EXISTENCE AND CONCENTRATION OF BOUND STATES OF NONLINEAR SCHröDINGER EQUATIONS WITH COMPACTLY SUPPORTED AND COMPETING POTENTIALS

MINGWEN FEI AND HUICHENG YIN
EXISTENCE AND CONCENTRATION OF BOUND STATES OF
NONLINEAR SCHRODINGER EQUATIONS WITH COMPACTLY
SUPPORTED AND COMPETING POTENTIALS

MINGWEN FEI AND HUICHENG YIN

We study the existence and concentration of solutions to the \(N \)-dimensional nonlinear Schrödinger equation
\[
-\varepsilon^2 \Delta u_{\varepsilon} + V(x)u_{\varepsilon} = K(x)|u_{\varepsilon}|^{p-1}u_{\varepsilon} + Q(x)|u_{\varepsilon}|^{q-1}u_{\varepsilon}
\]
with \(u_{\varepsilon}(x) > 0 \) and \(u_{\varepsilon} \in H^1(\mathbb{R}^N) \), where \(N \geq 3 \), \(1 < q < p < (N+2)/(N-2) \), and \(\varepsilon > 0 \) is sufficiently small. We take potential functions \(V(x) \in C_0^\infty(\mathbb{R}^N) \) with \(V(x) \not\equiv 0 \) and \(V(x) \geq 0 \), and show that if \(K(x) \) and \(Q(x) \) are permitted to be unbounded under some necessary restrictions, then a positive solution \(u_{\varepsilon}(x) \) exists in \(H^1(\mathbb{R}^N) \) when the corresponding ground energy function \(G(x) \) has local minimum points. We establish the concentration property of \(u_{\varepsilon}(x) \) as \(\varepsilon \) tends to zero. We have removed from some previous papers the crucial restriction that the nonnegative potential function \(V(x) \) has a positive lower bound or decays at infinity like \((1 + |x|)^{-\alpha} \) with \(0 < \alpha \leq 2 \).

1. Introduction and statement of main results

This paper deals with the existence and concentration of solutions to the nonlinear Schrödinger equation
\[
(1-1) \begin{cases}
-\varepsilon^2 \Delta u_{\varepsilon} + V(x)u_{\varepsilon} = K(x)|u_{\varepsilon}|^{p-1}u_{\varepsilon} + Q(x)|u_{\varepsilon}|^{q-1}u_{\varepsilon} & \text{for } x \in \mathbb{R}^N, \\
u_{\varepsilon} \in H^1(\mathbb{R}^N) & \text{for } u_{\varepsilon}(x) > 0,
\end{cases}
\]
where \(N \geq 3 \), \(1 < q < p < (N+2)/(N-2) \), and \(\varepsilon > 0 \) is sufficiently small. Such solutions are called \emph{bound states} in [Ambrosetti et al. 2006] and elsewhere.

Equation (1-1) has been studied extensively under various assumptions on the potential function \(V(x) \) with positive lower bound and the nonlinear exponents \(p \)

\textit{MSC2000:} primary 35J10; secondary 35J60.

\textit{Keywords:} nonlinear Schrödinger equation, bound state, ground energy function, competing potential, Harnack inequality, concentration and compactness.

This research was supported by the National Natural Science Foundation of China, numbers 10571082 and 10931007, and the National Basic Research Program of China, number 2006CB805902.

Yin is the corresponding author.
and \(q \). See for example [Ambrosetti et al. 2003; 2004; Byeon and Wang 2003; Cao and Peng 2006; Cingolani and Lazzo 2000; del Pino and Felmer 1996; Ding and Tanaka 2003; Grossi 2002; Gui 1996; Oh 1990; Rabinowitz 1992; Wang 1993; Wang and Zeng 1997; Cingolani 2003; Floer and Weinstein 1986; Gidas et al. 1981; Kwong 1989; Lions 1984a; 1984b; Ni 1982]. In particular, due to the non-linear terms \(K(x)|u_\varepsilon|^{p-1}u_\varepsilon \) or \(K(x)|u_\varepsilon|^{q-1}u_\varepsilon + Q(x)|u_\varepsilon|^{q-1}u_\varepsilon \), the concentration of \(u_\varepsilon(x) \) can happen at some points when \(\varepsilon \to 0 \); in the list above, see the references listed before [Cingolani 2003]. In these works, it is usually assumed that there exists a positive constant \(v_0 \) such that

\[
V(x) \geq v_0 \quad \text{for } |x| \gg 1.
\]

This means that \(V(x) \) has a positive lower bound at infinity.

Recently, Ambrosetti and coauthors [2005; 2007; 2006] considered a case in which \(V(x) \) may decay to zero at infinity. They assumed that \(V(x) \) is smooth and satisfies

\[
\frac{a}{1+|x|^\alpha} \leq V(x) \leq A \quad \text{in } \mathbb{R}^N,
\]

where \(a, A \) and \(\alpha \) are positive constants, with \(0 < \alpha \leq 2 \). For such situations, under \(Q(x) \equiv 0 \) and some restrictions on \(K(x) \), they showed in [2005; 2006] that (1-1) has positive \(H^1(\mathbb{R}^N) \) solutions. Furthermore, by introducing the ground energy function \(G(x) \equiv V^\theta(x)K^{-2/(p-1)}(x) \) with \(\theta = (p+1)/(p-1) - N/2 \), they established in [2006] the concentration of \(u_\varepsilon \) at any stable critical point of \(G(x) \) and in [2005] at a global minimum point of \(G(x) \) under more general hypotheses on \(G(x) \).

Very recently, Yin and Zhang [2009] extended these results to the case that \(V(x) \) is nonnegative but not identically zero, and established the existence of a bound state \(u_\varepsilon \) of the equation \(-\varepsilon^2\Delta u_\varepsilon + V(x)u_\varepsilon = K(x)|u_\varepsilon|^{p-1}u_\varepsilon \) under some sharp conditions on the unbounded nonnegative \(K(x) \) in terms of different decay rates of \(V(x) \) at infinity. However, they did not study the concentration property of \(u_\varepsilon \).

This paper concerns two naturally arising questions, which are also posed in [Ambrosetti and Malchiodi 2007]: If \(V(x) \) is smooth, nonnegative, and not identically zero, (that is, the assumptions (1-2) and (1-3) fail), does a bound state of (1-1) exist? And if one does, where is the concentration point of \(u_\varepsilon(x) \) as \(\varepsilon \to 0 \)? As usual, some restrictions on \(K(x) \), \(Q(x) \) and \(N \) are required:

(H1) \(V(x), K(x) \) and \(Q(x) \) are smooth on \(\mathbb{R}^N \), both \(V(x) \) and \(K(x) \) are non-negative, and \(V(x) \) is not identically zero.

(H2) There exists a smooth bounded domain \(\Lambda \) of \(\mathbb{R}^N \) on whose closure \(V(x) \) and \(K(x) \) are both positive, and \(0 < c_0 \equiv \inf_{x \in \Lambda} G(x) < \inf_{x \in \mathbb{R}^N} G(x) \), where \(G(x) \) is the ground energy function introduced in [Wang and Zeng 1997]
(this will be illustrated in Section 2 below), which is positive in \(\Lambda \) in the
sense described in the proof of [Wang and Zeng 1997, Lemma 2.6].

\((H_3)\) Suppose \(N \geq 5 \) and \(1 < q < p < (N + 2)/(N - 2) \). Suppose also there
exist positive constants \(k_1 \) and \(k_2 \) and constants \(\beta_1 < (p - 1)(N - 2) - 2 \) and
\(\beta_2 < (q - 1)(N - 2) - 2 \) such that

\[
0 \leq K(x) \leq k_1(1 + |x|)^{\beta_1} \quad \text{and} \quad |Q(x)| \leq k_2(1 + |x|)^{\beta_2} \quad \text{in} \ \mathbb{R}^N.
\]

Theorem 1.1. For small \(\varepsilon > 0 \), Equation (1-1) has at least one positive bound
state \(u_\varepsilon(x) \) under assumptions \((H_1)-(H_3)\).

Remark 1.2. In the general case, \((H_2)\) is hard to verify directly since \(G(x) \) is not
given explicitly, as pointed out in [Wang and Zeng 1997]. However, if \(Q(x) \equiv 0 \),
then \((H_2)\) can be easily checked using the explicit formula for \(G(x) \).

Remark 1.3. From \((H_3)\), if \(p \) satisfies \((p - 1)(N - 2) - 2 > 0 \) and \(q \) satisfies
\((q - 1)(N - 2) - 2 > 0 \), then it is easy to see that unbounded \(K(x) \) and \(Q(x) \) can
be permitted. On the other hand, if \(1 < p, q < N/(N - 2) \), then \(K(x) \) and \(Q(x) \)
should be forced to tend to zero at infinity.

Remark 1.4. The fundamental solution of the \(N \)-dimensional Laplacian operator
is \(C_N/|x|^{N-2} \), where \(C_N > 0 \) is a suitable constant. Then in order to guarantee that
\(\int_{|x| \geq 1} (C_N/|x|^{N-2})^2 \, dx < \infty \) and that \(u_\varepsilon \in L^2(\mathbb{R}^N) \), it is necessary to assume \(N \geq 5 \)
in Theorem 1.1; we note that if \(V(x) \approx 0 \) for large \(|x| \), then the properties of the linear part \(-\varepsilon^2 \Delta u_\varepsilon + V(x)u_\varepsilon \) of (1-1) are similar to those of the Laplacian \(-\varepsilon^2 \Delta u_\varepsilon \)
for large \(|x| \). On the other hand, the assumption on \(\beta_1 < (p - 1)(N - 2) - 2 \) in
\((H_3)\) is nearly optimal for the existence of a bound state \(u_\varepsilon(x) \) to (1-1) in the case
of \(Q(x) \equiv 0 \), as has been shown in [Yin and Zhang 2009, Remark 1.2].

Theorem 1.5. Under assumptions \((H_1)-(H_3)\), if there exists a unique point \(x_0 \in \Lambda \)
such that \(G(x_0) = c_0 \equiv \inf_{x \in \Lambda} G(x) \), then there exists a positive constant \(C > 0 \)
independent of \(\varepsilon \) such that for any fixed \(\delta > 0 \) and small \(\varepsilon \), we have

\[
\frac{1}{C} \leq \max_{|x - x_0| \leq \delta} u_\varepsilon(x) \leq C \quad \text{and} \quad u_\varepsilon(x) \to 0 \quad \text{uniformly for} \ |x - x_0| \geq \delta \quad \text{as} \ \varepsilon \to 0.
\]

Remark 1.6. Whereas Theorem 1.5 describes the concentration of \(u_\varepsilon(x) \) when
the ground energy function \(G(x) \) has a unique minimum point in \(\Lambda \), Theorem 5.5
describes the concentration when \(G(x) \) has at least one local minimum point in \(\Lambda \).

Now we comment on the proofs of Theorems 1.1 and 1.5.
To prove Theorem 1.1, we first modify the nonlinear term of Equation (1-1) outside \(\Lambda \) to

\[
f_{\varepsilon}(x, u_\varepsilon) = \min \left\{ K(x)(u_\varepsilon^+)^p + 2Q^+(x)(u_\varepsilon^+)^q, \quad \frac{\varepsilon^3}{1+|x|^{\theta_0}} u_\varepsilon^+, \quad \frac{\varepsilon}{1+|x|^N} \right\}
\]

where \(\theta_0 > 2 \) is a constant to be chosen during the proof. We modify this term for three reasons: First, we hope that \(f_\varepsilon(x, u_\varepsilon) \) coincides with the original nonlinear term for positive \(u_\varepsilon \). Since \(Q(x) \) can change sign, we arrange the terms \(K(x)(u_\varepsilon^+)^p + 2Q^+(x)(u_\varepsilon^+)^q \) and \(|Q(x)|(u_\varepsilon^+)^q \) in \(f_\varepsilon(x, u_\varepsilon) \) so that \(f_\varepsilon(x, u_\varepsilon) \) is a difference of two positive terms. Second, as in [Yin and Zhang 2009], we put the term \(\varepsilon^3/(1+|x|^{\theta_0})u_\varepsilon^+ \) in \(f_\varepsilon(x, u_\varepsilon) \) so that the corresponding functional \(I_\varepsilon \) of the modified equation \(-\varepsilon^2\Delta u_\varepsilon + V(x)u_\varepsilon = g_\varepsilon(x, u_\varepsilon) \) will be well defined in the weighted Sobolev space

\[
E_\varepsilon \equiv \{ u \in \mathbb{D}^{1,2}(\mathbb{R}^N) : \int_{\mathbb{R}^N} (\varepsilon^2|\nabla u|^2 + V(x)|u|^2)\,dx < \infty \}
\]

with \(\mathbb{D}^{1,2}(\mathbb{R}^N) = \{ u \in L^{2N/(N-2)}(\mathbb{R}^N) : \nabla u \in L^2(\mathbb{R}^N) \} \); this modification also makes \(I_\varepsilon \) satisfy the Palais–Smale condition and preserve the mountain-pass geometry provided that \(\varepsilon \) is small; see Section 2. Third, we put the term \(\varepsilon/(1+|x|^N) \) in \(f_\varepsilon(x, u_\varepsilon) \) so that the mountain-pass solution \(u_\varepsilon \) of the modified equation can be controlled from above by a function decaying suitably outside of \(\Lambda \), and so that \(u_\varepsilon(x) \) decays as \(|x| \to \infty \). From these, we can respectively conclude that

\[
K(x)(u_\varepsilon^+)^p + 2Q^+(x)(u_\varepsilon^+)^q \leq \frac{\varepsilon^3}{1+|x|^{\theta_0}} u_\varepsilon^+, \quad |Q(x)|(u_\varepsilon^+)^q \leq \frac{\varepsilon^3}{1+|x|^{\theta_0}} u_\varepsilon^+
\]

and

\[
K(x)(u_\varepsilon^+)^p + 2Q^+(x)(u_\varepsilon^+)^q \leq \frac{\varepsilon}{1+|x|^N}, \quad |Q(x)|(u_\varepsilon^+)^q \leq \frac{\varepsilon}{1+|x|^N}
\]

for \(x \) outside \(\Lambda \), and thus that \(f_{\varepsilon}(x, u_\varepsilon) \equiv K(x)(u_\varepsilon^+)^p + Q(x)(u_\varepsilon^+)^q \). Such modification of the nonlinear term of nonlinear Schrödinger equations has been done before in [Ambrosetti et al. 2006; 2003; 2004; Bonheure and Van Schaftingen 2008; del Pino and Felmer 1996; Ding and Tanaka 2003; Floer and Weinstein 1986; Gui 1996; Yin and Zhang 2009]; however, these papers deal with different potentials and nonlinear terms, so their modifications differ.

Next, we derive a decay estimate for the solution \(u_\varepsilon \) of the modified equation. To this end, as in [del Pino and Felmer 1996; Wang 1993; Wang and Zeng 1997], we will establish a concentration-compactness result and then show that the integral

\[
\varepsilon^{-N} \left(\frac{1}{2} \int_{|x-\xi_\varepsilon|>\rho}{(\varepsilon^2|\nabla u_\varepsilon|^2 + V(x)u_\varepsilon^2)}\,dx + \alpha \int_{|x-x_\varepsilon|>\rho}{K(x)u_\varepsilon^{p+1}}\,dx \right)
\]
is small for suitable $\xi \in \Lambda$ and some positive constant ρ. Here, we have introduced abbreviations for some recurring quantities:

$$\frac{1}{2}p := \left(\frac{1}{2} - \frac{1}{p+1} \right) \quad \text{and} \quad \alpha_{pq}^p := \left(\frac{1}{q+1} - \frac{1}{p+1} \right).$$

From this integral then follows the pointwise decay property of u_ε at infinity. In the proof, we must analyze the measure sequence μ_{u_ε} corresponding to some suitable scaling of u_ε, in order to show that μ_{u_ε} is uniformly compact with center ξ_ε, which is near some local minimum point of ground energy function $G(\xi)$ as $\varepsilon \to 0$. These results, together with some delicate estimates, complete the proof of Theorem 1.1.

Some techniques in [del Pino and Felmer 1996; Wang 1993; Wang and Zeng 1997; Yin and Zhang 2009] — for instance, the truncation of the nonlinearity and the estimates of the concentration-compactness of μ_{u_ε} — play important roles in our paper, although our analysis is much more involved due to the compact support of $V(x)$ and the appearance of a second nonlinear term $Q(x)|u_\varepsilon|^{q-1}u_\varepsilon$ in (1.1).

To establish the concentration property of u_ε in Theorem 1.5, we need to analyze

$$e^{-N} \left(\frac{1}{2q} \int_{|x-x_\varepsilon| > \varepsilon \rho_1} (e^2|\nabla u_\varepsilon|^2 + V(x)u_\varepsilon^2)dx + \alpha_{pq}^p \int_{|x-x_\varepsilon| > \varepsilon \rho_1 \cap \Lambda} K(x)u_\varepsilon^{p+1} dx \right)$$

for sufficiently small ε and a suitable positive constant ρ_1, where x_ε is the maximum point of u_ε in \mathbb{R}^N. This analysis will yield a uniform positive lower bound of u_ε near x_ε via the weak Harnack inequality, thus completing the proof.

