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A FREE BOUNDARY ISOPERIMETRIC PROBLEM IN
HYPERBOLIC 3-SPACE BETWEEN PARALLEL

HOROSPHERES

ROSA MARIA BARREIRO CHAVES,
MÁRCIO F. DA SILVA AND RENATO H. L. PEDROSA

We investigate the isoperimetric problem of finding the regions of prescribed
volume with minimal boundary area between two parallel horospheres in
hyperbolic 3-space (the part of the boundary contained in the horospheres
is not included). We reduce the problem to the study of rotationally invari-
ant regions and obtain the possible isoperimetric solutions by studying the
behavior of the profile curves of the rotational surfaces with constant mean
curvature in hyperbolic 3-space. We also classify all the connected compact
rotational surfaces M of constant mean curvature that are contained in the
region between two horospheres, have boundary ∂ M either empty or lying
on the horospheres, and meet the horospheres perpendicularly along their
boundary.

1. Introduction

Geometric isoperimetric problems, (upper) estimates for the volume of regions of
a given fixed boundary volume, and the dual problems play an important role in
analysis and geometry. There are both isoperimetric inequalities, common in anal-
ysis, and actual classification of optimal geometric objects, like the round ball in
Euclidean geometry. We will be interested in the study of a relative free-boundary
isoperimetric problem in hyperbolic 3-space between two parallel horospheres. A
survey of recent results in isoperimetric problems is [Ritoré and Ros 2002].

For a Riemannian manifold Mn , we state the classical isoperimetric problem as
follows: Classify, up to congruency by the isometry group of M , the (compact)
regions � ⊆ M enclosing a fixed volume that have minimal boundary volume.
The relevant concepts of volume are those of geometric measure theory: Regions
and their boundaries are respectively n- and (n−1)-rectifiable subsets of M ; see
[Morgan 2009].

MSC2000: 53A10, 49Q10.
Keywords: constant mean curvature surfaces, hyperbolic space, isoperimetric problem.
Da Silva thanks CAPES and CNPq for financial support during his PhD studies, which led in part to
this paper.
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If M has a boundary, the part of ∂� included in the interior of M will be called
the free boundary of �, and the other part will be called the fixed boundary. One
may specify how the fixed boundary of � is included in the computation of the
boundary volume functional. In this paper, we will not consider the volume of the
fixed boundary of � to be part of the boundary volume functional. We will see in
Section 3 that this implies that the angle of contact between the interior boundary
of � and ∂M is π/2 (when this contact occurs). Such problems are related to the
geometry of stable drops in capillarity (the angle of contact depends, as mentioned,
on how one considers the volume of the fixed boundary in the computation of the
boundary volume functional). For a discussion, see [Finn 1986].

This work is motivated by the well-known results of Athanassenas [1987] and
Vogel [1987], which imply that between two parallel planes in Euclidean space R3,
a (stable) soap bubble touching both walls perpendicularly is a straight cylinder
orthogonal to the planes, and may only exist down to a certain minimal enclosing
volume depending on the distance between the planes. Below that value, only
half-spheres touching one of the planes or whole spheres not touching either plane
occur, and the cylinders become unstable. A new proof of this fact can be found
in [Pedrosa and Ritoré 1999], where the authors study the analogous problem in
higher-dimensional Euclidean spaces.

In this paper we study the analogous relative isoperimetric problem between
two parallel horospheres in the hyperbolic space H3(−1). We will use the upper
half-space model R3

+
, in which parallel horospheres are represented by horizontal

Euclidean 2-planes of R3
+

. We will classify the possible isoperimetric solutions.
The existence of isoperimetric regions in the manifold with boundary (B, g),

the slab composed of the two horospheres and the region between them, may be
obtained by adapting a result of Morgan [2009] (applicable since B/G is a com-
pact space, where G is the subgroup of the isometry group of H3(−1) leaving B
invariant). Regarding the regularity of the free boundary, well-known results about
the lower codimension bounds of the singular subset imply that it must be regular,
and in fact analytic.

In Section 2, we define basic notions in the model R3
+

, like geodesics, totally
geodesic surfaces, umbilical surfaces and rotational surfaces. We also use the area
and volume functionals to more precisely formulate the isoperimetric problem.

In Section 3 we get some basic geometric properties of isoperimetric regions;
for instance, their (free) boundaries must have constant mean curvature and, when
they touch the bounding horospheres, the contact angle must be π/2. We also
discuss their rotational invariance.

In Section 4 we investigate the tangency of profile curves for the rotational
surfaces with constant mean curvature, to determine the possible isoperimetric
regions between the two parallel horospheres. We discuss in detail the existence
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of isoperimetric regions and the regularity of the free boundary part, and we prove
the following result:

Theorem 1.1. Let c1, c2 be positive real constants such that c1 < c2, and let
Fc1,c2 = {(x, y, z) ∈ R3

+
: c1 ≤ z ≤ c2}. Let V > 0, and let Cc1,c2,V be the set of

�⊂Fc1,c2 with volume |�| = V and boundary volume (area) A(�∩
◦

Fc1,c2) <∞,
where we suppose that � is connected, compact and 3-rectifiable in Fc1,c2 , and
has as boundary (between the horospheres) an embedded, orientable, 2-rectifiable
surface. Let

Ac1,c2,V = inf{A(�∩
◦

Fc1,c2) :� ∈ Cc1,c2,V }.

(1) There exists � ∈ Cc1,c2,V such that A(�∩
◦

Fc1,c2)= Ac1,c2,V . The free bound-
aries are analytic surfaces.

(2) If � has minimal boundary volume between the horospheres, the free bound-
ary of � is either

(a) of catenoid cousin type or umbilical with H = 1,
(b) of equidistant type or umbilical with 0< H < 1, or
(c) of onduloid type or umbilical with H > 1.

Remark 1.2. We give details of this description in Section 4. The hyperbolic dis-
tance d = ln(c2/c1) between the horospheres could determine which region among
cases (a)–(c) is the isoperimetric solution. It is still not clear, however, which from
among (a)–(c) would be solutions for a given d . (In [Athanassenas 1987], the
classification of isoperimetric solutions depending on d is fully answered for the
analogous problem in R3.) In some cases, as in Figure 1, we know by fixing the
lower horosphere at z= 1/2 that umbilical surfaces with H = 1 cannot be solutions
when the upper horosphere is at level z < 1. In the general case, the question is
still open because it is necessary to study the stability of the surfaces (a)–(c) (see
[Barbosa et al. 1988] for the notion of stability in this context).

z

z > 1

z = 1

1/2< z < 1

z = 1/2

Figure 1. A case in which it is possible to decide.
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Remark 1.3. Theorem 1.1 shows how the situation in hyperbolic geometry differs
from that in Euclidean 3-space. In R3, we also have rotationally invariant surfaces
of catenoid and onduloid type, but they cannot appear as boundaries of optimizing
tubes, even though in higher dimensions, hypersurfaces generated by onduloids in
Euclidean space are known to occur as boundaries of optimal tubes connecting two
parallel hyperplanes; see [Pedrosa and Ritoré 1999].

Corollary 1.4. Let M be a connected compact rotational surface of constant mean
curvature in hyperbolic 3-space. Suppose M is contained in the region between two
horospheres, and that the boundary ∂M is either empty or lies on the horospheres,
and meets them perpendicularly along its boundary. Then M is either

(1) of catenoid cousin type or umbilical with H = 1, or

(2) of equidistant type or umbilical with 0< H < 1, or

(3) of onduloid type or umbilical with H > 1.

2. Preliminaries

Let L4
= (R4, g) be the 4-dimensional Lorentz space endowed with the metric

g(x, y)= x1 y1+ x2 y2+ x3 y3− x4 y4 and the 3-dimensional hyperbolic space

H3(−1) := {p = (x1, x2, x3, x4) ∈ L4
: g(p, p)=−1, x4 > 0}.

We use the upper half-space model R3
+
:= {(x, y, z) ∈ R3

; z > 0} for H3(−1),
endowed with the metric

(2-1) 1
z2 (dx2

+ dy2
+ dz2).

Let φ : 6 → R3
+

be an isometric immersion of a compact surface 6 with
nonempty boundary ∂6, and let 0 be a curve in R3

+
. If φ is a diffeomorphism of

∂6 onto 0, we say that 0 is the boundary of φ; if φ has constant mean curvature H ,
we say that6 is an H -surface with boundary 0. We identify6 with its image by φ
and ∂6 with the curve 0.

The plane z = 0 is called the infinity boundary of R3
+

and denoted ∂∞R3
+

.
The geodesics of R3

+
are represented by vertical Euclidean lines and half-circles

orthogonal to ∂∞R3
+

and contained in R3
+

. The totally geodesic surfaces have
constant mean curvature H = 0 and are represented by vertical Euclidean planes
and hemispheres orthogonal to ∂∞R3

+
and contained in R3

+
.

The horizontal Euclidean translations and the rotations around a vertical geo-
desic are isometries of R3

+
. We have two families of isometries associated to one

point p0 ∈ ∂∞R3
+

, the Euclidean homotheties centered at p0 with factor k > 0,
called hyperbolic translations through a geodesic α perpendicular to ∂∞R3

+
at p0,

and the hyperbolic reflections with respect to a totally geodesic surface P .
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When P is a hemisphere orthogonal to ∂∞R3
+

centered at p0 and of radius r > 0,
the hyperbolic reflections are Euclidean inversions centered at p0 that fix P . When
P is a vertical Euclidean plane, they are Euclidean reflections with respect to P .

Now we describe the umbilical surfaces of R3
+

; see for example [López 1999].

• Totally geodesic surfaces are represented by vertical Euclidean planes in R3
+

and the hemispheres in R3
+

perpendicular to the plane z=0. They have H =0.

• Geodesic spheres are represented by Euclidean spheres entirely contained
in R3

+
. They have H > 1 (the mean curvature vector points to the interior). If

ρ is the hyperbolic radius of a geodesic sphere, then H = coth ρ.

• Horospheres are represented by horizontal Euclidean planes in R3
+

and Eu-
clidean spheres in R3

+
that are tangent to ∂∞R3

+
. They have H = 1; the mean

curvature vector points upwards in the case of horizontal planes and to the
interior in the case of spheres.

• Equidistant surfaces are represented by the intersection of R3
+

with the planes
in R3 that are neither parallel nor perpendicular to the plane z = 0 and by
(pieces of) Euclidean spheres that are not entirely contained in R3

+
and are

neither tangent nor perpendicular to the plane z = 0. They have 0 < H < 1,
and the mean curvature vector points to the totally geodesic surface they are
equidistant to.

In our study, the (spherical) rotational surfaces of R3
+

play an important role
since the solutions of the isoperimetric problem must be rotationally invariant.
They are defined as surfaces invariant by a subgroup of isometries whose principal
orbits are (Euclidean) circles.

Let 51 and 52 be horospheres represented by distinct parallel horizontal Eu-
clidean planes, and let5=51∪52. Let F=F(51,52) be the closed slab between
them, and let φ : 6 → F be an isometric immersion of a compact, connected,
embedded and orientable C2 surface with boundary 0 = ∂6 and the property that
φ(0)⊂5. (Later we will see that the image under φ of the interior of the surface
6 will not touch 5 if 6 is the boundary of an optimal domain in our variational
problem, but this is not part of the general situation yet.)

Now we fix notation for some well-known geometric invariants related to iso-
metric immersions. We (locally) identify 6 with φ(6) and X (p) ∈ Tp6 with
dφp(X (p))⊂R3

+
. We have the decomposition Tp(R

3
+
)= Tp(6)⊕Np(6) into the

tangent and normal spaces to 6 at p. Choose an orientation for 6, and let N be
the (positive) unitary normal field along the immersion φ. If X (p) ∈ Tp(R

3
+
), we

may write X (p)= X (p)T + X (p)N
= X (p)T +αN (p), where α ∈ R.

Let 〈 · , · 〉 be the metric induced on 6 by the immersion φ, let ∇ be the Rie-
mannian connection of the ambient space R3

+
, and let∇ be the induced Riemannian
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connection on 6. Let X, Y ∈ X(6) be C∞ vector fields. Then ∇X Y = (∇X Y )T

and B(X, Y )= (∇X Y )N are, as usual, the induced connection on6 and the second
fundamental form of the immersion given by B. We also have the Weingarten
operator AN (Y ) = −(∇Y N )T , so that 〈AN (X), Y 〉 = 〈B(X, Y ), N 〉. Finally, the
mean curvature of the immersion φ is H = 1/2 trace(AN ).

Definition 2.1. A variation of φ is a smooth map F : (−ε, ε)×6→R3
+

such that
for all t ∈ (−ε, ε) the map φt :6→R3

+
, p 7→ F(t, p) is an immersion and satisfies

φ0 = φ.

For p ∈ 6, we define the variation vector field of F by X (p)= ∂φt(p)/∂t |t=0

and the normal variation function of F by f (p)= 〈X (p), N (p)〉. We say that the
variation F is normal if X is normal to φ at each point; we say F has compact
support if X has compact support. For a variation with compact support and for
small values of t , we have that φt is an immersion of 6 in R3

+
. In this case the

area function A : (−ε, ε)→ R is given by

A(t)=
∫
6

d At =

∫
6

√
det((dφt)∗(dφt)) d A,

where d A is the area element of 6. The function A(t) is the area of 6 with the
metric induced by φt . We also define the volume function V : (−ε, ε)→ R by

V (t)=−
∫
[0,t]×6

F∗d(R3
+
),

where d(R3
+
) is the volume element of R3

+
and F∗d(R3

+
) is the pull-back of d(R3

+
)

by F . The function V (t) does not actually represent the volume of some region
with φt(6) as boundary, but of a “tubular neighborhood” along φ(6) between
φ(6) and φt(6). The sign is related to the net change with respect to the normal
field defining the orientation; for example, contracting a sphere in R3, which means
moving it in the direction of the mean curvature vector, gives the expected negative
sign for V (t).

Definition 2.2. Let F : (−ε, ε)×6→R3
+

be a variation of φ. We say F preserves
volume if V (t) = V (0) (which is equal to zero) for all t ∈ (−ε, ε). We say F is
admissible if F(∂6)⊂5 for all t ∈ (−ε, ε).

Definition 2.3. We say that the immersion φ is stationary if A′(0) = 0 for all
admissible variations that preserve volume.

Remark 2.4. Suppose � is a (compact) regular region in the slab F between the
horospheres 5. Then by taking 6 in Definition 2.2 as the (embedded regular)
free boundary of �, we may extend the variational approach above to produce a
variation �(t) of � by embedded domains (for small t), such that the condition
V (t) = 0 in Definition 2.2 is equivalent to holding |�(t)| equal to �(0) along
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the variation. This justifies saying that the variation “preserves volume” in the
definition above.

We now restate our problem. Let 51 and 52 be two parallel horospheres in R3,
and let F= F(52,52) be the (closed) slab between them.

Isoperimetric problem for F. For a fixed volume, find the domains � ⊂ F that
have minimal free boundary area.

Definition 2.5. A (compact) minimizing region � for this problem will be called
an isoperimetric domain or region in F.

More precisely, one looks to classify and describe geometrically the isoperi-
metric regions (as a function of the volume), that is, to find the isoperimetric profile
(minimal free boundary area as a function of the prescribed volume) for F.

3. First results about the isoperimetric solutions

Here, we characterize the stationary immersions according to Definition 2.3. The
formulas below for the first variations of the area and volume functions are well
known. For an immersed surface with boundary, the exterior conormal is the vector
field along the boundary given as follows: In the tangent plane of6 at p∈ ∂6=0,
take the outward unitary vector orthogonal to the tangent vector to 0 at p.

Proposition 3.1. Let F be a variation of φ with variational field X and compact
support in 6. Then

(1) A′(0) = −2
∫
6 H f d A +

∫
0〈X, ν〉d0, where ν is the unitary exterior co-

normal, d A is the element of area of 6 and d0 is the element of length of
0 induced by φ;

(2) V ′(0)=−
∫
6 f d A, where f (p)= 〈X (p), N (p)〉.

Proof. Although the formula of the variation of the area functional is well known
(see [Barbosa et al. 1988]), here we show a different way to deduce it. From the
definition of A(t), we obtain

A′(t)=
∫
6

( 1
2
√

det((dφt)∗dφt)
det((dφt)

∗dφt)

× trace
(
((dφt)

∗dφt)
−1
◦

d
dt ((dφt)

∗dφt)
))

d A.

Since φ0 is the inclusion of 6 in R3
+

, dφ0 is the inclusion of the respective
tangent spaces and dφ∗0 is the orthogonal projection on T6.

By evaluating A′(t) for t = 0, we get

A′(0)=
∫
6

1
2 trace

( d
dt

∣∣
t=0((dφt)

∗dφt)
)
d A.
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We apply the symmetry lemma for ∇φ along the immersion and get

d
dt

∣∣∣
t=0
(dφt)=∇

φ ∂φt

∂t

∣∣∣
t=0
=∇

φX.

Then

A′(0)=
∫
6

1
2 trace

(
(∇φX)∗

∣∣
T6 + projT6 ∇

φX
)
d A =

∫
6

trace(projT6 ∇
φX)d A,

where projT6 denotes the projection on T6.
By decomposing the variational field as X = X T

+ X N , the projections of the
tangent and normal components of ∇φ(X) on T6 are

projT6 ∇
φ(X T )=∇(X T ) and projT6 ∇

φ(X N )=−AX N ,

where AX N is the Weingarten operator on 6. Therefore

A′(0)=
∫
6

(div X T
− 2〈X N , H N 〉)d A.

We apply Stokes’s theorem and get

A′(0)=
∫
0

〈X T , ν〉d0− 2
∫
6

〈X N , H N 〉d A=−2
∫
6

H f d A+
∫
0

〈X, ν〉d0.

The first variation of volume given in (2) is standard and its proof will be omitted;
see [Barbosa et al. 1988]. �

From the next result we conclude that the boundary of our isoperimetric region
must be an H -surface that contacts the horospheres 51 and 52 perpendicularly.

Theorem 3.2. Let φ : 6 → R3
+

be an immersion with boundary 0 = ∂6. Let
5=51∪52 be the horospheres containing 0. Then φ is stationary if and only if it
has constant mean curvature and intersects5 (if it does) perpendicularly along 0.

Proof. We may show the reverse implication by adapting the proof of [Barbosa
and do Carmo 1984, Proposition 2.7]. To show that φ meets 5 perpendicularly
along 0 if φ is stationary, we take an admissible variation8 that preserves volume
with variational field X , and we take p0 ∈ ∂6. Suppose by contradiction that
〈X (p0), ν(p0)〉 6= 0. By continuity there is a neighborhood U = W1 ∩ ∂6 of p0

such that 〈X (p), ν(p)〉> 0 for all p ∈U , where W1 is a neighborhood of p0 in 6.
Take q ∈

◦

6 \W1, let W2 be a neighborhood of q disjoint from W1, and let P be a
partition of unity on W1

⋃
W2. There exists a differentiable function ξ1 :W1→ R

such that ξ1(W1) ⊂ [0, 1] and with support supp ξ1 ⊂ W1. We may also take a
differentiable map ξ2 :W2→ R such that ξ2(W2)⊂ [0, 1], supp ξ2 ⊂W2 and∫

W1

ξ1 f dW1+

∫
W2

ξ2 f dW2 = 0.
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Define a variation 8ξ : (−ε, ε)×6→ R with compact support on W1
⋃

W2 by

8t
ξ (p)=8ξ (t, p)=

{
8(ξ1t, p) if p ∈W1,

8(ξ2t, p) if p ∈W2.

Note that 8ξ is admissible because 8 is admissible.
If fξ (p) denotes the normal component of the variation vector, we have∫

6

fξ (p) d A =
∫

W1

ξ1(p) f (p) dW1+

∫
W2

ξ2(p) f (p) dW2 = 0,

and 8ξ preserves volume.
For this variation we have

0= A′(0)=−2H
∫
6

fξ d A+
∫

W1

ξ1〈X, ν〉 d0 =
∫

W1

ξ1〈X, ν〉 d0 > 0,

which is a contradiction. Then for all p ∈ ∂6, it follows that 〈X, ν〉(p)= 0. �

Next we show that the isoperimetric domains are rotationally invariant.
We need some symmetrization principle for H -surfaces. By taking the hyper-

bolic version of Aleksandrov’s principle of reflection (for further references and
details, see [Aleksandrov 1962]) and using [Barbosa and Sa Earp 1998] to special-
ize to the case of reflection planes, we get the next result. A detailed proof may be
found in [López 2006].

Theorem 3.3. Suppose 6 is a compact, connected, orientable and embedded H-
surface of class C2 that lies between two parallel horospheres 51 and 52 in R3

+

and has boundary ∂6 ⊂ 51
⋃
52 (possibly empty). Then 6 is rotationally sym-

metric around an axis perpendicular to 51 and 52.

We observe that the intersection of 6 with a horosphere H (represented by a
horizontal Euclidean plane) is just a Euclidean circle. In fact, if there were two
concentric circles and the isoperimetric region R was delimited by these circles,
we would apply the Aleksandrov’s reflection principle with respect to vertical Eu-
clidean planes and get a totally geodesic symmetry plane P determined by the first
contact point x0; see Figure 2. However, P would obviously not contain the axis
of symmetry of R. See [López 2006] for a detailed proof of this fact.

4. Isoperimetric regions between horospheres in R3
+

We now classify the rotational H -surfaces of R3
+

that lie between two parallel horo-
spheres, have boundary contained in the horospheres, and intersect the horospheres
perpendicularly. In so doing, we get all possible solutions for the isoperimetric
problem in hyperbolic space, since the solutions must be regions delimited by these
H -surfaces. We start with important results from the thesis of Barrientos [1995].
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.

P

x0

Figure 2. Excluded case: region between two concentric circles

If (ρ, θ, z) are the cylindrical coordinates of a point p in R3
+

, then the Cartesian
coordinates are given by

(4-1) (x̄, ȳ, z̄)= ez(tanh ρ cos θ, tanh ρ sin θ, sech ρ).

For a spherical rotational surface 6 of R3
+

around the z̄-axis, the orbit of a point
p = (ρ0, θ0, z0) is Rϕ(p) = (ρ0, θ0 + ϕ, z0), where Rϕ(p) denotes the rotation
of p with angle ϕ around z̄. If c(s) is the profile curve of 6 parametrized by
arclength, we can parametrize 6 as X (s, t)=Rt(c(s)), so that its metric is dσ 2

=

ds2
+U 2(s) dt2, where U =U (s) is a positive function, s is the arclength parameter

of c(s), and dt = dϕ. We call (s, t) the natural parameters of 6. From (4-1), the
metric (2-1) is given by

(4-2) dρ2
+ sinh2 ρ dθ2

+ cosh2 ρ dz2.

In the plane θ = 0, the profile curve c(s) can be locally viewed as the graph
z = λ(s) = λ(ρ(s)). From (4-2) we have in this parameterization that dt = dϕ,
ds = (1+ λ′2(ρ) cosh2 ρ)1/2dρ,

(4-3) U 2(s)= sinh2 ρ(s) and λ′2(s)=
1+U 2(s)−U ′2(s)
(1+U 2(s))2

.

Then the natural parametrization for a rotational surface in cylindrical coordi-
nates is

sinh2 ρ(s)=U 2(s), λ(s)=
∫ s

0

√
1+U 2(t)−U ′2(t)

1+U 2(t)
dt, ϕ(t)= t.

Barrientos [1995] classified the H -surfaces of R3
+

; another important reference
is [Sterling 1987]. By setting ζ(s) = U 2(s), Barrientos found that the differential
equation for the rotational H -surfaces in R3

+
is

ζ ′2/4= (1− H 2)ζ 2
+ (1+ 2aH)ζ − a2,
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and showed that the behavior of their profile curves is determined by the constant
of integration a. After choosing the surface orientation so that H ≥ 0, there are
three cases to study: H = 1, H ∈ [0, 1) and H > 1.

Next we give in each of these cases the natural parametrizations for a rotational
H -surface in R3

+
generated by a curve c(s)= (ρ(s), λ(s)).

H = 1



sinh2 ρ(s)=
a2
+ (1+ 2a)2s2

1+ 2a
,

λ(s)=
∫ s

0

√
1+ 2a(−a(1+ a)+ (1+ 2a)2t2)

√
a2+ (1+ 2a)2t2

(−a(1+ a)+ (1+ 2a)2t2)2+ (1+ 2a)4t2 dt,

ϕ(t)= t.

H ∈ [0, 1)



sinh2 ρ(s)=
−A+ B cosh(2αs)

2α2 ,

λ(s)=
∫ s

0

√
2α(−2a+ H(−1+ B cosh(2αt)))

√
−A+ B cosh(2αt)

(−2a+ H(−1+ B cosh(2αt)))2+α2 B2 sinh2(2αt)
dt,

ϕ(t)= t,

where A = 1+ 2aH, B =
√

1+ 4aH + 4a2 and α =
√

1− H 2.

H > 1



sinh2 ρ(s)=
A+ B sin(2αs)

2α2 ,

λ(s)=
∫ s

0

√
2α(2a+ H(1+ B sin(2αt)))

√
A+ B sin(2αt)

(2a+ H(1+ B sin(2αt)))2+α2 B2 cos2(2αt)
dt,

ϕ(t)= t,

where A = 1+ 2aH , B =
√

1+ 4aH + 4a2 and α =
√

H 2− 1.

Now we introduce some notations and definitions used throughout this section.
From (4-1) the profile curve of a rotational H -surface in R3

+
is given by

(4-4) c+(s)= eλ(s)(tanh ρ(s), sech ρ(s)).

Here ρ(s) and λ(s) are determined by the suitable parametrization above. In
the H = 1 case, a > −1/2. When −1/2 < a < 0, we say the rotational surfaces
are of catenoid cousin type. In the H ∈ [0, 1) case, a ∈ R. When a < 0, we
say the rotational surfaces are of equidistant type. In the H > 1 case, we have
a ≥ (−H +

√
H 2− 1)/2. When −1/(4H) < a < 0, we obtain the onduloid type

surfaces. In each case, we get umbilical surfaces when a = 0.
By taking λ= 0 in (4-4), we get the curve cg(s)= (tanh ρ(s), sech ρ(s)), which

is an upper half-circle perpendicular to the z̄-axis. Namely, it is a geodesic with
Euclidean radius r = (tanh2 ρ(s)+sech2 ρ(s))1/2= 1. The curve cg(s) is called the
geodesic radius. Our analysis works up to Euclidean homotheties Hr for general
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r > 0, namely
Hr (c+(s))= eλ(s)(r tanh ρ(s), r sech ρ(s));

these give other families of profile curves of rotational H -surfaces. For the results
in this section that deal with geodesic radius, we take r = 1. By Theorems 3.2
and 3.3, the boundaries of the isoperimetric solutions must be rotational H -surfaces
that meet the horospheres {z = c1} and {z = c2} perpendicularly. Now our goal
is to determine the vertical tangency points of the profile curves of the rotational
surfaces.

Definition 4.1. Suppose c+(s) is a curve parametrized by (4-4). We say that a
point c+(s) is a vertical tangency point if the tangent vector at c+(s) satisfies
c′
+
(s)= (0, b), where b ∈ R∗, that is,

eλ(s)(tanh ρ(s)λ′(s)+ sech2 ρ(s)ρ ′(s))= 0,(4-5)

eλ(s)(sech ρ(s)λ′(s)− sech ρ(s) tanh ρ(s)ρ ′(s))= b.(4-6)

Since eλ(s) > 0, Equation (4-5) implies that

(4-7) tanh ρ(s)λ′(s)+ sech2 ρ(s)ρ ′(s)= 0.

By (4-7) we obtain the points where the vertical tangency occurs, and by (4-6)
we get the direction of the tangency (upward or downward).

By applying (4-3) to (4-7) we see that, if p is a vertical tangency point with
U (s) 6= 0, then

(4-8) U 2(s)=U ′2(s),

and the roots of (4-8) give us the vertical tangency points.
Next we study the behavior of the profile curve of rotational H -surfaces and

determine the possible vertical tangency points. In each case, ρ(s), λ(s) and U (s)
are those the of corresponding parametrization on page 11.

The case H = 1.

Theorem 4.2. If c+(s) = eλ(s)(tanh ρ(s), sech ρ(s)) is the parametrization of the
profile curve of a rotational H-surface in R3

+
with H = 1, then c+(s) is symmetric

with respect to the geodesic radius cg.

Proof. By definition, λ(0) = 0, so c+(0) ∈ cg. If I is the Euclidean inversion
through cg, then I (c+(s))= c+(−s), because ρ(s) is even and λ(s) is odd. �

By the definition of ρ(s),

(4-9) sinh ρ(s)= 0 if and only if a = 0 and s = 0.
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So tanh ρ(s) > 0 if neither a nor s is zero. Furthermore s = 0 is the unique
minimum point of ρ(s).

As for U (s) in the case H = 1, we have

(4-10) U 2(s)=
a2
+ (1+ 2a)2s2

1+ 2a
and U ′2(s)=

(1+ 2a)3s2

a2+ (1+ 2a)2s2 .

By applying (4-10) to (4-8) it follows that

(4-11) (1+ 2a)4s4
+ (2a2(1+ 2a)2− (1+ 2a)4)s2

+ a4
= 0.

This is a second order equation in s2, with discriminant

(4-12) 1= (1+ 2a)6(4a+ 1).

Since 1+ 2a > 0, we have these facts in the H = 1 case:

• If −1/2 < a < −1/4, then (4-11) has no real roots, so there are no points of
vertical tangency.

• If a =−1/4, there are at most two vertical tangency points

(4-13) s =±1/2.

• If a >−1/4, there are at most four vertical tangency points, given by

(4-14)
s1 =

1+2a+
√

1+4a
2(1+2a)

, s2 =−s1,

s3 =
1+2a−

√
1+4a

2(1+2a)
, s4 =−s3.

Besides these pieces of information, we study the vertical tangencies as the
parameter a varies.

The subcase −1/4≤ a < 0. In this case, we have λ′(s) > 0. If s ≥ 0, then

tanh ρ(s)λ′(s)+ sech2 ρ(s)ρ ′(s) > 0,

and (4-7) is not possible. Since 1+ 2a > 0, the roots s1 and s3 of (4-8) given by
(4-14) are strictly positive and thus do not give vertical tangency points. The other
roots s2, s4< 0 give us the vertical tangency points with upward direction for b> 0
in (4-6). The left figure in Figure 3 shows the profile curve for H = 1 and a=−0.2
and the horocycles that pass through the vertical tangency. To the right, we see two
parallel horospheres and the rotational surface between the horospheres that meets
them perpendicularly.

In particular, if a = −1/4, the positive root s = 1/2 of (4-8) given by (4-13)
does not give a vertical tangency point, and there is only one vertical tangency



14 ROSA M. B. CHAVES, MÁRCIO F. DA SILVA AND RENATO H. L. PEDROSA

Figure 3. At left, the profile curve for H = 1 and a = −0.2, and
at right the corresponding rotational surface.

Figure 4. At left, the profile curve for H = 1 and a = 0, and at
right the corresponding rotational surface.

point corresponding to s =−1/2. From the definitions of ρ(s) and λ(s) we get

(4-15)
lim

s→−∞
eλ(s) tanh ρ(s)= 0, lim

s→−∞
eλ(s) sech ρ(s)= 0,

lim
s→∞

eλ(s) tanh ρ(s)=∞, lim
s→−∞

eλ(s) sech ρ(s)=∞.

Geometrically, one sees it’s impossible to get an isoperimetric region in this case.

The subcase a = 0. In this case, two pieces of horocycle tangent at (0, 1) generate
the umbilical surfaces with H = 1. They are represented by the Euclidean plane
{z = 1} or the Euclidean sphere with radius 1/2 and tangent to ∂R3

+
at (0, 0, 0). In

the latter case there is only one vertical tangency point and the surface boundary
meets only one of the horospheres perpendicularly. In fact, by taking the upper
Euclidean half-sphere that represents the horosphere, we get the possible isoperi-
metric solution for the umbilical case with H = 1. Figure 4 illustrates the situation.

The subcase a > 0. In this case, the profile curves have only one self-intersection.
From (4-4), if c+(si ) = c+(s j ) is a self-intersection, then si = ±s j . Since the
curves are symmetric with respect to cg, the self-intersections must occur on cg. So
λ(si )=λ(s j )=0. By its definition in this case, we deduce that λ(s) has a maximum
at −
√

a(1+ a)/(1 + 2a) and a minimum at
√

a(1+ a)/(1 + 2a). Furthermore,
lims→∞ λ(s)=∞ (see [Barrientos 1995]), λ(0)= 0, and λ(s) is an odd function.
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Figure 5. At left, the profile curve for H = 1 and a = 1, and at
right the corresponding rotational surface. This case cannot be an
isoperimetric solution.

Also, ρ(s) has only one minimum at s = 0. So, if s >
√

a(1+ a)/(1+ 2a) > 0
then ρ ′(s), λ′(s) > 0 and

tanh ρ(s)λ′(s)+ sech2 ρ(s)ρ ′(s) > 0.

If however−
√

a(1+ a)/(1+2a)< s< 0, then ρ ′(s), λ′(s)< 0, which implies that

tanh ρ(s)λ′(s)+ sech2 ρ(s)ρ ′(s) < 0.

In either case, (4-7) does not hold. Since a > 0, the roots s1, s2, s3 and s4 of (4-8)
given by (4-14) satisfy

s2 <−

√
a(1+ a)
1+ 2a

< s4 < 0< s3 <

√
a(1+ a)
1+ 2a

< s1,

Therefore, vertical tangency is possible only for the positive roots s2 and s3. Since
ρ ′(s2) < 0 and λ′(s2) > 0, the vertical tangency for s2 is upward. However, it is
downward for s3, since ρ ′(s3) > 0 and λ′(s3) < 0. The isoperimetric solution is
not possible in this case because, if the vertical tangencies did not occur at the
same height, then a piece of the rotational surface would be outside of the region
between the horospheres; see Figure 5.

Even if vertical tangency occurred at the same height, the intersection of the
rotational H -surface with the parallel horospheres would be two concentric circles,
which is not possible due to Theorem 3.3.

In summary, for H = 1 the boundary of the region � must be either a catenoid
cousin-type surface as in Figure 3 or umbilical as in Figure 4

We proceed in the analogous way to study the other cases, and give here only
the main equations and results.

The case H ∈ [0, 1).

Theorem 4.3. If c+(s) = eλ(s)(tanh ρ(s), sech ρ(s)) is the parametrization of the
profile curve of a rotational H-surface in R3

+
with H ∈ [0, 1), then

(1) c+(s) is symmetric with respect to the geodesic radius cg, and
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(2) the asymptotic boundary of the profile curves consists of one or two points.

Proof. The proof of (1) is similar to that of Theorem 4.2. Barrientos [1995]
showed that ρ(s) is unbounded but λ(s) is bounded and has a limit. Then we have
lim|s|→∞ eλ(s) sech ρ(s) = 0, and the asymptotic boundary of the profile curves
consists of one or two points. �

Since sinh ρ(s) ≥ 0, we have by definition (page 11) that sinh ρ(s) = 0 if and
only if a = 0 and s = 0.

Again by definition, it follows that

(4-16) U 2(s)=
−A+ B cosh(2αs)

2α2 and U ′2(s)=
B2 sinh2(2αs)

2(−A+ B cosh(2αs))
.

By applying (4-16) to (4-8), we get

(4-17) B2 H 2 cosh2(2αs)− 2AB cosh(2αs)+ A2
+α2 B2

= 0.

This is a second order equation in cosh(2αs), with discriminant

1= 4B2(1− H 2)2(1+ 4aH).

Since B > 0 if H ∈ (0, 1) and a is defined for any real, we have these facts:

• If a <−1/(4H), there are no vertical tangency points.

• If a =−1/(4H), there are at most two vertical tangency points

(4-18) s =± 1
2α

arccosh(1/H).

• If a >−1/(4H), there are at most four vertical tangency points

(4-19)
s1 =

1
2α

arccosh
( A+ (1− H 2)

√
1+ 4aH

B H 2

)
, s2 =−s1,

s3 =
1

2α
arccosh

( A− (1− H 2)
√

1+ 4aH
B H 2

)
, s4 =−s3.

In particular, H = 0 in (4-17) gives 2B cosh(2s)−1−B2
= 0, whose solutions

are s =±(1/2) arccosh(B2
+ 1/(2B)).

First, let us specialize to the case that H ∈ (0, 1); we’ll treat H = 0 later.

The subcase −1/(4H) ≤ a < 0. In this case, only the roots s2, s4 < 0 give us
vertical tangency points with upward direction. Figure 6 shows the profile curve
for H = 0.5 and a = −0.25 and the horocycles that pass through the vertical
tangencies. The mean curvature vector for the part of the rotational surface in the
interior of the totally geodesic (symmetry plane of the surface) points out toward
the rotation axis, and so determines the isoperimetric region illustrated at right.
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Figure 6. At left, profile curve for H = 0.5 and a = −0.25, and
at right the corresponding rotational surface.

In particular, if a = −1/(4H) there is only one vertical tangency point at s =
−1/(2α) arccosh(1/H) < 0. Although the profile curve intersects the horocycle at
another point, it is not of vertical tangency.

The subcase a = 0. In this case, two pieces of equidistant curve tangent at (0, 1)
generate the umbilical surfaces with H ∈ (0, 1). They are represented by pieces of
Euclidean spheres tangent at (0, 0, 1). The vertical tangency occurs only for the
equidistant profile curve that is the nearest to the rotation axis. Since the mean
curvature vector of this umbilical surface points outward to the rotation axis, it
determines an isoperimetric region.

The subcase a > 0. If a > 0 only the roots s2 and s3 correspond to vertical tan-
gencies with directions upward in s2 and downward in s3. Geometrically, one sees
that it is impossible to get an isoperimetric region in this case.

As for the H = 0 case, for a < 0 or a > 0 we get only one vertical tangency
point. If a = 0, the rotational surface is a totally geodesic plane. Thus it is not
possible to get an isoperimetric region for any a ∈ R.

Finally, we conclude that for H ∈ [0, 1) the boundary of the region � must be
an equidistant-type surface (see Figure 6) or an umbilical surface with H ∈ (0, 1).

The case H > 1.

Theorem 4.4. If c+(s) = eλ(s)(tanh ρ(s), sech ρ(s)) is the parametrization of the
profile curve of a rotational H-surface in R3

+
with H > 1, then c+(s) is a periodic

curve with period π/α.

Proof. We show that the hyperbolic length of the segment with extremes c+(s) and
c+(s+π/α) is constant for all s. Barrientos [1995] shows that

(4-20) ρ(s+π/α)= ρ(s) and λ(s+π/α)= λ(s)+ λ(π/α),

which implies from (4-4) that c+(s+π/α)= eλ(π/α)c+(s).
We fix s0 and parametrize the segment with extremes c+(s0) and c+(s0+π/α)

by

β(t)=
(

t, t
sinh ρ(s0)

)
, with eλ(s0) tanh ρ(s0)≤ t ≤ eλ(s0)eλ(π/α) tanh ρ(s0).
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Therefore its hyperbolic length is L(β(t))= λ(π/α) cosh ρ(s0).
The length of the segment depends only on the function ρ(s) with period π/α,

given in (4-20). So L(β(t)) is the same for any s0. �

Again by definition, it follows that

(4-21) U 2(s)=
A+ B sin(2αs)

2α2 and U ′2(s)=
B2 cos2(2αs)

2(A+ B sin(2αs))
.

By applying (4-21) to (4-8), we get

B2 H 2 sin2(2αs)+ 2AB sin(2αs)+ A2
−α2 B2

= 0.

This is a second order equation in sin(2αs), with discriminant

1= 4B2(H 2
− 1)2(1+ 4aH).

Since H > 1 and B > 0, this discriminant leads to these conclusions:

• If a <−1/(4H), there are no vertical tangency points.

• If a =−1/(4H), the possible vertical tangency points are1

(4-22)
sk =

1
2α

arcsin(1/H)+ kπ/α, for k ∈ Z,

s̃k =
1

2α
ãrcsin(1/H)+ kπ/α for k ∈ Z.

• If a >−1/(4H) the possibilities are, for k ∈ Z,

Sk =
1

2α
arcsin(D+)+ kπ/α, sk=

1
2α

arcsin(D−)+ kπ/α,

S̃k =
1

2α
ãrcsin(D+)+ kπ/α, s̃k=

1
2α

ãrcsin(D−)+ kπ/α,

where D± = (−A± (H 2
− 1)
√

1+ 4aH)/(B H 2)

Now we determine when the vertical tangency really occurs, depending on the
geometry of the profile curve.

(1) If−1/(4H)≤ a< 0, only the roots S̃k and s̃k give the vertical tangency points
with upward direction; see Figure 7.

(2) If a = 0, we have tangent geodesic half-circles along the rotation axis, each
of which generates a geodesic sphere in R3

+
; these are umbilical surfaces and

isoperimetric regions.

(3) If a > 0, we may analyze the behavior of the profile curves in the interval
]−π/(4α), 3π/(4α)[, since by Theorem 4.4 they are (π/α)-periodic. It is
easy to see that only the roots s0 and S̃0 give vertical tangency with directions

1Here ãrcsin is the inverse sine such that ãrcsin x ∈ [π/2, 3π/2), and arcsin is the usual inverse.
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Figure 7. Hyperbolic onduloid with H = 3 and a =−0.05.

downward in s0 and upward in S̃0. This case corresponds to the so-called
hyperbolic nodoids, which are not embedded surfaces.

In summary, for H > 1, the boundary of the region� can be either an onduloid-
type surface as in Figure 7 or an umbilical surface.

Proof of Theorem 1.1. We start with the existence and then obtain the possible
minimizing regions. By Theorem 3.3, the solutions to the isoperimetric problem
have as boundaries rotationally invariant surfaces that have constant mean curvature
where they are regular. But they must be regular (actually analytic), since the
singularities along such boundaries must have, by well-known results, (Hausdorff)
codimension at least 7, which is not possible for (2-dimensional) surfaces. Now,
by results of [Morgan 1994], the existence of the isoperimetric solutions follows
from the fact that Fc1,c2/G is compact, where G is the group of isometries of R3

+

whose elements leave invariant the region Fc1,c2 between the horospheres, that is,
the rotations around a vertical geodesic and the horizontal translations. The second
part of Theorem 1.1 follows from the analysis of vertical tangencies done in the
cases H = 1, H ∈ [0, 1), and H > 1. �

plus .5pt
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05508-090 SÃO PAULO - SP
BRAZIL

rosab@ime.usp.br
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FOUR-DIMENSIONAL OSSERMAN METRICS
OF NEUTRAL SIGNATURE

EDUARDO GARCÍA-RÍO, PETER B. GILKEY,
M. ELENA VÁZQUEZ-ABAL AND RAMÓN VÁZQUEZ-LORENZO

In the algebraic context, we show null Osserman, spacelike Osserman, and
timelike Osserman are equivalent conditions for a model of signature (2, 2).
We also classify the null Jordan Osserman models of signature (2, 2). In
the geometric context, we show that a pseudo-Riemannian manifold with
this signature is null Jordan Osserman if and only if either it has constant
sectional curvature or it is locally a complex space form.

1. Introduction

Let M := (M, g) be a pseudo-Riemannian manifold. We say a tangent vector v
is spacelike, timelike, or null if g(v, v) > 0, if g(v, v) < 0, or if g(v, v) = 0,
respectively. Geometric properties derived from conditions on spacelike, timelike,
and null vectors can have quite different meanings. For instance, the conditions
of spacelike, timelike, and null geodesic completeness are nonequivalent and in-
dependent. Although spacelike and timelike conditions can sometimes become
equivalent (for example, as they concern boundedness conditions on the sectional
curvature), they can be quite different from similar null conditions, which are some-
times related to the conformal geometry of the manifold.

Let R(x, y) := ∇x∇y − ∇y∇x − ∇[x,y] be the curvature operator of M. The
associated Jacobi operator JR(x) : y→ R(y, x)x encodes much of the manifold’s
geometric information. The rescaling property JR(λv)= λ

2JR(v) plays a crucial
role. Let S±(M) be the unit sphere bundles of spacelike and timelike unit tangent
vectors in M , and let N (M) be the null cone of nonzero null vectors. One says
that M is spacelike Osserman if the eigenvalues of JR are constant on S+(M);
one says instead timelike if they are constant on S−(M). Normalizing the length
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of the tangent vector to be ±1 takes into account the above scaling of the Jacobi
operator. Perhaps surprisingly, spacelike Osserman and timelike Osserman are
equivalent conditions [Garcı́a-Rı́o et al. 1999; Gilkey 2001].

We say that M is null Osserman if the eigenvalues of JR are constant on the null
cone N (M); with this definition, if M is null Osserman, then necessarily JR(v)

is nilpotent if v ∈ N (M) and JR(v) has only the eigenvalue 0. Any spacelike or
timelike Osserman manifold is necessarily null Osserman; the converse can fail in
general — see for example [Garcı́a-Rı́o et al. 1997] in the Lorentzian setting.

The Jordan normal form plays a crucial role in the higher signature setting —
a self-adjoint linear transformation need not be determined by its eigenvalues if
the metric in question is indefinite. One says that M is spacelike, timelike, or null
Jordan Osserman if the Jordan normal form of JR( · ) is constant on S+(M), on
S−(M), or on N (M), respectively. It is known from [Gilkey 2001; Gilkey and
Ivanova 2002; 2001] that spacelike and timelike Jordan Osserman are inequivalent
conditions; further neither necessarily implies the null Jordan Osserman condition.

In this paper, we concentrate on the 4-dimensional setting. Chi [1988] showed
that any Riemannian Osserman 4-manifold is locally isometric to a 2-point homo-
geneous space; from later work [Blažić et al. 1997; Garcı́a-Rı́o et al. 1997], it
follows that any Lorentzian 4-manifold has constant sectional curvature. However
the situation is much more complicated in neutral signature (2, 2); there exist many
examples of nonsymmetric Osserman pseudo-Riemannian manifolds of neutral
signature — see [Dı́az-Ramos et al. 2006b] and [Garcı́a-Rı́o et al. 1998]. Despite
the results of [Alekseevsky et al. 1999; Blažić et al. 2001; Dı́az-Ramos et al. 2006a;
Garcı́a-Rı́o and Vázquez-Lorenzo 2001], it is still an open problem to completely
describe 4-dimensional Osserman metrics of neutral signature.

It is convenient to work algebraically. Let V be a finite-dimensional real vector
space that is equipped with a nondegenerate symmetric bilinear form 〈 · , · 〉 of
signature (p, q). Let A ∈ ⊗4(V ∗) be an algebraic curvature tensor on V , that is, a
tensor that has the symmetries of the Riemann curvature tensor:

A(x, y, z, v)=−A(y, x, z, v)= A(z, v, x, y),

A(x, y, z, v)+ A(y, z, x, v)+ A(z, x, y, v)= 0.

This defines a model M := (V, 〈 · , · 〉, A). We often prove results on the algebraic
level (that is, for models), and then obtain corresponding conclusions in the geo-
metric context. The notions spacelike unit vector, timelike unit vector, null vector,
Jacobi operator, and so on extend naturally to this setting.

1.1. Null Osserman algebraic curvature tensors. Henceforth, suppose 〈 · , · 〉 is
an inner product of signature (2, 2) on a 4-dimensional real vector space V . Fix
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an orientation of V , and let B = {e1, e2, e3, e4} be an oriented orthonormal basis
for V , where e1 and e2 are timelike and where e3 and e4 are spacelike.

At the algebraic level, in signature (2, 2) the conditions spacelike Osserman,
timelike Osserman, spacelike Jordan Osserman and timelike Jordan Osserman are
equivalent to the condition that M is Einstein and self-dual with respect to a suit-
ably chosen local orientation [Alekseevsky et al. 1999; Garcı́a-Rı́o et al. 2002]. In
Section 2, we will establish Theorem 1.2, which shows that these conditions are
also equivalent to null Osserman:

Theorem 1.2. Let M be a model of neutral signature (2, 2). Then the following
conditions are equivalent:

(1) M is spacelike Osserman.

(2) M is timelike Osserman.

(3) M is spacelike Jordan Osserman.

(4) M is timelike Jordan Osserman.

(5) M is Einstein and self-dual for a suitably chosen local orientation.

(6) M is null Osserman.

Remark 1.3. The action of homothety on the null vectors is a central one in this
subject. With our definition, it is immediate that M = (V, 〈 · , · 〉, A) is null Os-
serman implies that 0 is the only eigenvalue of JA on N (V, 〈 · , · 〉). There is,
although, an alternative, and different, formulation. One says that M is projectively
null Osserman if either M is null Osserman or if given 0 6= n1, n2 ∈ N (V, 〈 · , · 〉),
there is a nonzero constant λ such that Spec(JA(n1))= λSpec(JA(n2)). We refer
to [Brozos-Vázquez et al. 2008] for related work; we only introduce this concept
for the sake of completeness as it plays no role in our development.

1.4. Null Jordan Osserman algebraic curvature tensors. Two algebraic curva-
ture tensors will play a distinguished role. If 9 is an skew-adjoint endomorphism
of V , define the associated algebraic curvature tensor A9 by setting

(1-1) A9(x, y, z, v) := 〈9y, z〉〈9x, v〉− 〈9x, z〉〈9y, v〉− 2〈9x, y〉〈9z, v〉.

Such tensors span the linear space of all algebraic curvature tensors [Fiedler 2002].
The sectional curvature of a nondegenerate 2-plane π = Span{x, y} is given by

K A(π) :=
A(x, y, y, x)

〈x, x〉〈y, y〉− 〈x, y〉〈x, y〉
;

A has constant sectional curvature κ0 if and only if A = κ0 A0, where A0 is the
algebraic curvature tensor of constant sectional curvature +1 defined by

(1-2) A0(x, y, z, v) := 〈y, z〉〈x, v〉− 〈x, z〉〈y, v〉.
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We note that (1-1) and (1-2) imply that

(1-3) JA9 (x) : y→ 3〈y, 9x〉9x and JA0(x) : y→ 〈x, x〉y−〈x, y〉x .

Assume that 9 is skew-adjoint. We say 9 is an orthogonal complex structure if
92
=− id and say 9 is an adapted paracomplex structure if 92

= id. We say that
a triple of skew-adjoint operators {91, 92, 93} is a paraquaternionic structure if
92

1 =− id, 92
2 = id, 92

3 = id, and if 9i9 j +9 j9i = 0 for i 6= j . We can define a
paraquaternionic structure by setting

(1-4)
91e1 =−e2, 91e2 = e1, 91e3 = e4, 91e4 =−e3,

92e1 = e3, 92e2 = e4, 92e3 = e1, 92e4 = e2,

93e1 = e4, 93e2 =−e3, 93e3 =−e2, 93e4 = e1.

Note that 93=9192. If {91, 92, 93} is another paraquaternionic structure on V ,
there is an isometry φ of V such that φ∗91 =91, φ∗92 =92, and φ∗93 =±93;
this slight sign ambiguity plays no role in our constructions.

Let x be a spacelike or timelike vector. Then there is an orthogonal direct sum
decomposition V = R x ⊕ x⊥. Since JA(x)x = 0, JA(x) preserves x⊥. There are
four different possibilities that describe the Jordan normal form of JA(x) restricted
to x⊥ (see [Blažić et al. 2001; Garcı́a-Rı́o et al. 2002] for further details):

(1-5)

α 0 0
0 β 0
0 0 γ

 ,
α −β 0
β α 0
0 0 γ

 ,
β 0 0

0 α 0
0 1 α

 ,
α 0 0

1 α 0
0 1 α

 .
Type Ia Type Ib Type II Type III

Type Ia corresponds to a diagonalizable operator, Type Ib to an operator with a
complex eigenvalue and Type II (respectively Type III) to a double (respectively
triple) root of the minimal polynomial of the operator. If M is spacelike, timelike,
or null Osserman, then the Jordan normal form of JA is constant on the spacelike
and timelike unit vectors, and we classify A according to the four types above. In
Section 3, we construct, up to isomorphism, all the spacelike Jordan Osserman
algebraic curvature tensors and perform the analysis necessary to establish the
following classification result:

Theorem 1.5. Let M := (V, 〈 · , · 〉, A) be a model of signature (2, 2). Then M is
null Jordan Osserman if and only if A is of Type Ia and one of the following holds:

(1) There exists a constant κ0 such that A = κ0 A0.

(2) There exists constants κ0 and κJ with κJ 6= 0 such that A = κ0 A0
+ κJ AJ ,

where J is an orthogonal complex structure on V .

(3) There exists a constant κP 6= 0 such that A = κP AP , where P is an adapted
paracomplex structure on V .
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(4) There exist constants κ1, κ2, κ3 such that κ2κ3(κ2 + κ1)(κ3 + κ1) > 0, such
that the associated eigenvalues {3κ1,−3κ2,−3κ3} are all distinct, and such
that A = κ1 A91 + κ2 A92 + κ3 A93 , where (91, 92, 93) is a paraquaternionic
structure on V .

Remark 1.6. The inequality κ2κ3(κ2+ κ1)(κ3+ κ1) > 0 is equivalent to the cross
ratio satisfying

(0, κ1,−κ3,−κ2)=
κ3(κ2+ κ1)

κ2(κ3+ κ1)
> 0.

Let S2 be the unit sphere in R3. This inequality is equivalent to the fact that the set
of points (0,−κ3,−κ2) and (κ1,−κ3,−κ2) give (via the stereographic projection)
the corresponding circles in S2 the same orientation [Marden 2007].

1.7. Null Jordan Osserman manifolds. We characterize those neutral signature 4-
manifolds that are null Jordan Osserman; null Osserman and null Jordan Osserman
are not equivalent conditions, as the analysis of Section 3.7 shows. We say that M

is locally a complex space form if it is an indefinite Kähler manifold of constant
holomorphic sectional curvature. In Section 4, we will use Theorem 1.5 to establish
the following geometric result:

Theorem 1.8. If M is a connected pseudo-Riemannian manifold of neutral signa-
ture (2, 2), then M is null Jordan Osserman if and only if either M has constant
sectional curvature or M is locally a complex space form.

Remark 1.9. There is another family of Osserman 4-manifolds with diagonaliz-
able Jacobi operator, namely, the paracomplex space forms [Blažić et al. 2001].
Although the geometry of complex and paracomplex space forms is very similar,
the Jordan–Osserman condition distinguishes them. To our knowledge, this is the
first algebraic curvature condition that distinguishes these two geometries.

2. Null Osserman models of signature (2, 2)

We work in the algebraic context to prove Theorem 1.2. Here is a brief outline
to this section. Previous work establishes that parts (1)–(5) are equivalent. In
Section 2.1, we introduce notation and show that spacelike Osserman models are
null Osserman and that null Osserman models are Einstein. Thus to complete the
proof, it suffices to show null Osserman models are self-dual or anti-self-dual. In
Section 2.3, we examine Einstein models. Lemma 2.4 describes the Weyl curvature
operators in that setting, and Lemma 2.5 gives an alternative characterization of
self-duality for an Einstein model. We use Lemma 2.5 to complete the proof of
Theorem 1.2 in Section 2.6.
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2.1. Notation. Let M :=(V, 〈 · , · 〉, A) be a neutral signature 4-dimensional model.
We use the inner product to raise indices and to define an associated Jacobi oper-
ator JA, which is characterized by the identity 〈JA(x)y, z〉 = A(y, x, x, z). Let
B = {e1, e2, e3, e4} be an oriented orthonormal basis for V as in Section 1.1. Let
gi j := 〈ei , e j 〉, and let gi j be the inverse matrix. The associated Ricci tensor ρA,
the scalar curvature τA, and the Weyl tensor WA are then defined by setting

ρA(x, y) :=
∑4

i, j=1 gi j A(ei , x, y, e j ), τA :=
∑4

i, j=1 gi jρA(ei , e j ),

WA(x, y, z, v) := A(x, y, z, v) + 1
6τA(〈y, z〉〈x, v〉− 〈x, z〉〈y, v〉)

−
1
2

(
ρA(y, z)〈x, v〉− ρA(x, z)〈y, v〉

+ ρA(x, v)〈y, z〉− ρA(y, v)〈x, z〉
)
.

