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We study manifolds with bounded volume, sectional curvature, and injec-
tivity radius. We obtain a topological sphere theorem.

Sphere theorems are common in differential geometry; one often asks whether
a manifold is homeomorphic to a sphere under certain topological or geometric
restrictions; see for instance [Grove and Shiohama 1977; Perelman 1995; Shen
1989; Shiohama 1983; Suyama 1991; Wu 1989]. Coghlan and Itokawa [1991]
proved a sphere theorem that says that if an even-dimensional, simply connected
Riemannian manifold M has sectional curvature KM ∈ (0, 1], volume VM ≤

3
2 VSn

with VSn the volume of the standard n-dimensional unit sphere Sn in Rn+1, then M

must be homeomorphic to Sn . In [Wen 2004], we improved this result by relaxing
the upper bound on VM to a bound larger than 3

2 VSn . In both of these papers, the
hypotheses of simple connectivity and even dimension were merely used to deduce
that the injectivity radius iM is no less than π . Here we find that we can weaken
the assumptions on KM and iM. If the simple connectivity condition is removed,
the conclusion holds in any dimension.

Before stating our result, we introduce some notation. Let (M, g) be a compact,
connected n-dimensional Riemannian manifold with metric g. We denote by KM

the sectional curvature of M, by iM its injectivity radius, and by VM its volume. For
any points P, Q ∈M, we denote by γP,Q the shortest geodesic on M from P to Q.

Theorem 1. Given k > 0, there exists an ε0 > 0 such that if a compact connected
n-dimensional Riemannian manifold (M, g) satisfies

−k2
≤ KM ≤ 1, iM ≥ π − ε0, VM ≤

3
2 Vsn + ε0,

then M is homeomorphic to Sn .

The examples of real projective spaces RPn for n ≥ 2 and product manifolds
Sn
× Sm for m, n ≥ 1 show that the hypotheses on the lower bound on iM or the

upper bound on VM cannot be removed.
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In what follows, we denote by B(P, r) the open geodesic ball in M with center P
and radius r , and by B(P, r) its closure. Also, we denote by Br the open geodesic
ball in Sn with radius r . Instead of proving Theorem 1 directly, we will prove a
more precise version.

Proposition 1. Let k > 0. There exist δ, σ > 0 satisfying σ + δ < π such that if a
compact connected n-dimensional Riemannian manifold (M, g) satisfies

(1) −k2
≤ KM ≤ 1, iM ≥ π − σ, VM ≤ 3V (Bπ/2−σ/2)+ V (Bδ/2),

then M is homeomorphic to Sn .

Remark 1. The choice of σ or δ here is of course not optimal. We conjecture that
σ < π/2 is optimal.

Proof of Proposition 1. We proceed by way of contradiction. Suppose there exists
a manifold M satisfying (1) that is not homeomorphic to Sn . Take points p, q in M

such that d(p, q)= dM, the diameter dM of M. Then by a well-known topological
fact (see for instance [Brown 1960]), there is a point x0 ∈M−B(p, iM)∪B(q, iM).
Without loss of generality, let d(q, x0)≥ d(p, x0)= l0. Therefore l0≥ iM≥ π−σ .
First we show an explicit upper bound on dM.

Lemma 1. dM ≤ π − σ + δ.

Proof. We argue by contradiction. If dM > π − σ + δ, then we consider the balls
B(p, π/2− σ/2+ δ/2),B(q, π/2− σ/2+ δ/2) and B(x0, l0−π/2+ σ/2− δ/2).
They are obviously pairwise disjoint. Therefore since KM ≤ 1, Günther’s volume
comparison theorem gives

(2) VM ≥ 2V (Bπ/2−σ/2+δ/2)+ V (Bl0−π/2+σ/2−δ/2).

In what follows, we check that

(3) 2V (Bπ/2−σ/2+δ/2)+ V (Bl0−π/2+σ/2−δ/2) > 3V (Bπ/2−σ/2)+ V (Bδ/2).

Noting that l0−π/2+ σ/2− δ/2≥ π/2− σ/2− δ/2> 0, we have

V (Bl0−π/2+σ/2−δ/2)≥ V (Bπ/2−σ/2−δ/2).

