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STRONGLY r-MATRIX INDUCED TENSORS,
KOSZUL COHOMOLOGY, AND

ARBITRARY-DIMENSIONAL QUADRATIC POISSON
COHOMOLOGY

MOURAD AMMAR, GUY KASS, MOHSEN MASMOUDI AND NORBERT PONCIN

We introduce the concept of strongly r-matrix induced (SRMI) Poisson
structure, report on the relation of this property to the stabilizer dimen-
sion of the considered quadratic Poisson tensor, and classify the Poisson
structures of the Dufour–Haraki classification (DHC) according to their
membership in the family of SRMI tensors. A main result is a generic co-
homological procedure for classifying SRMI Poisson structures in arbitrary
dimension. This approach allows the decomposition of Poisson cohomology
into, basically, a Koszul cohomology and a relative cohomology. Also we
investigate this associated Koszul cohomology, highlight its tight connec-
tions with spectral theory, and reduce the computation of this main building
block of Poisson cohomology to a problem of linear algebra. We apply these
upshots to two structures of the DHC and provide an exhaustive description
of their cohomology. We thus complete our list of data obtained in previous
work, and gain fairly good insight into the structure of Poisson cohomology.

1. Introduction

Let (L, [ · , · ]) with L =
⊕

i Li be a graded Lie algebra (gLa). Any element
with degree 1 that squares to 0 generates a differential graded Lie algebra (dgLa)
(L, [ · , · ], ∂3), where ∂3 := [3, · ], and a gLa H(L, [ · , · ], ∂3) in cohomology.
Depending on the initial algebra, such a 2-nilpotent degree 1 element is, say,
an associative algebra structure, a Lie algebra structure, or a Poisson structure,
and the associated cohomology is the adjoint Hochschild, the adjoint Chevalley–
Eilenberg, or the Lichnerowicz–Poisson (LP) (or simply Poisson) cohomology,
respectively. Recall that the LP-dgLa is implemented by the shifted Grassmann

MSC2000: 17B56, 17B63, 55N99.
Keywords: r -matrix, quadratic Poisson structure, Poisson cohomology, Lichnerowicz–Poisson

cohomology, Koszul cohomology, relative cohomology, spectral theory.
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2 MOURAD AMMAR, GUY KASS, MOHSEN MASMOUDI AND NORBERT PONCIN

algebra (X(M)[1], ∧, [ · , · ]SN), with X(M)=0(
∧

T M), of polyvectors of a man-
ifold M , endowed with the Schouten–Nijenhuis bracket [ · , · ]SN. The Hochschild
dgLa is generated by the space of multilinear mappings of the underlying vec-
tor space endowed with the Gerstenhaber graded Lie bracket, and similarly the
Chevalley–Eilenberg dgLa is generated by the space of skew-symmetric multilinear
mappings of the underlying vector space endowed with the Nijenhuis–Richardson
graded Lie bracket.

Alternatively, LP-cohomology can be viewed as the Lie algebroid (Lad) coho-
mology of the Lie algebroid (T ∗M, { · , · }, ]) canonically associated with an arbi-
trary Poisson manifold (M,3). The cohomology of a Lad (E→M, [[ · , · ]], ρ), or
equivalently a Q-structure on a supermanifold, is defined as the cohomology of the
Chevalley–Eilenberg subcomplex of the representation ρ : 0(E)→Der(C∞(M)),
made up by tensorial cochains. Algebraically, LP-cohomology is defined as the
adjoint Chevalley–Eilenberg cohomology of any Poisson–Lie algebra, restricted to
the cochain subspace of skew-symmetric multiderivations.

More details about Poisson cohomology can be found, say, in [Lichnerowicz
1977; Vaisman 1994].

The last few decades have seen much work on Poisson cohomology and Pois-
son homology, starting with [Koszul 1985; Brylinski 1988]. Problems studied
include the cohomology of regular Poisson manifolds [Vaisman 1990; Xu 1992],
(co)homology and resolutions [Huebschmann 1990], duality [Huebschmann 1999;
Xu 1999; Evens et al. 1999], cohomology in low dimensions or specific cases
[Nakanishi 1997; Ginzburg 1999; Gammella 2002; Monnier 2002b; 2002a; Roger
and Vanhaecke 2002; Roytenberg 2002; Pichereau 2005], and various extensions
of Poisson cohomology — for example, the cohomologies Lie algebroid, Jacobi,
Nambu–Poisson, double Poisson, and graded Jacobi [de León et al. 1997; Ibáñez
et al. 2001; Monnier 2001; Grabowski and Marmo 2003; de León et al. 2003;
Nakanishi 2006; Pichereau and Van de Weyer 2008]. In [Masmoudi and Poncin
2007; Ammar and Poncin 2008], we suggest an approach to the cohomology of
the Poisson tensors of the Dufour–Haraki classification (DHC).

Here we focus on the formal LP-cohomology associated with the quadratic Pois-
son tensors (QPTs) 3 of Rn that read as real linear combinations

(1-1) 3=
∑
i< j

αi j Yi ∧ Y j =:
∑
i< j

αi j Yi j for αi j
∈ R

of the wedge products of n commuting linear vector fields Y1, . . . , Yn , such that
Y1∧· · ·∧Yn =: Y1...n 6= 0. Let us recall that “formal” means that we substitute the
space R[[x1, . . . , xn]]⊗

∧
Rn of multivectors with coefficients in the formal series

for the usual Poisson cochain space X(Rn) = C∞(Rn)⊗
∧

Rn . Furthermore, the
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reader may think about QPTs of type (1-1) as QPTs implemented by a classical
r -matrix in their stabilizer for the canonical matrix action.