Let Ai jkl = AB
i jkl := A(ei , e j , ek, el) denote the components of A with respect to B,

where 1≤ i, j, k, l≤4; we drop the dependence on B from the notation when there
is no danger of confusion. Let {e1, . . . , e4

} be the dual basis for V ∗. The Hodge
operator ? :3p(V ∗)→34−p(V ∗) is characterized by the identity

φp ∧ ? θp = 〈φp, θp〉e1
∧ e2
∧ e3
∧ e4.

Thus,

? (e1
∧ e2)= e3

∧ e4, ? (e1
∧ e3)= e2

∧ e4, ? (e1
∧ e4)=−e2

∧ e3,

? (e2
∧ e3)=−e1

∧ e4, ? (e2
∧ e4)= e1

∧ e3, ? (e3
∧ e4)= e1

∧ e2.

A crucial feature of 4-dimensional geometry now enters. Since ?2
= id, the Hodge

star induces a splitting 32(V ∗)=3+⊕3− of the space of 2-forms, where

3+ = {α ∈32
: ? α = α} and 3− = {α ∈32

: ? α = −α}

denote the spaces of self-dual and anti-self-dual two-forms. We have orthonormal
bases {E∓1 , E∓2 , E∓3 } for 3∓ that are given by

E∓1 =
1
√

2
(e1
∧ e2
∓ e3
∧ e4), E∓2 =

1
√

2
(e1
∧ e3
∓ e2
∧ e4),

E∓3 =
1
√

2
(e1
∧ e4
± e2
∧ e3),

where the induced inner product on 3∓ has signature (2, 1):

〈E∓1 , E∓1 〉 = 1, 〈E∓2 , E∓2 〉 = −1, 〈E∓3 , E∓3 〉 = −1.

Let W∓A be the restriction of WA to the spaces 3∓, that is, W∓A : 3
∓
→ 3∓,

where WA also stands for the associated Weyl curvature operator on 32. We say
M is self-dual if W−A = 0 and anti-self-dual if W+A = 0.

Lemma 2.2. Let M= (V, 〈 · , · 〉, A) be a model of signature (2, 2).
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(1) If M is spacelike Osserman, then M is null Osserman.

(2) If M is null Osserman, then M is Einstein.

Proof. Suppose first M is spacelike Osserman. Set T j (v) := Tr{JA(v)
j
}. Since

the eigenvalues of JA are constant on S+(V, 〈 · , · 〉), there are constants c j such
that T j (v) = c j for v ∈ S+(V, 〈 · , · 〉). It follows since T j (λv) = λ

2 j T j (v) that
T j (v)= c j 〈v, v〉

j for v spacelike. Since the spacelike vectors form an open subset
of V , this polynomial identity holds for all v ∈ V . Thus, in particular, T j (v) = 0
if v ∈ N (V, 〈 · , · 〉). This implies that 0 is the only eigenvalue of JA(v) and shows
M is null Osserman.

Now suppose M is null Osserman. Let s1 and s2 be spacelike unit vectors.
We may choose a unit timelike vector t that is perpendicular to s1 and s2. Let
n±i := si ± t be null vectors. Thus 0= Tr(JA(n±i ))= ρA(n±i , n±i ), and

0= ρA(si ± t, si ± t)= ρA(si , si )+ ρA(t, t)± 2ρA(si , t).

This implies ρA(si , t) = 0 and ρA(si , si ) + ρA(t, t) = 0; in particular, one has
ρA(s1, s1)=−ρA(t, t)=ρA(s2, s2). Therefore, after rescaling, there is a constant c
such that ρA(s, s) = c〈s, s〉 for every spacelike vector s; this polynomial identity
then continues to hold for all s∈V . Polarizing this identity then yields ρA=c〈 · , · 〉,
and hence M is Einstein. �

2.3. The Weyl tensor for an Einstein algebraic curvature tensor. Let

σ1 = 2A1212+ 3εA1234+ A1313+ A1414,

σ2 = A1212+ 2A1313+ 3εA1324− A1414,

σ3 = A1212+ 3εA1234− A1313− 3εA1324+ 2A1414.

Then we have an immediate lemma:

Lemma 2.4. If M is Einstein, then the self-dual Weyl curvature operator W+A (in
which ε= 1) and the anti-self-dual Weyl curvature operator W−A (in which ε=−1)
are given by σ1/3 A1213+ εA1224 A1214− εA1223

−A1213− εA1224 −σ2/3 −A1314+ εA1323

−A1214+ εA1223 −A1314+ εA1323 −σ3/3

 .
The next observation is of interest in its own right:

Lemma 2.5. If M is Einstein, then the model M is anti-self-dual if and only if
AB

1214− AB
1223 = 0 for every oriented orthonormal frame B.

Proof. If M is anti-self-dual, we set ε= 1 in Lemma 2.4 to see AB
1214− AB

1223 = 0.
Conversely, suppose AB

1214 − AB
1223 = 0 for every B. Define a new basis B̃ by
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setting ẽ1 = e1, ẽ2 = e2, ẽ3 = e4, and ẽ4 =−e3. We then have

0=−AB̃
1214+ AB̃

1223 = AB
1213+ AB

1224.

Next, define B̃ by setting ẽ1=e1, ẽ2=cosh θe2+sinh θe3, ẽ3= sinh θe2+cosh θe3,
and ẽ4 = e4. This yields the relation

0=−AB̃
1214+ AB̃

1223 = cosh θ(−AB
1214+ AB

1223)+ sinh θ(−AB
1314+ AB

1323).

This shows −AB
1314+ AB

1323 = 0. Thus, by Lemma 2.4,

W+A =
1
3

σB
1 0 0
0 −σB

2 0
0 0 −σB

3

 .
Setting the ẽi as before yields bases for 3± in the form

Ẽ±1 = cosh θE±1 + sinh θE±2 , Ẽ±2 = cosh θE±2 + sinh θE±1 , Ẽ±3 = E±3 .

We may compute

W+A Ẽ+1 = σ
B̃
1 Ẽ+1 = σ

B̃
1 (cosh θE+1 + sinh θE+2 )

=W+A (cosh θE+1 + sinh θE+2 )= σ
B
1 cosh θE+1 − σ

B
2 sinh θE+2 .

This shows σ B̃
1 = σ

B
1 = −σ

B
2 . A similar argument applied to the basis ẽ1 = e1,

ẽ2 = cosh θe2+ sinh θe4, ẽ3 = e3, and ẽ4 = sinh θe2+cosh θe4 yields σB
1 =−σ

B
3 .

Since σB
1 − σ

B
2 − σ

B
3 = 0, it now follows that W+A = 0. �

2.6. Proof of Theorem 1.2. Let M be a null Osserman model. By Lemma 2.2, M

is Einstein. We complete the proof of Theorem 1.2 by showing M is self-dual or
anti-self-dual. Suppose the contrary and argue for a contradiction. As M is null
Osserman, JA is nilpotent, so the characteristic polynomial has pλ(JA(u)) = λ4.
Let

E1 := A1212+ 2A1214− 2A1223+ 2A1234− A1324+ A1414,

Q(a, b) := (A1212− 2A1214− 2A1223− 2A1234+ A1324+ A1414)a4

+ (A1212+ 2A1214+ 2A1223− 2A1234+ A1324+ A1414)b4

+ 2(A1212+ 2A1313− 3A1324− A1414)a2b2

+ 4(A1213− A1224− A1314− A1323)a3b

+ 4(A1213− A1224+ A1314+ A1323)ab3.

If we take u = ae1+be2+ae3+be4, then λ4
= pλ(JA(u))= λ2(λ2

−Q(a, b)E1).
As pλ(JA(u))= λ4, either Q(a, b)= 0 or E1 = 0. If we suppose that E1 6= 0, then
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Q(a, b) vanishes identically for all a, b. This leads to the relations

A1213− A1224 = 0, A1214+ A1223 = 0, A1314+ A1323 = 0,

A1234+ A1313− 2A1324− A1414 = 0, A1212+ 2A1313− 3A1324− A1414 = 0.

From this, we see that the matrix in Lemma 2.4 vanishes for ε =−1. This means
that the anti-self-dual Weyl curvature operator W−A vanishes, so M is self-dual,
which is a contradiction. Thus for any oriented orthonormal frame, we have

(2-1) 0= A1212+ 2A1214− 2A1223+ 2A1234− A1324+ A1414.

Setting ẽ1 =−e1, ẽ2 = e2, ẽ3 = e3, and ẽ4 =−e4 yields

(2-2) 0= A1212− 2A1214+ 2A1223+ 2A1234− A1324+ A1414.

Subtracting (2-2) from (2-1) then yields the relation 0=−A1214+ A1223. We may
now use Lemma 2.5 to complete the proof of Theorem 1.2. �

3. Proof of Theorem 1.5

Here is a brief outline of this section. In Section 3.1, we construct, up to iso-
morphism, all spacelike Jordan Osserman models of signature (2, 2). In the re-
mainder of Section 3, we analyze each possible Jordan normal form in some detail
using the classification of (1-5). Sections 3.5–3.8 deal with Type Ia models. In
Section 3.5 we study the case when all the eigenvalues are equal; this gives rise to
Theorem 1.5(1). In Section 3.6, we study the case of two equal spacelike eigen-
values, and in Section 3.7, we study equal timelike and spacelike eigenvalues;
these involve parts (2) and (3) of Theorem 1.5, respectively. In Section 3.8, we
study Type Ia models with distinct eigenvalues; this leads to Theorem 1.5(4). We
complete the proof of Theorem 1.5 by showing the remaining types do not give
rise to null Jordan Osserman models. We study Type Ib models in Section 3.9,
Type II models in Section 3.10, and Type III models in Section 3.11.

3.1. Spacelike Jordan Osserman models. We use the ansatz from [Gilkey and
Ivanova 2001]. Let {91, 92, 93} be the paraquaternionic structure given in (1-4).
Let ξi j ∈ R for 1≤ i ≤ j ≤ 3, and let κ0 ∈ R be given. Let

(3-1) Aκ0,ξ := κ0 A0
+

1
3ξ11 A91 +

1
3ξ22 A92 +

1
3ξ33 A93

+
1
3ξ12 A91+92 +

1
3ξ13 A91+93 +

1
3ξ23 A92+93,

Jκ0,ξ := κ0 id+

 ξ11+ ξ12+ ξ13 −ξ12 −ξ13

ξ12 −ξ22− ξ12− ξ23 −ξ23

ξ13 −ξ23 −ξ33− ξ13− ξ23

 .
Lemma 3.2. Adopt the notation established above. Let Mκ0,ξ := (V, 〈 · , · 〉, Aκ0,ξ ).
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(1) If x ∈ S±(V, 〈 · , · 〉), then JAκ0,ξ
(x) is conjugate to the matrix ±Jκ0,ξ .

(2) The model Mκ0,ξ is spacelike and timelike Jordan Osserman.

(3) Let Mi = (V, 〈 · , · 〉, Ai ) be spacelike Osserman models of signature (2, 2).
If JA1(x) is conjugate to JA2(x) for some x ∈ S±(V, 〈 · , · 〉), then there exists
an isometry φ of (V, 〈 · , · 〉) such that φ∗A2 = A1.

Remark 3.3. Any self-adjoint map of a signature (2, 1) vector space is conjugate
to Jκ0,ξ for some {κ0, ξ}, so every spacelike Osserman model of signature (2, 2) is
isomorphic to one given by (3-1).

Proof. We suppose x is a spacelike unit vector; the timelike case is similar. Let
f1 := 91x , f2 := 92x , and f3 := 93x . Then { f1, f2, f3} is an orthonormal basis
of signature (+, −, −) for x⊥. Let J := JAκ0,ξ

(x). We use (1-3) to see that

J f1 = (κ0+ ξ11+ ξ12+ ξ13) f1+ ξ12 f2+ ξ13 f3,

J f2 =−ξ12 f1+ (κ0− ξ22− ξ12− ξ23) f2− ξ23 f3,

J f3 =−ξ13 f1− ξ23 f2+ (κ0− ξ33− ξ13− ξ23) f3.

Part (1) now follows; part (2) follows from part (1). Suppose that M is a Type Ia
spacelike Osserman model, so JA(x) = diag[α, β, γ ] for any x in S+(V, 〈 · , · 〉);
choose the notation so Ker(JA(x)− α id) is spacelike. It then follows from the
discussion in [Blažić et al. 2001; Garcı́a-Rı́o et al. 2002] that there is an ortho-
normal basis B such that the nonzero components of the curvature tensor are

A1221 = A4334 = α, A1331 = A2442 =−β,

A1441 = A3223 =−γ, A1234 = (−2α+β + γ )/3,

A1423 = (α+β − 2γ )/3, A1342 = (α− 2β + γ )/3.

Similar forms exist for the other types of (1-5). Thus the Jordan normal form of
JA(x) determines A up to the action of O(2, 2). Part (3) follows. �

We immediately have this:

Lemma 3.4. A null Osserman model M of signature (2, 2) is null Jordan Osser-
man if and only if the functions Rank{JA( · )} and Rank{JA( · )

2
} are constant on

N (V, 〈 · , · 〉).

3.5. Type Ia with all eigenvalues equal: α = β = γ . We set A = κ0 A0. By
Lemma 3.2, the Jordan normal form is given by diag[κ0, κ0, κ0]. If v belongs to
N (V, 〈 · , · 〉), then JA(v)y =−κ0〈v, y〉v, and hence M is null Jordan Osserman.
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3.6. Type Ia with two equal spacelike eigenvalues: β= γ and α 6=β. Let J be an
orthogonal almost complex structure on V , and let A= κ0 A0

+κJ AJ . The Jordan
normal form is then given by diag[κ0 + 3κJ , κ0, κ0], which has the desired form
for suitably chosen κ0 and κJ with κJ 6= 0. Let v ∈ N (V, 〈 · , · 〉). We have

JA(v)y =−κ0〈v, y〉v+ 3κJ 〈y, Jv〉Jv.

Because J 2
= − id, the vectors v and Jv are linearly independent. We note that

〈v, v〉 = 〈v, Jv〉 = 〈Jv, Jv〉 = 0. Consequently JA(v)v = JA(v)Jv = 0. Since v⊥

and Jv⊥ are distinct 3-dimensional subspaces, we can choose y so 〈v, y〉 = 1 and
〈Jv, y〉 = 0. It now follows that JA(v)y =−κ0v, while JA(v)J y = 3κJ Jv. Thus
JA(v) has rank 2 and JA(v)

2
= 0. This implies A is null Jordan Osserman.

3.7. Type Ia with equal timelike and spacelike eigenvalues: α = β and β 6= γ .
Let A = κ0 A0

+ κP AP , where κP 6= 0 and where P is an adapted paracomplex
structure; the Jordan normal form is then given by diag[κ0, κ0 − 3κP , κ0], which
has the desired form for suitably chosen parameters. If v ∈ N (V, 〈 · , · 〉), then

JA(v)y =−κ0〈v, y〉v+ 3κP〈y, Pv〉Pv.

If κ0 = 0, M is null Jordan Osserman. Suppose κ0 6= 0. If v = e1 + Pe1, then
Pv= v, so Rank{JA(v)} ≤ 1. On the other hand, if v= e1+e4, then v and Pv are
linearly independent, so Rank{JA(v)} = 2 and M is not null Jordan Osserman.

3.8. Type Ia with three distinct eigenvalues. We set A :=
∑

i κi A9i , where the
triple {91, 92, 93} is the paraquaternionic structure of (1-4); the Jordan normal
form is given by diag[3κ1,−3κ2,−3κ3], which has the desired form for suitably
chosen parameters with

κ1+ κ2 6= 0, κ1+ κ3 6= 0, κ2− κ3 6= 0.

Let ẽ∈ S+(V, 〈 · , · 〉), let V+ :=Span{ẽ, 91ẽ}, and let V−=V⊥
+
=Span{92ẽ, 93ẽ}.

We then have an orthogonal direct sum decomposition V = V− ⊕ V+, where V+
is spacelike and V− is timelike. Decompose v ∈ N (V, 〈 · , · 〉) as v = λ(e++ e−),
where e± ∈ V±. Let M be spacelike Osserman. We have JA(v)= λ

2JA(e++e−).
Since JA(v) is nilpotent, JA(v) and JA(e+ + e−) have the same Jordan normal
form. Thus we may safely take λ = 1, so v = e+ + e−. Set e = e+ and expand
e− = cos θ92e+ sin θ93e. This expresses

v = e+ cos θ92e+ sin θ93e for e ∈ S+(V, 〈 · , · 〉).
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We use the relations 9192 =93, 9193 =−92, and 9293 =−91 to see that

(3-2)

91v = 0+91e− sin θ92e+ cos θ93e,

92v = cos θe− sin θ91e+92e+ 0,

93v = sin θe+ cos θ91e+ 0+93e,

so that 0=91v+ sin θ92v− cos θ93v. Thus the vectors {91v,92v,93v} span a
2-dimensional subspace. Since 〈9iv,9 jv〉 = 0, Span{9iv} ⊂ Ker{JA(v)}. Since
Range{JA(v)} ⊂ Span{9iv},

Rank{JA(v)} ≤ 2 and JA(v)
2
= 0.

Note that {e, 91e, 92v,93v} is a basis for V . Let π+ denote orthogonal projection
on V+=Span{e, 91e}. Since π+ is injective on Range{JA(v)}⊂Span{92v,93v},

r(v) := dim Range{JA(v)} = dim(Span{π+JA(v)e, π+JA(v)91e}).

By (3-2) and the linear dependency it contains,

JA(v)e = 3κ2 cos θ92v+ 3κ3 sin θ93v,

JA(v)91e = 3κ191v− 3κ2 sin θ92v+ 3κ3 cos θ93v,

π+JA(v)e = 3(κ2 cos θ(cos θ)+ κ3 sin θ(sin θ))e

+ 3(κ2 cos θ(− sin θ)+ κ3 sin θ(cos θ))91e,

π+JA(v)91e = 3(−κ2 sin θ(cos θ)+ κ3 cos θ(sin θ))e

+ 3(κ1− κ2 sin θ(− sin θ)+ κ3 cos θ(cos θ))91e.

This leads to a coefficient matrix for π+JA(v) on V+ given by

CA(θ)= 3
(

κ2 cos2 θ + κ3 sin2 θ (−κ2+ κ3) sin θ cos θ
(−κ2+ κ3) sin θ cos θ κ1+ κ2 sin2 θ + κ3 cos2 θ

)
.

We compute
1
9 det(CA)(θ)= κ1κ2 cos2 θ + κ2

2 cos2 θ sin2 θ + κ2κ3 cos4 θ

+ κ1κ3 sin2 θ + κ2κ3 sin4 θ + κ2
3 sin2 θ cos2 θ

− κ2
2 sin2 θ cos2 θ − κ2

3 sin2 θ cos2 θ + 2κ2κ3 sin2 θ cos2 θ

= κ1κ2 cos2 θ + κ1κ3 sin2 θ + κ2κ3

= (κ1+ κ3)κ2 cos2 θ + (κ1+ κ2)κ3 sin2 θ.

Observe that κ2κ3 = 0 implies that det(CA)(θ) vanishes for some θ , and thus M is
not null Jordan Osserman. Hence, since (κ1+ κ3)κ2 and (κ1+ κ2)κ3 are nonzero,
det(CA)(θ) never vanishes, or equivalently M is null Jordan Osserman, if and only
if these two real numbers have the same sign, that is, κ2κ3(κ1+ κ3)(κ1+ κ2) > 0.
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3.9. Type Ib models. Let b 6= 0. We take a curvature tensor of the form

A = 1
3((a− b)A91 + (−b− a)A92 + bA91+92 + cA93).

Proceeding as in the previous case, we have for any e ∈ S+(V, 〈 · , · 〉) that

JA(x)y = 〈(a91+ b92)x, y〉91x +〈(b91− a92)x, y〉92x + c〈93x, y〉93x,

JA(e)91e = a91e+ b92e, JA(e)92e =−b91e+ a92e, JA(e)93e =−c93e.

Thus M := (V, 〈 · , · 〉, A) is Type Ib and any Type Ib model is isomorphic to M for
suitably chosen parameters. As in Section 3.8, put v = e+ cos θ92e+ sin θ93e.
We compute

JA(v)e = b cos θ91v− a cos θ92v+ c sin θ93v,

JA(v)91e = (a− b sin θ)91v+ (b+ a sin θ)92v+ c cos θ93v,

π+JA(v)e = (−a cos θ(cos θ)+ c sin θ(sin θ))e

+ (b cos θ − a cos θ(− sin θ)+ c sin θ(cos θ))91e,

π+JA(v)91e = ((b+ a sin θ)(cos θ)+ c cos θ(sin θ))e

+ ((a− b sin θ)+ (b+ a sin θ)(− sin θ)+ c cos θ(cos θ))91e.

The coefficient matrix for π+JA(v) on V+ is then given by

CA(θ)=

(
−a cos2 θ + c sin2 θ b cos θ + (a+ c) sin θ cos θ

b cos θ + (a+ c) sin θ cos θ −2b sin θ + (a+ c) cos2 θ

)
.

We have det(CA)(π/2) = −2bc and det(CA)(−π/2) = 2bc. If c 6= 0, then these
signs differ and hence det(CA)(θ)= 0 for some−π/2<θ <π/2 and M is not null
Jordan Osserman. If c= 0, then det(CA)(π/2)= 0 and det(CA)(0)=−a2

−b2
6= 0

and again M is not null Jordan Osserman.

3.10. Type II models. We approach this case directly. Let M= (V, 〈 · , · 〉, A) be
a model of signature (2, 2), where A is a Type II algebraic curvature tensor. Then
the analysis of [Blažić et al. 2001; Garcı́a-Rı́o et al. 2002] shows there exists an
orthonormal basis {e1, e2, e3, e4} for V such that the nonvanishing components of
A are

A1221 = A4334 =±(α−
1
2), A1224 = A1334 =±

1
2 ,

A1331 = A4224 =∓(α+
1
2), A2113 = A2443 =∓

1
2 ,

A1234 = (±(−α+
3
2)+β)/3, A1423 = 2(±α−β)/3,

A1342 = (±(−α−
3
2)+β)/3, A1441 = A3223 =−β.
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Let u = e2− e3 and let v = e2+ e3. Then

JA(u)=


0 0 0 0
0 β β 0
0 −β −β 0
0 0 0 0

 and JA(v)=


±2 0 0 ∓2

0 β −β 0
0 β −β 0
±2 0 0 ∓2

 .
If β = 0, then r(u)= 0 and r(v)= 1; if β 6= 0, then r(u)= 1 and r(v)= 2. Thus
M is not null Jordan Osserman.

3.11. Type III models. For M of this type, there exists by [Blažić et al. 2001;
Garcı́a-Rı́o et al. 2002] an orthonormal basis {e1, e2, e3, e4} for V such that the
nonvanishing components of A are

A1221 = A4334 = α, A1331 = A4224 =−α,

A1441 = A3223 =−α,

A2114 = A2334 =−
√

2/2, A3114 =−A3224 =
√

2/2,

A1223 = A1443 = A1332 =−A1442 =
√

2/2.

Let u = e2− e3 and v = e2+ e3. Then

JA(u)=


0 −
√

2 −
√

2 0
−
√

2 α α
√

2
√

2 −α −α −
√

2
0 −
√

2 −
√

2 0

 and JA(v)=


0 0 0 0
0 α −α 0
0 α −α 0
0 0 0 0

 .
It now follows that r(u) = 2 while r(v) ≤ 1 and hence M is not null Jordan
Osserman. This completes the proof of Theorem 1.5. �

4. The proof of Theorem 1.8

Let M be a null Jordan Osserman manifold of signature (2, 2). First note that, by
Theorem 1.5, M has Type Ia. Results of [Blažić et al. 2001] then show that M either
has constant sectional curvature, is locally isometric to a complex space form,
or is locally isometric to a paracomplex space form. Since the curvature tensor
of a paracomplex space form of constant paraholomorphic sectional curvature κ
satisfies

R(x, y)z = 1
4κ(R

0(x, y)z− R J (x, y)z),

this is ruled out by Theorem 1.5, thus proving Theorem 1.8. �



FOUR-DIMENSIONAL OSSERMAN METRICS OF NEUTRAL SIGNATURE 35

References

[Alekseevsky et al. 1999] D. Alekseevsky, N. Blažić, N. Bokan, and Z. Rakić, “Self-duality and
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M. ELENA VÁZQUEZ-ABAL

DEPARTMENT OF GEOMETRY AND TOPOLOGY

FACULTY OF MATHEMATICS

UNIVERSITY OF SANTIAGO DE COMPOSTELA

15782 SANTIAGO DE COMPOSTELA

SPAIN

elena.vazquez.abal@usc.es
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We consider a version of the geography question for simply connected sym-
plectic 4-manifolds that takes as an additional parameter the divisibility of
the canonical class. We also find new examples of 4-manifolds admitting
several symplectic structures that are inequivalent under deformation and
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We are interested in the geography of simply connected, closed, symplectic
4-manifolds whose canonical classes have a given divisibility. In general, the ge-
ography question aims at finding for any given pair of integers (x, y) a closed
4-manifold M with some a priori specified properties (for example, irreducible,
spin, simply connected, symplectic or complex) such that the Euler characteristic
e(M) equals x and the signature σ(M) equals y. This question has been considered
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for simply connected symplectic 4-manifolds both in the spin and nonspin case for
example in [Gompf 1995; Park and Szabó 2000; Park 1998; 2002]; see also [Chen
1987; Fintushel and Stern 1994; Persson 1981; Persson et al. 1996]. We consider
the geography question for simply connected symplectic 4-manifolds whose canon-
ical class, considered as an element in second cohomology with integer coefficients,
is divisible by a given integer d > 1. Since the canonical class is characteristic, the
first case d = 2 corresponds to the general case of spin symplectic 4-manifolds.

Geography questions are often formulated in terms of the invariants c2
1 and χh

instead of e and σ , which for smooth closed 4-manifolds are defined by

c2
1(M)= 2e(M)+ 3σ(M) and χh(M)= 1

4(e(M)+ σ(M)).

For complex 4-manifolds these numbers have the same value as the square of the
first Chern class and the holomorphic Euler characteristic, making the definitions
consistent.

The constructions we use here depend on generalized fibre sums of symplec-
tic manifolds, which are also known as Gompf sums or normal connected sums
[Gompf 1995; McCarthy and Wolfson 1994], in particular in the form of knot
surgery [Fintushel and Stern 1998] and a generalized version of knot surgery along
embedded surfaces of higher genus [Fintushel and Stern 2004]. Some details on
the generalized fibre sum can be found in Section 2.

In Sections 4, 6 and 7, we consider the case c2
1 = 0 and the spin and nonspin

cases for c2
1 > 0 and negative signature, while the case c2

1 < 0 is covered at the
end of Section 1. We do not consider the case of nonnegative signature, since
even without a restriction on the divisibility of the canonical class, such simply
connected symplectic 4-manifolds are known to be difficult to find.

As a consequence of these geography results, there often exist at the same lattice
point in the (χh, c2

1)-plane several simply connected symplectic 4-manifolds whose
canonical classes have pairwise different divisibilities. It is natural to ask whether
the same smooth 4-manifold can admit several symplectic structures with canonical
classes of different divisibilities; we consider this question in Sections 8 and 9. The
symplectic structures with this property are inequivalent under deformations and
orientation-preserving self-diffeomorphisms of the manifold. Similar examples
have been found before on homotopy elliptic surfaces by McMullen and Taubes
[1999], Smith [2000] and Vidussi [2001]. Another application of the geography
question to the existence of inequivalent contact structures on certain 5-manifolds
can be found in [Hamilton 2008].

In the final part of this article, we give an independent construction of simply
connected symplectic 4-manifolds with divisible canonical class by finding com-
plex surfaces of general type with divisible canonical class. The construction uses
branched coverings over smooth curves in pluricanonical linear systems |nK |.
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1. General restrictions on the divisibility of the canonical class

We begin by deriving a few general restrictions for symplectic 4-manifolds admit-
ting a symplectic structure whose canonical class is divisible by an integer d > 1.

Let (M, ω) be a closed, symplectic 4-manifold. The canonical class K of the
symplectic form ω is defined as

K =−c1(T M, J ),

where J is an almost-complex structure compatible with ω. The self-intersection
number of K is given by the formula K 2

= c2
1(M) = 2e(M)+ 3σ(M). Since the

first Chern class c1(T M, J ) is characteristic, it follows by a general property of
the intersection form that c2

1(M)≡ σ(M) mod 8, and hence the number

χh(M)= 1
4(e(M)+ σ(M))

is an integer. If b1(M)= 0, this number is equal to 1
2(1+b+2 (M)). In particular, in

this case b+2 (M) is an odd integer and χh(M) > 0. There is a further constraint if
the manifold M is spin, equivalent to the congruence σ(M)≡ 0 mod 16 given by
Rohlin’s theorem [1952], which says that c2

1(M)≡ 8χh(M) mod 16. In particular,
c2

1(M) is divisible by 8. We say that K is divisible by an integer d if there exists a
cohomology class A ∈ H 2(M;Z) with K = d A.

Lemma 1. Let (M, ω) be a closed symplectic 4-manifold. Suppose K is divisible
by an integer d. Then c2

1(M) is divisible by d2 if d is odd and by 2d2 if d is even.

Proof. If d divides K , we can write K = d A, where A ∈ H 2(M;Z). The equation
c2

1(M)= K 2
= d2 A2 implies that c2

1(M) is divisible by d2 in any case. If d is even,
then w2(M) ≡ K ≡ 0 mod 2; hence M is spin and the intersection form QM is
even. This implies that A2 is divisible by 2; hence c2

1(M) is divisible by 2d2. �

The case c2
1(M)= 0 is special, since there are no restrictions from this lemma; see

Section 4. For the general case of spin symplectic 4-manifolds (d = 2), we recover
the constraint that c2

1 is divisible by 8.
Further restrictions come from the adjunction formula 2g− 2 = K ·C +C ·C ,

where C is an embedded symplectic surface of genus g oriented by the restriction
of the symplectic form.

Lemma 2. Let (M, ω) be a closed symplectic 4-manifold. Suppose K is divisible
by an integer d.

• If M contains a symplectic surface of genus g and self-intersection 0, then d
divides 2g− 2.

• If d 6= 1, then M is minimal. If M is in addition simply connected, then it is
irreducible.
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Proof. The first part follows immediately by the adjunction formula. If M is not
minimal, it contains a symplectically embedded sphere S of self-intersection (−1).
The adjunction formula can be applied and yields K · S =−1, and hence K is in-
divisible. The claim of irreducibility follows from [Hamilton and Kotschick 2006,
Corollary 1.4]. �

The canonical class of a 4-manifold M with b+2 ≥ 2 is a Seiberg–Witten basic
class, that is, it has nonvanishing Seiberg–Witten invariant. This implies that only
finitely many classes in H 2(M;Z) can occur as the canonical classes of symplectic
structures on M .

Theorem 3 [Li and Liu 2001]. Let M be a (smoothly) minimal closed 4-manifold
with b+2 = 1. Then the canonical classes of all symplectic structures on M are
equal up to sign.

If M is a Kähler surface, we can consider the canonical class of the Kähler form.

Theorem 4. Suppose that M is a minimal Kähler surface with b+2 > 1.

• If M is of general type, then ±KM are the only Seiberg–Witten basic classes
of M.

• If N is another minimal Kähler surface such that b+2 > 1 and φ :M→ N is a
diffeomorphism, then φ∗KN =±KM .

For the proofs see [Friedman and Morgan 1997; Morgan 1996; Witten 1994].
When φ is the identity diffeomorphism, the second part of this theorem has an
immediate consequence:

Corollary 5. Let M be a (smoothly) minimal closed 4-manifold with b+2 > 1. Then
the canonical classes of all Kähler structures on M are equal up to sign.

The corresponding statement is not true in general for the canonical classes
of symplectic structures on minimal 4-manifolds with b+2 > 1. There exist such
4-manifolds M admitting several symplectic structures whose canonical classes
in H 2(M;Z) are not equal up to sign. In addition, such examples can be con-
structed where the canonical classes cannot be permuted by orientation-preserving
self-diffeomorphisms of the manifold [McMullen and Taubes 1999; Smith 2000;
Vidussi 2001], for example because they have different divisibilities as elements
in integral cohomology (see the examples in Sections 8 and 9).

It is useful to define the (maximal) divisibility of the canonical class in the case
that H 2(M;Z) is torsion-free.

Definition 6. Suppose H is a finitely generated free abelian group. For a ∈ H , let

d(a)=max{k ∈ N0 | there exists a nonzero element b ∈ H with a = kb}.
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We call d(a) the divisibility of a (or, for emphasis, the maximal divisibility). The
divisibility of a is 0 if and only a = 0. We call a indivisible if d(a)= 1.

If M is a simply connected manifold, the integral cohomology group H 2(M;Z)
is torsion-free, and K ∈ H 2(M;Z) has a well-defined divisibility.

Proposition 7. Suppose M is a simply connected closed 4-manifold that admits at
least two symplectic structures whose canonical classes have different divisibilities.
Then M is not diffeomorphic to a complex surface.

Proof. The assumptions imply M has a symplectic structure whose canonical class
has divisibility 6= 1. By Lemma 2, the manifold M is (smoothly) minimal, and by
Theorem 3, it has b+2 > 1. Suppose M is diffeomorphic to a complex surface. The
Kodaira–Enriques classification implies M is diffeomorphic either to an elliptic
surface E(n)p,q with n ≥ 2 and p, q coprime, or to a surface of general type.

Consider the elliptic surfaces E(n)p,q for n≥2, and denote the class of a general
fibre by F . The Seiberg–Witten basic classes of these 4-manifolds are known
[Fintushel and Stern 1997], and consist of the set of classes of the form k f , where f
denotes the indivisible class f = F/pq and k is an integer such that

k ≡ npq − p− q mod 2 and |k| ≤ npq − p− q.

Suppose ω is a symplectic structure on E(n)p,q with canonical class K . By a
theorem of Taubes [Taubes 1995a; Kotschick 1997], the inequality K ·[ω]≥ |c·[ω]|
holds for any basic class c, with equality if and only if K = ±c, and the number
K · [ω] is positive if K is nonzero. It follows that the canonical class of any
symplectic structure on E(n)p,q is given by ±(npq− p−q) f ; hence there is only
one possible divisibility. This follows for surfaces of general type by the first part
of Theorem 4. �

We now consider the geography question for manifolds with c2
1 < 0. The next

theorem is due to C. H. Taubes [1995b] in the case b+2 ≥ 2 and to A.-K. Liu [1996]
in the case b+2 = 1.

Theorem 8. Let M be a closed, symplectic 4-manifold. Suppose M is minimal.

• If b+2 (M)≥ 2, then K 2
≥ 0.

• If b+2 (M) = 1 and K 2 < 0, then M is a ruled surface, that is, an S2-bundle
over a surface (of genus ≥ 2).

Since ruled surfaces over irrational curves are not simply connected, any simply
connected, symplectic 4-manifold M with c2

1(M)<0 is not minimal. By Lemma 2,
this implies that K is indivisible, that is, d(K )= 1.

Let (χh, c2
1) = (n,−r) be a lattice point with n, r ≥ 1, and let M be a simply

connected symplectic 4-manifold with these invariants. Since M is not minimal,
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we can successively blow down r (−1)-spheres in M to get a simply connected
symplectic 4-manifold N with invariants (χh, c2

1) = (n, 0) such that there exists a
diffeomorphism M = N #r CP2.

Conversely, consider the manifold M = E(n) #r CP2. Then M is a simply
connected symplectic 4-manifold with indivisible K . Since χh(E(n)) = n and
c2

1(E(n)) = 0, this implies (χh(M), c2
1(M)) = (n,−r). Hence the point (n,−r)

can be realized by a simply connected symplectic 4-manifold.

2. The generalized fibre sum

We next recall the definition of the generalized fibre sum from [Gompf 1995; Mc-
Carthy and Wolfson 1994] and fix some notation, used in [Hamilton 2008]. Let M
and N be closed oriented 4-manifolds that contain embedded oriented surfaces6M

and 6N of genus g and self-intersection 0. We choose trivializations of the form
6g×D2 for tubular neighbourhoods of the surfaces 6M and 6N . The generalized
fibre sum X = M #6M=6N N is then formed by deleting the interior of the tubular
neighbourhoods and gluing the resulting manifolds M ′ and N ′ along their bound-
aries 6g×S1, using a diffeomorphism that preserves the meridians to the surfaces,
given by the S1 fibres, and reverses the orientation on them. The closed oriented
4-manifold can depend on the choice of trivializations and gluing diffeomorphism.
The trivializations of the tubular neighbourhoods also determine push-offs of the
central surfaces 6M and 6N into the boundary. Under inclusion, the push-offs de-
termine surfaces6X and6′X of self-intersection 0 in the 4-manifold X . In general,
these surfaces do not represent the same homology class in X but differ by a rim
torus. However, if the gluing diffeomorphism is chosen so that it preserves also
the 6g-fibres in 6g× S1, then the push-offs get identified to a well-defined surface
6X in X .

Suppose the surfaces 6M and 6N represent indivisible nontorsion classes in the
homology of M and N . We can then choose surfaces BM and BN in M and N
that intersect 6M and 6N at a single positive transverse point. These surfaces
with a disk removed can be assumed to bound the meridians to 6M and 6N in the
manifolds M ′ and N ′; hence they sew together to give a surface BX in X .

The second cohomology of M can be split into a direct sum

H 2(M;Z)∼= P(M)⊕Z6M ⊕ZBM ,

where P(M) denotes the orthogonal complement to the subgroup Z6M ⊕ ZBM

in H 2(M;Z) with respect to the intersection form QM . The restriction of the
intersection form to the last two summands is given by(

0 1
1 B2

M

)
.
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This form is unimodular; hence the restriction of the intersection form to P(M)
(modulo torsion) is unimodular as well. There exists a similar decomposition for
the second cohomology of N .

Theorem 9. Suppose that the integral cohomology of M , N and X is torsion-free
and the surfaces 6M and 6N represent indivisible classes. If rim tori do not exist
in the fibre sum X = M #6M=6N N , then the second cohomology of X splits as a
direct sum

H 2(X;Z)∼= P(X)⊕Z6X ⊕ZBX , where P(X)∼= P(M)⊕ P(N ).

The restriction of the intersection form Q X to P(X) is the direct sum of the restric-
tions of QM and QN , and the restriction to Z6X ⊕ZBX is of the form(

0 1
1 B2

M + B2
N

)
.

A proof for this theorem can be found in [Hamilton 2008, Section V.3.5]. It
implies that there exist monomorphisms of abelian groups of both H 2(M;Z) and
H 2(N ;Z) into H 2(X;Z) given by

(1) 6M 7→6X , BM 7→ BX , Id : P(M)→ P(M),

and similarly for N . The monomorphisms do not preserve the intersection form if
B2

M or B2
N differ from B2

X . The next lemma can be useful in checking the conditions
for Theorem 9; its proof follows from [Hamilton 2008, Sections V.2 and V.3].

Lemma 10. Let X = M #6M=6N N be a generalized fibre sum along embedded
surfaces of self-intersection 0. Suppose that the map on integral first homology
induced by one of the embeddings, say 6N → N , is an isomorphism. Then rim
tori do not exist in X. If in addition one of the surfaces represents an indivisible
homology class, then H1(X;Z)∼= H1(M;Z).

Suppose M and N are symplectic 4-manifolds and 6M and 6N symplectically
embedded. We orient both surfaces by the restriction of the symplectic forms. Then
the generalized fibre sum X also admits a symplectic structure. The canonical class
K X can be calculated as follows:

Theorem 11. Under the assumptions of Theorem 9 and the embeddings of the
cohomology of M and N into the cohomology of X given by Equation (1), we have

K X = KM + KN − (2g− 2)BX + 26X .

A proof can be found in [Hamilton 2008, Section V.5]. The formula for g = 1 has
been proved in [Smith 2000] and a related formula for arbitrary g can be found in
[Ionel and Parker 2004].
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3. The knot surgery construction

We will frequently use the following construction due to Fintushel and Stern [1998].
Let K be a knot in S3, and denote a tubular neighbourhood of K by νK ∼= S1

×D2.
Let m be a fibre of the circle bundle ∂νK→ K , and use an oriented Seifert surface
for K to define a section l :K → ∂νK . The circles m and l are called the meridian
and the longitude of K . Let MK be the closed 3-manifold obtained by 0-Dehn
surgery on K . The manifold MK is constructed as follows: Consider S3

\ int νK
and let f : ∂(S1

× D2)→ ∂(S3
\ int νK ) be a diffeomorphism that maps the circle

∂D2 onto l. Then one defines

MK = (S3
\ int νK )∪ f (S1

× D2).

The manifold MK is determined by this construction uniquely up to diffeomor-
phism. One can show that it has the same integral homology as S2

× S1. The
meridian m, which bounds the fibre in the normal bundle to K in S3, becomes
nonzero in the homology of MK and defines a generator for H1(MK ;Z). The
longitude l is null-homotopic in MK , since it bounds one of the D2 fibres glued in.
This disk fibre together with the Seifert surface of K determine a closed, oriented
surface BK in MK that intersects m once and generates H2(MK ;Z).

We consider the closed, oriented 4-manifold MK × S1. It contains an embedded
torus TK = m × S1 of self-intersection 0, which has a framing coming from a
canonical framing of m. Let X be an arbitrary closed, oriented 4-manifold, which
contains an embedded torus TX of self-intersection 0, representing an indivisible
homology class. Then the result of knot surgery on X is given by the generalized
fibre sum X K = X #TX=TK (MK × S1). Here we have implicitly chosen a trivial-
ization of the form T 2

× D2 for the tubular neighbourhood of the torus TX . We
choose a gluing diffeomorphism that preserves both the T 2 factor and the S1 factor
on the boundaries of the tubular neighbourhoods and reverses orientation on the
S1 factor (the smooth 4-manifold X K might depend on the choice of the framing
for TX ). The embedded torus of self-intersection 0 in X K , defined by identifying
the push-offs, is denoted by TX K .

The closed surface BK in the 3-manifold MK determines under inclusion a
closed surface in the 4-manifold MK × S1, denoted by the same symbol. It inter-
sects the torus TK at a single transverse point. We also choose a surface BX in X
intersecting TX transversely and geometrically once. Both surfaces sew together to
form a surface BX K in X K that intersects the torus TX K at a single transverse point.

We assume the cohomology of X is torsion-free. By [Fintushel and Stern 1998],
it is known that there exists an isomorphism

(2) H 2(X;Z)∼= H 2(X K ;Z)
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preserving intersection forms. In the notation of Section 2 this follows because
H 2(MK × S1

;Z) ∼= ZTK ⊕ ZBK and hence P(MK × S1) = 0. In addition, the
self-intersection number of BX K is equal to the self-intersection number of BX ,
because the class BK has zero self-intersection (it can be moved away in the S1

direction). The claim then follows from Theorem 9 and Lemma 10.
In particular, assume that both X and X ′ = X \ TX are simply connected. Since

the fundamental group of MK×S1 is normally generated by the image of the funda-
mental group of TK under inclusion, it follows that X K is again simply connected;
hence by Freedman’s theorem [1982], the manifolds X and X K are homeomorphic.
However, one can show with Seiberg–Witten theory that X and X K are in many
cases not diffeomorphic [Fintushel and Stern 1998].

Suppose that K is a fibred knot, that is, there exists a fibration

S3
\ int νK

��

6′h
oo

S1

over the circle, where the fibres 6′h are punctured surfaces of genus h forming
Seifert surfaces for K . Then MK is fibred by closed surfaces BK of genus h. This
induces a fibre bundle

MK × S1

��

6hoo

T 2

and the torus TK = m × S1 is a section of this bundle. By a theorem of Thurston
[1976] the manifold MK×S1 admits a symplectic form such that TK and the fibres
are symplectic. This construction can be used to do symplectic generalized fibre
sums along TK if the manifold X is symplectic and the torus TX symplectically
embedded. The canonical class of MK × S1 can be calculated by the adjunction
formula, because the fibres BK and the torus TK are symplectic surfaces and form
a basis of H2(MK × S1

;Z). The result is KMK×S1 = (2h − 2)TK . According to
[Fintushel and Stern 1998], the canonical class of the symplectic 4-manifold X K

is then given by

(3) K X K = K X + 2hTX .

See also Theorem 11.

4. Symplectic 4-manifolds with c2
1 = 0

Definition 12. A closed, simply connected 4-manifold M is called a homotopy
elliptic surface if M is homeomorphic to a relatively minimal, simply connected



46 MARK J. D. HAMILTON

elliptic surface, that is, to a complex surface of the form E(n)p,q with p, q coprime
and n ≥ 1.

For details on the surfaces E(n)p,q , see [Gompf and Stipsicz 1999, Section 3.3].
By definition, homotopy elliptic surfaces M are simply connected with invariants

c2
1(M)= 0, e(M)= 12n, σ (M)=−8n.

The integer n is equal to χh(M). In particular, K 2
= 0 for symplectic homotopy

elliptic surfaces. There is a converse:

Lemma 13. Let M be a closed, simply connected, symplectic 4-manifold with
K 2
= 0. Then M is a homotopy elliptic surface.

Proof. Since M is almost complex, χh(M) is an integer. The Noether formula

χh(M)= 1
12(K

2
+ e(M))= 1

12 e(M)

implies that e(M) is divisible by 12; hence e(M)= 12k for some k > 0. Together
with the equation

0= K 2
= 2e(M)+ 3σ(M),

it follows that σ(M) = −8k. Suppose that M is nonspin. If k is odd, then M has
the same Euler characteristic, signature and type as E(k). If k is even, then M has
the same Euler characteristic, signature and type as the nonspin manifold E(k)2.
Since M is simply connected, M is homeomorphic to the corresponding elliptic
surface by Freedman’s theorem [1982].

Suppose that M is spin. Then the signature is divisible by 16 due to Rohlin’s
theorem. Hence the integer k above has to be even. Then M has the same Euler
characteristic, signature and type as the spin manifold E(k). Again by Freedman’s
theorem, the 4-manifold M is homeomorphic to E(k). �

Lemma 14. Suppose that M is a symplectic homotopy elliptic surface such that
the divisibility of K is even. Then χh(M) is even.

Proof. The assumption implies that M is spin. The Noether formula then shows
that χh(M) is even, since K 2

= 0 and σ(M) is divisible by 16. �

The next theorem shows that this is the only restriction on the divisibility of the
canonical class K for symplectic homotopy elliptic surfaces.

Theorem 15 (homotopy elliptic surfaces). Let n and d be positive integers. If n is
odd, assume that d is odd also. Then there exists a symplectic homotopy elliptic
surface (M, ω) with χh(M)= n whose canonical class K has divisibility d.

Note that there is no constraint on d if n is even.
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Proof. If n is equal to 1 or 2, the symplectic manifold can be realized as an elliptic
surface. The canonical class of an elliptic surface E(n)p,q with p, q coprime is
given by K = (npq − p− q) f , where f is indivisible and F = pq f denotes the
class of a general fibre. For n = 1 and d odd, we can take the surface E(1)d+2,2,
since

(d + 2)2− (d + 2)− 2= d.

For n = 2 and d arbitrary, we can take E(2)d+1 = E(2)d+1,1, since

2(d + 1)− (d + 1)− 1= d.

We now consider the case n≥1 in general and separate the proof into several cases.

Case: d = 2k and n = 2m are both even with k,m ≥ 1. Consider the elliptic
surface E(n). It contains a general fibre F that is an embedded symplectic torus of
self-intersection 0. It also contains a rim torus R that arises from a decomposition
of E(n) as a fibre sum E(n)= E(n− 1) #F E(1); see [Gompf and Mrowka 1993]
and Example 30. The rim torus R has self-intersection 0 and there exists a dual
(Lagrangian) 2-sphere S with intersection RS = 1. We can assume that R and S
are disjoint from the fibre F . The rim torus is in a natural way Lagrangian. By
a perturbation of the symplectic form, we can assume that it becomes symplectic.
We give R the orientation induced by the symplectic form. The proof consists in
doing knot surgery along the fibre F and the rim torus R.

Let K1 be a fibred knot of genus g1=m(k−1)+1. We do knot surgery along F
with the knot K1 to get a new symplectic 4-manifold M1. The elliptic fibration
E(n)→CP1 has a section showing that the meridian of F , which is the S1 fibre of
∂νF→ F , bounds a disk in E(n)\ int νF . This implies that the complement of F
in E(n) is simply connected; hence the manifold M1 is again simply connected.
By the knot surgery construction the manifold M1 is homeomorphic to E(n). The
canonical class is given by formula (3):

KM1 = (n− 2)F + 2g1 F = (2m− 2+ 2mk− 2m+ 2)F = 2mk F.

Here we have identified the cohomology of M1 and E(n) under the isomorphism
in Equation (2). The rim torus R still exists as an embedded oriented symplectic
torus in M1 with a dual 2-sphere S because we can assume that the knot surgery
takes place in a small neighbourhood of F disjoint from R and S. In particular,
the complement of R in M1 is simply connected. Let K2 be a fibred knot of genus
g2= k, and let M be the result of knot surgery on M1 along R. Then M is a simply
connected symplectic 4-manifold homeomorphic to E(n). The canonical class of
M is given by K = 2mk F + 2k R.
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The cohomology class K is divisible by 2k. The sphere S sews together with
a Seifert surface for the knot K2 to give a surface C in M with C · R = 1 and
C · F = 0; hence C · K = 2k. Therefore the divisibility of K is precisely d = 2k.

Case: d = 2k+1 and n= 2m+1 are both odd with k ≥ 0 and m ≥ 1. We consider
the elliptic surface E(n) and do a similar construction. Let K1 be a fibred knot of
genus g1 = 2km+ k+ 1, and do knot surgery along F as above. We get a simply
connected symplectic 4-manifold M1 with canonical class

KM1 = (n− 2)F + 2g1 F

= (2m+ 1− 2+ 4km+ 2k+ 2)F = (4km+ 2k+ 2m+ 1)F

= (2m+ 1)(2k+ 1)F.

Next we consider a fibred knot K2 of genus g2 = 2k + 1 and do knot surgery
along the rim torus R. The result is a simply connected symplectic 4-manifold M
homeomorphic to E(n) with canonical class K = (2m+1)(2k+1)F+2(2k+1)R,
which is divisible by (2k + 1). The same argument as above shows that there is
a surface C in M with C · K = 2(2k + 1). We claim that the divisibility of K is
precisely (2k+ 1): This follows because M is still homeomorphic to E(n) by the
knot surgery construction. Since n is odd, the manifold M is not spin and hence
2 does not divide K . (An explicit surface with odd intersection number can be
constructed from a section of E(n) and a Seifert surface for the knot K1. This
surface has self-intersection number −n and intersection number (2m+1)(2k+1)
with K .)

To cover the remaining case m = 0 (corresponding to n = 1), we can do knot
surgery on the elliptic surface E(1) along a general fibre F with a knot K1 of genus
g1 = k+ 1. The resulting manifold M1 has canonical class

KM1 =−F + (2k+ 2)F = (2k+ 1)F.

Case: d = 2k + 1 is odd and n = 2m is even with k ≥ 0 and m ≥ 1. We consider
the elliptic surface E(n) and first perform a logarithmic transformation along F
of index 2. Let f denote the multiple fibre such that F is homologous to 2 f .
There exists a 2-sphere in E(n)2 that intersects f at a single point (for a proof
see Lemma 16). In particular, the complement of f in E(n)2 is simply connected.
The canonical class of E(n)2 = E(n)2,1 is given by K = (2n − 3) f . We can
assume that the torus f is symplectic (for example, by considering the logarithmic
transformation to be done on the complex algebraic surface E(n), resulting in
the complex algebraic surface E(n)2). Let K1 be a fibred knot of genus g1 =

4km+k+2, and do knot surgery along f with K1 as above. The result is a simply
connected symplectic 4-manifold homeomorphic to E(n)2. The canonical class is
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given by

KM1 = (2n− 3) f + 2g1 f

= (4m− 3+ 8km+ 2k+ 4) f = (8km+ 4m+ 2k+ 1) f

= (4m+ 1)(2k+ 1) f.

We now consider a fibred knot K2 of genus g2 = 2k+1 and do knot surgery along
the rim torus R. We get a simply connected symplectic 4-manifold M homeo-
morphic to E(n)2 with canonical class K = (4m + 1)(2k + 1) f + 2(2k + 1)R. A
similar argument as above shows that the divisibility of K is d = 2k+ 1. �

Lemma 16. Let p≥ 1 be an integer, and let f be the multiple fibre in E(n)p. Then
there exists a sphere in E(n)p that intersects f transversely at one point.

Proof. We can think of the logarithmic transformation as gluing T 2
× D2 into

E(n) \ int νF by a certain diffeomorphism φ : T 2
× S1

→ ∂νF . The fibre f
corresponds to T 2

× {0}. Consider a disk of the form {∗} × D2. It intersects f
once, and its boundary maps under φ to a certain simple closed curve on ∂νF .
Since E(n)\ int νF is simply connected, this curve bounds a disk in E(n)\ int νF .
The union of this disk and the disk {∗}×D2 is a sphere in E(n)p that intersects f
transversely once. �

Remark 17. Under the assumptions of Theorem 15, it is possible to construct
infinitely many homeomorphic but pairwise nondiffeomorphic symplectic homo-
topy elliptic surfaces (Mr )r∈N with χh(Mr )= n, whose canonical classes all have
divisibility equal to d . This follows because we can vary in each case the knot
K1 and its genus g1 without changing the divisibility of the canonical class. The
claim then follows by the formula for the Seiberg–Witten invariants of knot surgery
manifolds [Fintushel and Stern 1998].

5. Generalized knot surgery

Symplectic manifolds with c2
1 > 0 and divisible canonical class can be constructed

with a version of knot surgery for higher genus surfaces described in [Fintushel and
Stern 2004]. Let K = Kh denote the (2h+1,−2)-torus knot, which is a fibred knot
of genus h. Consider the manifold MK × S1 from the knot surgery construction
of Section 3. This manifold has the structure of a 6h-bundle over T 2:

MK × S1

��

6hoo

T 2

We denote a fibre of this bundle by 6F . The fibration defines a trivialization of
the normal bundle ν6F . We form g consecutive generalized fibre sums along the
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fibres 6F to get

Yg,h = (MK × S1) #6F=6F # · · · #6F=6F (MK × S1).

We choose the gluing diffeomorphism so that it identifies the 6h fibres in the
boundary of the tubular neighbourhoods. This implies that Yg,h is a 6h-bundle
over 6g:

Yg,h

��

6hoo

6g

We denote the fibre again by6F . The fibre bundle has a section6S sewed together
from g torus sections of MK × S1. Since the knot K is a fibred knot, the manifold
MK × S1 admits a symplectic structure such that the fibre and the section are
symplectic. By the Gompf construction this is then also true for Yg,h .