Our paper is organized as follows. In Section 2, we modify the nonlinear term of (1.1) outside Λ and analyze in detail the resulting equation $-\varepsilon^2 \Delta u_\varepsilon + V(x)u_\varepsilon = g_\varepsilon(x, u_\varepsilon)$ for a suitably truncated function $g_\varepsilon(x, u_\varepsilon)$, and establish existence of u_ε by using the mountain-pass lemma. In Section 3, we first state Proposition 3.1, which illustrates the compactness of measures related to the mountain-pass critical points of the modified equation, and use it derive an integral decay estimate inspired [Ambrosetti et al. 2005, by Lemma 17]; we further use the weak Harnack inequality to derive a pointwise decay estimate of u_ε. We then complete the proof of Theorem 1.1. In Section 4, we prove Proposition 3.1. Section 5 completes the proof of Theorem 1.5. The modified function $g_\varepsilon(x, u_\varepsilon)$ is shown to be Lipschitz in the variable u_ε in the appendix.

Notation. $B_r(x_0)$ denotes the ball centered at x_0 with the radius r.

For a set $A \subset \mathbb{R}^N$, write $A_\delta = \{ x \in \mathbb{R}^N : \text{dist}(x, A) \leq \delta \}$ and $A^\varepsilon = \{ \varepsilon^{-1}x : x \in A \}$, where ε and δ are suitably small positive constants.

We denote by C, C_1, \ldots generic positive constants depending only on $V(x), K(x), Q(x), p,$ and q.

We denote by $O(1)$ and $o(1)$ quantities that are respectively bounded and vanishing as, unless otherwise stated, $\varepsilon \to 0$.

2. Existence of critical points for a modified nonlinear equation

First we recall some well-known facts. For \(V(\xi), K(\xi) > 0 \) with \(\xi \in \Lambda \), consider the system

\[
\begin{align*}
-\Delta u(x) + V(\xi)u(x) &= K(\xi)u^p(x) + Q(\xi)u^q(x), & x &\in \mathbb{R}^N, \\
u &\in H^1(\mathbb{R}^N), & u(x) &> 0, \\
\lim_{|x| \to \infty} u(x) &= 0.
\end{align*}
\]

(2-1)

The functional associated to (2-1) is defined as

\[
I^\xi(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 \, dx + \frac{1}{2} V(\xi) \int_{\mathbb{R}^N} |u|^2 \, dx
- \frac{1}{p+1} K(\xi) \int_{\mathbb{R}^N} |u|^{p+1} \, dx - \frac{1}{q+1} Q(\xi) \int_{\mathbb{R}^N} |u|^{q+1} \, dx.
\]

(2-2)

In the terminology of [Wang and Zeng 1997], the function

\[
G(\xi) = \inf_{u \in \mathbb{R}^N} I^\xi(u)
\]

is the ground energy function of (2-1), where \(\mathcal{M}^\xi \) is the Nehari manifold with

\[
\mathcal{M}^\xi = \left\{ u \in H^1(\mathbb{R}^N) \setminus \{0\} : \int_{\mathbb{R}^N} |\nabla u|^2 \, dx + V(\xi) \int_{\mathbb{R}^N} |u|^2 \, dx = K(\xi) \int_{\mathbb{R}^N} |u|^{p+1} \, dx + Q(\xi) \int_{\mathbb{R}^N} |u|^{q+1} \, dx \right\}.
\]

(2-4)

For more about \(G(\xi) \), see [Cingolani and Lazzo 2000; Wang and Zeng 1997].

By [Gidas et al. 1981; Kwong 1989], Equation (2-1) has up to translation a unique positive \(H^1(\mathbb{R}^N) \) solution \(\omega(x) = \omega(V(\xi), K(\xi), Q(\xi); x) \), which is not only a mountain-pass critical point of the functional (2-2) but also is spherically symmetric and decays exponentially at infinity. In this case, \(G(\xi) = I^\xi(\omega(x)) \).

Let \(E_\varepsilon \) be the class

\[
E_\varepsilon = \left\{ u \in \mathbb{R}^{1,2}(\mathbb{R}^N) : \int_{\mathbb{R}^N} \varepsilon^2 |\nabla u|^2 + V(x) |u|^2 \, dx < \infty \right\}
\]

of weighted Sobolev spaces with \(\mathbb{R}^{1,2}(\mathbb{R}^N) = \{ u \in L^{2N/(N-2)}(\mathbb{R}^N) : \nabla u \in L^2(\mathbb{R}^N) \} \). Define the norm of \(u \in E_\varepsilon \) by \(\| u \|_\varepsilon = \left(\int_{\mathbb{R}^N} (\varepsilon^2 |\nabla u|^2 + V(x) |u|^2) \, dx \right)^{1/2} \).

Lemma 2.1. Assume that \((H_1)\) and \((H_2)\) hold for each \(\varepsilon \in (0, 1) \). Then there exists a positive constant \(C_1 \) independent of \(\varepsilon \) such that, for \(u \in E_\varepsilon \),

\[
\begin{align*}
\int_{\Lambda} K(x) |u|^{p+1} \, dx &\leq C_1 \varepsilon^{-N(p-1)/2} \| u \|^p_{\varepsilon}, \\
\int_{\Lambda} |Q(x)| |u|^{q+1} \, dx &\leq C_1 \varepsilon^{-N(q-1)/2} \| u \|^q_{\varepsilon}.
\end{align*}
\]

(2-5)
Proof: The proof uses the Sobolev embedding theorem and the positivity of $V(x)$ in Λ. Here we omit it, but see the proof of [Yin and Zhang 2009, Lemma 2.1]. □

To prove Theorem 1.1, we must modify (1-1) and then look for a solution to the modified equation; this method is often used in the study of the nonlinear elliptic equations. See for example [Gilbarg and Trudinger 1983, Chapter 12].

To this end, we define a function $f_{\varepsilon} : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ by

\[
(2-6) \quad f_{\varepsilon}(x, \xi) = \min \left\{ K(x)(\xi^{+})^p + 2Q^+(x)(\xi^{+})^q, \frac{\varepsilon^3}{1+|x|^\theta_0} \xi^+, \frac{\varepsilon}{1+|x|^N} \right\}
\]

\[- \min \left\{ |Q(x)|(\xi^{+})^q, \frac{\varepsilon^3}{1+|x|^\theta_0} \xi^+, \frac{\varepsilon}{1+|x|^N} \right\}, \]

where $\xi^+ = \max\{\xi, 0\}$, and $\theta_0 > 2$ will be chosen later.

From Lemma A.1, we know that $f_{\varepsilon}(x, \xi)$ satisfies the global Lipschitz condition

\[
(2-7) \quad |f_{\varepsilon}(x, \xi) - f_{\varepsilon}(x, \eta)| \leq \frac{(p+q)\varepsilon^3}{1+|x|^\theta_0} |\xi - \eta| \quad \text{for } \xi, \eta \in \mathbb{R}.
\]

Set $g_{\varepsilon}(x, \xi) = \chi_\Lambda(x)(K(x)(\xi^{+})^p + Q(x)(\xi^{+})^q) + (1 - \chi_\Lambda(x))f_{\varepsilon}(x, \xi)$, where $\chi_\Lambda(x)$ is the characteristic function of the set Λ. By (2-7), it is easy to see that $g_{\varepsilon}(x, \xi)$ is Lipschitz continuous in the variable ξ.

We now consider a new nonlinear equation

\[
(2-8) \quad -\varepsilon^2 \Delta u + V(x)u = g_{\varepsilon}(x, u) \quad \text{for } x \in \mathbb{R}^N,
\]

which has corresponding functional

\[
I_{\varepsilon}(u) = \frac{1}{2} \|u\|^2_{\varepsilon} - \frac{1}{p+1} \int_\Lambda K(x)(u^+)^{p+1} dx
\]

\[- \frac{1}{q+1} \int_\Lambda Q(x)(u^+)^{q+1} dx - \int_{\mathbb{R}^N \setminus \Lambda} F_{\varepsilon}(x, u) dx,
\]

where $F_{\varepsilon}(x, \xi) = (1 - \chi_\Lambda(x)) \int_0^\xi f_{\varepsilon}(x, \tau) d\tau$.

For $u \in E_{\varepsilon}$, a direct computation yields

\[
(2-9) \quad \left| \int_{\mathbb{R}^N \setminus \Lambda} F_{\varepsilon}(x, u) dx \right| \leq \int_{\mathbb{R}^N \setminus \Lambda} \frac{\varepsilon^3}{1+|x|^\theta_0} |u|^2 dx
\]

\[\leq C\varepsilon^3 \left(\int_{\mathbb{R}^N \setminus \Lambda} |u|^{2N/(N-2)} dx \right)^{(N-2)/N}
\]

\[\leq C\varepsilon^3 \int_{\mathbb{R}^N} |\nabla u|^2 dx \leq C\varepsilon \|u\|_{\varepsilon}^2,
\]

where we used that $\theta_0 > 2$. It thus follows from (2-5) and (2-9) that $I_{\varepsilon}(u)$ is well defined on E_{ε}, and $I_{\varepsilon} \in C^1(E_{\varepsilon}, \mathbb{R})$.

Next we verify that I_{ε} of (2-8) satisfies the Palais–Smale condition.
Lemma 2.2. For small \(\varepsilon > 0 \), if \(\{u_n\} \subset E_{\varepsilon} \) is a sequence such that \(I_{\varepsilon}(u_n) \) is bounded and \(I'_{\varepsilon}(u_n) \to 0 \) as \(n \to \infty \), then \(\{u_n\} \) has a convergent subsequence.

Proof. Similar to (2-9), we have

\[
\left| \int_{\mathbb{R}^N \setminus \Lambda} f_{\varepsilon}(x, u) dx \right| \leq C \varepsilon \|u\|_{\varepsilon}^2. \tag{2-10}
\]

Since \(I_{\varepsilon}(u_n) \) is bounded and \(I'_{\varepsilon}(u_n) \to 0 \), we have

\[
I_{\varepsilon}(u_n) = \frac{1}{2} \|u_n\|_{\varepsilon}^2 - \frac{1}{p+1} \int_{\Lambda} K(x)(u_n^+)^{p+1} dx - \frac{1}{q+1} \int_{\Lambda} Q(x)(u_n^+)^{q+1} dx - \int_{\mathbb{R}^N \setminus \Lambda} F_{\varepsilon}(x, u_n) dx = O(1), \tag{2-11}
\]

\[
I'_{\varepsilon}(u_n)u_n = \|u_n\|_{\varepsilon}^2 - \int_{\Lambda} K(x)(u_n^+)^{p+1} dx - \int_{\Lambda} Q(x)(u_n^+)^{q+1} dx - \int_{\mathbb{R}^N \setminus \Lambda} f_{\varepsilon}(x, u_n) dx = o(1) \|u_n\|_{\varepsilon}.
\]

Here \(O(1) \) and \(o(1) \) are bounded and vanishing as \(n \to \infty \), respectively. Substituting (2-9) and (2-10) into (2-11) and eliminating the term \(\int_{\Lambda} Q(x)(u_n^+)^{q+1} dx \) yields

\[
\frac{1}{2q} \|u_n\|_{\varepsilon}^2 + \alpha_q^p \int_{\Lambda} K(x)(u_n^+)^{p+1} dx + O(1) \varepsilon \|u_n\|_{\varepsilon}^2 = o(1) \|u_n\|_{\varepsilon} + O(1).
\]

Then \((1/2 - 1/(q + 1)) \|u_n\|_{\varepsilon}^2 + O(1) \varepsilon \|u_n\|_{\varepsilon}^2 \leq o(1) \|u_n\|_{\varepsilon} + O(1) \), because \(p > q > 1 \). This leads to the boundedness of \(\{u_n\} \) in \(E_{\varepsilon} \).

Now \(E_{\varepsilon} \hookrightarrow \mathcal{D}^{1,2}(\mathbb{R}^N) \hookrightarrow H_{\text{loc}}^1(\mathbb{R}^N) \), where \(\hookrightarrow \) denotes continuous embedding, so the boundedness of \(\{u_n\} \) in \(E_{\varepsilon} \) implies that there exists \(u_0 \in E_{\varepsilon} \) satisfying, after passing to a subsequence if necessary,

\[
u_n \rightharpoonup u_0 \quad \text{weakly in } E_{\varepsilon}, \tag{2-12}
\]

\[
u_n \to u_0 \quad \text{strongly in } L_{\text{loc}}^1(\mathbb{R}^N) \tag{2-13}
\]

for \(2 \leq t < 2N/(N-2) \).

Next we show \(\|u_n\|_{\varepsilon} \to \|u_0\|_{\varepsilon} \) as \(n \to \infty \), which with (2-12) leads to the strong convergence of \(\{u_n\} \) in \(E_{\varepsilon} \).

By \(I'_{\varepsilon}(u_n)u_0 \to 0 \) and (2-12), we arrive at

\[
o(1) = \int_{\mathbb{R}^N} (\nabla u_n \cdot \nabla u_0 + V(x)u_n u_0) dx - \int_{\Lambda} K(x)(u_n^+)^p u_0 dx - \int_{\mathbb{R}^N \setminus \Lambda} f_{\varepsilon}(x, u_n) u_0 dx.
\]
This implies
\[(2-15) \quad \|u_0\|_\varepsilon^2 - \int_\Lambda K(x)(u_0^+)^p u_0 dx - \int_\Lambda Q(x)(u_0^+)^q u_0 dx
- \int_{\mathbb{R}^N \setminus \Lambda} f_\varepsilon(x, u_n) u_0 dx = o(1). \]

In addition, from (2-11) and the boundedness of \(\{u_n\} \), we have
\[(2-16) \quad \|u_n\|_\varepsilon^2 - \int_\Lambda K(x)(u_n^+)^{p+1} dx - \int_\Lambda Q(x)(u_n^+)^{q+1} dx
- \int_{\mathbb{R}^N \setminus \Lambda} f_\varepsilon(x, u_n) u_n dx = o(1). \]

On the other hand, using (2-13), we find
\[(2-17) \quad \lim_{n \to \infty} \int_\Lambda K(x)(u_n^+)^{p+1} dx = \lim_{n \to \infty} \int_\Lambda K(x)(u_n^+)^p u_0 dx, \]
\[\lim_{n \to \infty} \int_\Lambda Q(x)(u_n^+)^{q+1} dx = \lim_{n \to \infty} \int_\Lambda Q(x)(u_n^+)^q u_0 dx, \]
and for any fixed large \(R > 0 \) (without losing generality, we assume \(\Lambda \subset B_R(0) \)),
\[(2-18) \quad \lim_{n \to \infty} \int_{B_R(0) \setminus \Lambda} f_\varepsilon(x, u_n) u_n dx = \lim_{n \to \infty} \int_{B_R(0) \setminus \Lambda} f_\varepsilon(x, u_n) u_0 dx. \]

Thus, to conclude that \(\|u_n\|_\varepsilon \to \|u_0\|_\varepsilon \), it follows from (2-15)–(2-18) that we need only prove that for any \(\varepsilon > 0 \), there exists \(R > 0 \) such that for all \(n \)
\[(2-19) \quad \left| \int_{\mathbb{R}^N \setminus B_R(0)} f_\varepsilon(x, u_n) u_0 dx \right| < \delta \quad \text{and} \quad \left| \int_{\mathbb{R}^N \setminus B_R(0)} f_\varepsilon(x, u_n) u_n dx \right| < \delta. \]

In fact, it suffices to check the first inequality in (2-19) since the second one is similar. As in the proof of (2-9), we have
\[(2-20) \quad \left| \int_{\mathbb{R}^N \setminus B_R} f_\varepsilon(x, u_n) u_0 dx \right| \leq \frac{C_\varepsilon}{R^{(\theta_0-2)/2}} \int_{\mathbb{R}^N \setminus B_R} \frac{e^3}{1 + |x|^{\theta_0+2}} |u_n||u_0| dx
\leq \frac{C_\varepsilon}{R^{(\theta_0-2)/2}} \|u_n\|_\varepsilon \|u_0\|_\varepsilon \to 0 \quad \text{as} \quad R \to \infty. \]

The last estimate follows from the choice \(\theta_0 > 2 \) and the boundedness of \(\{u_n\} \). \(\Box \)

We now prove that \(I_\varepsilon \) has the mountain-pass geometry. Let \(\varepsilon > 0 \) be small. By (2-5) and (2-9), there is a number \(r > 0 \) such that
\[I_\varepsilon(u) \geq \frac{1}{2} \|u\|_\varepsilon^2 - C_\varepsilon^{-N(p-1)/2} \|u\|_\varepsilon^{p+1} - C_\varepsilon^{-N(q-1)/2} \|u\|_\varepsilon^{q+1} - C_\varepsilon \|u\|_\varepsilon^2
\geq \frac{1}{4} \|u\|_\varepsilon^2 \quad \text{for} \quad \|u\|_\varepsilon \leq r. \]
By choosing a nontrivial nonnegative smooth function \(\varphi(x) \) with support in \(\Lambda \), we find that
\[
I_\varepsilon(t\varphi) = \frac{1}{2}t^2\|\varphi\|_2^2 - \frac{t^{p+1}}{p+1}\int_{\Lambda}K(x)\varphi^{p+1}dx - \frac{t^{q+1}}{q+1}\int_{\Lambda}Q(x)\varphi^{q+1}dx
\]
goess to \(-\infty\) as \(t \to +\infty \). Therefore \(I_\varepsilon \) has the mountain-pass geometry. Hence, by the standard theorem, we have this:

Lemma 2.3. Under the assumptions \((H_1)-(H_3)\), for small \(\varepsilon > 0 \), the modified functional \(I_\varepsilon \) of (2-8) has a nontrivial critical point \(u_\varepsilon \in E_\varepsilon \) with level
\[
c_\varepsilon = \inf_{\gamma \in \Gamma_\varepsilon} \max_{0 \leq t \leq 1} I_\varepsilon(\gamma(t)),
\]
where \(\Gamma_\varepsilon = \{ \gamma \in C([0, 1], E_\varepsilon) : \gamma(0) = 0, I_\varepsilon(\gamma(1)) < 0 \} \).