Hence, in Section 2, we are interested in characterizing the QPTs that are im-
ages of a classical r -matrix. We show that a QPT is induced by an r -matrix if
the dimension of its stabilizer is large enough; more precisely, we prove that if
the stabilizer of a given QPT 3 of Rn contains n commuting linear vector fields
Yi such that Y1...n 6= 0, then 3 is implemented by an r -matrix in its stabilizer;
see Corollary 2. We refer to such tensors as strongly r -matrix induced (SRMI)
structures and show that any structure of the DHC decomposes into the sum of
a maximal SRMI structure and a small compatible (mostly exact) Poisson tensor;
see Theorem 4. This decomposition is the foundation of our cohomological tech-
niques proposed in [Masmoudi and Poncin 2007; Ammar and Poncin 2008]. This
splitting is in some sense opposite to the one proved in [Liu and Xu 1992], which
incorporates the largest possible part of the Poisson tensor into the exact term.

Masmoudi and Poncin [2007] developed a cohomological method in Euclidean
three-space that greatly simplified LP-cohomology computations for the SRMI
structures of the Dufour–Haraki classification. Section 3 extends this procedure
to arbitrary-dimensional vector spaces. In Theorem 10, we inject the space R of
“real” LP-cochains (formal multivector fields) into a larger space P of “potential”
cochains. In Theorems 13 and 15, we identify the natural extension to P of the LP-
differential as the Koszul differential associated with n commuting endomorphisms

X i − (div X i ) id, where X i =
∑

j α
i j Y j and α j i

=−αi j ,

of the space made up by the polynomials on Rn with some fixed homogeneous
degree. We then choose a space S supplementary to R in P and show that the LP-
differential induces a differential on S. Eventually, we end up with a short exact
sequence of differential spaces and an exact triangle in cohomology. Theorem 16
shows that LP-cohomology (R-cohomology) reduces, essentially, to Koszul coho-
mology (P-cohomology) and a relative cohomology (S-cohomology).

To take advantage of these results, we investigate in Section 4 the Koszul coho-
mology associated to n commuting linear operators on a finite-dimensional com-
plex vector space. We prove a homotopy-type formula in Proposition 19 and —
using spectral properties — show in Theorem 20 and Corollary 21 that the Koszul
cohomology is located inside a primary subspace of the corresponding commuting
endomorphisms.

In Section 5, we apply this result to gain insight into the structure of the Koszul
cohomology implemented by SRMI tensors, and show that to compute this central
part of Poisson cohomology it basically suffices to solve triangular systems of
linear equations.
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We conclude Section 5 by providing a full description of the LP-cohomology
spaces of structures 33 and 39 of the Dufour–Haraki classification.

2. Characterization of strongly r-matrix induced Poisson structures

Stabilizer dimension and r-matrix generation. Poisson structures implemented
by an r -matrix are of interest, for example in deformation quantization, especially
in view of Drinfeld’s method. We next report on an idea for generating quadratic
Poisson tensors by classical r -matrices.

Set G = GL(n,R) and g = gl(n,R). The Lie algebra isomorphism between g

and the algebra X1
0(R

n) of linear vector fields extends to a Grassmann algebra and
a graded Poisson–Lie algebra homomorphism J :

∧
g→

⊕
k(S

kRn∗
⊗
∧k

Rn). It
is known that its restriction

J k
:
∧k g→ SkRn∗

⊗
∧k

Rn

is onto, but has a nontrivial kernel if k, n ≥ 2. In particular,

J 3
[r, r ]SN = [J 2r, J 2r ]SN for r ∈ g∧ g,

where [ · , · ]SN is the Schouten–Nijenhuis bracket. It is still an open problem to
characterize the quadratic Poisson structures that are implemented by a classical
r -matrix, that is, a bimatrix r ∈ g∧g satisfying the classical Yang–Baxter equation
[r, r ]SN = 0.

Quadratic Poisson tensors31 and32 are equivalent if and only if there is A∈G
such that A∗31 =32, where ∗ denotes the standard action of G on tensors of Rn .
Since J 2 is a G-module homomorphism, that is,

A∗(J 2r)= J 2(Ad(A)r) for A ∈ G and r ∈ g∧ g,

the G-orbit of a quadratic Poisson structure 3= J 2r is the pointwise J 2-image of
the G-orbit of r . Furthermore, the representation Ad acts by graded Lie algebra
homomorphisms, that is,

Ad(A)[r, r ]SN = [Ad(A)r,Ad(A)r ]SN.

Hence, if 3 = J 2r , where r is a classical r -matrix, the orbit of this quadratic
Poisson tensor consists of r -matrix induced structures.

Any quadratic Poisson tensor 3 is implemented by bimatrices r ∈ g ∧ g. To
determine whether the G-orbit O3 of this tensor is generated by r -matrices, we
look at the preimage (J 2)−1(O3)=

⋃
r∈(J 2)−13 Or , composed of the G-orbits Or

of all the bimatrices r that are mapped on 3 by J 2. We claim that the bigger the
chance that a fiber of this bundle is located inside r -matrices, the smaller is O3.
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In other words, the dimension of the isotropy Lie group G3 of 3, or of its Lie
algebra, the stabilizer

g3 := {a ∈ g : [3, Ja]SN = 0}

of3 for the corresponding infinitesimal action, should be big enough. For example,
in R3 the Poisson tensor3= (x2

1+x2x3)∂23, where ∂23 := ∂2∧∂3 and ∂i := ∂/∂xi , is
not r -matrix induced (see [Manchon et al. 2002]) and the dimension of its stabilizer
is dim g3 = 2. More evidence comes from the corollary of the following theorem:

Theorem 1. Let 3 be an analytic Poisson tensor of Rn . If its stabilizer contains n
commuting analytic vector fields Yi for i ∈ {1, . . . , n} such that Y1 ∧ · · · ∧ Yn 6= 0,
then there exist constants αkl

∈ R such that 3=
∑

k<l α
klYk ∧ Yl .