The invariants of the 4-manifold Yg,h can be calculated by standard formulas
[Park 2002, Lemma 2.4]:

c2
1(Yg,h)= 8(g− 1)(h− 1), e(Yg,h)= 4(g− 1)(h− 1), σ (Yg,h)= 0.

By induction on g, one can show that the fundamental group π1(Yg,h) is normally
generated by the image of π1(6S) under inclusion [Fintushel and Stern 2004,
Proposition 2]. This fact, together with the exact sequence

H1(6F )→ H1(Yg,h)→ H1(6g)→ 0

coming from the long exact homotopy sequence for the fibration6F→Yg,h→6g

by abelianization, shows that the inclusion 6S→ Yg,h induces an isomorphism on
H1 and the inclusion6F→Yg,h induces the zero map. In particular, the homology
group H1(Yg,h;Z) is free abelian of rank b1(Yg,h) = gb1(MK × S1) = 2g. This
implies with the formula for the Euler characteristic above that

b2(Yg,h)= 4h(g− 1)+ 2.

The summand 4h(g−1) results from 2h split classes (or vanishing classes) together
with 2h dual rim tori that are created in each fibre sum. The split classes are formed
as follows: In each fibre sum, the interior of a tubular neighbourhood ν6F of a fibre
on each side of the sum is deleted and the boundaries ∂ν6F glued together such
that the fibres inside the boundary get identified pairwise. Since the inclusion of the
fibre 6F into MK × S1 induces the zero map on first homology, the 2h generators
of H1(6h), where 6h is considered as a fibre in ∂ν6F , bound surfaces in MK ×S1

minus the interior of the tubular neighbourhood ν6F . The split classes arise from
sewing together surfaces bounding corresponding generators on each side of the
fibre sum. Fintushel and Stern show that in the case above there exists a basis for
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the group of split classes consisting of 2h(g− 1) disjoint surfaces of genus 2 and
self-intersection 2. This implies

H 2(Yg,h;Z)= 2h(g− 1)
(

2 1
1 0

)
⊕

(
0 1
1 0

)
,

where the last summand is the intersection form on (Z6S⊕Z6F ). They also show
that the canonical class of Yg,h is given by KY = (2h−2)6S+ (2g−2)6F , where
6S and 6F are oriented by the symplectic form.

Let M be a closed symplectic 4-manifold that contains a symplectic surface6M

of genus g and self-intersection 0, oriented by the symplectic form and representing
an indivisible homology class. We can then form the symplectic generalized fibre
sum X = M #6M=6S Yg,h . If the manifolds M and M \6M are simply connected,
then X is again simply connected because the fundamental group of Yg,h is nor-
mally generated by the image of π1(6S). Since the inclusion of the surface 6S

in Yg,h induces an isomorphism on first homology, it follows by Theorem 9 and
Lemma 10 that

H 2(X;Z)= P(M)⊕ P(Yg,h)⊕ (ZBX ⊕Z6X ).

The surface BX is sewed together from a surface BM in M with BM6M = 1 and
the fibre 6F in the manifold Yg,h . Since 62

F = 0, the embedding H 2(M;Z)→
H 2(X;Z) given by Equation (1) preserves the intersection form. Therefore we can
write

(4) H 2(X;Z)= H 2(M;Z)⊕ P(Yg,h)

with intersection form

Q X = QM ⊕ 2h(g− 1)
(

2 1
1 0

)
.

The invariants of X are given by

c2
1(X)= c2

1(M)+ 8h(g− 1), e(X)= e(M)+ 4h(g− 1), σ (X)= σ(M).

The canonical class of X can be calculated by Theorem 11 to be

(5) K X = KM + 2h6M ,

where the isomorphism in (4) is understood (this formula follows also from the cal-
culation of Seiberg–Witten invariants in [Fintushel and Stern 2004]). Equation (5)
is a generalization of Equation (3). In particular, we get:

Proposition 18. Suppose that M is a closed, symplectic 4-manifold that contains
a symplectic surface 6M of genus g > 1 and self-intersection 0. Suppose that
π1(M)= π1(M \6M)= 1 and that the canonical class of M is divisible by d.
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• If d is odd, there exists for every integer t ≥ 1 a simply connected symplectic
4-manifold X with invariants

c2
1(X)= c2

1(M)+ 8td(g− 1), e(X)= e(M)+ 4td(g− 1), σ (X)= σ(M)

and canonical class divisible by d.

• If d is even, there exists for every integer t ≥ 1 a simply connected symplectic
4-manifold X with invariants

c2
1(X)= c2

1(M)+ 4td(g− 1), e(X)= e(M)+ 2td(g− 1), σ (X)= σ(M)

and canonical class divisible by d.

This follows from the construction above by taking the genus of the torus knot
h = td if d is odd and h = 1

2 td if d is even. Hence if a symplectic surface 6M of
genus g > 1 and self-intersection 0 exists in M , we can raise c2

1 without changing
the signature or the divisibility of the canonical class.

6. Spin symplectic 4-manifolds with c2
1 > 0 and negative signature

We can apply the construction from Section 5 to the symplectic homotopy elliptic
surfaces constructed in Theorem 15. In this section we consider the case of even
divisibility d and in the following section the case of odd d.

Recall that in the first case in the proof of Theorem 15, we constructed a simply
connected symplectic 4-manifold M from the elliptic surface E(2m) by doing knot
surgery along a general fibre F with a fibred knot K1 of genus g1 = (k− 1)m+ 1
and a further knot surgery along a rim torus R with a fibred knot K2 of genus
g2 = k. Here 2m ≥ 2 and d = 2k ≥ 2 are arbitrary even integers. The canonical
class is given by

KM = 2mk F + 2k R = md F + d R.

The manifold M is still homeomorphic to E(2m). There is an embedded 2-sphere S
in E(2m) of self-intersection−2 that intersects the rim torus R once. The sphere S
is naturally Lagrangian [Auroux et al. 2005]. We can assume that S is disjoint from
the fibre F and by a perturbation of the symplectic structure on E(2m) that the
regular fibre F , the rim torus R and the dual 2-sphere S are all symplectic and the
symplectic form induces a positive volume form on each of them; see the proofs
of [Fintushel and Stern 2001, Lemma 2.1] and [Vidussi 2007, Proposition 3.2].

The 2-sphere S minus a disk sews together with a Seifert surface for K2 to give
a symplectic surface C in M of genus k and self-intersection −2 that intersects the
rim torus R once. By smoothing the double point we get a symplectic surface 6M

in M of genus g = k+ 1 and self-intersection 0 that represents C + R.
The complement of 6M in M is simply connected, since we can assume R ∪ S

in the elliptic surface E(2m) is contained in an embedded nucleus N (2); see
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[Gompf and Mrowka 1993; Gompf and Stipsicz 1999] and Example 30. Inside the
nucleus N (2) there exists a cusp that is homologous to R and disjoint from it. The
cusp is still contained in M and intersects the surface 6M once. Since M is simply
connected and the cusp homeomorphic to S2, the claim π1(M \6M)= 1 follows.1

Let t ≥ 1 be an arbitrary integer, and let K3 be the (2h + 1,−2)-torus knot of
genus h = tk. Consider the generalized fibre sum X = M #6M=6S Yg,h . Then X is
a simply connected symplectic 4-manifold with invariants

c2
1(X)= 8tk2

= 2td2, e(X)= 24m+ 4tk2
= 24m+ td2, σ (X)=−16m.

The canonical class is given by

K X = KM + 2tk6M = d(m F + R+ t6M).

Hence K X has divisibility d, since the class m F + R + t6M has intersection 1
with 6M . Therefore:

Theorem 19. Let d ≥ 2 be an even integer. Then for every pair m, t of positive
integers, there exists a simply connected closed spin symplectic 4-manifold X with
invariants

c2
1(X)= 2td2, e(X)= td2

+ 24m, σ (X)=−16m,

such that the canonical class K X has divisibility d.

Note that this solves by Lemma 1 and Rohlin’s theorem the existence question
for simply connected 4-manifolds with canonical class divisible by an even integer
and negative signature. In particular (for d = 2), every possible lattice point with
c2

1>0 and σ <0 can be realized by a simply connected spin symplectic 4-manifold
with this construction; the existence of such 4-manifolds has been proved similarly
in [Park and Szabó 2000].

Example 20 (spin homotopy Horikawa surfaces). To identify the homeomorphism
type of some of the manifolds in Theorem 19, let d = 2k; hence

c2
1(X)= 8tk2 and χh(X)= tk2

+ 2m.

We consider the case when the invariants are on the Noether line c2
1 = 2χh − 6.

This happens if and only if 6tk2
= 4m− 6 and hence 2m = 3tk2

+ 3, which has a
solution if and only if both t and k are odd. Hence for every pair t, k ≥ 1 of odd
integers, there exists a simply connected symplectic 4-manifold X with invariants

c2
1(X)= 8tk2 and χh(X)= 4tk2

+ 3

such that the divisibility of K X is 2k.

1This argument is similar to the argument showing that the complement of a section in E(n) is
simply connected; see [Gompf 1995, Example 5.2].
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By a construction of Horikawa [1976a], there exists for every odd integer r ≥ 1
a simply connected spin complex algebraic surface M on the Noether line with
invariants

c2
1(M)= 8r and χh(M)= 4r + 3.

See also [Gompf and Stipsicz 1999, Theorem 7.4.20] where this surface is called
U (3, r + 1).

By Freedman’s theorem [1982] the symplectic 4-manifolds X constructed above
for odd parameters t and k are homeomorphic to spin Horikawa surfaces with
r = tk2. If k > 1 and t is arbitrary, the canonical class of X has divisibility 2k > 2.
In this case the manifold X cannot be diffeomorphic to a Horikawa surface: It is
known by [Horikawa 1976a] that all Horikawa surfaces M have a fibration in genus
2 curves; hence by Lemma 2 the divisibility of KM is at most 2 and in the spin case
is equal to 2. Since Horikawa surfaces are minimal complex surfaces of general
type, the claim follows by Proposition 7.

7. Nonspin symplectic 4-manifolds with c2
1 > 0 and negative signature

We now we construct some families of simply connected symplectic 4-manifolds
with c2

1 > 0 such that the divisibility of K is a given odd integer d > 1. However,
we do not have a complete existence result as in Theorem 19.

We consider the case that the canonical class K X is divisible by an odd integer d
and the signature σ(X) is divisible by 8.

Lemma 21. Let X be a closed simply connected symplectic 4-manifold such that
K X is divisible by an odd integer d ≥ 1 and σ(X) is divisible by 8. Then c2

1(X) is
divisible by 8d2.

Proof. Suppose that σ(X)=8m for some integer m∈Z. Then b−2 (X)=b+2 (X)−8m
hence b2(X) = 2b+2 (X)− 8m. This implies e(X) = 2b+2 (X)+ 2− 8m. Since X
is symplectic, the integer b+2 (X) is odd, so we can write b+2 (X) = 2k + 1 for
some k ≥ 0. This implies e(X)= 4k + 4− 8m; hence e(X) is divisible by 4. The
equation c2

1(X)= 2e(X)+3σ(X) shows that c2
1(X) is divisible by 8. Since c2

1(X)
is also divisible by the odd integer d2, the claim follows. �

The following theorem covers the case that K X has odd divisibility and the
signature is negative, divisible by 8 and no greater than −16:

Theorem 22. Let d ≥ 1 be an odd integer. Then for every pair n, t of positive inte-
gers with n ≥ 2, there is a simply connected closed nonspin symplectic 4-manifold
X with invariants

c2
1(X)= 8td2, e(X)= 4td2

+ 12n, σ (X)=−8n

such that the canonical class K X has divisibility d.
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Proof. The proof is similar to the proof of Theorem 19. We can write d = 2k + 1
with k ≥ 0.

Case: n = 2m+ 1 is odd, where m ≥ 1. In the proof of Theorem 15, a homotopy
elliptic surface M with χh(M)= n was constructed from the elliptic surface E(n)
by doing knot surgery along a general fibre F with a fibred knot K1 of genus
g1 = 2km+k+1 and a further knot surgery along a rim torus R with a fibred knot
K2 of genus g2 = 2k+ 1= d . The canonical class is given by

KM = (2m+ 1)(2k+ 1)F + 2(2k+ 1)R = (2m+ 1)d F + 2d R.

There exists a symplectically embedded 2-sphere S in E(n) of self-intersection
−2 that sews together with a Seifert surface for K2 to give a symplectic surface
C in M of genus d and self-intersection −2 that intersects the rim torus R once.
By smoothing the double point, we get a symplectic surface 6M in M of genus
g= d+1 and self-intersection 0 that represents C+R. Using a cusp that intersects
6M once, it follows as above that the complement M \6M is simply connected.

Let t ≥ 1 be an arbitrary integer and K3 the (2h + 1,−2)-torus knot of genus
h= td. We consider the generalized fibre sum X=M #6M=6S Yg,h , where g=d+1.
Then X is a simply connected symplectic 4-manifold with invariants

c2
1(X)= 8td2, e(X)= 4td2

+ 12n, σ (X)=−8n.

The canonical class is given by

K X = KM + 2td6M = d((2m+ 1)F + 2R+ 2t6M).

Hence K X has divisibility d , since the class (2m+1)F+2R+2t6M twice intersects
6M and has intersection (2m + 1) with a surface coming from a section of E(n)
and a Seifert surface for K1.

Case: n= 2m is even, where m≥ 1. This case can be proved similarly. By doing a
logarithmic transform on the fibre F in E(n) and two further knot surgeries with a
fibred knot K1 of genus g1= 4km+k+2 on the multiple fibre f and with a fibred
knot K2 of genus g2 = 2k+1= d along a rim torus R, we get a homotopy elliptic
surface M with χh(M) = n and canonical class KM = (4m + 1)d f + 2d R. The
same construction as above yields a simply connected symplectic 4-manifold X
with invariants

c2
1(X)= 8td2, e(X)= 4td2

+ 12n, σ (X)=−8n.

The canonical class is given by

K X = KM + 2td6M = d((4m+ 1) f + 2R+ 2t6M).

Hence K X again has divisibility d. �
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Example 23 (nonspin homotopy Horikawa surfaces). The invariants of the mani-
folds in Theorem 22 are

c2
1(X)= 8td2 and χh(X)= td2

+ n.

Similarly to Example 20, this implies that for every pair d, t ≥1 of positive integers
with d odd and t arbitrary, there exists a nonspin symplectic homotopy Horikawa
surface X on the Noether line c2

1 = 2χh − 6 with invariants

c2
1(X)= 8td2 and χh(X)= 4td2

+ 3,

whose canonical class has divisibility d. Note that for every integer s ≥ 1 there
exists a nonspin complex Horikawa surface M [Horikawa 1976a] with invariants

c2
1(M)= 8s and χh(M)= 4s+ 3.

If d > 1 and t is an arbitrary integer, we get nonspin homotopy Horikawa surfaces
with s = td2 whose canonical classes have divisibility d . By the argument from
before, these 4-manifolds cannot be diffeomorphic to complex Horikawa surfaces.

With different constructions, it is possible to find examples of simply connected
symplectic 4-manifolds with canonical class of odd divisibility, c2

1 > 0 and signa-
ture not divisible by 8; see [Hamilton 2008, Section VI.2.3]. However, many cases
remain uncovered. For example, we could not answer this:

Question 24. For a given odd integer d>1, is there a simply connected symplectic
4-manifold M with c2

1(M)= d2 whose canonical class has divisibility d?

Note that there is a trivial example for d = 3, namely CP2.

8. Construction of inequivalent symplectic structures

In this section we prove a result similar to [Smith 2000, Theorem 1.5], which can be
used to show that certain 4-manifolds X admit inequivalent symplectic structures,
where equivalence is defined as follows (see [McMullen and Taubes 1999]).

Definition 25. Two symplectic forms on a closed oriented 4-manifold M are called
equivalent if they can be made identical by a combination of deformations through
symplectic forms and orientation-preserving self-diffeomorphisms of M .

The canonical classes of equivalent symplectic forms have the same (maximal)
divisibility as elements of H 2(M;Z). This follows because deformations do not
change the canonical class and the application of an orientation preserving self-
diffeomorphism does not change the divisibility.

Lemma 26. Let (M, ω) be a symplectic 4-manifold with canonical class K . Then
the symplectic structure −ω has canonical class −K .
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Proof. Let J be an almost complex structure on M compatible with ω. Then −J
is an almost complex structure compatible with −ω. The complex vector bundle
(T M,−J ) is the conjugate bundle to (T M, J ). By [Milnor and Stasheff 1974],
this implies that c1(T M,−J ) = −c1(T M, J ). Since the canonical class is minus
the first Chern class of the tangent bundle, the claim follows. �

Let MK × S1 be a 4-manifold used in knot surgery, where K is a fibred knot of
genus h. Let TK be a section of the fibre bundle

MK × S1

��

6hoo

T 2

and let BK be a fibre. We fix an orientation on TK and choose the orientation
on BK so that TK · BK =+1. There exist symplectic structures on MK × S1 such
that both the fibre and the section are symplectic. We can choose a symplectic
structureω+ that restricts to both TK and BK as a positive volume form with respect
to the orientations. It has canonical class K+ = (2h − 2)TK by the adjunction
formula. We also define the symplectic form ω− =−ω+. It restricts to a negative
volume form on TK and BK . The canonical class of this symplectic structure is
K− = −(2h − 2)TK . Let X be a closed oriented 4-manifold with torsion-free
cohomology that contains an embedded oriented torus TX of self-intersection 0,
representing an indivisible homology class. We form the oriented 4-manifold

X K = X #TX=TK (MK × S1),

by doing the generalized fibre sum along the pair (TX , TK ) of oriented tori. Suppose
that X has a symplectic structure ωX such that TX is symplectic. We consider two
cases: If ωX restricts to a positive volume form on TX , we can glue ωX to the
symplectic form ω+ on MK × S1 to get a symplectic structure ω+X K

on X K . The
canonical class of this symplectic structure is K+X K

= K X + 2hTX , as seen above;
see Equation (3).

Lemma 27. Suppose that ωX restricts to a negative volume form on TX . We can
glue ωX to the symplectic form ω− on MK × S1 to get a symplectic structure ω−X K

on X K . The canonical class of ω−X K
is K−X K

= K X − 2hTX .

Proof. We use Lemma 26 twice: The symplectic form −ωX restricts to a positive
volume form on TX . We can glue this symplectic form to the symplectic form ω+

on MK×S1, which also restricts to a positive volume form on TK . By the standard
formula (3), the canonical class of the resulting symplectic form on X K is

K =−K X + 2hTX .
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The symplectic form ω−X K
we want to consider is minus the symplectic form we

have just constructed. Hence its canonical class is K−X K
= K X − 2hTX . �

Lemma 28. Suppose (M, ω) is a closed symplectic 4-manifold with canonical
class KM . Suppose M contains pairwise disjoint embedded oriented Lagrangian
surfaces T1, . . . , Tr+1 (with r ≥ 1) such that

• the classes of the surfaces T1, . . . , Tr are linearly independent in H2(M;R),
and

• the surface Tr+1 is homologous to a1T1 + · · · + ar Tr , where all coefficients
a1, . . . , ar are positive integers.

Then for every nonempty subset S ⊂ {T1, . . . , Tr }, there exists a symplectic form
ωS on M such that

• all surfaces T1, . . . , Tr+1 are symplectic, and

• the symplectic form ωS induces on the surfaces in S and the surface Tr+1

a positive volume form and on the remaining surfaces in {T1, . . . , Tr } \ S a
negative volume form.

Also, the canonical classes of the symplectic structures ωS are all equal to KM .
We can also assume that any given closed oriented surface in M that is disjoint
from the surfaces T1, . . . , Tr+1 and is symplectic with respect to ω stays symplectic
for ωS with the same sign as the induced volume form.

Proof. The proof is similar to the proof of [Gompf 1995, Lemma 1.6]. We can
assume that S = {Ts+1, . . . , Tr } with s+ 1≤ r . Let

c =
s∑

i=1

ai and c′ =
r−1∑

i=s+1

ai .

Since the classes of the surfaces T1, . . . , Tr are linearly independent in H2(M;R)
and H 2

DR(M) is the dual space of H2(M;R), there exists a closed 2-form η on M
such that ∫

Ti

η =


−1 for i = 1, . . . , s,
+1 for i = s+ 1, . . . , r − 1,
c+ 1 for i = r,
c′+ 1 for i = r + 1,

Note that we can choose the value of η on T1, . . . , Tr arbitrarily. The value on Tr+1

is then determined by Tr+1 = a1T1+· · ·+ ar Tr . We can choose symplectic forms
ωi on each Ti such that∫

Ti

ωi =

∫
Ti

η for all i = 1, . . . , r + 1.
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The symplectic form ωi induces on Ti a negative volume form if i ≤ s and a
positive volume form if i ≥ s + 1. The difference ωi − j∗i η, where ji : Ti → M is
the embedding, has vanishing integral and hence is an exact 2-form on Ti of the
form dαi . We can extend each αi to a small tubular neighbourhood of Ti in M , cut
it off differentiably in a slightly larger tubular neighbourhood and extend by 0 to
all of M . We can do this such that the tubular neighbourhoods of T1, . . . , Tr+1 are
pairwise disjoint. Define the closed 2-form η′ = η+

∑r+1
i=1 dαi on M . Then

j∗i η
′
= j∗i η+ dαi = ωi .

The closed 2-form ω′ = ω + tη′ is symplectic for small values of t . Since the
surfaces Ti are Lagrangian, we have j∗i ω = 0 and hence j∗i ω

′
= tωi . This implies

that ω′ is for small values t > 0 a symplectic form on M that induces a volume
form on Ti of the same sign as ωi for all i = 1, . . . , r + 1. The claim about the
canonical class follows because the symplectic structures ωS are constructed by a
deformation of ω. We can also choose t > 0 small enough so that ω′ still restricts
to a symplectic form on any given symplectic surface disjoint from the tori without
changing the sign of the induced volume form on this surface. �

This construction will be used as follows: Suppose that (V1, ω1) and (V2, ω2)

are symplectic 4-manifolds such that V1 contains an embedded Lagrangian torus
T1 and V2 contains an embedded symplectic torus T2, both oriented and of self-
intersection 0. Let W denote the smooth oriented 4-manifold V1 #T1=T2 V2 obtained
as a generalized fibre sum. By Lemma 28, there exist small perturbations of ω1

to new symplectic forms ω+1 and ω−1 on the manifold V1 such that the torus T1

becomes symplectic with positive and negative induced volume form, respectively.
By the Gompf construction, it is then possible to define two symplectic forms on
the same oriented 4-manifold W :

• The symplectic forms ω+1 and ω2 determine a symplectic form on W .

• The symplectic forms ω−1 and −ω2 determine a symplectic form on W .

Hence the symplectic forms on the first manifold differ only by a small perturba-
tion, while on the second manifold they differ by the sign. Similarly, the canonical
classes of both perturbed symplectic forms on V1 are the same, while they differ
by the sign on V2. If additional tori exist and suitable fibre sums are performed, it
is possible to end up with two or more inequivalent symplectic forms on the same
4-manifold, distinguished by the divisibilities of their canonical classes.

To define the configuration of tori we want to consider, recall that the nucleus
N (n) is the smooth manifold with boundary defined as a regular neighbourhood
of a cusp fibre and a section in the simply connected elliptic surface E(n); see
[Gompf 1991]. It contains an embedded torus given by a regular fibre homologous
to the cusp. It also contains two embedded disks of self-intersection−1 that bound
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vanishing cycles on the torus. The vanishing cycles are the simple closed loops
given by the factors in T 2

= S1
× S1.

Definition 29 (Lagrangian triple). Let (M, ω) be a symplectic 4-manifold. Given
an integer a ≥ 1, a Lagrangian triple consists of three pairwise disjoint oriented
Lagrangian tori T1, T2 and R embedded in M with the following properties:

• All three tori have self-intersection zero and represent indivisible classes in
integral homology.

• T1 and T2 are linearly independent over Q and R is homologous to aT1+ T2.

• There exists an embedded nucleus N (2)⊂ M that contains R, corresponding
to a general fibre. Let S denote the 2-sphere in N (2) of self-intersection −2,
corresponding to a section. In addition to intersecting R, this sphere intersects
T2 transversely once. The torus T2 is disjoint from the vanishing disks of R,
coming from the cusp in N (2).

• The torus T1 is disjoint from the nucleus N (2) above, and there exists an
embedded 2-sphere S1 in M , also disjoint from N (2), that intersects T1 trans-
versely and positively once.

See Figure 1. The assumptions imply that S1T2 = S1(R− aT1)=−a.

Example 30. Let M be the elliptic surface E(n) with n ≥ 2. In this example we
show that E(n) contains n − 1 disjoint Lagrangian triples (T i

1 , T i
2 , Ri ) as above,

where Ri is homologous to ai T i
1 + T i

2 for i = 1, . . . , n − 1. The integers ai > 0
can be chosen arbitrarily and for each triple independently. In this case both T i

1
and Ri are contained in disjoint embedded nuclei N (2). Together with their dual
2-spheres they realize 2(n− 1) H -summands in the intersection form of E(n). In

N (2)
R

S

T2

T1

S1

Figure 1. Lagrangian triple.
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particular, the tori in different triples are linearly independent. We can also ensure
that all Lagrangian tori and the 2-spheres that intersect them once are disjoint from
the nucleus N (n) ⊂ E(n), defined as a regular neighbourhood of a cusp fibre and
a section in E(n).

The construction is similar to [Gompf and Mrowka 1993, Section 2] and is done
by induction. Suppose the Lagrangian triples are already constructed for E(n) and
consider a splitting of E(n+ 1) as a fibre sum E(n+ 1)= E(n) #F=F E(1) along
general fibres F . We choose fibred tubular neighbourhoods for the general fibres
in E(n) and E(1). The boundary of E(1) \ int νF is diffeomorphic to F × S1.
Let γ1 and γ2 be two simple closed loops spanning the torus F , and let m be the
meridian to F that spans the remaining S1 factor. We consider the three tori

V0 = γ1× γ2, V1 = γ1×m, V2 = γ2×m.

The tori are made disjoint by pushing them inside a collar of the boundary into the
interior of E(1)\int νF such that V2 is the innermost and V0 the outermost (closest
to the boundary). The torus V0 can be assumed symplectic, while V1 and V2 are
rim tori that can be assumed Lagrangian. Similarly the boundary of E(n) \ int νF
is diffeomorphic to F× S1, where F is spanned by the circles γ1 and γ2 and S1 by
the circle m and corresponding circles get identified in the gluing of the fibre sum.
In the interior of E(n) \ int νF we consider three tori V0, V1, V2 as above which
get identified with the corresponding tori on the E(1) side in the gluing. On the
E(n) side, the torus V0 is the innermost and V2 the outermost.

We can choose elliptic fibrations such that near the general fibre F there exist two
cusp fibres in E(1) and three cusp fibres in E(n). This is possible because E(m) has
an elliptic fibration with 6m cusp fibres for all m; see [Gompf and Stipsicz 1999,
Corollary 7.3.23]. The corresponding vanishing disks can be assumed pairwise
disjoint. We can also choose three disjoint sections for the elliptic fibration on
E(1) and one section for E(n).

The nuclei can now be defined as follows: The nucleus N (n+1) containing V0

has a dual −(n+ 1)-sphere sewed together from sections on each side of the fibre
sum. The vanishing disks for V0 come from the first cusp in E(n). The nucleus
N (2) containing V1 has a dual−2-sphere sewed together from two vanishing cycles
parallel to γ2 coming from the first cusp in E(1) and the second cusp in E(n). The
vanishing disks for V1 come from the second section of E(1) and from the vanish-
ing cycle parallel to γ1 of the second cusp in E(n). The nucleus N (2) containing
V2 has a dual −2-sphere sewed together from two vanishing cycles parallel to γ1

coming from the second cusp in E(1) and the third cusp in E(n). The vanishing
disks for V2 come from the third section of E(1) and from the vanishing cycle
parallel to γ2 of the second cusp in E(1).
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To define the Lagrangian triple (T1, T2, R), let T1 = V1 and R = V2. Denote by
ca : S1

→ F = S1
× S1 the embedded curve given by the (−a, 1)-torus knot, and

let T2 denote the Lagrangian rim torus T2 = ca ×m in the collar above. Then T2

represents the class −aT1+ R; hence R = aT1+T2. The torus T2 has one positive
transverse intersection with the sphere in the nucleus containing R and a negative
transverse intersections with the sphere in the nucleus containing T1.

Remark 31. To find more general examples of symplectic 4-manifolds containing
Lagrangian triples, suppose that Y is an arbitrary closed symplectic 4-manifold
that contains an embedded symplectic torus TY of self-intersection 0, representing
an indivisible class. Then the symplectic generalized fibre sum Y #TY=F E(n) also
contains n− 1 Lagrangian triples.

Suppose (M, ω) is a simply connected symplectic 4-manifold that contains a
Lagrangian triple T1, T2, R. Let K1 and K2 be fibred knots of genera h1 and h2 to
be chosen later. Consider the associated oriented 4-manifolds MKi × S1 as in the
knot surgery construction, and denote sections of the fibre bundles

MKi × S1

��

6hi
oo

T 2

by TKi , which are tori of self-intersection 0. We choose an orientation on each
torus TKi . Note that the Lagrangian tori T1 and T2 in M are oriented a priori.

We construct a smooth oriented 4-manifold X in three steps as follows: For an
integer m ≥ 1, consider the elliptic surface E(m) and denote an oriented general
fibre by F . Let M0 denote the smooth generalized fibre sum M0 = E(m) #F=R M .
The gluing diffeomorphism is chosen as follows: The push-offs R′ and F ′ into
the boundary of the tubular neighbourhoods νR and νF each contain a pair of
vanishing cycles. We choose the gluing so that the push-offs and the vanishing
cycles get identified. The corresponding vanishing disks then sew together pairwise
to give two embedded spheres of self-intersection−2 in M0, which can be assumed
disjoint by choosing two different push-offs given by the same trivializations.

Denote the torus in M0 coming from the push-off R′ by R0. Consider the tori
T1 and T2 in M0 . Then R0 is still homologous to aT1 + T2 in M0, because the
difference could only be a rim torus by [Hamilton 2008, Section V.3], which must
have nonzero intersection with one of the two vanishing spheres in M0. This is
excluded by our assumptions on Lagrangian triples. In the second step of the
construction, we do a knot surgery with the fibred knot K1 along the torus T1 in
M0 to get the oriented 4-manifold M1 = M0 #T1=TK1

(MK1× S1). The manifold M1

contains a torus, which we still denote by T2. We do a knot surgery with the fibred
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knot K2 along the torus T2 to get the oriented 4-manifold X = M1 #T2=TK2
(MK2 ×

S1).

Lemma 32. The closed oriented 4-manifold

X = E(m) #F=R M #T1=TK1
(MK1 × S1) #T2=TK2

(MK2 × S1)

is simply connected.

Proof. The existence of the sphere S shows that M \ R is simply connected. Since
E(m) \ F is simply connected, it follows that M0 is simply connected.

The sphere S and a section for the elliptic fibration on E(m) sew together to
give an embedded sphere S2 in M0 of self-intersection −(m + 2). The sphere S1

in M is disjoint from R and hence is still contained in M0. These spheres have the
following intersections:

• The sphere S1 intersects T1 transversely once, has intersection −a with T2,
and is disjoint from R0.

• The sphere S2 intersects R0 and T2 transversely once and is disjoint from T1.

The sphere S1 shows that M0 \ T1 is simply connected and hence M1 is simply
connected. The sphere S2 in M0 is disjoint from T1 and hence is still contained in
M1 and intersects T2 once. By the same argument, this shows that the manifold X
is simply connected. �

We define two symplectic forms ω+X and ω−X on X : By Lemma 28 there exist
two symplectic structures ω+ and ω− on M with the same canonical class KM as
ω such that

• the tori T1, T2 and R are symplectic with respect to both symplectic forms,

• the form ω+ induces on T1, T2 and R a positive volume form, and

• the form ω− induces on T1 a negative volume form and on T2 and R a positive
volume form.

We can also choose the sphere S to be symplectic with positive volume form in
both cases.

On the elliptic surface E(m), we can choose a symplectic (Kähler) form ωE

that restricts to a positive volume form on the oriented fibre F . It has canonical
class KE = (m − 2)F . We can glue both symplectic forms ω+ and ω− on M to
the symplectic form ωE on E(m) to get symplectic forms ω+0 and ω−0 on the 4-
manifold M0. The canonical class for both symplectic forms on M0 is given by
KM0 = KM+m R0; see [Fintushel and Stern 2001, proof of Lemma 2.2]. Since rim
tori exist in this fibre sum, Theorem 11 cannot be applied directly. However, the
formula remains correct because rim tori do not contribute in this case; for details
see [Hamilton 2008, Section V.6.1].
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We want to extend the symplectic forms to the 4-manifold X : We choose in each
fibre bundle MKi × S1 a fibre BKi and orient the surface BKi so that TKi ·BKi =+1
with the chosen orientation on TKi . There exist symplectic structures on the closed
4-manifolds MKi × S1 such that both the section and the fibre are symplectic. On
MK1 × S1, we choose two symplectic forms ω±1 : The form ω+1 induces a positive
volume form on both TK1 and BK1 . It has canonical class K+1 = (2h1−2)TK1 . The
form ω−1 is given by−ω+1 . It induces a negative volume form on both TK1 and BK1

and has canonical class K−1 =−(2h1− 2)TK1 .
On the manifold MK2× S1 we only choose a symplectic form ω2 that induces a

positive volume form on TK2 and BK2 . The canonical class is K2 = (2h2− 2)TK2 .

The oriented torus T1 in M0 is symplectic for both forms ω±0 constructed as
above so that ω+0 induces a positive volume form and ω−0 a negative volume form.
Gluing ω+0 to ω+1 and ω−0 to ω−1 , Lemma 27 implies that the closed oriented
4-manifold M1 has two symplectic structures with canonical classes

K+M1
= KM +m R0+ 2h1T1 and K−M1

= KM +m R0− 2h1T1.

The torus T2 can be considered as a symplectic torus in M1 such that both
symplectic structures induce positive volume forms, since we can assume that the
symplectic forms on M1 are still of the form ω+0 and ω−0 in a neighbourhood of T2.
Hence on the generalized fibre sum X = M1 #T2=TK2

MK2 × S1, we can glue each
of the two symplectic forms on M1 to the symplectic form ω2 on MK2 × S1. We
get two symplectic structures on X with canonical classes

K+X = KM +m R0+ 2h1T1+ 2h2T2,

K−X = KM +m R0− 2h1T1+ 2h2T2.

This can be written using R0 = aT1+ T2 as

K+X = KM + (2h1+ am)T1+ (2h2+m)T2,

K−X = KM + (−2h1+ am)T1+ (2h2+m)T2.

Theorem 33. Suppose (M, ω) is a simply connected symplectic 4-manifold that
contains a Lagrangian triple T1, T2, R such that R is homologous to aT1+ T2. Let
m be a positive integer, and let K1 and K2 be fibred knots of genus h1 and h2. Then
the closed oriented 4-manifold

X = E(m) #F=R M #T1=TK1
(MK1 × S1) #T2=TK2

(MK2 × S1)

is simply connected and admits symplectic structures ω+X and ω−X with canonical
classes

K+X = KM + (2h1+ am)T1+ (2h2+m)T2,

K−X = KM + (−2h1+ am)T1+ (2h2+m)T2.
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Remark 34. Instead of doing the generalized fibre sum with E(m) in the first
step of the construction, we could also do a knot surgery with a fibred knot K0 of
genus h0 ≥ 1. This has the advantage that both c2

1 and the signature do not change
under the construction. However, the sphere S2 in M0 is then replaced by a surface
of genus h0 sewed together from the sphere S in M and a Seifert surface for K0.
Hence it is no longer clear that M1 \ T2 and X are simply connected.

The following two surfaces are useful for determining the divisibility of the
canonical classes in Theorem 33.

Lemma 35. There is an oriented surface C2 in X that has intersection C2T2 = 1
and is disjoint from T1.

The surface C2 is sewed together from the sphere S2 and a Seifert surface for K2.

Lemma 36. There is an oriented surface C1 in X that has intersection C1T1 = 1
and is disjoint from T2.

Proof. The surface C1 can be constructed explicitly as follows: In the nucleus
N (2) ⊂ M containing R, we can find a surface of some genus homologous to aS
and intersecting both R and T2 in a positive transverse intersections. Tubing this
surface to the sphere S1, we get a surface A in M that has intersection number
AT2= 0 and intersects T1 transversely once. By increasing the genus we can make
A disjoint from T2. The surface A still intersects the torus R at a points. Sewing
the surface A to a surface in E(m) homologous to a times a section, we get a
surface B in M0 disjoint from T2 and intersecting T1 once. Sewing this surface to a
Seifert surface for K1 we get a surface C1 in X with C1T1= 1 disjoint from T2. �

9. Examples of inequivalent symplectic structures

Definition 37 (the set Q). Let N ≥ 0 and d ≥ 1 be integers, and let d0, . . . , dN be
positive integers dividing d , where d = d0. If d is even, assume that all d1, . . . , dN

are even. We define a set Q of positive integers as follows:

• If d is either odd or not divisible by 4, let Q be the set consisting of the greatest
common divisors of all (nonempty) subsets of {d0, . . . , dN }.

• If d is divisible by 4, we can assume by reordering that d1, . . . , ds are those
elements such that di is divisible by 4, while ds+1, . . . , dN are those elements
such that di is not divisible by 4, where s ≥ 0 is some integer. Then Q is
defined as the set of integers consisting of the greatest common divisors of all
(nonempty) subsets of {d0, . . . , ds, 2ds+1, . . . , 2dN }.

We can now state the main theorem on the existence of inequivalent symplectic
structures on homotopy elliptic surfaces.
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Theorem 38. Let N and d ≥ 1 be integers, and let d0, . . . , dN be positive integers
dividing d as in Definition 37. Let Q be the associated set of greatest common
divisors. Choose an integer n ≥ 3 as follows:

• If d is odd, let n be an arbitrary integer with n ≥ 2N + 1.

• If d is even, let n be an even integer with n ≥ 3N + 1.

Then there exists a homotopy elliptic surface W with χh(W ) = n and the prop-
erty that for each integer q ∈ Q, the manifold W admits a symplectic structure
whose canonical class K has divisibility equal to q. Hence W admits at least |Q|
inequivalent symplectic structures.

Proof. The proof splits into three cases depending on the parity of d . In each case
we follow the construction in Section 8, starting from the manifold M = E(l),
where l is an integer no less than N+1. By Example 30, E(l) contains N pairwise
disjoint Lagrangian triples T i

1 , T i
2 , Ri , where Ri is homologous to ai T i

1 + T i
2 for

indices i = 1, . . . , N . The construction is done on each triple separately2 and
involves knot surgeries along T i

1 and T i
2 with fibred knots of respective genus hi

and h, as well as fibre summing with elliptic surfaces E(m) along the tori Ri . The
numbers ai , hi , h and m will be fixed in each case.

Case: d is odd. Then all divisors d1, . . . , dN are odd. Consider the integers

m = 1, h = 1
2(d − 1),

ai = d + di , hi =
1
2(d − di ) for 1≤ i ≤ N .

Let l be an integer no less than N +1 and do the construction above, starting from
the elliptic surface E(l). We get a (simply connected) homotopy elliptic surface X
with χh(X)= l+N . By Theorem 33 the 4-manifold X has 2N symplectic structures
with canonical classes

K X = (l − 2)F +
N∑

i=1

(
(±2hi + ai )T i

1 + (2h+ 1)T i
2
)

= (l − 2)F +
N∑

i=1

(
(±(d − di )+ d + di )T i

1 + dT i
2
)
.

Here F denotes the torus in X coming from a general fibre in E(l) and the±-signs
in each summand can be varied independently. We can assume that F is symplectic
with positive induced volume form for all 2N symplectic structures on X . Consider
the even integer l(d−1)+2, and let K be a fibred knot of genus g= 1

2(l(d−1)+2).
We do knot surgery with K along the symplectic torus F to get a homotopy elliptic

2This is only a small generalization of Lemma 28, because the construction in the proof of this
lemma changes the symplectic structure only in a small neighbourhood of the Lagrangian surfaces.



GEOGRAPHY OF SYMPLECTIC 4-MANIFOLDS 67

surface W with χh(W )= l + N having 2N symplectic structures whose canonical
classes are given by

KW = (l − 2+ 2g)F +
N∑

i=1

(
(±(d − di )+ d + di )T i

1 + dT i
2
)

= dl F +
N∑

i=1

(
(±(d − di )+ d + di )T i

1 + dT i
2
)
.

Suppose that q ∈ Q is the greatest common divisor of certain elements {di }i∈I ,
where I is a nonempty subset of {0, . . . , N }. Let J be the complement of I in
{0, . . . , N }. Choosing the minus sign for each i in I and the plus sign for each i
in J defines a symplectic structure ωI on W with canonical class given by

KW = dl F +
∑
i∈I

(2di T i
1 + dT i

2 )+
∑
j∈J

(2dT j
1 + dT j

2 ).

We claim that the divisibility of KW is equal to q . Since q divides d and all integers
di for i ∈ I , the class KW is divisible by q. Considering separately the surfaces
from Lemmas 35 and 36 for each Lagrangian triple implies that every number
that divides KW is odd (since it divides d) and a common divisor of all di with
indices i ∈ I . This proves the claim in this case.

Case: d is even but not divisible by 4. We can write d = 2k and di = 2ki for all
i = 1, . . . , N . The assumption implies that all integers k, ki are odd. Consider the
integers defined by

m = 2, h = k− 1,

ai =
1
2(k+ ki ), hi =

1
2(k− ki ).

Let l be an even integer no less than N + 1 and consider the construction above,
starting from E(l). We get a homotopy elliptic surface X with χh(X) = l + 2N .
The 4-manifold X has 2N symplectic structures with canonical classes

K X = (l − 2)F +
N∑

i=1

(
(±2hi + 2ai )T i

1 + (2h+ 2)T i
2
)

= (l − 2)F +
N∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)
.

Consider a fibred knot K of genus g= 1
2(l(d−1)+2), noting that l is even. Doing

knot surgery with K along the symplectic torus F in X , we get a homotopy elliptic
surface W with χh(W )= l+2N having 2N symplectic structures whose canonical
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classes are

KW = (l − 2+ 2g)F +
N∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)

= dl F +
N∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)
.

Let q ∈ Q be the greatest common divisor of elements di , where i ∈ I for some
nonempty index set I with complement J in {0, . . . , N }. Choosing the plus and
minus signs as before, we get a symplectic structure ωI on W with canonical class

(6) KW = dl F +
∑
i∈I

(di T i
1 + dT i

2 )+
∑
j∈J

(dT i
1 + dT i

2 ).

As above, it follows that the canonical class of ωI has divisibility equal to q.

Case: d is divisible by 4. We can write d=2k and di =2ki for all i=1, . . . , N . We
can assume that the divisors are ordered as in Definition 37, that is, d1, . . . , ds are
those elements such that di is divisible by 4 while ds+1, . . . , dN are those elements
such that di is not divisible by 4. This is equivalent to k1, . . . , ks being even and
ks+1, . . . , kN odd. Consider the integers defined by

ai =
1
2(k+ ki ) and hi =

1
2(k− ki ) for i = 1, . . . , s,

ai =
1
2(k+ 2ki ) and hi =

1
2(k− 2ki ) for i = s+ 1, . . . , N .

We also define m = 2 and h = k − 1. Let l be an even integer ≥ N + 1. We
consider the same construction as above starting from E(l) to get a homotopy
elliptic surface X with χh(X) = l + 2N that has 2N symplectic structures with
canonical classes given by the formula

K X = (l − 2)F +
N∑

i=1

(
(±2hi + 2ai )T i

1 + (2h+ 2)T i
2
)

= (l − 2)F +
s∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)

+

N∑
i=s+1

(
(±(k− 2ki )+ k+ 2ki )T i

1 + dT i
2
)
.

We then do knot surgery with a fibred knot K of genus g= 1
2(l(d−1)+2) along the

symplectic torus F in X to get a homotopy elliptic surface W with χh(W )= l+2N
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having 2N symplectic structures whose canonical classes are

(7)

KW = (l − 2+ 2g)F +
N∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)

= dl F +
s∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)

+

N∑
i=s+1

(
(±(k− 2ki )+ k+ 2ki )T i

1 + dT i
2
)
.

Let q be an element in Q. Note that this time

(k− ki )+ (ki + k)= d and −(k− ki )+ (ki + k)= di for i ≤ s,

(k− 2ki )+ (k+ 2ki )= d and −(k− 2ki )+ (k+ 2ki )= 2di for i ≥ s+ 1.

Since q is the greatest common divisor of certain elements di for i ≤ s and 2di

for i ≥ s + 1, it follows as above that we can choose the plus and minus signs
appropriately to get a symplectic structure ωI on W whose canonical class has
divisibility equal to q. �

Example 39. Suppose d = 45 and choose d0 = 45, d1 = 15, d2 = 9, d3 = 5. Then
Q={45, 15, 9, 5, 3, 1}, and for every integer n≥ 7 there exists a homotopy elliptic
surfaces W with χh(W )=n that admits at least 6 inequivalent symplectic structures
whose canonical classes have divisibilities given by the elements in Q. One can
also find an infinite family of homeomorphic but nondiffeomorphic manifolds of
this kind.

Corollary 40. Let m ≥ 1 be an arbitrary integer.

• There exist simply connected nonspin 4-manifolds W homeomorphic to the
elliptic surfaces E(2m+1) and E(2m+2)2 that admit at least 2m inequivalent
symplectic structures.

• There exist simply connected spin 4-manifolds W homeomorphic to E(6m−2)
and E(6m) that admit at least 22m−1 inequivalent symplectic structures, and
there are spin manifolds homeomorphic to E(6m+ 2) that admit at least 22m

inequivalent symplectic structures.

Proof. Choose N pairwise different odd prime numbers p1, . . . , pN . Let d = d0 =

p1 · · · pN , and consider the integers di obtained for i = 1, . . . , N by dividing d by
the prime pi . Then the associated set Q of greatest common divisors consists of
all products of the pi where each prime occurs at most once: If such a product x
does not contain precisely the primes pi1, . . . , pir then x is the greatest common
divisor of di1, . . . , dir . The set Q has 2N elements.
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Let m ≥ 1 be an arbitrary integer. If N = m, there exists by Theorem 38 for
every integer n≥ 2N+1= 2m+1 a homotopy elliptic surface W with χh(W )= n
that has 2m symplectic structures realizing all elements in Q as the divisibility of
their canonical classes. Since d is odd, the 4-manifolds W are nonspin.

If N = 2m − 1, there exists for every even integer n ≥ 3N + 1 = 6m − 2 a
homotopy elliptic surface W with χh(W )= n that has 22m−1 symplectic structures
realizing all elements in Q multiplied by 2 as the divisibility of their canonical
classes. Since all divisibilities are even, the manifold W is spin. If N = 2m, we can
choose n= 6m+2 to get a spin homotopy elliptic surface W with χh(W )= 6m+2
and 22m inequivalent symplectic structures. �

We can extend construction in the proof of Theorem 38 to the spin manifolds in
Theorem 19 with c2

1 > 0:

Theorem 41. Let N ≥ 1 be an integer. Suppose that d ≥ 2 is an even integer
and d0, . . . , dN are positive even integers dividing d as in Definition 37. Let Q
be the associated set of greatest common divisors. Let m be an integer such that
2m ≥ 3N + 2, and let t ≥ 1 be an arbitrary integer. Then there exists a simply
connected closed spin 4-manifold W with invariants

c2
1(W )= 2td2, e(W )= td2

+ 24m, σ (W )=−16m,

and the property that for each integer q ∈ Q, the manifold W admits a symplectic
structure whose canonical class K has divisibility equal to q. Hence W admits at
least |Q| inequivalent symplectic structures.

Proof. Let l = 2m−2N . By the construction of Theorem 19, there exists a simply
connected symplectic spin 4-manifold X with invariants

c2
1(X)= 2td2, e(X)= td2

+ 12l, σ (X)=−8l, K X = d(1
2 l F + R+ t6M).

In particular, the canonical class of X has divisibility d . In the construction of X
starting from the elliptic surface E(l), we have only used one Lagrangian rim torus.
Hence l − 2 of the l − 1 triples of Lagrangian rim tori in E(l) (see Example 30)
remain unchanged. Note that l− 2≥ N by our assumptions. Since the symplectic
form on E(l) in a neighbourhood of these tori does not change in the construction
of X by the Gompf fibre sum, we can assume that X contains at least N triples
of Lagrangian tori as in the proof of Theorem 38. We can now use the same
construction as in this theorem on the N triples of Lagrangian tori in X to get a
simply connected spin 4-manifold W with invariants

c2
1(W )= 2td2, e(W )= td2

+ 12l + 24N

= td2
+ 24m,

σ (W )=−8l − 16N =−16m,
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admitting 2N symplectic structures. In particular, for each q ∈ Q the manifold W
admits a symplectic structure ωI whose canonical class is given by (6) and (7) if
the term dl F is replaced by K X = d( 1

2 l F + R + t6M). It follows again that the
canonical class of ωI has divisibility precisely equal to q. �

Corollary 42. Let d ≥ 6 be an even integer, and let t ≥ 1 and m ≥ 3 be arbitrary
integers. Then there exists a simply connected closed spin 4-manifold W with
invariants

c2
1(W )= 2td2, e(W )= td2

+ 24m, σ (W )=−16m

such that W admits at least two inequivalent symplectic structures.

This follows with N = 1 and choosing d0 = d and d1 = 2, since in this case Q
consists of two elements.

Example 43. We consider Corollary 42 for the spin homotopy Horikawa surfaces
in Example 20. Let t ≥ 1 and k ≥ 3 be arbitrary odd integers, and define an
integer m by 2m = 3tk2

+ 3. Let d = 2k and d1 = 2. Since d = 2k is not divisible
by 4, the set Q is equal to {2k, 2} by Definition 37. Hence there exists a spin
homotopy Horikawa surface X on the Noether line with invariants c2

1(X) = 8tk2

and χh(X) = 4tk2
+ 3, and admitting two inequivalent symplectic structures: the

canonical class of the first symplectic structure has divisibility 2k, while that of the
second is divisible only by 2.

Similarly, we can extend the construction in Theorem 41 to the nonspin mani-
folds in Theorem 22 with c2

1 > 0:

Theorem 44. Let N ≥ 1 be an integer. Suppose d ≥ 3 is an odd integer, and
let d0, . . . , dN be positive integers dividing d as in Definition 37. Let Q be the
associated set of greatest common divisors. Let m ≥ 2N+2 and t ≥ 1 be arbitrary
integers. Then there exists a simply connected closed nonspin 4-manifold W with
invariants

c2
1(W )= 8td2, e(W )= 4td2

+ 12m, σ (W )=−8m

and the property that for each integer q ∈ Q, the manifold W admits a symplectic
structure whose canonical class K has divisibility equal to q. Hence W admits at
least |Q| inequivalent symplectic structures.

Proof. The proof is analogous to the proof of Theorem 41. Let l =m− N . By the
construction of Theorem 22, there exists a simply connected nonspin symplectic
4-manifold X with invariants

c2
1(X)= 8td2, e(X)= 4td2

+ 12l, σ (X)=−8l
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whose canonical class K X has divisibility d . The manifold X contains l−2 triples
of Lagrangian tori. By our assumptions, l − 2 ≥ N . Hence we can perform
the construction in Theorem 38 (for d odd) to get a simply connected nonspin
4-manifold W with invariants

c2
1(W )= 8td2, e(W )= 4td2

+ 12l + 12N

= 4td2
+ 12m,

σ (X)=−8l − 8N =−8m.

The 4-manifold W admits for every integer q ∈ Q a symplectic structure whose
canonical class has divisibility equal to q . �

Choosing N = 1, d0 = d and d1 = 1, the set Q contains two elements.

Corollary 45. Let d ≥ 3 be an odd integer, and let t ≥ 1 and m ≥ 4 be integers.
Then there exists a simply connected closed nonspin 4-manifold W with invariants

c2
1(W )= 8td2, e(W )= 4td2

+ 12m, σ (W )=−8m

such that W admits at least two inequivalent symplectic structures.

10. Branched coverings

Let Mn be a closed, oriented smooth manifold, and let Fn−2 be a closed, oriented
submanifold of codimension 2. Suppose the fundamental class [F] ∈ Hn−2(M;Z)
is divisible by an integer m > 1 and choose a class B ∈ Hn−2(M;Z) such that
[F] = m B. The integer m together with B determine a branched covering of M .

Definition 46. We denote by φ : M(F, B,m)→ M the m-fold branched covering
of M branched over F and determined by m and B.

For the construction of branched coverings, see [Hirzebruch 1969]. The smooth
manifold M(F, B,m) has the properties that

• over the complement M ′ = M \ F , the map φ : φ−1(M ′)→ M ′ is a standard
m-fold cyclic covering;

• φ maps the submanifold F = φ−1(F) diffeomorphically onto F , and on tubu-
lar neighbourhoods of F and F , the map φ : ν(F)→ ν(F) is locally of the
form

U × D2
→U × D2, (x, z) 7→ (x, zm),

where D2 is considered as the unit disk in C.

Suppose M is a smooth complex algebraic surface, and let D ⊂ M be a smooth
connected complex curve. If m>0 is an integer that divides [D] and B ∈H2(M;Z)
is a homology class such that [D] =m B, then the branched covering M(D, B,m)
also admits the structure of an algebraic surface.
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Proposition 47. Let D be a smooth connected complex curve in a complex surface
M such that [D] =m B. Let φ :M(D, B,m)→ M be the branched covering. Then
the invariants of N := M(D, B,m) are

(a) KN = φ
∗(KM + (m− 1)B),

(b) c2
1(N )= m(KM + (m− 1)B)2,

(c) e(N )= me(M)− (m− 1)e(D),

where e(D)= 2− 2g(D)=−(KM · D+ D2) by the adjunction formula.

Proof. The formula for e(N ) follows by a well-known formula for the Euler
characteristic of a topological space decomposed into two pieces and the formula
for standard, unramified coverings. The formula for c2

1(N ) then follows by the
signature formula of Hirzebruch [1969]:

σ(N )= mσ(M)− m2
−1

3m
D2.

The formula for KN can be found in [Barth et al. 1984, Chapter I, Lemma 17.1]. �

Suppose that the complex curve D is contained in the linear system |nKM | and
hence represents in homology a multiple nKM of the canonical class of M . Let
m > 0 be an integer dividing n and write n = ma. Now set [D] = nKM and
B = aKM in Proposition 47.

Corollary 48. Let D be a smooth connected complex curve in a complex surface
M with [D] = nKM and φ : M(D, aKM ,m)→ M the branched covering. Then
the invariants of N := M(D, aKM ,m) are

(a) KN = (n+ 1− a)φ∗KM ,

(b) c2
1(N )= m(n+ 1− a)2c2

1(M),

(c) e(N )= me(M)+ (m− 1)n(n+ 1)c2
1(M).

We consider again the general situation that M is a smooth, oriented manifold
and F is an oriented submanifold of codimension 2. The fundamental group of M
is related to the fundamental group of the complement M ′ = M \ F by

(8) π1(M)∼= π1(M ′)/N (σ ),

where σ denotes the meridian to F , given by a circle fibre of ∂ν(F)→ F , and N (σ )
denotes the normal subgroup in π1(M ′) generated by this element (a proof can be
found in the appendix of [Hamilton 2008]). Using this formula, the fundamental
group of a branched covering can be calculated in the following case.
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Theorem 49. Let Mn be a closed oriented manifold, and let Fn−2 be a closed
oriented submanifold. Suppose in addition that the fundamental group of M ′ is
abelian. Then for all m and B with [F] = m B, there exists an isomorphism

π1(M(F, B,m))∼= π1(M).