Remark 2.4. Since \(g_\varepsilon(x, \xi) \) is Lipschitz continuous in \(\xi \) for fixed \(x \), it follows from second order elliptic regularity theory that \(u_\varepsilon \) is a strong solution of (2-8). One can also show that \(u_\varepsilon > 0 \), as follows. Suppose first \(I'_\varepsilon(u_\varepsilon)u_\varepsilon^- = 0 \), with \(u_\varepsilon^- = \max(-u_\varepsilon, 0) \). Then \(\int_{\mathbb{R}^N}(\varepsilon^2|\nabla u_\varepsilon^-|^2 + V(x)|u_\varepsilon^-|^2)dx = 0 \) and also \(u_\varepsilon^- = 0 \). Thus, we find \(u_\varepsilon \geq 0 \). On the other hand, in Section 3 we will show that \(u_\varepsilon \) satisfies (1-1), which can be reformulated as
\[
-\varepsilon^2\Delta u_\varepsilon + (V(x) + Q^-(x)|u_\varepsilon|^{q-1})u_\varepsilon = K(x)|u_\varepsilon|^{p-1}u_\varepsilon + Q^+(x)|u_\varepsilon|^{q-1}u_\varepsilon \geq 0.
\]
From this, together with \(u_\varepsilon \geq 0 \) and \(u_\varepsilon \neq 0 \), we can obtain \(u_\varepsilon(x) > 0 \) by using the strong maximum principle of second order elliptic equations.

In the following lemma, we obtain an upper bound on \(c_\varepsilon \), so that we can later estimate
\[
\varepsilon^{-N}\inf_{u \in M_\varepsilon} \left(\frac{1}{2p}\|u\|_2^2 + \alpha_p^0 \int_{\Lambda}K(x)(u^+)^{p+1}dx \right),
\]
where \(M_\varepsilon = \{ u \in E_\varepsilon \setminus \{0\} : I'_\varepsilon(u)u = \|u\|_2^2 - \int_{\mathbb{R}^N}g_\varepsilon(x, u)udx = 0 \} \). This will help prove Proposition 3.1, which will then play crucial role in obtaining the decay of \(u_\varepsilon \) needed for the proof of Theorem 1.1.

Lemma 2.5. Under the hypotheses \((H_1)-(H_3)\), for small \(\varepsilon > 0 \) we have
\[
c_\varepsilon \leq (c_0 + o(1))\varepsilon^N \quad \text{for small } \varepsilon > 0,
\]
where \(c_0 \) is the constant defined in \((H_2)\).

Proof. For \(\xi \in \Lambda \), choose \(R > 0 \) such that \(B_R(\xi) \subset \Lambda \). Define a smooth cutoff function \(\eta : \mathbb{R}^+ \to \mathbb{R}^+ \) such that \(\eta(t) = 1 \) if \(0 \leq t \leq R/4 \) and \(\eta(t) = 0 \) if \(t \geq R/2 \), with \(\|\eta'(t)\| \leq 8/R \). Set
\[
w_\varepsilon(x) = \eta(|x - \xi|)\omega((x - \xi)/\varepsilon),
\]
where \(\omega(x) = \omega(V(\xi), K(\xi), Q(\xi); x) \) is the unique positive \(H^1(\mathbb{R}^N) \) solution of (2-1) that is spherically symmetric about the origin. Since \(w_\varepsilon \) is compactly supported in \(\Lambda \), we find \(\int_{\Lambda} F_\varepsilon(x, t w_\varepsilon) = 0 \) for all \(t \geq 0 \), and there exists a \(T > 0 \) large enough that \(I_\varepsilon(T w_\varepsilon) < 0 \). This implies that the path \(\gamma_\varepsilon(t) = \{ t T w_\varepsilon : t \in [0, 1] \} \) is an element of \(\Gamma_\varepsilon \) that satisfies \(c_\varepsilon \leq \max_{0 \leq t \leq 1} I_\varepsilon(\gamma_\varepsilon(t)) \). Recalling that \(V(x), K(x) \) and \(Q(x) \) are smooth functions and \(\omega \) decays exponentially at infinity, we arrive at

\[
\int_{\mathbb{R}^N} \left(|\nabla (\eta(\varepsilon|y|) \omega(y))|^2 + V(\xi + \varepsilon y) |\eta(\varepsilon|y|) \omega(y)|^2 \right. \\
\left. - |\nabla \omega(y)|^2 - V(\xi) \omega^2(y) \right) dy = o(1),
\]

\[
\int_{\mathbb{R}^N} \left(K(\xi + \varepsilon y) |\eta(\varepsilon|y|) \omega(y)|^{p+1} - K(\xi) \omega^{p+1}(y) \right) dy = o(1),
\]

\[
\int_{\mathbb{R}^N} \left(Q(\xi + \varepsilon y) |\eta(\varepsilon|y|) \omega(y)|^{q+1} - Q(\xi) \omega^{q+1}(y) \right) dy = o(1).
\]

Hence, by the change of variable \(y = (x - \xi)/\varepsilon \), we have for \(0 \leq t \leq 1 \)

\[
I_\varepsilon(t T w_\varepsilon) = \frac{(t T)^2}{2} \int_{\mathbb{R}^N} \left(\varepsilon^2 |\nabla \omega|_2^2 + V(x) \omega_2^2 \right) dx - \frac{(t T)^{p+1}}{p+1} \int_{\Lambda} K(x) \omega^{p+1}_e dx \\
- \frac{(t T)^{q+1}}{q+1} \int_{\Lambda} Q(x) \omega^{q+1}_e dx
\]

\[
= \frac{(t T)^2}{2} \varepsilon^N \int_{\mathbb{R}^N} \left(|\nabla (\eta(\varepsilon|y|) \omega(y))|^2 + V(\xi + \varepsilon y) |\eta(\varepsilon|y|) \omega(y)|^2 \right) dx \\
- \frac{(t T)^{p+1}}{p+1} \varepsilon^N \int_{\mathbb{R}^N} K(\xi + \varepsilon y) |\eta(\varepsilon|y|) \omega(y)|^{p+1} dy \\
- \frac{(t T)^{q+1}}{q+1} \varepsilon^N \int_{\mathbb{R}^N} Q(\xi + \varepsilon y) |\eta(\varepsilon|y|) \omega(y)|^{q+1} dy
\]

\[
= \varepsilon^N \left(\frac{(t T)^2}{2} \int_{\mathbb{R}^N} (|\nabla \omega|^2 + V(\xi) \omega^2) dx - \frac{(t T)^{p+1}}{p+1} \int_{\mathbb{R}^N} K(\xi) \omega^{p+1} dy \\
- \frac{(t T)^{q+1}}{q+1} \int_{\mathbb{R}^N} Q(\xi) \omega^{q+1} dy + o(1) \right).
\]

As in the argument of [Wang and Zeng 1997, Lemma 2.1], we get

\[
\max_{0 \leq t \leq 1} \left(\frac{(t T)^2}{2} \int_{\mathbb{R}^N} (|\nabla \omega|^2 + V(\xi) \omega^2) dx - \frac{(t T)^{p+1}}{p+1} \int_{\mathbb{R}^N} K(\xi) \omega^{p+1} dy \\
- \frac{(t T)^{q+1}}{q+1} \int_{\mathbb{R}^N} Q(\xi) \omega^{q+1} dy \right) = G(\xi).
\]

So \(\max_{0 \leq t \leq 1} I_\varepsilon(\gamma_\varepsilon(t)) = \max_{0 \leq t \leq 1} I_\varepsilon(t T w_\varepsilon) = \varepsilon^N (G(\xi) + o(1)). \) Since \(\xi \) is arbitrary and the smallness of \(\varepsilon \) is independent of \(\xi \), the proof is completed. \(\square \)
For $\varepsilon > 0$, the solution manifold of (2-8) is

\[(2-21) \quad \mathcal{M}_\varepsilon = \left\{ u \in E_\varepsilon \setminus \{0\} : \|u\|^2 = \int_\Lambda K(x)(u^+)^{p+1}dx + \int_\Lambda Q(x)(u^+)^{q+1}dx + \int_{\mathbb{R}^N \setminus \Lambda} f_\varepsilon(x, u)udx \right\}. \]

Next we estimate $\varepsilon^{-N} \inf_{u \in \mathcal{M}_\varepsilon} \left(\frac{1}{2} \|u\|^2 + \alpha_q \int_\Lambda K(x)(u^+)^{p+1}dx \right)$ as in [del Pino and Felmer 1996; Wang and Zeng 1997; Yin and Zhang 2009].

Lemma 2.6. For small $\varepsilon > 0$, there exists a positive constant c_1 such that

\[c_1 \leq \varepsilon^{-N} \inf_{u \in \mathcal{M}_\varepsilon} \left(\frac{1}{2} \|u\|^2 + \alpha_q \int_\Lambda K(x)(u^+)^{p+1}dx \right) \leq \varepsilon^{-N} \left(\frac{1}{2} \|u\|^2 + \alpha_q \int_\Lambda K(x)(u^+)^{p+1}dx \right) \leq c_0 + o(1).\]

Proof. By (2-5) and (2-10), for $u \in \mathcal{M}_\varepsilon$, we have

\[\varepsilon^{-N} \|u\|^2 = \varepsilon^{-N} \int_\Lambda K(x)(u^+)^{p+1}dx + \varepsilon^{-N} \int_\Lambda Q(x)(u^+)^{q+1}dx + \varepsilon^{-N} \int_{\mathbb{R}^N \setminus \Lambda} f_\varepsilon(x, u)udx \leq C \varepsilon^{-N(p+1)/2} \|u\|^{p+1} + C \varepsilon^{-N(q+1)/2} \|u\|^{q+1} + o(1) \varepsilon^{-N} \|u\|^2 \]

\[= C \varepsilon^{-N} \|u\|^2 + C \varepsilon^{-N} \|u\|^2 + o(1) \varepsilon^{-N} \|u\|^2.\]

Because $p > 1$ and $q > 1$, this means that there exists a positive number C independent of ε such that $\varepsilon^{-N} \|u\|^2 \geq C$ for $u \in \mathcal{M}_\varepsilon$. Thus we obtain the lemma’s first inequality.

It follows from (2-9), (2-10) and (2-21) that

\[I_\varepsilon(u_\varepsilon) = \frac{1}{2} \|u_\varepsilon\|^2 + \alpha_q \int_\Lambda K(x)(u^+)^{p+1}dx + \frac{1}{q+1} \int_{\mathbb{R}^N \setminus \Lambda} f_\varepsilon(x, u_\varepsilon)udx - \int_{\mathbb{R}^N \setminus \Lambda} F_\varepsilon(x, u_\varepsilon)dx \]

\[= (1 + o(1)) \left(\frac{1}{2} \|u_\varepsilon\|^2 + \alpha_q \int_\Lambda K(x)(u^+)^{p+1}dx \right).\]

This together with Lemma 2.5 yields

\[\varepsilon^{-N} \left(\frac{1}{2} \|u_\varepsilon\|^2 + \alpha_q \int_\Lambda K(x)(u^+)^{p+1}dx \right) = (1 + o(1)) \varepsilon^{-N} I_\varepsilon(u_\varepsilon) \leq c_0 + o(1),\]

completing the proof. \qed
3. Decay estimates and the proof of Theorem 1.1

Let \(\{u_\varepsilon \} \) be the solutions obtained in Lemma 2.3. In Section 4, we will prove this:

Proposition 3.1. There is a sequence \(\{\xi_\varepsilon\} \subset \Lambda \) such that for any \(\nu > 0 \) there exist \(\varepsilon_1(\nu), \rho_1(\nu) > 0 \) such that

\[
(3-1) \quad \varepsilon^{-N} \left(\frac{1}{2q} \int_{\mathbb{R}^N \setminus B_{\rho_1(\nu)}(\xi_\varepsilon)} (e^2 |\nabla u_\varepsilon|^2 + V(x)u_\varepsilon^2) dx \right. \\
+ \left. \alpha_q \int_{(\mathbb{R}^N \setminus B_{\rho_1(\nu)}(\xi_\varepsilon)) \cap \Lambda} K(x)u_\varepsilon^{p+1} dx \right) < \nu
\]

and

\[
(3-2) \quad \text{dist}(\xi_\varepsilon, M) < \nu
\]

whenever \(\varepsilon < \varepsilon_1(\nu) \), where \(M = \{\xi : G(\xi) = c_0\} \).

For later use, we introduce two fixed positive numbers \(K_0 > 128 \) and \(c > 0 \) such that \(c^2 \geq 128K_0^2 / (d_0^2 V_1) \), where \(d_0 = \text{dist}(\partial \Lambda, M) > 0 \) and \(V_1 = \frac{1}{2} \min_{x \in \Lambda} V(x) > 0 \).

Set

\[
v_0 = \min \left\{ \frac{d_0}{K_0}, \frac{q-1}{2(q+1)} (16C_1)^{-2/(p-1)}, \frac{q-1}{2(q+1)} (16C_1)^{-2/(q-1)} \right\},
\]

where \(C_1 \) is defined in (2-5).

Take \(\varepsilon_2 = \min\{\varepsilon_1(v_0), d_0 / (K_0 \rho_1(v_0))\} \), (In 2), where \(\varepsilon_1(v_0) \) and \(\rho_1(v_0) \) are the functions whose existence is ensured by Proposition 3.1. From now on, we assume \(\varepsilon < \varepsilon_2 \) and \(\nu < \nu_0 \) in (3-1).

It follows from (3-2) that for \(\varepsilon < \varepsilon_2 \) and \(\nu = \nu_0 \)

\[
(3-3) \quad \text{dist}(\xi_\varepsilon, \partial \Lambda) > \frac{1}{2} d_0 \quad \text{and} \quad \varepsilon \rho_1(v_0) < d_0 / K_0.
\]

Define \(\Omega_{n,\varepsilon} = \mathbb{R}^N \setminus B_{R_{n,\varepsilon}}(\xi_\varepsilon) \) with \(R_{n,\varepsilon} = \varepsilon c_{\varepsilon n} \), and let \(\hat{n} > \tilde{n} \) satisfy

\[
\hat{n} - 1, \varepsilon < d_0 / K_0 \leq R_{\hat{n}, \varepsilon} \quad \text{and} \quad R_{\tilde{n} + 2, \varepsilon} \leq d_0 / 2 < R_{\hat{n} + 3, \varepsilon}.
\]

By the second inequality of (3-3), we get \(R_{n, \varepsilon} \geq R_{\hat{n}, \varepsilon} \geq d_0 / K_0 > \varepsilon \rho_1(v_0) \) for \(n \geq \hat{n} \) and \(\varepsilon < \varepsilon_2 \), and this also yields

\[
(3-5) \quad \Omega_{n, \varepsilon} \cap B_{\varepsilon \rho_1(v_0)}(\xi_\varepsilon) = \emptyset.
\]

Let \(\chi_{n, \varepsilon}(x) \) be smooth cutoff functions such that \(\chi_{n, \varepsilon}(x) = 0 \) in \(B_{R_{n, \varepsilon}}(\xi_\varepsilon) \) and \(\chi_{n, \varepsilon}(x) = 1 \) in \(\Omega_{n+1, \varepsilon} \), with \(0 \leq \chi_{n, \varepsilon} \leq 1 \) and \(|\nabla \chi_{n, \varepsilon}| \leq 2 / (R_{n+1, \varepsilon} - R_{n, \varepsilon}) \).

