Vol. 245, No. 1, 2010

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Counting conjugacy classes in the unipotent radical of parabolic subgroups of GLn(q)

Simon M. Goodwin and Gerhard Röhrle

Vol. 245 (2010), No. 1, 47–56
Abstract

Let q be a power of a prime p. Let P be a parabolic subgroup of the general linear group GLn(q) that is the stabilizer of a flag in 𝔽qn of length at most 5, and let U = Op(P). We prove that, as a function of q, the number k(U) of conjugacy classes of U is a polynomial in q with integer coefficients.

Keywords
Higman conjecture, parabolic subgroups, unipotent radical
Mathematical Subject Classification 2000
Primary: 20G40
Secondary: 20E45, 20D15
Milestones
Received: 9 January 2009
Accepted: 11 June 2009
Published: 20 January 2010
Authors
Simon M. Goodwin
School of Mathematics
University of Birmingham
Birmingham, B15 2TT
United Kingdom
http://web.mat.bham.ac.uk/S.M.Goodwin
Gerhard Röhrle
Fakultät für Mathematik
Ruhr-Universität Bochum
D-44780 Bochum
Germany
http://www.ruhr-uni-bochum.de/ffm/Lehrstuehle/Lehrstuhl-VI/rubroehrle.html