Proof. Let k > 0 denote the maximal integer dividing [F]. Since m divides k, we
can write k =ma with a > 0. Let M ′ denote the complement to F in M(F, B,m),
and let σ be the meridian to F . By Equation (8) we have

π1(M(F, B,m))∼= π1(M ′)/N (σ ).

There is an exact sequence 0→π1(M ′)
π∗
−−→π1(M ′)→Zm→ 0 since π :M ′→M ′

is an m-fold cyclic covering. The assumption that π1(M ′) is abelian implies that
π1(M ′) is also abelian. Therefore the normal subgroups generated by the meridians
are cyclic. The endpoints of the lifts of 0, σ, 2σ, . . . , (m − 1)σ , where σ is the
meridian to F , realize all m points in the fibre over the basepoint. This implies that
the induced map π∗ :π1(M ′)−→ π1(M ′)/〈σ 〉 is surjective. The kernel of this map
is equal to 〈σ 〉, because only the multiples of mσ = π∗σ lift to loops in M ′; hence

π1(M ′)/〈σ 〉
∼=
−→ π1(M ′)/〈σ 〉.

Again by Equation (8), this implies π1(M(F, B,m))∼= π1(M). �

We want to apply this theorem in the case where M is a 4-manifold and F is an
embedded surface. Even if M is simply connected, the complement M ′ does not
have abelian fundamental group in general. However, in the complex case, we can
use the following, which is [Nori 1983, Proposition 3.27].

Theorem 50. Let M be a smooth complex algebraic surface, and let D, E ⊂M be
smooth complex curves that intersect transversely. Assume that D′2 > 0 for every
connected component D′ ⊂ D. Then the kernel of π1(M \ (D ∪ E))→ π1(M \ E)
is a finitely generated abelian group.

If E =∅, this implies that the kernel of π1(M ′)→π1(M) is a finitely generated
abelian group if D is connected and D2 > 0, where M ′ = M \ D. If M is simply
connected, it follows that π1(M ′) is abelian. Thus with Theorem 49 we get this:

Corollary 51. Let M be a simply connected, smooth complex algebraic surface,
and let D ⊂ M be a smooth connected complex curve with D2 > 0. Let M be a
cyclic ramified cover of M branched over D. Then M is also simply connected.

Catanese [1984] has also used in a different situation restrictions on divisors to
ensure that certain ramified coverings are simply connected.
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11. Surfaces of general type and pluricanonical systems

We collect some results concerning the geography of simply connected surfaces of
general type and the existence of smooth divisors in pluricanonical systems.

The following is the main geography result we use for our constructions.

Theorem 52 [Persson 1981, Proposition 3.23]. Let x, y be positive integers such
that 2x − 6 ≤ y ≤ 4x − 8. Then there exists a simply connected minimal complex
surface M of general type such that χh(M) = x and c2

1(M) = y. Furthermore, M
can be chosen as a genus 2 fibration.

The smallest integer x for which an inequality can be realized with y > 0 is
x = 3. Since χh(M)= pg(M)+1 for simply connected surfaces, this corresponds
to surfaces with pg=2. Hence from Theorem 52, we get minimal simply connected
complex surfaces M with pg = 2 and K 2

= 1, 2, 3, 4. Similarly for x = 4 we get
surfaces with pg = 3 and K 2

= 2, . . . , 8.

Proposition 53. For K 2
= 1 and K 2

= 2, all possible values for pg given by the
Noether inequality K 2

≥ 2pg − 4 can be realized by simply connected minimal
complex surfaces of general type.

Proof. By the Noether inequality, the only possible values for pg are pg = 0, 1, 2
if K 2

= 1 and pg = 0, 1, 2, 3 if K 2
= 2. The cases pg = 2 for K 2

= 1 and
pg = 2, 3 for K 2

= 2 are covered by Persson’s theorem. In particular, the surface
with K 2

= 1 and pg = 2 and the surface with K 2
= 2 and pg = 3 are Horikawa

surfaces described in [Horikawa 1976a; 1976b]. The remaining cases can also
be covered: The Barlow surface from [1985] is a simply connected numerical
Godeaux surface, that is, a minimal complex surface of general type with K 2

= 1
and pg = 0. Simply connected minimal surfaces of general type with K 2

= 1, 2
and pg = 1 exist by constructions due to Enriques; see [Catanese 1979; Catanese
and Debarre 1989; Chakiris 1980]. Finally, Lee and Park [2007] have constructed
a simply connected minimal surface of general type with K 2

= 2 and pg = 0. It is
a numerical Campedelli surface. �

Suppose M is a minimal smooth complex algebraic surface of general type and
consider the multiples L = nK = K⊗n of the canonical line bundle of M . By a
theorem of Bombieri [Bombieri 1973; Barth et al. 1984], all divisors in the linear
system |nK | are connected. If |nK | has no fixed parts and is base point free, it
determines an everywhere-defined holomorphic map to a projective space, and we
can find a nonsingular divisor representing nK by taking the preimage of a generic
hyperplane section.

Theorem 54. Let M be a minimal smooth complex algebraic surface of general
type. Then the pluricanonical system |nK | determines an everywhere defined holo-
morphic map in the cases
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• n ≥ 4,

• n = 3 and K 2
≥ 2, and

• n = 2 and K 2
≥ 5 or pg ≥ 1.

For proofs and references, see [Bombieri 1970; 1973; Catanese and Tovena 1992;
Kodaira 1968; Mendes Lopes and Pardini 2002; Reider 1988].

Remark 55. In some of the remaining cases it is also known that pluricanonical
systems define a holomorphic map. In particular, suppose that M is a numerical
Godeaux surface. Then the map defined by |3K | is holomorphic if H1(M;Z)=0 or
Z2, for example, if M is simply connected [Miyaoka 1976; Reid 1978]. This is also
known for the map defined by |2K | in the case of a simply connected surface M
with K 2

= 4 and pg = 0 by [Catanese and Tovena 1992; Kotschick 1994].

12. Branched covering construction of algebraic surfaces with divisible
canonical class

Suppose that M is a simply connected minimal complex surface of general type.
Let m, d ≥ 2 be integers such that m − 1 divides d − 1 and define the integers
a = (d − 1)/(m − 1) and n = ma. Then d = n + 1 − a and the assumptions
imply that n≥ 2. We assume in addition that nKM can be represented by a smooth
complex connected curve D in M ; see Theorem 54. Let M = M(D, aKM ,m)
denote the associated m-fold branched cover over the curve D.

Theorem 56. Let M be a simply connected minimal surface of general type, and
let m, d ≥ 2 be integers such that d − 1 is divisible by m − 1 with quotient a.
Suppose that D is a smooth connected curve in the linear system |nKM |, where
n = ma. Then the m-fold cover of M , branched over D, is a simply connected
complex surface M of general type with invariants

KM = dφ∗KM , e(M)= m(e(M)+ (d − 1)(d + a)c2
1(M)),

c2
1(M)= md2c2

1(M), χh(M)= mχh(M)+ 1
12 m(d − 1)(2d + a+ 1)c2

1(M),

σ (M)=− 1
3 m(2e(M)+ (d(d − 2)+ 2a(d − 1))c2

1(M)).

In particular, the canonical class KM is divisible by d and M is minimal.

Proof. The invariants are given by Corollary 48. Since D2
= n2K 2

M > 0, the
complex surface M is simply connected by Corollary 51. Also, M is of general
type because c2

1(M) > 0 and M cannot be rational or ruled. Minimality follows
from Lemma 2, since the divisibility of KM is at least d ≥ 2. �

Note that the signature σ(M) is always negative; hence surfaces with positive
signature cannot be constructed in this way.
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The transformation

8 : (e(M), c2
1(M)) 7→ (e(M), c2

1(M))

given by Theorem 56 is linear and can be written as(
e(M)
c2

1(M)

)
= m

(
1 1

0 d2

)(
e(M)
c2

1(M)

)
,

with the abbreviation 1= (d−1)(d+a). This map is invertible over R and maps
the quadrant R+ × R+ of positive coordinates in R× R into the same quadrant.
The inverse of 8 is given by(

e(M)
c2

1(M)

)
=

1
m

(
1 −1/d2

0 1/d2

)(
e(M)
c2

1(M)

)
.

Definition 57. We call a point in R+×R+ admissible if e(M)+c2
1(M)≡0 mod 12.

The coordinates e(M) and c2
1(M) of a complex surface are always admissible by

the Noether formula.

Lemma 58. The image of the admissible points in R+ × R+ under the map 8
consists of the points satisfying

e(M)≡ 0 mod m, c2
1(M)≡ 0 mod md2, 1

m e(M)+ 1−1
md2 c2

1(M)≡ 0 mod 12.

The proof is immediate by the formula for the inverse of 8. We want to calculate
the image under 8 of the sector given by Theorem 52. First, we rewrite Persson’s
theorem in an equivalent form (we omit the proof):

Corollary 59. Let e and c be positive integers with c≥36−e and e+c≡0 mod 12.
If 1

5(e−36)≤ c≤ 1
2(e−24), then there exists a simply connected minimal surface

M of general type with invariants e(M)= e and c2
1(M)= c.

In the next step, we calculate the image under 8 of the lines in the (e, c)-plane
that appear in this corollary. A short calculation shows that the line c = 1

5(e− 36)
maps to

(9) c2
1(M)=

d2

5+1
(e(M)− 36m),

while the line c = 1
2(e− 24) maps to

(10) c2
1(M)=

d2

2+1
(e(M)− 24m).

Similarly, the constraint c ≥ 36− e maps to

(11) c2
1(M)≤

d2

−1+1
(e(M)− 36m).
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It follows that the image under 8 of the lattice points given by the constraints in
Corollary 59 consists precisely of those points in the sector between the lines (9)
and (10) that satisfy the constraint (11) and the constraints in Lemma 58.

The surfaces in Theorem 52 satisfy pg ≥ 2 and K 2
≥ 1. By Theorem 54, the

linear system |nK | for n ≥ 2 on these surfaces defines a holomorphic map, except
possibly in the case pg = 2, K 2

= 1 and n = 3. Since n = ma and m ≥ 2,
this occurs only for m = 3, a = 1 and d = 3. The corresponding image under
8 has invariants (e, c2

1) = (129, 27). This exception is implicitly understood in
the following theorem. In all other cases we can consider the branched covering
construction above. This can be summarized as follows: Consider integers m, a, d
as above, with m, d ≥ 2, a ≥ 1 and 1= (d − 1)(d + a).

Theorem 60. Let x and y be positive integers such that y(1−1) ≥ 36− x and
x + (1−1)y ≡ 0 mod 12. If

1
(5+1)

(x − 36)≤ y ≤ 1
(2+1)

(x − 24),

then there is a simply connected minimal complex surface M of general type with
invariants e(M) = mx and c2

1(M) = md2 y such that the canonical class of M is
divisible by d.

We calculate some explicit examples for the branched covering construction
given by Theorem 60 and for some surfaces not covered by Persson’s theorem.
For any d ≥ 2, we can choose m = 2 and a= d−1, corresponding to 2-fold covers
branched over (2d − 2)K . The formulas for the invariants simplify to

c2
1(M)= 2d2c2

1(M), e(M)= 24χh(M)+ 2d(2d − 3)c2
1(M),

χh(M)= 2χh(M)+ 1
2 d(d − 1)c2

1(M).

The first two examples are double coverings with m=2, whereas the third example
uses coverings of higher degree. Because of their topological invariants, some of
the surfaces are homeomorphic by Freedman’s theorem to the simply connected
symplectic 4-manifolds constructed in Sections 6 and 7.

Example 61. We consider the Horikawa surfaces [1976a] on the Noether line
c2

1 = 2χh − 6, which exist for every χh ≥ 4 and are also given by Persson’s
Theorem 52. In this case pg ≥ 3 and c2

1 ≥ 2; hence by Theorem 54, the linear
system |nK | for n ≥ 2 defines a holomorphic map on these surfaces.

Proposition 62. Let M be a Horikawa surface on the Noether line c2
1 = 2χh − 6,

where χh = 4+ l for l ≥ 0. Then the 2-fold cover M of the surface M , branched
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over (2d − 2)KM for an integer d ≥ 2, has invariants

c2
1(M)= 4d2(l + 1), χh(M)= 6+ (2+ d(d − 1))(l + 1),

e(M)= 72+ 4(l + 1)(6+ 2d2
− 3d), σ (M)=−48− 4(l + 1)(4+ d2

− 2d).

The canonical class KM is divisible by d.

For d even, the integer d2
− 2d = d(d − 2) is divisible by 4; hence σ is indeed

divisible by 16, which is necessary by Rohlin’s theorem. The invariants are on the
line

c2
1(M)=

4d2

2+d(d−1)
(χh(M)− 6),

which has inclination close to 4 for d very large.

Example 63. We calculate the invariants for the branched covers with m = 2 and
integers d ≥ 3 for the surfaces given by Proposition 53. Since n = ma ≥ 4 in this
case, Theorem 54 shows that the linear system |nK | defines a holomorphic map
and we can use the branched covering construction.

Proposition 64. Let M be a minimal complex surface of general type with K 2

equal to 1 or 2. The 2-fold cover M of the surface M , branched over (2d − 2)KM

for an integer d ≥ 3, has invariants as follows:

If K 2
= 1 and pg = 0, 1, 2, c2

1(M)= 2d2,

e(M)= 24(pg + 1)+ 2d(2d − 3),
σ (M)=−16(pg + 1)− 2d(d − 2).

If K 2
= 2 and pg = 0, 1, 2, 3, c2

1(M)= 4d2,

e(M)= 24(pg + 1)+ 4d(2d − 3),
σ (M)=−16(pg + 1)− 4d(d − 2).

In both cases the canonical class KM is divisible by d.

Example 65. Consider the Barlow surface MB and the surface MLP of Lee and
Park mentioned in the proof of Proposition 53. The invariants are

c2
1(MB)= 1, χh(MB)= 1, e(MB)= 11;

c2
1(MLP)= 2, χh(MLP)= 1, e(MLP)= 10.

By Theorem 54, we can consider branched covers over both surfaces with ma ≥ 3
(the Barlow surface is a simply connected numerical Godeaux surface, and hence
|3K | defines a holomorphic map by Remark 55). See Tables 1 and 2 for a calcu-
lation of the invariants of M for small values of d and m. There is an agreement
between the 4-fold cover of MB branched over 4KM and the 2-fold cover of MLP

branched over 6KM : Both have the same Chern invariants and the same divisibility
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d m ma (d − 1)(d + a) e(MB) c2
1(MB) χh(MB) b+2 (MB) σ (MB)

3 2 4 10 42 18 5 9 −22
3 3 3 8 57 27 7 13 −29
4 2 6 21 64 32 8 15 −32
4 4 4 15 104 64 14 27 −48
5 2 8 36 94 50 12 23 −46
5 3 6 28 117 75 16 31 −53
5 5 5 24 175 125 25 49 −75
6 2 10 55 132 72 17 33 −64
6 6 6 35 276 216 41 81 −112

Table 1. Ramified coverings of the Barlow surface MB of degree
m branched over maK .

d m ma (d − 1)(d + a) e(MLP) c2
1(MLP) χh(MLP) b+2 (MLP) σ (MLP)

3 2 4 10 60 36 8 15 −28
3 3 3 8 78 54 11 21 −34
4 2 6 21 104 64 14 27 −48
4 4 4 15 160 128 24 47 −64
5 2 8 36 164 100 22 43 −76
5 3 6 28 198 150 29 57 −82
5 5 5 24 290 250 45 89 −110
6 2 10 55 240 144 32 63 −112
6 6 6 35 480 432 76 151 −176

Table 2. Ramified coverings of the Lee–Park surface MLP of de-
gree m branched over maK .

d = 4 of the canonical class. Hence the manifolds are homeomorphic and by
Theorem 4, both branched coverings have the same Seiberg–Witten invariants.

Remark 66. More general examples are possible by considering branched cover-
ings over singular complex curves. The following example is described for instance
in [Gompf and Stipsicz 1999, Chapter 7]: Let Bn,m denote the singular complex
curve in CP1

×CP1 that is the union of 2n parallel copies of the first factor and 2m
parallel copies of the second factor. The curve Bn,m represents in cohomology the
class 2nS1+ 2mS2, where S1 = [CP1

× {∗}] and S2 = [{∗} ×CP1
]. Let X ′(n,m)

denote the double covering of CP1
× CP1 branched over Bn,m . It is a singular

complex surface that has a canonical resolution X (n,m); see [Barth et al. 1984,
Chapter III]. As a smooth 4-manifold, X (n,m) is diffeomorphic to the double
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cover of CP1
×CP1 branched over the smooth curve B̃n,m given by smoothing the

double points. Hence the topological invariants for X = X (n,m) can be calculated
with the formulas from Proposition 47 to be

c2
1(X)= 4(n− 2)(m− 2), e(X)= 6+ 2(2m− 1)(2n− 1), σ (X)=−4mn.

Writing X ′ = X ′(n,m) and M = CP1
×CP1, denote by φ : X ′→ M the double

covering, by π :X→ X ′ the canonical resolution, and byψ=φ◦π the composition.
Since all singularities of Bn,m are ordinary double points, K X can be calculated by
a formula in [Barth et al. 1984, Theorem 7.2, Chapter III] as

K X = ψ
∗(KM +

1
2 Bm,n)= ψ

∗(−2S1− 2S2+ nS1+mS2)

= ψ∗((n− 2)S1+ (m− 2)S2).

We interpret this formula as follows: The map ψ : X → CP1
× CP1 followed

by the projection onto the first factor defines a fibration X → CP1 whose fibres
are the branched covers of the rational curves {p} × CP1, where p ∈ CP1. The
generic rational curve among them is disjoint from the 2m curves in Bn,m parallel
to {∗}×CP1 and intersects the 2n curves parallel to CP1

× {∗} at 2n points. This
implies that the generic fibre F2 of the fibration is a double branched cover of
CP1 at 2n distinct points and hence a smooth complex curve of genus n− 1. This
curve represents the class ψ∗S2 in the surface X . Similarly, there is a fibration
X → CP1 in genus m − 1 curves that represents F1 = ψ

∗S1. Hence we can write
K X = (n − 2)F1 + (m − 2)F2. In particular, the divisibility of K X is the greatest
common divisor of n− 2 and m− 2.

Remark 67. In [Catanese 1984; 1986; Catanese and Wajnryb 2007], the authors
constructed certain families of simply connected surfaces of general type with
divisible canonical class, using branched coverings over singular curves. Some
of these surfaces are diffeomorphic but not deformation equivalent, thus giving
counterexamples to a well-known conjecture.
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BOUNDARY ASYMPTOTICAL BEHAVIOR
OF LARGE SOLUTIONS TO HESSIAN EQUATIONS

YONG HUANG

We consider the exact asymptotic behavior of smooth solutions to boundary
blow-up problems for the k-Hessian equation on �, where ∂� is strictly
(k−1)-convex. Similar results were obtained by Cîrstea and Trombetti when
k= n (the Monge–Ampère equation) and by Bandle and Marcus for a semi-
linear equation.

1. Introduction and main results

We investigate the qualitative properties of solutions to the boundary blow-up prob-
lem for the k-Hessian equation of the form

(1-1)
{

Hk[D2u] = σk(λ1, . . . , λn)= b(x) f (u), x ∈�,
u(x)=∞, x ∈ ∂�,

where b(x) is a continuous weight function, λ1, . . . , λn are eigenvalues of D2u,
the Hessian matrix of a C2-function u defined over �, and � is a bounded domain
in Rn . The boundary condition means u(x)→+∞ as d(x), dist(x, ∂�)→ 0+.

Following [Caffarelli et al. 1985; Trudinger 1995], σk is defined by

(1-2) σk(λ1, . . . , λn)=
∑

1≤i1<···<ik≤n

λi1 · · · λik .

One can solve (1-1) in a class of k-convex functions by [Caffarelli et al. 1985; Jian
2006]. Recall that a function u ∈ C2(�) is called k-convex (or strictly k-convex)
if (λ1, . . . , λn)∈0k (or (λ1, . . . , λn)∈0k) for every x ∈�, where 0k is the convex
cone with vertex at the origin given by

0k = {λ= (λ1, . . . , λn) ∈ Rn
| σ j (λ) > 0, j = 1, . . . , k}.

Obviously,

01 ⊃ 02 ⊃ · · · ⊃ 0n = {λ= (λ1, . . . , λn) ∈ Rn
| λ j > 0, j = 1, . . . , k},
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where 0n is the positive cone, and σk(λ1, . . . , λn) is elliptic in the class of k-convex
functions.

For an open bounded subset � of Rn with boundary of class C2 and for every
x ∈∂�, we denote by ρ1(x), . . . , ρn−1(x) the principal curvatures of ∂� (relative to
the interior normal). Recall that � is said to be l-convex if (ρ1(x), . . . , ρn−1(x))∈
0l , and it is called strictly l-convex if (ρ1(x), . . . , ρn−1(x))∈0l , for every x ∈ ∂�.
In particular, strictly (n−1)-convex is just strictly convex.

Using radial function methods and techniques of ordinary differential inequal-
ity, Jian [2006] constructed various barriers functions, then proved existence and
nonexistence theorems using those barriers. Furthermore, generic boundary blow-
up rates for the solution are derived for the k-Hessian equation with boundary
blow-up problem. In this paper, we derive accurately the blow-up rate of solutions
to boundary blow-up problems for Hessian equations.

Let K` denote the set of all positive nondecreasing C1-functions m defined on
(0, ν), for some ν > 0, for which there exists

(1-3) lim
t→0+

∫ t
0 m(s) ds

m(t)
= 0 and lim

t→0+

d
dt

(∫ t
0 m(s) ds

m(t)

)
= `.

A complete characterization of K` (according to ` 6= 0 or ` = 0) is provided by
[Cı̂rstea and Rădulescu 2006].

One has the following examples for special `, where p > 0 is arbitrary:

(a) m(t)= (−1/ln t)p with `= 1,

(b) m(t)= t p with `= 1/(p+ 1),

(c) m(t)= e−1/t p
with `= 0.

Definition 1.1. A positive measurable function f defined on [a,∞), for some
a > 0, is called regularly varying at infinity with index q , written f ∈ RVq , if for
each λ > 0 and some q ∈ R,

(1-4) lim
t→∞

f (λt)
f (t)

= λq .

The real number q is called the index of regular variation.

When q = 0, we have:

Definition 1.2. A positive measurable function L defined on [a,∞), for some
a > 0, is called regularly varying at infinity, if for each λ > 0 and some q ∈ R,

(1-5) lim
t→∞

L(λt)
L(t)

= 1.

By Definitions 1.1 and 1.2, if f ∈ RVq , it can be represented in the form

(1-6) f (t)= uq L(t).
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Notation. If H is a nondecreasing function on R, then we denote by H← the
(left-continuous) inverse of H [Resnick 1987], that is,

H←(y)= inf{s : H(s)≥ y}.

If α > 0 is sufficiently large, we define

(1-7) P(u)= sup
{

f (y)
yk : α ≤ y ≤ u

}
, for u ≥ α.

Problem (1-1) is the Laplace operator when k = 1. There are many papers re-
solving existence, uniqueness and asymptotic behavior issues for blow-up solutions
of semilinear/quasilinear elliptic equations: for instance [Osserman 1957; Resnick
1987; Véron 1992; Bandle and Marcus 1992; 1995; Garcı́a-Melián et al. 2001;
Chuaqui et al. 2004; Cı̂rstea and Rădulescu 2006; Garcı́a-Melián 2006].

When k = n, problem (1-1) is the Monge–Ampère equation, for which Cı̂rstea
and Trombetti [2008] obtained existence, uniqueness and asymptotic behavior; see
also [Guan and Jian 2004; Mohammed 2007].

The boundary blow-up problem of the k-Hessian equation was considered in
[Salani 1998; Colesanti et al. 2000; Jian 2006]. See also [Takimoto 2006] for recent
results on boundary blow-up problems for k-curvature equations, where there is a
considerable difference between the cases 1 ≤ k ≤ n − 1 and k = n. However,
we can unify them by using techniques from [Colesanti et al. 2000; Cı̂rstea and
Trombetti 2008] for k-Hessian equations.

Our asymptotic results are obtained in the case when ∂� is strictly (k−1)-
convex, but for k-curvature equations in [Cı̂rstea and Trombetti 2008], the con-
dition that ∂� is strictly convex is needed.

Theorem 1.3. Let n ≥ 2 and � be a smooth, strictly (k−1)-convex bounded do-
main in Rn . Assume that f ∈ RVq with q > k and there exists m ∈ K` such that

(1-8) 0< β− = lim inf
d(x)→0

b(x)
mk+1(d(x))

and lim sup
d(x)→0

b(x)
mk+1(d(x))

= β+ <∞.

Then, every k-convex blow-up solution u∞ of (1-1) satisfies

(1-9) ξ− ≤ lim inf
d(x)→0

u
φ(d(x))

and lim sup
d(x)→0

u
φ(d(x))

≤ ξ+,

where φ is defined by

(1-10) φ(t)= P←
((∫ t

0
m(s) ds

)−k−1)
, for t > 0 small,
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and ξ± are positive constants given by

(1-11)
(ξ+)k−q

β−
max
∂�

σk−1 =
(ξ−)k−q

β+
min
∂�

σk−1 =

(
(q − k)/(n+ 1)

)k+1

1+ `(q − k)/(k+ 1)
.

On the other hand, Colesanti et al. [2000] established asymptotic estimates for
the behavior of the smallest viscosity solution near the boundary of � for the
Hessian equation

(1-12)
{

Hk[D2u] = f (u), x ∈�,
u(x)=∞, x ∈ ∂�.

Theorem 1.3 may also been seen as a generalization of the asymptotic behavior for
the viscosity solution in [Colesanti et al. 2000].

Remark 1.4. In the setting of Theorem 1.3, limd(x)→0 u/φ(d(x)) exists provided
that � is a ball and (1-8) holds with β− = β+ ∈ (0,∞). The latter condition is
equivalent to saying that

(1-13) b(x)∼ (m(d(x)))k+1 as d(x)→ 0, for some m ∈ K`.

More exactly, when � is a ball of radius R > 0, Theorem 1.3 reads as follows.

Corollary 1.5. Let �= BR be a ball of radius R > 0 and f ∈ RVq with q > k. If
(1-13) holds, then every strictly k-convex blow up solution u of (1-1) satisfies

(1-14) u(x)∼ ξφ(d(x)) as d(x)→ 0,

where φ is defined by (1-10) and ξ is given by

(1-15) ξ =

((
(q − k)/(k+ 1)

)k+1 Rk−1

1+ `(q − k)/(k+ 1)

)1/(k−q)

.

Under slightly more restrictive conditions than those in Theorem 1.3, there is at
most one strictly k-convex blow-up solution of (1-1).

Theorem 1.6. Let � be a smooth, strictly (k−1)-convex, bounded domain in Rn .
Suppose f ∈ RVq with q > k, and f (u)/uk is increasing on (0,∞). Then, (1-1)
has at most one strictly k-convex blow-up solution, provided that either

(i) b is positive on �, or

(ii) b is zero on ∂�, � is a ball of radius R > 0 and (1-13) holds.

Remark 1.7. When k = n (the Monge–Ampère equation), Theorems 1.3 and 1.6
were obtained in [Cı̂rstea and Trombetti 2008].
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2. Preliminaries

Proposition 2.1. Let � be an open subset of Rn with n ≥ 2. If h ∈ C2(R) and
g ∈ C2(�) then

(2-1) σk(D2h(g(x)))=
(
h′(g(x))

)k−1h′′(x)σk−1(D2g|i, j )gi g j

+
(
h′(g(x))

)k
σk(D2g), for all x ∈�,

where D2g|i, j is the cofactor of the (i, j)-th entry of the symmetric matrix D2g(x).

For µ > 0, we set 0µ = {x ∈� : d(x, ∂�) < µ}.

Remark 2.2. If � is bounded and ∂� ∈ C l for l ≥ 2, then there exists a positive
constant µ depending on � such that d ∈ C l(0µ). (See also Lemma 14.16 in
[Gilbarg and Trudinger 1998].)

Corollary 2.3. Let � be bounded with ∂� ∈ C l for l ≥ 2. Assume that µ > 0 is
small such that d ∈C2(0µ) and h is a C2-function on (0, µ). Let x0 ∈0µ \∂� and
y0 ∈ ∂� be such that |x0− y0| = d(x0). Then, we have

(2-2) σk
(
D2h(d(x0))

)
=
(
−h′(d(x0))

)k−1h′′(d(x0))σk−1(ε1, . . . , εn−1)

+
(
−h′(d(x0))

)k
σk(ε1, . . . , εn−1),

where ρ1(y0), . . . , ρn−1(y0) are the principal curvatures of ∂� at y0 and εi =

ρi (y0)/(1− ρi (y0)d(x0)), i = 1, . . . , n− 1.

Proof. It is easy to calculate that the expression of the Hessian matrix of d at x0

in terms of a principal coordinate system at y0 (see also Lemma 14.17 in [Gilbarg
and Trudinger 1998]), namely

D2d(x0)= diag
(

−ρ1(y0)

1− ρ1(y0)d(x0)
, . . . ,

−ρn−1(y0)

1− ρn−1(y0)d(x0)
, 0
)
,

Dd(x0)= (0, . . . , 0, 1).

Thus by Proposition 2.1, we obtain
σk
(
D2h(d(x0))

)
=
(
−h′(d(x0))

)k−1h′′(d(x0))σk−1




ρ1(y0)
1−ρ1(y0)d(x0)

. . .
ρn−1(y0)

1−ρn−1(y0)d(x0)




+
(
−h′(d(x0))

)k
σk




ρ1(y0)
1−ρ1(y0)d(x0)

. . .
ρn−1(y0)

1−ρn−1(y0)d(x0)


 . �
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We now give a brief account of the definitions and properties of regularly varying
functions; see also [Resnick 1987; Cı̂rstea and Trombetti 2008].

Proposition 2.4 (Uniform convergence theorem). If L is slowly varying, L(λu)
L(u)

tends to 1 as u→∞, uniformly on each compact λ-set in (0,∞).

Proposition 2.5. (See also Proposition 4.9 in [Cîrstea and Trombetti 2008].)

(i) If R ∈ RVq , then limu→∞ log R(u)/log u = q.

(ii) If R1 ∈ RVq1 and R2 ∈ RVq2 with limu→∞ R2(u)=∞, then

R1 ◦ R2 ∈ RVq1q2 .

(iii) Suppose R is nondecreasing and R ∈ RVq , 0< q <∞. Then

R← ∈ RVq−1 .

(iv) Suppose R1, R2 are nondecreasing and q-varying with q ∈ (0,∞). Then, for
c ∈ (0,∞), we have

lim
u→∞

R1(u)
R2(u)

= c if and only if lim
u→∞

R←1 (u)
R←2 (u)

= c−1/q .

Proposition 2.6. (See also Proposition 4.10 in [Cîrstea and Trombetti 2008]). Let
R ∈ RVq and choose B ≥ 0 so that R is locally bounded on [B,∞). If q > 0, then

(a) sup{R(y) : B ≤ y ≤ u} ∼ R(u) as u→∞,

(b) inf{R(y) : y ≥ u} ∼ R(u) as u→∞.

If q < 0, then

(c) inf{R(y) : y ≥ u} ∼ R(u) as u→∞,

(d) inf{R(y) : B ≤ y ≤ u} ∼ R(u) as u→∞.

3. Asymptotic properties of φ

Using Karamata’s theory of regular variation and its extensions, we now consider
the asymptotic properties of the function φ defined in (1-10).

Lemma 3.1. Let m ∈ K` and f ∈ RVq with q > k. If φ is defined by (1-10), then
there exists a functionψ ∈C2(0, τ )with τ >0 which satisfies limt→0 ψ(t)/φ(t)=1
and

lim
t→0

ψ(t)ψ ′′(t)
(ψ ′(t))2

= 1+
(q − k)`

k+ 1
,(3-1)

lim
t→0

(−ψ ′(t))k−1ψ ′′(t)
mk+1(t) f (ψ(t))

=

(
k+ 1
q − k

)k+1(
1+

(q − k)`
k+ 1

)
.(3-2)

where ` appears in (1-3).
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Proof. To prove (3-1), denote g(u) = f (u)/uk . Since g ∈ RVq−k and q > k,
by Proposition 2.6 we have limu→∞ g(u)/P(u) = 1. By Remark 4.8 in [Cı̂rstea
and Trombetti 2008] we infer that there exists a function ĝ ∈ C2(0, τ ) such that
limu→∞ ĝ(u)/g(u)= 1 and

(3-3) lim
u→∞

uĝ′(u)
ĝ(u)

= q − k, lim
u→∞

uĝ′′(u)
ĝ′(u)

= q − k− 1,

where we have used g ∈ RVq−k .
We define ψ by

(3-4) ĝ(ψ(t))=
(∫ t

0
m(s) ds

)−k−1

, for t > 0 small.

Notice that

(3-5) φ(t)= P←
((∫ t

0
m(s) ds

)−k−1)
, for t > 0 small.

Thus Proposition 2.5 gives

lim
t→0

ĝ←
(( ∫ t

0 m(s) ds
)−k−1)

P←
(( ∫ t

0 m(s) ds
)−k−1) = lim

t→0

ĝ
(( ∫ t

0 m(s) ds
)−k−1)

P
(( ∫ t

0 m(s) ds
)−k−1) = 1,

where we have used limu→∞ g(u)/P(u) = 1 and limu→∞ ĝ(u)/g(u) = 1 in the
last equality.

By the definition of the inverse of ĝ we see that

(3-6) lim
t→0

ψ(t)
φ(t)
= lim

t→0

ĝ←
(( ∫ t

0 m(s) ds
)−k−1)

P←
(( ∫ t

0 m(s) ds
)−k−1) = 1.

By differentiating (3-4) we obtain

(3-7) ĝ′(ψ(t))ψ ′(t)=−(k+ 1)
(∫ t

0
m(s) ds

)−k−2

m(t), for t > 0 small.

Then, by (3-3), (3-4) and (3-7),

(3-8)
ψ ′(t)
ψ(t)

∼
−(k+ 1)

q − k
m(t)∫ t

0 m(s) ds
, as t→ 0.

We differentiate (3-7), then use (1-3) and (3-3) to deduce that as t→ 0

(3-9) ĝ′(ψ(t))
(ψ ′(t))2

ψ(t)

(
q − k− 1+

ψ(t)ψ ′′(t)
(ψ ′(t))2

)
∼ (k+ 1)(k+ 1+ `)m2(s)

(∫ t

0
m(s) ds

)−k−3

.
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Putting (3-7) and (3-8) into (3-9), we have

−(k+ 1)
(∫ t

0
m(s) ds

)−k−2

m(t)
−(k+ 1)

q − k
m(t)∫ t

0 m(s) ds

(
q − k− 1+

ψ(t)ψ ′′(t)
(ψ ′(t))2

)

=
(k+ 1)2

q − k
m2(t)

(∫ t

0
m(s) ds

)−k−3(
q − k− 1+

ψ(t)ψ ′′(t)
(ψ ′(t))2

)
(3-10)

∼ (k+ 1)(k+ 1+ `)m2(s)
(∫ t

0
m(s) ds

)−k−3

.

Thus,

(3-11)
(k+ 1)
q − k

(
q − k− 1+

ψ(t)ψ ′′(t)
(ψ ′(t))2

)
∼ (k+ 1+ `).

(3-1) now follows from (3-11).
From (3-4) and (3-8), we find

(3-12) lim
t→0

(
−
ψ ′(t)
ψ(t)

)k+1 1
mk+1(t)ĝ(ψ(t))

=

(
k+ 1
q − k

)k+1

.

This, combined with (3-1), proves (3-2). �

4. Proof of Theorem 1.3

Fix ε ∈ (0, 1/2) and choose δ > 0 small enough such that:

(a) m is nondecreasing on (0, 2δ).

(b) β−(1−ε)
(
m(d(x))

)k+1
≤ b(x)≤ β+(1+ε)

(
m(d(x))

)k+1, for every x ∈�2δ,
where for λ > 0 we set

�λ = {x ∈� : d(x) < λ}.

(c) d(x) is a C2 function on 02δ = {x ∈� : d(x) < 2δ}.

(d) 0<ψ , ψ ′ < 0, and ψ ′′ > 0 on (0, 2δ), where ψ is as in Lemma 3.1.

(e) σk−1(diag(1−ρ1(y)d(x), . . . , 1−ρn−1(y)d(x))) > 1− ε, for every x ∈�2δ.
Recall that ρi (y), i = 1, . . . , n−1, denote the principal curvatures of ∂� at y,
where y ∈ ∂� is such that |x − y| = d(x).

Fix τ ∈ (0, δ). With ξ± given by (1-11), we set

(4-1) η± =
(
(1∓ ε)(1∓ 2ε)

)1/(k−q)
ξ±.

Define

(4-2)
{
v+τ = η

+ψ((1− e−T (d(x)−τ))/T ), x ∈�2δ \�τ ,

v−τ = η
−ψ((1− e−T (d(x)+τ))/T ), x ∈�2δ−τ .
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Step 1. We prove that, near the boundary, v+τ (respectively, v−τ ) is an upper (re-
spectively, lower) solution of (1-1), that is,

(4-3)

{
Hk[D2v+τ ] ≤ b(x) f (v+τ ), x ∈�2δ \�τ ,

Hk[D2v−τ ] ≥ b(x) f (v−τ ), x ∈�2δ−τ .

We denote by

(4-4) M+ = max
y∈∂�

σk−1(y) and M− = min
y∈∂�

σk−1(y).

After some computations we obtain, for a point x ∈�2δ \�τ ,

[v+τ ]i j = η
+e−T (d(x)−τ)(ψ ′di j + di d j (ψ

′′e−T (d(x)−τ)
− Tψ ′)

)
.

Since |Dd(x)| = 1 in x ∈�2δ \�τ , we can choose a coordinate system such that

Dd(x)= (0, . . . , 0, 1),

D2d(x)= diag
(
d11(x), . . . , dn−1,n−1(x), 0

)
,

where di i (x) = −ρi (y)/(1− ρi (y)d(x)), and y ∈ ∂� is such that |x − y| = d(x)
as in Corollary 2.3.

Hence

D2v+τ = η
+e−T (d(x)−τ) diag

(
ψ ′d11(x), . . . , ψ ′dn−1,n−1(x), ψ ′′e−T (d(x)−τ)

−Tψ ′
)
.

Using this and Corollary 2.3, we can easily compute the k-Hessian of v+τ :

(4-5) Hk[D2v+τ ] = (η
+)ke−(k+1)T (d(x)−τ)

[−ψ ′]k−1ψ ′′σk−1(−D2d(x))

+ (η+)ke−kT (d(x)−τ)
[−ψ ′]k

(
Tσk−1(−D2d(x))+ σk(−D2d(x))

)
.

Now, if

T1 ≤−
max�2δ\�τ

|σk(D2d(x))|

min�2δ\�τ
σk−1(−D2d(x))

,

then (4-5) and condition (e) yield for T ≤ T1,

Hk[D2v+τ ] ≤ (η
+)ke−(k+1)T (d(x)−τ)

[−ψ ′]k−1ψ ′′σk−1(−D2d(x)),

≤
(η+)k

1− ε
M+e−(k+1)T (d(x)−τ)

[−ψ ′]k−1ψ ′′, x ∈�2δ \�τ .

Similarly, we have for T2

T2 ≥
max�2δ−τ |σk(D2d(x))|

min�2δ−τ σk−1(−D2d(x))
,
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for T ≥ T2,

Hk[D2v−τ ] ≥ (η
−)ke−(k+1)T (d(x)+τ)

[−ψ ′]k−1ψ ′′σk−1(−D2d(x)),

≥
(η−)k

1+ ε
M−e−(k+1)T (d(x)+τ)

[−ψ ′]k−1ψ ′′, x ∈�2δ−τ .

Therefore, to deduce (4-3) it is enough to establish that

(4-6) lim
t→0

(η±)k
M±

β∓
[−ψ ′(t)]k−1ψ ′′(t)
mk+1(t) f (η±ψ(t))

= (1∓ ε)(1∓ ε).

Since f ∈ RVq , Lemma 3.1 and our choice of η± in (4-1),

lim
t→0

(η±)k
M±

β∓
[−ψ ′(t)]k−1ψ ′′(t)
mk+1(t) f (η±ψ(t))

= (η±)k
M±

β∓

( k+1
q−k

)k+1(
1+ (q−k)`

k+1

)
(η±)−q

=
(
(1∓ ε)(1∓ 2ε)

)
ξ±

(k−q) M±

β∓

( k+1
q−k

)k+1(
1+ (q−k)`

k+1

)
= (1∓ ε)(1∓ 2ε),

where we have used (1-11) in the last equality.

Step 2. Every strictly k-convex blow-up solution u of (1-1) satisfies (1-9).

Let C =maxd(x)=δ u(x). Notice that

(4-7)
{
v+τ +C =∞> u(x), x ∈� with d(x)= τ,
v+τ +C ≥ u(x), x ∈� with d(x)= δ.

Using (4-3) we deduce that for every x ∈�δ \�τ ,

Hk[D2(v+τ +C)] = Hk[D2v+τ ] ≤ b(x) f (v+τ )≤ b(x) f (v+τ +C).

Since u is a solution to (1-1), by the comparison principle for k-Hessians [Jian
2006, Lemma 2.1] we find

(4-8) v+τ +C ≥ u(x), for all x ∈�δ \�τ .

We set C ′= ξ−ψ(δ). Hence, we have C ′≥v−τ (x) for every x ∈�with d(x)= δ−τ .
It follows that

(4-9) u(x)+C ′ ≥ v−τ (x), for all x ∈ ∂�δ−τ .

We see that, for every x ∈�δ−τ ,

Hk[u(x)+C ′] = Hk[D2u(x)] ≤ b(x) f (u(x))≤ b(x) f (u(x)+C ′),

while by (4-3) we have

(4-10) Hk[D2v−τ ] ≥ b(x) f (v−τ ), x ∈�δ−τ .
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Using again the comparison principle for k-Hessian equations, we infer that

(4-11) u(x)+C ′ ≥ v−τ (x), for all x ∈�δ−τ .

By (4-8) and (4-11), letting τ → 0 we obtain

(4-12)

{(
(1+ε)(1+2ε)

)1/(k−q)
ξ−ψ((1−e−T2d(x))/T2)−C ′ ≤ u(x), x ∈�δ,

u(x)≤
(
(1−ε)(1−2ε)

)1/(k−q)
ξ+ψ((1−e−T1d(x))/T1)+C.

Dividing by ψ((1−e−Ti d(x))/Ti ) for i = 1, 2 and noticing that limt→0 ψ(t)/φ(t)=
1, letting d(x)→ 0, we obtain

(4-13)
{

lim infd(x)→0 u/φ(d(x))≥
(
(1+ ε)(1+ 2ε)

)1/(k−q)
ξ−,

lim infd(x)→0 u/φ(d(x))≤
(
(1− ε)(1− 2ε)

)1/(k−q)
ξ+.

Since ε > 0 is arbitrary, we let ε→ 0 and obtain (1-9). This completes the proof
of Theorem 1.3.

5. Proof of Theorem 1.6

We follow the methods in [Cı̂rstea and Trombetti 2008] and divide the proof into
two steps:

Step 1. For all strictly k-convex blow-up solutions u1, u2 of (1-1),

(5-1) lim
d(x)→0

u1(x)
u2(x)

= 1.

Step 2. There is at most one strictly convex blow-up solution of (1-1).

Proof of Step 1. The argument breaks into two cases.

Case (i): b > 0 on �. Since u1 and u2 are arbitrary, it suffices to show that

(5-2) lim inf
d(x)→0

u1(x)
u2(x)

≥ 1.

Without loss of generality, we can assume that 0 belongs to �. Let ε ∈ (0, 1) be
fixed and let λ > 1 be close to 1.

We set

(5-3) Cλ =
(
(1+ ε)λ2k max

x∈(1/λ)�

b(λx)
b(x)

)1/(q−k)
,

where (1/λ)�=
{
(1/λ)x : x ∈�

}
. Notice that Cλ→ (1+ ε)1/(q−k) as λ→ 1.

Hence, by Proposition 2.4 and limd(x)→0 u1(x)=∞, we deduce that there exists
δ = δ(ε) > 0, independent of λ, such that

(5-4) Cq
λ

f (u1(x))
f (Cλu1(x))

≤ 1+ ε, for all x ∈�δ and λ ∈ (1, 1+ η) for some η.
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We now define Uλ as

(5-5) Uλ(x)= Cλu1(λx), for all x ∈ (1/λ)�δ.

Notice by (5-3)–(5-5),

(5-6) Hk[D2Uλ(x)] = λ2kCk
λb(λx) f (u1(λx))

≤ λ2kCk−q
λ (1+ ε)b(λx) f (Cλu1(λx))

≤ b(x) f (Cλu1(λx))= b(x) f (Uλ(x)), x ∈ (1/λ)�δ,

which says that Uλ(x) is a supersolution of (1-1) with domain (1/λ)�δ.
Since f is increasing on (0,∞) and (5-6), for each constant M > 0,

(5-7) Hk[D2(Uλ(x)+M)] = Hk[D2Uλ(x)] ≤ b(x) f (Uλ(x))

≤ b(x) f (Uλ(x)+M), for all x ∈ (1/λ)�δ.

Notice also that Uλ(x) = ∞ > u2(x), for every x ∈ (1/λ)∂�. Moreover, x ∈
(1/λ)∂� implies that d(x) < δ (as λ > 1 is close to 1).

Thus, if we choose M > 0 large enough (for example, M = maxd(x)=δ u2(x)),
then by the comparison principle for k-Hessian equations we obtain

(5-8) Uλ(x)+M ≥ u2(x), for all x ∈�δ ∩ (1/λ)�δ.

Letting λ→ 1 in (5-8), we find

(5-9) (1+ ε)1/(q−k)u1(x)+M ≥ u2(x), for all x ∈�δ,

which implies that

(5-10) lim inf
d(x)→0

u1(x)
u2(x)

≥ (1+ ε)1/(k−q),

and then letting ε→ 0 we obtain (5-2).

Case (ii): b≡ 0 on ∂�, � is a ball of radius R> 0, and (1-13) holds. By Corollary
1.5, every strictly k-convex blow-up solution u of (1-1) satisfies

(5-11) lim
d(x)→0

u
φ(d(x))

=

((
(q − k)/(k+ 1)

)k+1 Rk−1

1+ `(q − k)/(k+ 1)

)1/(k−q)

,

where φ is defined by (1-10) and ` appears in (1-3). �

Proof of Step 2. If u1, u2 are arbitrary strictly k-convex blow-up solutions of (1-1),
it suffices to show that u1 ≤ u2 in �. Fix ε > 0. By Step 1 we infer that

(5-12) lim
d(x)→0

(
u1(x)− (1+ ε)u2(x)

)
=−∞.
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Since f (u)/uk is increasing on (0,∞), we deduce that

(5-13) Hk[D2(1+ ε)u2(x)] = (1+ ε)k Hk[D2u2(x)] ≤ (1+ ε)kb(x) f (u2(x))

≤ b(x) f ((1+ ε)u2(x)), for all x ∈�.

By (5-12), (5-13) and the comparison principle for k-Hessian equations,

(5-14) u1 ≤ (1+ ε)u2, for all x ∈�.

Letting ε→ 0, thus u1 ≤ u2 in �. This completes the proof of Step 2 and hence
of Theorem 1.6. �
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EIGENVALUES OF THE STOKES OPERATOR VERSUS THE
DIRICHLET LAPLACIAN IN THE PLANE

JAMES P. KELLIHER

We show that the k-th eigenvalue of the Dirichlet Laplacian is strictly less
than the k-th eigenvalue of the classical Stokes operator (equivalently, of the
clamped buckling plate problem) for a bounded domain in the plane having
a locally Lipschitz boundary. For a C2 boundary, we show that eigenvalues
of the Stokes operator with Navier slip (friction) boundary conditions inter-
polate continuously between eigenvalues of the Dirichlet Laplacian and of
the classical Stokes operator.

1. Introduction

Let � be a bounded domain in R2 with locally Lipschitz boundary 0. Let σD

be the spectrum of the negative Laplacian with homogeneous Dirichlet boundary
conditions (which we refer to as the Dirichlet Laplacian) and let σS be the spectrum
of the Stokes operator with homogeneous Dirichlet boundary conditions (which we
refer to as the classical Stokes operator). Equivalently, σS is the set of eigenvalues
of the clamped buckling plate problem [Payne 1955; 1967; Friedlander 2004].
Each spectrum is discrete with

σD = {λ j }
∞

j=1, with 0< λ1 < λ2 ≤ · · · ,(1-1)

σS = {ν j }
∞

j=1, with 0< ν1 ≤ ν2 ≤ · · · ,(1-2)

each eigenvalue repeated according to its multiplicity.

Theorem 1.1. For all positive integers k, we have λk < νk .

Further, let γk(θ) be the k-th eigenvalue of the Stokes operator with boundary
conditions (1− θ)ω(u)+ θu · τ = u · n = 0, where ω(u) = ∂1u2

− ∂2u1 is the
vorticity of u, and τ and n are the tangential and normal unit vectors; see Section 8
for details.
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Theorem 1.2. If 0 is C2 and has a finite number of components, for each positive
integer k, the function γk is a strictly increasing continuous bijection from [0, 1]
onto [λk, νk].

Theorem 1.1 is the analogue of the inequality µk+1 < λk for k = 1, 2, . . . ,
proved by Filonov [2004]. Here, σN = {µ j }

∞

j=1 is the spectrum of the negative
Laplacian with homogeneous Neumann boundary conditions (which we refer to
as the Neumann Laplacian). Then σN is also discrete with 0 = µ1 < µ2 ≤ · · · .
Filonov’s inequality applies in Rd for d ≥ 2 and only requires that � have finite
measure and that its boundary have sufficient regularity that the embedding of
W 1(�) in L2(�) is compact, which is slightly weaker than our assumption that 0
is locally Lipschitz. Because of the need to integrate by parts, however, we require
the additional regularity.

Filonov’s strict inequality is a strengthening of the partial inequality µk+1 ≤ λk

proved by L. Friedlander in [1991] using very different techniques.
A fairly direct variational argument shows that λk ≤ νk ; see Remark 5.3 or

[Ashbaugh 2004, Equation (1.8)]. We are interested in the strict inequality.
For the unit disk, where one can calculate the eigenfunctions explicitly,

σD =
{

j2
nk : n = 0, 1 . . . , k = 1, 2, . . .

}
,

σS =
{

j2
nk : n = 1, 2 . . . , k = 1, 2, . . .

}
,

where jnk is the k-th positive zero of the Bessel function Jn of the first kind of
order n. Each eigenvalue has multiplicity 2 except for { j2

0k : k ∈ N} ⊆ σD and
{ j2

1k : k ∈ N} ⊆ σS , which have multiplicity 1. This gives the ordering

0< λ1 < λ2 = λ3 = ν1 < λ4 = λ5 = ν2 = ν3 < λ6 < · · · .

In this case we have λk+1 ≤ νk for all k, but λk+1 6< νk for k = 1. This leaves open
the possibility that λk+1 ≤ νk in full generality. This inequality was conjectured to
hold by L. E. Payne many years ago, but has remained unproved.

To prove Theorem 1.1 we adapt Filonov’s proof [2004] that µk+1<λk , which is
shockingly direct and simple. As we observed for a disk, λk+1 6< νk , which shows
that some aspect of Filonov’s approach must fail if we attempt to adapt it to obtain
Theorem 1.1. In fact, what fails is his use of a function of the form f = eiω·x with
|ω|2 = λ for λ > 0, which has the properties that 1 f +λ f = 0 and |∇ f |2 = λ| f |.
This serves as an “extra” function that increases the dimension of a subspace of
functions that he shows satisfy the bound in the variational formulation of the
eigenvalue problem for the Neumann Laplacian. There can be no such function
that will serve in general for us (else λk+1 < νk would hold in general), but we
describe the analogue of such a function in our setting in Section 7, show that
given its existence we obtain λk+1 ≤ νk , and explain why it fails to give λk+1 < νk .



EIGENVALUES OF STOKES VERSUS LAPLACIAN 101

Our proof of λk <νk is largely a matter of transforming the eigenvalue problems
so that the Stokes operator can play the role the Dirichlet Laplacian plays for
Filonov and so that the Dirichlet Laplacian can play the role that the Neumann
Laplacian plays for Filonov.

The approach of [Friedlander 1991] can also be adapted to prove Theorem 1.1,
at least for C1-boundaries.

In Section 8, we show that when 0 is C2 and has a finite number of compo-
nents, one can interpolate continuously between λ j and ν j using the eigenvalues
of the negative Laplacian with Navier slip boundary conditions (Theorem 1.2).
These boundary conditions, originally defined by Navier, have recently received
considerable attention from fluid mechanics as a physically motivated replacement
for Dirichlet boundary conditions, as they allow a thorough characterization of the
boundary layer. See for instance [Clopeau et al. 1998; Lopes Filho et al. 2005;
Kelliher 2006; Iftimie and Planas 2006; Iftimie and Sueur 2006]. We also discuss
Neumann boundary conditions for the velocity and for the vorticity, and Robin
boundary conditions for the vorticity.

This paper is organized as follows. We describe the necessary function spaces,
trace operators, and related lemmas in Section 2. In Section 3, we define the classi-
cal Stokes operator and a variant of it using Lions boundary conditions (vanishing
vorticity on the boundary). We show that the eigenvalue problem for the classical
Stokes operator is equivalent to the eigenvalue problem for the clamped buckling
plate problem. We also describe the strong forms of the associated eigenvalue
problems in Section 3, giving the weak forms in Section 4. In Section 5 we de-
scribe the variational (min-max) formulations of the eigenvalue problems, using
these formulations in Section 6 to prove Theorem 1.1. In Section 7, we describe
the properties of the analogue of the function f used by Friedlander and Filonov
and prove that its existence would imply the inequality λk+1 ≤ νk . Finally, in
Section 8, we discuss Navier boundary conditions and prove Theorem 1.2.

For a vector field u we define u⊥ = (−u2, u1) and for a scalar field ψ we define
∇
⊥ψ = (−∂2ψ, ∂1ψ). Observe that (u⊥)⊥ =−u and (∇⊥)⊥ψ =−∇ψ . By ω(u)

we mean the vorticity (scalar curl) of u, that is, ω(u) = ∂1u2
− ∂2u1. We make

frequent use of the identities ∇⊥ω(u) = 1u and ω(u) = − div u⊥, the former
requiring that u be divergence-free.

Assumption. Unless specifically stated otherwise, we assume throughout that �
is a bounded domain whose boundary 0 is locally Lipschitz.

2. Function spaces and related facts

Let n be the outward-directed unit vector normal to 0, and let τ be the unit tangent
vector chosen so that (n, τ ) has the same orientation as the Cartesian unit vectors
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(e1, e2). These vectors are defined almost everywhere on 0 since 0 is locally
Lipschitz.