Proof. Since Y1 ∧ · · · ∧ Yn 6= 0, there exists an open subset O of Rn such that

3=
∑
k<l

αkl(x)Yk ∧ Yl in O

for some local functions αkl
= αkl(x). Since for any i ∈ {1, . . . , n}, we have

0= [Yi ,3]SN =
∑
k<l

Yi (α
kl)Yk ∧ Yl in O ,

the αkl are constant in O; the theorem follows by analytic continuation. �

Corollary 2. Let 3 be a quadratic Poisson tensor of Rn . If its stabilizer g3 con-
tains n commuting linear vector fields Yi for i ∈ {1, . . . , n} such that Y1 ∧ · · · ∧ Yn

does not vanish, then 3 is implemented by a classical r-matrix that belongs to the
stabilizer, that is, 3= J 2a, where [a, a]SN = 0 and a ∈ g3 ∧ g3.

Definition 3. If 3 is a quadratic Poisson structure implemented by a classical
r -matrix r ∈ g3 ∧ g3, we call 3 a strongly r -matrix induced (SRMI) tensor.

Classification theorem in Euclidean three-space. Two concepts of exact Pois-
son structure — which are closely related to two special cohomology classes —
are used below. Let 3 be a Poisson tensor on a smooth manifold M oriented
by a volume element �. We say that 3, which is of course a LP-2-cocycle, is
Lichnerowicz–Poisson-exact or LP-exact if

3= [3, X ]SN for some X ∈ X1(M).

The vector field X is called the Liouville vector field and the cohomology class
of 3 is the obstruction to infinitesimal rescaling of 3. We call 3 Koszul-exact or
K-exact if

3= δ(T ) for some T ∈ X3(M).
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Here, the operator δ := φ−1
◦d ◦φ is the pullback of the de Rham differential d by

the canonical vector space isomorphism φ := i(·)�. Although introduced earlier,
the generalized divergence δ defined by δ(X)= div� X for X ∈ X1(M) is usually
attributed to J.-L. Koszul. The curl vector field K (3) := δ(3) of 31 is an LP-1-
cocycle. K (3) maps a function to the divergence of its Hamiltonian vector field.
The cohomology class of K (3) is the well-known modular class of3. This class is
independent of�, is the obstruction to existence on M of a measure preserved by all
Poisson automorphisms, and is relevant in the classification of Poisson structures
[Dufour and Haraki 1991; Grabowski et al. 1993; Liu and Xu 1992] and in Poincaré
duality [Evens et al. 1999; Ibáñez et al. 2001]. In Rn with n ≥ 3, a Poisson tensor
3 is K-exact if and only if it is irrotational, that is, K (3)= 0, and in R3, K-exact
means function-induced, that is,

3=5 f := ∂1 f ∂23+ ∂2 f ∂31+ ∂3 f ∂12 for f ∈ C∞(R3).

The K-exact quadratic Poisson tensors5p of R3, that is, the K-exact Poisson struc-
tures induced by a homogeneous polynomial p ∈ S3R3∗, represent class 14 of the
Dufour–Haraki classification. The cohomology of this class has been studied by
Pichereau [2005] (actually Pichereau deals with structures 5p implemented by a
weight-homogeneous polynomial p with an isolated singularity). Hence, we will
not examine class 14 here.

Recall that two Poisson tensors 31 and 32 are compatible if their sum is again
a Poisson structure, that is, if [31,32]SN = 0.

The next theorem classifies the quadratic Poisson tensors according to their
strongly r -matrix induced structure. It also shows that any such tensor is the sum
of a “maximal” strongly r -matrix induced tensor and a “small” compatible Poisson
structure. The classification makes available the cohomological technique used in
[Masmoudi and Poncin 2007], while the splitting2 is relevant to cohomological
approach of [Ammar and Poncin 2008].

Denote the canonical coordinates of R3 by x, y, z and by x1, x2, x3; denote the
corresponding partial derivatives by ∂1, ∂2, ∂3. Let ∂i j = ∂i ∧ ∂ j .

Theorem 4. Let a, b, c∈R, and let3i for i ∈ {1, . . . , 13} be the quadratic Poisson
tensors of the Dufour–Haraki classification [1991].

If dim g3 > 3 (where the subscript i is omitted), there are mutually commuting
linear vector fields Y1, Y2, Y3 such that

3= αY23+βY31+ γY12, where α, β, γ ∈ R,

1If � is the standard volume of R3 and 3 is identified with a vector field E3 of R3, then K (3)
coincides with the standard curl E∇ ∧ E3.

2This splitting differs from the decomposition used in [Liu and Xu 1992] in that we incorporate
as much structure as possible into the strongly induced term.
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so that 3 is strongly r-matrix induced (SRMI), that is, implemented by a classical
r-matrix in g3∧g3. In the following classification of the quadratic Poisson tensors
by the SRMI property, we decompose each non-SRMI tensor into the sum of a
maximal SRMI structure and a smaller compatible quadratic Poisson tensor.

• Set Y1 = x∂1, Y2 = y∂2 and Y3 = z∂3.

(1) 31 = a yz∂23+b xz∂31+ c xy∂12 is SRMI for all values of the parameters
a, b and c, and decomposes as 31 = aY23+ bY31+ cY12.

(2) 34 = ayz∂23+ axz∂31+ (bxy+ z2)∂12 is SRMI if and only if a and b are
both zero. We have 34 = a(Y23+ Y31)+ bY12+

1
35z3 .

• Set Y1 = x∂1+ y∂2, Y2 = x∂2− y∂1 and Y3 = z∂3.