By the definition of Sn , we have V (Br ) = ωn−1
∫ r

0 (sin t)n−1 dt for any r > 0,
where ωn−1 is the volume of the standard unit (n− 1)-sphere Sn−1. Since sin t is
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increasing in (0, π/2), we have

1
ωn−1

[
2V (Bπ/2−σ/2+δ/2)+ V (Bl0−π/2+σ/2−δ/2)− 3V (Bπ/2−σ/2)− V (Bδ/2)

]
≥ 2

∫ π/2−σ/2+δ/2

0
(sin t)n−1dt +

∫ π/2−σ/2−δ/2

0
(sin t)n−1dt

− 3
∫ π/2−σ/2

0
(sin t)n−1dt −

∫ δ/2

0
(sin t)n−1dt

=

∫ π/2−σ/2+δ/2

π/2−σ/2
(sin t)n−1dt −

∫ π/2−σ/2

π/2−σ/2−δ/2
(sin t)n−1dt

+

∫ π/2−σ/2+δ/2

π/2−σ/2
(sin t)n−1dt −

∫ δ/2

0
(sin t)n−1dt

>

∫ π/2−σ/2+δ/2

π/2−σ/2
(sin t)n−1dt −

∫ π/2−σ/2

π/2−σ/2−δ/2
(sin t)n−1dt > 0.

Clearly, the estimates (2) and (3) contradict the assumptions (1). �

Lemma 2. If δ > 0 and σ = 2/3
∫ δ/2

0 (sin t)n−1dt satisfy σ + δ < π , then

(4) V (Bδ/2)+ V (Bπ/2−σ/2) >
3
2 VSn .

Proof. In fact, since |sin t | ≤ 1,

V (Bδ/2)= ωn−1

∫ δ/2

0
(sin t)n−1dt = 3

2ωn−1σ

> 3ωn−1

∫ π/2

π/2−σ/2
(sin t)n−1dt

= 3V (Bπ/2)− V (Bπ/2−σ/2)=
3
2 VSn − V (Bπ/2−σ/2). �

Lemma 3. There exists a point E on ∂B(p, π/2− σ/2), that is, the boundary of
B(P, π/2− σ/2), such that

(5) d(E, q)≤ π/2− σ/2+ δ and d(E, x0)≤ l0−π/2+ σ/2+ δ.

Proof. Since iM ≥ π − σ , the boundary ∂B(p, π/2− σ/2) is arc-connected in M.
Let W = γp,x0 ∩ ∂B(p, π/2− σ/2) and T = γp,q ∩ ∂B(p, π/2− σ/2). Take a
continuous curve f (t) (t ∈ 0, 1]) on ∂B(p, π/2− σ/2) such that W = f (0) and
T = f (1). Let 0 be the image curve of f , and let

01 = {x ∈ 0 | d(x, q)≤ π/2− σ/2+ δ},

02 = {x ∈ 0 | d(x, x0)≤ l0−π/2+ σ/2+ δ}.

It is clear that 01 and 02 both are nonempty closed since T ∈ 01 and W ∈ 02. We
will prove that there exists a point E on 0 satisfying (5). For this, we need only to
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verify that 01∩02 6=∅. First we shall exclude the case that there exists a point E
in 0 such that

(6) d(E, q) > π/2− σ/2+ δ and d(E, x0) > l0−π/2+ σ/2+ δ.

In fact, if (6) occurs, there must exist a point F in the shortest geodesic γp issuing
from p and passing through E , such that d(F, p) = π/2 − σ/2 + δ/2. By the
triangle inequality, we have

(7)
d(F, q)≥ d(E, q)− d(E, F) > π/2− σ/2+ δ/2,

d(F, x0)≥ d(E, x0)− d(E, F) > l0−π/2+ σ/2+ δ/2.

Therefore the four balls B(p, π/2−σ/2), B(q, π/2−σ/2), B(x0, l0−π/2+σ/2)
and B(F, δ/2) are pairwise disjoint. Applying again Günther’s volume comparison
theorem, we get

VM > V (B(p, π/2− σ/2))+ V (B(q, π/2− σ/2))

+ V (B(x0, l0−π/2+ σ/2))+ V (B(F, δ/2))

≥ 2V (Bπ/2−σ/2)+ V (Bπ/2−σ/2)+ V (Bδ/2)

= 3V (Bπ/2−σ/2)+ V (Bδ/2),

which contradicts the assumption on VM. Thus (6) cannot hold, which means
0 = 01 ∪ 02. Since 0 is connected, we get a point E ∈ 01 ∩ 02 6= ∅; this point
clearly satisfies (5). �

Lemma 1 and the triangle inequalities easily imply another result:

Corollary 1. The point E obtained in Lemma 3 satisfies the inequalities

(8)

π/2− δ/6< d(E, p)= π/2− σ/2,

π/2− δ/6≤ d(E, q)≤ π/2− σ/2+ δ,

π/2− δ/6≤ d(E, x0)≤ l0−π/2+ σ/2+ δ.