The spaces Ck,α(�), Ck,α(�), and W s(�) are the usual Hölder and L2-based
Sobolev spaces, with k an integer, 0 ≤ α ≤ 1, and s any real number. We need
to say a few words about these spaces, which can be defined in various equivalent
ways.

Define the norms

‖ f ‖Ck =

m∑
j=0

sup
�

sup
|β|= j
|Dβu|,

‖ f ‖Ck,α = ‖ f ‖Ck + sup
|β|=k

sup
x 6=y∈�

|Dβ f (x)− Dβ f (y)|
|x − y|α

for 0< α ≤ 1.

Define Ck(�) = Ck,0(�) and Ck,α(�) to be the spaces of functions finite under
their respective norms; Ck,α(�) is defined similarly. Here β is a multiindex.

When m ≥ 0 is an integer, W m(�) is the completion of the space of all C∞(�)
functions in the norm

‖ f ‖W m =

( ∑
|α|≤m

‖Dα f ‖2L2(�)

)1/2
,

where α is a multiindex. Equivalently, W m(�) is the space of all functions f such
that Dα f is in L2(�) for all |α| ≤ m. W m

0 (�) is defined similarly as the closure
of C∞0 (�) under the W m norm. (See for instance [Adams 1975, Section 3.1].)
W 1

0 (�) can equivalently be defined as all functions in W 1(�) whose boundary
trace is zero. W−m(�) is the dual space of W m

0 (�). Fractional Sobolev spaces
W s(�) can be defined for instance as in [Adams 1975, Theorem 7.48].

On �, we will only need integer-order Hölder and Sobolev spaces, but on 0 we
will need to use fractional spaces. Hölder spaces, however, can only be defined
when the boundary has sufficient regularity.

We define a bounded domain� (or its boundary ∂�) to be of class Ck,α for k≥0
an integer and 0≤ α≤ 1 if locally there exists a Ck,α diffeomorphism ψ that maps
� into the upper half-plane with ∂� being mapped to an open interval I . We say
that ϕ is in Ck,α(∂�) if ϕ ◦ψ−1 is in Ck,α(I ). We also write Ck for Ck,0. If � is a
Ck,α domain and ϕ lies in C j,β(∂�) for j+β≤ k+α, then there exists an extension
of ϕ to C j,β(�). See [Gilbarg and Trudinger 1977, Section 6.2] for more details.
The inverse operation of restricting to the boundary gives an equivalent definition
of Ck,α(∂�) as restrictions of functions in Ck,α(�).

When 0 is locally Lipschitz, we will only have need for W s(∂�) for s =±1/2
and 0. We define W 1/2(∂�) to be the image (a subspace of L2(∂�)) under the
unique continuous extension to W 1(�) of the map that restricts the value of a
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C∞(�) function to the boundary. The existence of this extension was proved
by Gagliardo [1957] (or see [Grisvard 1985, Theorem 1.5.1.3]). Alternately, we
could define W 1/2(�) intrinsically as in [Galdi 1994, Section II.3]. We define
W−1/2(∂�) to be the space dual to W 1/2(∂�) and let W 0(∂�)= L2(∂�).

For C2 boundaries, we will need Corollary 2.2 and hence need to define W s(∂�)

for all real s. We use the intrinsic definition of W s(∂�) due to J. L. Lions, which
applies when the boundary is of class Cm for m ≥ 1. This definition is similar to
that for the Hölder spaces defined above, and requires for s > 0 that each ϕ ◦ψ−1

be of class W s(I ), where I is the domain of ψ−1. (See [Adams 1975, pages 215–
217] for details.) For s < 0 we define W s(∂�) to be the dual space of W−s(∂�)

and let W 0(∂�)= L2(∂�) as above. It follows from [Adams 1975, Theorem 7.53]
that the two definitions of these spaces are equivalent for 0< s ≤m and hence for
all real s. (Adams gives the proof only for s = m − 1/2, from which it follows
immediately for all s = j−1/2, where j is an integer with 1≤ j ≤m, since if ∂�
is of class Cm it is of class Ck for all 1≤ k ≤m. We only need the equivalence for
m = 2 and s = 1/2, so this will suffice.)

Lemma 2.1. Let D be any bounded domain in Rn with C∞ boundary. Let ϕ lie in
Ck,α(D) and f lie in W s(D) for s > 0. Then ϕ f lies in W s(D) as long as{

k+α ≥ s if s is an integer,
k+α > s if s is not an integer.

Let g lie in W s′(D). Then f g lies in W s(D) if s ′ > s and s ′ ≥ n/2 or if s ′ ≥ s and
s ′ > n/2.

Proof. This follows from [Galdi 1994, Theorems 1.4.1.1 and 1.4.4.2]. �

Corollary 2.2. Assume that 0 is of class Ck,α. Let ϕ ∈C j,β(∂�) for j+β ≤ k+α,
and let f ∈W s(0) for s > 0. Then ϕ f ∈W s(0) as long as{

j +β ≥ s if s is an integer,
j +β > s if s is not an integer.

If f ∈W s(0) and ϕ ∈W s+ε(0) with ε > 0, then ϕ f ∈W s(0) if s ≥ 1/2.

Proof. Apply Lemma 2.1 to the functions ϕ◦ψ−1 and f ◦ψ−1 with domain D= I .
�

Corollary 2.3. Assume that 0 is C2. Then gτ and gn are in W 1/2(0) for any g in
W 1/2(0), and u · τ and u · n are in W 1/2(0) for any u in (W 1/2(0))2.

Proof. Because 0 is C2, τ and n are in C1
=C1,0. But 1+0> 1/2, so the second

condition in Corollary 2.2 applies in each case to give the result. �

Let V = {u ∈ (C∞0 (�))
2
: div u = 0} be the space of complex vector-valued

divergence-free test functions on �. We let H be the completion of V in L2(�)
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and V be the completion of V in W 1
0 (�). These definitions of H and V are valid

for arbitrary domains. We will also find use for the space

(2-1) E(�)=
{
v ∈ (L2(�))2 : div v ∈ L2(�)

}
with ‖u‖E(�) = ‖u‖L2(�)+‖div u‖L2(�).

We use ( · , · ) to mean the inner product (u, v)=
∫
� uv in L2(�) or sometimes

to mean the pairing of v in a space Z with u in Z∗ or of v in D(�) with u in D′(�).
Which is meant is stated if it is not clear from context.

The integrations by parts we will make are justified by Lemma 2.4, which is
[Temam 1984, Theorem 1.2, page 7] for locally Lipschitz domains. (Temam states
the theorem for C2 boundaries but the proof for locally Lipschitz boundaries is
the same, using a trace operator for Lipschitz boundaries in place of that for C2

boundaries: see [Galdi 1994, pages 117–119, specifically Theorem 2.1, page 119].)

Lemma 2.4. There is an extension of the trace operator γn : (C∞0 (�))
2
→C∞(0),

u 7→ u · n, on 0 to a continuous linear operator from E(�) onto W−1/2(0). The
kernel of γn is the space E0(�)— the completion of C∞0 (�) in the E(�) norm.
For all u in E(�) and f in W 1(�),

(2-2) (u,∇ f )+ (div u, f )=
∫
0

(u · n) f .

Remark 2.5. In (2-2) and in what follows we usually do not explicitly include the
trace operators. On the right side of (2-2), for instance, u ·n is actually γnu, which
is thus in W−1/2(0), and f is actually γ0 f , where γ0 is the usual trace operator
from W s(�) to W s−1/2(0) for all s>1/2. Also, the boundary integral should more
properly be written as a pairing in the duality between W−1/2(0) and W 1/2(0) of
u · n and f .

Lemma 2.6. W s(�) is compactly embedded in W r (�) for all s > r ≥ 0.

Proof. This is an instance of the Rellich–Kondrachov theorem. That it holds for
a bounded domain with locally Lipschitz boundary follows, for instance, from the
comments on [Adams 1975, page 67 and Theorem 6.2, page 144]. �

We will use several times a basic result of elliptic regularity theory:

Lemma 2.7. Let f lie in W−1(�). There exists a unique ψ in W 1
0 (�) that is a

weak solution of 1ψ = f . Furthermore, ‖ψ‖W 1(�) ≤ C‖ f ‖W−1(�). When 0 is C2

and f is in L2(�),
‖ψ‖W 2(�) ≤ C‖1ψ‖L2(�).

Proof. See for instance [Kesavan 1989, pages 118–121] for general bounded open
domains and [Evans 1998, Theorem 4 and the remark following it on page 317]
for C2 boundaries. �
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Poincaré’s inequality holds in both its classical forms:

Lemma 2.8. Let f lie in W 1
0 (�) or else lie in W 1(�) with

∫
� f = 0. Then there

exists a constant C such that ‖ f ‖L2(�) ≤ C‖∇ f ‖L2(�).

Proof. See [Galdi 1994, Theorem 4.1 on page 49, and Theorem 4.3 on page 54]. �

Since 0 is locally Lipschitzian, we can define

Ĥ =
{
u ∈ (L2(�))2 : div u = 0 in �, γnu = 0 on 0

}
,

V̂ =
{
u ∈ (W 1(�))2 : div u = 0 in �, γ0u = 0 on 0

}
.

By the continuity of the trace operators γn and γ0, it follows that H ⊆ Ĥ and
V ⊆ V̂ . When 0 is a bounded domain with locally Lipschitz boundary, H = Ĥ
and V = V̂ . For H = Ĥ , see [Temam 1984, Theorem 1.4 in Chapter 1]. That
V = V̂ is proved in [Maslennikova and Bogovskiı̆ 1983]; see the comments of
[Galdi 1994, page 148] and [Adams 1975, page 67].

Lemma 2.9. Assume that u is in (D′(�))2 with (u, v) = 0 for all v in V. Then
u = ∇ p for some p in D′(�). If u is in (L2(�))2 then p is in W 1(�); if u is in H ,
then p is in W 1(�) and 1p = 0.

Proof. For u in (D′(�))2, see [Temam 1984, Proposition 1.1, page 10]. For u in
(L2(�))2, the result is a combination of [Galdi 1994, Theorem 1.1, page 103, and
Remark 4.1, page 54]; also see [Temam 1984, Remark 1.4, page 11]. �

We will also find a need for the spaces

Y = Y 1
= H ∩W 1(�), X = X1

= {u ∈ H : ω(u) ∈ L2(�)},

Y 2
= {u ∈ Y : ω ∈W 1(�)}, X2

= {u ∈ H : ω(u) ∈W 1
},

Y 2
0 = {u ∈ Y : ω(u) ∈W 1

0 }, X2
0 = {u ∈ H : ω(u) ∈W 1

0 },

with the obvious norms on each space. We give Y the W 1(�) norm, but place no
norm on the other spaces. When 0 is C2 and has a finite number of components,
the X and Y spaces coincide as in Corollary 2.16.

The average value of any vector u in H — and hence in all of our spaces — is
zero, as can be seen by integrating u · ei over �, where ei = ∇xi is a coordinate
vector, and applying Lemma 2.4. Thus, Poincaré’s inequality holds for Y and V
so we can, and will, use ‖u‖Y = ‖u‖V = ‖∇u‖L2(�) in place of the W 1(�) norm
for these two spaces.

Let Hc = {v ∈ H : ω(v)= 0} and, noting that Hc is a closed subspace of H , let
H0 be the orthogonal complement of Hc in H . Thus, H = H0⊕Hc is an orthogonal
decomposition of H . Observe that V ∩ H0 = V , and when � is simply connected,
H = H0.
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Lemma 2.10. For any u in H0 there exists a stream function ψ in W 1(�) for u,
that is, u =∇⊥ψ , and ψ is unique up to the addition of a constant. Moreover,

H0 = {∇
⊥ψ : ψ ∈W 1

0 (�)} = ∇
⊥W 1

0 (�).

If u is in H0 ∩ Y , then ψ can be taken to lie in W 1
0 (�)∩W 2(�), and if u is in V ,

then ψ can be taken to lie in W 2
0 (�).

Proof. Let u be in H0, and let ψ in W 1
0 (�) solve 1ψ = ω(u) ∈ W−1(�) as in

Lemma 2.7. Letting w=∇⊥ψ ∈ L2(�), we have ω(w)=1ψ =ω(u), divw= 0,
and w ·n= 0 on 0, so w is in H . Thus, w is a vector in H with the same vorticity
as u, meaning that u−w is in Hc.

We claim that w is in H0. To see this, let v be in Hc. Then

(w, v)= (∇⊥ψ, v)= (−∇ψ, v⊥)= (ψ, div v⊥)+
∫
0

(v⊥ · n)ψ = 0.

The last equality follows from div v⊥=ω(v)= 0 (showing also that v⊥ is in E(�)
and allowing integration by parts via Lemma 2.4) and ψ = 0 on 0. Since this is
true for all v in Hc, it follows that w is in H0.

Thus, both u and w are in H0, so u−w is in H0. But we already saw that u−w
is in Hc, so u−w = 0.

What we have shown is both the existence of a stream function and the expres-
sion for H0, the uniqueness of the stream function up to a constant being then
immediate. The additional regularity of ψ for u in H0 ∩ Y or V follows simply
because ∇ψ =−u⊥ is in W 1(�). For u in V it is also true that ∇ψ = 0 on 0, so
ψ can be taken to lie in W 2

0 (�). �

Closely related to Lemma 2.10 is Lemma 2.11, a form of the Biot–Savart law.

Lemma 2.11. The operator ω is a continuous linear bijection between the follow-
ing pairs of spaces:

H0 and W−1(�), H0 ∩ X and L2(�), H0 ∩ X2
0 and W 1

0 (�).

Proof. That ω has the domains and ranges stated and that it is continuous follow
directly from the definitions of the spaces.

For ω in W−1(�), let ψ in W 1
0 (�) solve1ψ =ω on� as in Lemma 2.7, and let

u =∇⊥ψ . Then ω(u)=ω and if ω(v)=ω as well for v in H0, then ω(u−v)= 0,
implying that u−v is in Hc. But u−v is also in H0 so u−v= 0. Thus, u=ω−1(ω)

with ‖u‖H = ‖∇ψ‖L2 ≤C‖ω‖W−1(�) by Lemma 2.7, showing that ω−1 is defined
and bounded and hence continuous, since it is clearly linear.



EIGENVALUES OF STOKES VERSUS LAPLACIAN 107

For ω in L2(�) or W 1
0 (�) the same argument applies, though now we use either

‖u‖X = ‖∇ψ‖L2 +‖ω(u)‖L2 ≤ C‖ω‖L2 +‖ω‖L2

or ‖u‖X2
0
= ‖∇ψ‖L2 +‖ω(u)‖W 1 ≤ C‖ω‖L2 +‖ω‖W 1 ≤ C‖ω‖W 1

to demonstrate the continuity of ω−1. �

Corollary 2.12. X is dense and compactly embedded in H , and X2
0 is dense and

compactly embedded in X.

Proof. Let A = L2(�) and B = W−1(�) or A = W 1
0 (�) and B = L2(�). In

both cases, A is dense and compactly embedded in B. Density is transferred to the
image spaces ω−1(A) and ω−1(B) by virtue of ω−1 being a continuous surjection.
The property that the spaces are compactly embedded transfers to the image spaces
by virtue of ω being bounded (since it is continuous linear) along with ω−1 being
a continuous surjection. �

We also have the following useful decomposition of L2(�), variously named
after some combination of Leray, Helmholtz, and Weyl.

Lemma 2.13. For any u in (L2(�))2, there exists a unique v in H and p in W 1(�)

such that u = v+∇ p.

Proof. This follows, for instance, from [Galdi 1994, Theorem 1.1, page 107],
which holds for an arbitrary domain, along with Lemma 2.9. �

The mapping u 7→v, with u and v as in Lemma 2.13, defines the Leray projector
P from (L2(�))2 onto H .

A slight strengthening of Poincaré’s inequality holds on Y (and so on V ) when
� is simply connected:

Lemma 2.14. For any u in H0 ∩ X ,

‖u‖L2(�) ≤ C‖ω(u)‖L2(�),(2-3)

and when 0 is C2,

‖∇u‖L2(�) ≤ C‖ω(u)‖L2(�).(2-4)

Proof. As in the proof of Lemma 2.10, u=∇⊥ψ for ψ in W 1
0 (�) with1ψ =ω(u)

in L2(�), and ‖ψ‖L2(�) ≤ ‖ψ‖W 1(�) ≤ C‖ω(u)‖L2(�) by Lemma 2.7. But ∇ψ
is in E(�) and ψ is in W 1(�) so by Lemma 2.4 we can integrate by parts to
give (ω(u), ψ) = (1ψ,ψ) = −(∇ψ,∇ψ) = −‖u‖2L2(�)

. Hence by the Cauchy–
Schwarz inequality,

‖u‖2L2(�) ≤ ‖ψ‖L2(�)‖ω(u)‖L2(�) ≤ C‖ω(u)‖2L2(�),

giving Equation (2-3).
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When 0 is C2, using Lemma 2.7,

‖∇u‖L2(�) = ‖∇∇ψ‖L2(�) ≤ ‖ψ‖W 2(�) ≤ C‖1ψ‖L2(�) = C‖ω(u)‖L2(�),

giving Equation (2-4). �

Corollary 2.15. If 0 is C2 and has a finite number of components, then any u in H
with ω(u) in L2(�) is also in Y , and

‖∇u‖L2(�) ≤ C(‖ω(u)‖L2(�)+‖u‖L2(�)).

Proof. This follows from the basic estimate of elliptic regularity theory. �

Corollary 2.16. When 0 is C2 and has a finite number of components,

X = Y, X2
= Y 2

= H ∩W 2(�),

X2
0 = Y 2

0 =
{
u ∈ H ∩W 2(�) : ω(u)= 0 on 0

}
.

Proof. The first identity follows from Corollary 2.15 and the second and third from
the identity 1u =∇⊥ω and Lemma 2.7. �

We will find a need for the trace operator of Proposition 2.17 in Section 8.

Proposition 2.17. Assume that 0 is C2 and has a finite number of components,
and let

U =
{
ω ∈ L2(�) : 1ω ∈ L2(�)

}
endowed with the norm ‖ω‖U = ‖ω‖L2(�) + ‖1ω‖L2(�). There exists a linear
continuous trace operator γω : U → W−1/2(0) such that γωω is the restriction
of ω to 0 for all ω in C∞(�). For any α in W 1

0 (�)∩W 2(�),

(γωω,∇α · n)W−1/2(0),W 1/2(0) = (1α, ω)− (α,1ω).(2-5)

Lemma 2.18. For any f in L2(�) and a in (W 1/2(0))2 satisfying the compatibility
condition ∫

�

f =
∫
0

a · n,

there exists a (nonunique) solution v in W 1(�) to div v = f in � and v = a on 0.

Proof. This follows from [Galdi 1994, Lemma 3.2 on pages 126–127, Remark 3.3
on pages 128–129, and Exercise 3.4 on page 131]. See also the comment of
[Adams 1975, page 67]. �
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Lemma 2.19. Define γτ : Y → L2(0) by γτv = γ0v · τ for any v in Y . When
0 is C2, γτ maps Y onto W 1/2(0). When 0 is C2 and has a finite number of
components, γτ (H0 ∩ Y ) is dense in W 1/2(0).

Proof. Assume that 0 is C2 and let g lie in W 1/2(0). Then since 0 is C2, gτ is
also in W 1/2(0) by Corollary 2.3, and by Lemma 2.18 there exists a vector field
v in W 1(�) with div v =

∫
0 gτ · n = 0 and v = gτ on 0. Thus, in fact, v lies

in Y , which shows that γτ (Y ) maps onto W 1/2(0). If 0 has a finite number of
components, then Hc ∩Y is finite-dimensional and so is its image under this map;
hence the image of H0 ∩ Y is dense in W 1/2(0). �

Proof of Proposition 2.17. Assume first that ω ∈C∞(�), let α ∈W 1
0 (�)∩W 2(�),

and let v =∇⊥α, so that v lies in H0 ∩ Y with 1α = ω(v). Then

(α,1ω)=−(∇α,∇ω)+

∫
0

(∇ω · n)α =−(∇α,∇ω)

= (1α, ω)−

∫
0

(∇α · n)ω = (1α, ω)−
∫
0

ωv · τ .

From this it follows that for any choice of v (equivalently, by Lemma 2.10, of α)
with a given value of v · τ on 0, the value of (1α, ω)− (α,1ω) is the same.

Now, because of Lemma 2.19, we can define γω(ω) to be that unique element
of W−1/2(0) such that Equation (2-5) holds. This gives a linear mapping from U
to W−1/2(0) whose restriction to C∞(�) is the classical trace.

To establish the continuity of this mapping, let a be any element of W 1/2(0).
If � is simply connected, then a = v · τ = ∇⊥α · τ = ∇α · n for some v in Y or
equivalently for some α in W 1

0 (�)∩W 2(�). Then

(γωω, a)W−1/2(0),W 1/2(0) = |(1α, ω)− (α,1ω)| ≤ C‖1α‖L2(�)‖ω‖U

≤ C‖∇α‖W 1(�)‖ω‖U ≤ C‖∇α‖W 1/2(0)‖ω‖U

= C‖∇α · n‖W 1/2(0)‖ω‖U = C‖a‖W 1/2(0)‖ω‖U .

Here, we Lemma 2.7 in the first and second inequalities and the continuity of the
inverse of the standard trace operator in the third inequality. Also, the second-to-
last equality holds because α has the constant value of zero on 0, so ∇α ·τ = 0 and
|∇α| = |∇α · n|. This shows that the mapping is bounded and hence continuous.

When � is multiply connected, the argument is the same except that we must
employ a simple density argument using Lemma 2.19. �

3. Strong formulations of three eigenvalue problems

Assume for the moment that 0 is C2. Then, given any u in V ∩ W 2(�), the
(classical) Stokes operator AS applied to u is that unique element ASu of H such
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that1u+ASu=∇ p for some harmonic pressure field p. Equivalently, AS=−P1,
P being the Leray projector defined following Lemma 2.13. The operator AS maps
V ∩ W 2(�) onto H (see for instance [Foias et al. 2001, pages 49–50] for more
details), is strictly positive definite, self-adjoint, and as a map from V to V ∗, the
composition of A−1

S with the inclusion map of V into V ∗ is compact. It follows that
{u j } is complete in H (and in V ) with corresponding eigenvalues {ν j } satisfying
0<ν1≤ ν2≤ · · · and ν j→∞ as j→∞. Also, the eigenfunctions are orthogonal
in both H and V .

When 0 is only locally Lipschitz, −P1 is only known to be symmetric on V ∩
W 2(�), not self-adjoint. Thus, we define AS to be the Friedrichs extension, as an
operator on H , of−1 defined on V∩C∞0 (�). A concrete description of its domain,
D(AS), in terms of more familiar spaces is not known, though V ∩ H 2(�) ⊆

D(AS) ⊆ V . In three dimensions, tighter inclusions have been obtained; see for
instance [Brown and Shen 1995]. In any case, basic properties of the Friedrich
extension insure that AS is strictly positive definite, self-adjoint, and maps D(AS)

bijectively onto H .

Definition 3.1. A strong eigenfunction u j ∈ V ∩ X2 of AS with eigenvalue ν j > 0
satisfies, for some p j in W 1(�),

(3-1)
{
1u j + ν j u j =∇ p j , 1p j = 0, div u j = 0 in �,

u j = 0 on 0.

Taking the curl of (3-1), we see that the vorticity ω j = ω(u j ) satisfies

(3-2)
{
1ω j + ν jω j = 0 in �,

u j = 0 on 0.

That is, ω j is an eigenfunction of the negative Laplacian, but with boundary con-
ditions on the velocity u j .

Let ψ j be the stream function for u j given by Lemma 2.10, so u j = ∇
⊥ψ j .

Then ω j =1ψ j and ∇ψ j =−u⊥j = 0 on 0. Since ψ j is determined only up to a
constant, we can then assume that ψ j = 0 on 0. Thus, ψ j satisfies

(3-3)
{
11ψ j + ν j1ψ j = 0 in �,

∇ψ j · n= ψ j = 0 on 0.

This is the eigenvalue problem for the clamped buckling plate; see for instance
[Payne 1967; Ashbaugh 2004].

Temam exploits the similar correspondence between the Stokes problem and
the biharmonic problem in the proof of [Temam 1984, Proposition I.2.3] to get a
relatively simple proof of the regularity of solutions to the Stokes problem in two
dimensions with at least C2 regularity of the boundary. Also, as pointed out in
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[Ashbaugh 2004], there is a similar correspondence between the eigenvalue prob-
lems for the Dirichlet Laplacian and (3-3) with the boundary condition ∇ψ j ·n= 0
replaced by 1ψ j = 0. We use this correspondence in the proof of Theorem 1.1,
though we view the correspondence as being that given in Lemma 2.11, instead.

What we have shown is that given u j satisfying (3-1), the corresponding stream
function ψ j satisfies (3-3). Conversely, given ψ j satisfying (3-3), the functions
ω j =1ψ j and u j =∇

⊥ψ j satisfy (3-2) and one can show, at least for sufficiently
smooth boundaries, that u j satisfies (3-1). Thus, the eigenvalue problems for the
Stokes operator and the clamped buckling plate are equivalent.

Returning to (3-1), if we use instead the boundary conditions employed by J.-L.
Lions [1969, pages 87–98] and P.-L. Lions [1996, pages 129–131], namely

(3-4) u j · n= 0 and ω j = 0 on 0,

which we call Lions boundary conditions, we obtain the eigenvalue problem for
the Dirichlet Laplacian of Definition 3.2.

Definition 3.2. A strong eigenfunction ω j ∈ W 1
0 (�) of the Dirichlet Laplacian

−1D with eigenvalue λ j > 0 satisfies

(3-5)
{
1ω j + λ jω j = 0 in �,

ω j = 0 on 0.

Using Lemma 3.4, we can recover the divergence-free velocity u j in X2
0 uniquely

from a vorticity in W 1
0 (�) under the constraint that u j · n = 0, leading to the

eigenvalue problem in Definition 3.3 for an operator AL , which we will call the
Stokes operator with Lions boundary conditions. (We use λ∗j in place of λ j because
of the presence of zero eigenvalues.)

Definition 3.3. A strong eigenfunction u j ∈ X2
0 of AL with eigenvalue λ∗j > 0

satisfies

(3-6)
{
1u j + λ

∗

j u j = 0, div u j = 0 in �,

u j · n= 0, ω(u j )= 0 on 0.

What we have done is to define the eigenvalue problem for the operator AL

before defining the operator itself. In fact, AL : X2
0→ H with ALu =−1u. That

is, AL is simply the negative Laplacian on X2
0 .

To see that AL is well defined, observe that1u·n=∇⊥ω(u)·n=−∇ω(u)·τ =0
for any u in X2

0 , since ω(u) is constant (namely, zero) along 0. (Another way of
viewing this is that there is no need for a Leray projector in X2

0 , making the Stokes
operator on X2

0 akin to the Stokes operator on H ∩W 2(�) for a periodic domain,
which of course has no boundary. This is one reason that the use of the boundary
conditions of (3-4) in [Lions 1969] and [Lions 1996] is so effective.)
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Lemma 3.4. Given ω in W 1
0 (�) that satisfies{
1ω+ λω = 0 in �,

ω = 0 on 0

with λ > 0, there exists a unique u in X2
0 such that ω = ω(u) and{

1u+ λu = 0, div u = 0 in �,

u · n= 0, ω(u)= 0 on 0.

Proof. Let v = ω−1(ω), which lies in H0 ∩ X2
0 by Lemma 2.11. Then 1v = ∇⊥ω

is in L2(�), so w = 1v + λv is a divergence-free vector field in L2(�). Hence,
by Lemma 2.13, w = h +∇ p for a unique vector field h in H and an harmonic
scalar field p in W 1(�) satisfying ∇ p ·n=w ·n=1v ·n on 0. (Since div1v= 0,
1v is in E(�), so 1v · n is in W−1/2(0) by Lemma 2.9.)

But 1v · n = ∇⊥ω(v) · n = ∇⊥ω · n = −∇ω · τ = 0 on 0, where ω has the
constant value of zero. Thus, 1p = 0 in � with ∇ p · n = 0 on 0, so ∇ p ≡ 0, and
thus w = h and so lies in H . Also, ω(w)=1ω(v)+ λω(v)=1ω+ λω = 0.

Then u = v− (1/λ)w is in H and using 1w =∇⊥ω(w)= 0, we see that

1u+ λu =1v+ λv−w = w−w = 0,

which gives the boundary value problem for u in the statement of the lemma. �

4. Weak formulations of the eigenvalue problems

To establish in Proposition 4.10 the existence of the eigenfunctions in Section 3,
we work with their weak formulation, then show that these weak formulations
are equivalent to those of Section 3 (for AS , though, only when the boundary
or the eigenfunctions are sufficiently regular). The formulations for AS and AL

are modeled along the lines of the formulation in Definition 4.2 for the Dirichlet
Laplacian, which is classical; see for instance [Henrot 2006, Chapter 1].

Definition 4.1. The vector field u j in V is a weak eigenfunction of AS with eigen-
value ν j > 0 if

(ω(u j ), ω(v))− ν j (u j , v)= 0 for all v ∈ V .

Definition 4.2. The scalar field ω j in W 1
0 (�) is a weak eigenfunction for the

Dirichlet Laplacian with eigenvalue λ j > 0 if

(∇ω j ,∇α)− λ j (ω j , α)= 0 for all α ∈W 1
0 (�).
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Definition 4.3. The vector field u j in H0 ∩ X is a weak eigenfunction for AL for
λ∗j > 0 if

(ω(u j ), ω(v))− λ
∗

j (u j , v)= 0 for all v ∈ H0 ∩ X.(4-1)

Any vector in Hc is an eigenfunction of AL with zero eigenvalue.

Proposition 4.4. In Definition 4.3, the eigenfunction u j for λ∗j > 0 and the test
function v can be taken to lie in X.

Proof. Suppose we change Definition 4.3 to assume that u j and the test function v
lie in X . Then in particular,

(ω(u j ), ω(v))− λ
∗

j (u j , v)=−λ
∗

j (u j , v)= 0 for all v ∈ Hc.

That is, u j is normal to any vector in Hc and so lies in H0 ∩ X . But then knowing
that u j lies in H0 ∩ X , it follows that (ω(u j ), ω(v)) − λ

∗

j (u j , v) = 0 for any v
in Hc; that is, one need only use test functions in H0∩ X . Thus, the more stringent
requirement for being a weak eigenfunction of AL reduces to the less stringent
requirement, meaning that the two are equivalent. �

Proposition 4.5. A strong eigenfunction of AS is a weak eigenfunction of AS; a
weak eigenfunction of AS lying in X2 is a strong eigenfunction of AS .

Proof. If u j is a strong eigenfunction of AS as in Definition 3.1, then applying
Corollary A.1, we have for all v in V

(4-2) (ω(u j ), ω(v))− ν j (u j , v)=−(1u j + ν j u j , v)=−(∇ p j , v)= 0.

Thus, u j is a weak eigenfunction of AS as in Definition 4.1.
Conversely, suppose u j is a weak eigenfunction of AS as in Definition 4.1 such

thatω(u j ) lies in W 1(�). Letting v lie in V , we have (ω(u j ), ω(v))−ν j (u j , v)=0,
and u j and v have sufficient regularity to apply Corollary A.1 as above to give
(1u j+ν j u, v)= 0 for all v in V . From Lemma 2.9 we see that 1u j+ν j u =∇ p j

for some harmonic pressure field p j in W 1(�), since 1u j+ν j u is in L2(�). This
shows that u j is a strong eigenfunction of AS as in Definition 3.1. �

Proposition 4.6. Definitions 3.2 and 4.2 are equivalent as, too, are Definitions 3.3
and 4.3. When 0 is C2, Definitions 3.1 and 4.1 are equivalent.

Proof. If u j is a strong eigenfunction of AL as in Definition 3.3, then by virtue of
Corollary A.1, we have for all v in W 1(�)

(4-3)
(ω(u j ), ω(v))− λ

∗

j (u j , v)=−(1u j , v)+

∫
0

ω(u j )v · τ − λ
∗

j (u j , v)

=−(1u j + λ
∗

j u j , v)= 0.

It follows that u j is a weak eigenfunction of AL as in Definition 4.3.
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Now suppose that u j is a weak eigenfunction of AL as in Definition 4.3. Let ψ j

be the stream function for u j lying in W 1
0 (�) given by Lemma 2.10. Then for all

v in X ,

(u j , v)= (∇
⊥ψ j , v)=−(∇ψ j , v

⊥)= (ψ j , div v⊥)−
∫
0

(v⊥ · n)ψ j

=−(ψ j , ω(v)).

Hence, by virtue of Proposition 4.4, we have for all v in X

(ω(u j )+ λ
∗

jψ j , ω(v))= (1ψ j + λ
∗

jψ j , ω(v))= 0.

Then 1ψ j + λ
∗

jψ j = 0 since by Lemma 2.11 ω(v) ranges over all of L2(�), so
ω j = −λ

∗

jψ j lies in W 1
0 (�). Thus, 1u j = ∇

⊥ω j is in L2(�), so u j is a strong
eigenfunction of AL as in Definition 3.3.

A strong eigenfunction of AS is a weak eigenfunction of AS by Proposition 4.5.
Suppose that u j is a weak eigenfunction of AS as in Definition 4.1 and that 0

is C2. Let v lie in V. Then

(ω(u j ), ω(v))=−(ω(u j ), div v⊥)= (∇ω(u j ), v
⊥)=−(∇⊥ω(u j ), v)

=−(1u j , v).

Hence (1u j + ν j u j , v)= 0 for all v ∈ V, so by Lemma 2.9

(4-4) 1u j + ν j u j =∇ p j for some p j in D′(�).

Now, by [Temam 1984, Proposition I.2.3], there exists w in V ∩W 2(�) and q in
W 1(�) satisfying 1w+ ν j u j =∇q . (Only here do we require 0 to be C2.)

Define the bilinear form a on V × V by a(u, v) = (ω(u), ω(v)). Then by
Corollary A.3, a(u, v)= (∇u,∇v), so a(u, u)=‖u‖2V , and we can apply the Lax–
Milgram theorem to conclude that w = u j . Hence, u j is in V ∩W 2(�), showing
that it is a strong eigenfunction of AS .

That a strong eigenfunction of −1D is weak is classical. It is also classical that
for a weak eigenfunction, ω j is in C∞(�), which is enough to conclude that 1ω j

is in L2(�). �

Remark 4.7. When 0 is C2, in fact the eigenfunctions of AL and AS lie in W 2(�),
as can seen for AL by the proof of Proposition 4.6 and for AS by, for instance,
[Temam 1984, Proposition I.2.3].

Proposition 4.8. There exists a bijection between the strong eigenfunctions of AL

having positive eigenvalues and the weak eigenfunctions of the Dirichlet Lapla-
cian, with a corresponding bijection between the eigenvalues.

Proof. By Lemma 2.11 for any u in H0∩ X2
0 , there exists ω(u) in W 1

0 (�), and this
gives a bijection between the spaces. Also by Lemma 2.11 and its proof, for any v
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in H0 ∩ X2
0 there exists ω(v) in W 1

0 (�), and associated to v is its stream function
ψ in W 1

0 (�) with 1ψ = ω(v). With u, v, and ψ as above,

(∇ω,∇ψ)

(ω,ψ)
=
−(ω,1ψ)+

∫
0(∇ψ · n)ω

−(div u⊥, ψ)

=
−(ω(u), ω(v))

(u⊥,∇ψ)−
∫
0(u
⊥ · n)ψ

=
−(ω(u), ω(v))
−(u,∇⊥ψ)

=
(ω(u), ω(v))

(u, v)
.

We applied Lemma 2.4 twice, the first time using ω in W 1
0 (�) with ∇ψ in E(�)

and the second time using ψ in W 1
0 (�) with u⊥ in E(�).

By the bijections above, this shows that if ω is a weak eigenfunction of −1D ,
then u = ω−1(ω) is a weak eigenfunction of AL (also using Corollary 2.12) that
lies in X2

0 , and hence is a strong eigenfunction of the AL by Proposition 4.6. The
converse follows from the same equality. �

Corollary 4.9. There exists a bijection between the weak eigenfunctions of AL

having positive eigenvalues and the weak eigenfunctions of the Dirichlet Lapla-
cian, with a corresponding bijection between the eigenvalues: λ∗k = λk for all k.

Proof. Combine Propositions 4.6 and 4.8. �

Proposition 4.10. There exists a sequence of weak eigenfunctions for each of our
three eigenvalue problems with spectra increasing to infinity as in Equation (1-1)
for −1D and AS and with

σL = {λ j }
∞

j=1, where 0< λ1 < λ2 ≤ · · · .

If � is multiply connected, σL will also include 0. The eigenfunctions of −1D

form an orthonormal basis of both L2(�) and W 1
0 (�), while those of AS form an

orthogonal basis of both H and V . The eigenfunctions of AL lie in C∞(�)∩ X2
0

and form an orthogonal basis of both H and X. The eigenfunctions of−1D are in
C∞(�)∩W 2(�).

Proof. To prove the existence of eigenfunctions of AS , let G be the inverse of AS .
Let u and v be in H . Since AS is a bijection from D(AS) onto H , there exists w
in D(AS) such that v = ASw and w = Gv. Then because AS is self-adjoint,

(Gu, v)= (Gu, ASw)= (ASGu, w)= (u, w)= (u,Gv),

showing that G is symmetric and hence, being defined on all of H , self-adjoint.
The calculation above also shows that (Gu, u) = (ASGu,Gu) = ‖∇Gu‖2L2(�)

,
which is positive for all nonzero u in H .

But V is compactly embedded in H by Lemma 2.6, so G, viewed as a map from
H to H , is compact. Therefore, G is a compact, positive, self-adjoint operator. The
spectral theorem thus gives a complete set of eigenfunctions in H and a discrete
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set of eigenvalues decreasing to zero; applying G to these eigenfunctions and using
the reciprocal of the eigenvalues gives the eigenfunctions and eigenvalues of AS

in the usual way.
The results for −1D are classical; those for AL then follow from Corollary 4.9

or they can be proved directly using an argument similar to that above. �

Remark 4.11. Because the strong form 1u j + λ
∗

j u j = ∇ p j of the eigenvalue
problem for AS has a nonzero pressure, the classical interior regularity argument
for −1D cannot be made for AS . To obtain further regularity, one must assume a
more regular boundary.

5. Min-max formulations of the eigenvalue problems

Proposition 5.1. Let

Sk = the span of the first k eigenfunctions of AS,

Lk = the span of the first k eigenfunctions of AL ,

Dk = the span of the first k eigenfunctions of −1D,

with S0 = L0 = D0 = {0}. Then

νk =min{RS(u) : u ∈ S⊥k−1 ∩ V \ {0}},

λk =min{RD(ω) : ω ∈ D⊥k−1 ∩W 1
0 (�) \ {0}}

=min{RL(u) : u ∈ L⊥k−1 ∩ H0 ∩ X \ {0}}

=min{RL(u) : u ∈ L⊥k−1 ∩ H0 ∩ X2
0 \ {0}},

where the Rayleigh quotients are

RS(u)= RL(u)= ‖ω(u)‖2L2(�)/‖u‖
2
L2(�), RD(ω)= ‖∇ω‖

2
L2(�)/‖ω‖

2
L2(�).

Proof. The form of the Rayleigh coefficient for νk and the form in the first two
expressions for λk come from the weak formulations of the eigenvalue problems
in Definitions 4.1–4.3. The third expression for λk follows from the bijection in
Lemma 2.11 and by noting that if u is any element of X2

0 , then RL(u)= RD(ω(u)),
as in the proof of Proposition 4.8. �

Defining four functions mapping R to Z by

NS(λ)= #{ j ∈ N : ν j < λ}, NL(λ)= #{ j ∈ N : λ j < λ},

N S(λ)= #{ j ∈ N : ν j ≤ λ}, N L(λ)= #{ j ∈ N : λ j ≤ λ},

we have an immediate corollary of Proposition 5.1:
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Corollary 5.2. N S(λ)=max
Z⊆V
{dim Z : RS(u)≤ λ for all u ∈ Z},

N L(λ)= max
Z⊆H0∩X2

0

{dim Z : RL(u)≤ λ for all u ∈ Z}

= max
Z⊆H0∩X

{dim Z : RL(u)≤ λ for all u ∈ Z}.

Remark 5.3. By Corollary A.3, RS(u)=‖∇u‖2L2(�)
/‖u‖2L2(�)

, so λk ≤ νk follows
from Corollary 5.2. Strict inequality, however, is not so immediate.

6. Proof of Theorem 1.1

Lemma 6.1 is the analogue of the (only) lemma in [Filonov 2004] and, in fact,
follows from it. For completeness we give the full proof.

Lemma 6.1. For all λ in R,

V ∩ ker{AL − λ} ∩ X2
0 = {0}.

Proof. Let u be in V ∩ ker{AL − λ} ∩ X2
0 = ker{AS − λ} ∩ X2

0 , where we used
Proposition 4.5. Then{

1u+ λu =∇ p, div u = 0, 1ω+ λω = 0 in �,

u = 0, ω = 0, on 0.

Becauseω=0 on0,∇ p=0 on� by Lemma 3.4. Hence,∇ω=−(1u)⊥=λu⊥=0
on 0. Thus, ω extended by 0 to all of R2 lies in W 1(R2). Then for all ψ in S(R2),

(−1ω,ψ)S′(R2),S(R2) = (∇ω,∇ψ)S′(R2),S(R2) =

∫
R2
∇ω · ∇ψ

=

∫
�

∇ω · ∇ψ =−

∫
�

1ωψ +

∫
0

(∇ω · n)ψ

= λ

∫
�

ωψ = λ

∫
R2
ωψ = (λω,ψ)S′(R2),S(R2),

which shows that 1ω=−λω as distributions. But ω is in W 1(R2) so, in fact, 1ω
is in W 1(R2) and 1ω+ λω = 0 on R2. Moreover, ω vanishes outside of �. But
the Laplacian is hypoelliptic so ω is real analytic and hence vanishes on all of R2.

Now, were � simply connected it would follow immediately that u ≡ 0. In any
case, observe that ω ≡ 0 implies 1u =∇⊥ω ≡ 0. But 1u =−λu, so u ≡ 0. �

Proof of Theorem 1.1. Let λ > 0 and choose a subspace F of V of dimension
N S(λ) with

(6-1) ‖ω(u)‖2L2(�) ≤ λ‖u‖
2
L2(�) for all u ∈ F.



118 JAMES P. KELLIHER

This is possible by the variational formulation of the eigenvalue problem for AS in
Corollary 5.2. By Lemma 6.1,

G = F ⊕ (ker{AL − λ} ∩ X2
0)

is a direct sum and so has dimension N S(λ)+ dim ker{−1D −λ}, where we used
Propositions 4.5 and 4.8. (Either of the vector spaces above could contain only 0.)

For any u ∈ F and v ∈ ker{AL − λ} ∩ X2
0 ,

‖ω(u+ v)‖2L2(�) = ‖ω(u)‖
2
L2(�)+‖ω(v)‖

2
L2(�)+ 2 Re(ω(u), ω(v))

= ‖ω(u)‖2L2(�)+‖ω(v)‖
2
L2(�)+ 2λRe(u, v),

because (ω(u), ω(v))= λ(u, v) by Definition 4.3.
Also by Definition 4.3,

‖ω(v)‖2L2(�) = λ‖v‖
2
L2(�),

and combined with Equation (6-1) this gives

‖ω(u+ v)‖2L2(�) ≤ λ‖u‖
2
L2(�)+ λ‖v‖

2
L2(�)+ 2λRe(u, v)= λ‖u+ v‖2L2(�).

Then it follows by the variational formulation of the eigenvalue problem for AL

in Corollary 5.2 that

N L(λ)≥ dim G = N S(λ)+ dim ker{−1D − λ},

so
NL(λ)= N L(λ)− dim ker{−1D − λ} ≥ N S(λ).

Setting λ=νk gives NL(νk)≥ N S(νk)≥ k. In words, there are at least k eigenvalues
in σD (counted according to multiplicity) strictly less than νk ; that is, λk < νk . �

7. Toward the inequality λk+1 ≤ νk

Theorem 7.1. For each k in N, define U k
R= (νk, x), where x is the smallest element

of (σS ∪ σD)∩ (νk,∞), and define U k
L = (y, λk), where y is the largest element of

(σS∪σD)∩(−∞, λk). (Let y=−∞ if k= 1.) Suppose that for some λ in U k
R there

exists a nonzero vector field w in X2 and a scalar field q in W 1(�) satisfying the
underdetermined problem

(7-1)
{
1w+ λw =∇q, divw = 0 on �,

w · n= 0 on 0,

but with the constraint∫
0

ω(w)w · τ = ‖ω(w)‖2L2(�)− λ‖w‖
2
L2(�) ≤ 0.(7-2)
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Then λk+1 ≤ νk . If for each k there exist λ in U k
L a nonzero vector field w in X2

and a scalar field q in W 1(�) satisfying (7-1) and (7-2), then λk+1 ≤ νk for all k.

Proof. Observe first that
∫
0 ω(w)w · τ = ‖ω(w)‖

2
L2(�)
− λ‖w‖2L2(�)

follows from
Corollary A.1.

Assume that λ in U k
R and w and q are as in (7-1) and (7-2). Let the set F be

defined as in the proof of Lemma 6.1, but let G = F ⊕ span{w}. This is a direct
sum since otherwise w would be in span F , meaning that it would vanish on 0 and
so would actually be an eigenfunction of AS; but this is impossible since λ is not
in σS by assumption. The dimension of G is N S(λ)+ 1.

Then for any u in F and c in C,

‖ω(u+ cw)‖2L2 = ‖ω(u)‖2L2 +‖ω(cw)‖2L2 + 2 Re(ω(u), ω(cw)).

But by Corollary A.1,

(ω(u), ω(w))=−(1w, u)= (λw, u)− (∇q, u)= λ(u, w)

and ‖ω(w)‖2L2 ≤ λ‖w‖
2
L2 by (7-2). Also, ‖ω(u)‖2L2 ≤ λ‖u‖2L2 , so we can conclude

that

‖ω(u+ cw)‖2L2 ≤ λ‖u‖2L2 + λ‖cw‖2L2 + 2λRe(u, cw)= λ‖u+ cw‖2L2 .

Then it follows by the variational formulation of the eigenvalue problem for AL

in Corollary 5.2 that N L(λ)≥ dim G = N S(λ)+ 1.
Because λ is larger than νk but smaller than any eigenvalue in (σD∪σS)∩(λ,∞),

NL(λ)= N L(νk) and N S(λ)= N S(νk), so N L(νk)≥ N S(νk)+1≥ k+1. In other
words, there are at least k+1 eigenvalues in σD (counted according to multiplicity)
less than or equal to νk ; that is, λk+1 ≤ νk . This establishes the result for λ in U k

R .
Now assume that for all k there exists a λ in U k

L with w and q as in (7-1)
and (7-2). Given j in N, let δ be the lowest eigenvalue greater than ν j in σS ∪σD .
If δ is in σS , then δ = νn for some n > j , and if λn+1 ≤ νn then it will follow
that λ j+1 ≤ ν j since there are no eigenvalues in σD between ν j and νn (though
ν j , νn , or both might also be in σD). We can continue this line of reasoning until
eventually we reach a value of j such that the next lowest eigenvalue δ in σS ∪σD

is in σD (δ might also be in σS , but this will not affect our argument). Then δ = λn

for some n in N.
Then by assumption there is some λ in U n

L with w and q as in (7-1) and (7-2).
But this λ is also in U j

R , so we conclude that λ j+1 ≤ ν j , and from our argument
above, this inequality holds, then, for all j in N. �

Remark 7.2. For λ in σD , even if a w exists satisfying the conditions in (7-1)
and (7-2),w might be an eigenfunction of AL and so lie in ker{AL−λ}. This means
that we cannot extend the argument along the lines in the proof of Theorem 1.1,
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since span{w} might not be linearly independent of the set G in the proof of that
theorem. This prevents us from concluding that λk+1 < νk for all k, which is in
any case not true in general.

The difficulty with applying Theorem 7.1 is that it is relatively easy to find vector
fields w satisfying the given conditions in a left neighborhood of νk , or perhaps in
a right neighborhood of λk , but hard to find ones in the required neighborhoods.
We give an example in Section 8.

8. Proof of Theorem 1.2 and related issues

Navier slip boundary conditions for the Stokes operator provide a physically jus-
tifiable alternative to the classical no-slip boundary conditions used to define AS .
To the extent possible, we will work with these boundary conditions with a locally
Lipschitz boundary, but we will find that they are really only of use when the
boundary is C2 and has a finite number of components. (Observe that under this
assumption, by Corollary 2.16, the distinctions we have been making between the
X spaces and the Y spaces disappear.)

To define Navier boundary conditions in the classical sense, we must assume
that 0 is C2. (Here, as elsewhere in this paper, C1,1 would suffice, but introduces
added complexities we wish to avoid.) The Navier conditions can be written in the
form

(8-1) ω(u)= (2κ −α)u · τ on 0,

where κ is the curvature of the boundary and α is any function in L∞(0).
If u in H ∩W 2(�) satisfies Equation (8-1) then by Corollary A.1,

(−1u, v)= (ω(u), ω(v))−
∫
0

(2κ −α)u · v for any v in X .

Let HV = {u ∈ H ∩W 2(�) : ω(u) = (2κ − α)u · τ on 0}, endowed with the
same norm as Y . We define the operator AV : Y → H by requiring that

(8-2) (AV u, v)= (ω(u), ω(v))+
∫
0

(α− 2κ)u · v = (∇u,∇v)+
∫
0

(α− κ)u · v,

for all v in Y . The second equality (which gives the form of the operator A defined
on [Kelliher 2006, page 218]) follows from Lemma A.2, Lemma A.4, and the
density of (C1(�))2 in Y .

Now assume that � is bounded and 0 is locally Lipschitz. Then the curvature
is no longer defined, so we replace the function α− 2κ with a function f lying in
L∞(0), though we lose in this way the physical meaning. In place of (8-1), we
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have

ω(u)+ f u · τ = 0 on 0,(8-3)

(AV u, v)= (ω(u), ω(v))+
∫
0

f u · v.(8-4)

Observe that the second expression for AV in (8-2) now has insufficient regularity,
so it no longer applies.

Definition 8.1. A vector field u j ∈ X2 is a strong eigenfunction of AV with eigen-
value γ j if {

1u j + γ j u j =∇ p j , 1p j = 0, div u j = 0 in �,

u j · n= 0, ω(u j )+ f u j · τ = 0 on 0.

Definition 8.2. The vector field u j in X is a weak eigenfunction of AV with eigen-
value γ j if

(ω(u j ), ω(v))+

∫
0

f u j · v− γ j (u j , v)= 0 for all v ∈ X.

Proposition 8.3. If u j is a strong eigenfunction of AV , then it is a weak eigen-
function of AV . If u j is a weak eigenfunction of AV that happens to be in X2 and
satisfy ω(u j )+ f u j · τ = 0 on 0, then u j is a strong eigenfunction of AV .

Proof. Strong implies weak follows by the integration by parts performed above.
For the reverse implication, assume that u j is a weak eigenfunction of AV lying
in X2. Then choosing v to lie in V , it follows that

(ω(u j ), ω(v))− γ j (u j , v)= 0 for all v ∈ V .

Applying Corollary A.1 gives (1u j +γ j u j , v)= 0 for all v ∈ V , and we conclude
that 1u j + γ j u j =∇ p j for some harmonic field p in W 1(�) by Lemma 2.9. �

When 0 is C2 and has a finite number of components, we can consider the
special case α = κ , which gives ω(u j )= κu j · τ . It follows from Lemma A.5 that
∇u j n · v = 0 for any v in X . More simply, we can write this as ∇u j n · τ = 0.
These boundary conditions imply that (−1u j , v) = (∇u j ,∇v) for all v in X ,
(or we can take advantage of the second form of (AV u, u) in (8-2)), and we can
explicitly define such eigenfunctions as follows, though we need no longer assume
that the boundary is C2:

Definition 8.4. A vector field u j ∈ X2 is a strong eigenfunction of AN if{
1u j +β j u j =∇ p j , 1p j = 0, div u j = 0 in �,

u j · n= 0, ∇u j n · τ = 0 on 0.
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Definition 8.5. A vector field u j in X is a weak eigenfunction of AN if

(∇u j ,∇v)−β j (u j , v)= 0 for all v ∈ X.

We also have the following min-max formulations for the eigenvalues of AV

and the special case of AN .

Proposition 8.6. Let

Vk = the span of the first keigenfunctions of AV ,

Nk = the span of the first keigenfunctions of AN ,

with V0 = N0 = {0}. Then

γk =min{RV (u) : u ∈ V⊥k−1 ∩ X \ {0}},

βk =min{RN (u) : u ∈ N⊥k−1 ∩ X \ {0}},

where

RV (u)=
‖ω(u)‖2L2(�)

+
∫
0 f |u|2

‖u‖2L2(�)

, RN (u)=
‖∇u‖2L2(�)

‖u‖2L2(�)

.

The eigenvalues are real with 0 = β1 ≤ β2 ≤ · · · and, when f is nonnegative,
0< γ1 ≤ γ2 ≤ · · · with γk→∞.

Proof. Define the operator T : X → X by T = (i I + AV )
−1
◦ j , where I is

the identity map, j is the inclusion map from X to X∗ (which is compact by
Corollary 2.12), and i =

√
−1. Then since (i I + AV )

−1 is bounded (its norm
can be no greater than 1) T is compact, and the spectral theorem provides us with
eigenvalues of T accumulating at zero. To each eigenvalue λ of T there corresponds
an eigenvalue γ = µ−1

− i of AV . But AV is self-adjoint, so γ is real. And when
f is nonnegative, since RV (u) is nonnegative, 0<γ1 ≤ γ2 ≤ · · · with γk→∞. �

Defining two functions mapping R to Z by

N V (λ)= #{ j ∈ N : γ j ≤ λ} and N N (λ)= #{ j ∈ N : β j ≤ λ},

we have an immediate corollary of Proposition 8.6:

Corollary 8.7. N V (λ)=max
Z⊆X
{dim Z : RV (u)≤ λ for all u ∈ Z},

N N (λ)=max
Z⊆X
{dim Z : RN (u)≤ λ for all u ∈ Z}.

Proposition 8.8. Assume 0 is C2 and has a finite number of components and

(8-5) f ∈ C1/2+ε(0)+W 1/2+ε(0).

A weak eigenfunction of AV is a strong eigenfunction of AV . In particular, a weak
eigenfunction u j of AV satisfies ω(u j )+ f u j · τ = 0 on 0.
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Proof. Suppose that u is a weak eigenfunction of AV as in Definition 8.2 with
ω = ω(u). Then for any v in V integration by parts gives (1u + λu, v) = 0, so
1u+λu=∇ p by Lemma 2.9, equality holding in terms of distributions. Taking the
curl, it follows that 1ω=−λω, so ω is in U of Proposition 2.17, since ω is in L2.
Thus, by Proposition 2.17, ω is well defined on 0 as an element of W−1/2(0).

Let v be any vector in H0 ∩Y , and let α be its associated stream function lying
in W 1

0 (�)∩W 2(�) given by Lemma 2.10, so that 1α = ω(v) is in L2(�). Thus,
again by Proposition 2.17, since ∇α · n=−v · τ ,

(γωω, v · τ )W−1/2(0),W 1/2(0) = (α,1ω)− (ω(v), ω)

=−λ(α, ω)− (ω(v), ω)= λ(u, v)− (ω(v), ω).

