Pacific Journal of Mathematics

A TOPOLOGICAL SPHERE THEOREM FOR ARBITRARY-DIMENSIONAL MANIFOLDS

YULIANG WEN

Volume 244 No. 1

January 2010

A TOPOLOGICAL SPHERE THEOREM FOR ARBITRARY-DIMENSIONAL MANIFOLDS

YULIANG WEN

We study manifolds with bounded volume, sectional curvature, and injectivity radius. We obtain a topological sphere theorem.

Sphere theorems are common in differential geometry; one often asks whether a manifold is homeomorphic to a sphere under certain topological or geometric restrictions; see for instance [Grove and Shiohama 1977; Perelman 1995; Shen 1989; Shiohama 1983; Suyama 1991; Wu 1989]. Coghlan and Itokawa [1991] proved a sphere theorem that says that if an even-dimensional, simply connected Riemannian manifold \mathcal{M} has sectional curvature $K_{\mathcal{M}} \in (0, 1]$, volume $V_{\mathcal{M}} \leq \frac{3}{2}V_{S^n}$ with V_{S^n} the volume of the standard *n*-dimensional unit sphere S^n in \mathbb{R}^{n+1} , then \mathcal{M} must be homeomorphic to S^n . In [Wen 2004], we improved this result by relaxing the upper bound on $V_{\mathcal{M}}$ to a bound larger than $\frac{3}{2}V_{S^n}$. In both of these papers, the hypotheses of simple connectivity and even dimension were merely used to deduce that the injectivity radius $i_{\mathcal{M}}$ is no less than π . Here we find that we can weaken the assumptions on $K_{\mathcal{M}}$ and $i_{\mathcal{M}}$. If the simple connectivity condition is removed, the conclusion holds in *any dimension*.

Before stating our result, we introduce some notation. Let (\mathcal{M}, g) be a compact, connected *n*-dimensional Riemannian manifold with metric *g*. We denote by $K_{\mathcal{M}}$ the sectional curvature of \mathcal{M} , by $i_{\mathcal{M}}$ its injectivity radius, and by $V_{\mathcal{M}}$ its volume. For any points $P, Q \in \mathcal{M}$, we denote by $\gamma_{P,Q}$ the shortest geodesic on \mathcal{M} from P to Q.

Theorem 1. Given k > 0, there exists an $\varepsilon_0 > 0$ such that if a compact connected *n*-dimensional Riemannian manifold (\mathcal{M}, g) satisfies

$$-k^2 \le K_{\mathcal{M}} \le 1, \quad i_{\mathcal{M}} \ge \pi - \varepsilon_0, \quad V_{\mathcal{M}} \le \frac{3}{2} V_{s^n} + \varepsilon_0,$$

then \mathcal{M} is homeomorphic to S^n .

The examples of real projective spaces $\mathbb{R}P^n$ for $n \ge 2$ and product manifolds $S^n \times S^m$ for $m, n \ge 1$ show that the hypotheses on the lower bound on $i_{\mathcal{M}}$ or the upper bound on $V_{\mathcal{M}}$ cannot be removed.

MSC2000: 53C20.

Keywords: sphere theorem.

Supported in part by National Science Foundation of China (number 10871069) and Shanghai Leading Academic Discipline Project (project number B407).

In what follows, we denote by $\mathbb{B}(P, r)$ the open geodesic ball in \mathcal{M} with center P and radius r, and by $\overline{\mathbb{B}}(P, r)$ its closure. Also, we denote by \mathfrak{B}_r the open geodesic ball in S^n with radius r. Instead of proving Theorem 1 directly, we will prove a more precise version.

Proposition 1. Let k > 0. There exist $\delta, \sigma > 0$ satisfying $\sigma + \delta < \pi$ such that if a compact connected n-dimensional Riemannian manifold (\mathcal{M}, g) satisfies

(1) $-k^2 \leq K_{\mathcal{M}} \leq 1, \quad i_{\mathcal{M}} \geq \pi - \sigma, \quad V_{\mathcal{M}} \leq 3V(\mathfrak{B}_{\pi/2 - \sigma/2}) + V(\mathfrak{B}_{\delta/2}),$

then \mathcal{M} is homeomorphic to S^n .