(1) 32 = (2ax − by)z∂23+ (bx + 2ay)z∂31+ a(x2
+ y2)∂12 is SRMI for any

a and b. We have 32 = 2a Y23+ bY31+ a Y12.
(2) 37 = ((2a+ c)x − by) z∂23 + (bx + (2a+ c)y) z∂31 + a(x2

+ y2)∂12 is
SRMI for all a, b, c. We have 37 = (2a+ c)Y23+ bY31+ a Y12.

(3) 38 = a xz∂23+a yz∂31+ (
1
2(a+b)(x2

+ y2)± z2)∂12 is SRMI if and only
if a and b are both zero. We have

38 = aY23+
1
2(a+ b)Y12±

1
35z3 .

• Set Y1 = x∂1+ y∂2, Y2 = x∂2 and Y3 = z∂3.

(1) 33 = (2x − a y)z∂23 + a xz∂31 + x2∂12 is SRMI for any a, and we have
33 = 2Y23+ a Y31+ Y12.

(2) 35 = ((2a+ 1)x + y)z∂23− xz∂31+ a x2∂12 is SRMI for any a 6= −1/2.
We have 35 = (2a+ 1)Y23− Y31+ a Y12.

(3) 36 = a yz∂23−a xz∂31−
1
2 x2∂12 is SRMI for any a. The decomposition is

36 =−a Y31−
1
2 Y12.

• Set Y1 = E := x∂1+ y∂2+ z∂3, Y2 = x∂2+ y∂3 and Y3 = x∂3.

(1) 39 = (ax2
−

1
3 y2
+

1
3 xz)∂23 +

1
3 xy∂31 −

1
3 x2∂12 is SRMI for any a. We

have 39 = a Y23−
1
3 Y12.

(2) 310= (a y2
−(4a+1)xz)∂23+(2a+1)xy∂31−(2a+1)x2∂12 is SRMI if and

only if a =−1/3. We have 310 =−(2a+1)Y12+ (3a+1)(y2
−2xz)∂23.

• Set Y1 = E, Y2 = x∂2 and Y3 = (a x + (3b+ 1)z)∂3.

(1) Set a = 0. Then 311 = (2b+ 1)xz∂23 + (b x2
+ cz2)∂12 is SRMI if and

only if c = 0. We have 311 = Y23+ bY12+
1
3 c5z3 .

(2) Set a = 1. Then 312 = (x2
+ (2b+ 1)xz)∂23+ (b x2

+ cz2)∂12 is SRMI if
and only if c = 0. We have 312 = Y23+ bY12+

1
3 c5z3 .

(3) 313 = (a x2
+ (2b+ 1)xz + z2)∂23 + (b x2

+ cz2
+ 2xz)∂12 is not SRMI

for any a, b, c. We have 313 = Y23+ bY12+5cz3/3+xz2 .
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Proof. The basic fields Y1, Y2, Y3 have been read in the stabilizers of the considered
Poisson tensors, but for brevity we omit the stabilizer computations. Indeed, once
the vector fields Yi are specified, it is easily checked that, in the SRMI cases, they
satisfy the assumptions of Theorem 1. Thus the corresponding Poisson structures
are actually SRMI tensors. To show that a quadratic Poisson structure 3 is not
SRMI, it suffices to prove that 3 /∈ J 2(g3 ∧ g3), which we will do below.

All the decompositions above can be directly verified. In most instances, the
twist is obviously Poisson, so that compatibility follows. In the case of 310, the
twist 310,II = (y2

− 2xz)∂23 is a non-K-exact Poisson structure, which follows
directly from the fact that K (310,II) = E∇ ∧ E310,II = −2x∂2 − 2y∂3 6= 0 and the
formula [P, Q]SN= (−1)p D(P∧Q)−D(P)∧Q−(−1)p P∧D(Q) for P ∈Xp(M)
and Q ∈ Xq(M). The main part of this proof will make it obvious why we require
that dim g3 > 3.

Denote by Ei j for i, j ∈ {1, 2, 3} the canonical basis of gl(3,R).

• If (a, b) 6= (0, 0), stabilizer g34 and the image J 2(g34∧g34) are generated by
( 1

2 E11+ E22,
1
2 E11+ E33) and yz∂23−

1
2 xz∂31−

1
2 xy∂12, respectively. Hence

34 is not SRMI.

• If (a, b) 6= (0, 0), the generators of g38 and J 2(g38 ∧ g38) are

(E11+ E22+ E33, E12− E21) and − xz∂23− yz∂31+ (x2
+ y2)∂12.

So 38 is not SRMI.

• If a 6= −1/3, the generators in the case of 310 are

(E11+ E22+ E33, E12+ E23) and (y2
− xz)∂23− xy∂31+ x2∂12.

• For the cases of 311 and 312 with c 6= 0, and the case 313, the generators are

(E11+ E22+ E33, E12, E32) and − xz∂23+ x2∂12, z2∂23− xz∂12. �

Remarks. • In the cases 31, 32 and 33, with c 6= 0 in the latter two, the
dimension of the stabilizer is dim g3 = 3, whereas Jg3 ∧ Jg3 ∧ Jg3 = {0}.
Hence, if the dimension of the stabilizer coincides with the dimension of the
space, the Poisson structure is not necessarily a SRMI tensor.

• For 310, the decomposition proved in [Liu and Xu 1992] yields

310 =−
1
3 Y12+5cz3/3+xz2+(b+1/3)x2z+ax3/3.