Lemma 3.2. Under assumptions \((H_1), (H_2), \varepsilon < \varepsilon_2 \) and \(\hat{n} \leq n \leq \tilde{n} \), we have

\[
(3-6) \quad \int_{\mathbb{R}^N} A_{n, \varepsilon} dx \leq \frac{1}{2} \int_{\Omega_{n, \varepsilon}} (e^2 |\nabla u_\varepsilon|^2 + V(x)u_\varepsilon^2) dx,
\]

where \(A_{n, \varepsilon}(x) = e^2 |\nabla (\chi_{n, \varepsilon} u_\varepsilon)|^2 + V(x)(\chi_{n, \varepsilon} u_\varepsilon)^2 \).
Proof. Straightforward computation gives \(R_{n+1,e} - R_{n,e} \geq c e R_{n+1,e} / 2 \) for \(e < e_2 \).

This yields
\[
e^2 |\nabla \chi_{n,e}|^2 \leq \frac{4e^2}{|R_{n+1,e} - R_{n,e}|^2} \leq \frac{16}{c^2 R_{n+1,e}^2}.
\]

From the choice of \(c \), for \(e < e_2 \) and \(\hat{n} \leq n \leq \tilde{n} \), we arrive at
\[
\frac{128}{c^2 R_{n+1,e}^2} \leq \frac{128 K_0^2}{d_0^2} = V_1 \leq V(x) \quad \text{for } x \in \{ x : R_{n,e} \leq |x - \xi| < R_{n+1,e} \}.
\]

Note that \(\nabla \chi_{n,e} \) is supported in \(\{ x : R_{n,e} \leq |x - \xi| < R_{n+1,e} \} \). Then for \(e < e_2 \) and \(\hat{n} \leq n \leq \tilde{n} \), we obtain from the last two inequalities that
\[
(3-7) \quad e^2 |\nabla \chi_{n,e}|^2 \leq \frac{1}{8} V(x) \quad \text{in } \mathbb{R}^N.
\]

Multiplying (2-8) by \(\chi_{n,e}^2 u_e \) yields \(\int_{\mathbb{R}^N} A_{n,e} dx = I + II + III \), where
\[
(3-8) \quad I = \int_{\Omega_{n,e}} e^2 |\nabla \chi_{n,e}|^2 u_e^2 dx,
\]
\[
(3-9) \quad II = \int_{\Lambda \cap \Omega_{n,e}} \chi_{n,e}^2 K(x) (u_e^+)^{p+1} dx + \int_{\Lambda \cap \Omega_{n,e}} \chi_{n,e}^2 Q(x) (u_e^+)^{q+1} dx,
\]
\[
(3-10) \quad III = \int_{(\mathbb{R}^N \setminus \Lambda) \cap \Omega_{n,e}} f_e(x, u_e) \chi_{n,e}^2 u_e dx.
\]

By (3-7), we have
\[
|I| \leq \frac{1}{8} \int_{\Omega_{n,e}} V(x) u_e^2 dx.
\]

For \(|II| \), we only need to consider the case \(\Lambda \cap \Omega_{n,e} \neq \emptyset \). In this case, there is a set \(\Sigma_{n,e} \) such that \(\Lambda \subset \Sigma_{n,e} \subset \Lambda_0 = \{ x : \text{dist}(x, \Lambda) \leq r_0 \} \), and \(\Sigma_{n,e} \cap \Omega_{n,e} \) has the uniform cone property, where \(r_0 > 0 \) is a small constant such that \(V(x) \geq V_1 \) for \(x \in \Lambda_{2r_0} \).

By (2-5), we have
\[
(3-11) \quad \int_{\Lambda \cap \Omega_{n,e}} K(x) (u_e^+)^{p+1} dx \leq \int_{\Sigma_{n,e} \cap \Omega_{n,e}} K(x) |u_e|^{p+1} dx
\]
\[
\quad \leq C_1 e^{-(N(p-1)/2)} \left(\int_{\Sigma_{n,e} \cap \Omega_{n,e}} (e^2 |\nabla u_e|^2 + V(x) u_e^2) dx \right)^{(p+1)/2}
\]
and
\[
\int_{\Lambda \cap \Omega_{n,e}} |Q(x)|(u_e^+)^{q+1} dx
\]
\[
\quad \leq C_1 e^{-N(q-1)/2} \left(\int_{\Sigma_{n,e} \cap \Omega_{n,e}} (e^2 |\nabla u_e|^2 + V(x) u_e^2) dx \right)^{(q+1)/2}.
\]
In addition, by using (3-5), we get $$\Sigma_{n,\epsilon} \cap \Omega_{n,\epsilon} \subset \mathbb{R}^N \setminus B_{\epsilon \rho_1(\nu_0)}(\xi_\epsilon)$$ for $$\epsilon < \epsilon_2$$ and $$n \geq \hat{n}$$. Thus, it follows from (3-1) and the definition of $$\nu_0$$ that

$$|II| \leq \left(C_1 e^{-N\rho_1/(q-1)/2} \left(\int_{\mathbb{R}^N \setminus B_{\rho_1(\nu_0)}(\xi_\epsilon)} (\epsilon^2 |\nabla u_\epsilon|^2 + V(x)u_\epsilon^2)dx \right)^{(q-1)/2} + C_1 e^{-N\rho_1/(q-1)/2} \left(\int_{\mathbb{R}^N \setminus B_{\rho_1(\nu_0)}(\xi_\epsilon)} (\epsilon^2 |\nabla u_\epsilon|^2 + V(x)u_\epsilon^2)dx \right)^{(q-1)/2} \right) \times \int_{\Sigma_{n,\epsilon} \cap \Omega_{n,\epsilon}} (\epsilon^2 |\nabla u_\epsilon|^2 + V(x)u_\epsilon^2)dx$$

$$\leq \frac{1}{8} \int_{\Omega_{n,\epsilon}} (\epsilon^2 |\nabla u_\epsilon|^2 + V(x)u_\epsilon^2)dx.$$

Finally, we estimate $$|III|$$. Similar to the proof of (2-9), for $$\epsilon < \epsilon_2$$, we have

$$|III| \leq \int_{\Omega_{n,\epsilon}} \frac{2e^3}{1+|x|^6} u_\epsilon^2 dx \leq \frac{1}{8} \int_{\Omega_{n,\epsilon}} (\epsilon^2 |\nabla u_\epsilon|^2 + V(x)u_\epsilon^2)dx.$$

The lemma then follow from our estimates for I, II and III.

Lemma 3.3. Under the assumptions of Lemma 3.2, for small $$\epsilon < \epsilon_2$$, we have

$$\int_{\mathbb{R}^N} |\nabla (\chi_{\bar{n},\epsilon} u_\epsilon)|^2 dx \leq C \epsilon^{N-2} 2^{-1/(c\epsilon)}.$$

Proof. By (3-6), we have

$$\int_{\mathbb{R}^N} A_{n,\epsilon} dx \leq \frac{1}{2} \int_{\Omega_{n,\epsilon}} (\epsilon^2 |\nabla u_\epsilon|^2 + V(x)u_\epsilon^2)dx \leq \frac{1}{2} \int_{\mathbb{R}^N} A_{n-1,\epsilon} dx.$$

Iterating the above process and applying (3-5), (3-6) and (3-1), we have for small $$\epsilon$$

$$\int_{\mathbb{R}^N} A_{\bar{n},\epsilon} dx \leq \left(\frac{1}{2} \right)^{\hat{n}} \int_{\mathbb{R}^N} A_{\epsilon,\epsilon} dx \leq \left(\frac{1}{2} \right)^{\hat{n}+1} \int_{\Omega_{\epsilon,\epsilon}} (\epsilon^2 |\nabla u_\epsilon|^2 + V(x)u_\epsilon^2)dx \leq \left(\frac{1}{2} \right)^{\hat{n}+1} \int_{\mathbb{R}^N \setminus B_{\epsilon \rho_1(\nu_0)}(\xi_\epsilon)} (\epsilon^2 |\nabla u_\epsilon|^2 + V(x)u_\epsilon^2)dx \leq C \epsilon^N \left(\frac{1}{2} \right)^{\hat{n}} \leq C \epsilon^N 2^{-1/c\epsilon}.$$

From this, we have

$$\int_{\mathbb{R}^N} |\nabla (\chi_{\bar{n},\epsilon} u_\epsilon)|^2 dx \leq \epsilon^{-2} \int_{\mathbb{R}^N} A_{\epsilon,\epsilon} dx \leq C \epsilon^{N-2} 2^{-1/(c\epsilon)}.$$

Lemma 3.4. Under the assumptions of Lemma 3.2, we have

$$u_\epsilon(x) \leq C 2^{-\ln 2/(c\epsilon)} \text{ for } x \in \mathbb{R}^N \text{ such that } |x - \xi_\epsilon| \geq d_0/2.$$
Proof. By (2-8), we see \(v_\varepsilon(x) = u_\varepsilon(x, x) \) is a classical solution of the equation
\[
-\Delta v_\varepsilon + V(x)v_\varepsilon = \chi_\varepsilon(x)(K(x)v_\varepsilon^p + Q(x)v_\varepsilon^q) + (1 - \chi_\varepsilon(x))f_\varepsilon(x, v_\varepsilon),
\]
where \(\chi_\varepsilon \) is a characteristic function of \(\Lambda_\varepsilon = \{x^{-1}x : x \in \Lambda\} \). Let
\[
c_\varepsilon(x) = \chi_\varepsilon(x)(K(x)v_\varepsilon^{p-1}(x) + Q(x)v_\varepsilon^{q-1}(x)) + (1 - \chi_\varepsilon(x)) - \frac{2\varepsilon^3}{1 + |\varepsilon x|^3}.
\]
Then \(v_\varepsilon \in H^1_{\text{loc}}(\mathbb{R}^N) \) is a nonnegative weak subsolution of \(\Delta v + c_\varepsilon(x)v = 0 \). Choosing \(s \in (N/2, 2N/(p-1)(N-2)) \), we see by Lemma 2.6 and \(\theta_0 > 2 \) that \(c_\varepsilon(x) \in L^s(\mathbb{R}^N) \) and
\[
\begin{align*}
\|c_\varepsilon(x)\|^s_{L^s} &\leq \|\chi_\varepsilon(x)K(x)v_\varepsilon^{q-1}\|^s_{L^s} + \|(1 - \chi_\varepsilon(x))\|_{L^s}
+ C \left(\int_{\Lambda_\varepsilon} (|\nabla v_\varepsilon|^2 + |v_\varepsilon|^2)dx \right)^{(p-1)/2} + C \left(\int_{\Lambda_\varepsilon} (|\nabla v_\varepsilon|^2 + |v_\varepsilon|^2)dx \right)^{(q-1)/2}
+ C e^{3-N/s} \left(\int_{\mathbb{R}^N \setminus \Lambda} \frac{1}{(1 + |y|^{N/s})}dy \right)^{1/s}
\leq C \left(e^{-N} \int_{\Lambda} (\varepsilon^2 |\nabla u_\varepsilon|^2 + V(y)|u_\varepsilon|^2)dy \right)^{(p-1)/2}
+ C \left(e^{-N} \int_{\Lambda} (\varepsilon^2 |\nabla u_\varepsilon|^2 + V(y)|u_\varepsilon|^2)dy \right)^{(q-1)/2} + C,
\end{align*}
\]
which is less than or equal to \(C \). Here \(C \) is positive and independent of \(\varepsilon \), that is, the norm \(\|c_\varepsilon(x)\|^s_{L^s} \) is uniformly bounded in \(\varepsilon \). By [Gilbarg and Trudinger 1983, Theorem 8.17 and page 193], there is a constant \(C \) depending only on \(d_0 \), the dimension \(N \), and the \(L^s \) bound of \(c_\varepsilon(x) \), such that for \(z \in \mathbb{R}^N \)
\[
(3-15) \quad v_\varepsilon(z) \leq C \left(\int_{B_{d_0}(z)} v_\varepsilon^{2^*}(y)dy \right)^{1/2^*}, \quad \text{where } 2^* = \frac{2N}{N-2}.
\]

We note that \(B_{\varepsilon d_0}(x) \subset \Omega_{\varepsilon - 1, d} \) for \(x \in \mathbb{R}^N \) with \(|x - \alpha| \geq d_0/2 \) and for small \(\varepsilon \). This, together with (3-15) and Lemma 3.3, yields
\[
\begin{align*}
u_\varepsilon(x) = v_\varepsilon(e^{-1}x) &\leq C \left(\int_{B_{d_0}(e^{-1}x)} v_\varepsilon^{2^*}(y)dy \right)^{1/2^*}
= C \left(e^{-N} \int_{B_{\varepsilon d_0}(x)} u_\varepsilon^{2^*}(z)dz \right)^{1/2^*}
\leq C e^{-(N-2)/2} \left(\int_{\mathbb{R}^N} (\varepsilon \alpha, \varepsilon u_\varepsilon)_{2^*}(z)dz \right)^{1/2^*}
\leq C e^{-(N-2)/2} \left(\int_{\mathbb{R}^N} |\varepsilon (\varepsilon \alpha, \varepsilon u_\varepsilon)|^2(z)dz \right)^{1/2} \leq C 2^{-\ln 2/(2c\varepsilon)}. \quad \Box
\end{align*}
\]
Remark 3.5. By Lemma 3.4, for any fixed constant \(\theta \geq 1 \), there exists an \(\epsilon_0 \) depending on \(\theta \) such that \(u_\epsilon(x) \leq \epsilon^\theta \) for \(|x - \xi_\epsilon| \geq d_0/2 \) whenever \(\epsilon < \epsilon_0 \).

Proof of Theorem 1.1. It follows from the assumption \((H_3)\) that there exist some positive constants \(\sigma_0, \theta_0, \theta_1, \theta_2 \) such that

\[
\beta_1 < p\sigma_0 - N, \quad N - \frac{9}{4} < \sigma_0 < N - 2, \\
2 < \theta_0 < (p - 1)\sigma_0 - \beta_1, \quad \theta_0 < (p - \theta_1)\sigma_0 - \beta_1, \\
4 + 2(p - \theta_1) \leq (\theta_1 - 1)\theta_2, \quad \theta_1 > 1.
\]
(3-16)

As in [Yin and Zhang 2009], we define the comparison function

\[U(x) = \frac{1}{|x - \xi_\epsilon|^{\sigma_0}} \quad \text{in} \quad |x - \xi_\epsilon| \geq d_0/2. \]

It is easy to see that \(Z(x) = U(x) - \epsilon^2 u_\epsilon(x) \geq 0 \) on \(|x - \xi_\epsilon| = d_0/2 \) for small \(\epsilon \).

Since \(v_\epsilon(x) = u_\epsilon(\epsilon x) \) vanishes at infinity by (3-15), so does \(Z(x) \).

On the other hand, using the expression for \(H_u \) actually solves Equation (1-1).

Thus, by the maximum principle we deduce that \(u_\epsilon \leq U/\epsilon^2 \) in \(|x - \xi_\epsilon| > d_0/2 \).

This and the uniform boundedness of \(\xi_\epsilon \) imply

\[
\Delta Z = \Delta U - \epsilon^2 \Delta u_\epsilon \\
= \sigma_0(\sigma_0 + 2 - N) \frac{1}{|x - \xi_\epsilon|^{\sigma_0 + 2}} - V(x)u_\epsilon + g_\epsilon(x, u_\epsilon) \\
\leq \sigma_0(\sigma_0 + 2 - N) \frac{1}{|x - \xi_\epsilon|^{\sigma_0 + 2}} + \chi_\lambda(x)\epsilon + (1 - \chi_\lambda(x)) \frac{2\epsilon}{1 + |x|^N} \leq 0.
\]
(3-17)

Next we verify that \(u_\epsilon \) actually solves Equation (1-1).

Indeed, it follows from \((H_3), \) Remark 3.5 and (3-17) that for small \(\epsilon \)

\[
K(x)u_\epsilon^p \leq k_1(1 + |x|^{\beta_1}) \left(\frac{C}{\epsilon^2(1 + |x|^{\sigma_0})} \right)^{p - \theta_1} \epsilon^{(\theta_1 - 1)\theta_2} u_\epsilon \\
\leq \frac{\epsilon^3}{2(1 + |x|^{\beta_0})} u_\epsilon \quad \text{in} \quad \mathbb{R}^N \setminus \Lambda.
\]
(3-18)

Similarly, by \((H_3), \) Remark 3.5, (3-16), and (3-17), we obtain for small \(\epsilon \) that

\[
2|Q(x)|u_\epsilon^q \leq \frac{\epsilon^3}{2(1 + |x|^{\beta_0})} u_\epsilon, \quad K(x)u_\epsilon^p \leq \frac{\epsilon}{2(1 + |x|^N)}, \\
2|Q(x)|u_\epsilon^q \leq \frac{\epsilon}{2(1 + |x|^N)}
\]
(3-19)

for \(x \in \mathbb{R}^N \setminus \Lambda. \)
Therefore \(g_ε(x, u) = K(x)u^p + Q(x)u^q \) in \(\mathbb{R}^N \setminus \Lambda \) and \(u_ε \) solves (1-1). Since \(N - 9/4 < σ_0 \), the estimate (3-17) leads to \(u_ε \in L^2(\mathbb{R}^N) \) for \(N \geq 5 \). □

4. The proof of Proposition 3.1.

Although the strategy is somewhat similar to that in [del Pino and Felmer 1996] or [Wang 1993; Wang and Zeng 1997; Yin and Zhang 2009], the appearance of the second nonlinear term \(Q(x)|u|^{q-1}u \) in (1-1) and the compact support of \(V(x) \) will make the analysis more involved.

