conjugate of τ . Also, two distinct solutions (x1, y1), (x2, y2) ∈ Z2

of f (x, y) = m such that 0 ≤ yi ≤ U belong to the same O×1,1-orbit if and only if
y1 = y2 = 0 or y1 = y2 =U .

Proposition 3.1. Let n ≥ 3 be an integer. Let a, b and c be positive integers such
that a> 1 and gcd(a, b)= gcd(a, c)= 1. Then b2

±c2 is not divisible by nabc±1.

Proof. Without loss of generality, we may assume that b > c. Let ε ∈ {1,−1}. If
b2
+ c2 is divisible by nabc+ ε, then

(3-1) b2
+ c2
= Q(nabc+ ε)

for some integer Q ≥ 1. Consider an integral binary quadratic form f (x, y) =
x2
−Qnaxy+ y2. Then Equation (3-1) means that the equation f (x, y)= εQ has

a solution (b, c).
Similarly, if b2

− c2 is divisible by nabc+ ε, then for a binary quadratic form
g(x, y)= x2

− Qnaxy− y2, the equation g(x, y)= εQ has a solution (b, c). We
remark that the discriminants 1 f = (Qna)2− 4 of f and 1g = (Qna)2+ 4 of g
are positive and nonsquare.

First, we list all solutions in positive integers of the equation f (x, y)= Q. For
simplicity, let 1 = 1 f . Let S = {(x, y) ∈ Z2

| f (x, y) = Q} be the set of all
integral solutions of the equation f (x, y) = Q. Then the action of O×1,1 on the
set S is given by the formula
(3-2)

(x ′, y′)=


(x, y)

(
u+ 1

2 Qnav v

−v u− 1
2 Qnav

)
if 1≡ 0 (mod 4),

(x, y)
(

u+ 1
2(1+ Qna)v v

−v u+ 1
2(1− Qna)v

)
if 1≡ 1 (mod 4),

for u+ vρ ∈ O×1,1 and (x, y) ∈ S.
Let τ be the smallest unit of O×1,1 that is greater than 1. In fact, we see that

τ =

{ 1
2 Qna+ ρ if 1≡ 0 (mod 4),
1
2(Qna− 1)+ ρ if 1≡ 1 (mod 4).

Then every orbit contains a solution (x, y) ∈ Z2 such that

0≤ y ≤U = |(Q/1)(τ + τ̄ − 2)|1/2.
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In our case, U < 1, and so S consists of a single O×1,1-orbit. Furthermore, Q
must be a square in order that S 6=∅. We start a solution (

√
Q, 0) ∈ S. By (3-2),

τ · (
√

Q, 0)= (
√

Q, 0)
(

Qna 1
−1 0

)
= (Q3/2na,

√
Q).

Since

(x, y)
(

Qna 1
−1 0

)
= (Qnax − y, x),

every solution in positive integers has a coordinate that is divisible by a. Thus
f (x, y)= Q cannot have the solution (b, c), because gcd(a, b)= gcd(a, c)= 1.

For the equation f (x, y) = −Q, we have U = |(−Q/1)(τ + τ̄ + 2)|1/2 < 1
again. However, f (x, 0) = x2 implies that the set of solutions of the equation
f (x, y)=−Q is empty.

Next, consider the equation g(x, y)= Q. Let T= {(x, y) ∈ Z2
| g(x, y)= Q}.

Put 1 = 1g. Then O1, O×1,1 are defined in the same way, but the action of O×1,1
on the set T is given by the formula
(3-3)

(x ′, y′)=


(x, y)

(
u+ 1

2 Qnav v

v u− 1
2 Qnav

)
if 1≡ 0 (mod 4),

(x, y)
(

u+ 1
2(1+ Qna)v v

v u+ 1
2(1− Qna)v

)
if 1≡ 1 (mod 4),

for u+ vρ ∈ O×1,1 and (x, y) ∈ T. Also, the smallest unit τ of O×1,1 that is greater
than 1 is given by

τ =

{( 1
2 Qna+ ρ

)2
=

1
2(Qna)2+ 1+ Qnaρ if 1≡ 0 (mod 4),( 1

2(Qna− 1)+ ρ
)2
=

1
2((Qna)2− Qna)+ 1+ Qnaρ if 1≡ 1 (mod 4).

As before, we can evaluate U = |(Q/1)(τ + τ̄ − 2)|1/2 <
√

Q.
On the other hand, if (x, y) ∈ T, then 1y2

+ 4Q = (2x − Qnay)2. That is,
1y2
+ 4Q must be a square. If 0< y <

√
Q, then

Qnay <
√
1y2+ 4Q < Qnay+ 1.