3. Poisson cohomology of quadratic structures
in a finite-dimensional vector space

Koszul homology and cohomology. Let
∧
=
∧

n〈Eη〉 be the Grassmann algebra on
n ∈N0 with generators Eη= (η1, . . . , ηn), that is, the algebra over a field F (here R



STRONGLY r -MATRIX INDUCED TENSORS AND KOSZUL COHOMOLOGY 9

or C) of characteristic 0 generated by η1, . . . , ηn and subject to the anticommutation
relations ηkη`+ η`ηk = 0 for k, ` ∈ {1, . . . , n}. Set

∧
=
⊕n

p=0
∧p, with obvious

notations, and let Eh = (h1, . . . , hn) be dual generators defined by ihkη` = δk`. We
also need the creation operator eηk :

∧
→
∧

, ω 7→ηkω and the annihilation operator
ihk :

∧
→
∧

, ω 7→ ihkω, where the interior product is defined as usual. Finally,
we denote by E a vector space over F and by

→

X = (X1, . . . , Xn) an n-tuple of
commuting linear operators on E .

Definition 5. The Koszul chain complex (or K∗-complex) K∗(
→

X, E) associated
with

→

X on E is the complex

0→ E ⊗F

∧n
→ E ⊗F

∧n−1
→ · · · → E ⊗F

∧1
→ E→ 0

with differential κ→X =
∑n

k=1 Xk⊗ihk . We denote by KH∗(
→

X, E) the corresponding
Koszul homology group.

Definition 6. The Koszul cochain complex (or K ∗-complex) K ∗(
→

X, E) associated
with

→

X on E is the complex

0→ E→ E ⊗F

∧1
→ . . .→ E ⊗F

∧n−1
→ E ⊗F

∧n
→ 0

with differential K→
X =

∑n
k=1 Xk⊗eηk . We denote by KH∗(

→

X, E) the corresponding
Koszul cohomology group.

Since the Xk commute, the anticommutativity of the ihk and the eηk imply that
κ→Xκ→X = 0 and K→

X K→
X = 0, respectively. See [Koszul 1950; 1994].

Example 7. Let F = R and E = C∞(R3). If we choose ηk = dxk and Xk = ∂k ,
the K ∗-complex is the de Rham complex (�(R3), d). With ηk = ∂k = ∂xk and
hk = dxk , the K∗-complex is the dual de Rham complex (X(R3), δ).

If we identify the subspaces�k(R3) of homogeneous forms with the correspond-
ing spaces of components E , E3, E3 and E , this K ∗-complex reads

(3-1) 0→ E
K=E∇(·)
−−−−→ E3 K=E∇∧(·)

−−−−−→ E3 K=E∇·(·)
−−−−−→ E→ 0.

Example 8. Let F=R and E =SR3∗
=R[x1, x2, x3]. For k ∈ {1, 2, 3}, let ηk = ∂k ,

Xk =mPk , Pk ∈ Edk and dk ∈N, where mPk : E→ E, Q 7→ Pk Q. Then the chain
spaces of the K∗-complex are the spaces of homogeneous polyvector fields on
R3 with polynomial coefficients, and by identifying these with the corresponding
spaces E , E3, E3 and E of components, we can write this K∗-complex in the form

(3-2) 0→ E
κ=(·) EP
−−−−→ E3 κ=(·)∧ EP

−−−−−→ E3 κ=(·)· EP
−−−−−→ E→ 0.

Remarks. First, the Koszul cohomology and homology complexes of Example 7
are exact, except that KH0(E∂,C∞(R3))' KH3(E∂,C∞(R3))' R.
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Second, recall that an R-regular sequence on a module M over a commutative
unit ring R is a sequence (r1, . . . , rd) ∈ Rd such that rk is not a zero divisor on
the quotient M/〈r1, . . . , rk−1〉M for k ∈ {1, . . . , d}, and M/〈r1, . . . , rd〉M 6= 0. In
particular, x1, . . . , xd is a (maximal length) regular sequence on the polynomial
ring R = F[x1, . . . , xd ], so that this ring has depth d.

It is well known that the K∗-complex described in Example 8 is exact, except for
surjectivity of κ = ( ·) · EP , if the vector EP = (P1, P2, P3) is regular on R[x1, x2, x3].
If EP = E∇ p for p a homogeneous polynomial with an isolated singularity at the
origin, then EP is regular; see [Pichereau 2005].

Poisson cohomology in dimension 3. Set E := C∞(R3) and again identify the
spaces of homogeneous multivector fields in R3 with the corresponding component
spaces: X0(R3)' X3(R3)' E and X1(R3)' X2(R3)' E3.

Let E3= (31,32,33)∈ E3 be a Poisson tensor, and let f ∈ E ,
→

X ∈ E3, EB ∈ E3

and T ∈ E be a 0-, 1-, 2-, and 3-cochain of the LP-complex. By straightforward
computations, we get formulas for the LP-coboundary operator ∂ E3:

∂0
E3

f = E∇ f ∧ E3,

∂1
E3

→

X = ( E∇ ·
→

X) E3− E∇(
→

X · E3)+
→

X ∧ ( E∇ ∧ E3),

∂2
E3
EB =−( E∇ ∧ EB) · E3− EB · ( E∇ ∧ E3),

∂3
E3

T = 0.

Recall the differential K from (3-1), and let κ ′ and κ ′′ be the differential in (3-2)
when EP = E3 and EP = E∇ ∧ E3, respectively. Then

(3-3)

∂0
E3
= κ ′K,

∂1
E3
= κ ′K−Kκ ′+ κ ′′, ∂2

E3
=−κ ′K− κ ′′,

∂3
E3
= 0.

Again, this paper investigates only quadratic Poisson tensors and polynomial (or
formal) LP-cochains. If the structure E3 is K -exact, that is, in view of notations due
to the elimination of the module basis of multivector fields, E3= E∇ p for p ∈S3R3∗

if and only if E∇ ∧ E3 = 0, homology operator κ ′′ vanishes. If, moreover, p has an
isolated singularity, the K ∗-complex associated with K is exact up to injectivity
of K = E∇( · ), and the K∗-complex associated with κ ′ is acyclic (see above) up to
surjectivity of κ ′ = ( · ) · E3. Pichereau [2005] computed the LP-cohomology for a
weight-homogeneous polynomial p with an isolated singularity.