Given \(u \in \mathcal{M}_ε \) as defined in (2-21) for any domain \(\Omega \subset \mathbb{R}^N \), we define the measure \(μ_u \) by

\[
μ_u(Ω) = ε^{-N} \left(\frac{1}{2q} \int_{Ω} (\varepsilon^2 |∇u|^2 + V(ξ)|u|^2)dx + α_q^p \int_{Ω \cap Λ} K(ξ)(u^+)^{p+1}dx \right)
\]

(4-1)

\[
= \frac{1}{2q} \int_{Ω} (|∇u(εx)|^2 + V(εx)|u(εx)|^2)dx + α_q^p \int_{Ω \cap Λ} K(εx)(u^+(εx))^{p+1}dx,
\]

where \(εΩ = \{εx : x \in Ω\} \) and \(ε^{-1}Λ = \{ε^{-1}x : x \in Λ\} \).

By Lemma 2.6, we have \(0 < c_1 \leq \inf_{u \in \mathcal{M}_ε} μ_u(\mathbb{R}^N) \leq c_0 + o(1) \). This means that there exists a subsequence \(ε_n \to 0 \) as \(n \to ∞ \), a sequence \(u_n \in \mathcal{M}_{ε_n} \), and \(b_1 \in [c_1, c_0] \) such that

\[
\lim_{n \to ∞} μ_{u_n}(\mathbb{R}^N) = \lim_{ε \to 0} \inf_{u \in \mathcal{M}_ε} μ_u(\mathbb{R}^N) = b_1,
\]

where \(μ_n \) stands for \(μ_{u_n} \).

Let \(v_n(x) = u_n(ε_nx) \). It follows from (2-10) and (4-2) that \(v_n \) satisfies

\[
\lim_{n \to ∞} \left(\frac{1}{2p} \int_{Λ_n} K(ε_nx)(v_n^+)^{p+1}dx + \frac{1}{2q} \int_{Λ} Q(ε_nx)(v_n^+)^{q+1}dx \right) = b_1,
\]

(4-3)

where \(Λ_n = \{ε_n^{-1}x : x \in Λ\} \).

By the concentration-compactness lemma of P. L. Lions [1984a, Lemma I.1], \(\{μ_n\} \) satisfies up to a subsequence one of three mutually exclusive possibilities:

(i) Vanishing: For all \(ρ > 0 \),

\[
\lim_{n \to ∞} \sup_{ξ \in \mathbb{R}^N} \int_{B_ρ(ξ)} dμ_n = 0.
\]

(4-4)

(ii) Dichotomy: There exist \(b_2 \in (0, b_1) \) such that for any \(ν > 0 \), there exist \(ρ > 0 \), \(\{ξ_n\} \subset \mathbb{R}^N \) and \(ρ_n \to +∞ \) with

\[
\left| \int_{B_ρ(ξ_n)} dμ_n - b_2 \right| ≤ ν, \quad \int_{B_{ρ_0}(ξ_n) \setminus B_{ρ}(ξ_n)} dμ_n ≤ ν,
\]

(4-5)

By the concentration-compactness lemma of P. L. Lions [1984a, Lemma I.1], \(\{μ_n\} \) satisfies up to a subsequence one of three mutually exclusive possibilities:

(i) Vanishing: For all \(ρ > 0 \),

\[
\lim_{n \to ∞} \sup_{ξ \in \mathbb{R}^N} \int_{B_ρ(ξ)} dμ_n = 0.
\]

(4-4)

(ii) Dichotomy: There exist \(b_2 \in (0, b_1) \) such that for any \(ν > 0 \), there exist \(ρ > 0 \), \(\{ξ_n\} \subset \mathbb{R}^N \) and \(ρ_n \to +∞ \) with

\[
\left| \int_{B_ρ(ξ_n)} dμ_n - b_2 \right| ≤ ν, \quad \int_{B_{ρ_0}(ξ_n) \setminus B_{ρ}(ξ_n)} dμ_n ≤ ν,
\]

(4-5)
and

\[\left| \int_{\mathbb{R}^N \setminus B_{\rho_n}(\zeta_n)} d\mu_n - (b_1 - b_2) \right| \leq \nu. \]

(iii) Compactness: There exists a sequence \(\{\zeta_n\} \subset \mathbb{R}^N \) such that for any \(\nu > 0 \), there exists \(\rho > 0 \) such that

\[\int_{B_{\rho}(\zeta_n)} d\mu_n \geq b_1 - \nu. \]

Lemma 4.1. For small \(\varepsilon > 0 \), the vanishing property (i) does not occur.

Proof. First, we show that there is a positive integer \(m \) independent of \(\varepsilon \) such that

\[\int_{\Lambda} K(x)(u^+)^{p+1} dx \leq m C_1 \left(\frac{2(q+1)}{q-1} \right)^{(p-1)/2} \sup_{\xi \in \Lambda} (\mu_u(B_1(e^{-1}\xi})))^{(p-1)/2} \|u\|^2, \]

(4-8)

\[\int_{\Lambda} |Q(x)(u^+)^{q+1} dx \leq m C_1 \left(\frac{2(q+1)}{q-1} \right)^{(p-1)/2} \sup_{\xi \in \Lambda} (\mu_u(B_1(e^{-1}\xi})))^{(q-1)/2} \|u\|^2, \]

for \(u \in M_\varepsilon \), where \(C_1 \) is the constant given in Lemma 2.1, and \(\varepsilon < r_0 \), where \(r_0 > 0 \) is a small constant such that \(V(x) \geq V_1 \) for \(x \in \Lambda_{2r_0} \).

It suffices to prove the first inequality. By (2-5) and the definition of \(\mu_u \), we have for any \(\xi \in \Lambda \),

\[\int_{B_{\varepsilon}(\xi)} K(x)|u|^{p+1} dx \leq C_1 e^{-N(p-1)/2} \left(\int_{B_{\varepsilon}(\xi)} (e^2|\nabla u|^2 + V(x)|u|^2) dx \right)^{(p+1)/2} \]

\[\leq C_1 \left(\frac{2(q+1)}{q-1} \right)^{(p-1)/2} (\mu_u(B_1(e^{-1}\xi})))^{(p-1)/2} \int_{B_{\varepsilon}(\xi)} (e^2|\nabla u|^2 + V(x)|u|^2) dx. \]

Covering \(\Lambda \) by a family of balls with radius \(\varepsilon \) so that any point of \(\Lambda \) is contained in at most \(m \) balls of the family (the integer \(m \) is only related to the dimension \(N \) [Lions 1984a]) and summing the last inequality over this family of balls, we get

\[\int_{\Lambda} K(x)(u^+)^{p+1} dx \leq m C_1 \left(\frac{2(q+1)}{q-1} \right)^{(p-1)/2} \sup_{\xi \in \Lambda} (\mu_u(B_1(e^{-1}\xi})))^{(p-1)/2} \]

\[\times \int_{\Lambda_0} (e^2|\nabla u|^2 + V(x)|u|^2) dx. \]

This means that (4-8) is true.
Then combining (2-10) with (4-8) yields for $u \in \mathcal{M}_\varepsilon$

$$\|u\|_\varepsilon^2 \leq m C_1 \frac{(2(q + 1)(q - 1))^{(p-1)/2}}{q - 1} \times \left(\sup_{\xi \in \Lambda} (\mu_u(B_1(\varepsilon^{-1}\xi)))^{(p-1)/2} \|u\|_\varepsilon^2 + \sup_{\xi \in \Lambda} (\mu_u(B_1(\varepsilon^{-1}\xi)))^{(q-1)/2} \|u\|_\varepsilon^2 \right) + C_2 \|u\|_\varepsilon^2.$$

Note $\|u\|_\varepsilon \neq 0$ for $u \in \mathcal{M}_\varepsilon$. Then there exists a constant $C > 0$ such that

$$\sup_{\xi \in \Lambda} \mu_u(B_1(\varepsilon^{-1}\xi)) \geq C > 0$$

for ε sufficiently small. In particular, $\sup_{\xi \in \Lambda} \mu_u(B_1(\varepsilon^{-1}\xi)) \geq C > 0$ holds for large n in (4-2). Thus, vanishing is not possible.

Lemma 4.2. For small $\varepsilon > 0$, the dichotomy property (ii) does not occur.

Proof. Suppose to the contrary that the dichotomy property (ii) does occur. We now prove the following claim:

Claim. For any v as in (ii), there exists an integer $N_1(v)$ such that

$$\text{dist}(\varepsilon_n \xi_n, \Lambda) \leq r_0 \quad \text{for } n > N_1(v).$$

If (4-10) is false, then up to a subsequence, $\text{dist}(\varepsilon_n \xi_n, \Lambda) \geq r_0$ for all n.

Let L be an integer satisfying $L > 2(b_1 - b_2)(3V_1 + 8)/(V_1 v)$, where here and below $V_1 = \frac{1}{2} \min_{x \in \Lambda} V(x)$. Choose large $N_2 \in \mathbb{N}$ such that $e_n(L + \rho) < r_0$ for $n > N_2$. Then for $n > N_2$, we have $B_\rho(\xi_n) \cap \Lambda^n L = \emptyset$ and $e_n \Lambda^n L \subset \Lambda_n$, where we put $\Lambda^n_i = \{ y \in \mathbb{R}^N : \text{dist}(\varepsilon_n^{-1}\Lambda, y) \leq i \}$ for $i = 1, 2, \ldots, L$. Thus, by (4-5) and (4-6), we get

$$\int_{\Lambda^n_i \setminus B_\rho(\xi_n)} d \mu_n \leq \int_{B_\rho(\xi_n) \setminus B_\rho(\xi_n)} d \mu_n + \int_{\mathbb{R}^N \setminus B_\rho(\xi_n)} d \mu_n \leq b_1 - b_2 + 2v \leq 2(b_1 - b_2).$$

Thus there is an integer l satisfying $1 \leq l \leq L$ such that

$$\int_{H_n} d \mu_n \leq \frac{2(b_1 - b_2)}{L}, \quad \text{where } H_n = \Lambda^n_i \setminus \Lambda^n_{i-1}.$$

Let η_n be smooth cutoff functions such that $\eta_n = 1$ in Λ^n_{i-1} and $\eta_n = 0$ in $\mathbb{R}^N \setminus \Lambda^n_i$, with $0 \leq \eta_n \leq 1$ and $|\nabla \eta_n| \leq 2$. Set $\phi_n = \eta_n v_n$. A simple computation yields

$$|\nabla \phi_n|^2 = |v_n \nabla \eta_n + \eta_n \nabla v_n|^2 \leq 2|\nabla v_n|^2 + 8|v_n|^2.$$
Note that $\epsilon_n H_n \subset \Lambda_{\epsilon_0}$ for $n > N_2$. Then it follows from the estimate above, (4-11), and the choice of L that

$$\frac{1}{2q} \int_{H_n} (|\nabla \phi_n|^2 + V(\epsilon_n x)|\phi_n|^2) dx \leq \frac{1}{2q} \left(\frac{8}{V_1} + 3 \right) \int_{H_n} (|\nabla \psi_n|^2 + V(\epsilon_n x)|\psi_n|^2) dx \leq \left(\frac{8}{V_1} + 3 \right) \frac{2(b_1 - b_2)}{L} \leq \nu.$$ (4-12)

Combining (4-6) with (4-11) and (4-12) yields

$$\frac{1}{2q} \int_{H_n} (|\nabla \phi_n|^2 + V(\epsilon_n x)|\phi_n|^2) dx \leq \frac{1}{2q} \left(\frac{8}{V_1} + 3 \right) \int_{H_n} (|\nabla v_n|^2 + V(\epsilon_n x)|v_n|^2) dx \leq \left(\frac{8}{V_1} + 3 \right) \frac{2(b_1 - b_2)}{L} \leq \nu.$$ (4-13)

In addition, by (2-10), (4-13) and (4-3), we have for large n

$$\frac{1}{2q} \int_{H_n} f_{\epsilon_n}(\epsilon_n x, \phi_n) \phi_n dx \leq C \epsilon_n (b_1 - b_2 + 3\nu) < \nu,$$ (4-14)

and

$$\frac{1}{2q} \int_{\Lambda} K(\epsilon_n x)(\phi_n^\epsilon)^{p+1} dx + \frac{1}{2q} \int_{\Lambda} Q(\epsilon_n x)(\phi_n^\epsilon)^{q+1} dx \geq b_1 - \nu.$$ (4-15)

It follows from $\nu < b_2 / 5$ and (4-13)–(4-15) that

$$\int_{H_n} (|\nabla \phi_n|^2 + V(\epsilon_n x)|\phi_n|^2) dx < \int_{\Lambda} K(\epsilon_n x)(\phi_n^\epsilon)^{p+1} dx + \int_{\Lambda} Q(\epsilon_n x)(\phi_n^\epsilon)^{q+1} dx + \int_{H_n \setminus \Lambda} f_{\epsilon_n}(\epsilon_n x, \phi_n) \phi_n dx.$$ (4-16)

Let $\theta_n > 0$ such that $\theta_n \phi_n(x/\epsilon_n) \in \mathcal{M}_{\epsilon_n}$; Note that $\phi_n \neq 0$ by (4-15). Then, as in [Wang and Zeng 1997], we can choose

$$0 < \theta_n < 1.$$ (4-17)

Indeed, if we set

$$F_n(t) \equiv I_n'(t \phi_n(x/\epsilon_n)) t \phi_n(x/\epsilon_n)$$

$$= t^2 \|\phi_n(x/\epsilon_n)\|^2 - t^{p+1} \int_{\Lambda} K(x)(\phi_n^\epsilon(x/\epsilon_n))^{p+1} dx$$

$$- t^{q+1} \int_{\Lambda} Q(x)(\phi_n^\epsilon(x/\epsilon_n))^{q+1} dx - \int_{H_n \setminus \Lambda} f_{\epsilon_n}(x, t \phi_n(x/\epsilon_n)) t \phi_n(x/\epsilon_n) dx,$$ (4-18)
then it follows from (4-16) that $F_n(1) < 0$. On the other hand, it is easy see that $F_n(t) > 0$ for $t \ll 1$. Thus, there exists $0 < \theta_n < 1$ such that $F_n(\theta_n) = 0$, that is, $\theta_n\phi_n(x/e_n) \in \mathcal{M}_{e_n}$.

Thus, by the definition of b_1 in (4-2) and by (4-17) and (4-13), we get for large n

\[b_1 - 2\nu \leq \frac{1}{2} \frac{\theta_n^2}{q_n} \int_{\mathbb{R}^N} (|\nabla \phi_n|^2 + V(\epsilon_n x)|\phi_n|^2)dx + \alpha_n^p \theta_n^{p+1} \int_{\Lambda_n} K(\epsilon_n x)(\phi^+)^{p+1}dx \]

\[< \frac{1}{2} \frac{\theta_n^2}{q_n} \int_{\mathbb{R}^N} (|\nabla \phi_n|^2 + V(\epsilon_n x)|\phi_n|^2)dx + \alpha_n^p \int_{\Lambda_n} K(\epsilon_n x)(\phi^+)^{p+1}dx \]

\[\leq b_1 - b_2 + 3\nu. \]

However, this contradicts that $\nu < b_2/5$, so (4-10) is proved.

Using (4-10), we can finish the proof of Lemma 4.2. By the hypothesis of dichotomy, for each positive integer k satisfying $1/k < \min((b_1 - b_2)/2, b_2/5, r_0)$, there exist $\rho^k > 0$, a sequence $\{\epsilon_n^k\} \subset \mathbb{R}^N$ and a limit $\rho^k_n \to \infty$ as $n \to \infty$ such that (4-5) and (4-6) hold. Thus, it follows from (4-10) that there exists $N_1(k)$ such that

\[\text{dist}(\epsilon_n^k, \Lambda) \leq r_0 \text{ for } n > N_1(k). \]

Choose $N_2(k) > N_1(k)$ such that $\epsilon_{N_2(k)}(\rho^k + 1) < 1/k < r_0$ and $\rho^k + 1 < \rho^k_{N_2(k)}$. For convenience, we now write simply $\epsilon_{N_2(k)} = \epsilon_k$.

Set $D_k = D_{k,1} \setminus D_{k,2}$ with $D_{k,1} = B_{\rho^k+1}(\epsilon_{N_2(k)}^k)$ and $D_{k,2} = B_{\rho^k}(\epsilon_{N_2(k)}^k)$. Then we get $\epsilon_k D_k \subset \Lambda_{2r_0}$, and we conclude from (4-5) that

\[(4-19) \quad \int_{D_k} d\mu_k \leq 1/k. \]

Let η_k be smooth cutoff functions such that $\eta_k = 1$ in $D_{k,2}$ and $\eta_k = 0$ in $\mathbb{R}^N \setminus D_{k,1}$, with $0 \leq \eta_k \leq 1$ and $|\nabla \eta_k| \leq 2$. Write $\phi_1^k = \eta_k u_k$ and $\phi_2^k = (1 - \eta_k) u_k$, where $u_k \equiv u_{N_2(k)}$.