Hence y = 0, and so T consists of a single O×1,1-orbit. Thus Q must be a square
in order that T 6=∅. Starting a solution (

√
Q, 0) ∈ T, we have

τ · (
√

Q, 0)= (
√

Q, 0)
{
(Qna)2+ 1 Qna

Qna 1

}
= (Q5/2n2a2

+
√

Q, Q3/2na)

by the formulas (3-3). Thus for every solution in positive integers, the second
coordinate is divisible by a.
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Finally, for the equation g(x, y)=−Q, we have U = |(−Q/1)(τ + τ̄ +2)|1/2,
which is less than or equal to

√
Q when 1 ≡ 0 (mod 4) and less than

√
Q when

1≡ 1 (mod 4).
If g(x, y) = −Q, then 1y2

− 4Q = (2x − Qnay)2. Thus y 6= 0. Furthermore,
if y <

√
Q, then

Qnay− 1<
√
1y2− 4Q < Qnay.

Therefore, y =
√

Q is the only possibility, and so Q must be a square. As before,
the set of solutions of the equation g(x, y) = −Q consists of a single O×1,1-orbit,
whose representative is (0,

√
Q). Then

τ · (0,
√

Q)= (0,
√

Q)
(
(Qna)2+ 1 Qna

Qna 1

)
= (Q3/2na,

√
Q).

Hence the first coordinate is divisible by a for any solution in positive integers. �

Remark 3.2. The requirement a> 1 in Proposition 3.1 is necessary. For example,
let a= 1, b= 3, c= 8 and n= 3. Then b2

+c2
= 73 is divisible by nabc+1= 73.

4. Nonintegral surgery on torus knots

In this section, we prove Theorem 1.2.
Let {an} and {bn} be the sequences of positive integers defined by

(4-1) an+1 = an + bn and bn+1 = an+1+ an

with a1 = 2 and b1 = 3.

Lemma 4.1. For any n ≥ 1,

(1) 2anbn+1+ (−1)n+1
= 2an+1bn + (−1)n ,

(2) 4a2
n+1b2

n+1+ 1= (2an+1bn+2+ (−1)n+2)(2anbn+1+ (−1)n+1).

Proof. By (4-1), we have an+1 = 2an + an−1. Then

2anbn+1− 2an+1bn = 2an(an+1+ an)− 2an+1(an+1− an)

= 2(a2
n − a2

n+1+ 2anan+1)

=−2(a2
n−1− an + 2an−1an)

...

= (−1)n−12(a2
1 − a2

2 + 2a1a2)= (−1)n2= (−1)n − (−1)n+1.

This proves (1).
To prove (2), we observe that 2bn+1 = an+2 + an by (4-1). Also, as shown

above, 2anbn+1−2an+1bn = (−1)n2. Thus, anbn+1−an+1bn = (−1)n . From (4-1),
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an(an+1 + an)− an+1(an+1 − an) = (−1)n . Then a2
n + 2anan+1 − a2

n+1 = (−1)n .
Thus,

(2an+1bn+2+ (−1)n+2)(2anbn+1+ (−1)n+1)

= (2an+2bn+1+ (−1)n+1)(2anbn+1+ (−1)n+1)

= 4anan+2b2
n+1+ (−1)n+12bn+1(an + an+2)+ 1

= 4b2
n+1(anan+2+ (−1)n+1)+ 1

= 4b2
n+1(an(an+1+ bn+1)+ (−1)n+1)+ 1

= 4b2
n+1(anan+1+ an(an+1+ an)+ (−1)n+1)+ 1

= 4b2
n+1(2anan+1+ a2

n + (−1)n+1)+ 1= 4b2
n+1a2

n+1+ 1. �

From (1), we have that gcd(an, bn+1)= gcd(bn, an+1)= 1.

Proof of Theorem 1.2(1). Let K1 be the torus knot of type (an, bn+1), and let K2

be the torus knot of type (bn, an+1). Since an < bn < an+1 < bn+1 for any n ≥ 1,
K1 and K2 are not equivalent. Then 1

2(2anbn+1 + (−1)n+1)-surgery on K1 and
1
2(2an+1bn + (−1)n)-surgery on K2 yield the lens spaces

L(2anbn+1+ (−1)n+1, 2b2
n+1) and L(2an+1bn + (−1)n, 2a2

n+1),

respectively. By Lemma 4.1, the surgery coefficients are the same, and the two
lens spaces are homeomorphic. �

In the rest of this section, we prove Theorem 1.2(2) and Corollary 1.3.
Let K1 be the torus knot of type (p, q); let K2 be the torus knot of type (r, s).

Suppose n ≥ 3. If m/n-surgery on K1 yields a lens space, then 1(pq/1,m/n) =
|npq − m| = 1, so m = npq ± 1. Hence if m/n-surgery on K1 and K2 yields
homeomorphic lens spaces, then npq + ε = nrs + ε′ for some ε, ε′ ∈ {1,−1}.
Since we consider nontrivial torus knots, we can assume that p, q, r and s are
positive by taking mirror images, if necessary. Moreover, we may assume that
2 ≤ q < p, 2 ≤ s < r and r < p. Now ε = ε′ because n ≥ 3, and so pq = rs.
By [Moser 1971], m/n-surgery on K1 and K2 yields L(m, nq2) and L(m, ns2),
respectively.