Next we describe a generic cohomological technique for SRMI Poisson tensors
in a finite-dimensional vector space. This approach extends (3-3) to dimension n
and also reduces the LP-coboundary operator ∂3 to a single Koszul differential.
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Poisson cohomology in dimension n.
Definition 9. Let Yi =

∑
r `ir∂r be n linear vector fields in Rn . Set

R=

n⊕
p=0

Rp
=

n⊕
p=0

R[[x1, . . . , xn]]⊗

p∧
n

〈E∂〉,

P=

n⊕
p=0

Pp
= D−1

n⊕
p=0

R[[x1, . . . , xn]]⊗

p∧
n

〈
→

Y 〉,

where D=det ` and
∧p

n 〈
E∂〉 and

∧p
n 〈
→

Y 〉 are the terms of degree p of the Grassmann
algebras on generators E∂ = (∂1, . . . , ∂n) and

→

Y = (Y1, . . . , Yn), respectively. The
spaces R and P are respectively the space of real and potential formal LP-cochains.

For i = (i1, . . . , im) ∈ {1, . . . , n}m , with i1 < · · · < im and m ∈ {1, . . . , n}, we
denote by I = (I1, . . . , In−m) its complement in {1, . . . , n}. The definition of D
gives Y1∧· · ·∧Yn = D ∂1∧· · ·∧∂n . If we take the interior product of this equation
with dx I = dx I1 ∧ · · · ∧ dx In−m , we get

D∂i =
∑

k

(−1)|i |+|k|Lki Yk,

where k is a subscript analogous to i , where ∂i and Yk are compact notations
similar to dx I , where | · | is the sum of the components, and where Lki denotes
some homogeneous polynomial. Setting Lki

:= L K I , we have a theorem:

Theorem 10. (i) There is a canonical nonsurjective injection i :R→ P.

(ii) A homogeneous potential cochain D−1∑
k P kr Yk (of bidegree (p, r), where

p is the exterior degree and r the polynomial degree) is real if and only if the
n!/p!(n − p)! homogeneous polynomials

∑
k Lki P kr (of degree p + r ) are

divisible by D; in case p = 0 this condition means that Pr is divisible by D.

Remark. The bigrading P=
⊕n

p=0
⊕
∞

r=0 Ppr , defined on P by the exterior degree
and the polynomial degree, induces a bigrading R=

⊕n
p=0

⊕
∞

r=0 Rpr on R.

Consider now a quadratic Poisson tensor 3 in Rn . From now on, we assume
that 3 is SRMI, and more precisely that there are n mutually commuting linear
vector fields Yi =

∑n
r=1 `ir∂r with ` ∈ gl(n,Rn∗) such that D = det ` 6= 0 and

3=
∑
i< j

αi j Yi j , where αi j
∈ R.

Proposition 11. The determinant D= det `∈SnRn∗
\{0} is the unique joint eigen-

vector of the Yi with eigenvalues div Yi ∈ R, that is, D is up to multiplication by
nonzero constants the unique nonzero polynomial of Rn that satisfies

Yi D = (div Yi )D for all i ∈ {1, . . . , n}.
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Moreover, if D = D1 D2, where D1 ∈ Sn1Rn∗ and D2 ∈ Sn2Rn∗ with n1+ n2 = n
are two polynomials without common divisor, these factors D1 and D2 are also
joint eigenvectors. Their eigenvalues λi and µi satisfy λi +µi = div Yi .

Proof. For i ∈ {1, . . . , n},

0= [Yi , Y1 ∧ · · · ∧ Yn] = [Yi , D∂1 ∧ · · · ∧ ∂n]

= (Yi D)∂1 ∧ · · · ∧ ∂n − D(div Yi )∂1 ∧ · · · ∧ ∂n,

so that Yi D = (div Yi )D.
For uniqueness, let P ∈ SRn∗

\ {0} be another polynomial such that Yi P =
(div Yi )P for all i ∈ {1, . . . , n}. Then Yi (P/D) = 0 in Z = {x ∈ Rn, D(x) 6= 0},
and, reasoning as in the proof of Theorem 1, we conclude there exists α ∈R∗ such
that P = αD.

Finally, because ((div Yi )D1 − Yi D1)D2 = D1(Yi D2) and the polynomials D1

and D2 have no common divisor, Yi D2 = P D2 and (div Yi )D1 − Yi D1 = Q D1,
where P = Q is a polynomial. Looking at degrees, we see P = Q is constant. �

Remark. The eigenvalues div Yi for i ∈ {1, . . . , n} cannot vanish simultaneously,
for otherwise the polynomial D ∈ SnRn∗

\ {0} vanishes everywhere.

Definition 12. The complex 0→ R0
→ R1

→ · · · → Rn
→ 0 with differential

∂3 = [3, · ]SN is the formal LP-complex of Poisson tensor 3 ∈ S2Rn∗
⊗
∧2

Rn .
We denote the corresponding cohomology groups by LH∗(R,3).

The next theorem shows that if the cochains C ∈R are read as C = iC ∈P, the
LP-differential simplifies.

Theorem 13. Set 3=
∑

i< j α
i j Yi j , α j i

=−αi j , and X i =
∑

j 6=i α
i j Y j .

(i) Let C = D−1∑
k P kr Yk ∈ Ppr be a homogeneous potential cochain. The

LP-coboundary of C is given by

(3-4)

∂3C =
∑

ki

X i (D−1 P kr )Yi ∧ Yk

= D−1
∑

ki

(X i − δi id)(P kr )Yi ∧ Yk ∈ Pp+1,r ,

where δi = div X i ∈ R.