Remark 1. The choice of σ or δ here is of course not optimal. We conjecture that $\sigma < \pi/2$ is optimal.

Proof of Proposition 1. We proceed by way of contradiction. Suppose there exists a manifold \mathcal{M} satisfying (1) that is not homeomorphic to S^n . Take points p, q in \mathcal{M} such that $d(p, q) = d_{\mathcal{M}}$, the diameter $d_{\mathcal{M}}$ of \mathcal{M} . Then by a well-known topological fact (see for instance [Brown 1960]), there is a point $x_0 \in \mathcal{M} - \mathbb{B}(p, i_{\mathcal{M}}) \cup \mathbb{B}(q, i_{\mathcal{M}})$. Without loss of generality, let $d(q, x_0) \ge d(p, x_0) = l_0$. Therefore $l_0 \ge i_{\mathcal{M}} \ge \pi - \sigma$. First we show an explicit upper bound on $d_{\mathcal{M}}$.

Lemma 1. $d_{\mathcal{M}} \leq \pi - \sigma + \delta$.

Proof. We argue by contradiction. If $d_{\mathcal{M}} > \pi - \sigma + \delta$, then we consider the balls $\mathbb{B}(p, \pi/2 - \sigma/2 + \delta/2)$, $\mathbb{B}(q, \pi/2 - \sigma/2 + \delta/2)$ and $\mathbb{B}(x_0, l_0 - \pi/2 + \sigma/2 - \delta/2)$. They are obviously pairwise disjoint. Therefore since $K_{\mathcal{M}} \leq 1$, Günther's volume comparison theorem gives

(2)
$$V_{\mathcal{M}} \geq 2V(\mathfrak{B}_{\pi/2-\sigma/2+\delta/2}) + V(\mathfrak{B}_{l_0-\pi/2+\sigma/2-\delta/2}).$$

In what follows, we check that

(3)
$$2V(\mathfrak{B}_{\pi/2-\sigma/2+\delta/2}) + V(\mathfrak{B}_{l_0-\pi/2+\sigma/2-\delta/2}) > 3V(\mathfrak{B}_{\pi/2-\sigma/2}) + V(\mathfrak{B}_{\delta/2}).$$

Noting that $l_0 - \pi/2 + \sigma/2 - \delta/2 \ge \pi/2 - \sigma/2 - \delta/2 > 0$, we have

$$V(\mathfrak{B}_{l_0-\pi/2+\sigma/2-\delta/2}) \geq V(\mathfrak{B}_{\pi/2-\sigma/2-\delta/2}).$$

By the definition of S^n , we have $V(\mathcal{B}_r) = \omega_{n-1} \int_0^r (\sin t)^{n-1} dt$ for any r > 0, where ω_{n-1} is the volume of the standard unit (n-1)-sphere S^{n-1} . Since $\sin t$ is

increasing in $(0, \pi/2)$, we have

$$\frac{1}{\omega_{n-1}} \Big[2V(\mathfrak{B}_{\pi/2-\sigma/2+\delta/2}) + V(\mathfrak{B}_{l_0-\pi/2+\sigma/2-\delta/2}) - 3V(\mathfrak{B}_{\pi/2-\sigma/2}) - V(\mathfrak{B}_{\delta/2}) \Big] \\ \ge 2 \int_{0}^{\pi/2-\sigma/2+\delta/2} (\sin t)^{n-1} dt + \int_{0}^{\pi/2-\sigma/2-\delta/2} (\sin t)^{n-1} dt \\ - 3 \int_{0}^{\pi/2-\sigma/2} (\sin t)^{n-1} dt - \int_{0}^{\delta/2} (\sin t)^{n-1} dt \\ = \int_{\pi/2-\sigma/2}^{\pi/2-\sigma/2+\delta/2} (\sin t)^{n-1} dt - \int_{\pi/2-\sigma/2-\delta/2}^{\pi/2-\sigma/2} (\sin t)^{n-1} dt \\ + \int_{\pi/2-\sigma/2}^{\pi/2-\sigma/2+\delta/2} (\sin t)^{n-1} dt - \int_{0}^{\delta/2} (\sin t)^{n-1} dt \\ > \int_{\pi/2-\sigma/2}^{\pi/2-\sigma/2+\delta/2} (\sin t)^{n-1} dt - \int_{\pi/2-\sigma/2-\delta/2}^{\pi/2-\sigma/2} (\sin t)^{n-1} dt > 0.$$
Clearly, the estimates (2) and (3) contradict the assumptions (1).