Theorem 1.2(2) follows directly from the following.

Proposition 4.2. The two lens spaces L(m, nq2) and L(m, ns2) are not homeo-
morphic.

Proof. The two lens spaces are homeomorphic if and only if

nq2
≡±ns2 (mod m) or(4-2)

n2q2s2
≡±1 (mod m).(4-3)

Since npq + ε = nrs+ ε, we have npq = nrs. Thus q < s < r < p.
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First, nq2
6≡ ns2 (mod m) because 0< n(s2

− q2) < ns2 < nrs− 1≤ m. Since
nq2
+ns2 < n(pq+rs)−2= 2npq−2≤ 2m, the equation nq2

≡−ns2 (mod m)
is possible only when nq2

+ns2
=m. However, this is impossible because m is not

divisible by n. The impossibility of Equation (4-3) is shown in Proposition 4.3. �

Proposition 4.3. n2q2s2
6≡ ±1 (mod m).

Proof. Suppose n2q2s2
≡ 1 (mod m). Then n2q2s2

− 1 = km for some integer
k ≥ 1. Recall that m = npq + ε, so −1 ≡ kε (mod n) and thus k ≡ −ε (mod n).
Put k = n`− ε with `≥ 1. (If `= 0, then k =−ε =−1, so n2q2s2

− 1= m. This
implies that q divides p, a contradiction.) Then n2q2s2

− 1 = (n`− ε)(npq + ε)
implies

(4-4) q(nqs2
− p(n`− ε))= ε`.

Thus q divides `, and gcd(p, s) divides `/q . For simplicity, we denote gcd(x, y)
by (x, y).

Hence

(4-5)
p(n`− ε)= nqs2

− ε`/q = nq(p, s)2(q, s)2− ε`/q

= (p, s)
( nq
(q, s)

(q, s)3(p, s)− ε`
q(p, s)

)
Here we put a = q(p, s)/(q, s), b = (q, s) and c = `/(q(p, s)). Then abc = `.

Claim 4.4. a > 1.

Proof. Assume a = 1. Then (p, s) = 1 and q = (q, s). Since s = (p, s)(q, s),
s = (q, s). Thus s = q, so p = r , a contradiction. �

Claim 4.5. (a, b)= (a, c)= 1.

Proof. First, (p, s) and (q, s) are coprime. Also, q/(q, s) and (q, s) are coprime,
for otherwise (r, s) > 1. Thus (a, b)= 1.

Next, assume (a, c) > 1. Let d be a prime factor of (a, c). From Equation (4-4),

nqs2
− p(n`− ε)= ε`/q.

Dividing this by (p, s) gives

(4-6) nqs s
(p, s)

−
p

(p, s)
(n`− ε)= εc.

Since d divides a, it divides q or s. Similarly, d divides `, since d divides c. Thus
Equation (4-6) gives

p
(p, s)

ε ≡ 0 (mod d).

However, this is impossible, because (p, s) and p/(p, s) are coprime. �
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On the other hand, Equation (4-5) yields p(nabc−ε)= (p, s)(nab3
−εc), which,

since (p, s) divides p, means that nab3
−εc is divisible by nabc−ε. Furthermore

nab3
− εc

nabc− ε
= c+

nab(b2
− c2)

nabc− ε

implies that b2
− c2 is divisible by nabc− ε, since nab and nabc− ε are coprime.

Similarly, if n2q2s2
≡ −1 (mod m), then b2

+ c2 is divisible by nabc − ε.
However, these are impossible by Proposition 3.1. �

Proof of Corollary 1.3. Among satellite knots, only the (2, 2pq+ε)-cable K of the
(p, q)-torus knot admits a lens space surgery for ε=±1. Then the slope is 4pq+ε,
and L(4pq+ε, 4q2) arises. This surgery on K is equivalent to (4pq+ε)/4-surgery
on its companion torus knot. Thus the result follows from Theorem 1.2(2). �

5. Doubly primitive knot

In this section, we study a special class of doubly primitive knots k+(a, b) defined
by Berge [1990s]. In particular, two infinite sequences of k+(a, b) are proved to
be hyperbolic via dual knots in lens spaces. As far as we know, whether k+(a, b)
is hyperbolic is still an open question.

For a pair (a, b) of coprime positive integers, let k+(a, b) denote the doubly
primitive knot defined by Berge [1990s], which lies on a genus one fiber surface
of the left-handed trefoil as shown in Figure 1(1). Then (a2

+ab+b2)-surgery on
k+(a, b) yields the lens space L(a2

+ab+b2, (a/b)2), where a/b is calculated in
Za2+ab+b2 . (We adopt the notation of [Yamada 2005], but there the orientation of
lens spaces is opposite to ours). We note that k+(a, b) and k+(b, a) are equivalent
by the symmetry of the fiber surface. For example, k+(1, 3) is the (3, 4)-torus
knot whose 13-surgery yields L(13, 9), and k+(2, 3), as shown in Figure 1(2), is
the (−2, 3, 7)-pretzel knot whose 19-surgery yields L(19, 7).