Arguing as in the proof of (4-12) and taking into account (4-19), we get

\[\frac{1}{2} \int_{D_k} (|\nabla (\phi_1^k)|^2 + V(\epsilon_k x)|\phi_1^k|^2)dx + \alpha_n^p \int_{D_k \cap \Lambda^k} K(\epsilon_k x)((\phi_1^k)^+)^{p+1}dx \]

\[\leq \left(\frac{8}{V_1} + 4 \right) \int_{D_k} d\mu_k \leq \frac{1}{k} \left(\frac{8}{V_1} + 4 \right), \]

where $\Lambda^k = \epsilon_k^{-1} \Lambda$.

Combining this with (4-5) leads to

\[\left| \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla \phi_k^1|^2 + V(\epsilon_n x)|\phi_k^1|^2)dx + \alpha_n^p \int_{\Lambda^k} K(\epsilon_k x)((\phi_1^k)^+)^{p+1}dx - b_2 \right| \]

\[\leq \frac{1}{k} \left(\frac{8}{V_1} + 4 \right) + \frac{1}{k} = \frac{1}{k} \left(\frac{8}{V_1} + 5 \right). \]
Letting \(k \to \infty \), we obtain

\[
(4-20) \quad \frac{1}{2q} \int_{\mathbb{R}^N} (|\nabla (\phi_k^2)|^2 + V(e_kx)|\phi_k^2|^2)dx + \alpha_p^q \int_{\Lambda^t} K(e_kx)((\phi_k^1)^+)^{p+1}dx
\]

\[
\to b_2 > 0.
\]

Analogously, we have when \(k \to \infty \)

\[
(4-21) \quad \frac{1}{2q} \int_{\mathbb{R}^N} (|\nabla (\phi_k^2)|^2 + V(e_kx)|\phi_k^2|^2)dx + \alpha_p^q \int_{\Lambda^t} K(e_kx)((\phi_k^2)^+)^{p+1}dx
\]

\[
\to b_1 - b_2 > 0.
\]

In addition, by (2-5) and (4-19), we have

\[
\frac{1}{2p} \int_{\Lambda^t \cap D_k} K(e_kx)(v_k^+)^{p+1}dx + \frac{1}{2q} \int_{\Lambda^t \cap D_k} Q(e_kx)(v_k^+)^{q+1}dx
\]

\[
\leq C\left((\frac{1}{p})^{(p+1)/2} + (\frac{1}{q})^{(q+1)/2}\right) \to 0 \quad \text{as } k \to \infty.
\]

This together with (4-3) yields

\[
(4-22) \quad \lim_{k \to \infty} \left(\frac{1}{2p} \int_{\Lambda^t \setminus D_k} K(e_kx)(v_k^+)^{p+1}dx + \frac{1}{2q} \int_{\Lambda^t \setminus D_k} Q(e_kx)(v_k^+)^{q+1}dx\right) = b_1.
\]

We note that

\[
\frac{1}{2p} \int_{\Lambda^t \setminus D_{k,2}} K(e_kx)(v_k^+)^{p+1}dx + \frac{1}{2q} \int_{\Lambda^t \setminus D_{k,2}} Q(e_kx)(v_k^+)^{q+1}dx
\]

\[
= \frac{1}{2p} \int_{\Lambda^t \setminus D_{k,2}} K(e_kx)((\phi_k^1)^+)^{p+1}dx + \frac{1}{2q} \int_{\Lambda^t \setminus D_{k,2}} Q(e_kx)((\phi_k^1)^+)^{q+1}dx
\]

\[
+ \frac{1}{2p} \int_{\Lambda^t \cap (\mathbb{R}^N \setminus D_{k,1})} K(e_kx)((\phi_k^2)^+)^{p+1}dx + \frac{1}{2q} \int_{\Lambda^t \cap (\mathbb{R}^N \setminus D_{k,1})} Q(e_kx)((\phi_k^2)^+)^{q+1}dx.
\]

By this, by (4-3) and (4-22), and by passing to a subsequence if necessary, we see there exists a constant \(b_3 \) such that as \(k \to \infty \),

\[
\frac{1}{2p} \int_{\Lambda^t \setminus D_{k,2}} K(e_kx)((\phi_k^1)^+)^{p+1}dx + \frac{1}{2q} \int_{\Lambda^t \setminus D_{k,2}} Q(e_kx)((\phi_k^1)^+)^{q+1}dx \to b_3
\]

and

\[
\frac{1}{2p} \int_{\Lambda^t \cap (\mathbb{R}^N \setminus D_{k,1})} K(e_kx)((\phi_k^2)^+)^{p+1}dx + \frac{1}{2q} \int_{\Lambda^t \cap (\mathbb{R}^N \setminus D_{k,1})} Q(e_kx)((\phi_k^2)^+)^{q+1}dx \to b_1 - b_3.
\]

Thus, we further obtain

\[
(4-23) \quad \frac{1}{2p} \int_{\Lambda^t} K(e_kx)((\phi_k^1)^+)^{p+1}dx + \frac{1}{2q} \int_{\Lambda^t} Q(e_kx)((\phi_k^1)^+)^{q+1}dx
\]

\[
\to \begin{cases} b_3 & \text{if } \lambda = 1, \\ b_1 - b_3 & \text{if } \lambda = 2, \end{cases}
\]
Taking into account (2-10), (4-20), and (4-21) yields for $\lambda = 1, 2$

\[
\frac{1}{2}q \left| \int_{\mathbb{R}^N \setminus \Lambda^k} f_{\varepsilon_k}(e_k x, \phi_k^\lambda) \phi_k^\lambda \, dx \right|
\]

\[
= \frac{1}{2}q \varepsilon_k^{-N} \int_{\mathbb{R}^N \setminus \Lambda} f_k(y, \phi_k^\lambda(y/\varepsilon_k)) \phi_k^\lambda(y/\varepsilon_k) \, dy
\]

\[
\leq C\varepsilon_k \times \varepsilon_k^{-N} \int_{\mathbb{R}^N \setminus \Lambda} (\varepsilon_k^2 |\nabla \phi_k^\lambda(y/\varepsilon_k)|^2 + V(y)|\phi_k^\lambda(y/\varepsilon_k)|^2) \, dy
\]

\[
= C\varepsilon_k \int_{\mathbb{R}^N \setminus \Lambda^k} (|\nabla \phi_k^\lambda(x)|^2 + V(e_k x)|\phi_k^\lambda(x)|^2) \
\quad \text{as } k \to \infty.
\]

Therefore by (4-20), (4-21), (4-23), and (4-24), we arrive at

\[
\int_{\mathbb{R}^N} (|\nabla (\phi_k^\lambda)|^2 + V(e_k x)|\phi_k^\lambda|) \, dx - \int_{\Lambda^k} K(e_k x)((\phi_k^\lambda)^+)^{p+1} \, dx
\]

\[
- \int_{\Lambda^k} Q(e_k x)((\phi_k^\lambda)^+)q+1 \, dx - \int_{\mathbb{R}^N \setminus \Lambda^k} f_{\varepsilon_k}(e_k x, \phi_k^\lambda) \phi_k^\lambda \, dx
\]

\[
\to \frac{2(q+1)}{q-1} \times \begin{cases}
(b_2 - b_3) & \text{if } \lambda = 1, \\
(b_3 - b_2) & \text{if } \lambda = 2.
\end{cases}
\]

For $\lambda = 1, 2$, let $\theta_k^\lambda > 0$ such that $\theta_k^\lambda \phi_k^\lambda(x/\varepsilon_k) \in M_{\varepsilon_k}$. We claim that

\[
0 < \theta_k^\lambda \leq 1 + o(1),
\]

for at least one λ, where the quantity $o(1) \to 0$ as $k \to \infty$.

Indeed, it follows from (4-25) that if $b_2 < b_3$, then for large k enough

\[
\int_{\mathbb{R}^N} (|\nabla (\phi_k^1)|^2 + V(e_k x)|\phi_k^1|) \, dx
\]

\[
< \int_{\Lambda^k} K(e_k x)((\phi_k^1)^+)^{p+1} \, dx + \int_{\Lambda^k} Q(e_k x)((\phi_k^1)^+)q+1 \, dx + \int_{\mathbb{R}^N \setminus \Lambda^k} f_{\varepsilon_k}(e_k x, \phi_k^1) \phi_k^1 \, dx.
\]

Analogously to the proof of (4-17), we get $0 < \theta_k^1 < 1$. Then (4-26) holds for $\lambda = 1$. If $b_2 > b_3$, then by the same reasoning, we find that (4-26) holds for $\lambda = 2$.

If $b_2 = b_3$, as in [Wang and Zeng 1997, page 650], we will show (4-26) by way of contradiction: Without loss of generality, we assume that $\lim_{k \to \infty} \theta_k^1 = \theta_0 > 1$ up to a subsequence.

Set

\[
A_k := \int_{\Lambda^k} K(e_k x)((\phi_k^1)^+)^{p+1} \, dx \quad \text{and} \quad B_k := \int_{\Lambda^k} Q(e_k x)((\phi_k^1)^+)q+1 \, dx.
\]
We now claim that up to a subsequence, \(\lim_{k \to \infty} (A_k + B_k) > 0 \). Otherwise, it follows from (4-25) that
\[
0 \leq \lim_{k \to \infty} \int_{\mathbb{R}^N} (|\nabla (\phi_k^1)|^2 + V(\varepsilon_k x)|\phi_k^1|^2) dx = \lim_{k \to \infty} (A_k + B_k) \leq 0,
\]
which implies \(\lim_{k \to \infty} A_k = \lim_{k \to \infty} B_k = 0 \) by (2-5), contradicting (4-20). Thus \(\lim_{k \to \infty} (A_k + B_k) > 0 \). On the other hand, by the fact \(\theta_k^1 \phi_k^1(x/\varepsilon_k) \in \mathcal{M}_{\varepsilon_k} \) and by (2-10), we get
\[
\lim_{k \to \infty} \left(\int_{\mathbb{R}^N} (|\nabla (\phi_k^1)|^2 + V(\varepsilon_k x)|\phi_k^1|^2) dx - \theta_k^{p-1} A_k - \theta_k^{q-1} B_k \right) = 0.
\]
This and (4-25) yield
\[
0 = \lim_{k \to \infty} \left(\int_{\mathbb{R}^N} (|\nabla (\phi_k^1)|^2 + V(\varepsilon_k x)|\phi_k^1|^2) dx - (A_k + B_k) \right)
\]
\[
= \lim_{k \to \infty} (\theta_k^{p-1} A_k - \theta_k^{q-1} B_k - (A_k + B_k))
\]
\[
\geq \lim_{k \to \infty} (\theta_k^{q-1} A_k - \theta_k^{q-1} B_k - (A_k + B_k))
\]
\[
\geq \lim_{k \to \infty} ((\theta_k^{q-1} - 1)(A_k + B_k)) = (\theta_0^{q-1} - 1) \lim_{k \to \infty} (A_k + B_k)
\]
and \(\theta_0 \leq 1 \), which contradict that \(\theta_0 > 1 \). Thus we prove (4-26).

Without loss of generality, suppose (4-26) holds for \(\lambda = 1 \). From the definition of \(b_1 \) and (4-26), we get
\[
b_1 + o(1) \leq \frac{1}{2q} \left(\frac{\theta}{\theta_k} \right)^2 \int_{\mathbb{R}^N} (|\nabla (\phi_k^1)|^2 + V(\varepsilon_k x)|\phi_k^1|^2) dx + \alpha_k^p (\theta_k^1)^{p+1} A_k + o(1)
\]
\[
\leq \frac{1}{2q} \int_{\mathbb{R}^N} (|\nabla (\phi_k^1)|^2 + V(\varepsilon_k x)|\phi_k^1|^2) dx + \alpha_k^p A_k + o(1)
\]
\[
= b_2 + o(1),
\]
which leads to a contradiction with \(b_2 \in (0, b_1) \). We obtain a similar contradiction in the case \(\lambda = 2 \). Thus, the possibility of dichotomy cannot occur. \(\square \)

By Lemma 4.1 and Lemma 4.2, we conclude that \(\{\mu_n\} \) is tight. That is, there exist \(\{\zeta_n\} \subset \mathbb{R}^N \) such that (4-7) holds.

Lemma 4.3. We have \(b_1 = c_0 \). In addition, up to a subsequence, \(\varepsilon_n \zeta_n \to \zeta_0 \in M \).

Proof. Let \(C_1 \) be the constant in (2-5). It follows from (4-2) and (4-7) that there exists a constant \(\rho_0 > 0 \) and a subsequence \(\{\zeta_n\} \subset \mathbb{R}^N \) such that for large \(n \)
\[
(4-27) \quad \int_{\mathbb{R}^N \setminus B_{\rho_0}(\zeta_n)} d\mu_n \leq \frac{1}{2q} \min \left\{ \left(\frac{b_1}{4C_1 \frac{1}{2} p} \right)^{2/(p+1)}, \left(\frac{b_1}{4C_1 \frac{1}{2} q} \right)^{2/(q+1)} \right\}.
\]
First we claim

\[(4-28)\quad \text{dist}(\varepsilon_n \zeta_n, \Lambda) \to 0 \quad \text{as} \quad n \to \infty.\]

If not, there is a positive number \(\delta\) such that \(\text{dist}(\varepsilon_n \zeta_n, \Lambda) \geq \delta\) holds up to a subsequence for all \(n\). Then \(B_{\rho_0}(\zeta_n) \cap \Lambda^n = \emptyset\) provided \(n\) is large enough, where \(\Lambda^n = \{\varepsilon_n^{-1} x : x \in \Lambda\}\). Then \(\int_{\Lambda^n} d\mu_n\) is less than or equal to than the left side of (4-27). This fact and (2-5) yield

\[
\frac{1}{2p} \int_{\Lambda^n} K(\varepsilon_n x)(u_n^+)^{p+1} dx + \frac{1}{2q} \int_{\Lambda^n} Q(\varepsilon_n x)(u_n^+)^{q+1} dx \leq \frac{1}{2} b_1.
\]

However, this is inconsistent with (4-3). Thus, the assertion (4-28) is true.

By (4-28), we can extract a subsequence of \(\{\varepsilon_n \zeta_n\}\) (written the same for simplicity) such that

\[(4-29)\quad \varepsilon_n \zeta_n \to \zeta_0 \in \bar{\Lambda},
\]

where \(\bar{\Lambda}\) is the closure of \(\Lambda\).