Clearly, the estimates (2) and (3) contradict the assumptions (1).

Lemma 2. If $\delta > 0$ and $\sigma = 2/3 \int_0^{\delta/2} (\sin t)^{n-1} dt$ satisfy $\sigma + \delta < \pi$, then

(4)
$$V(\mathfrak{B}_{\delta/2}) + V(\mathfrak{B}_{\pi/2-\sigma/2}) > \frac{3}{2}V_{S^n}$$

Proof. In fact, since $|\sin t| < 1$,

$$V(\mathfrak{B}_{\delta/2}) = \omega_{n-1} \int_0^{\delta/2} (\sin t)^{n-1} dt = \frac{3}{2} \omega_{n-1} \sigma$$

> $3\omega_{n-1} \int_{\pi/2-\sigma/2}^{\pi/2} (\sin t)^{n-1} dt$
= $3V(\mathfrak{B}_{\pi/2}) - V(\mathfrak{B}_{\pi/2-\sigma/2}) = \frac{3}{2} V_{S^n} - V(\mathfrak{B}_{\pi/2-\sigma/2}).$

Lemma 3. There exists a point E on $\partial \mathbb{B}(p, \pi/2 - \sigma/2)$, that is, the boundary of $\overline{\mathbb{B}}(P, \pi/2 - \sigma/2)$, such that

(5)
$$d(E,q) \le \pi/2 - \sigma/2 + \delta$$
 and $d(E,x_0) \le l_0 - \pi/2 + \sigma/2 + \delta$.

Proof. Since $i_{\mathcal{M}} \ge \pi - \sigma$, the boundary $\partial \mathbb{B}(p, \pi/2 - \sigma/2)$ is arc-connected in \mathcal{M} . Let $W = \gamma_{p,x_0} \cap \partial \mathbb{B}(p, \pi/2 - \sigma/2)$ and $T = \gamma_{p,q} \cap \partial \mathbb{B}(p, \pi/2 - \sigma/2)$. Take a continuous curve f(t) $(t \in 0, 1]$ on $\partial \mathbb{B}(p, \pi/2 - \sigma/2)$ such that W = f(0) and T = f(1). Let Γ be the image curve of f, and let

$$\Gamma_1 = \{ x \in \Gamma \mid d(x, q) \le \pi/2 - \sigma/2 + \delta \},\$$

$$\Gamma_2 = \{ x \in \Gamma \mid d(x, x_0) \le l_0 - \pi/2 + \sigma/2 + \delta \}.$$

It is clear that Γ_1 and Γ_2 both are nonempty closed since $T \in \Gamma_1$ and $W \in \Gamma_2$. We will prove that there exists a point E on Γ satisfying (5). For this, we need only to verify that $\Gamma_1 \cap \Gamma_2 \neq \emptyset$. First we shall exclude the case that there exists a point E in Γ such that

(6)
$$d(E,q) > \pi/2 - \sigma/2 + \delta$$
 and $d(E,x_0) > l_0 - \pi/2 + \sigma/2 + \delta$

In fact, if (6) occurs, there must exist a point F in the shortest geodesic $\overline{\gamma}_p$ issuing from p and passing through E, such that $d(F, p) = \pi/2 - \sigma/2 + \delta/2$. By the triangle inequality, we have