1-full
1-full

1-full

2-full

twist
twist

twist

twists

(1) (2) (3)

a

a

b
b

Figure 1. The knot k+(a, b). Check all longer captions.
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Lemma 5.1. k+(a, b) is a fibered knot with genus 1
2((a+ b− 1)2− ab).

Proof. It is easy to see that k+(a, b) has a form of the closure of a positive braid as
shown in Figure 1(3). By [Stallings 1978], Seifert’s algorithm gives a fiber surface.
The braid has b strings and a2

+ab+b2
−2a−b crossings, so the fiber has the given

genus. (See also [Yamada 2005, Corollary 3] or [Hill and Murasugi 2000].) �

In general, let K be a knot in S3 whose p-surgery yields L(p, q) with p >
q > 0. Then the core K ∗ of the attached solid torus of K (p) is called the dual
knot of K (with respect to p-surgery). Berge [1990s] shows that if K is a doubly
primitive knot whose surface slope is p, then K ∗ is a (1, 1)-knot in L(p, q) and
has a canonical form parametrized by a single integer k with 0 < k < p (see
[Saito 2007; 2008b]). Following [Saito 2007], we denote it by K (L(p, q); k). It
is known that K (L(p, q); k) is isotopic to K (L(p, q); p− k).

For n = 1, 2, . . . , p − 1, let φn be an integer such that φn ≡ nq (mod p) and
0<φn< p. We call this finite sequence {φn} the basic sequence for (p, q). Because
of gcd(p, q)= 1, the φn are mutually distinct. In particular, k appears in the basic
sequence. Let h be the position of k, that is, φh = k. Here, set

s = ]{i | i < k and i appears before k in the basic sequence},

`= ]{i | i > k and i appears before k in the basic sequence},

s ′ = ]{i | i < k and i appears after k in the basic sequence},

`′ = ]{i | i > k and i appears after k in the basic sequence}.

Let 8 = min{s, s ′, `, `′}. This is determined for the triplet (p, q, k) and so also
for the dual knot K (L(p, q); k). However, the main result of [Saito 2008a] says
that 8 depends only on the original knot K and a lens space surgery slope p, and
that K is hyperbolic if and only if 8 ≥ 2 or equivalently each of s, s ′, `, `′ is at
least two.

For k+(a, b), let p = a2
+ab+b2. Then p-surgery yields a lens space L(p, q)

where q ≡ (b/(a+b))2; note that (a/b)2≡ (b/(a+b))2 (mod p). By [Saito 2007],
the dual knot is represented as K (L(p, q); k) with k ≡−b/(a+ b) (mod p). (By
definition, the parameter k is chosen so that 0< k < p.)

Lemma 5.2. Let p, q and k be defined as above.

(1) k+ q + 1≡ 0 (mod p).

(2) k ≡ q2 (mod p).

(3) kq ≡ 1 (mod p).
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Proof. (1) We compute

k+ q + 1≡− b
a+b

+
b2

(a+b)2
+ 1=

−b(a+ b)+ b2
+ (a+ b)2

(a+ b)2

=
(a+ b)2− ab
(a+ b)2

=
p

(a+ b)2
≡ 0 (mod p).

(2) By (1), q2
− k ≡ (−k− 1)2− k = k2

+ k+ 1≡ q + k+ 1≡ 0 (mod p).
(3) Similarly, kq ≡ k(−k− 1)=−k2

− k ≡−q − k ≡ 1 (mod p) by (1). �

5.3. The knot k+(3n+1, 3n+4). For k+(3n+1, 3n+4), let p=27n2
+45n+21.

Then p-surgery yields a lens space L(p, q) with q = (3n+ 2)2, and the dual knot
is K (L(p, q); k) with k ≡−(3n+ 2)2− 1 (mod p).

Lemma 5.4. The knot k+(3n+ 1, 3n+ 4) is hyperbolic for n ≥ 1.

Proof. Let a = 3n+ 1, b = 3n+ 4 and k0 = p− q − 1. Then direct calculations
show that 3q < p < 4q , k0 ≡ k (mod p) and 2q − 1 < k0 < 3q − a. Thus we can
use the triplet (p, q, k0) to calculate the invariant 8.

Let {φi } be the basic sequence. (Recall that any term φi of the basic sequence
is chosen so that 0<φi < p.) Since q2

≡ k ≡ k0 (mod p) by Lemma 5.2, φq = k0.
First, we study the four consecutive terms φa+b, φa+b+1, φa+b+2, φa+b+3, which

appear before k0. Since (a+ b)q ≡ p− a (mod p), we have φa+b = p− a. Then

q − a < 2q − a < k0 < 3q − a < p− a,
so

φa+b+1 = q − a, φa+b+2 = 2q − a, φa+b+3 = 3q − a.