(ii) The LP-coboundary operator ∂3 endows P with a differential complex struc-
ture and preserves the polynomial degree r . This LP-complex of 3 over P

contains the LP-complex (R, ∂3) of 3 over R as a differential subcomplex.

Proof. If C = f Y , with f a function and Y a wedge product of vector fields Yk ,
we get

(3-5) ∂3( f Y)= [3, f Y ]SN = [3, f ]SN ∧Y ,
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since the Yk commute. However,

(3-6)

[3, f ]SN =
∑
i< j

αi j ((Y j f )Yi − (Yi f )Y j )

=

∑
i

(∑
j 6=i

αi j Y j f
)

Yi =
∑

i

(X i f )Yi .

By combining (3-5) and (3-6), we get the first part of (3-4), whereas its second part
is a consequence of Proposition 11. �

Corollary 14. The LP-cohomology groups of 3 over R and P are bigraded, that
is,

LH(R,3)=
∞⊕

r=0

n⊕
p=0

LH pr (R,3) and LH(P,3)=
∞⊕

r=0

n⊕
p=0

LH pr (P,3),

where for instance LH pr (P,3) is defined by

LH pr (P,3)= ker(∂3 : Ppr
→ Pp+1,r )/ im(∂3 : Pp−1,r

→ Ppr ).

In the following we deal with the terms LP∗r (P,3)=
⊕n

p=0 LPpr (P,3) of the
LP-cohomology over P and with the corresponding part of the LP-cohomology of
the subcomplex R.

Theorem 15. Let Er be the real finite-dimensional vector space Sr Rn∗, and let
→

X δ := (X1−δ1 id, . . . , Xn−δn id), where δi = div X i , be the n-tuple of commuting
linear operators X i−δi id on Er defined in Theorem 13. The LP-cohomology space
LH∗r (P,3) coincides with the Koszul cohomology space KH∗(

→

X δ, Er ).

Proof. This follows from ∂3 =
∑

i (X i − δi id)⊗ eYi , as proved in Theorem 13. �

Since (R, ∂3) is a subcomplex of (P, ∂3), we can use classical techniques
(namely, the long exact cohomology sequence) to deduce the LP-cohomology
of 3 from the Koszul cohomology associated with

→

X δ. More precisely, consider
the relative cohomology LH(P,R,3) of (P, ∂3) with respect to R, that is, the
cohomology of the space (P/R, ∂3), and let φ be the composition of ∂3 with the
projection of P onto R.

Theorem 16. The LP-cohomology groups of a SRMI Poisson tensor 3 over the
space R of cochains with coefficients in formal power series are given by

LH pr (R,3)' LH pr (P,3)/ kerpr φ]⊕LH p−1,r (P,R,3)/ kerp−1,r φ].

Remark 1. This theorem reduces computing the groups LH pr (R,3) to finding the
groups LH pr (P,3)'KH p(

→

X δ, Er ) associated to the operators
→

X δ on Er =Sr Rn∗

induced by 3, and to finding the relative cohomology groups LH p−1,r (P,R,3).
It thus links Poisson and Koszul cohomology. In [Masmoudi and Poncin 2007],
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we showed via explicit computations in R3 that P-cohomology (now identified as
Koszul cohomology) and S-cohomology (or relative cohomology) are less intricate
than Poisson cohomology.

4. Koszul cohomology in a finite-dimensional vector space

In view of Remark 1, we now turn to the Koszul cohomology space KH∗(
→

Xλ, E)
associated to operators

→

Xλ := (X1 − λ1 id, . . . , Xn − λn id) made up of commut-
ing linear transformations

→

X := (X1, . . . , Xn) of a finite-dimensional real vector
space E and a point Eλ := (λ1, . . . , λn) ∈ Rn . Koszul cohomology is known to be
closely connected with spectral theory: A fundamental principle of multivariate
operator theory is that all essential spectral properties of operators

→

X in a complex
space should be understood in terms of properties of the Koszul complex induced
by

→

Xλ for Eλ ∈ Cn . Thus the complex setting is the natural one for investigat-
ing Koszul cohomology. To engage this point of view, it suffices to note that, if
→

X ∈ EndR(E) are commuting R-linear transformations of a real vector space E ,
and if

→

XC
∈ EndC(EC) are the corresponding commuting complexified C-linear

transformations of the complexification EC of E , the cohomology KH∗(
→

XC, EC)

of the complexification K ∗(
→

XC, EC) of the complex K ∗(
→

X, E) is isomorphic to
the complexification KH∗C(

→

X, E) of the cohomology of K ∗(
→

X, E).
Below, we use the concept of joint spectrum σ(

→

X) of commuting bounded linear
operators

→

X= (X1, . . . , Xn) on a complex vector space E . Such spectra are defined
variously in the literature, where E may be a normed space, a Banach space, or
a Hilbert space. Here we investigate Koszul cohomology in finite dimension and
need the following characterizations of the elements of the joint spectrum σ(

→

X);
for a proof, see [Bolotnikov and Rodman 2002].

Proposition 17. Let
→

X = (X1, . . . , Xn) be an n-tuple of commuting operators on
a finite-dimensional complex vector space E. Then these statements are equivalent
for any fixed Eλ= (λ1, . . . , λn) ∈ Cn:

(a) Eλ ∈ σ(
→

X).

(b) There is a basis in E in which the matrices representing the X j are all upper-
triangular, and there is an index q in 1≤ q ≤ dim E such that λ j is the (q, q)
entry of the matrix representing X j for j ∈ {1, . . . , n}.

(c) For every basis in E in which matrices for the X j are all upper-triangular,
there is an index q as in (b).

(d) There is a nonzero vector x such that X j x = λ j x for all j ∈ {1, . . . , n}

(e) There are no Y j in the subalgebra of EndC(E) generated by id and
→

X that
satisfy

∑n
j=1 Y j (X j − λ j id)= id.
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We now supply some results about Koszul cohomology spaces, using the same
notation as above. The first is obvious.