(7)
$$d(F,q) \ge d(E,q) - d(E,F) > \pi/2 - \sigma/2 + \delta/2, \\ d(F,x_0) \ge d(E,x_0) - d(E,F) > l_0 - \pi/2 + \sigma/2 + \delta/2.$$

Therefore the four balls $\mathbb{B}(p, \pi/2 - \sigma/2)$, $\mathbb{B}(q, \pi/2 - \sigma/2)$, $\mathbb{B}(x_0, l_0 - \pi/2 + \sigma/2)$ and $\mathbb{B}(F, \delta/2)$ are pairwise disjoint. Applying again Günther's volume comparison theorem, we get

$$V_{\mathcal{M}} > V(\mathbb{B}(p, \pi/2 - \sigma/2)) + V(\mathbb{B}(q, \pi/2 - \sigma/2)) + V(\mathbb{B}(x_0, l_0 - \pi/2 + \sigma/2)) + V(\mathbb{B}(F, \delta/2)) \geq 2V(\mathfrak{B}_{\pi/2 - \sigma/2}) + V(\mathfrak{B}_{\pi/2 - \sigma/2}) + V(\mathfrak{B}_{\delta/2}) = 3V(\mathfrak{B}_{\pi/2 - \sigma/2}) + V(\mathfrak{B}_{\delta/2}),$$

which contradicts the assumption on $V_{\mathcal{M}}$. Thus (6) cannot hold, which means $\Gamma = \Gamma_1 \cup \Gamma_2$. Since Γ is connected, we get a point $E \in \Gamma_1 \cap \Gamma_2 \neq \emptyset$; this point clearly satisfies (5).

Lemma 1 and the triangle inequalities easily imply another result:

Corollary 1. The point E obtained in Lemma 3 satisfies the inequalities

(

8)

$$\pi/2 - \delta/6 < d(E, p) = \pi/2 - \sigma/2,$$

$$\pi/2 - \delta/6 \le d(E, q) \le \pi/2 - \sigma/2 + \delta,$$

$$\pi/2 - \delta/6 \le d(E, x_0) \le l_0 - \pi/2 + \sigma/2 + \delta.$$

On the other hand,

(9)
$$d(p,q) \le \pi - \sigma + \delta$$
 and $\pi - \sigma \le l_0 = d(p,x_0) \le \pi - \sigma + \delta$.

Take $E \in \partial \mathbb{B}(p, \pi/2 - \sigma/2)$ satisfying (5). We consider a geodesic triangle $(\gamma_{E,p}, \gamma_{E,x_0}, \gamma_{p,x_0})$ in \mathcal{M} . Since $K_{\mathcal{M}} \geq -k^2$, Toponogov's comparison theorem gives

(10) $\cosh[kd(p, x_0)]$

 $\leq \cosh[kd(E, p)] \cosh[kd(E, x_0)] - \sinh[kd(E, p)] \sinh[kd(E, x_0)] \cos \alpha$ $=\cosh[k(d(E, p)+d(E, x_0))]-\sinh[kd(E, p)]\sinh[kd(E, x_0)](1+\cos\alpha),$ where the angle α is defined by $\alpha = \angle(\dot{\gamma}_{E,p}, \dot{\gamma}_{E,x_0})|_E$. By Corollary 1, we have

(11)
$$1 + \cos \alpha \le \frac{\cosh(k(d(E, p) + d(E, x_0))) - \cosh(kd(p, x_0))}{\sinh(kd(E, p))\sinh(kd(E, x_0))} \le \frac{\cosh(k(l_0 + \delta)) - \cosh(kl_0)}{\sinh^2(k(\pi/2 - \delta/6))}.$$

Clearly $t \mapsto \cosh(k(t+c)) - \cosh(kt)$ is increasing in $[0, \infty)$ for c > 0, so we get

(12)
$$1 + \cos \alpha < \frac{\cosh(k(\pi + 2\delta)) - \cosh(k(\pi + \delta))}{\sinh^2(k(\pi/2 - \delta/6))} < \frac{\cosh(k(\pi + 3\delta)) - \cosh(k(\pi + \delta))}{\sinh^2(k(\pi/2 - \delta/6))}.$$

