Vol. 245, No. 1, 2010

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Scott and Swarup’s regular neighborhood as a tree of cylinders

Vincent Guirardel and Gilbert Levitt

Vol. 245 (2010), No. 1, 79–98
Abstract

Let G be a finitely presented group. Scott and Swarup have constructed a canonical splitting of G that encloses all almost invariant sets over virtually polycyclic subgroups of a given length. We give an alternative construction of this regular neighborhood by showing that it is the tree of cylinders of a JSJ splitting.

Keywords
JSJ decomposition, tree of cylinder, almost invariant set, torus theorem, canonical splitting, tree
Mathematical Subject Classification 2000
Primary: 20E08
Secondary: 20F65, 20E06
Milestones
Received: 9 December 2008
Accepted: 1 September 2009
Published: 20 January 2010
Authors
Vincent Guirardel
Institut de Mathématiques de Toulouse
Université de Toulouse et CNRS (UMR 5219)
118 route de Narbonne
F-31062 Toulouse CEDEX 9
France
www.math.univ-toulouse.fr/~guirardel
Gilbert Levitt
Laboratoire de Mathématiques Nicolas Oresme
Université de Caen et CNRS (UMR 6139)
BP 5186
F-14032 Caen CEDEX
France