On the other hand,

(9) d(p, q)≤ π − σ + δ and π − σ ≤ l0 = d(p, x0)≤ π − σ + δ.

Take E ∈ ∂B(p, π/2 − σ/2) satisfying (5). We consider a geodesic triangle
(γE,p, γE,x0

, γp,x0
) in M. Since KM ≥ −k2, Toponogov’s comparison theorem

gives

(10) cosh[kd(p, x0)]

≤ cosh[kd(E, p)] cosh[kd(E, x0)] − sinh[kd(E, p)] sinh[kd(E, x0)] cosα

=cosh[k(d(E, p)+d(E, x0))]−sinh[kd(E, p)] sinh[kd(E, x0)](1+cosα),
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where the angle α is defined by α = 6 (γ̇E,p, γ̇E,x0
)|E . By Corollary 1, we have

(11)
1+ cosα ≤

cosh(k(d(E, p)+ d(E, x0)))− cosh(kd(p, x0))

sinh(kd(E, p)) sinh(kd(E, x0))

≤
cosh(k(l0+ δ))− cosh(kl0)

sinh2(k(π/2− δ/6))
.

Clearly t 7→ cosh(k(t+c))−cosh(kt) is increasing in [0,∞) for c> 0, so we get

(12)
1+ cosα <

cosh(k(π + 2δ))− cosh(k(π + δ))

sinh2(k(π/2− δ/6))

<
cosh(k(π + 3δ))− cosh(k(π + δ))

sinh2(k(π/2− δ/6))
.

Similarly, if we consider the geodesic triangle (γE,p, γE,q , γp,q) and the angle β =
6 (γ̇E,p, γ̇E,q)|E , we have

(13)

1+ cosβ ≤
cosh(k(d(E, p)+ d(E, q)))− cosh(kd(p, q))

sinh(kd(E, p)) sinh(kd(E, q))

≤
cosh(k(π − σ + δ))− cosh(kl0)

sinh2(k(π/2− δ/6))

≤
cosh(k(π − σ + 2δ))− cosh(k(π − σ))

sinh2(k(π/2− δ/6))

<
cosh(k(π + 3δ))− cosh(k(π + δ))

sinh2(k(π/2− δ/6))
.

Likewise, if we think of the geodesic triangle (γE,q , γE,x0
, γq,x0

) and the angle
γ= 6 (γ̇E,q , γ̇E,x0

)|E , then, noting that d(q, x0)≥ l0 ≥ π − ε0, we have

(14)
1+ cos γ≤

cosh(k(d(E, q)+ d(E, x0)))− cosh(kd(q, x0))

sinh(kd(E, q)) sinh(kd(E, x0))

<
cosh(k(π + 3δ))− cosh(k(π + δ))

sinh2(k(π/2− δ/6))
.

Now we will conclude the proof of Proposition 1 using the following lemma,
whose proof will be postponed.

Lemma 4. For k > 0, there exists a positive number δ0 ∈ (0, 3π/5) such that δ0 is
a solution of

(15) cosh(k(π + 3t))− cosh(k(π + t))− (1−
√

3/2) sinh2 (k (π/2− t/6))= 0.

Take δ= δ0 in Lemma 4, take the σ from Lemma 2, and let E be the point given
by Lemma 3. Obviously, σ < δ/3, hence σ + δ < 4δ/3< π . Applying (12)–(14),
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one immediately deduces

cosα <−
√

3/2, cosβ <−
√

3/2, cos γ <−
√

3/2.

That is,

α > 2π/3, β > 2π/3, γ > 2π/3.

However, since 0≤ γ≤ 2π− (α+β), we get a contradiction. Thus our hypothesis
on M was wrong, so M must be homeomorphic to Sn . �

In Theorem 1 or Proposition 1, we require that the sectional curvature KM is
in the interval [−k2, 1] for some k > 0. Trivially the result holds if KM ∈ (0, 1].
In the situation 0 ≤ KM ≤ 1, we can simplify our proof by comparing against
Euclidean space; however the estimates (12)–(14) would need to be changed for
the case k = 0.