Similarly, if we consider the geodesic triangle $(\gamma_{E,p}, \gamma_{E,q}, \gamma_{p,q})$ and the angle $\beta = \angle (\dot{\gamma}_{E,p}, \dot{\gamma}_{E,q})|_E$, we have

(13)

$$1 + \cos \beta \leq \frac{\cosh(k(d(E, p) + d(E, q))) - \cosh(kd(p, q))}{\sinh(kd(E, p))\sinh(kd(E, q))}$$

$$\leq \frac{\cosh(k(\pi - \sigma + \delta)) - \cosh(kl_0)}{\sinh^2(k(\pi/2 - \delta/6))}$$

$$\leq \frac{\cosh(k(\pi - \sigma + 2\delta)) - \cosh(k(\pi - \sigma))}{\sinh^2(k(\pi/2 - \delta/6))}$$

$$< \frac{\cosh(k(\pi + 3\delta)) - \cosh(k(\pi + \delta))}{\sinh^2(k(\pi/2 - \delta/6))}.$$

Likewise, if we think of the geodesic triangle $(\gamma_{E,q}, \gamma_{E,x_0}, \gamma_{q,x_0})$ and the angle $\gamma = \angle (\dot{\gamma}_{E,q}, \dot{\gamma}_{E,x_0})|_E$, then, noting that $d(q, x_0) \ge l_0 \ge \pi - \varepsilon_0$, we have

(14)
$$1 + \cos \gamma \le \frac{\cosh(k(d(E,q) + d(E,x_0))) - \cosh(kd(q,x_0))}{\sinh(kd(E,q))\sinh(kd(E,x_0))} < \frac{\cosh(k(\pi + 3\delta)) - \cosh(k(\pi + \delta))}{\sinh^2(k(\pi/2 - \delta/6))}.$$

Now we will conclude the proof of Proposition 1 using the following lemma, whose proof will be postponed.

Lemma 4. For k > 0, there exists a positive number $\delta_0 \in (0, 3\pi/5)$ such that δ_0 is a solution of

(15)
$$\cosh(k(\pi + 3t)) - \cosh(k(\pi + t)) - (1 - \sqrt{3}/2)\sinh^2(k(\pi/2 - t/6)) = 0.$$

Take $\delta = \delta_0$ in Lemma 4, take the σ from Lemma 2, and let *E* be the point given by Lemma 3. Obviously, $\sigma < \delta/3$, hence $\sigma + \delta < 4\delta/3 < \pi$. Applying (12)–(14),

one immediately deduces

$$\cos \alpha < -\sqrt{3}/2, \quad \cos \beta < -\sqrt{3}/2, \quad \cos \gamma < -\sqrt{3}/2$$

That is,

 $\alpha > 2\pi/3, \quad \beta > 2\pi/3, \quad \gamma > 2\pi/3.$

However, since $0 \le \gamma \le 2\pi - (\alpha + \beta)$, we get a contradiction. Thus our hypothesis on \mathcal{M} was wrong, so \mathcal{M} must be homeomorphic to S^n .

In Theorem 1 or Proposition 1, we require that the sectional curvature $K_{\mathcal{M}}$ is in the interval $[-k^2, 1]$ for some k > 0. Trivially the result holds if $K_{\mathcal{M}} \in (0, 1]$. In the situation $0 \le K_{\mathcal{M}} \le 1$, we can simplify our proof by comparing against Euclidean space; however the estimates (12)–(14) would need to be changed for the case k = 0.

Theorem 2. Suppose (\mathcal{M}, g) is a compact connected *n*-dimensional Riemannian manifold with sectional curvature $0 \le K_{\mathcal{M}} \le 1$. Let $\delta > 0$, and let

(16)
$$\sigma = \frac{2}{3} \int_0^{\delta/2} (\sin t)^{n-1} dt$$
 such that $(2 - \sqrt{3})(\pi - \sigma)^2 - 16\delta(\pi - \sigma + 2\delta) \ge 0$.