Hence

φa+b > k0, φa+b+1 < k0, φa+b+2 < k0, φa+b+3 > k0.

Similarly, we study the four consecutive terms right after k0. (Since q+4< p−1,
there are more than four terms after k0.) Since k0+q= p−1, we have φq+1= p−1.
Then

φq+2 = q − 1, φq+3 = 2q − 1, φq+4 = 3q − 1.

Hence
φq+1 > k0, φq+2 < k0, φq+3 < k0, φq+4 > k0.

Thus 8≥ 2, showing that the dual knot (and the original knot) is hyperbolic. �

5.5. The knot k+(Fn+2, Fn). For Fibonacci numbers, see Section 2. Let p =
F2

n +Fn Fn+2+F2
n+2. Then p-surgery on k+(Fn+2, Fn) yields a lens space L(p, q)

with q ≡ (Fn/(Fn+2+ Fn))
2 (mod p). Denote the dual knot by K (L(p, q); k).

Lemma 5.6. We have p = 4Fn Fn+2 + (−1)n , q ≡ (−1)n+14F2
n (mod p), and

k ≡ (−1)n4Fn(Fn + Fn+2) (mod p).



KNOTS YIELDING HOMEOMORPHIC LENS SPACES BY DEHN SURGERY 181

Proof. By Cassini’s identity Fn Fn+2− F2
n+1 = (−1)n+1,

4Fn Fn+2+ (−1)n = 4F2
n+1+ 3(−1)n+1

= 3(F2
n+1+ (−1)n+1)+ F2

n+1

= 3Fn Fn+2+ F2
n+1

= Fn Fn+2+ 2Fn(Fn + Fn+1)+ F2
n+1

= Fn Fn+2+ 2F2
n + 2Fn Fn+1+ F2

n+1

= Fn Fn+2+ F2
n + (Fn + Fn+1)

2
= Fn Fn+2+ F2

n + F2
n+2 = p.

Thus 4Fn Fn+2 + (−1)n ≡ 0 (mod p). To show q ≡ (−1)n+14F2
n (mod p),

it suffices to show (−1)n+14(Fn + Fn+2)
2
≡ 1 (mod p). This follows from the

equation (Fn + Fn+2)
2
≡ Fn Fn+2 (mod p).

Finally,

(−1)n4Fn(Fn + Fn+2)= (−1)n4(F2
n + Fn Fn+2)≡ (−1)n+14F2

n+2 (mod p).

Then (−1)n+14F2
n+2q ≡ (4Fn+2 Fn)

2
≡ 1 (mod p). This shows by Lemma 5.2(3)

that (−1)n+14Fn(Fn + Fn+2)≡ 1/q ≡ k (mod p). �

Lemma 5.7. For n ≥ 3, the knot k+(Fn+2, Fn) is hyperbolic.

Proof. As mentioned above, p-surgery on k+(Fn+2, Fn) yields L(p, q). Consider
the dual knot K (L(p, q); k) in L(p, q).

First, we assume that n is odd. Then p = 4Fn Fn+2−1, q ≡ 4F2
n (mod p), and

k ≡−4Fn(Fn + Fn+2) (mod p) by Lemma 5.6.
To simplify calculation of the invariant8, put q0= p−4F2

n and k0= p−q0+1.
Then 0< q0 < p and 0< k0 < p, and q0 ≡−q (mod p) and k0 ≡−k (mod p).

Claim 5.8. 3q0/2< p < 2q0 and 2q0− p < k0 < q0.

Proof. 2q0− p = p− 8F2
n = 4Fn Fn+2− 1− 8F2

n = 4Fn(Fn + Fn+1)− 8F2
n − 1=

4Fn(Fn+1 − Fn)− 1 ≥ 7. Since 3Fn > Fn+2, we have 2p − 3q0 = 12F2
n − p =

4Fn(3Fn − Fn+2)+ 1≥ 9.
Next, k0−2q0+ p = 2p−3q0+1≥ 10. Finally, q0− k0 = 2q0− p−1≥ 6. �

For (p, q0), let {φi } be the basic sequence; let h= p−q0. As hq0≡ k0 (mod p),
the number k0 appears as the h-th term in the sequence. Note that h > 4, because
2p− 3q0 ≥ 9.