Here we used

(α, ω)=−(α, div u⊥)= (∇α, u⊥)+
∫
0

(u⊥ · n)α =−(v, u),

noting that we had enough regularity to apply Corollary A.1.
But because u is a weak eigenfunction of AV , also

( f u · τ , v · τ )W−1/2(0),W 1/2(0) = λ(u, v)− (ω(v), ω).

Thus, the two boundary integrals are equal, and because of Lemma 2.19, we can
conclude that ω = − f u · τ on 0, and in particular that ω is in W 1/2(0). (By
Corollaries 2.2 and 2.3 and (8-5) we know f u ·τ is in W 1/2(0).) From this gain of
regularity on the boundary, along with 1ω = −λω ∈ L2(�), we conclude ω is in
W 1(�), from which it follows that u is a strong solution to AV as in Definition 8.1.

The origin of this proof was the proof of [Clopeau et al. 1998, Lemma 2.2]. �

We have the following simple extension of Lemma 6.1:

Lemma 8.9. If 0 is C2 and has a finite number of components and (8-5) holds,
then V ∩ ker{AV − λ} = {0} for all λ in R.

Proof. By Proposition 8.8, u is a strong eigenfunction of AV and hence satisfies
ω(u)=− f u · τ = 0 on 0, and so is a strong eigenfunction of AL . But then u = 0
by Lemma 6.1. �

Restricting our attention to the case where f is nonnegative and constant on 0
(in which case (8-5) holds), we can write the boundary conditions in Definition 8.1
as (1− θ)ω(u j )+ θu j · τ = 0 on 0, where θ lies in [0, 1]. When θ = 0, we have
the special case of Lions boundary conditions and when θ = 1 we have Dirichlet
boundary conditions on the velocity. In Definition 8.2, f = θ/(1−θ) for θ in [0, 1).
With this parameterization, we can view γ j as a function of θ . That is, γ j (θ) is the
j-th eigenvalue of AV (or AL or AS) so, for instance, to each eigenvalue γ j (θ) of
multiplicity k there will be exactly k values of n for which γn(θ)= γ j (θ).
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Because f is constant on 0, it is certainly in C1(0), which is a requirement of
Proposition 8.8.

Proposition 8.10. Assume that 0 is C2 and has a finite number of components.
For all j in N, the function γ j : [0, 1) → [λ j , ν j ) and is strictly increasing and
continuous.

Proof. To show that γ j (θ) < ν j for θ in [0, 1) we repeat the proof of Theorem 1.1
using G = F ⊕ ker{AV − λ} in place of F ⊕ ker({AL − λ} ∩ X2

0). Let u ∈ F and
v∈ker{AV−λ}. Then because v is a weak eigenfunction of AV as in Definition 8.2
and u is zero on the boundary, letting z = f = θ/(1− θ), we have

(ω(u), ω(v))= λ(u, v)− z
∫
0

v · u = λ(u, v).

Thus,

‖ω(u+ v)‖2L2(�) = ‖ω(u)‖
2
L2(�)+‖ω(v)‖

2
L2(�)+ 2 Re(ω(u), ω(v))

= ‖ω(u)‖2L2(�)+‖ω(v)‖
2
L2(�)+ 2λRe(u, v),

as was the case for AL . Now, however,

‖ω(v)‖2L2(�) = λ‖v‖
2
L2(�)− z

∫
0

|v|2 = λ‖v‖2L2(�)− z
∫
0

|u+ v|2,

and combined with (6-1) this gives

‖ω(u+ v)‖2L2(�) ≤ λ‖u‖
2
L2(�)+ λ‖v‖

2
L2(�)+ 2λRe(u, v)− z

∫
0

|u+ v|2

= λ‖u+ v‖2L2(�)− z
∫
0

|u+ v|2.

Thus, RV (u+ v) ≤ λ, and the proof of γ j (θ) < ν j is completed as in the proof of
Theorem 1.1.

The argument that γ j is strictly increasing on [0, 1) is more direct, because
the variational formulations in Corollary 8.7 for different values of θ all involve
maximums over subspaces of the same space Y . (That γ j is nondecreasing on
[0, 1) follows immediately from the principle of monotonicity, as in [Weinstein
and Stenger 1972, Theorem 2.5.1, page 21].)

For θ in [0, 1), write AθV for the operator AV and similarly for RθV and N θ
V .

In particular, AL = A0
V . Let f (θ) = θ/(1− θ), which we note is an increasing

function of θ on [0, 1).
Now suppose that θ and θ ′ are in [0, 1) with θ < θ ′. Let λ > 0 and choose a

subspace F of Y of dimension N θ ′

V (λ) with Rθ
′

V ≤ λ; that is,

‖ω(u)‖2L2(�)+

∫
0

f (θ ′)|u|2 ≤ λ‖u‖2L2(�) for all u ∈ F,(8-6)
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which is possible by Corollary 8.7. Let G = F ⊕ ker{AθV − λ}. This is, in fact, a
direct sum, since if a nonzero u lies in both F and ker{AθV − λ}, then from (8-6)
and Definition 8.2 it follows that∫

0

( f (θ ′)− f (θ))|u|2 ≤ 0.

But f (θ ′)− f (θ) is a positive constant on 0, so in fact u = 0 on 0 and hence lies
in V . It follows from Lemma 8.9 that u is identically zero.

This shows that G has at least one more element than F when λ = γ j (θ). But
then setting Z = F in the definition of N θ

V (γ j (θ)) in Corollary 8.7, we see because
RθV ≤ Rθ

′

V that N θ
V (γ j (θ)) ≥ dim G > dim F = N θ ′

V (γ j (θ)), which means that
γ j (θ) < γ j (θ

′).
This shows that γ j is strictly increasing. To show that it is continuous, fix θ in
[0, 1), and let Z be any subspace of Y that achieves the maximum in the expression
for k = N θ

V (γk(θ)) in Corollary 8.7. Here we assume that if λk is a multiple
eigenvalue, k is the largest such index.

Choose a basis (v1, . . . , vk) for Z and observe that because RV (u) = RV (cu)
for any nonzero constant c,

sup
u∈Z

Rθ
′

V (u)=max
u∈Z ′

Rθ
′

V (u) for any θ ′ in [0, 1),

where

Z ′ =
{
c1v1+ · · ·+ ckvk : c1, . . . , ck ∈ C, |c1|

2
+ · · ·+ |ck |

2
= 1

}
.

Now, the map from the complex k-sphere to R defined by (c1, . . . , ck) 7→‖c1v1+

· · · + ckvk‖L2(�) is continuous and so achieves its minimum a, which is the same
as the minimum of ‖u‖L2(�) on Z ′. Because (v1, . . . , vk) is independent, a must
be positive. Similarly, ‖u‖Y achieves its maximum b > 0 on Z ′.

Thus, on Z ′ and so on Z , for any θ ′ > θ ,

Rθ
′

V (u)− RθV (u)=
( f (θ ′)− f (θ))

∫
0|u|

2

‖u‖2L2(�)

≤ Ca−2
‖u‖2Y ( f (θ ′)− f (θ))

≤ Ca−2b2( f (θ ′)− f (θ)),

where we used the standard trace inequality ‖u‖L2(0) ≤ C‖u‖1/2L2(�)
‖∇u‖1/2L2(�)

for
u in Y , followed by Poincaré’s inequality. But this shows that

N θ ′

V (λ)≥ N θ
V (γk(θ)) for λ= γk(θ)+Ca−2b2( f (θ ′)− f (θ)).

Since we already know that γk(θ
′) > γk(θ) it follows that

|γk(θ
′)− γk(θ)| ≤ Ca−2b2( f (θ ′)− f (θ)),
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meaning that γk is continuous on [0, 1). �

The first part of Theorem 8.11 is Theorem 1.2.

Theorem 8.11. Assume that 0 is C2 and has a finite number of components. For
all j in N, the function γ j : [0, 1] → [λ j , ν j ] is a strictly increasing continuous
bijection. Also, (7-2) holds for any eigenfunction of AV .

Proof. For any value of θ in (0, 1), we let w = w(θ) be any eigenfunction of AV

with eigenvalue γ j (θ), normalized so that ‖w‖H = ‖w‖L2(�) = 1. We know from
Proposition 8.10 that γ j (θ) strictly increases continuously from λ j at θ = 0 and
remains bounded by ν j . Formally, as θ → 1, w becomes an eigenfunction of AS ,
since w must approach zero on the boundary so that ω(w)= (θ/(1− θ))w · τ can
remain finite. We now make this formal argument rigorous.

Letting z = f = θ/(1− θ), we have

‖w‖2L2(0) =

∫
0

(w · τ )(w · τ )=−z−1
∫
0

ω(w)w · τ ,

the boundary integral being well defined because of Proposition 8.8. Then∫
0

ω(w)w · τ =−z‖w‖2L2(0) ≤ 0,

so (7-2) holds.
Moreover, from Definition 8.2,

‖ω(w)‖2L2(�)+ z‖w‖2L2(0) = γ j (θ)‖w‖
2
L2(�) = γ j (θ).

From this we conclude two things. First, that

(8-7) ‖w‖2L2(0) =

γ j (θ)−‖ω(w)‖
2
L2(�)

z
≤
ν j

z
,

since γ j (θ) < ν j . Second, that ‖ω(w)‖L2(�) ≤ γ j (θ)
1/2 and hence that ‖w‖Y ≤ C

because γ j (θ) < ν j and by virtue of Corollary 2.15.
Now letting the parameter θ vary over the set {1−1/n : n∈N}, we get a sequence

(un) of eigenfunctions un
=w(1−1/n) of AV , with eigenvalues γ n

= γ j (1−1/n).
By the observations above, (un) is a bounded sequence in Y . But Y is compactly
embedded in H by Lemma 2.6 (or by Corollaries 2.12 and 2.16), so there exists
a subsequence of (un) that converges strongly in H . Since this subsequence is
bounded in Y , which is a separable, reflexive Banach space, taking a further sub-
sequence, and relabeling it (un), we conclude that un

→u strongly in H and weak∗

in Y to some vector field u in Y with ‖u‖H = 1 (so u is nonzero).
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Furthermore, ‖un
‖W 1/2(0)≤C‖un

‖Y ≤C , so (un) is bounded in W 1/2(0), which
is compactly embedded in L2(0), and hence extracting a subsequence and relabel-
ing once more, we conclude that also un

→ u strongly in L2(0). But since z→∞
as n→∞, we have un

→ u = 0 in L2(0) by (8-7).
Then by Definition 8.2, (ω(un), ω(v))− γ n(un, v)= 0 for any v in V . Letting

γ = limn→∞ γ
n (the limit exists because γ n is a bounded increasing sequence

of real numbers), we have (ω(un), ω(v)) − γ (un, v) = (γ n
− γ )(un, v). Since

|(un, v)| ≤ ‖un
‖L2(�)‖v‖L2(�) ≤C , the right side converges to zero. Since un

→ u
strongly in L2(�), (un, v)→ (u, v). Since un

→ u weak∗ in Y ,

(ω(un), ω(v))= (∇un,∇v)→ (∇u,∇v)= (ω(u), ω(v)),

where we used Corollary A.3. We conclude that (ω(u), ω(v))− γ (u, v) = 0 and
thus that u is a weak eigenfunction of AS with eigenvalue γ ≤ ν j .

What we have shown is that γ j : [0, 1] → [λ j , νk] for some k ≤ j and that γ j

is strictly increasing and continuous on all of [0, 1]. To show that k = j , we first
observe that if γk(1) = γm(1) = ν j for some k 6= m, then the eigenvalue ν j has
multiplicity at least 2. To see this, we repeat the compactness argument above, this
time choosing the original sequence of eigenvectors (uk,n)∞n=1 and (um,n)∞n=1 such
that uk,n is orthogonal in L2(�) to um,n , which we can always do even if they lie
in the same eigenspace. We showed above that uk,n

→ u and um,n
→w in L2(�)

for some u and w that are eigenvectors of AS . It is elementary to see, then, that
(u, w)= 0, which shows that ν j has multiplicity at least two.

Similarly, the multiplicity of the eigenvalue ν j is at least as high as the number
of distinct values of k for which γk(1) = ν j . This means that the total number of
eigenvalues of AS including multiplicity reached by γ j (1) for some j with 1≤ j≤k
is at least k. But it can be no more than k since γ j (1) = νm for some m ≤ j ≤ k.
Thus, the first k eigenvalues of AL according to multiplicity are mapped via γ j for
j = 1, . . . , k into the first k eigenvalues of AS , showing that γ j : [0, 1] → [λ j , ν j ]

for all j = 1, . . . , k and hence for all j in N, since k was arbitrary. �

To round out the picture of how the eigenvalues for different boundary conditions
compare, we consider the eigenfunctions of the negative Laplacian with Robin
boundary conditions on the vorticity. For simplicity, we restrict our attention to
constant coefficients, writing the boundary conditions in terms of a parameter θ
lying in [0, 1], and stating only the strong form:

Definition 8.12. An eigenfunction ω j ∈ W 1
0 (�) of the Dirichlet Laplacian with

Robin boundary conditions satisfies{
1ω j + η jω j = 0 in �,

(1− θ)∇ω j · n+ θω j = 0 on 0.
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The analogue for divergence-free vector fields leads to the eigenvalue problem
for a Stokes operator AR with Robin boundary conditions:

Definition 8.13. An eigenfunction u j ∈ X2 of AR satisfies ARu j =λ
∗

j u j or, equiv-
alently, {

1u j + η
∗

j u j =∇ p j , div u j = 0 in �,

u j · n= 0, (1− θ)∇ω j · n+ θω j = 0 on 0.
A value of θ = 1 gives the operator AL , and θ = 0 gives Neumann boundary

conditions on the vorticity.
Taking the vorticity of u j in Definition 8.13 shows that a strong eigenfunction

of AR corresponds to a strong eigenfunction of the Dirichlet Laplacian with Robin
boundary conditions. Also, the equivalent of Lemma 3.4 for Robin boundary
conditions on ω shows that to each strong eigenfunction of the Dirichlet Lapla-
cian with Robin boundary conditions there corresponds a strong eigenfunctions of
AR . Thus, there is a bijection between the eigenfunctions and eigenvalues; that is,
η∗j =η j . Moreover, η j is continuous on [0, 1), because the bilinear form associated
to Definition 8.12 is continuous with θ ; see [Filonov 2004].

Proposition 8.14. For all j in N, the function η j : [0, 1)→[µ j , λ j ) and is strictly
increasing.

Proof. The proof goes like that of Proposition 8.10, making adaptations of Filonov’s
proof of his theorem that parallel those in the proof of Proposition 8.10. �

Theorem 8.15. For all j in N, the function η j : [0, 1] → [µ j , λ j ] is continuous
and strictly increasing.

Proof. The proof parallels that of Theorem 8.11. �

The addendum of [Filonov 2004] considers Robin boundary conditions as in
Definition 8.12 with, in effect, θ negative. In that case, η j+1(θ)< λ j for all j in N.

For any θ ,

‖∇ p j‖
2
L2(�)−

∫
0

(∇ω j · n)ω j

= ‖1u j‖
2
L2(�)− η j (θ)‖u j‖

2
L2(�)−

∫
�

1ω(u j )ω(u j )−‖∇ω(u j )‖
2
L2(�)

= η j (θ)
(
‖ω(u j )‖

2
L2(�)− η j (θ)‖u j‖

2
L2(�)

)
.

Thus, (7-2) holds for an eigenfunction of AL (θ = 1), where ∇ p j ≡ 0 and ω j = 0
on 0, and fails for an eigenfunction of the Stokes operator with Neumann boundary
conditions on the vorticity (AR for θ = 0), where ∇ p j 6≡ 0 and ∇ω j · n= 0 on 0.
For θ in (0, 1), it is not clear whether (7-2) holds or not, leaving open the possibility
that the inequality λ j+1 ≤ ν j could be proved by showing that (7-2) holds for all θ
in some left neighborhood of 1 for each λ j .
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In any case, for all j we have the inequalities

µ j < η j (θ) < λ j < γ j (θ
′) < ν j for all θ , θ ′ in (0, 1),

µ j+1 < λ j < β j < ν j .

Appendix A. Various lemmas

Corollary A.1 is a corollary of Lemma 2.4 and is the main tool we use to prove the
equivalence of the weak and strong formulations of our eigenvalue problems. The
conditions in this corollary for equality to hold are the weakest possible to insure
that each factor lies in the correct space for each term to be finite.

Corollary A.1. Assume that � is a bounded domain with locally Lipschitz bound-
ary. For any divergence-free distribution u for which ω(u) is in W 1(�) and any v
in L2(�) with ω(v) in L2(�),

(ω(u), ω(v))=−(1u, v)+
∫
0

ω(u)v · τ .

Proof. The vector field v is in E(�) because v⊥ is in L2(�) and div v⊥ =−ω(v)
is in L2(�). Thus, ω(u) lying in W 1(�), we can apply Lemma 2.4 to obtain

(ω(u), ω(v))=−(ω(u), div v⊥)= (∇ω(u), v⊥)−
∫
0

ω(u)(v⊥ · n).

But (∇ω(u), v⊥)=−(∇⊥ω(u), v)= (−1u, v) and (v⊥ ·n)=−v ·τ , from which
the result follows. �

Lemma A.2. Assume that� is a bounded domain with locally Lipschitz boundary.
If u is in W 1(�) with div u = 0 and v is in (C1(�))2, then

(ω(u), ω(v))= (∇u,∇v)−
∫
0

(∇uv) · n.

Proof. We have

ω(u)ω(v)= (∂1u2
− ∂2u1)(∂1v

2
− ∂2v

1)

= ∂1u2∂1v
2
+ ∂2u1∂2v

1
− (∂1u2∂2v

1
+ ∂2u1∂1v

2)

= ∂1u2∂1v
2
+ ∂2u1∂2v

1
+ ∂1u1∂1v

1
+ ∂2u2∂2v

2

− (∂1u2∂2v
1
+ ∂2u1∂1v

2
+ ∂1u1∂1v

1
+ ∂2u2∂2v

2)

= ∂i u j∂iv
j
− ∂i u j∂ jv

i
=∇u · ∇v− (∇u)T · ∇v.

Since div u = 0, we have (∇u)T · ∇v = ∂i u j∂ jv
i
= ∂ j (∂i u jvi ) = div(∇uv). But

∇uv is in L2(�) and ‖div(∇uv)‖L2(�) ≤ ‖∇u‖L2(�)‖∇v‖L∞(�) is finite, so ∇uv
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is in E(�) and we can apply Lemma 2.4 to give

(ω(u), ω(v))= (∇u,∇v)−
∫
�

div(∇uv)= (∇u,∇v)−
∫
0

(∇uv) · n. �

Corollary A.3. Assume that � is a bounded domain with locally Lipschitz bound-
ary. For all u in W 1(�) with div u = 0 and all v in V ,

(ω(u), ω(v))= (∇u,∇v).

Proof. This follows from Lemma A.2 and the density of C1(�) in W 1(�). �

Lemma A.4. Assume that 0 is C2. For all u in H ∩W 2(�) and v in Y , we have

∇uv · n=−κu · v.

Proof. Because u · n has a constant value (of zero) along 0,

0= ∂
∂τ
(u · n)= ∂u

∂τ
· n+ u · ∂n

∂τ
=∇uτ · n+ κu · τ .

But v= (v·τ )τ , so multiplying both sides of the above inequality by v·τ completes
the proof. �

Lemma A.5. Assume that 0 is C2. For all u in H ∩W 2(�) and v in Y , we have

∇un · v = ω(u)v · τ − κu · v.

Proof. Writing

n=
(

n1

n2

)
and τ =

(
−n2

n1

)
with (n1)2+ (n2)2 = 1, we have

∇un · τ −∇uτ · n

=

((
∂1u1 ∂2u1

∂1u2 ∂2u2

)(
n1

n2

))
·

(
−n2

n1

)
−

((
∂1u1 ∂2u1

∂1u2 ∂2u2

)(
−n2

n1

))
·

(
n1

n2

)

=

(
∂1u1n1

+ ∂2u1n2

∂1u2n1
+ ∂2u2n2

)
·

(
−n2

n1

)
−

(
−∂1u1n2

+ ∂2u1n1

−∂1u2n2
+ ∂2u2n1

)
·

(
n1

n2

)
=−∂1u1n1n2

− ∂2u1(n2)2+ ∂1u2(n1)2+ ∂2u2n1n2

+ ∂1u1n1n2
− ∂2u1(n1)2+ ∂1u2(n2)2− ∂2u2n1n2

= ((n1)2+ (n2))(∂1u2
− ∂2u)= ω(u).

Thus by Lemma A.4,

∇un · τ = ω(u)+∇uτ · n= ω(u)− κu · τ ,

and multiplying both sides by v · τ completes the proof. �



EIGENVALUES OF STOKES VERSUS LAPLACIAN 131

Acknowledgments

I would like to thank Leonid Friedlander and Mark Ashbaugh for helpful com-
ments, and James Stafney for a number of illuminating discussions.

References

[Adams 1975] R. A. Adams, Sobolev spaces, Pure and Applied Mathematics 65, Academic Press,
New York-London, 1975. MR 56 #9247 Zbl 0314.46030

[Ashbaugh 2004] M. S. Ashbaugh, “On universal inequalities for the low eigenvalues of the buck-
ling problem”, pp. 13–31 in Partial differential equations and inverse problems, edited by C.
Conca et al., Contemp. Math. 362, Amer. Math. Soc., Providence, RI, 2004. MR 2006f:35198
Zbl 1062.35050

[Brown and Shen 1995] R. M. Brown and Z. Shen, “Estimates for the Stokes operator in Lipschitz
domains”, Indiana Univ. Math. J. 44:4 (1995), 1183–1206. MR 97c:35152 Zbl 0858.35098
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TORUS ACTIONS ON SMALL BLOWUPS OF CP2

LIAT KESSLER

A manifold obtained by k simultaneous symplectic blowups of CP2 of equal
sizes ε (where the size of CP1

⊂ CP2 is one) admits an effective two di-
mensional torus action if k ≤ 3. We show that it does not admit such an
action if k ≥ 4 and ε ≤ 1/(3k22k). For the proof, we show a correspondence
between the geometry of a symplectic toric four-manifold and the combina-
torics of its moment map image. We also use techniques from the theory of
J-holomorphic curves.

1. Introduction

Let a torus T` = (S1)` act effectively on a symplectic 2n-dimensional manifold
(M, ω). The action is called Hamiltonian if there exists a moment map, that is, a
map

8 : M→ (t`)
∗ = R`

that satisfies
d8i =−ι(ξi )ω

for i = 1, . . . , `, where ξ1, . . . , ξ` are the vector fields that generate the T`-action.
Unless said otherwise, we assume that M is compact and connected. The image
of the moment map,

1 :=8(M),
is then a convex polytope [Guillemin and Sternberg 1982].

If dim T` = 1
2 dim M , the triple (M, ω,8) is a symplectic toric manifold, and

the torus action is called toric. The moment map image is a Delzant polytope;
this means that the edges emanating from each vertex are generated by vectors
v1, . . . , vn that span the lattice Zn . By the Delzant theorem, (M, ω,8) is de-
termined by 1 up to an equivariant symplectomorphism. Conversely, given a
Delzant polytope 1 in Rn , Delzant [1988] constructs a symplectic toric manifold
(M1, ω1,81) whose moment map image is 1.

MSC2000: primary 53D20, 53D35, 53D45; secondary 57S15.
Keywords: torus action, symplectic manifold, dimension four, symplectic blowup, J-holomorphic

curve, moment map, Delzant polygon.
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As a result of Delzant’s theorem and a combinatorial analysis of Delzant poly-
gons, any symplectic toric four-manifold is obtained from either a standard CP2

or a Hirzebruch surface by a sequence of equivariant symplectic blowups. (See
Lemma 2.9.) However, it may be difficult to determine whether a given symplectic
four-dimensional manifold is symplectomorphic to such a manifold.

For instance, let (Mk, ωε) be a symplectic manifold obtained from (CP2, ωFS)

by k simultaneous symplectic blowups of equal sizes ε > 0. (Our normaliza-
tion convention for the Fubini–Study form ωFS is that the size of CP1 ⊂ CPn ,
(1/2π)

∫
CP1 ωFS, is equal to one.) If k ≥ 4, this manifold does not admit a toric

action that is consistent with the blowups, that is, the blowups cannot be performed
equivariantly. (See Lemma 2.8.) Does it admit any other toric action?

In [Karshon and Kessler 2007] we show that the answer is “no” when ε is 1/n
for an integer n. In this paper we show that the answer is “no” for ε ≤ 1/(3k22k),
as a corollary of the following theorem.

Theorem 1.1. If (Mk, ωε) is symplectomorphic to (M1, ω1), for a Delzant poly-
gon 1, and

ε ≤ 1
3k22k ,

then (M1, ω1,81) can be obtained from (CP2, ωFS) by k equivariant symplectic
blowups of equal size ε.

The theorem becomes false if we do not restrict ε; for ε> 1
2 , there is a toric action

on (M1, ωε) that is not consistent with the ε-blowup; see Remark 5.5. Theorem 1.1
can be strengthen to the case ε≤ 1

3 ; see [Pinsonnault 2008, Corollary 3.14; Kessler
2004, Theorem 3]. However, here we use different methods in the proof; in par-
ticular, our arguments illustrate explicitly the behavior of JT -holomorphic curves
and their moment map images. (JT denotes a T2-invariant complex structure on
the manifold that is compatible with the symplectic form.) These novel arguments
might be useful in other studies of torus actions on symplectic manifolds.

In proving Theorem 1.1, we apply Gromov’s compactness theorem for J-holo-
morphic curves to show the existence of JT -curves in the homology classes of
exceptional divisors obtained by the symplectic ε-blowups. In the case presented
here, (as opposed to the case ε = 1

n for an integer n), a priori these might be
nonsmooth cusp curves. We claim that in one of these homology classes there is a
smooth JT -holomorphic sphere. To prove this claim, we represent JT -holomorphic
spheres and cusp curves on the boundary of the moment map image, and reduce
the claim to a combinatorial claim on the moment map polygon. A key ingredient
is Lemma 4.3, saying that a JT -holomorphic sphere whose moment map image
avoids a neighbourhood of a vertex in the moment map polygon 1 can be pushed,
by a gradient flow, to a connected union of preimages of a chain of edges of 1.
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The geometry-combinatorics correspondence is established in Section 2 and
Section 4. The relevant results from Gromov’s theory of J-holomorphic curves
are recalled in Section 3.

To complete the proof of Theorem 1.1 by recursion, we need uniqueness of
symplectic blowdowns: symplectic blowdowns along homologous curves result in
symplectomorphic manifolds. This is shown in the appendix.

2. Reading geometric data from the moment map polygon

2.1. An important model for a Hamiltonian action is Cn with the standard sym-
plectic form, the standard Tn-action given by rotations of the coordinates, and the
moment map

(z1, . . . , zn) 7→ 1
2
(|z1|2, . . . , |zn|2).

The image of this moment map is the positive orthant,

Rn
+ = {(s1, . . . , sn) | s j ≥ 0 for all j }.

A Delzant polytope can be obtained by gluing open subsets of Rn+ by means of
elements of AGL(n,Z). (AGL(n,Z) is the group of affine transformations of Rn

that have the form x 7→ Ax + α with A ∈ GL(n,Z) and α ∈ Rn .) Similarly, a
symplectic toric manifold can be obtained by gluing open Tn-invariant subsets of
Cn by means of equivariant symplectomorphisms and reparametrizations of Tn .

2.2. The rational length of an interval d of rational slope in Rn is the unique num-
ber `= |d| such that the interval is AGL(n,Z)-congruent to an interval of length `
on a coordinate axis. In what follows, intervals are always measured by rational
length.

2.3. An almost complex structure on a 2n-dimensional manifold M is an automor-
phism of the tangent bundle, J : TM→ TM , such that J 2 =− Id. It is compatible
with a symplectic form ω if 〈u, v〉 = ω(u, Jv) is symmetric and positive defi-
nite. The first Chern class of the symplectic manifold (M, ω) is defined to be the
first Chern class of the complex vector bundle (TM, J ) and is denoted c1(TM).
This class is independent of the choice of compatible almost complex structure J
[McDuff and Salamon 1998, Section 2.6].

Lemma 2.4. Let (M, ω) be a compact connected symplectic four-manifold. Let
8 : M→ R2 be a moment map for a toric action, and let 1 be its image.

(1) The moment map preimage of a vertex of1 is a fixed point for the torus action,
and the moment map image of a fixed point is a vertex of 1.
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(2) Let d be an edge of 1 of rational length `. Then its preimage, 8−1(d), is a
symplectically embedded 2-sphere in M of symplectic area∫

8−1(d)
ω = 2π`.

(3) The (rational) perimeter of 1 is

perimeter1= 1
2π

∫
M
ω∧ c1(TM).

(4) The area of 1 is
1

(2π)2

∫
M

1
2!ω∧ω.

For proof, see [Karshon et al. 2007, Lemma 2.2 and Lemma 2.10].

Example 2.5. Figure 1 shows examples of Delzant polygons with three and four
edges. On the left there is a Delzant triangle,

1λ = {(x1, x2) | x1 ≥ 0, x2 ≥ 0, x1+ x2 ≤ λ}.
This is the moment map image of the standard toric action (a, b) · [z0 : z1 : z2] =
[z0 : az1 : bz2] on CP2, with the Fubini–Study symplectic form normalized so that
the symplectic area of CP1 ⊂ CP2 is 2πλ. The rational lengths of all its edges
is λ.

λ ab

F

slope=−1/k

S

N

F

Figure 1. A Delzant triangle, 1λ, and a Hirzebruch trapezoid, Hirza,b,k .

On the right there is a Hirzebruch trapezoid,

Hirza,b,k =
{
(x1, x2)

∣∣∣ − b
2
≤ x2 ≤ b

2
, 0≤ x1 ≤ a− kx2

}
,

where b is the height of the trapezoid, a is its average width, and k is a nonnegative
integer such that the east edge has slope −1/k or is vertical if k = 0. We assume
that a≥ b and that a−k b

2 > 0. This trapezoid is a moment map image of a standard
toric action on a Hirzebruch surface. The rational lengths of its west and east edges
are b; the rational lengths of its north and south edges are a± kb/2.

2.6. Let 1 be a Delzant polytope in Rn , let v be a vertex of 1, and let δ > 0 be
smaller than the rational lengths of the edges emanating from v. The edges of 1
emanating from v have the form {v+sα j | 0≤ s≤ ` j } where the vectors α1, . . . , αn
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generate the lattice Zn and δ < ` j for all j . The corner chopping of size δ of 1
at v is the polytope 1̃ obtained from 1 by intersecting with the half-space

{ v+ s1α1+ · · ·+ snαn | s1+ · · ·+ sn ≥ δ}.
See, for example, the chopping of the top right corner in Figure 2. The resulting
polytope 1̃ is again a Delzant polytope. The corner chopping operation commutes
with AGL(n,Z)-congruence: if 1̃ is obtained from1 by a corner chopping of size
δ > 0 at a vertex v ∈1 then, for any g ∈AGL(n,Z), the polytope g(1̃) is obtained
from the polytope g(1) by a corner chopping of size δ at the vertex g(v).

l1

l2
l2−δ

1
1̃

l1−δ
δ

Figure 2. Corner chopping.

2.7. Recall that a blowup of size ε=r2/2 of a 2n-dimensional symplectic manifold
(M, ω) is a new symplectic manifold (M̃, ω̃) that is constructed in the following
way. Let �⊂ Cn be an open subset that contains a ball about the origin of radius
greater than r , and let i : �→ M be a symplectomorphism onto an open subset
of M . (We consider Cn with the standard symplectic form.) The standard sym-
plectic blowup of � of size r2/2 is obtained by removing the open ball B2n(r)
of radius r about the origin and collapsing its boundary along the Hopf fibration
∂B2n(r)→ CPn−1; the resulting space is naturally a smooth symplectic manifold
[McDuff and Salamon 1998, Section 7.1]. This blowup transports to M through i .
The resulting copy of (CPn−1, εωFS) in M̃ is called the exceptional divisor.

If M admits an action of a torus T`, and i : �→ M is T`-equivariant, where
T` acts on � through some homomorphism T` → U (n), then the torus action
naturally extends to the symplectic blowup of M obtained from i , and the blowup
is equivariant. If the action on M is Hamiltonian, its moment map naturally extends
to the blowup; in the case `= n we call this a toric blowup.

The moment map image of the standard symplectic blowup of Cn of size ε is
obtained from the moment map image Rn+ of Cn by corner chopping of size ε. See
Figure 3 for n = 2.

A toric blowup of size ε of a symplectic toric manifold (M, ω,8) at a fixed
point p amounts to chopping off a corner of size ε of its moment map image 1 at
the vertex v =8(p) to get a new polytope 1̃. The preimage of the resulting new
facet in 1̃ is the exceptional divisor in M̃ .
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|z1|2+|z2|2≥r
2

ǫ

|z2|2/2

ǫ

ǫ

|z1|2/2

Figure 3. Blowup of C2 of size ε = r2/2.

We restrict our attention to symplectic toric manifolds of dimension 4. Chopping
off a corner of size ε of a polygon 1 can be done if and only if there exist two
adjacent edges in 1 whose rational lengths are both strictly greater than ε. As
a result, starting from a Delzant triangle of size 1 we can perform one corner
chopping of size ε > 0 if and only if ε < 1, two or three corner choppings of size
ε > 0 if and only if ε < 1

2 , and no more than three corner choppings of the same
size. Therefore:

Lemma 2.8. (CP2, ωFS) admits a toric blowup of size ε > 0 if and only if ε < 1.
(CP2, ωFS) admits two or three toric blowups of size ε > 0 if and only if ε < 1

2 .
(CP2, ωFS) does not admit four or more toric blowups of equal sizes.

For a detailed proof, see [Karshon and Kessler 2007, Lemma 3.1].
In R2, all Delzant polygons can be obtained by a simple recursive recipe:

Lemma 2.9. (1) Let1 be a Delzant polygon with three edges. Then there exists a
unique λ> 0 such that1 is AGL(2,Z)-congruent to the Delzant triangle1λ.
(See Example 2.5.)

(2) Let 1 be a Delzant polygon with four or more edges. Let s be the nonnega-
tive integer such that the number of edges is 4+ s. Then there exist positive
numbers a ≥ b> 0, an integer 0≤ k ≤ 2a/b, and positive numbers δ1, . . . , δs ,
such that 1 is AGL(2,Z)-congruent to a Delzant polygon that is obtained
from the Hirzebruch trapezoid Hirza,b,k (see Example 2.5) by a sequence of
corner choppings of sizes δ1, . . . , δs .

Proof. See [Fulton 1993, Section 2.5 and Notes to Chapter 2]. �
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2.10. For any Delzant polygon 1, consider the free Abelian group generated by
its edges:

Z[edges of 1].
The “length functional”

Z[edges of 1] → R

is the homomorphism that associates to each basis element its rational length. If
1i+1 is obtained from 1i by a corner chopping, we consider the injective homo-
morphism

(1) Z[edges of 1i ] ↪→ Z[edges of 1i+1]
whose restriction to the generators is defined in the following way. If d is an edge
of1 that does not touch the corner that was chopped, then d is mapped to the edge
of 1i+1 with the same outward normal vector. If d is an edge of 1i that touches
the corner that was chopped, then d is mapped to d+e where e is the new edge of
1i+1, created in the chopping.

The definition of corner chopping in 2.6 implies that the homomorphism (1)
respects the length homomorphisms.

By induction and the definition of corner chopping we get the following lemma.

Lemma 2.11. Let

10,11, . . . ,1s

be a sequence of Delzant polygons such that, for each i , the polygon1i is obtained
from the polygon 1i−1 by a corner chopping of size δi .

(1) The image of an edge d of 1 j by s − j iterations of homomorphism (1) is
a linear combination

∑`
i=0 mi ci , such that c0, . . . , c` are edges of 1s whose

union Ud is connected, ` ≤ (s − j), and for 0 ≤ i ≤ `, the coefficient mi is a
nonnegative integer that is less than or equal to 2s− j ; we say that d is given
by the chain Ud with multiplicities m0, . . . ,m`.

(2) area1s = area10− 1
2δ

2
1 − · · ·− 1

2δ
2
s .

(3) perimeter1s = perimeter10− δ1− · · ·− δs .

Lemma 2.12. Let (M, ω,8) be a four-dimensional symplectic toric manifold,
with moment-map polygon 1 of n edges. Then there are n − 2 edges of 1 whose
union is connected, such that the classes of their 8-preimages form a basis to
H2(M;Z). Moreover, for any n − 2 edges of 1 whose union is connected, the
classes of their preimages form a basis to H2(M;Z).
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Proof. By Lemma 2.9, we can prove this by induction. In the induction step,
suppose that (M̃, ω̃, 8̃) with moment map polygon 1̃ of n + 1 edges is obtained
by a toric blowup of (M, ω,8) with moment map polygon 1. Let B1 be a set
of n − 2 edges of 1 whose union is connected, such that the classes of their 8-
preimages form a basis to H2(M;Z). If B1 consists of an edge that touches the
corner that was chopped, set B1̃ to be the edges of 1̃with the same outward normal
vector as the edges in B1 plus the new edge e of 1̃, created in the chopping. If
none of the edges in B1 touches the corner that was chopped, set B1̃ to be the
edges of 1̃ with the same outward normal vector as the edges in B1 plus one of
the edges adjacent to e in 1̃. �

Corollary 2.13. Let (M, ω,8) be a four-dimensional symplectic toric manifold,
with moment-map polygon 1. The number of edges of 1 is equal to the second
Betti number dim H2(M) plus two.

By the Delzant theorem, every toric action on CP2 is obtained from a symplec-
tomorphism of CP2 with a symplectic toric manifold M1 that is associated to a
Delzant polygon1. By Corollary 2.13,1must be a triangle. By part (1) of Lemma
2.9, 1 is AGL(2,Z)-congruent to a Delzant triangle 1λ. (See Example 2.5.) By
our normalization convention for the Fubini–Study form, λ= 1. It follows that:

Lemma 2.14. Every toric T2-action on CP2 is equivariantly symplectomorphic to
the standard action.

3. J-holomorphic spheres in symplectic 4-manifolds

In this section we will highlight results from the theory of J-holomorphic curves
that we will use for the proof of Lemma 4.3, and to show uniqueness of symplectic
blowdowns in the appendix.

Let (M, ω) be a compact symplectic manifold. Let J = J(M, ω) be the space
of almost complex structures on M that are compatible with ω. The space J

is contractible [McDuff and Salamon 1998]. Given J ∈ J, a parametrized J -
holomorphic sphere is a map u : CP1→ M , such that du : T CP1→ TM satisfies
the Cauchy–Riemann equation du ◦ i = J ◦ du. Such a u represents a homology
class in H2(M;Z) that we denote [u]. A J -holomorphic sphere is called simple if
it cannot be factored through a branched covering of CP1. One similarly defines a
holomorphic curve in (M, J ) whose domain is a Riemann surface other than CP1.

For any class A ∈ H2(M;Z), consider the universal moduli space of simple
parametrized holomorphic spheres in the class A,

M(A,J)= {(u, J ) | J ∈ J, u :CP1→ M is simple J -holomorphic, and [u] = A},
and the projection map

pA :M(A,J)→ J.
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For a fixed J ∈ J, we denote by M(A, J ) the space p−1
A (J ).

The automorphism group PSL(2,C) of CP1 acts on M(A,J) by reparametriza-
tions. The quotient M(A,J)/PSL(2,C) is the space of unparametrized J-holo-
morphic spheres representing A ∈ H2(M).

Lemma 3.1. Let 0 6= A ∈ H2(M;Z). The action of G = PSL(2,C) on M(A,J) is
free and proper.

Proof. For any sphere u ∈ M(A,J), the stabilizer Gu = {ψ ∈G | u ◦ ψ = u} is
trivial, since u is simple; this proves that the action is free.

We now need to show that the action map (u, ψ) 7→ (u, u◦ψ) is proper. Let K ⊂
M(A,J)×M(A,J) be a compact subset. Without loss of generality K = K1×K2,
where K1 and K2 are compact in M(A,J). Because M(A,J) is Hausdorff and first
countable, it is enough to show that for every sequence {(un, ψn)} in the preimage
of K1×K2 there exists a subsequence such that {ψn} converges uniformly and {un}
converges in the C∞ topology. Take such a sequence {un, ψn}. Because un ∈ K1

and K1 is compact, after passing to a subsequence we may assume that {un} C∞-
converges.

By [McDuff and Salamon 2004, Lemma D.1.2], if the sequence ψn does not
have a uniformly convergent subsequence, then there exist points x, y ∈ CP1 and
a subsequence ψµ which converges to the point y uniformly in compact subsets of
CP1 \ {x}. In particular ψµ converges to a point on a half sphere, hence uµ ◦ψµ,
restricted to a half sphere, converge to a constant map. However, the sequence
of holomorphic spheres {un ◦ ψn}, (as a sequence in the compact subset K2 of
M(A,J)), has a C∞-convergent (hence u.c.s.-convergent) subsequence whose limit
is in the nontrivial homology class A, and we get a contradiction. �

Gromov [1985] introduced a notion of weak convergence of a sequence of holo-
morphic curves. This notion is preserved under reparametrization of the curve, and
it implies convergence in homology. Gromov’s compactness theorem guarantees
that, given a converging sequence of almost complex structures, a corresponding
sequence of holomorphic curves with bounded symplectic area has a weakly con-
verging subsequence. The limit under weak convergence might not be a curve; it
might be a cusp curve, that is, a connected union of holomorphic curves. As a
result of Gromov’s compactness, we have the following lemma.

Lemma 3.2. Let {Jn} ⊂ J be a sequence of almost complex structures that con-
verges in the C∞ topology to an almost complex structure J∞ ∈ J. For each n, let
fn : CP1→ M be a parametrized Jn-holomorphic sphere. Suppose that the set of
areas ω([ fn]) is bounded. Then one of the following two possibilities occurs.

(1) There exist a J∞-holomorphic sphere u : CP1 → M and elements An ∈
PSL(2,C) such that a subsequence of the fn ◦ An’s converges to u in the C∞
topology. In particular, there exist infinitely many n’s for which [ fn] = [u].



142 LIAT KESSLER

(2) There exist two or more J∞-holomorphic spheres u` :CP1→M that are non-
constant and simple and positive integers m`, for `= 1, . . . , L, and infinitely
many n’s for which

[ fn] =
L∑
`=1

m`[u`] in H2(M).

For details, see [Karshon et al. 2007, Lemma A.3].
In the proof of Lemma 4.3, we will use the following Lemma.

Lemma 3.3. Let (M, ω) be a closed symplectic four-manifold. Let E ∈ H2(M;Z)
be a homology class that can be represented by an embedded symplectic sphere
and such that c1(TM)(E)= 1. Then for every J ∈ J there exists a J -holomorphic
cusp curve in the class E.

To deduce the lemma from Gromov’s compactness we need the existence of a
dense set U ⊂J such that for any J ∈U , the class E is represented by an embedded
J -holomorphic sphere.

For any positive number K , let

NK = {A ∈ H2(M;Z) | A 6= 0, c1(TM)(A)≤ 0, and ω(A) < K }.
The importance of this set lies in the fact that if a homology class E with ω(E)≤ K
and c1(TM)(E)≤1 is represented by a J-holomorphic cusp curve with two or more
components, then at least one of these components must lie in a homology class in
NK ; see Lemma A.5 in [Karshon et al. 2007]. Let

UK = J r
⋃

A∈NK

image pA.

Let (M, ω) be a compact symplectic four-manifold. Then the subset UK ⊂ J is
open, dense, and path connected. This is proved in [McDuff 1990, Lemma 3.1;
1991, Section 3] and presented in [Karshon et al. 2007, Lemma A.8 and Lemma
A.10]. The following is also shown in [Karshon et al. 2007, Lemma A.12].

Lemma 3.4. Let (M, ω) be a compact symplectic four-manifold. Let E ∈ H2(M)
be a homology class that can be represented by an embedded symplectic sphere
and such that c1(TM)(E)= 1.

(1) The projection map pE :M(E,J)→ J is open.

(2) Let K ≥ ω(E). Then, for any J ∈ UK , the class E is represented by an
embedded J -holomorphic sphere.

Lemma 3.3 now follows.
For the proof of Theorem 1.1, we also need the following lemmas.
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Lemma 3.5. Let (M, ω) be a compact symplectic four-manifold. Let A∈H2(M;Z)
be a homology class which is represented by an embedded symplectic sphere C.

(1) There exists an almost complex structure J0 ∈ J for which C is a J0-holo-
morphic sphere.

(2) For any J ∈J and any simple parametrized J -holomorphic sphere f :CP1→
M in the class A, the map f is an embedding.

plus 1pt plus 1pt The lemma is a consequence of the adjunction formula. For
details and references see, for example, [Karshon and Kessler 2007, Lemma 5.3].

Lemma 3.6. Let (M, ω) be a compact symplectic four-manifold. Let A∈H2(M;Z)
be a homology class that is represented by an embedded symplectic sphere, and
such that c1(TM)(A)= 1. Let J ∈ image pA, and (u, J ) ∈M(A, J ).

If A = ∑n
i=1 mi [ui ], where each component ui is a simple parametrized J -

holomorphic sphere and mi ∈N, then all the components but one must be constants,
and the nonconstant component differs from u by reparametrization of CP1.

Proof. By Lemma 3.5, u is an embedding, so the adjunction equality

0= 2+ A · A− c1(TM)(A)

holds; since c1(TM)(A)=1 this implies A·A=−1. If n>1 and there is more than
one nonconstant component, then for 1≤ i ≤ n, ω([u]) >ω([ui ]) so u 6= ui , hence
by positivity of intersections of J-holomorphic spheres in a four-manifold [McDuff
and Salamon 2004, Theorem 2.6.3], [ui ] · [u] ≥ 0. Thus 0≤∑n

i=1 mi ([ui ] · [u])=
A · A, in contradiction to A · A =−1.

Thus, all the components but one must be constants. By a similar argument, the
nonconstant component differs from u at most by reparametrization of CP1. �

Lemma 3.7. Let (M, ω) be a closed symplectic four-manifold. Let E ∈ H2(M;Z)
be a homology class that can be represented by an embedded symplectic sphere
and such that c1(TM)(E)= 1. Let

UE = image pE .

(1) UE ⊂ J is open, dense, and path connected. Between any two elements in UE

there is a path in UE that is transversal to pE .

(2) The map
p̃E :M(E,J)/PSL(2,C)→UE

induced from the projection map pE is proper.

(3) For J0, J1 ∈UE , the sets M(E, J0)/PSL(2,C) and M(E, J1)/PSL(2,C) con-
sist each of a single point, and there exists a path {Jt }0≤t≤1 such that

W(E; {Jt })= {(ut , Jt) | ut ∈M(E, Jt)}/PSL(2,C)

is a compact one-dimensional manifold, and each ut is an embedding.
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Proof. (1) Since pE is an open map by Lemma 3.4(1), its image UE is an open set
in J. Set K = ω(E). By part (2) of Lemma 3.4, UK ⊆ UE . Since UK is dense in
J, so is UE . Since UE is open, J locally path connected, and UK is dense in UE

and path connected, we get that UE is path connected.
By the regularity criterion of Hofer–Lizan–Sikorav [1997], any element in UE

is a regular value for pE . A path between regular values for pE can be perturbed to
a path with the same endpoints that is transversal to pE ; see [McDuff and Salamon
2004, Theorem 3.1.7(ii); Karshon et al. 2007, Lemma A.9(d)].

(2) This follows from Gromov’s compactness in the following way. Let D ⊂ UE

be a compact subset. We need to show that p−1
E (D)/PSL(2,C) is compact. Be-

cause M(E,J) is Hausdorff and first countable, it is enough to show that for every
sequence {( fn, Jn)} in p−1

E (D) there exists a subsequence that, after reparametriza-
tion, has a limit in p−1

E (D) in the C∞ topology.
Take such a sequence, {( fn, Jn)}. Because Jn ∈ D and D is compact and con-

tained in UE , after passing to a subsequence we may assume that {Jn} converges to
J∞ ∈ UE . Each fn is a Jn-holomorphic sphere in the class E . Suppose that there
exists a subsequence that, after reparametrization, converges to some u :CP1→M
in the C∞ topology. Then u must be in the class E and it must be J∞-holomorphic.
If u is not simple, we get a contradiction to Lemma 3.6. Then the pair (u, J∞) is
in the moduli space M(E,J), and since J∞ ∈ D, this pair is in p−1

E (D).
Now suppose that there does not exist such a subsequence. Then there exist two

or more nonconstant simple J∞-holomorphic spheres u` : CP1→ M and positive
integers m` such that

∑
m`[u`] = E , by Lemma 3.2. This contradicts Lemma 3.6.

(3) For J ∈UE = image pE , the set M(E, J )= p−1
E (J ) 6=∅. Hence, by Lemma 3.6,

the set M(E, J )/PSL(2,C) consists of a single point. For J0, J1 ∈UE , by part (1),
there is a path {Jt } in UE from J0 to J1, that is transversal to pE . Hence, by [McDuff
and Salamon 2004, Theorem 3.1.7], W∗(E; {Jt }) = {(ut , Jt) | ut ∈M(E, Jt)} is
a manifold of dimension 1 + 6 = 1 + indexpE . By Lemma 3.1, the action of
PSL(2,C) on W∗(E; {Jt }) is free and proper, thus

W(E; {Jt })= {(ut , Jt) | ut ∈M(E, Jt)}/PSL(2,C)

is a manifold of dimension one. W(E; {Jt }) is the inverse image of the path {Jt }
under the map p̃E , hence, by part (2), it is compact.

By Lemma 3.5, each ut is an embedding. �

4. Representing JT -holomorphic curves on the moment map polygon

Notation. For (M, ω,8), let JT denote a Tn-invariant complex structure on M that
is compatible with ω. By Delzant’s construction [1988], such a structure exists.



TORUS ACTIONS ON SMALL BLOWUPS OF CP2 145

Claim 4.1. Let (M, ω,8) be a four-dimensional symplectic toric manifold, with
moment-map polygon1. The preimage under8 of an edge d of1 is an embedded
JT -holomorphic sphere.

Proof. By part (2) of Lemma 2.4, Y = 8−1(d) is a symplectically embedded 2-
sphere in M . Being a connected component of a fixed point set of a holomorphic
S1-action, T Y = JT T Y . As an almost complex manifold of real dimension two,
(Y, JT |T Y ) is a complex manifold. Thus the embedded sphere Y is an embedded
holomorphic sphere in the complex manifold (M, JT ). �

Lemma 4.2. Let (M, ω,8) be a four-dimensional symplectic toric manifold, with
moment-map polygon 1.

• Any JT -holomorphic sphere is homologous in H2(M;Z) to a linear combina-
tion with coefficients in N of inverse images under 8 of edges of 1.

• For any set S of n − 2 edges whose union is connected, any simple JT -
holomorphic sphere C that is not the preimage of an edge of1 is homologous
to a linear combination with coefficients in N of preimages of edges of 1
whose union is connected and that are contained in S; if the intersection of C
with each of the two edges of 1 that are not in S is positive, then all the n−2
edges of S appear with positive coefficients in this linear combination.

Proof.

• Let9 be an S1-moment map obtained by composing8with projection in a ra-
tional direction along which there is not any edge of1. Denote by vmin (vmax)
the vertex of minimal (maximal) value of that projection. Let D1, . . . , Dm be
a chain of 8-preimages of edges between vmin and vmax. Let D′1, . . . , D′m′
be the other chain of 8-preimages of edges between vmin and vmax.

Without loss of generality we assume that C is a simple JT -holomorphic
sphere that is not the 8-preimage of an edge of 1. By Lemma 2.12, in
H2(M;Z)

[C] =
m∑

i=1

ai Di +
m′∑
j=1

b j D′ j , with a1 = b1 = 0.

Adapting the proof of Lemma C.6 in [Karshon 1999] we get that

(2) ai+1/ki+1 ≥ ai/ki ≥ 0, for 1≤ i < m (1≤ i < m′),

where ki is the order of the stabilizer of the i-th sphere in a chain.
Notice that (2) implies that

a` > 0⇒ ai > 0 for all `≤ i ≤ m,

b` > 0⇒ b j > 0 for all `≤ j ≤ m′.
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Hence, C is homologous in H2(M;Z) to a linear combination with coefficients
in N of inverse images under 8 of, at most n− 2, edges of 1 whose union is
connected.

• It is enough to observe that for any set S of n − 2 edges whose union is
connected, there is an S1-moment map 9, obtained by composing 8 with
projection in a rational direction along which there is not any edge of 1, such
that the vertex vmin is the vertex between the two edges of 1 that are not in S.
Then the previous proof gives the required. �

Lemma 4.3. Let (M, ω,8) be a four-dimensional symplectic toric manifold with
moment-map polygon1. Let JT be a T2-invariant ω-compatible complex structure
on M , and gT be the Riemannian metric defined by (ω, JT ). Let i∗ be a projection
in a rational direction along which there is not any edge of 1. Let vmin be the
vertex of 1 of minimal value of that projection.

Let C be a JT -holomorphic sphere such that 8(C) avoids the vertex vmin. Let
α and β be the points of 8(C) on the boundary of 1, that are closest to vmin from
left and right. Let vα and vβ be the vertices following α and β. Then the gradient
flow of 9 = i∗ ◦ 8 with respect to gT carries C to a family of JT -holomorphic
spheres; this family weakly converges to a connected union of preimages of edges
of1 (maybe with multiplicities). These edges form a chain that we denote LC . The
vertices of LC closest to vmin from left and right are vα and vβ .

Proof. The function 9 = i∗ ◦ 8 : M → R is a moment map associated with a
Hamiltonian action on (M, ω) of S1 embedded in T2 by i : S1 ↪→ T2.

Let ξM be the vector field generating the S1-action. The gradient flow ηt of 9
with respect to the invariant metric gT is generated by −JT ξM . This flow is equi-
variant with respect to the action, that is, for each t , the diffeomorphism ηt :M→M
is T2-equivariant. Consequently, it sends a set that is a 8-preimage of a vertex or
a 8-preimage of an edge to itself.

Set L to be the chain of edges of 1 that do not touch vmin. Let

B = {p ∈ M : i∗ ◦8(p) > r}

for some i∗(vmin) < r <min{i∗(v′), i∗(v′′)}, where v′ (v′′) is the vertex following
vmin immediately from the left (right). Then

⋂
t>0(ηt(B)) ⊇ 8−1L . On the other

hand, a point p ∈ B that is not in 8−1(L), is sent to vmin by the gradient flow ηt

as t → −∞, that is, for t ′ big enough, q = η−t ′(p) is not in B. Since ηt ′ is a
diffeomorphism, there cannot be b ∈ B such that ηt ′(b) = ηt ′(q) = η0(p) = p, in
particular, p is not in the intersection

⋂
t>0(ηt(B)). So⋂

t>0

(ηt(B))=8−1(L).
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We choose B big enough such that, for some complex coordinates, the complexified
toric action on M−B is the standard action of the complex torus on an open subset
of C2. In particular, for t1, t2 close to 0, if t1 > t2 > 0, ηt1(M − B)⊃ ηt2(M − B),
hence ηt1(B) ⊂ ηt2(B). Since ηt is a flow, (that is, a homomorphism from (R,+)
to (Diff, ◦)), this implies that for any t1 > t2 > 0, ηt1(B) ⊂ ηt2(B), that is, ηt is
monotonic on B.