Assume also that $i_{\mathcal{M}} \ge \pi - \sigma$ and $0 < V_{\mathcal{M}} \le 3V(\mathfrak{B}_{\pi/2-\sigma/2}) + V(\mathfrak{B}_{\delta/2})$. Then \mathcal{M} is homeomorphic to S^n .

Proof. We prove this result by contradiction. If some manifold \mathcal{M} satisfies the assumptions of Theorem 2 and is not homeomorphic to S^n , there is a point $x_0 \in \mathcal{M}$ such that $x_0 \in \mathcal{M} - \mathbb{B}(p, i_{\mathcal{M}}) \cup \mathbb{B}(q, i_{\mathcal{M}})$, with $d(p, q) = d_{\mathcal{M}}$. Assume that $d(q, x_0) \ge d(p, x_0) = l_0 \ge i_{\mathcal{M}}$. By Lemma 3, there exists a point $E \in \partial \mathbb{B}(p, \pi/2 - \sigma/2)$ satisfying (5). By triangle inequality, we get because $K_{\mathcal{M}} \ge 0$ that

(17)
$$d(E,q) \ge \pi/2 - \sigma/2 \text{ and } d(E,x_0) \ge \pi/2 - \sigma/2.$$

Now consider the geodesic triangle $(\gamma_{p,E}, \gamma_{x_0,E}, \gamma_{p,x_0})$; let $\alpha = \angle (\dot{\gamma}_{E,p}, \dot{\gamma}_{E,x_0})|_E$. By Toponogov's comparison theorem,

$$d^{2}(p, x_{0}) \leq d^{2}(E, p) + d^{2}(E, x_{0}) - 2d(E, p)d(E, x_{0})\cos \alpha,$$

so

(18)
$$1 + \cos \alpha \leq \frac{(d(E, p) + d(E, x_0))^2 - d^2(p, x_0)}{2d(E, p)d(E, x_0)} \leq \frac{(l_0 + \delta)^2 - l_0^2}{2(\pi/2 - \sigma/2)^2} < \frac{2\delta(\pi - \sigma + 2\delta)}{(\pi/2 - \sigma/2)^2}.$$

Similarly, consider the triangle $(\gamma_{E,p}, \gamma_{E,q}, \gamma_{p,q})$, with $\beta = \angle (\dot{\gamma}_{E,p}, \dot{\gamma}_{E,q})|_E$ and the triangle $(\gamma_{E,q}, \gamma_{E,x_0}, \gamma_{q,x_0})$, with $\gamma = \angle (\dot{\gamma}_{E,q}, \dot{\gamma}_{E,x_0})|_E$. Then

(19)

$$1 + \cos \beta \leq \frac{(d(E, p) + d(E, q))^2 - d^2(p, q)}{2d(E, p)d(E, q)} \leq \frac{(\pi - \sigma + \delta)^2 - (\pi - \sigma)^2}{2(\pi/2 - \sigma/2)^2} < \frac{2\delta(\pi - \sigma + 2\delta)}{(\pi/2 - \sigma/2)^2},$$

$$1 + \cos \gamma \leq \frac{(d(E, q) + d(E, x_0))^2 - d^2(q, x_0)}{2d(E, q)d(E, x_0)} \leq \frac{2\delta(l_0 + \delta)}{(\pi/2 - \sigma/2)^2} < \frac{2\delta(\pi - \sigma + 2\delta)}{(\pi/2 - \sigma/2)^2}.$$

Let δ and σ satisfy (16). Then from (18) and (19), one can infer again that

$$\alpha > 2\pi/3, \quad \beta > 2\pi/3, \quad \gamma > 2\pi/3,$$

which is impossible as above.