Set \(w_n(x) = u_n^+(x + \zeta_n)\). By (4-2), we know that \(\{w_n\}\) is bounded in \(\mathcal{D}^{1,2}(\mathbb{R}^N)\), then, up to a subsequence, there exists \(w_0 \in \mathcal{D}^{1,2}(\mathbb{R}^N)\) such that

\[
w_n \rightharpoonup w_0 \quad \text{weakly in} \quad \mathcal{D}^{1,2}(\mathbb{R}^N),
\]

\[
w_n \to w_0 \quad \text{strongly in} \quad L^{p+1}_{\text{loc}}(\mathbb{R}^N) \quad \text{and} \quad L^{q+1}_{\text{loc}}(\mathbb{R}^N),
\]

\[
w_n \to w_0 \quad \text{almost everywhere in} \quad \mathbb{R}^N.
\]

Applying Fatou’s lemma and (4-2) yields

\[
\int_{\mathbb{R}^N} (|\nabla w_0|^2 + V(\zeta_0) w_0^2) dx \leq \liminf_{n \to \infty} \int_{\mathbb{R}^N} (|\nabla w_n|^2 + V(\varepsilon_n x + \varepsilon_n \zeta_n) w_n^2) dx
\]

\[
\leq \liminf_{n \to \infty} \int_{\mathbb{R}^N} (|\nabla w_n|^2 + V(\varepsilon_n x + \varepsilon_n \zeta_n) w_n^2) dx < \infty.
\]

By (4-29), we get \(V(\zeta_0) > V_1 > 0\), so it follows from (4-30) that \(w_0 \in H^1(\mathbb{R}^N)\). By the Sobolev embedding theorem, we get \(w_0(x) \in L^{p+1}(\mathbb{R}^N) \cap L^{q+1}(\mathbb{R}^N)\). Also, given \(\rho > 0\), we get

\[
\lim_{n \to \infty} \int_{B_\rho(0)} K(\varepsilon_n x + \varepsilon_n \zeta_n) w_n^{p+1} dx = K(\zeta_0) \int_{B_\rho(0)} w_0^{p+1} dx,
\]

(4-31)

\[
\lim_{n \to \infty} \int_{B_\rho(0)} Q(\varepsilon_n x + \varepsilon_n \zeta_n) w_n^{q+1} dx = Q(\zeta_0) \int_{B_\rho(0)} w_0^{q+1} dx.
\]

Let

\[
\Sigma_n := \{\varepsilon_n^{-1} x - \zeta_n : x \in \Lambda\} \quad \text{and} \quad \Omega_n := \{\varepsilon_n^{-1} x - \zeta_n : x \in \Lambda \cap 0\},
\]
We have \(\Sigma_n \subset \Omega_n \subset \{ \rho_n^{-1} x : x \in \Lambda_{2n} \} \) for large \(n \). For any \(\nu > 0 \), the compactness of \(\{ \mu_n \} \) implies that there exists \(\rho = \rho(\nu) > 0 \) such that

\[
(4-32) \quad \int_{\Omega_n \setminus B_\rho(0)} (|\nabla w_n|^2 + V(\rho_n x + \rho_n^2 \zeta_n)w_n^2) \, dx \\
\leq \int_{\mathbb{R}^N \setminus B_\rho(0)} (|\nabla w_n|^2 + V(\rho_n x + \rho_n^2 \zeta_n)w_n^2) \, dx \leq \frac{2(q + 1)}{q - 1} \nu.
\]

By (4-29), there is an integer \(N_3(\nu) \) with \(B_\rho(0) \subset \Omega_n \) and \(\text{dist}(B_\rho(0), \partial \Omega_n) > 1 \) for \(n > N_3(\nu) \); hence \(\Omega_n \setminus B_\rho(0) \) has the uniform cone property. This, together with (2-5) and (4-32), yields for \(n > N_3(\nu) \)

\[
(4-33) \quad \int_{\Sigma_n \setminus B_\rho(0)} K(\rho_n x + \rho_n^2 \zeta_n)w_n^{p+1}(x) \, dx \\
\leq \int_{\Omega_n \setminus B_\rho(0)} K(\rho_n x + \rho_n^2 \zeta_n)w_n^{p+1}(x) \, dx \leq C_1 \left(\frac{2(q + 1)}{q - 1} \nu \right)^{(p+1)/2},
\]

\[
\int_{\Sigma_n \setminus B_\rho(0)} |Q(\rho_n x + \rho_n^2 \zeta_n)|w_n^{q+1}(x) \, dx \leq C_1 \left(\frac{2(q + 1)}{q - 1} \nu \right)^{(q+1)/2}.
\]

From (4-31) and (4-33), we obtain

\[
(4-34) \quad \lim_{n \to \infty} \left(\int_{\Sigma_n} K(\rho_n x + \rho_n^2 \zeta_n)w_n^{p+1} \, dx + \int_{\Sigma_n} Q(\rho_n x + \rho_n^2 \zeta_n)w_n^{q+1} \, dx \right) \\
= K(\zeta_0) \int_{\mathbb{R}^N} w_0^{p+1} \, dx + Q(\zeta_0) \int_{\mathbb{R}^N} w_0^{q+1} \, dx,
\]

which with (4-3) implies \(w_0 \neq 0 \).

Noting \(u_n \in \mathcal{M}_{\zeta_n} \) and using (4-30), we then have

\[
(4-35) \quad K(\zeta_0) \int_{\mathbb{R}^N} w_0^{p+1} \, dx + Q(\zeta_0) \int_{\mathbb{R}^N} w_0^{q+1} \, dx \\
\geq \lim inf_{n \to \infty} \int_{\mathbb{R}^N} (|\nabla w_n|^2 + V(\rho_n x + \rho_n^2 \zeta_n)w_n^2) \, dx \\
\geq \int_{\mathbb{R}^N} (|\nabla w_0|^2 + V(\zeta_0)w_0^2) \, dx.
\]

Now choose \(\theta > 0 \) such that \(\theta w_0 \in \mathcal{M}^{\zeta_0} \), where \(\mathcal{M}^{\zeta_0} \) is defined in (2-4). Then it follows from (4-35) that \(\theta \leq 1 \). By using the definitions of \(b_1 \) and \(c_0 \), (4-30) and (4-31), the first inequality in (4-33), and Lemma 2.6, we see that

\[
c_0 \leq G(\zeta_0) \\
\equiv \inf_{u \in \mathcal{M}^{\zeta_0}} \left(\frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + V(\zeta_0)u^2) \, dx + a_0^p K(\zeta_0) \int_{\mathbb{R}^N} |u|^{p+1} \, dx \right)
\]
\[
\leq \frac{1}{2q} \int_{\mathbb{R}^N} (|\nabla (\theta w_0)|^2 + V(\xi_0)(\theta w_0)^2)dx + \alpha_q^p K(\xi_0) \int_{\mathbb{R}^N} (\theta w_0)^{p+1}dx \\
\leq \frac{1}{2q} \int_{\mathbb{R}^N} (|\nabla w_0|^2 + V(\xi_0)\overline{w}_0^2)dx + \alpha_q^p K(\xi_0) \int_{\mathbb{R}^N} w_0^{p+1}dx \\
\leq \liminf_{n \to \infty} \left(\frac{1}{2q} \int_{\mathbb{R}^N} (|\nabla w_n|^2 + V(e_n x + e_n \xi_n)w_n^2)dx \\
+ \alpha_q^p \int_{\Sigma_n} K(e_n x + e_n \xi_n)w_n^{p+1}dx \right) \\
\leq b_1 \leq c_0.
\]

Then this yields \(b_1 = c_0 \) and \(G(\xi_0) = c_0 \), which implies \(\xi_0 \in M \). \qed

Proof of Proposition 3.1. For small \(\varepsilon \), by (4-9) there exist a positive constant \(C \) and \(\xi_\varepsilon \in \Lambda \) such that

\[(4-36) \quad \mu_{u_\varepsilon}(B_1(e^{-1}_\varepsilon \xi_\varepsilon)) > C,\]

where \(u_\varepsilon \) is the mountain-pass critical point of the modified (2-8), which is obtained in Lemma 2.3. We note that \(\{\xi_\varepsilon\} \) will be chosen as the sequence in Proposition 3.1.

First we prove (3-1). If this is not true, then there exist a constant \(v_0 > 0 \) and limits \(e_n \to 0 \) and \(\rho_n \to \infty \) as \(n \to \infty \) such that

\[(4-37) \quad \int_{\mathbb{R}^N \setminus B_{\rho_n}(e^{-1}_n \xi_n)} d\mu_n \geq v_0 > 0,\]

where \(\mu_n \) is the measure corresponding to \(u_{e_n} \).

By Lemma 2.6, (4-2) and Lemma 4.3, we have up to a subsequence

\[(4-38) \quad \lim_{n \to \infty} \mu_q(\mathbb{R}^N) = c_0.\]

By the arguments used to prove Lemmas 4.1 and 4.2, we conclude from (4-36) and (4-37) that \(\{\mu_n\} \) is compact. However, as we discuss next, two exhaustive cases in P. L. Lions’s concentration-compactness lemma show that \(\{\mu_n\} \) cannot be compact.

Choose a subsequence \(\{\xi_n\} \subset \mathbb{R}^N \), and fix \(\rho > 0 \).

Case 1. The set \(B_\rho(\xi_n) \cap B_1(e^{-1}_n \xi_n) \) is empty. Then \(\mathbb{R}^N \setminus B_\rho(\xi_n) \supset B_1(e^{-1}_n \xi_n) \), and it follows from (4-36) that \(\mu_n(\mathbb{R}^N \setminus B_\rho(\xi_n)) \geq \mu_n(B_1(e^{-1}_n \xi_n)) > C \).

Case 2. The set \(B_\rho(\xi_n) \cap B_1(e^{-1}_n \xi_n) \) is not empty. Then dist\((\xi_n, e^{-1}_n \xi_n)\) \(\leq 1 + \rho \). Note that \(\rho_n \to \infty \) as \(n \to \infty \); thus \(B_\rho(\xi_n) \subset B_{\rho_n}(e^{-1}_n \xi_n) \) for large \(n \). This together with (4-37) yields \(\mu_n(\mathbb{R}^N \setminus B_\rho(\xi_n)) \geq \mu_n(\mathbb{R}^N \setminus B_{\rho_n}(e^{-1}_n \xi_n)) \geq v_0 \).

Thus, there exists a positive constant \(\tilde{C} \) such that \(\mu_q(\mathbb{R}^N \setminus B_\rho(\xi_n)) \geq \tilde{C} > 0 \). This obviously implies \(\{\mu_n\} \) is not compact, a contradiction that proves (3-1).
Next we prove (3-2). If (3-2) is not true, there is a sequence \(\varepsilon_n \to 0 \) as \(n \to \infty \) and a positive constant \(v_0 \) such that

\[
\text{dist}(\xi_{\varepsilon_n}, M) \geq v_0.
\]

Let \(\mu_n \) be the measure corresponding to \(u_{\varepsilon_n} \). By the argument above, \(\{\mu_n\} \) is compact. Repeating the argument that proved Lemma 4.3, up to a subsequence there exists a sequence \(\{\zeta_n\} \subset \mathbb{R}^N \) such that \(\mu_n \) is concentrated in some ball centered at \(\zeta_n \) and \(\varepsilon_n \zeta_n \to \zeta_0 \in M \) as \(n \to \infty \). The compactness of \(\{\mu_n\} \) and (4-39) imply that there is a positive number \(\rho_0 \) independent of \(n \) such that \(|\zeta_n - \varepsilon_n^{-1} \xi_{\varepsilon_n}| < \rho_0 \) (otherwise, for large \(n \), we have \(\mu_n(\mathbb{R}^N \setminus B_1(\xi_{\varepsilon_n})) \geq \mu_n(B_1(\xi_{\varepsilon_n}^{-1})) \geq C \), which contradicts the compactness of \(\{\mu_n\} \)). Hence \(|\varepsilon_n \zeta_n - \xi_{\varepsilon_n}| < \rho_0 \) as \(n \to \infty \), and therefore \(\xi_{\varepsilon_n} \to \xi_0 \in M \). This contradicts (4-39), proving (3-2). \(\square \)

5. The concentration of the bound state \(u_\varepsilon(x) \)

We note that \(u_\varepsilon(x) \) vanishes at infinity, so \(\max_{\mathbb{R}^N} u_\varepsilon \) exists.

Lemma 5.1. For small \(\varepsilon > 0 \), there exists a positive constant \(C \) independent of \(\varepsilon \) such that \(\max_{\mathbb{R}^N} u_\varepsilon \geq C \).

Proof: By (2-10) and \(u_\varepsilon \in M_\varepsilon \), we arrive at

\[
\|u_\varepsilon\|_e^2 = \int_{\Lambda} K(x)u_\varepsilon^{p+1}dx + \int_{\Lambda} Q(x)u_\varepsilon^{q+1}dx + \int_{\mathbb{R}^N \setminus \Lambda} f_\varepsilon(x, u_\varepsilon)u_\varepsilon dx
\]

\[
\leq (\max u_\varepsilon)^{p-1} \int_{\Lambda} K(x)u_\varepsilon^2 dx + (\max u_\varepsilon)^{q-1} \int_{\Lambda} |Q(x)|u_\varepsilon^2 dx + o(1)\|u_\varepsilon\|_e^2
\]

\[
\leq C(\max u_\varepsilon)^{p-1}\|u_\varepsilon\|_e^2 + C(\max u_\varepsilon)^{q-1}\|u_\varepsilon\|_e^2 + o(1)\|u_\varepsilon\|_e^2.
\]

Because \(p > 1 \) and \(q > 1 \), this means there is a positive number \(C \) independent of \(\varepsilon \) such that Lemma 5.1 holds. \(\square \)

Remark 5.2. Suppose \(u_\varepsilon(x) \) obtains its maximum at the point \(x = x_\varepsilon \), that is, \(\max_{\mathbb{R}^N} u_\varepsilon(x) = u_\varepsilon(x_\varepsilon) \). Then by Remark 3.5, we get \(|x_\varepsilon - \xi_\varepsilon| \leq d_0/2 \) for \(\varepsilon \) small enough, where \(\xi_\varepsilon \) is given in Proposition 3.1.

Lemma 5.3. Let \(x_\varepsilon \) be the maximum point of \(u_\varepsilon(x) \). For any \(\nu > 0 \) and \(\rho(\nu) > 0 \) such that

\[
\varepsilon^{-N}\left(\frac{1}{2q} \int_{\mathbb{R}^N \setminus B_{\rho(\nu)}(x_\varepsilon)} (\varepsilon^2|\nabla u_\varepsilon|^2 + V(x)u_\varepsilon^2)dx + \alpha_0^p \int_{\mathbb{R}^N \setminus B_{\rho(\nu)}(x_\varepsilon) \setminus \Lambda} K(x)u_\varepsilon^{p+1}dx \right) < \nu
\]

and

\[
\text{dist}(x_\varepsilon, M) < \nu
\]
whenever $\varepsilon < \varepsilon(\nu)$, where $M = \{ \hat{\xi} : C(\hat{\xi}) = c_0 \}$.

Proof. Firstly, we prove (5-1). Suppose it is not true. Then there exists a constant $\nu_0 > 0$ and limits $\nu_n \rightarrow 0$ and $\rho_n \rightarrow \infty$ as $n \rightarrow \infty$ such that

\[
(5-3) \quad \int_{\mathbb{R}^N \setminus B_{\rho_n}(\varepsilon_{n}^{-1}x_{n})} d\mu_n \geq \nu_0 > 0,
\]

where μ_n is the measure corresponding to $u_{\varepsilon_{n}}$, which is defined in (4-1).

We claim that

\[
(5-4) \quad \mu_n(B(1\varepsilon_{n}^{-1}x_{n})) \geq C > 0,
\]

where C is a positive constant independent of n.

Let $\nu_n = u_{\varepsilon_{n}}(e_{n} x)$. Then for large n (5-4) is equivalent to

\[
(5-5) \quad \frac{1}{2q} \int_{B_{1}(\varepsilon_{n}^{-1}x_{n})} (|\nabla \nu_n|^{2} + V(\varepsilon_{n} x)\nu_{n}^{2}) dx + \alpha_{q}^{p} \int_{B_{1}(\varepsilon_{n}^{-1}x_{n})} K(\varepsilon_{n} x)\nu_{n}^{p+1} dx \geq C.
\]

By $q < p$ and the nonnegativity of $K(x)$, we may prove (5-4) and (5-5) by showing that

\[
(5-6) \quad \int_{B_{1}(\varepsilon_{n}^{-1}x_{n})} (|\nabla \nu_n|^{2} + \nu_{n}^{2}) dx \geq C.
\]

Since $\nu_{n} \geq 0$, ν_{n} is a weak H^1 subsolution of $\Delta u + c_{n}(x)u = 0$ in the domain $e_{n}^{-1} \Lambda$, where $c_{n}(x) = K(e_{n} x)\nu_{n}^{p-1}(x) + Q(e_{n} x)\nu_{n}^{q-1}(x)$ and $c_{n}(x) \in L^{s}(e_{n}^{-1} \Lambda)$ with $s \in (N/2, 2N/(p-1)(N-2))$. Also, $\|c_{n}(x)\|_{L^{s}(e_{n}^{-1} \Lambda)}$ is uniformly bounded with respect to n, as shown the proof of Lemma 3.4.

By [Gilbarg and Trudinger 1983, Theorem 8.17 and page 193], there is a positive constant C depending only on the dimension N and the $L^{s}(e_{n}^{-1} \Lambda)$ bound of $c_{n}(x)$, such that

\[
(5-7) \quad \nu_{n}^{2}(e_{n}^{-1}x_{n}) \leq C \int_{B_{1}(e_{n}^{-1}x_{n})} \nu_{n}^{2}(y) dy \leq C \int_{B_{1}(e_{n}^{-1}x_{n})} (|\nabla \nu_n|^{2} + \nu_n^{2}) dy.
\]

Note that $\nu_{n}(e_{n}^{-1}x_{n}) = u_{\varepsilon_{n}}(x_{n}) = \max u_{\varepsilon_{n}}$. Then by Lemma 5.1 and (5-7), we get (5-6), which proves (5-4).

By Lemma 2.6, (4-2) and Lemma 4.3, the set $\{ \mu_n \}$ satisfies (4-38) up to a subsequence. Then by the argument of Lemmas 4.1 and 4.2, the set $\{ \mu_n \}$ is compact. However, by (5-3), (5-4) and the method that proved Proposition 3.1, we conclude that $\{ \mu_n \}$ cannot be compact. This contradiction proves (5-1).

On the other hand, we can prove (5-2) by arguing as in the proof of (3-2). \[\square\]

Lemma 5.4. For any $\nu > 0$, there exist $R(\nu) > 0$ and $\varepsilon_{0}(\nu) > 0$ such that $u_{\varepsilon}(x) \leq \nu$ for $\varepsilon \leq \varepsilon_{0}(\nu)$ and $|x - x_{\varepsilon}| \geq \varepsilon R(\nu)$.