Now, choose B such that, in addition to the above, its image contains 8(C).
Consider a sequence {Ci }, where Ci = ηi (C), with discrete i →∞. Each Ci is
a JT -holomorphic sphere in the homology class [C]. By Gromov’s compactness
theorem, there is a subsequence {Cµ} that weakly converges to a JT -holomorphic
(maybe nonsmooth) cusp curve C ′ in [C]. In particular, each point in the limit C ′
is the limit of a sequence of points in {Cµ}, hence, since Cµ= ηµ(C)⊂ ηµ(B), and
ηt is monotonic on B, we get that C ′ ⊂ ∩µ(ηµ(B)) ⊂ 8−1(L). Thus, since each
edge preimage is an irreducible JT -holomorphic sphere in the complex manifold
(M, JT ) (by Claim 4.1), the irreducible components of C ′ are preimages of edges
in L . We conclude that the cusp curve C ′ is a connected union of preimages of the
edges of a subchain LC of L , with positive multiplicities.

Let pα (pβ) be the preimage of vα (vβ) in M . The chain LC includes vα and
vβ , as the limits of ηµ(pα) and ηµ(pβ). Assume a vertex v on LC is closer to vmin

from the left than vα. Let ev be the edge that touches v from below. Then LC

intersects ev at v, hence 8−1(LC) intersects 8−1(ev) at the point 8−1(v), maybe
with multiplicities. However C ∩8−1(ev) = ∅, in contradiction to [8−1(LC)] =
[C]. Similarly, the vertex on LC closest to vmin from the right is vβ . �

Claim 4.4. Let (M, ω,8) be a four-dimensional symplectic toric manifold with
moment-map polygon 1.

Every JT -cusp curve C is homologous in H2(M;Z) to a linear combination
with coefficients in N of preimages of edges of 1 whose union is connected. In
particular, C is homologous to a T2-invariant JT -cusp curve.

We already know that a JT -cusp curve C is homologous to a linear combination
with coefficients in N of preimages of edges of 1 (by applying the first part of
Lemma 4.2 to the components of the cusp curve). However, the union of these
edges might not be connected. The “connected” part that we add here plays an
important role in the proof of Theorem 1.1.

Proof. Let i∗ be a projection in a rational direction along which there is not any edge
of 1. Let vmin be the vertex of 1 of minimal value of i∗. If for any component
of C that is not a 8-preimage of an edge of 1, the moment map image avoids
a neighbourhood of vmin, then the claim follows from Lemma 4.3 (and the fact
that C is connected). Otherwise, there is such a component D; by positivity of
intersections, the intersection number of D with the preimage of each of the two
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edges adjacent to vmin is positive. Thus, by the second part of Lemma 4.2, D is
homologous to a linear combination with coefficients in N of 8-preimages of all
the edges of 1 but the two adjacent to vmin. By the first part of Lemma 4.2, each
component of C is homologous to a linear combination of 8-preimages of edges
of 1 with coefficients in N. Combining such representatives of D and the other
components of C gives the claim. �

Lemma 4.5. Let (M, ω,8) be a symplectic toric four-manifold with moment map
polygon 1. Let C be an embedded symplectic sphere in (M, ω) which satisfies
c1(TM)(C)= 1.

Then C is homologous in H2(M;Z) to a linear combination with coefficients
in N of preimages of edges of 1 whose union is connected.

Proof. By Lemma 3.3 there exists a JT -holomorphic cusp curve in the class [C].
Now apply Claim 4.4. �

5. No toric action on (Mk, ωε) for k > 3 and small ε

For ε > 0, denote by
(Mk, ωε)

a symplectic manifold that is obtained from (CP2, ωFS) by k simultaneous sym-
plectic blowups of equal sizes ε. For description of symplectic blowup, see 2.7.
The k simultaneous blowups are obtained from embeddings i1 :�1→ M, . . . ,
ik :�k→ M whose images are disjoint. We denote by E1, . . . , Ek the homology
classes in H2(Mk;Z) of the exceptional divisors obtained by the blowups, and by
L the homology class of a line CP1 ⊂ Mk .

5.1. By McDuff and Polterovich [1994], for k≤8 there exists a symplectic blowup
of CP2 k times by size ε if and only if ε satisfies the following conditions. If
k = 2, 3, 4: ε < 1

2 . If k = 5, 6: ε < 2
5 . If k = 7: ε < 3

8 . If k = 8: ε < 6
17 . According

to Biran [1997], for k ≥ 9, there exist k symplectic blowups of equal sizes ε if and
only if ε satisfies the volume constraint, that is, ε < 1/

√
k.

Assume that (Mk, ωε) admits a toric action with moment map polygon 1. By
Lemma 4.5, each Ei can be represented by a linear combination with coefficients
in N of preimages of edges of 1. We call the union of these edges, with the N-
multiplicities, a1-representative of Ei . If this union is connected, we call it a con-
nected1-representative. We observe the following properties of1-representatives
of E1, . . . , Ek .

Claim 5.2. Assume that (Mk, ωε) admits a toric action with moment map image1.
Choose 1-representatives for E1, . . . , Ek . For m ≤ k, the number of edges in the
union of the 1-representatives of m different Ei ’s is > m, unless each of these
1-representatives is a single edge with multiplicity one.
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Proof. Assume that the union of the chosen 1-representatives of E1, . . . , Em

(without loss of generality) is a subset of the set of edges C1, . . . ,Cm , that is,
in H2(Mk;Z), for 1≤ i ≤ m,

(3) Ei =
m∑

j=1

ai
j [8−1C j ], ai

j ∈ 0∪N.

Denote by A the m×m matrix of the coefficients ai
j . Since the homology classes

E1, . . . , Em are independent, the matrix A is invertible (over R). We get that

(4) ([8−1C1], . . . , [8−1Cm])t = A−1(E1, . . . , Em)
t .

The homology classes L , E1, . . . , Ek form a basis of H2(Mk;Z), therefore each
[8−1C j ] = d j L +∑i b j

i Ei , with unique integers as coefficients. The coefficients
do not change if we write [8−1C j ] as a linear combination of L , Ei in H2(Mk;R).
By this and (4), all the entries of A−1 are in Z, so in H2(Mk;Z),

[8−1C j ] =
m∑

i=1

b j
i Ei , b j

i ∈ Z.

Since the size of each Ei is ε we deduce that the length |C j | of each C j is an integer
multiple of ε. Since |C j | > 0, it must be a multiple of ε by N j ∈ N. However,
by (3), for 1≤ i ≤ m,

ε =
m∑

j=1

ai
j |C j |, ai

j ∈ 0∪N.

Thus

ε =
m∑

j=1

ai
j N jε, ai

j ∈ 0∪N, N j ∈ N.

We get that in each line (and each column) of (the invertible matrix) A there is 1 in
one entry and 0 in each of the other entries, that is, each of the 1-representatives
is a single edge with multiplicity one. �

Claim 5.3. Assume that (Mk, ωε) admits a toric action with moment map image1.
Choose connected 1-representatives for E1, . . . , Ek . Denote their union by U. If
none of the chosen connected 1-representatives is a single edge of 1 with multi-
plicity one, then U is connected and consists of at least k+ 1 edges.

Proof. By Claim 5.2, U consists of more than k edges. Assume that U is discon-
nected. Then it consists of at most k + 1 edges, hence it consists of exactly k + 1
edges out of the k+ 3 edges of 1. Since none of the 1-representatives is a single
edge, Claim 5.2 implies that the m j edges of a connected component j support
at most m j − 1 of the Ei ’s. Thus the nonconnected k + 1 edges support at most



150 LIAT KESSLER∑c
j=1 (m j − 1) = k + 1− c < k of these classes, where c > 1 is the number of

connected components, and we get a contradiction. �

For a convex polygon 1 in R2, we denote by

(M1, ω1,81)

a symplectic toric manifold whose moment map image is 1.
The main ingredient of the proof of Theorem 1.1 is:

Claim 5.4. If (Mk, ωε) is symplectomorphic to (M1, ω1), and

ε ≤ 1
3k22k ,

then one of the classes E1, . . . , Ek is realized by an embedded T2-invariant sym-
plectic exceptional sphere; equivariantly blowing down along it yields (Mk−1, ωε)

with a toric action.

Proof. If k ≥ 1, the moment map image 1 is a Delzant polygon of k + 3 ≥ 4
edges, so by Lemma 2.9, up to AGL(2,Z)-congruence, it is obtained by (k − 1)
corner-choppings of sizes (δ1, . . . , δk−1) from a standard Hirzebruch trapezoid 6
with west and east edges Fw, Fe, south edge S, north edge N , and slope −1/d.

By part (1) of Lemma 2.11,

(5) |S| + |N |< 2k perimeter1,

and Fw and Fe are given by two disjoint connected unions of edges of 1 with
multiplicities ≤ 2k .

For each class Ei , we choose a connected 1-representative, that is a connected
union of edges (with multiplicities in N) whose preimage is in Ei . Assume that
none of these 1-representatives is a single edge of 1 with multiplicity one. By
Claim 5.3, the union U of these 1-representatives is connected and consists of at
least k + 1 edges of the k + 3 edges of 1. Then, (at least) one of the two chains
of edges giving Fw and Fe as above is contained in U : the connected at most two
edges that are not in U can overlap at most one chain giving Fw or Fe, since the
two chains are separated at each end by an edge. Thus

(6) |F | = |Fw| = |Fe| ≤ 2kkε.

Then

1
2(1−kε2)= area1= 1

2(|S|+|N |)|F |−
k−1∑
i=1

1
2δi

2 ≤ 1
2 2k |F | perimeter1−

k−1∑
i=1

1
2δi

2

= 1
2 2k(3−kε)|F |−

k−1∑
i=1

1
2δi

2 ≤ 1
2 2k(3−kε)2kkε−

k−1∑
i=1

1
2δi

2.
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The first (in)equality holds by part (4) of Lemma 2.4, the second holds by part (2)
of Lemma 2.11, the third inequality holds by Equation (5), the fourth follows from
part (3) of Lemma 2.4 and the fact that the Poincare dual to c1(T Mk) equals 3L−∑k

i=1 Ei , and the last holds by Equation (6).
We get that

1− kε2 ≤ 22k(3− kε)(kε)≤ 22k(3kε− kε2).

So, 1≤ 22k3kε−kε2(22k−1), thus 1< 3k22kε, in contradiction to the assumption
on ε. Therefore, (at least) one of the classes E1, . . . , Ek is represented by the
inverse image under the moment map of a single edge of 1 with multiplicity one.
By Claim 4.1, such a representative CT is an embedded JT -holomorphic sphere.
It is T2-invariant: let a ∈T2; because T2 is connected, [aCT ] = [CT ]; by positivity
of intersections and since Ei · Ei = −1, aCT and CT must coincide. Because CT

is an embedded JT -sphere and JT is compatible with ωε , CT is symplectic.
Without loss of generality, the class E1 is represented by such a JT -holomorphic

sphere CT . Set J0 to be an almost complex structure on (Mk, ωε) for which the
exceptional divisors obtained by the symplectic blowups are disjoint embedded
J0-holomorphic spheres S1, . . . , Sk that represent the classes E1, . . . , Ek . (Such a
structure exists by Lemma 3.5.) By Lemma A.1 in the appendix, the symplectic
manifold resulting from (Mk, ωε) by blowing down along CT is symplectomor-
phic to the symplectic manifold obtained by blowing down along S1, which is
(Mk−1, ωε). �

Proof of Theorem 1.1. Assume that (Mk, ωε) is symplectomorphic to (M1, ω1)

and ε ≤ 1/(3k22k). After k iterations of Claim 5.4, we get CP2 with a toric action.
By Lemma 2.14, this manifold is equivariantly symplectomorphic to CP2 with its
standard toric action. By reversing our steps we get CP2 blown up equivariantly k
times by equal sizes ε. �

Remark 5.5. Theorem 1.1 becomes false if we do not restrict ε. For ε > 1
2 , let

(M1, ωε,81) be CP2 blown up equivariantly by size ε. The moment map image
is obtained by chopping off a corner of size ε from a Delzant triangle of edge-
size 1, to get a trapezoid Hirz(1+ε)/2,1−ε,1, that is, of height (1− ε), average width
(1+ε)/2, and slope−1. Let (N , ω2,82) be a Hirzebruch surface whose image is a
trapezoid Hirz(1+ε)/2,1−ε,3 (Notice that the north edge is then of size 2ε−1, which
is > 0 if and only if ε > 1

2 .) See Figure 4. Since these Hirzebruch trapezoids have
the same average width and height and the inverse of their slopes differ by 2, the
corresponding manifolds are isomorphic as symplectic manifolds with Hamiltonian
S1-action (by [Karshon 2003, Lemma 3]), however they are not isomorphic as
symplectic toric manifolds (their moment map polygons are not equivalent).

Theorem 1.1 and Lemma 2.8 yield the following corollary.
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Figure 4. Symplectomorphic but not equivariantly symplecto-
morphic symplectic toric manifolds.

Corollary 5.6. (Mk, ωε) with ε ≤ 1/(3k22k) admits a toric action if and only if
k ≤ 3.

By the sharpness of the constrains listed in 5.1, when ε ≤ 1/(3k22k) there exists
a symplectic blowup of CP2 k times by size ε.

Since H 1(Mk,R)= {0}, any effective (S1)2-action on (Mk, ωε) is toric.

Corollary 5.7. (Mk, ωε) with ε≤1/(3k22k) admits an effective (S1)2-action if and
only if k ≤ 3.

Appendix: Uniqueness of blowdown

Lemma A.1. Let (M, ω) be a compact four-dimensional symplectic manifold. Let
J0, J1 ∈ J. Let A be a class in H2(M;Z) such that c1(TM)(A)= 1 and ω(A) > 0.
Assume that A is represented by an embedded J0-holomorphic sphere C0 and by
an embedded J1-holomorphic sphere C1.

Then for i = 0, 1, there are neighbourhoods Ui of Ci , each symplectomorphic
to a tubular neighbourhood of CP1, and a symplectomorphism φ of (M, ω), that
sends (U0,C0) to (U1,C1), and induces the identity map on H2(M;Z).
Proof. By part (3) of Lemma 3.7, there is a smooth family (with parameter 0≤ t≤1)
of Jt -holomorphic embeddings ρt from CP1 to the manifold. Their images are all
in the homology class A. Notice that the pullbacks of ω to CP1 by the homotopic
maps are all in the same cohomology class. Hence, by Moser, there is a family
of diffeomorphisms φt : CP1 → CP1, starting at the identity map, that satisfy
φ∗t (ρ∗0 (ω))= ρ∗t (ω). Hence we may assume that ρ0 is a symplectic embedding of
the standard CP1 and compose the embeddings {ρt } on the family {φt } to get a one-
parameter family of symplectic embeddings of the standard CP1 into M . Moreover,
using a parametrized version of Weinstein’s tubular neighbourhood theorem, this
family can be extended to a one-parameter family of symplectic embeddings σt

of a neighbourhood of CP1 (as the zero-section) in the tautological bundle with a
symplectic form, into M ; denote the image of σt by Ut .
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We get a “partial flow” that moves along the neighbourhoods Ut . Differentiating
it by t gives vector fields X t , defined at Ut . The Lie derivative LieX t ω is 0. By
Cartan’s formula,

LieX t ω = d(ιX tω)+ (ιX t )dω = dιX tω,

where the last equality holds since ω is closed. Thus the one form ιX tω on Ut

is closed. Therefore, and since CP1 is simply connected, when we consider X t

as a vector field defined at a neighbourhood of CP1 × [0, 1] ⊆ M × [0, 1], we
get a function h defined on a (maybe smaller) neighbourhood of CP1 × [0, 1] ⊆
M×[0, 1], such that ιX tω=dht . Using partition of unity in M×[0, 1], we expand h
to a smooth function H :M×[0, 1]→R, whose restriction to a small neighborhood
of image ρt coincides with ht .

This gives a Hamiltonian flow on M , thus a family of symplectomorphisms
{αt }0≤t≤1, starting from the identity map. Take α1 to be φ. �
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A QUOTIENT OF THE BRAID GROUP RELATED TO
PSEUDOSYMMETRIC BRAIDED CATEGORIES

FLORIN PANAITE AND MIHAI D. STAIC

Motivated by the recent concept of a pseudosymmetric braided monoidal
category, we define the pseudosymmetric group PSn to be the quotient of the
braid group Bn by the relations σiσ

−1
i+1σi = σi+1σ

−1
i σi+1 with 1 ≤ i ≤ n− 2.

It turns out that PSn is isomorphic to the quotient of Bn by the commutator
subgroup [Pn, Pn] of the pure braid group Pn (which amounts to saying
that [Pn, Pn] coincides with the normal subgroup of Bn generated by the
elements [σ 2

i , σ
2
i+1] with 1≤ i ≤ n− 2), and that PSn is a linear group.

Introduction

A symmetric category consists of a monoidal category C equipped with a family
of natural isomorphisms cX,Y : X ⊗ Y → Y ⊗ X satisfying natural “bilinearity”
conditions together with the symmetry relation cY,X ◦cX,Y = idX⊗Y for all X, Y ∈C.
This concept was generalized by Joyal and Street [1993] by dropping this symmetry
relation from the axioms and arriving thus at the concept of braided category, of
central importance in quantum group theory; see [Kassel 1995; Majid 1995].

Inspired by recently introduced categorical concepts of pure-braided structures
[Staic 2004] and twines [Bruguières 2006], Panaite, Staic and Van Oystaeyen
[Panaite et al. 2009] defined the concept of pseudosymmetric braiding to generalize
symmetric braidings. A braiding c on a strict monoidal category C is pseudo-
symmetric if it satisfies the modified braid relation

(cY,Z⊗idX )◦(idY⊗c−1
Z ,X )◦(cX,Y⊗idZ )= (idZ⊗cX,Y )◦(c−1

Z ,X⊗idY )◦(idX⊗cY,Z )

for all X, Y, Z ∈ C. The main result in [Panaite et al. 2009] asserts that, if H is
a Hopf algebra with bijective antipode, then the canonical braiding of the Yetter–
Drinfeld category HYDH is pseudosymmetric if and only if H is commutative and
cocommutative.

MSC2000: primary 20F36; secondary 18D10.
Keywords: braid group, symmetric group, braided categories, pseudosymmetric braidings.
Research partially supported by the CNCSIS project “Hopf algebras, cyclic homology and monoidal
categories”, contract number 560/2009.
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It is well known that, at several levels, braided categories correspond to the braid
groups Bn , while symmetric categories correspond to the symmetric groups Sn . It
is natural to expect that there exist some groups corresponding, in the same way, to
pseudosymmetric braided categories. Indeed, it is clear that these groups, denoted
by PSn and called (naturally) the pseudosymmetric groups, should be the quotients
of the braid groups Bn by the relations σiσ

−1
i+1σi = σi+1σ

−1
i σi+1. Our aim is to

study and find more explicitly the structure of these groups. We prove first that the
kernel of the canonical group morphism PSn → Sn is abelian, and consequently
PSn is isomorphic to the quotient of Bn by the commutator subgroup [Pn, Pn] of
the pure braid group Pn . (This amounts to saying that [Pn, Pn] coincides with the
normal subgroup of Bn generated by the elements [σ 2

i , σ
2
i+1] with 1≤ i ≤ n− 2.)

There exist similarities, but also differences, between braid groups and pseudo-
symmetric groups. Bigelow [2001] and Krammer [2002] proved that braid groups
are linear, and we show that so are pseudosymmetric groups. More precisely, we
prove that the Lawrence–Krammer representation of Bn induces a representation
of PSn if the parameter q is chosen to be 1, and that this representation of PSn is
faithful over R[t±1

]. On the other hand, although PSn is an infinite group, like Bn ,
it does have nontrivial elements of finite order, unlike Bn .

1. Preliminaries

Definition 1.1 [Panaite et al. 2007]. Let C be a strict monoidal category and let
TX,Y : X ⊗ Y → X ⊗ Y be a family of natural isomorphisms in C. We call T a
strong twine if, for all X, Y, Z ∈ C,

TI,I = idI , (TX,Y ⊗ idZ ) ◦ TX⊗Y,Z = (idX ⊗ TY,Z ) ◦ TX,Y⊗Z ,

(TX,Y ⊗ idZ ) ◦ (idX ⊗ TY,Z )= (idX ⊗ TY,Z ) ◦ (TX,Y ⊗ idZ ).

Definition 1.2 [Panaite et al. 2009]. Let C be a strict monoidal category and c a
braiding on C. We say that c is pseudosymmetric if, for all X, Y, Z ∈ C,

(1) (cY,Z ⊗ idX ) ◦ (idY ⊗ c−1
Z ,X ) ◦ (cX,Y ⊗ idZ )

= (idZ ⊗ cX,Y ) ◦ (c−1
Z ,X ⊗ idY ) ◦ (idX ⊗ cY,Z ).

In this case we say that C is a pseudosymmetric braided category.

The next proposition, a key result in [Panaite et al. 2009], led to the introduction
of the concept of pseudosymmetric braiding. Here, it will serve as a source of
inspiration for a certain key result for braids, Proposition 2.1.

Proposition 1.3 [Panaite et al. 2009]. Let C be a strict monoidal category and c a
braiding on C. Then the double braiding TX,Y := cY,X ◦ cX,Y is a strong twine if
and only if c is pseudosymmetric.
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2. Defining relations for PSn

Let n≥ 3 be a natural number. We denote by Bn the braid group on n strands, with
its usual presentation by generators σi with 1≤ i ≤ n− 1 and relations

σiσ j = σ jσi if |i − j | ≥ 2,(2)

σiσi+1σi = σi+1σiσi+1 if 1≤ i ≤ n− 2.(3)

We begin with the analogue for braids of Proposition 1.3:

Proposition 2.1. For all 1≤ i ≤ n− 2, the relations

σiσ
−1
i+1σi = σi+1σ

−1
i σi+1,(4)

σ 2
i σ

2
i+1 = σ

2
i+1σ

2
i(5)

are equivalent in Bn .

Proof. We show first that (4) implies (5):

σ 2
i σ

2
i+1 = σiσ

−1
i+1σi+1σiσi+1σi+1

(3)
= σiσ

−1
i+1σiσi+1σiσi+1

(3),(4)
= σi+1σ

−1
i σi+1σiσi+1σi

(3)
= σi+1σ

−1
i σiσi+1σiσi = σ

2
i+1σ

2
i .

Conversely, we prove that (5) implies (4):

σiσ
−1
i+1σi = σiσ

−2
i+1σ

−1
i σiσi+1σi

(3)
= σiσ

−2
i+1σ

−1
i σi+1σiσi+1

= σiσ
−2
i+1σ

−2
i σiσi+1σiσi+1

(3),(5)
= σiσ

−2
i σ−2

i+1σi+1σiσ
2
i+1

= σ−1
i σ−1

i+1σiσ
2
i+1

= σi+1σ
−1
i+1σ

−1
i σ−1

i+1σiσ
2
i+1

(3)
= σi+1σ

−1
i σ−1

i+1σ
−1
i σiσ

2
i+1

= σi+1σ
−1
i σi+1. �

Definition 2.2. For a natural number n ≥ 3, we define the pseudosymmetric group
PSn as the group with generators σi for 1≤ i ≤ n−1, and relations (2), (3) and (4),
or equivalently (2), (3) and (5).

Proposition 2.3. For 1≤ i ≤ n− 2, consider the elements

(6) pi := σiσ
−1
i+1 and qi := σ

−1
i σi+1

in PSn . Then, in PSn , we have

(7) p3
i = q3

i = (pi qi )
3
= 1 for all 1≤ i ≤ n− 2.
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Proof. The relations p3
i = 1 and q3

i = 1 follow immediately from (4); actually each
of them is equivalent to (4). Now we compute

(pi qi )
2
= (σiσ

−1
i+1σ

−1
i σi+1)

2

= σiσ
−1
i+1σ

−1
i σi+1σiσ

−1
i+1σ

−1
i σi+1

= σiσ
−1
i+1σ

−1
i σi+1σiσi+1σ

−2
i+1σ

−1
i σi+1

(3)
= σ 2

i σ
−2
i+1σ

−1
i σi+1

(5)
= σ−2

i+1σiσi+1

= σ−2
i+1σiσi+1σiσ

−1
i

(3)
= σ−1

i+1σiσi+1σ
−1
i = (pi qi )

−1,

and so (pi qi )
3
= 1. �

Consider now the symmetric group Sn with its usual presentation by generators
si with 1 ≤ i ≤ n − 1 and relations (2), (3) and s2

i = 1 for all 1 ≤ i ≤ n − 1.
We denote by π : Bn → Sn , β : Bn → PSn and α : PSn → Sn the canonical
surjective group homomorphisms given by π(σi )= si , α(σi )= si and β(σi )= σi

for all 1≤ i ≤ n− 1. Obviously we have π = α ◦β; hence in particular we obtain
Ker(α) = β(Ker(π)). We denote as usual Ker(π) = Pn , the pure braid group
on n strands. It is well known (see [Kassel and Turaev 2008, page 21]) that Pn is
generated by the elements

(8) ai j := σ j−1σ j−2 · · · σi+1σ
2
i σ
−1
i+1 · · · σ

−1
j−2σ

−1
j−1 for 1≤ i < j ≤ n

that satisfy certain relations, of which we will use only one, namely, that for
1≤ i < j ≤ n and 1≤ r < s ≤ n,

(9) ai j ars = arsai j if s < i or i < r < s < j .

Alternatively, Pn is generated by the elements

(10) bi j := σ
−1
j−1σ

−1
j−2 · · · σ

−1
i+1σ

2
i σi+1 · · · σ j−2σ j−1 for 1≤ i < j ≤ n.

It is easy to see that in Bn we have

(11) σi+1σ
2
i σ
−1
i+1 = σ

−1
i σ 2

i+1σi and σ−1
i+1σ

2
i σi+1 = σiσ

2
i+1σ

−1
i ,

and by using repeatedly these relations we obtain an equivalent description of the
elements ai j and bi j :

ai j = σ
−1
i σ−1

i+1 · · · σ
−1
j−2σ

2
j−1σ j−2 · · · σi+1σi for 1≤ i < j ≤ n,(12)

bi j = σiσi+1 · · · σ j−2σ
2
j−1σ

−1
j−2 · · · σ

−1
i+1σ

−1
i for 1≤ i < j ≤ n.(13)
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Now, for all 1≤ i < j ≤ n, we define Ai, j and Bi, j as the elements in PSn given
by Ai, j := β(ai j ) and Bi, j := β(bi j ). From the discussion above it follows that
Ker(α) is generated by {Ai, j }1≤i< j≤n and also by {Bi, j }1≤i< j≤n .

Lemma 2.4. The following relations hold in PSn for 1≤ i < j < n:

Ai, j+1 = σ j Ai, jσ
−1
j ,(14)

Bi, j+1 = σ
−1
j Bi, jσ j .(15)

Proof. These relations are consequences of corresponding relations in Bn for the
ai j and bi j , which in turn follow immediately from (8) and (10). �

Lemma 2.5. For all i, j ∈ {1, 2, . . . , n} with i + 1< j , we have in PSn

Ai, j = σi Ai+1, jσ
−1
i ,(16)

Bi, j = σ
−1
i Bi+1, jσi .(17)

Proof. We prove (16), while (17) is similar and left to the reader. Note that in PSn

we have σ−1
i+1σ

2
i σi+1= σi+1σ

2
i σ
−1
i+1, which together with the second of (11) implies

σiσ
2
i+1σ

−1
i = σi+1σ

2
i σ
−1
i+1; hence

Ai, j = σ j−1σ j−2 · · · (σi+1σ
2
i σ
−1
i+1) · · · σ

−1
j−2σ

−1
j−1

= σ j−1σ j−2 · · · (σiσ
2
i+1σ

−1
i ) · · · σ−1

j−2σ
−1
j−1

= σiσ j−1σ j−2 · · · σ
2
i+1 · · · σ

−1
j−2σ

−1
j−1σ

−1
i = σi Ai+1, jσ

−1
i . �

Proposition 2.6. For all 1≤ i < j ≤ n, we have Ai, j = Bi, j in PSn .

Proof. We use (16) repeatedly:

Ai, j = σi Ai+1, jσ
−1
i = σiσi+1 Ai+2, jσ

−1
i+1σ

−1
i

· · ·

= σiσi+1 · · · σ j−2 A j−1, jσ
−1
j−2 · · · σ

−1
i+1σ

−1
i

= σiσi+1 · · · σ j−2σ
2
j−1σ

−1
j−2 · · · σ

−1
i+1σ

−1
i

(13)
= Bi, j . �

Lemma 2.7. For all 1≤ i < j ≤ n and 1≤ h ≤ k < n, we have in PSn

Ai, jσ
2
i = σ

2
i Ai, j ,(18)

Ah,k+1σ
2
k = σ

2
k Ah,k+1.(19)

Proof. Note first that (18) is obvious for j = i + 1. Assume that i + 1 < j ; using
the fact that Ar,s = Br,s for all r, s, we compute

Ai, jσ
2
i
(16)
= σi Ai+1, jσi = σi Bi+1, jσi

(17)
= σ 2

i Bi, j = σ
2
i Ai, j .
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Note also that (19) is obvious for h= k. Assume that h< k; using again Ar,s = Br,s

for all r, s, we compute

Ah,k+1σ
2
k
(14)
= σk Ah,kσk = σk Bh,kσk

(15)
= σ 2

k Bh,k+1 = σ
2
k Ah,k+1. �

3. The structure of PSn

We denote by Pn the kernel of the morphism α : PSn→ Sn defined above.

Proposition 3.1. Pn is an abelian group.

Proof. It is enough to prove that any two elements Ai, j and Ak,l commute in PSn .
We only have to analyze the following seven cases for the numbers i, j, k, l:

(i) i < j < k < l. This is an obvious consequence of (9).

(ii) i < j = k < l. We write

Ai, j = σ
−1
i σ−1

i+1 · · · σ
−1
j−2σ

2
j−1σ j−2 · · · σi+1σi ,

A j,l = σl−1σl−2 · · · σ j+1σ
2
j σ
−1
j+1 · · · σ

−1
l−2σ

−1
l−1,

and we obtain Ai, j A j,l = A j,l Ai, j by using (2) and the fact that σ 2
j−1 and σ 2

j
commute in PSn .

(iii) i < k < j < l. This follows since Ak,l = Bk,l in PSn (Proposition 2.6), and ai j

and bkl commute in Pn if i < k < j < l, which is easily seen geometrically.

(iv) i = k < j = l. This is trivial.

(v) i < k < l < j . This is an obvious consequence of (9).

(vi) i = k < j < l. In case j = i + 1, we have Ai, j = σ
2
i and so we obtain

Ai, j Ai,l = Ai,l Ai, j by using (18); assuming now i+1< j , by using repeatedly
(16) we can compute

Ai, j Ai,l = σi Ai+1, j Ai+1,lσ
−1
i

= σiσi+1 Ai+2, j Ai+2,lσ
−1
i+1σ

−1
i

· · ·

= σiσi+1 · · · σ j−2 A j−1, j A j−1,lσ
−1
j−2 · · · σ

−1
i+1σ

−1
i ,

and similarly

Ai,l Ai, j = σiσi+1 · · · σ j−2 A j−1,l A j−1, jσ
−1
j−2 · · · σ

−1
i+1σ

−1
i ;

these are equal since A j−1, j = σ
2
j−1 and by (18), σ 2

j−1 A j−1,l = A j−1,lσ
2
j−1.
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(vii) i < k < j = l. In case j = k + 1, we have Ak, j = σ
2
k and so we obtain

Ai, j Ak, j = Ak, j Ai, j by using (19); assuming now k + 1 < j , by repeatedly
using (14) we can compute

Ai, j Ak, j = σ j−1 Ai, j−1 Ak, j−1σ
−1
j−1

= σ j−1σ j−2 Ai, j−2 Ak, j−2σ
−1
j−2σ

−1
j−1

· · ·

= σ j−1σ j−2 · · · σk+1 Ai,k+1 Ak,k+1σ
−1
k+1 · · · σ

−1
j−2σ

−1
j−1,

and similarly

Ak, j Ai, j = σ j−1σ j−2 · · · σk+1 Ak,k+1 Ai,k+1σ
−1
k+1 · · · σ

−1
j−2σ

−1
j−1;

these are equal since Ak,k+1 = σ
2
k and by (19), Ai,k+1σ

2
k = σ

2
k Ai,k+1. �

Let G be a group. If x, y ∈G we denote by [x, y] := x−1 y−1xy the commutator
of x and y, and by G ′ the commutator subgroup of G (the subgroup of G generated
by all commutators [x, y]), which is the smallest normal subgroup N of G with
the property that G/N is abelian. Moreover, G ′ is a characteristic subgroup of G,
that is, θ(G ′)= G ′ for all θ ∈ Aut(G).

Proposition 3.2. Pn ' Pn/P ′n ' Zn(n−1)/2.

Proof. For 1 ≤ i ≤ n− 2 we define ti ∈ Pn by ti := [σ 2
i , σ

2
i+1] = [ai,i+1, ai+1,i+2].

These elements are the relators added to the ones of Bn in order to obtain PSn;
therefore, as a particular case of a general fact about groups given by generators and
relations (see for instance [Coxeter and Moser 1972, page 2]), the kernel of the map
β : Bn→ PSn defined above coincides with the normal subgroup of Bn generated
by {ti }1≤i≤n−2, which will be denoted by Ln . We obviously have Ln ⊆ Pn , and if
we consider the map β restricted to Pn , we have a surjective morphism Pn→Pn

with kernel Ln , so Pn ' Pn/Ln . By Proposition 3.1 we know that Pn is abelian,
so we obtain P ′n ⊆ Ln . On the other hand, since P ′n is characteristic in Pn and
Pn is normal in Bn , it follows (see [Suzuki 1982, Proposition 6.14]) that P ′n is
normal in Bn , and since t1, . . . , tn−2 ∈ P ′n and Ln is the normal subgroup of Bn

generated by {ti }1≤i≤n−2, we obtain Ln ⊆ P ′n . Thus, we have obtained Ln = P ′n
and so Pn ' Pn/P ′n . On the other hand, it is well known that Pn/P ′n ' Zn(n−1)/2;
see for instance [Kassel and Turaev 2008, Corollary 1.20]. �

As a consequence of the equality Ln = P ′n , we obtain Bn/P ′n:

Corollary 3.3. PSn ' Bn/P ′n .

The extension with abelian kernel 1→Pn→ PSn→ Sn→ 1 induces an action
of Sn on Pn , given by σ ·a= σ̃aσ̃−1 for σ ∈ Sn and a ∈Pn , where σ̃ is an element
of PSn with α(σ̃ )= σ . In particular, on generators we have sk · Ai, j = σk Ai, jσ

−1
k ,
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for 1≤ k ≤ n− 1 and 1≤ i < j ≤ n. By using some of the formulas given above,
one can describe explicitly this action as

sk · Ai, j = Ai, j if k < i − 1,(20a)

si−1 · Ai, j = Ai−1, j ,(20b)

si · Ai, j = Ai+1, j if j − i > 1 and si · Ai,i+1 = Ai,i+1,(20c)

sk · Ai, j = Ai, j if i < k < j − 1,(20d)

s j−1 · Ai, j = Ai, j−1 if j − i > 1 and s j−1 · A j−1, j = A j−1, j ,(20e)

s j · Ai j = Ai, j+1 for 1≤ i < j < n,(20f)

sk · Ai, j = Ai, j if j < k.(20g)

Note that the first equality in (20c) follows by using (17) together with the fact
that Ai, j = Bi, j (Proposition 2.6), and the first equality in (20e) follows by an easy
computation using also the fact that Ai, j = Bi, j . Also, one can easily see that these
formulas may be expressed more compactly as follows: If σ ∈ {s1, . . . , sn−1} and
1≤ i < j ≤ n, then σ · Ai, j = Aσ(i),σ ( j), where we made the convention Ar,t := At,r

for t < r . Since s1, . . . , sn−1 generate Sn , we have found the action of Sn on Ai, j :

Proposition 3.4. For any σ ∈ Sn and 1≤ i < j ≤ n, the action of σ on Ai, j is given
by σ · Ai, j = Aσ(i),σ ( j), with the convention Ar,t := At,r for t < r .

Lemma 3.5. Let F be a free Z-module of rank m, and let {X1, . . . , Xm} be a
generating system for F over Z. Then {X1, . . . , Xm} is a basis of F over Z.

Proof. Assume X1, . . . , Xm are linearly dependent over Z and take
∑m

i=1 αi X i = 0
a nontrivial linear combination over Z. Choose a prime number p such that |αi |< p
for all 1≤ i ≤m, and consider F := F/pF , a linear space over the field Zp=Z/pZ,
and X i , the images of the elements X i in F . These elements generate F over Zp,
and since the dimension of F over Zp is m, it follows that {X1, . . . , Xm} is a basis
of F over Zp. Thus, it follows that αi ≡ 0 (mod p) for all 1 ≤ i ≤ m, which is a
contradiction because we have chosen p so that |αi |< p for all 1≤ i ≤ m. �

Proposition 3.6. In PSn , there is no element of order 2 whose image in Sn is the
transposition s1 = (1, 2). Consequently, the extension 1→Pn→ PSn→ Sn→ 1
is not split.

Proof. Take x ∈ PSn such that α(x) = s1. Since α(σ1) = s1, we obtain that
xσ−1

1 ∈ Ker(α) = Pn . By Proposition 3.2 and Lemma 3.5, it follows that the
abelian group Pn is freely generated by {Ai, j }1≤i< j≤n , so we can write uniquely
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x =
∏

1≤i< j≤n Ami j
i, j σ1, with mi j ∈ Z. We compute

x2
=

( ∏
1≤i< j≤n

Ami j
i, j σ1

)( ∏
1≤i< j≤n

Ami j
i, j σ1

)
=

( ∏
1≤i< j≤n

Ami j
i, j

)(
σ1

∏
1≤i< j≤n

Ami j
i, j σ

−1
1

)
σ 2

1

=

( ∏
1≤i< j≤n

Ami j
i, j

)( ∏
1≤i< j≤n

σ1 Ami j
i, j σ

−1
1

)
A1,2

= A2m12+1
1,2

( ∏
3≤ j≤n

Am1 j+m2 j
1, j Am1 j+m2 j

2, j

)( ∏
3≤i< j≤n

A2mi j
i, j

)
,

and this element cannot be trivial because 2m12+ 1 cannot be 0. Note that for the
last equality we used the commutation relations

σ1 A1,2σ
−1
1 = A1,2,

σ1 A1, jσ
−1
1 = A2, j for all j ≥ 3,

σ1 A2, jσ
−1
1 = A1, j for all j ≥ 3,

σ1 Ai, jσ
−1
1 = Ai, j for all 3≤ i < j,

which can be easily proved by using some of the formulas given above. �

Remark 3.7. As is well known [Brown 1982], any extension with abelian kernel
corresponds to a 2-cocycle. Specifically, the extension 1→Pn→ PSn→ Sn→ 1
corresponds to an element in H 2(Sn,Zn(n−1)/2). We illustrate this by computing
explicitly the corresponding 2-cocycle for n = 3. We consider the set-theoretical
section f : S3→PS3 defined by f (1)=1, f (s2)=σ2, f (s1)=σ1, f (s1s2)=σ1σ2,
f (s2s1)= σ2σ1 and f (s2s1s2)= σ2σ1σ2. The 2-cocycle afforded by this section is
defined by u : S3×S3→P3, (x, y) 7→ f (x) f (y) f (xy)−1, and a direct computation
gives its explicit formula as in Table 1, where we have chosen an additive notation
for the abelian group P3 ' Z3.

1 s2 s1 s1s2 s2s1 s2s1s2

1 0 0 0 0 0 0
s2 0 A2,3 0 0 A2,3 A2,3

s1 0 0 A1,2 A1,2 0 A1,2

s1s2 0 A1,3 0 A1,2 A1,2+ A1,3 A1,2+ A1,3

s2s1 0 0 A1,3 A1,3+ A2,3 A2,3 A1,3+ A2,3

s2s1s2 0 A1,2 A2,3 A1,3+ A2,3 A1,2+ A1,3 A1,2+ A1,3+ A2,3

Table 1. The 2-cocycle for n = 3 associated to the section f .
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4. PSn is linear

Bigelow [2001] and Krammer [2002] proved that the braid group Bn is linear. More
precisely, let R be a commutative ring, let q and t be two invertible elements in R,
and let V be a free R-module of rank n(n− 1)/2 with a basis {xi, j }1≤i< j≤n . Then
the map ρ : Bn→ GL(V ), defined by

σk xk,k+1 = tq2xk,k+1,

σk xi,k = (1− q)xi,k + qxi,k+1 for i < k,

σk xi,k+1 = xi,k + tqk−i+1(q − 1)xk,k+1 for i < k,

σk xk, j = tq(q − 1)xk,k+1+ qxk+1, j for k+ 1< j,

σk xk+1, j = xk, j + (1− q)xk+1, j for k+ 1< j,

σk xi, j = xi, j for i < j < k or k+ 1< i < j,

σk xi, j = xi, j + tqk−i (q − 1)2xk,k+1 for i < k < k+ 1< j,

and ρ(x)(v) = xv for x ∈ Bn and v ∈ V , gives a representation of Bn , and if also
R = R[t±1

] and q ∈ R⊆ R with 0< q < 1, then the representation is faithful; see
[Krammer 2002].

We consider now the general formula for ρ, in which we take q = 1:

σk xk,k+1 = t xk,k+1,

σk xi,k = xi,k+1 for i < k,

σk xi,k+1 = xi,k for i < k,

σk xk, j = xk+1, j for k+ 1< j,

σk xk+1, j = xk, j for k+ 1< j,

σk xi, j = xi, j for i < j < k or k+ 1< i < j,

σk xi, j = xi, j for i < k < k+ 1< j.

One can easily see that these formulas imply

σ 2
k xk,k+1 = t2xk,k+1 and σ 2

k xi, j = xi, j if (i, j) 6= (k, k+ 1).

One can then check that ρ(σ 2
k ) commutes with ρ(σ 2

k+1) for all 1≤ k ≤ n− 2, and
so for q = 1 it turns out that ρ is a representation of PSn .

Theorem 4.1. This representation of PSn is faithful if R = R[t±1
]. Therefore, PSn

is linear.

Proof. We first prove that Ai, j xi, j = t2xi, j , and Ai, j xk,l = xk,l if (i, j) 6= (k, l). We
do it by induction over | j − i |. If | j − i | = 1, the relations follow from the fact
that Ai,i+1 = σ

2
i . Assume the relations hold for | j − i | = s− 1. We want to prove
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them for | j − i | = s. We recall that Ai, j = σ j−1 Ai, j−1σ
−1
j−1; see (14). We compute

Ai, j xi, j = σ j−1 Ai, j−1σ
−1
j−1xi, j = σ j−1 Ai, j−1xi, j−1

= σ j−1t2xi, j−1 (by induction)

= t2xi, j .

On the other hand, if (i, j) 6= (k, l) then σ−1
j−1xk,l = xu,v with (i, j − 1) 6= (u, v),

and so

Ai, j xk,l = σ j−1 Ai, j−1σ
−1
j−1xk,l = σ j−1 Ai, j−1xu,v

= σ j−1xu,v (by induction)

= σ j−1σ
−1
j−1xk,l = xk,l,

as desired.
To show that the representation is faithful, take b ∈ PSn such that ρ(b) = idV

and consider α(b), the image of b in Sn . From the way ρ is defined it follows that

bxi, j = t pxα(b)(i),α(b)( j) for all 1≤ i < j ≤ n,

with p ∈ Z, where we made the convention xr,s := xs,r if 1≤ s < r ≤ n. Since xi, j

is a basis in V and we assumed ρ(b)= idV , we find that the permutation α(b)∈ Sn

has the property that if 1 ≤ i < j ≤ n, then either α(b)(i)= i and α(b)( j)= j or
α(b)(i)= j and α(b)( j)= i . Since we assumed n ≥ 3, the only such permutation
is the trivial one. Thus, we have obtained that b ∈ Ker(α) = Pn and so we can
write b=

∏
1≤i< j≤n Ami, j

i, j , with mi, j ∈Z. By using the formulas given above for the
action of Ai, j on xk,l we immediately obtain bxk,l= t2mk,l xk,l for all 1≤k< l≤n.
Using again the assumption ρ(b) = idV , we obtain t2mk,l = 1 and hence mk,l = 0
for all 1≤ k < l ≤ n, that is b = 1, finishing the proof. �

5. Pseudosymmetric groups and pseudosymmetric braidings

We recall from [Kassel 1995, XIII.2] that to braid groups one can associate
the so-called braid category B, a universal braided monoidal category. Similarly,
we can construct a pseudosymmetric braided category PS associated to pseudo-
symmetric groups. Namely, the objects of PS are natural numbers n ∈N. The set
of morphisms from m to n is empty if m 6= n and is PSn if m = n. The monoidal
structure of PS is defined as the one for B, and so is the braiding, namely

cn,m : n⊗m→ m⊗ n,

c0,n = idn = cn,0,

cn,m = (σmσm−1 · · · σ1)(σm+1σm · · · σ2) · · · (σm+n−1σm+n−2 · · · σn) if m, n > 0.
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We denote by tm,n = cn,m ◦cm,n the double braiding. In view of Proposition 1.3, to
prove that c is pseudosymmetric it is enough to check that, for all m, n, p ∈ N,

(tm,n ⊗ idp) ◦ (idm ⊗ tn,p)= (idm ⊗ tn,p) ◦ (tm,n ⊗ idp).(21)

Note that tm,n ⊗ idp and idm ⊗ tn,p are elements in Pm+n+p, which is an abelian
group, and the composition ◦ between tm,n ⊗ idp and idm ⊗ tn,p is just the multi-
plication in the group Pm+n+p, so (21) is obviously true.

Let C be a strict braided monoidal category with braiding c, let n be a natural
number and let V ∈ C. Consider the automorphisms c1, . . . , cn−1 of V⊗n defined
by ci = idV⊗(i−1)⊗cV,V⊗idV⊗(n−i−1) . It is well known (see [Kassel 1995, XV.4]) that
there exists a unique group morphism ρc

n : Bn→ Aut(V⊗n) such that ρc
n(σi ) = ci

for all 1≤ i ≤ n−1. It is clear that, if c is pseudosymmetric, then ρc
n factorizes to

a group morphism PSn → Aut(V⊗n). Thus, pseudosymmetric braided categories
provide representations of pseudosymmetric groups.
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KNOTS YIELDING HOMEOMORPHIC LENS SPACES BY DEHN
SURGERY

TOSHIO SAITO AND MASAKAZU TERAGAITO

We show that there exist infinitely many pairs of distinct knots in the 3-
sphere such that each pair can yield homeomorphic lens spaces by the same
Dehn surgery. Moreover, each knot of the pair can be chosen to be a torus
knot, a satellite knot or a hyperbolic knot, except that both cannot be satel-
lite knots simultaneously. This exception is shown to be unavoidable by the
classical theory of binary quadratic forms.

1. Introduction

For a knot K in the 3-sphere S3, let K (m/n) denote the closed oriented 3-manifold
obtained by m/n-Dehn surgery on K , that is, K (m/n) is the union of the knot
exterior E(K )= S3

− int N (K ) and a solid torus V in such a way that the meridian
of V is attached to a loop on ∂E(K ) with slope m/n. In this paper, all 3-manifolds
are oriented, and two knots in S3 are said to be equivalent if there is an orientation-
preserving homeomorphism of S3 sending one to the other.

For a fixed slope m/n, m/n-surgery can be regarded as a map from the set of the
equivalence classes of knots to that of 3-manifolds. There are many results on the
injectivity of this map. Lickorish [1976] gave two nonequivalent knots on which
(−1)-surgeries yield the same homology sphere. Brakes [1980] showed that for
any integer n ≥ 2, there exist n distinct knots on which 1-surgeries yield the same
3-manifold. See also [Kawauchi 1996; Livingston 1982; Teragaito 1994]. Finally,
Osoinach [1998; 2006] showed the existence of 3-manifolds, in fact, a hyperbolic
3-manifold and a toroidal manifold, which can be obtained from infinitely many
hyperbolic knots by 0-surgery. By using Osoinach’s construction, Teragaito [2007]
gave a Seifert fibered manifold over the 2-sphere with three exceptional fibers that
can be obtained from infinitely many hyperbolic knots by 4-surgery. Thus it is
natural to ask whether there exists a lens space that can be obtained from infinitely

MSC2000: primary 57M25; secondary 11B39, 11E16.
Keywords: Dehn surgery, lens space, knot, Fibonacci number, binary quadratic form.
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many knots by the same Dehn surgery. Although we do not know the answer yet,
we feel that it is negative based on our computer experiments. In fact, as far as we
know, at most two knots can yield homeomorphic lens spaces by the same Dehn
surgery.

We should note that Berge’s table [1990s] shows that among the lens spaces
with fundamental groups of order up to 500, there are 32 that admit two knots
yielding S3 by Dehn surgery. This strongly suggests that many lens spaces can
be obtained from nonequivalent knots in S3 by the same Dehn surgery. In this
paper, we study whether a pair of nonequivalent knots can yield homeomorphic lens
spaces, ignoring orientations, by the same Dehn surgery. We should be attentive to
this orientation convention. Let U be the unknot and K a knot in S3. By using Floer
homology for Seiberg–Witten monopoles, it is proved in [Kronheimer et al. 2007]
that if there exists an orientation-preserving homeomorphism between K (m/n)
and U (m/n), then K is trivial. In other words, if K (m/n) is homeomorphic to
the lens space L(m, n) under an orientation-preserving homeomorphism, then K
is trivial. Here, the preservation of orientation is important, because 5-surgery
on the right-handed trefoil yields L(5, 4) = L(5,−1). From our point of view,
the right-handed trefoil and the unknot yield homeomorphic lens spaces under the
same 5-surgery.

As a consequence of the cyclic surgery theorem [Culler et al. 1987], any non-
trivial amphicheiral knot has no Dehn surgery yielding a lens space, and the pair
of a knot and its mirror image cannot yield homeomorphic lens spaces by the same
Dehn surgery. Also, only torus knots admit nonintegral lens space surgeries.

Our first result is the following. We recall that all knots are classified into three
families: torus knots, satellite knots, and hyperbolic knots.

Theorem 1.1. There exist infinitely many pairs {K1, K2} of nonequivalent knots
in S3 such that m-surgeries on them yield homeomorphic lens spaces for some
integer m. Also, Ki can be chosen to be a torus knot, a satellite knot or a hyperbolic
knot, except that K1 and K2 cannot be satellite knots simultaneously.

The exceptional case in Theorem 1.1 is unavoidable as shown in Corollary 1.3,
which is obtained as a consequence of the next theorem.

Theorem 1.2. (1) There exist infinitely many pairs of nonequivalent torus knots
in S3 such that some half-integral surgeries on them yield homeomorphic lens
spaces.

(2) Let K1 and K2 be nonequivalent torus knots. Suppose a slope r corresponds
to a lens space surgery for both K1 and K2. If the slope r runs at least three
times in the longitudinal direction, then r-surgeries on K1 and K2 cannot
yield homeomorphic lens spaces.
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Corollary 1.3. Nonequivalent satellite knots cannot yield homeomorphic lens
spaces by the same Dehn surgery.

Question 1.4. Is there a lens space that can be obtained from three nonequivalent
knots in S3 by the same Dehn surgery?

Based on a computer experiment, we conjecture that the answer is negative.
The paper is organized as follows. In Section 2, we give infinitely many pairs

of torus knots that yield homeomorphic lens spaces. After establishing one result
concerning a divisibility of integers by using the classical theory of integral binary
quadratic forms in Section 3, we prove Theorem 1.2 and Corollary 1.3 in Section 4.
In Section 5, we review one special class of doubly primitive knots. In Section 6,
we construct by using tangles infinitely many pairs of hyperbolic knots that yield
homeomorphic lens spaces. Finally, Section 7 completes the proof of Theorem 1.1
by treating the case where the knots of a pair belong to different classes.

2. Torus knots

Here, we give infinitely many pairs of torus knots that yield homeomorphic lens
spaces by the same integral Dehn surgery.

Recall that the Fibonacci numbers are defined by the recurrence equation

Fn+2 = Fn+1+ Fn with F0 = 0 and F1 = 1.

We make use of Cassini’s identity (see [Graham et al. 1994])

Fk−1 Fk+1− F2
k = (−1)k for k > 0.

Let an = Fn+2 and bn = Fn+3+ Fn+1 for n ≥ 1.

Lemma 2.1. For any n ≥ 1,

an+1bn + (−1)n+1
= anbn+1+ (−1)n.

Proof. By using Cassini’s identity,

an+1bn + (−1)n+1
= Fn+3(Fn+3+ Fn+1)+ (−1)n+1

= F2
n+3+ Fn+3 Fn+1+ (−1)n+1

= F2
n+3+ F2

n+2.

Similarly,

anbn+1+ (−1)n = Fn+2(Fn+4+ Fn+2)+ (−1)n

= Fn+2 Fn+4+ F2
n+2+ (−1)n = F2

n+3+ F2
n+2. �

As seen from Cassini’s identity, two successive Fibonacci numbers are relatively
prime. Then it is easy to see that gcd(an+1, bn)= gcd(an, bn+1)= 1.
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Proposition 2.2. For n ≥ 1, let K be the torus knot of type (an+1, bn), and K ′ the
torus knot of type (an, bn+1). Let m= an+1bn+(−1)n+1 (= anbn+1+(−1)n). Then
K and K ′ are not equivalent, and m-surgery on K and K ′ yields homeomorphic
lens spaces.

Proof. K and K ′ are not equivalent since an <an+1<bn <bn+1. By [Moser 1971],
m-surgery on K and K ′ yields the lens spaces L(an+1bn + (−1)n+1, a2

n+1) and
L(anbn+1+ (−1)n, a2

n), respectively. Since a2
n +a2

n+1 = F2
n+2+ F2

n+3 =m as seen
in the proof of Lemma 2.1, a2

n + a2
n+1 ≡ 0 (mod m). Thus these lens spaces are

homeomorphic. �

3. Binary quadratic form

In this section, we prove Proposition 3.1, which will be used in Section 4. For its
proof, we quickly review the classical theory of integral binary quadratic forms.
See [Flath 1989], for example.

Let f (x, y) = Ax2
+ Bxy + Cy2 be an integral binary quadratic form with

discriminant 1= B2
− 4AC . For our purposes, it is enough to assume that 1 is a

positive nonsquare. Let m be a nonzero integer. Then there is a finite algorithm to
find all integral solutions (x, y) ∈ Z2 of f (x, y)= m, as described below.

Let S={(x, y)∈Z2
| f (x, y)=m} be the set of integral solutions of f (x, y)=m.

Set

ρ =

{ 1
2

√
1 if 1≡ 0 (mod 4),

1
2(1+

√
1) if 1≡ 1 (mod 4).

Let us consider the ring O1 = {x + yρ | x, y ∈ Z}. Let O×1 be the group of units
of O1, and let O×1,1 = {α ∈ O×1 | N (α) = 1} be the subgroup of units for norm 1.
Note that the norm N (α) of α = x + yρ is given

N (α)=
{

x2
−

1
41y2 if 1≡ 0 (mod 4),

x2
+ xy− 1

4(1− 1)y2 if 1≡ 1 (mod 4).