To evaluate 8, we investigate some specific terms in the basic sequence. We
have φ1 = q0 > k0 and φ2 = 2q0 − p < k0. Also, φh−1 = k0 − q0 + p > k0 and
φh−2 = k0 − 2q0 + p < k0. Since h > 4, these four terms φ1, φ2, φh−2, φh−1 are
distinct. Next, φp−1 = p − q0 < k0 and φp−2 = 2p − 2q0 > k0. Since 2h < p,
h < p− h+ 1. Thus φp−h+1 and φp−h+2, which are distinct from φp−1 and φp−2,
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n+1

n- -1

Figure 2. The tangle Bn .

appear after k0 in the basic sequence. Since (p− h+ 1)q0 ≡ q0− k0 (mod p), we
have φp−h+1= q0−k0. Then k0− (q0−k0)= 2k0−q0= 2p−3q0+2> 0 implies
φp−h+1 < k0. Finally, φp−h+2 = 2q0− k0 > k0. Again, the fact h > 4 means that
the four terms φp−h+1, φp−h+2, φp−2, φp−1 are distinct. Hence 8≥ 2.

Second, assume that n is even. Then p = 4Fn Fn+2 + 1, q ≡ −4F2
n (mod p),

and k≡ 4Fn(Fn+Fn+2) (mod p) by Lemma 5.6. In this case, put q0= p−4F2
n +1

and k0 = p− q0 + 1. Then 0 < q0 < p and 0 < k0 < p. It is easy to check that
Claim 5.8 holds without any change.

By Lemma 5.2, q0q ≡ (q + 1)q ≡ k+ q ≡−1 (mod p) and k0 ≡−q (mod p).
Under a (orientation-reversing) homeomorphism from L(p, q) to L(p, q0), the
dual knot K (L(p, q); k) is mapped to K (L(p, q0); k0); see [Saito 2008a]. Thus
we can use (p, q0, k0) instead of (p, q, k) to evaluate 8.

By Lemma 5.2(2), q2
≡ k (mod p). Thus 16F4

n ≡ 4Fn(Fn + Fn+2). Hence
q2

0 + k0 ≡ (1− 4F2
n )

2
+ 4F2

n ≡ 16F4
n − 4F2

n + 1 ≡ 4Fn(Fn + Fn+2)− 4F2
n + 1 ≡

4F2
n F2

n+2+1≡0 (mod p). This means that (p−q0)q0≡k0 (mod p). Let h= p−q0.
Then, k0 appears in the basic sequence for (p, q0) as the h-term. Since h > 4, the
argument in the case where n is odd works verbatim, so we have 8≥ 2. �

6. Hyperbolic knots

We say a Seifert-fibered manifold is of type X (p1, p2, . . . , pn) if it admits a Seifert
fibration over the surface X with n exceptional fibers of indices p1, p2, . . . , pn . In
this paper, X will be either the 2-sphere S2 or the disk D2.

For n ≥ 1, let Bn be the tangle illustrated in Figure 2, in which a rectangle
denotes horizontal half-twists. If the number is positive, the twist is right-handed;
otherwise, it is left-handed.
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-10 11/0

Figure 3. Some rational tangles.

Given α ∈ Q ∪ {1/0}, we denote by Bn(α) the knot or link in S3 obtained by
inserting the rational tangle of slope α into the central puncture of Bn . Also, B̃n is
the double branched cover of S3 branched over Bn(α). In fact, we need only four
rational tangles as shown in Figure 3.

Lemma 6.1. (1) B̃n(1/0)= S3.

(2) B̃n(0)= L(27n2
+ 45n+ 21,−9n2

− 12n− 5).

(3) B̃n(1) is a Seifert fibered manifold of type S2(2, n+ 2, 15n+ 11).

(4) B̃n(−1) is a non-Seifert toroidal manifold D2(2, n) ∪ D2(2, 3n + 1), which
contains a unique incompressible torus if n ≥ 2, or a Seifert fibered manifold
of type S2(2, 3, 4) if n = 1.

Proof. It is straightforward to check that Bn(1/0) is the unknot and that Bn(0) is
the 2-bridge knot corresponding to −(9n2

+ 12n+ 5)/(27n2
+ 45n+ 21).

Figure 4 shows that Bn(1) is a Montesinos link or knot of length three. Thus
B̃n(1) is a Seifert fibered manifold of type S2(2, n+ 2, 15n+ 11).

Figure 5 shows that Bn(−1) is decomposed along a tangle sphere P into two
tangles. If n > 1, then each side of P is a Montesinos tangle. Thus B̃n(1) is
decomposed along a torus into two Seifert fibered manifolds over the disk with
two exceptional fibers. Since Seifert fibers on both sides intersect once on the
torus, B̃n(−1) is not Seifert. It is well known that such a 3-manifold contains a

n+1

n- -1

n+1

n- -1

Figure 4. Bn(1), a Montesinos link.
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P

n+1

n- -1 n- -1

n+1

n- -1

n+1

Figure 5. Bn(−1).

unique incompressible torus. When n = 1, Bn(−1) is a Montesinos link of length
three. Hence B̃n(−1) is a Seifert fibered manifold over the 2-sphere with three
exceptional fibers. �

By Lemma 6.1(1), the lift of Bn in B̃n(1/0) gives the knot exterior of some knot
Kn in S3, which is uniquely determined by Gordon and Luecke’s theorem [1989].
Furthermore, Kn admits integral Dehn surgeries yielding a lens space, a Seifert
fibered manifold, and a toroidal manifold (unless n = 1) by Lemma 6.1.