Proof. By (2-8), we know that \(w_\varepsilon(x) = u_\varepsilon(\varepsilon x + x_\varepsilon) \) is a classical solution of

\[
-\Delta w_\varepsilon + V(\varepsilon x + x_\varepsilon)w_\varepsilon = \chi_\varepsilon(x)K(\varepsilon x + x_\varepsilon)w_\varepsilon^p + \chi_\varepsilon(x)Q(\varepsilon x + x_\varepsilon)w_\varepsilon^q + (1 - \chi_\varepsilon(x)) f_\varepsilon(\varepsilon x + x_\varepsilon, w_\varepsilon),
\]

where \(\chi_\varepsilon \) is the characteristic function of \(A^\varepsilon = \{(x - x_\varepsilon)/\varepsilon : x \in \Lambda \} \).

Let

\[
c_\varepsilon(x) = \chi_\varepsilon(x)K(\varepsilon x + x_\varepsilon)w_\varepsilon^{p-1}(x) + \chi_\varepsilon(x)Q(\varepsilon x + x_\varepsilon)w_\varepsilon^{q-1}(x) + (1 - \chi_\varepsilon(x)) \frac{2\varepsilon^3}{1+|\varepsilon x + x_\varepsilon|^b}.
\]

Then \(w_\varepsilon \in H^1(\mathbb{R}^N) \) is a nonnegative weak subsolution of \(\Delta w + c_\varepsilon(x)w = 0 \). Choosing \(\varepsilon \in (N/2, 2N/(p-1)(N-2)) \) and using the argument that proved Lemma 3.4, we have \(c_\varepsilon(x) \in L^1(\mathbb{R}^N) \) and \(||c_\varepsilon(x)||_{L^1} \) is uniformly bounded with respect to small \(\varepsilon \).

Choose a fixed constant \(d > 0 \). Then \(B_{d/2}(x) \subset \mathbb{R}^N \setminus B_{\rho(v)}(0) \) holds for any \(\nu > 0 \) and \(x \in \mathbb{R}^N \setminus B_{\rho(v)+d}(0) \), where \(\rho(v) \) is the constant given in Lemma 5.3. Let \(\eta(x) \) be a smooth cutoff function such that \(\eta(x) = 0 \) in \(B_{\rho(v)}(0) \) and \(\eta(x) = 1 \) in \(\mathbb{R}^N \setminus B_{\rho(v)+d/2}(0) \), with \(0 \leq \eta(x) \leq 1 \) and \(|\nabla \eta| \leq 4/d \). By [Gilbarg and Trudinger 1983, Theorem 8.17 and page 193], the Sobolev embedding theorem, (2-5) and (5-1), there is a positive constant \(C \) depending only on \(d \), the dimension \(N \) and the \(L^s \) bound of \(c_\varepsilon \) such that for small \(\varepsilon \) and \(x \in \mathbb{R}^N \setminus B_{\rho(v)+d} \),

\[
w_\varepsilon(x) \leq C \left(\int_{B_{d/2}(x)} w_\varepsilon^{2^*_s}(y)\,dy \right)^{1/2^*_s} \leq C \left(\int_{\mathbb{R}^N} (\eta w_\varepsilon)^{2^*_s}(y)\,dy \right)^{1/2^*_s} \\
\leq C \left(\int_{\mathbb{R}^N} |\nabla (\eta w_\varepsilon)|^2(y)\,dy \right)^{1/2} \\
\leq C \left(\int_{\mathbb{R}^N} \eta^2(y)|\nabla w_\varepsilon|^2(y) + |\nabla \eta|^2(y)w_\varepsilon^2(y)\,dy \right)^{1/2} \\
\leq C \left(\int_{\mathbb{R}^N \setminus B_{\rho(v)}(0)} |\nabla w_\varepsilon|^2(y) + \int_{B_{\rho(v)+d/2}(0) \setminus B_{\rho(v)}(0)} \frac{16}{d^2} w_\varepsilon^2(y)\,dy \right)^{1/2} \\
\leq C \left(\int_{\mathbb{R}^N \setminus B_{\rho(v)}(0)} |\nabla w_\varepsilon|^2(y) + \int_{B_{\rho(v)+d/2}(0) \setminus B_{\rho(v)}(0)} V(\varepsilon x + x_\varepsilon)w_\varepsilon^2(y)\,dy \right)^{1/2} \\
\leq C \left(\int_{\mathbb{R}^N \setminus B_{\rho(v)}(0)} |\nabla w_\varepsilon|^2(y) + \int_{\mathbb{R}^N \setminus B_{\rho(v)}(0)} V(\varepsilon x + x_\varepsilon)w_\varepsilon^2(y)\,dy \right)^{1/2} \\
= C \varepsilon^N \left(\int_{\mathbb{R}^N \setminus B_{\rho(v)}(x_\varepsilon)} \varepsilon^2|\nabla u_\varepsilon|^2 + V(x)w_\varepsilon^2\,dx \right)^{1/2} \leq C \nu^{1/2}.
\]

Set \(R(v) = \rho(v) + d \). Then we get \(w_\varepsilon(x) \leq \nu \) for \(|x| \geq R(v) \) and small \(\varepsilon \). Noting \(u_\varepsilon(x) = w_\varepsilon((x - x_\varepsilon)/\varepsilon) \) then finishes the proof. \(\square \)
Theorem 5.5. For each sequence ε_n' such that $\varepsilon_n' \to 0$ as $n \to \infty$, there exists a subsequence $\{\varepsilon_n\} \subset \{\varepsilon_n'\}$ such that $u_n(x) \equiv u_{\varepsilon_n}(x)$ concentrates at some minimum point x_0 of $G(x)$ in Λ as $\varepsilon_n \to 0$, that is, there exists a positive constant $C > 0$ such that for any $\delta > 0$ and large n,

\begin{equation}
1/C \leq \max_{|x-x_0| \leq \delta} u_n \leq C
\end{equation}

and

\begin{equation}
u_n(x) \to 0 \text{ as } n \to +\infty \text{ uniformly with respect to } x \text{ for } |x-x_0| \geq \delta.
\end{equation}

In particular, if $M = \{x \in \Lambda : G(x) = c_0\}$ consists of only one point x_0 in Λ, then all bound states u_ε concentrate at the point x_0 as $\varepsilon \to 0$.

Proof. By (5-2), for each sequence $\{\varepsilon_n\}$, there exists a subsequence $\{\varepsilon_n\}$ such that $\{x_n\} \equiv \{x_{\varepsilon_n}\}$ converges to a minimum point x_0 of $G(x)$ in Λ as $n \to +\infty$, where x_n satisfies $u_n(x_n) = \max u_n(x)$. Given $\delta > 0$, we can choose n large enough that

\[
\left| \frac{x-x_0}{\varepsilon_n} \right| = \left| \frac{x-x_0+x_n-x_n}{\varepsilon_n} \right| \geq \left| \frac{x-x_0}{\varepsilon_n} \right| - \left| \frac{x_0-x_n}{\varepsilon_n} \right| > \frac{\delta}{2\varepsilon_n} - \frac{\delta}{2\varepsilon_n} = \frac{\delta}{2} > R(\nu)
\]

for any $\nu > 0$ and $|x-x_0| \geq \delta$, where $R(\nu)$ is the constant given in Lemma 5.4. This, together with Lemma 5.4, yields $u_\varepsilon(x) \leq \nu$ and thus (5-10).

By Lemma 5.1 and (5-10), we deduce $\max_{\mathbb{R}^N} u_n = \max_{|x-x_0| \leq \delta} u_n$, and the first inequality of (5-9) holds. We now show the second. In fact, by the procedure leading to (5-7) and the last inequality of Lemma 2.6, we have

\[
\max_{\mathbb{R}^N} u_\varepsilon = v_\varepsilon(\varepsilon^{-1}x_\varepsilon) \leq C \left(\int_{B_1(\varepsilon^{-1}x_\varepsilon)} v_\varepsilon^2(y)dy \right)^{1/2} \leq C \left(\int_{B_1(\varepsilon^{-1}x_\varepsilon)} (|\nabla v_\varepsilon|^2 + v_\varepsilon^2)dy \right)^{1/2}
\]

\[
= C \left(\varepsilon^{-N} \int_{B_1(x_\varepsilon)} (\varepsilon^2|\nabla u_\varepsilon|^2 + |u_\varepsilon|^2)dx \right)^{1/2}
\]

\[
\leq C \left(\varepsilon^{-N} \int_{\Lambda} (\varepsilon^2|\nabla u_\varepsilon|^2 + V(x)|u_\varepsilon|^2)dx \right)^{1/2} \leq C.
\]

Thus Theorem 5.5 is proved. \hfill \Box

Proof of Theorem 1.5. This is an immediate corollary of Theorem 5.5. \hfill \Box

Appendix

Here we prove (2-7).

Lemma A.1. Let

\[
h_\varepsilon(x, \xi) = \min \left\{ K(x)(\xi^+)^p + 2Q^+(x)(\xi^+)^q, \frac{\varepsilon^3}{1+|x|^{\theta_0}} \xi^+, \frac{\varepsilon}{1+|x|^N} \right\},
\]

\[
j_\varepsilon(x, \xi) = \min \left\{ Q(x)(\xi^+)^q, \frac{\varepsilon^3}{1+|x|^{\theta_0}} \xi^+, \frac{\varepsilon}{1+|x|^N} \right\}.
\]
Then

(A-1) \[|h_\varepsilon(x, \zeta) - h_\varepsilon(x, \eta)| \leq \frac{pe^3}{1 + |x|^6} |\zeta - \eta| \quad \text{for } \zeta, \eta \in \mathbb{R}, \]

(A-2) \[|j_\varepsilon(x, \zeta) - j_\varepsilon(x, \eta)| \leq \frac{qe^3}{1 + |x|^6} |\zeta - \eta| \quad \text{for } \zeta, \eta \in \mathbb{R}. \]

Proof. We only prove (A-1). Because \(|\zeta^+ - \eta^+| \leq |\zeta - \eta|\), it suffices to show (A-1) for \(\zeta, \eta \geq 0\). We note that (A-1) obviously holds for \(\zeta = \eta\), and \(h_\varepsilon(x, \zeta)\) is not decreasing for \(\zeta \geq 0\). So we can assume \(\zeta > \eta \geq 0\) without loss of generality. We now treat various cases and subcases.

Case I: \(\eta = 0\). In this case,

\[0 \leq h_\varepsilon(x, \zeta) - h_\varepsilon(x, \eta) = h_\varepsilon(x, \zeta) \leq \frac{e^3}{1 + |x|^6}\zeta < \frac{pe^3}{1 + |x|^6}(\zeta - \eta).\]

Case II: \(\eta > 0\).

Case II.1: \(h_\varepsilon(x, \zeta) = K(x)\zeta^p + 2Q^+(x)\zeta^q\). Then, because \(\zeta > \eta\), we have \(h_\varepsilon(x, \eta) = K(x)\eta^p + 2Q^+(x)\eta^q\). It follows from the definition of \(h_\varepsilon(x, \zeta)\) and a direct computation that \(h_\varepsilon(x, \zeta) - h_\varepsilon(x, \eta) < pe^3(\zeta - \eta)/(1 + |x|^6)\).

Case II.2: \(h_\varepsilon(x, \zeta) = e^3\zeta/(1 + |x|^6)\). By \(\zeta > \eta\), we have

\[h_\varepsilon(x, \eta) = K(x)\eta^p + 2Q^+(x)\eta^q \quad \text{or} \quad h_\varepsilon(x, \eta) = e^3\eta/(1 + |x|^6).\]

Case II.2.i: \(h_\varepsilon(x, \eta) = K(x)\eta^p + 2Q^+(x)\eta^q\). Denote by \(w\) the unique positive solution of \(e^3/(1 + |x|^6) = K(x)w^{p-1} + 2Q^+(x)w^{q-1}\); at this time, \(K(x) \neq 0\) or \(Q^+(x) \neq 0\) by the definition of \(h_\varepsilon(x, \zeta)\). Then it follows from \(\eta \leq w \leq \zeta\) that \(h_\varepsilon(x, w) = K(x)w^{p} + 2Q^+(x)w^{q} = e^3w/(1 + |x|^6)\). Thus

\[h_\varepsilon(x, \zeta) - h_\varepsilon(x, \eta) = h_\varepsilon(x, \zeta) - h_\varepsilon(x, w) + h_\varepsilon(x, w) - h_\varepsilon(x, \eta)\]

\[= e^3 \frac{pK(x)\zeta^{p-1}(w - \eta) + 2Q^+(x)\zeta^{q-1}(w - \eta)}{1 + |x|^6} \leq e^3 \frac{p|K(x)|\zeta^{p-1}(w - \eta) + 2Q^+(x)\zeta^{q-1}(w - \eta)}{1 + |x|^6} \leq \frac{pe^3}{1 + |x|^6}(\zeta - \eta).\]

Case II.2.ii: \(h_\varepsilon(x, \eta) = e^3\eta/(1 + |x|^6)\). It follows from a direct computation that

\[h_\varepsilon(x, \zeta) - h_\varepsilon(x, \eta) = e^3(\zeta - \eta)/(1 + |x|^6) < pe^3(\zeta - \eta)/(1 + |x|^6).\]
Case II.3: $h_{\xi}(x, \zeta) = \varepsilon/(1 + |x|^N)$. In this case, $h_{\xi}(x, \eta)$ is either
\[
K(x)\eta^p + 2Q^+(x)\eta^q \quad \text{or} \quad \varepsilon^3\eta/(1 + |x|^{\theta_0}) \quad \text{or} \quad \varepsilon/(1 + |x|^N).
\]

Case II.3.i: $h_{\xi}(x, \eta) = K(x)\eta^p + 2Q^+(x)\eta^q$. If $\zeta \geq w$, with w as in Case II.2.i, then we have
\[
h_{\xi}(x, \zeta) - h_{\xi}(x, \eta) = \frac{\varepsilon}{1 + |x|^N} - (K(x)\eta^p + 2Q^+(x)\eta^q)
\leq \frac{\varepsilon^3}{1 + |x|^{\theta_0}}(\zeta - w) + K(x)(w^p - \eta^p) + 2Q^+(x)(w^q - \eta^q)
= \frac{\varepsilon^3}{1 + |x|^{\theta_0}}(\zeta - w) + pK(x)\zeta_1^{p-1}(w - \eta) + 2qQ^+(x)\zeta_2^{q-1}(w - \eta)
\quad \text{(where } \eta \leq \zeta_1, \zeta_2 \leq w)
\leq \frac{\varepsilon^3}{1 + |x|^{\theta_0}}(\zeta - w) + pK(x)w^{p-1} + 2Q^+(x)w^{q-1}]\left(\frac{1}{1 + |x|^{\theta_0}}(w - \eta)\right).
\]

If $\zeta < w$, then $\varepsilon/(1 + |x|^N) \leq K(x)\zeta^p + 2Q^+(x)\zeta^q \leq \varepsilon^3/(1 + |x|^{\theta_0})\zeta$. A direct computation yields
\[
h_{\xi}(x, \zeta) - h_{\xi}(x, \eta) = \frac{\varepsilon}{1 + |x|^N} - (K(x)\eta^p + 2Q^+(x)\eta^q)
\leq (K(x)\zeta^p + 2Q^+(x)\zeta^q) - (K(x)\eta^p + 2Q^+(x)\eta^q)
= K(x)(\zeta^p - \eta^p) + 2Q^+(x)(\zeta^q - \eta^q)
= pK(x)\zeta_1^{p-1}(\zeta - \eta) + 2qQ^+(x)\zeta_2^{q-1}(\zeta - \eta) \quad \text{(where } \eta \leq \zeta_1, \zeta_2 \leq \zeta)
\leq pK(x)\zeta_1^{p-1} + 2Q^+(x)\zeta_2^{q-1}(\zeta - \eta)
\leq \frac{pe^3}{1 + |x|^{\theta_0}}(\zeta - \eta).
\]

Case II.3.ii: $h_{\xi}(x, \eta) = \varepsilon^3\eta/(1 + |x|^{\theta_0})$. It follows from the definition of $h_{\xi}(x, \eta)$ and a direct computation that
\[
h_{\xi}(x, \zeta) - h_{\xi}(x, \eta) = \frac{\varepsilon}{1 + |x|^N} - \frac{\varepsilon^3}{1 + |x|^{\theta_0}}\eta \leq \frac{\varepsilon^3}{1 + |x|^{\theta_0}}(\zeta - \eta) < \frac{pe^3}{1 + |x|^{\theta_0}}(\zeta - \eta).
\]

Case II.3.iii: $h_{\xi}(x, \eta) = \varepsilon/(1 + |x|^N)$. We have
\[
h_{\xi}(x, \zeta) - h_{\xi}(x, \eta) = 0 < \frac{pe^3}{1 + |x|^{\theta_0}}(\zeta - \eta)/(1 + |x|^{\theta_0}).
\]

Combining all the cases above yields (A-1).
References

Received March 1, 2009. Revised September 2, 2009.

MINGWEN FEI
DEPARTMENT OF MATHEMATICS AND IMS
NANJING UNIVERSITY
NANJING 210093
CHINA
ahnufmwen@126.com

HUICHENG YIN
DEPARTMENT OF MATHEMATICS AND IMS
NANJING UNIVERSITY
NANJING 210093
CHINA
huicheng@nju.edu.cn