In fact, O×1,1 corresponds to the solution set of the Pell equation N (α) = 1. Then
O×1,1 acts on the set S. It is well known that the number of O×1,1-orbits in S is
finite. Since O×1,1 is infinite, the orbit of each solution is infinite, so S is infinite
unless S=∅. The action is explicitly given by the formulas

(x ′, y′)=


(x, y)

(
u− 1

2 Bv Av
−Cv u+ 1

2 Bv

)
if 1≡ 0 (mod 4),

(x, y)
(

u+ 1
2(1− B)v Av
−Cv u+ 1

2(1+ B)v

)
if 1≡ 1 (mod 4),

for u+ vρ ∈ O×1,1 and (x, y) ∈ S.



KNOTS YIELDING HOMEOMORPHIC LENS SPACES BY DEHN SURGERY 173

Let τ be the smallest unit of O×1,1 that is greater than 1. Then every O×1,1-orbit
of integral solutions of f (x, y)= m contains a solution (x, y) ∈ Z2 such that

0≤ y ≤U =
{
|(Am/1)(τ + τ̄ − 2)|1/2 if Am > 0,
|(Am/1)(τ + τ̄ + 2)|1/2 if Am < 0,

where τ̄ is the conjugate of τ . Also, two distinct solutions (x1, y1), (x2, y2) ∈ Z2

of f (x, y) = m such that 0 ≤ yi ≤ U belong to the same O×1,1-orbit if and only if
y1 = y2 = 0 or y1 = y2 =U .

Proposition 3.1. Let n ≥ 3 be an integer. Let a, b and c be positive integers such
that a> 1 and gcd(a, b)= gcd(a, c)= 1. Then b2

±c2 is not divisible by nabc±1.

Proof. Without loss of generality, we may assume that b > c. Let ε ∈ {1,−1}. If
b2
+ c2 is divisible by nabc+ ε, then

(3-1) b2
+ c2
= Q(nabc+ ε)

for some integer Q ≥ 1. Consider an integral binary quadratic form f (x, y) =
x2
−Qnaxy+ y2. Then Equation (3-1) means that the equation f (x, y)= εQ has

a solution (b, c).
Similarly, if b2

− c2 is divisible by nabc+ ε, then for a binary quadratic form
g(x, y)= x2

− Qnaxy− y2, the equation g(x, y)= εQ has a solution (b, c). We
remark that the discriminants 1 f = (Qna)2− 4 of f and 1g = (Qna)2+ 4 of g
are positive and nonsquare.

First, we list all solutions in positive integers of the equation f (x, y)= Q. For
simplicity, let 1 = 1 f . Let S = {(x, y) ∈ Z2

| f (x, y) = Q} be the set of all
integral solutions of the equation f (x, y) = Q. Then the action of O×1,1 on the
set S is given by the formula
(3-2)

(x ′, y′)=


(x, y)

(
u+ 1

2 Qnav v

−v u− 1
2 Qnav

)
if 1≡ 0 (mod 4),

(x, y)
(

u+ 1
2(1+ Qna)v v

−v u+ 1
2(1− Qna)v

)
if 1≡ 1 (mod 4),

for u+ vρ ∈ O×1,1 and (x, y) ∈ S.
Let τ be the smallest unit of O×1,1 that is greater than 1. In fact, we see that

τ =

{1
2 Qna+ ρ if 1≡ 0 (mod 4),
1
2(Qna− 1)+ ρ if 1≡ 1 (mod 4).

Then every orbit contains a solution (x, y) ∈ Z2 such that

0≤ y ≤U = |(Q/1)(τ + τ̄ − 2)|1/2.
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In our case, U < 1, and so S consists of a single O×1,1-orbit. Furthermore, Q
must be a square in order that S 6=∅. We start a solution (

√
Q, 0) ∈ S. By (3-2),

τ · (
√

Q, 0)= (
√

Q, 0)
(

Qna 1
−1 0

)
= (Q3/2na,

√
Q).

Since

(x, y)
(

Qna 1
−1 0

)
= (Qnax − y, x),

every solution in positive integers has a coordinate that is divisible by a. Thus
f (x, y)= Q cannot have the solution (b, c), because gcd(a, b)= gcd(a, c)= 1.

For the equation f (x, y) = −Q, we have U = |(−Q/1)(τ + τ̄ + 2)|1/2 < 1
again. However, f (x, 0) = x2 implies that the set of solutions of the equation
f (x, y)=−Q is empty.

Next, consider the equation g(x, y)= Q. Let T= {(x, y) ∈ Z2
| g(x, y)= Q}.

Put 1 = 1g. Then O1, O×1,1 are defined in the same way, but the action of O×1,1
on the set T is given by the formula
(3-3)

(x ′, y′)=


(x, y)

(
u+ 1

2 Qnav v

v u− 1
2 Qnav

)
if 1≡ 0 (mod 4),

(x, y)
(

u+ 1
2(1+ Qna)v v

v u+ 1
2(1− Qna)v

)
if 1≡ 1 (mod 4),

for u+ vρ ∈ O×1,1 and (x, y) ∈ T. Also, the smallest unit τ of O×1,1 that is greater
than 1 is given by

τ =

{(1
2 Qna+ ρ

)2
=

1
2(Qna)2+ 1+ Qnaρ if 1≡ 0 (mod 4),(1

2(Qna− 1)+ ρ
)2
=

1
2((Qna)2− Qna)+ 1+ Qnaρ if 1≡ 1 (mod 4).

As before, we can evaluate U = |(Q/1)(τ + τ̄ − 2)|1/2 <
√

Q.
On the other hand, if (x, y) ∈ T, then 1y2

+ 4Q = (2x − Qnay)2. That is,
1y2
+ 4Q must be a square. If 0< y <

√
Q, then

Qnay <
√
1y2+ 4Q < Qnay+ 1.

Hence y = 0, and so T consists of a single O×1,1-orbit. Thus Q must be a square
in order that T 6=∅. Starting a solution (

√
Q, 0) ∈ T, we have

τ · (
√

Q, 0)= (
√

Q, 0)
{
(Qna)2+ 1 Qna

Qna 1

}
= (Q5/2n2a2

+
√

Q, Q3/2na)

by the formulas (3-3). Thus for every solution in positive integers, the second
coordinate is divisible by a.
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Finally, for the equation g(x, y)=−Q, we have U = |(−Q/1)(τ + τ̄ +2)|1/2,
which is less than or equal to

√
Q when 1 ≡ 0 (mod 4) and less than

√
Q when

1≡ 1 (mod 4).
If g(x, y) = −Q, then 1y2

− 4Q = (2x − Qnay)2. Thus y 6= 0. Furthermore,
if y <

√
Q, then

Qnay− 1<
√
1y2− 4Q < Qnay.

Therefore, y =
√

Q is the only possibility, and so Q must be a square. As before,
the set of solutions of the equation g(x, y) = −Q consists of a single O×1,1-orbit,
whose representative is (0,

√
Q). Then

τ · (0,
√

Q)= (0,
√

Q)
(
(Qna)2+ 1 Qna

Qna 1

)
= (Q3/2na,

√
Q).

Hence the first coordinate is divisible by a for any solution in positive integers. �

Remark 3.2. The requirement a> 1 in Proposition 3.1 is necessary. For example,
let a= 1, b= 3, c= 8 and n= 3. Then b2

+c2
= 73 is divisible by nabc+1= 73.

4. Nonintegral surgery on torus knots

In this section, we prove Theorem 1.2.
Let {an} and {bn} be the sequences of positive integers defined by

(4-1) an+1 = an + bn and bn+1 = an+1+ an

with a1 = 2 and b1 = 3.

Lemma 4.1. For any n ≥ 1,

(1) 2anbn+1+ (−1)n+1
= 2an+1bn + (−1)n ,

(2) 4a2
n+1b2

n+1+ 1= (2an+1bn+2+ (−1)n+2)(2anbn+1+ (−1)n+1).

Proof. By (4-1), we have an+1 = 2an + an−1. Then

2anbn+1− 2an+1bn = 2an(an+1+ an)− 2an+1(an+1− an)

= 2(a2
n − a2

n+1+ 2anan+1)

=−2(a2
n−1− an + 2an−1an)

...

= (−1)n−12(a2
1 − a2

2 + 2a1a2)= (−1)n2= (−1)n − (−1)n+1.

This proves (1).
To prove (2), we observe that 2bn+1 = an+2 + an by (4-1). Also, as shown

above, 2anbn+1−2an+1bn = (−1)n2. Thus, anbn+1−an+1bn = (−1)n . From (4-1),
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an(an+1 + an)− an+1(an+1 − an) = (−1)n . Then a2
n + 2anan+1 − a2

n+1 = (−1)n .
Thus,

(2an+1bn+2+ (−1)n+2)(2anbn+1+ (−1)n+1)

= (2an+2bn+1+ (−1)n+1)(2anbn+1+ (−1)n+1)

= 4anan+2b2
n+1+ (−1)n+12bn+1(an + an+2)+ 1

= 4b2
n+1(anan+2+ (−1)n+1)+ 1

= 4b2
n+1(an(an+1+ bn+1)+ (−1)n+1)+ 1

= 4b2
n+1(anan+1+ an(an+1+ an)+ (−1)n+1)+ 1

= 4b2
n+1(2anan+1+ a2

n + (−1)n+1)+ 1= 4b2
n+1a2

n+1+ 1. �

From (1), we have that gcd(an, bn+1)= gcd(bn, an+1)= 1.

Proof of Theorem 1.2(1). Let K1 be the torus knot of type (an, bn+1), and let K2

be the torus knot of type (bn, an+1). Since an < bn < an+1 < bn+1 for any n ≥ 1,
K1 and K2 are not equivalent. Then 1

2(2anbn+1 + (−1)n+1)-surgery on K1 and
1
2(2an+1bn + (−1)n)-surgery on K2 yield the lens spaces

L(2anbn+1+ (−1)n+1, 2b2
n+1) and L(2an+1bn + (−1)n, 2a2

n+1),

respectively. By Lemma 4.1, the surgery coefficients are the same, and the two
lens spaces are homeomorphic. �

In the rest of this section, we prove Theorem 1.2(2) and Corollary 1.3.
Let K1 be the torus knot of type (p, q); let K2 be the torus knot of type (r, s).

Suppose n ≥ 3. If m/n-surgery on K1 yields a lens space, then 1(pq/1,m/n) =
|npq − m| = 1, so m = npq ± 1. Hence if m/n-surgery on K1 and K2 yields
homeomorphic lens spaces, then npq + ε = nrs + ε′ for some ε, ε′ ∈ {1,−1}.
Since we consider nontrivial torus knots, we can assume that p, q, r and s are
positive by taking mirror images, if necessary. Moreover, we may assume that
2 ≤ q < p, 2 ≤ s < r and r < p. Now ε = ε′ because n ≥ 3, and so pq = rs.
By [Moser 1971], m/n-surgery on K1 and K2 yields L(m, nq2) and L(m, ns2),
respectively.

Theorem 1.2(2) follows directly from the following.

Proposition 4.2. The two lens spaces L(m, nq2) and L(m, ns2) are not homeo-
morphic.

Proof. The two lens spaces are homeomorphic if and only if

nq2
≡±ns2 (mod m) or(4-2)

n2q2s2
≡±1 (mod m).(4-3)

Since npq + ε = nrs+ ε, we have npq = nrs. Thus q < s < r < p.
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First, nq2
6≡ ns2 (mod m) because 0< n(s2

− q2) < ns2 < nrs− 1≤ m. Since
nq2
+ns2 < n(pq+rs)−2= 2npq−2≤ 2m, the equation nq2

≡−ns2 (mod m)
is possible only when nq2

+ns2
=m. However, this is impossible because m is not

divisible by n. The impossibility of Equation (4-3) is shown in Proposition 4.3. �

Proposition 4.3. n2q2s2
6≡ ±1 (mod m).

Proof. Suppose n2q2s2
≡ 1 (mod m). Then n2q2s2

− 1 = km for some integer
k ≥ 1. Recall that m = npq + ε, so −1 ≡ kε (mod n) and thus k ≡ −ε (mod n).
Put k = n`− ε with `≥ 1. (If `= 0, then k =−ε =−1, so n2q2s2

− 1= m. This
implies that q divides p, a contradiction.) Then n2q2s2

− 1 = (n`− ε)(npq + ε)
implies

(4-4) q(nqs2
− p(n`− ε))= ε`.

Thus q divides `, and gcd(p, s) divides `/q. For simplicity, we denote gcd(x, y)
by (x, y).

Hence

(4-5)
p(n`− ε)= nqs2

− ε`/q = nq(p, s)2(q, s)2− ε`/q

= (p, s)
( nq
(q, s)

(q, s)3(p, s)− ε`
q(p, s)

)
Here we put a = q(p, s)/(q, s), b = (q, s) and c = `/(q(p, s)). Then abc = `.

Claim 4.4. a > 1.

Proof. Assume a = 1. Then (p, s) = 1 and q = (q, s). Since s = (p, s)(q, s),
s = (q, s). Thus s = q , so p = r , a contradiction. �

Claim 4.5. (a, b)= (a, c)= 1.

Proof. First, (p, s) and (q, s) are coprime. Also, q/(q, s) and (q, s) are coprime,
for otherwise (r, s) > 1. Thus (a, b)= 1.

Next, assume (a, c) > 1. Let d be a prime factor of (a, c). From Equation (4-4),

nqs2
− p(n`− ε)= ε`/q.

Dividing this by (p, s) gives

(4-6) nqs s
(p, s)

−
p

(p, s)
(n`− ε)= εc.

Since d divides a, it divides q or s. Similarly, d divides `, since d divides c. Thus
Equation (4-6) gives

p
(p, s)

ε ≡ 0 (mod d).

However, this is impossible, because (p, s) and p/(p, s) are coprime. �
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On the other hand, Equation (4-5) yields p(nabc−ε)= (p, s)(nab3
−εc), which,

since (p, s) divides p, means that nab3
−εc is divisible by nabc−ε. Furthermore

nab3
− εc

nabc− ε
= c+

nab(b2
− c2)

nabc− ε

implies that b2
− c2 is divisible by nabc− ε, since nab and nabc− ε are coprime.

Similarly, if n2q2s2
≡ −1 (mod m), then b2

+ c2 is divisible by nabc − ε.
However, these are impossible by Proposition 3.1. �

Proof of Corollary 1.3. Among satellite knots, only the (2, 2pq+ε)-cable K of the
(p, q)-torus knot admits a lens space surgery for ε=±1. Then the slope is 4pq+ε,
and L(4pq+ε, 4q2) arises. This surgery on K is equivalent to (4pq+ε)/4-surgery
on its companion torus knot. Thus the result follows from Theorem 1.2(2). �

5. Doubly primitive knot

In this section, we study a special class of doubly primitive knots k+(a, b) defined
by Berge [1990s]. In particular, two infinite sequences of k+(a, b) are proved to
be hyperbolic via dual knots in lens spaces. As far as we know, whether k+(a, b)
is hyperbolic is still an open question.

For a pair (a, b) of coprime positive integers, let k+(a, b) denote the doubly
primitive knot defined by Berge [1990s], which lies on a genus one fiber surface
of the left-handed trefoil as shown in Figure 1(1). Then (a2

+ab+b2)-surgery on
k+(a, b) yields the lens space L(a2

+ab+b2, (a/b)2), where a/b is calculated in
Za2+ab+b2 . (We adopt the notation of [Yamada 2005], but there the orientation of
lens spaces is opposite to ours). We note that k+(a, b) and k+(b, a) are equivalent
by the symmetry of the fiber surface. For example, k+(1, 3) is the (3, 4)-torus
knot whose 13-surgery yields L(13, 9), and k+(2, 3), as shown in Figure 1(2), is
the (−2, 3, 7)-pretzel knot whose 19-surgery yields L(19, 7).

1-full
1-full

1-full

2-full

twist
twist

twist

twists

(1) (2) (3)

a

a

b
b

Figure 1. The knot k+(a, b). Check all longer captions.



KNOTS YIELDING HOMEOMORPHIC LENS SPACES BY DEHN SURGERY 179

Lemma 5.1. k+(a, b) is a fibered knot with genus 1
2((a+ b− 1)2− ab).

Proof. It is easy to see that k+(a, b) has a form of the closure of a positive braid as
shown in Figure 1(3). By [Stallings 1978], Seifert’s algorithm gives a fiber surface.
The braid has b strings and a2

+ab+b2
−2a−b crossings, so the fiber has the given

genus. (See also [Yamada 2005, Corollary 3] or [Hill and Murasugi 2000].) �

In general, let K be a knot in S3 whose p-surgery yields L(p, q) with p >
q > 0. Then the core K ∗ of the attached solid torus of K (p) is called the dual
knot of K (with respect to p-surgery). Berge [1990s] shows that if K is a doubly
primitive knot whose surface slope is p, then K ∗ is a (1, 1)-knot in L(p, q) and
has a canonical form parametrized by a single integer k with 0 < k < p (see
[Saito 2007; 2008b]). Following [Saito 2007], we denote it by K (L(p, q); k). It
is known that K (L(p, q); k) is isotopic to K (L(p, q); p− k).

For n = 1, 2, . . . , p − 1, let φn be an integer such that φn ≡ nq (mod p) and
0<φn< p. We call this finite sequence {φn} the basic sequence for (p, q). Because
of gcd(p, q)= 1, the φn are mutually distinct. In particular, k appears in the basic
sequence. Let h be the position of k, that is, φh = k. Here, set

s = ]{i | i < k and i appears before k in the basic sequence},

`= ]{i | i > k and i appears before k in the basic sequence},

s ′ = ]{i | i < k and i appears after k in the basic sequence},

`′ = ]{i | i > k and i appears after k in the basic sequence}.

Let 8 = min{s, s ′, `, `′}. This is determined for the triplet (p, q, k) and so also
for the dual knot K (L(p, q); k). However, the main result of [Saito 2008a] says
that 8 depends only on the original knot K and a lens space surgery slope p, and
that K is hyperbolic if and only if 8 ≥ 2 or equivalently each of s, s ′, `, `′ is at
least two.

For k+(a, b), let p = a2
+ab+b2. Then p-surgery yields a lens space L(p, q)

where q ≡ (b/(a+b))2; note that (a/b)2≡ (b/(a+b))2 (mod p). By [Saito 2007],
the dual knot is represented as K (L(p, q); k) with k ≡−b/(a+ b) (mod p). (By
definition, the parameter k is chosen so that 0< k < p.)

Lemma 5.2. Let p, q and k be defined as above.

(1) k+ q + 1≡ 0 (mod p).

(2) k ≡ q2 (mod p).

(3) kq ≡ 1 (mod p).
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Proof. (1) We compute

k+ q + 1≡− b
a+b

+
b2

(a+b)2
+ 1=

−b(a+ b)+ b2
+ (a+ b)2

(a+ b)2

=
(a+ b)2− ab
(a+ b)2

=
p

(a+ b)2
≡ 0 (mod p).

(2) By (1), q2
− k ≡ (−k− 1)2− k = k2

+ k+ 1≡ q + k+ 1≡ 0 (mod p).
(3) Similarly, kq ≡ k(−k− 1)=−k2

− k ≡−q − k ≡ 1 (mod p) by (1). �

5.3. The knot k+(3n+1, 3n+4). For k+(3n+1, 3n+4), let p=27n2
+45n+21.

Then p-surgery yields a lens space L(p, q) with q = (3n+ 2)2, and the dual knot
is K (L(p, q); k) with k ≡−(3n+ 2)2− 1 (mod p).

Lemma 5.4. The knot k+(3n+ 1, 3n+ 4) is hyperbolic for n ≥ 1.

Proof. Let a = 3n+ 1, b = 3n+ 4 and k0 = p− q − 1. Then direct calculations
show that 3q < p < 4q , k0 ≡ k (mod p) and 2q − 1 < k0 < 3q − a. Thus we can
use the triplet (p, q, k0) to calculate the invariant 8.

Let {φi } be the basic sequence. (Recall that any term φi of the basic sequence
is chosen so that 0<φi < p.) Since q2

≡ k ≡ k0 (mod p) by Lemma 5.2, φq = k0.
First, we study the four consecutive terms φa+b, φa+b+1, φa+b+2, φa+b+3, which

appear before k0. Since (a+ b)q ≡ p− a (mod p), we have φa+b = p− a. Then

q − a < 2q − a < k0 < 3q − a < p− a,
so

φa+b+1 = q − a, φa+b+2 = 2q − a, φa+b+3 = 3q − a.

Hence

φa+b > k0, φa+b+1 < k0, φa+b+2 < k0, φa+b+3 > k0.

Similarly, we study the four consecutive terms right after k0. (Since q+4< p−1,
there are more than four terms after k0.) Since k0+q= p−1, we have φq+1= p−1.
Then

φq+2 = q − 1, φq+3 = 2q − 1, φq+4 = 3q − 1.

Hence
φq+1 > k0, φq+2 < k0, φq+3 < k0, φq+4 > k0.

Thus 8≥ 2, showing that the dual knot (and the original knot) is hyperbolic. �

5.5. The knot k+(Fn+2, Fn). For Fibonacci numbers, see Section 2. Let p =
F2

n +Fn Fn+2+F2
n+2. Then p-surgery on k+(Fn+2, Fn) yields a lens space L(p, q)

with q ≡ (Fn/(Fn+2+ Fn))
2 (mod p). Denote the dual knot by K (L(p, q); k).

Lemma 5.6. We have p = 4Fn Fn+2 + (−1)n , q ≡ (−1)n+14F2
n (mod p), and

k ≡ (−1)n4Fn(Fn + Fn+2) (mod p).
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Proof. By Cassini’s identity Fn Fn+2− F2
n+1 = (−1)n+1,

4Fn Fn+2+ (−1)n = 4F2
n+1+ 3(−1)n+1

= 3(F2
n+1+ (−1)n+1)+ F2

n+1

= 3Fn Fn+2+ F2
n+1

= Fn Fn+2+ 2Fn(Fn + Fn+1)+ F2
n+1

= Fn Fn+2+ 2F2
n + 2Fn Fn+1+ F2

n+1

= Fn Fn+2+ F2
n + (Fn + Fn+1)

2
= Fn Fn+2+ F2

n + F2
n+2 = p.

Thus 4Fn Fn+2 + (−1)n ≡ 0 (mod p). To show q ≡ (−1)n+14F2
n (mod p),

it suffices to show (−1)n+14(Fn + Fn+2)
2
≡ 1 (mod p). This follows from the

equation (Fn + Fn+2)
2
≡ Fn Fn+2 (mod p).

Finally,

(−1)n4Fn(Fn + Fn+2)= (−1)n4(F2
n + Fn Fn+2)≡ (−1)n+14F2

n+2 (mod p).

Then (−1)n+14F2
n+2q ≡ (4Fn+2 Fn)

2
≡ 1 (mod p). This shows by Lemma 5.2(3)

that (−1)n+14Fn(Fn + Fn+2)≡ 1/q ≡ k (mod p). �

Lemma 5.7. For n ≥ 3, the knot k+(Fn+2, Fn) is hyperbolic.

Proof. As mentioned above, p-surgery on k+(Fn+2, Fn) yields L(p, q). Consider
the dual knot K (L(p, q); k) in L(p, q).

First, we assume that n is odd. Then p = 4Fn Fn+2−1, q ≡ 4F2
n (mod p), and

k ≡−4Fn(Fn + Fn+2) (mod p) by Lemma 5.6.
To simplify calculation of the invariant8, put q0= p−4F2

n and k0= p−q0+1.
Then 0< q0 < p and 0< k0 < p, and q0 ≡−q (mod p) and k0 ≡−k (mod p).

Claim 5.8. 3q0/2< p < 2q0 and 2q0− p < k0 < q0.

Proof. 2q0− p = p− 8F2
n = 4Fn Fn+2− 1− 8F2

n = 4Fn(Fn + Fn+1)− 8F2
n − 1=

4Fn(Fn+1 − Fn)− 1 ≥ 7. Since 3Fn > Fn+2, we have 2p − 3q0 = 12F2
n − p =

4Fn(3Fn − Fn+2)+ 1≥ 9.
Next, k0−2q0+ p = 2p−3q0+1≥ 10. Finally, q0− k0 = 2q0− p−1≥ 6. �

For (p, q0), let {φi } be the basic sequence; let h= p−q0. As hq0≡ k0 (mod p),
the number k0 appears as the h-th term in the sequence. Note that h > 4, because
2p− 3q0 ≥ 9.

To evaluate 8, we investigate some specific terms in the basic sequence. We
have φ1 = q0 > k0 and φ2 = 2q0 − p < k0. Also, φh−1 = k0 − q0 + p > k0 and
φh−2 = k0 − 2q0 + p < k0. Since h > 4, these four terms φ1, φ2, φh−2, φh−1 are
distinct. Next, φp−1 = p − q0 < k0 and φp−2 = 2p − 2q0 > k0. Since 2h < p,
h < p− h+ 1. Thus φp−h+1 and φp−h+2, which are distinct from φp−1 and φp−2,
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n+1

n- -1

Figure 2. The tangle Bn .

appear after k0 in the basic sequence. Since (p− h+ 1)q0 ≡ q0− k0 (mod p), we
have φp−h+1= q0−k0. Then k0− (q0−k0)= 2k0−q0= 2p−3q0+2> 0 implies
φp−h+1 < k0. Finally, φp−h+2 = 2q0− k0 > k0. Again, the fact h > 4 means that
the four terms φp−h+1, φp−h+2, φp−2, φp−1 are distinct. Hence 8≥ 2.

Second, assume that n is even. Then p = 4Fn Fn+2 + 1, q ≡ −4F2
n (mod p),

and k≡ 4Fn(Fn+Fn+2) (mod p) by Lemma 5.6. In this case, put q0= p−4F2
n +1

and k0 = p− q0 + 1. Then 0 < q0 < p and 0 < k0 < p. It is easy to check that
Claim 5.8 holds without any change.

By Lemma 5.2, q0q ≡ (q + 1)q ≡ k+ q ≡−1 (mod p) and k0 ≡−q (mod p).
Under a (orientation-reversing) homeomorphism from L(p, q) to L(p, q0), the
dual knot K (L(p, q); k) is mapped to K (L(p, q0); k0); see [Saito 2008a]. Thus
we can use (p, q0, k0) instead of (p, q, k) to evaluate 8.

By Lemma 5.2(2), q2
≡ k (mod p). Thus 16F4

n ≡ 4Fn(Fn + Fn+2). Hence
q2

0 + k0 ≡ (1− 4F2
n )

2
+ 4F2

n ≡ 16F4
n − 4F2

n + 1 ≡ 4Fn(Fn + Fn+2)− 4F2
n + 1 ≡

4F2
n F2

n+2+1≡0 (mod p). This means that (p−q0)q0≡k0 (mod p). Let h= p−q0.
Then, k0 appears in the basic sequence for (p, q0) as the h-term. Since h > 4, the
argument in the case where n is odd works verbatim, so we have 8≥ 2. �

6. Hyperbolic knots

We say a Seifert-fibered manifold is of type X (p1, p2, . . . , pn) if it admits a Seifert
fibration over the surface X with n exceptional fibers of indices p1, p2, . . . , pn . In
this paper, X will be either the 2-sphere S2 or the disk D2.

For n ≥ 1, let Bn be the tangle illustrated in Figure 2, in which a rectangle
denotes horizontal half-twists. If the number is positive, the twist is right-handed;
otherwise, it is left-handed.
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-10 11/0

Figure 3. Some rational tangles.

Given α ∈ Q ∪ {1/0}, we denote by Bn(α) the knot or link in S3 obtained by
inserting the rational tangle of slope α into the central puncture of Bn . Also, B̃n is
the double branched cover of S3 branched over Bn(α). In fact, we need only four
rational tangles as shown in Figure 3.

Lemma 6.1. (1) B̃n(1/0)= S3.

(2) B̃n(0)= L(27n2
+ 45n+ 21,−9n2

− 12n− 5).

(3) B̃n(1) is a Seifert fibered manifold of type S2(2, n+ 2, 15n+ 11).

(4) B̃n(−1) is a non-Seifert toroidal manifold D2(2, n) ∪ D2(2, 3n + 1), which
contains a unique incompressible torus if n ≥ 2, or a Seifert fibered manifold
of type S2(2, 3, 4) if n = 1.

Proof. It is straightforward to check that Bn(1/0) is the unknot and that Bn(0) is
the 2-bridge knot corresponding to −(9n2

+ 12n+ 5)/(27n2
+ 45n+ 21).

Figure 4 shows that Bn(1) is a Montesinos link or knot of length three. Thus
B̃n(1) is a Seifert fibered manifold of type S2(2, n+ 2, 15n+ 11).

Figure 5 shows that Bn(−1) is decomposed along a tangle sphere P into two
tangles. If n > 1, then each side of P is a Montesinos tangle. Thus B̃n(1) is
decomposed along a torus into two Seifert fibered manifolds over the disk with
two exceptional fibers. Since Seifert fibers on both sides intersect once on the
torus, B̃n(−1) is not Seifert. It is well known that such a 3-manifold contains a

n+1

n- -1

n+1

n- -1

Figure 4. Bn(1), a Montesinos link.
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P

n+1

n- -1 n- -1

n+1

n- -1

n+1

Figure 5. Bn(−1).

unique incompressible torus. When n = 1, Bn(−1) is a Montesinos link of length
three. Hence B̃n(−1) is a Seifert fibered manifold over the 2-sphere with three
exceptional fibers. �

By Lemma 6.1(1), the lift of Bn in B̃n(1/0) gives the knot exterior of some knot
Kn in S3, which is uniquely determined by Gordon and Luecke’s theorem [1989].
Furthermore, Kn admits integral Dehn surgeries yielding a lens space, a Seifert
fibered manifold, and a toroidal manifold (unless n = 1) by Lemma 6.1.

The following criterion of hyperbolicity is used also in Section 7.

Lemma 6.2. If a knot K in S3 admits an integral lens space surgery m, and neither
K (m− 1) nor K (m+ 1) has a lens space summand, then K is hyperbolic.

Proof. Assume the contrary. Then K is either a torus knot or a satellite knot. For
the (nontrivial) (p, q)-torus knot, the only integral lens space surgery slopes are
pq − 1 and pq + 1, and pq-surgery yields the connected sum of two lens spaces
by [Moser 1971]. Thus K is not a torus knot.
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Assume K is a satellite knot. Since K has a lens space surgery, we know by
[Bleiler and Litherland 1989; Wang 1989; Wu 1990] that K is the (2, 2pq+ε)-
cable of the (p, q)-torus knot where ε ∈ {1,−1}. Then the lens space surgery is
4pq+ε. However, the adjacent slope 4pq+2ε is equal to the cabling slope, and so
K (4pq+2ε) has a lens space summand, a contradiction. Thus K is hyperbolic. �

Lemma 6.3. Kn is hyperbolic.

Proof. This immediately follows from Lemmas 6.1 and 6.2. �

Lemma 6.4. The knot Kn defined above satisfies the following.

(1) The genus of Kn is (27n2
+ 33n+ 10)/2.

(2) Let m = 27n2
+ 45n + 21. Then m-surgery on K yields the lens space

L(m,−9n2
− 12n− 5).

Proof. Insert the 1/0-tangle to Bn , and put a band b as shown in Figure 6 to keep
track of framing. Isotope the unknot Bn(1/0) to a standard diagram as shown in
Figure 8 (in which the cases n = 5 and n = 4 are drawn), and take the double
branched cover along it. Then (the core of) the lift of b gives Kn , and its framing
corresponds to the 0-tangle filling downstairs. (In Figures 6, 7 and 8, we draw b in
a line for simplicity during the deformation.) From Figure 8, we see that Kn is the
closure of a braid with 3n+2 strings. Moreover, there are 27n2

+41n+10 positive
crossings and 5n−1 negative crossings. After canceling the negative crossings by
positive crossings, Kn becomes the closure of a positive braid with 3n+ 2 strings
and 27n2

+ 36n + 11 crossings. By [Stallings 1978], Kn is fibered and Seifert’s
algorithm gives a fiber surface, whose genus is equal to the genus g(Kn) of Kn .
Now (1) follows because 1− 2g(Kn)= (3n+ 2)− (27n2

+ 36n+ 11).
The framing of the lift of b can be calculated to equal m. This proves (2). �

b

n+1

n- -1

b

n+1

n- -1

Figure 6. Bn(1/0) and the band b.
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Figure 7. Bn(1/0) with b.
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odd evenn n

Figure 8. The standard diagram of Bn(1/0) with b.

Recall that k+(3n+ 1, 3n+ 4) is hyperbolic for n ≥ 1 by Lemma 5.4.

Proposition 6.5. For n ≥ 1, let K be the hyperbolic knot Kn defined above, and
let K ′ be k+(3n + 1, 3n + 4). Let m = 27n2

+ 45n + 21. Then K and K ′ are not
equivalent, and m-surgery on K and K ′ yield homeomorphic lens spaces.
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Proof. By Lemma 6.4(1), K has genus (27n2
+ 33n+ 10)/2, while K ′ has genus

(27n2
+ 33n+ 12)/2 by Lemma 5.1. Thus they are not equivalent.

Also, by Lemma 6.4(2), m-surgery on K yields L(m,−9n2
− 12n − 5) =

L(m, 18n2
+ 33n + 16). As we stated in Section 5, m-surgery on K ′ yields

L(m, ((3n+ 1)/(3n+ 4))2). Those lens spaces are homeomorphic since(3n+1
3n+4

)2
(18n2

+ 33n+ 16)≡ 1 (mod m). �

7. Different classes

In this last section, we give pairs of knots, each of which yields homeomorphic
lens spaces by the same integral surgery, and consist of knots belonging to different
classes of hyperbolic, satellite, torus knots.

7.1. Torus knot and satellite knot. Let C(a, b) be the (2, 2ab+1)-cable of the
torus knot of type (a, b).

Proposition 7.2. For n ≥ 1, let K be the torus knot of type (2n + 1, 4n + 4), and
let K ′ = C(n+ 1, 2n+ 1). Let m = 8n2

+ 12n+ 5. Then m-surgery on K and K ′

yields homeomorphic lens spaces.

Proof. By [Moser 1971], m-surgery on K yields the lens space L(m, (2n + 1)2).
Also, m-surgery on K ′ yields L(m, 4(n+1)2) by [Fintushel and Stern 1980]. Since
(2n+ 1)2+ 4(n+ 1)2 = m, these lens spaces are homeomorphic. �

7.3. Satellite knot and hyperbolic knot.

Lemma 7.4. For n ≥ 0,

4F4
n + (−1)n F2

n+2 = (4Fn Fn+2+ (−1)n)(F2
n+2− 4Fn Fn+1).

Proof. First,

4F4
n + (−1)n F2

n+2− (4Fn Fn+2+ (−1)n)(F2
n+2− 4Fn Fn+1)

= 4Fn(F3
n − F3

n+2+ 4Fn Fn+1 Fn+2− (−1)n+1 Fn+1).

From Cassini’s identity,

F3
n − F3

n+2+ 4Fn Fn+1 Fn+2− (−1)n+1 Fn+1

= F3
n − F3

n+2+ 3Fn Fn+1 Fn+2+ F3
n+1

= F3
n − (Fn + Fn+1)

3
+ 3Fn Fn+1 Fn+2+ F3

n+1

=−3Fn Fn+1(Fn + Fn+1− Fn+2)= 0. �
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n
+

1 n
-

Figure 9. The tangle Bn .

Since gcd(Fn, Fn+2)= gcd(Fn, Fn+1)= 1, the Fibonacci numbers Fn and Fn+2

are coprime. By Lemma 5.7, k+(Fn+2, Fn) is hyperbolic for n ≥ 3.

Proposition 7.5. For n ≥ 3, let K be the satellite knot C(Fn, Fn+2), and let K ′ be
the hyperbolic knot k+(Fn+2, Fn). Let m = 4Fn Fn+2+ (−1)n . Then m-surgery on
K and K ′ yields homeomorphic lens spaces.

Proof. By [Fintushel and Stern 1980], m-surgery on K yields the lens space
L(m, 4F2

n ). From Lemma 5.6, m-surgery on K ′ yields L(m, (Fn/Fn+2)
2). Then

4F2
n

( Fn

Fn+2

)2
≡ (−1)n+1 (mod m)

by Lemma 7.4, Thus the two lens spaces are homeomorphic. �

7.6. Torus knot and hyperbolic knot. For n ≥ 1, let Bn be the tangle as shown in
Figure 9, where a vertical box denotes right-handed vertical half-twists.

Given α ∈ Q ∪ {1/0}, we denote by Bn(α) the knot or link in S3 obtained by
inserting the rational tangle of slope α into the central puncture of Bn . Also, B̃n is
the double branched cover of S3 branched over Bn(α).

Lemma 7.7. (1) B̃n(1/0)= S3.

(2) B̃n(0)= L(18n2
+ 33n+ 15, 18n+ 19).

(3) B̃n(−1) is a non-Seifert toroidal manifold D2(2, n+ 2)∪ D2(4, 2n+ 1).

(4) B̃n(1) is a non-Seifert toroidal manifold D2(2, n) ∪ D2(5, 2n + 3) if n ≥ 2,
and a Seifert fibered manifold of type S2(3, 5, 5) if n = 1.
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n
+

1 n
-

n
-

n
+

1

n
+

1 n
-

Figure 10. Bn(−1).

Proof. It is straightforward to see that B(1/0) is the unknot and B(0) is the 2-bridge
link corresponding to (18n2

+ 33n + 15)/(18n + 19). For B(−1) and B(1), see
Figures 10 and 11, respectively. �

By Lemma 7.7(1), the lift of Bn in B̃n(1/0) gives the knot exterior of some knot
Kn in S3, which is uniquely determined by Gordon and Luecke’s theorem [1989].

Lemma 7.8. Kn is hyperbolic.

Proof. This immediately follows from Lemmas 6.2 and 7.7. �

Lemma 7.9. Let m = 18n2
+ 33n + 15. Then m-surgery on Kn yields the lens

space L(m,−18n− 19).

Proof. The argument is similar to the proof of Lemma 6.4. We omit it. �
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n
+

1 n
-

n
+

1 n
-

Figure 11. Bn(1).

Proposition 7.10. For n ≥ 1, let K be the torus knot of type (3n+ 2, 6n+ 7), and
let K ′ be the knot Kn defined above. Let m = 18n2

+33n+15. Then m-surgery on
K and K ′ yields homeomorphic lens spaces.

Proof. By [Moser 1971], m-surgery on K yields L(m, 9n2
+ 12n + 4). Then by

Lemma 7.9, m-surgery on K ′ yields L(m, 18n+ 19). Since

(9n2
+ 12n+ 4)(18n+ 19)≡ 1 (mod m),

two lens spaces are homeomorphic. �

Theorem 1.1 now follows from Propositions 2.2, 6.5, 7.2, 7.5 and 7.10. �
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A TOPOLOGICAL SPHERE THEOREM FOR
ARBITRARY-DIMENSIONAL MANIFOLDS

YULIANG WEN

We study manifolds with bounded volume, sectional curvature, and injec-
tivity radius. We obtain a topological sphere theorem.

Sphere theorems are common in differential geometry; one often asks whether
a manifold is homeomorphic to a sphere under certain topological or geometric
restrictions; see for instance [Grove and Shiohama 1977; Perelman 1995; Shen
1989; Shiohama 1983; Suyama 1991; Wu 1989]. Coghlan and Itokawa [1991]
proved a sphere theorem that says that if an even-dimensional, simply connected
Riemannian manifold M has sectional curvature KM ∈ (0, 1], volume VM ≤

3
2 VSn

with VSn the volume of the standard n-dimensional unit sphere Sn in Rn+1, then M

must be homeomorphic to Sn . In [Wen 2004], we improved this result by relaxing
the upper bound on VM to a bound larger than 3

2 VSn . In both of these papers, the
hypotheses of simple connectivity and even dimension were merely used to deduce
that the injectivity radius iM is no less than π . Here we find that we can weaken
the assumptions on KM and iM. If the simple connectivity condition is removed,
the conclusion holds in any dimension.

Before stating our result, we introduce some notation. Let (M, g) be a compact,
connected n-dimensional Riemannian manifold with metric g. We denote by KM

the sectional curvature of M, by iM its injectivity radius, and by VM its volume. For
any points P, Q ∈M, we denote by γP,Q the shortest geodesic on M from P to Q.

Theorem 1. Given k > 0, there exists an ε0 > 0 such that if a compact connected
n-dimensional Riemannian manifold (M, g) satisfies

−k2
≤ KM ≤ 1, iM ≥ π − ε0, VM ≤

3
2 Vsn + ε0,

then M is homeomorphic to Sn .

The examples of real projective spaces RPn for n ≥ 2 and product manifolds
Sn
× Sm for m, n ≥ 1 show that the hypotheses on the lower bound on iM or the

upper bound on VM cannot be removed.
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In what follows, we denote by B(P, r) the open geodesic ball in M with center P
and radius r , and by B(P, r) its closure. Also, we denote by Br the open geodesic
ball in Sn with radius r . Instead of proving Theorem 1 directly, we will prove a
more precise version.

Proposition 1. Let k > 0. There exist δ, σ > 0 satisfying σ + δ < π such that if a
compact connected n-dimensional Riemannian manifold (M, g) satisfies

(1) −k2
≤ KM ≤ 1, iM ≥ π − σ, VM ≤ 3V (Bπ/2−σ/2)+ V (Bδ/2),

then M is homeomorphic to Sn .

Remark 1. The choice of σ or δ here is of course not optimal. We conjecture that
σ < π/2 is optimal.

Proof of Proposition 1. We proceed by way of contradiction. Suppose there exists
a manifold M satisfying (1) that is not homeomorphic to Sn . Take points p, q in M

such that d(p, q)= dM, the diameter dM of M. Then by a well-known topological
fact (see for instance [Brown 1960]), there is a point x0 ∈M−B(p, iM)∪B(q, iM).
Without loss of generality, let d(q, x0)≥ d(p, x0)= l0. Therefore l0≥ iM≥ π−σ .
First we show an explicit upper bound on dM.

Lemma 1. dM ≤ π − σ + δ.

Proof. We argue by contradiction. If dM > π − σ + δ, then we consider the balls
B(p, π/2− σ/2+ δ/2),B(q, π/2− σ/2+ δ/2) and B(x0, l0−π/2+ σ/2− δ/2).
They are obviously pairwise disjoint. Therefore since KM ≤ 1, Günther’s volume
comparison theorem gives

(2) VM ≥ 2V (Bπ/2−σ/2+δ/2)+ V (Bl0−π/2+σ/2−δ/2).

In what follows, we check that

(3) 2V (Bπ/2−σ/2+δ/2)+ V (Bl0−π/2+σ/2−δ/2) > 3V (Bπ/2−σ/2)+ V (Bδ/2).

Noting that l0−π/2+ σ/2− δ/2≥ π/2− σ/2− δ/2> 0, we have

V (Bl0−π/2+σ/2−δ/2)≥ V (Bπ/2−σ/2−δ/2).

By the definition of Sn , we have V (Br ) = ωn−1
∫ r

0 (sin t)n−1 dt for any r > 0,
where ωn−1 is the volume of the standard unit (n− 1)-sphere Sn−1. Since sin t is
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increasing in (0, π/2), we have

1
ωn−1

[
2V (Bπ/2−σ/2+δ/2)+ V (Bl0−π/2+σ/2−δ/2)− 3V (Bπ/2−σ/2)− V (Bδ/2)

]
≥ 2

∫ π/2−σ/2+δ/2

0
(sin t)n−1dt +

∫ π/2−σ/2−δ/2

0
(sin t)n−1dt

− 3
∫ π/2−σ/2

0
(sin t)n−1dt −

∫ δ/2

0
(sin t)n−1dt

=

∫ π/2−σ/2+δ/2

π/2−σ/2
(sin t)n−1dt −

∫ π/2−σ/2

π/2−σ/2−δ/2
(sin t)n−1dt

+

∫ π/2−σ/2+δ/2

π/2−σ/2
(sin t)n−1dt −

∫ δ/2

0
(sin t)n−1dt

>

∫ π/2−σ/2+δ/2

π/2−σ/2
(sin t)n−1dt −

∫ π/2−σ/2

π/2−σ/2−δ/2
(sin t)n−1dt > 0.

Clearly, the estimates (2) and (3) contradict the assumptions (1). �

Lemma 2. If δ > 0 and σ = 2/3
∫ δ/2

0 (sin t)n−1dt satisfy σ + δ < π , then

(4) V (Bδ/2)+ V (Bπ/2−σ/2) >
3
2 VSn .

Proof. In fact, since |sin t | ≤ 1,

V (Bδ/2)= ωn−1

∫ δ/2

0
(sin t)n−1dt = 3

2ωn−1σ

> 3ωn−1

∫ π/2

π/2−σ/2
(sin t)n−1dt

= 3V (Bπ/2)− V (Bπ/2−σ/2)=
3
2 VSn − V (Bπ/2−σ/2). �

Lemma 3. There exists a point E on ∂B(p, π/2− σ/2), that is, the boundary of
B(P, π/2− σ/2), such that

(5) d(E, q)≤ π/2− σ/2+ δ and d(E, x0)≤ l0−π/2+ σ/2+ δ.

Proof. Since iM ≥ π − σ , the boundary ∂B(p, π/2− σ/2) is arc-connected in M.
Let W = γp,x0 ∩ ∂B(p, π/2− σ/2) and T = γp,q ∩ ∂B(p, π/2− σ/2). Take a
continuous curve f (t) (t ∈ 0, 1]) on ∂B(p, π/2− σ/2) such that W = f (0) and
T = f (1). Let 0 be the image curve of f , and let

01 = {x ∈ 0 | d(x, q)≤ π/2− σ/2+ δ},

02 = {x ∈ 0 | d(x, x0)≤ l0−π/2+ σ/2+ δ}.

It is clear that 01 and 02 both are nonempty closed since T ∈ 01 and W ∈ 02. We
will prove that there exists a point E on 0 satisfying (5). For this, we need only to
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verify that 01∩02 6=∅. First we shall exclude the case that there exists a point E
in 0 such that

(6) d(E, q) > π/2− σ/2+ δ and d(E, x0) > l0−π/2+ σ/2+ δ.

In fact, if (6) occurs, there must exist a point F in the shortest geodesic γp issuing
from p and passing through E , such that d(F, p) = π/2 − σ/2 + δ/2. By the
triangle inequality, we have

(7)
d(F, q)≥ d(E, q)− d(E, F) > π/2− σ/2+ δ/2,

d(F, x0)≥ d(E, x0)− d(E, F) > l0−π/2+ σ/2+ δ/2.

Therefore the four balls B(p, π/2−σ/2), B(q, π/2−σ/2), B(x0, l0−π/2+σ/2)
and B(F, δ/2) are pairwise disjoint. Applying again Günther’s volume comparison
theorem, we get

VM > V (B(p, π/2− σ/2))+ V (B(q, π/2− σ/2))

+ V (B(x0, l0−π/2+ σ/2))+ V (B(F, δ/2))

≥ 2V (Bπ/2−σ/2)+ V (Bπ/2−σ/2)+ V (Bδ/2)

= 3V (Bπ/2−σ/2)+ V (Bδ/2),

which contradicts the assumption on VM. Thus (6) cannot hold, which means
0 = 01 ∪ 02. Since 0 is connected, we get a point E ∈ 01 ∩ 02 6= ∅; this point
clearly satisfies (5). �

Lemma 1 and the triangle inequalities easily imply another result:

Corollary 1. The point E obtained in Lemma 3 satisfies the inequalities

(8)

π/2− δ/6< d(E, p)= π/2− σ/2,

π/2− δ/6≤ d(E, q)≤ π/2− σ/2+ δ,

π/2− δ/6≤ d(E, x0)≤ l0−π/2+ σ/2+ δ.

On the other hand,

(9) d(p, q)≤ π − σ + δ and π − σ ≤ l0 = d(p, x0)≤ π − σ + δ.

Take E ∈ ∂B(p, π/2 − σ/2) satisfying (5). We consider a geodesic triangle
(γE,p, γE,x0

, γp,x0
) in M. Since KM ≥ −k2, Toponogov’s comparison theorem

gives

(10) cosh[kd(p, x0)]

≤ cosh[kd(E, p)] cosh[kd(E, x0)] − sinh[kd(E, p)] sinh[kd(E, x0)] cosα

=cosh[k(d(E, p)+d(E, x0))]−sinh[kd(E, p)] sinh[kd(E, x0)](1+cosα),
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where the angle α is defined by α = 6 (γ̇E,p, γ̇E,x0
)|E . By Corollary 1, we have

(11)
1+ cosα ≤

cosh(k(d(E, p)+ d(E, x0)))− cosh(kd(p, x0))

sinh(kd(E, p)) sinh(kd(E, x0))

≤
cosh(k(l0+ δ))− cosh(kl0)

sinh2(k(π/2− δ/6))
.

Clearly t 7→ cosh(k(t+c))−cosh(kt) is increasing in [0,∞) for c> 0, so we get

(12)
1+ cosα <

cosh(k(π + 2δ))− cosh(k(π + δ))

sinh2(k(π/2− δ/6))

<
cosh(k(π + 3δ))− cosh(k(π + δ))

sinh2(k(π/2− δ/6))
.

Similarly, if we consider the geodesic triangle (γE,p, γE,q , γp,q) and the angle β =
6 (γ̇E,p, γ̇E,q)|E , we have

(13)

1+ cosβ ≤
cosh(k(d(E, p)+ d(E, q)))− cosh(kd(p, q))

sinh(kd(E, p)) sinh(kd(E, q))

≤
cosh(k(π − σ + δ))− cosh(kl0)

sinh2(k(π/2− δ/6))

≤
cosh(k(π − σ + 2δ))− cosh(k(π − σ))

sinh2(k(π/2− δ/6))

<
cosh(k(π + 3δ))− cosh(k(π + δ))

sinh2(k(π/2− δ/6))
.

Likewise, if we think of the geodesic triangle (γE,q , γE,x0
, γq,x0

) and the angle
γ= 6 (γ̇E,q , γ̇E,x0

)|E , then, noting that d(q, x0)≥ l0 ≥ π − ε0, we have

(14)
1+ cos γ≤

cosh(k(d(E, q)+ d(E, x0)))− cosh(kd(q, x0))

sinh(kd(E, q)) sinh(kd(E, x0))

<
cosh(k(π + 3δ))− cosh(k(π + δ))

sinh2(k(π/2− δ/6))
.

Now we will conclude the proof of Proposition 1 using the following lemma,
whose proof will be postponed.

Lemma 4. For k > 0, there exists a positive number δ0 ∈ (0, 3π/5) such that δ0 is
a solution of

(15) cosh(k(π + 3t))− cosh(k(π + t))− (1−
√

3/2) sinh2 (k (π/2− t/6))= 0.

Take δ= δ0 in Lemma 4, take the σ from Lemma 2, and let E be the point given
by Lemma 3. Obviously, σ < δ/3, hence σ + δ < 4δ/3< π . Applying (12)–(14),
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one immediately deduces

cosα <−
√

3/2, cosβ <−
√

3/2, cos γ <−
√

3/2.

That is,

α > 2π/3, β > 2π/3, γ > 2π/3.

However, since 0≤ γ≤ 2π− (α+β), we get a contradiction. Thus our hypothesis
on M was wrong, so M must be homeomorphic to Sn . �

In Theorem 1 or Proposition 1, we require that the sectional curvature KM is
in the interval [−k2, 1] for some k > 0. Trivially the result holds if KM ∈ (0, 1].
In the situation 0 ≤ KM ≤ 1, we can simplify our proof by comparing against
Euclidean space; however the estimates (12)–(14) would need to be changed for
the case k = 0.

Theorem 2. Suppose (M, g) is a compact connected n-dimensional Riemannian
manifold with sectional curvature 0≤ KM ≤ 1. Let δ > 0, and let

(16) σ = 2
3

∫ δ/2

0
(sin t)n−1dt such that (2−

√
3)(π−σ)2−16δ(π−σ+2δ)≥0.

Assume also that iM ≥ π − σ and 0< VM ≤ 3V (Bπ/2−σ/2)+ V (Bδ/2). Then M is
homeomorphic to Sn .

Proof. We prove this result by contradiction. If some manifold M satisfies the
assumptions of Theorem 2 and is not homeomorphic to Sn , there is a point x0 ∈M

such that x0 ∈M−B(p, iM)∪B(q, iM), with d(p, q)= dM. Assume that d(q, x0)≥

d(p, x0) = l0 ≥ iM. By Lemma 3, there exists a point E ∈ ∂B(p, π/2 − σ/2)
satisfying (5). By triangle inequality, we get because KM ≥ 0 that

(17) d(E, q)≥ π/2− σ/2 and d(E, x0)≥ π/2− σ/2.

Now consider the geodesic triangle (γp,E , γx0,E , γp,x0
); let α = 6 (γ̇E,p, γ̇E,x0

)|E .
By Toponogov’s comparison theorem,

d2(p, x0)≤ d2(E, p)+ d2(E, x0)− 2d(E, p)d(E, x0) cosα,

so

(18)
1+ cosα ≤

(d(E, p)+ d(E, x0))
2
− d2(p, x0)

2d(E, p)d(E, x0)

≤
(l0+ δ)

2
− l2

0

2(π/2− σ/2)2
<

2δ(π − σ + 2δ)
(π/2− σ/2)2

.
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Similarly, consider the triangle (γE,p, γE,q , γp,q), with β = 6 (γ̇E,p, γ̇E,q)|E and
the triangle (γE,q , γE,x0

, γq,x0
)), with γ= 6 (γ̇E,q , γ̇E,x0

)|E . Then

(19)

1+ cosβ ≤
(d(E, p)+ d(E, q))2− d2(p, q)

2d(E, p)d(E, q)

≤
(π − σ + δ)2− (π − σ)2

2(π/2− σ/2)2
<

2δ(π − σ + 2δ)
(π/2− σ/2)2

,

1+ cos γ≤
(d(E, q)+ d(E, x0))

2
− d2(q, x0)

2d(E, q)d(E, x0)

≤
2δ(l0+ δ)

(π/2− σ/2)2
<

2δ(π − σ + 2δ)
(π/2− σ/2)2

.

Let δ and σ satisfy (16). Then from (18) and (19), one can infer again that

α > 2π/3, β > 2π/3, γ > 2π/3,

which is impossible as above. �

Proof of Lemma 4. First, we will show that the Equation (15) indeed contains a
positive solution δ0. Define

F(t, k)= cosh(k(π + 3t))− cosh(k(π + t))− (1−
√

3/2) sinh2(k(π/2− t/6)).

For fixed k > 0 and for t ∈ [0, 3π ],

d F
dt
= k

{
3 sinh(k(3t +π))− sinh(k(t +π))+ 2−

√
3

12
sinh(k(π − t/3))

}
> 0,

which implies that F(t, k) is increasing with respect to t in [0, 3π ]. Moreover,
F(0, k) < 0 and F(3π, k) > 0. So (15) has a unique solution δ0 ∈ (0, 3π) for
any k > 0. Consider the function k 7→ F(3π/5, k). Then

d F
dk

(3π
5
, k
)
=

14π
5

sinh
(14kπ

5

)
−

8π
5

sinh
(8kπ

5

)
−
(2−
√

3)π
5

sinh
(4kπ

5

)
.

We can check that

14π
5

sinh
(14kπ

5

)
−

8π
5

sinh
(8kπ

5

)
>

4π
5

e8π/5 >
(2−
√

3)π
5

sinh
(4kπ

5

)
,

which implies that F(3π/5, k) is increasing in [0,∞). Note that F(3π/5, 0)= 0;
thus F(3π/5, k) > 0 for k > 0. This shows there is a solution in 0<δ0 < 3π/5. �
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