The following criterion of hyperbolicity is used also in Section 7.

Lemma 6.2. If a knot K in S3 admits an integral lens space surgery m, and neither
K (m− 1) nor K (m+ 1) has a lens space summand, then K is hyperbolic.

Proof. Assume the contrary. Then K is either a torus knot or a satellite knot. For
the (nontrivial) (p, q)-torus knot, the only integral lens space surgery slopes are
pq − 1 and pq + 1, and pq-surgery yields the connected sum of two lens spaces
by [Moser 1971]. Thus K is not a torus knot.
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Assume K is a satellite knot. Since K has a lens space surgery, we know by
[Bleiler and Litherland 1989; Wang 1989; Wu 1990] that K is the (2, 2pq+ε)-
cable of the (p, q)-torus knot where ε ∈ {1,−1}. Then the lens space surgery is
4pq+ε. However, the adjacent slope 4pq+2ε is equal to the cabling slope, and so
K (4pq+2ε) has a lens space summand, a contradiction. Thus K is hyperbolic. �

Lemma 6.3. Kn is hyperbolic.

Proof. This immediately follows from Lemmas 6.1 and 6.2. �

Lemma 6.4. The knot Kn defined above satisfies the following.

(1) The genus of Kn is (27n2
+ 33n+ 10)/2.

(2) Let m = 27n2
+ 45n + 21. Then m-surgery on K yields the lens space

L(m,−9n2
− 12n− 5).

Proof. Insert the 1/0-tangle to Bn , and put a band b as shown in Figure 6 to keep
track of framing. Isotope the unknot Bn(1/0) to a standard diagram as shown in
Figure 8 (in which the cases n = 5 and n = 4 are drawn), and take the double
branched cover along it. Then (the core of) the lift of b gives Kn , and its framing
corresponds to the 0-tangle filling downstairs. (In Figures 6, 7 and 8, we draw b in
a line for simplicity during the deformation.) From Figure 8, we see that Kn is the
closure of a braid with 3n+2 strings. Moreover, there are 27n2

+41n+10 positive
crossings and 5n−1 negative crossings. After canceling the negative crossings by
positive crossings, Kn becomes the closure of a positive braid with 3n+ 2 strings
and 27n2

+ 36n + 11 crossings. By [Stallings 1978], Kn is fibered and Seifert’s
algorithm gives a fiber surface, whose genus is equal to the genus g(Kn) of Kn .
Now (1) follows because 1− 2g(Kn)= (3n+ 2)− (27n2

+ 36n+ 11).
The framing of the lift of b can be calculated to equal m. This proves (2). �

b

n+1

n- -1

b

n+1

n- -1

Figure 6. Bn(1/0) and the band b.
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Figure 7. Bn(1/0) with b.
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odd evenn n

Figure 8. The standard diagram of Bn(1/0) with b.

Recall that k+(3n+ 1, 3n+ 4) is hyperbolic for n ≥ 1 by Lemma 5.4.

Proposition 6.5. For n ≥ 1, let K be the hyperbolic knot Kn defined above, and
let K ′ be k+(3n + 1, 3n + 4). Let m = 27n2

+ 45n + 21. Then K and K ′ are not
equivalent, and m-surgery on K and K ′ yield homeomorphic lens spaces.
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Proof. By Lemma 6.4(1), K has genus (27n2
+ 33n+ 10)/2, while K ′ has genus

(27n2
+ 33n+ 12)/2 by Lemma 5.1. Thus they are not equivalent.

Also, by Lemma 6.4(2), m-surgery on K yields L(m,−9n2
− 12n − 5) =

L(m, 18n2
+ 33n + 16). As we stated in Section 5, m-surgery on K ′ yields

L(m, ((3n+ 1)/(3n+ 4))2). Those lens spaces are homeomorphic since(3n+1
3n+4

)2
(18n2

+ 33n+ 16)≡ 1 (mod m). �

7. Different classes

In this last section, we give pairs of knots, each of which yields homeomorphic
lens spaces by the same integral surgery, and consist of knots belonging to different
classes of hyperbolic, satellite, torus knots.

7.1. Torus knot and satellite knot. Let C(a, b) be the (2, 2ab+1)-cable of the
torus knot of type (a, b).

Proposition 7.2. For n ≥ 1, let K be the torus knot of type (2n + 1, 4n + 4), and
let K ′ = C(n+ 1, 2n+ 1). Let m = 8n2

+ 12n+ 5. Then m-surgery on K and K ′

yields homeomorphic lens spaces.