Theorem 2. Suppose (M, g) is a compact connected n-dimensional Riemannian
manifold with sectional curvature 0≤ KM ≤ 1. Let δ > 0, and let

(16) σ = 2
3

∫ δ/2

0
(sin t)n−1dt such that (2−

√
3)(π−σ)2−16δ(π−σ+2δ)≥0.

Assume also that iM ≥ π − σ and 0< VM ≤ 3V (Bπ/2−σ/2)+ V (Bδ/2). Then M is
homeomorphic to Sn .

Proof. We prove this result by contradiction. If some manifold M satisfies the
assumptions of Theorem 2 and is not homeomorphic to Sn , there is a point x0 ∈M

such that x0 ∈M−B(p, iM)∪B(q, iM), with d(p, q)= dM. Assume that d(q, x0)≥

d(p, x0) = l0 ≥ iM. By Lemma 3, there exists a point E ∈ ∂B(p, π/2 − σ/2)
satisfying (5). By triangle inequality, we get because KM ≥ 0 that

(17) d(E, q)≥ π/2− σ/2 and d(E, x0)≥ π/2− σ/2.

Now consider the geodesic triangle (γp,E , γx0,E , γp,x0
); let α = 6 (γ̇E,p, γ̇E,x0

)|E .
By Toponogov’s comparison theorem,

d2(p, x0)≤ d2(E, p)+ d2(E, x0)− 2d(E, p)d(E, x0) cosα,

so

(18)
1+ cosα ≤

(d(E, p)+ d(E, x0))
2
− d2(p, x0)

2d(E, p)d(E, x0)

≤
(l0+ δ)

2
− l2

0

2(π/2− σ/2)2
<

2δ(π − σ + 2δ)
(π/2− σ/2)2

.
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Similarly, consider the triangle (γE,p, γE,q , γp,q), with β = 6 (γ̇E,p, γ̇E,q)|E and
the triangle (γE,q , γE,x0

, γq,x0
)), with γ= 6 (γ̇E,q , γ̇E,x0

)|E . Then

(19)

1+ cosβ ≤
(d(E, p)+ d(E, q))2− d2(p, q)

2d(E, p)d(E, q)

≤
(π − σ + δ)2− (π − σ)2

2(π/2− σ/2)2
<

2δ(π − σ + 2δ)
(π/2− σ/2)2

,

1+ cos γ≤
(d(E, q)+ d(E, x0))

2
− d2(q, x0)

2d(E, q)d(E, x0)

≤
2δ(l0+ δ)

(π/2− σ/2)2
<

2δ(π − σ + 2δ)
(π/2− σ/2)2

.

Let δ and σ satisfy (16). Then from (18) and (19), one can infer again that

α > 2π/3, β > 2π/3, γ > 2π/3,

which is impossible as above. �

Proof of Lemma 4. First, we will show that the Equation (15) indeed contains a
positive solution δ0. Define

F(t, k)= cosh(k(π + 3t))− cosh(k(π + t))− (1−
√

3/2) sinh2(k(π/2− t/6)).

For fixed k > 0 and for t ∈ [0, 3π ],

d F
dt
= k

{
3 sinh(k(3t +π))− sinh(k(t +π))+ 2−

√
3

12
sinh(k(π − t/3))

}
> 0,

which implies that F(t, k) is increasing with respect to t in [0, 3π ]. Moreover,
F(0, k) < 0 and F(3π, k) > 0. So (15) has a unique solution δ0 ∈ (0, 3π) for
any k > 0. Consider the function k 7→ F(3π/5, k). Then

d F
dk

(3π
5
, k
)
=

14π
5

sinh
(14kπ

5

)
−

8π
5

sinh
(8kπ

5

)
−
(2−
√

3)π
5

sinh
(4kπ

5

)
.

We can check that

14π
5

sinh
(14kπ

5

)
−

8π
5

sinh
(8kπ

5

)
>

4π
5

e8π/5 >
(2−
√

3)π
5

sinh
(4kπ

5

)
,

which implies that F(3π/5, k) is increasing in [0,∞). Note that F(3π/5, 0)= 0;
thus F(3π/5, k) > 0 for k > 0. This shows there is a solution in 0<δ0 < 3π/5. �
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