Proof of Lemma 4. First, we will show that the Equation (15) indeed contains a positive solution δ_0 . Define

$$F(t,k) = \cosh(k(\pi+3t)) - \cosh(k(\pi+t)) - (1 - \sqrt{3}/2)\sinh^2(k(\pi/2 - t/6)).$$

For fixed k > 0 and for $t \in [0, 3\pi]$,

$$\frac{dF}{dt} = k \left\{ 3\sinh(k(3t+\pi)) - \sinh(k(t+\pi)) + \frac{2-\sqrt{3}}{12}\sinh(k(\pi-t/3)) \right\} > 0,$$

which implies that F(t, k) is increasing with respect to t in $[0, 3\pi]$. Moreover, F(0, k) < 0 and $F(3\pi, k) > 0$. So (15) has a unique solution $\delta_0 \in (0, 3\pi)$ for any k > 0. Consider the function $k \mapsto F(3\pi/5, k)$. Then

$$\frac{dF}{dk}\left(\frac{3\pi}{5},k\right) = \frac{14\pi}{5}\sinh\left(\frac{14k\pi}{5}\right) - \frac{8\pi}{5}\sinh\left(\frac{8k\pi}{5}\right) - \frac{(2-\sqrt{3})\pi}{5}\sinh\left(\frac{4k\pi}{5}\right).$$

We can check that

$$\frac{14\pi}{5}\sinh\left(\frac{14k\pi}{5}\right) - \frac{8\pi}{5}\sinh\left(\frac{8k\pi}{5}\right) > \frac{4\pi}{5}e^{8\pi/5} > \frac{(2-\sqrt{3})\pi}{5}\sinh\left(\frac{4k\pi}{5}\right),$$

which implies that $F(3\pi/5, k)$ is increasing in $[0, \infty)$. Note that $F(3\pi/5, 0) = 0$; thus $F(3\pi/5, k) > 0$ for k > 0. This shows there is a solution in $0 < \delta_0 < 3\pi/5$. \Box

Acknowledgments

I thank Professor Dong Ye, whose comments simplified many proofs of this paper. Also, I thank the referee for suggestions.

References

- [Brown 1960] M. Brown, "A proof of the generalized Schoenflies theorem", *Bull. Amer. Math. Soc.* 66 (1960), 74–76. MR 22 #8470b Zbl 0132.20002
- [Coghlan and Itokawa 1991] L. Coghlan and Y. Itokawa, "A sphere theorem for reverse volume pinching on even-dimensional manifolds", *Proc. Amer. Math. Soc.* **111**:3 (1991), 815–819. MR 91f:53033 Zbl 0719.53019
- [Grove and Shiohama 1977] K. Grove and K. Shiohama, "A generalized sphere theorem", *Ann. Math.* (2) **106**:2 (1977), 201–211. MR 58 #18268 Zbl 0341.53029
- [Perelman 1995] G. Perelman, "A diameter sphere theorem for manifolds of positive Ricci curvature", *Math. Z.* **218**:4 (1995), 595–596. MR 96f:53056 Zbl 0831.53033
- [Shen 1989] Z. M. Shen, "A sphere theorem for manifolds of positive Ricci curvature", *Indiana Univ. Math. J.* **38**:1 (1989), 229–233. MR 90h:53044 Zbl 0678.53032
- [Shiohama 1983] K. Shiohama, "A sphere theorem for manifolds of positive Ricci curvature", *Trans. Amer. Math. Soc.* **275**:2 (1983), 811–819. MR 84c:53041 Zbl 0518.53047
- [Suyama 1991] Y. Suyama, "Differentiable sphere theorem by curvature pinching", J. Math. Soc. Japan **43**:3 (1991), 527–553. MR 92g:53033 Zbl 0790.53041
- [Wen 2004] Y. Wen, "A note on pinching sphere theorem", C. R. Math. Acad. Sci. Paris 338:3 (2004), 229–234. MR 2005k:53040 Zbl 1046.53019
- [Wu 1989] J. Y. Wu, "A diameter pinching sphere theorem for positive Ricci curvature", *Proc. Amer. Math. Soc.* **107**:3 (1989), 797–802. MR 90h:53045 Zbl 0676.53045

Received October 5, 2008. Revised April 9, 2009.

YULIANG WEN DEPARTMENT OF MATHEMATICS EAST CHINA NORMAL UNIVERSITY SHANGHAI 20062 CHINA

ylwen@math.ecnu.edu.cn