Proof. By [Moser 1971], m-surgery on K yields the lens space L(m, (2n + 1)2).
Also, m-surgery on K ′ yields L(m, 4(n+1)2) by [Fintushel and Stern 1980]. Since
(2n+ 1)2+ 4(n+ 1)2 = m, these lens spaces are homeomorphic. �

7.3. Satellite knot and hyperbolic knot.

Lemma 7.4. For n ≥ 0,

4F4
n + (−1)n F2

n+2 = (4Fn Fn+2+ (−1)n)(F2
n+2− 4Fn Fn+1).

Proof. First,

4F4
n + (−1)n F2

n+2− (4Fn Fn+2+ (−1)n)(F2
n+2− 4Fn Fn+1)

= 4Fn(F3
n − F3

n+2+ 4Fn Fn+1 Fn+2− (−1)n+1 Fn+1).

From Cassini’s identity,

F3
n − F3

n+2+ 4Fn Fn+1 Fn+2− (−1)n+1 Fn+1

= F3
n − F3

n+2+ 3Fn Fn+1 Fn+2+ F3
n+1

= F3
n − (Fn + Fn+1)

3
+ 3Fn Fn+1 Fn+2+ F3

n+1

=−3Fn Fn+1(Fn + Fn+1− Fn+2)= 0. �
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n
+

1 n
-

Figure 9. The tangle Bn .

Since gcd(Fn, Fn+2)= gcd(Fn, Fn+1)= 1, the Fibonacci numbers Fn and Fn+2

are coprime. By Lemma 5.7, k+(Fn+2, Fn) is hyperbolic for n ≥ 3.

Proposition 7.5. For n ≥ 3, let K be the satellite knot C(Fn, Fn+2), and let K ′ be
the hyperbolic knot k+(Fn+2, Fn). Let m = 4Fn Fn+2+ (−1)n . Then m-surgery on
K and K ′ yields homeomorphic lens spaces.

Proof. By [Fintushel and Stern 1980], m-surgery on K yields the lens space
L(m, 4F2

n ). From Lemma 5.6, m-surgery on K ′ yields L(m, (Fn/Fn+2)
2). Then

4F2
n

( Fn

Fn+2

)2
≡ (−1)n+1 (mod m)

by Lemma 7.4, Thus the two lens spaces are homeomorphic. �

7.6. Torus knot and hyperbolic knot. For n ≥ 1, let Bn be the tangle as shown in
Figure 9, where a vertical box denotes right-handed vertical half-twists.

Given α ∈ Q ∪ {1/0}, we denote by Bn(α) the knot or link in S3 obtained by
inserting the rational tangle of slope α into the central puncture of Bn . Also, B̃n is
the double branched cover of S3 branched over Bn(α).

Lemma 7.7. (1) B̃n(1/0)= S3.

(2) B̃n(0)= L(18n2
+ 33n+ 15, 18n+ 19).

(3) B̃n(−1) is a non-Seifert toroidal manifold D2(2, n+ 2)∪ D2(4, 2n+ 1).

(4) B̃n(1) is a non-Seifert toroidal manifold D2(2, n) ∪ D2(5, 2n + 3) if n ≥ 2,
and a Seifert fibered manifold of type S2(3, 5, 5) if n = 1.
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n
+

1 n
-

n
-

n
+

1

n
+

1 n
-

Figure 10. Bn(−1).

Proof. It is straightforward to see that B(1/0) is the unknot and B(0) is the 2-bridge
link corresponding to (18n2

+ 33n + 15)/(18n + 19). For B(−1) and B(1), see
Figures 10 and 11, respectively. �

By Lemma 7.7(1), the lift of Bn in B̃n(1/0) gives the knot exterior of some knot
Kn in S3, which is uniquely determined by Gordon and Luecke’s theorem [1989].

Lemma 7.8. Kn is hyperbolic.

Proof. This immediately follows from Lemmas 6.2 and 7.7. �

Lemma 7.9. Let m = 18n2
+ 33n + 15. Then m-surgery on Kn yields the lens

space L(m,−18n− 19).

Proof. The argument is similar to the proof of Lemma 6.4. We omit it. �
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n
+

1 n
-

n
+

1 n
-

Figure 11. Bn(1).

Proposition 7.10. For n ≥ 1, let K be the torus knot of type (3n+ 2, 6n+ 7), and
let K ′ be the knot Kn defined above. Let m = 18n2

+33n+15. Then m-surgery on
K and K ′ yields homeomorphic lens spaces.

Proof. By [Moser 1971], m-surgery on K yields L(m, 9n2
+ 12n + 4). Then by

Lemma 7.9, m-surgery on K ′ yields L(m, 18n+ 19). Since

(9n2
+ 12n+ 4)(18n+ 19)≡ 1 (mod m),

two lens spaces are homeomorphic. �

Theorem 1.1 now follows from Propositions 2.2, 6.5, 7.2, 7.5 and 7.10. �
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