Proposition 18. Let
∧
=
∧

n〈Eη〉 be the exterior algebra on n with generators Eη
over a field F of characteristic 0, and let Eh be the dual generators, that is, suppose
ihkη` = ∂k`. We then have the homotopy formula eη` ihk + ihk eη` = δk` id, where ihk

and eη` are the creation and annihilation operators, respectively.

Proposition 19. Let EX ∈ End×n
F (E) and

→

Y ∈ End×n
F (E) be n commuting linear

operators EX and
→

Y , respectively, on a vector space E over F. We denote by K =∑
` X`⊗eη` and κ =

∑
k Yk⊗ ihk the respective corresponding Koszul cohomology

and homology operators. Then

Kκ + κK=
(∑

`

Y`X`
)
⊗ id+

∑
k`

[X`, Yk]⊗ eη` ihk .

Proof. This is a direct consequence of Proposition 18. �

Theorem 20. Let
→

X ∈ End×n
C
(E) be n commuting endomorphisms of E , a finite-

dimensional complex vector space, and let Eλ ∈ Cn . For splitting E = E1 ⊕ E2,
denote by i j : E j→ E the injection of E j into E and by p j : E→ E j the projection
of E onto E j .

If E1 is stable under the operators X`, that is, p2 X`i1 = 0, and if Eλ is not in the
joint spectrum σ(

→

X ′) of the commuting operators X ′` = p2 X`i2 ∈ EndC(E2), then
any cocycle C ∈ E⊗

∧
of the Koszul complex K ∗(

→

Xλ, E), where
→

Xλ =
→

X− Eλ idE ,
is cohomologous to a cocycle C1 ∈ E1⊗

∧
, with

∧
=
∧

n〈Eη〉.

Proof. If q(
→

X) ∈ C[X1, . . . , Xn] ⊂ EndC(E) denotes a polynomial in the X`, the
map q(

→

X)2 = p2q(
→

X)i2 coincides with the (same) polynomial q(
→

X ′) ∈ EndC(E2)

in the X ′`. Indeed, due to stability of E1, we have

p2 X`Xki2 = p2 X`i1 p1 Xki2+ p2 X`i2 p2 Xki2 = X ′`X ′2.

This implies that the X ′` commute.
Since Eλ /∈ σ(

→

X ′), Proposition 17(e) implies that there are n operators
→

Y ′ in the
subalgebra of EndC(E2) generated by idE2 and

→

X ′ such that

(4-1)
∑
`

Y ′`(X
′

`− λ` idE2)= idE2 .

Hence Y ′`=Q`(
→

X ′) is a polynomial in the X ′k for any `. Set Y`=Q`(
→

X)∈EndC(E).
If applied to operators

→

Xλ and
→

Y , Proposition 19 implies that

(4-2)
(∑

`

Y`(X`− λ` idE)
)
⊗ id∧+

∑
k`

[X`− λ` idE , Yk]⊗ eη` ihk = Kκ + κK,
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where K and κ are respectively the Koszul cohomology and homology operators
associated with

→

Xλ and
→

Y on E . Since Yk is a polynomial in the commuting endo-
morphisms X`, the second term on the left side of (4-2) vanishes. Hence, when
evaluating both sides on a cocycle C = e⊗w of cochain complex K ∗(

→

Xλ, E), we
get

(Q(
→

X)(e))w = Kκ(e⊗w),

where Q(
→

X)=
∑

` Y`(X`−λ` idE)=
∑

` Q`(
→

X)(X`−λ` idE) is a polynomial in
the X`. Absent the factor w, the left side reads

Q(
→

X)(e)= p1 Q(
→

X)i1 p1(e)+p2 Q(
→

X)i1 p1(e)+p1 Q(
→

X)i2 p2(e)+p2 Q(
→

X)i2 p2(e),

where the second term on the right vanishes in view of the stability of E1, and the
last term equals p2(e), in view of the first sentence of the proof of Theorem 20
and (4-1). Finally, the cocycle C = e⊗w is cohomologous to

C1=C−KκC =
(

p1(e)− p1 Q(
→

X)i1 p1(e)− p1 Q(
→

X)i2 p2(e)
)
⊗w ∈ E1⊗

∧
. �

This theorem has a number of new and partially practical consequences.
First, if

→

X ∈ End×n
C
(E) are n commuting C-linear endomorphisms, the complex

finite-dimensional vector space E on which these operators act has a direct sum
decomposition E =

⊕
Eµ∈Cn Eµ, where the primary subspace of E associated with

the weight Eµ, namely

Eµ =
⋂

i

Eµi =

⋂
i

⋃
n∈N

ker(X i −µi id)n,

is stable under the action of the operators
→

X [Bourbaki 1975, théorème 1]. Let us
also mention that

Eµi =

⋃
n∈N

ker(X i −µi id)n = ker(X i −µi id)mi ,

where mi denotes the multiplicity of the solution µi of the characteristic poly-
nomial of X i , and that dim Eµi = mi . Since the multiplicity m of E0 in the joint
spectrum of the commuting operators X i −µi id coincides with its multiplicity in
the joint spectrum of the operators (X i −µi id)m , where m = sup{mi }, we easily
see that the dimension of Eµ =

⋂
i ker(X i −µi id)m cannot exceed m.

Another consequence of Theorem 20 is that Koszul cohomology KH∗(
→

Xλ, E),
roughly speaking, is made up of weak joint eigenvectors with eigenvalues λ`.

Corollary 21. Let Eλ ∈Cn , and let
→

X ∈ End×n
C
(E) be n commuting endomorphisms

of a finite-dimensional complex vector space E. Denote by
∧
=
∧

n〈Eη〉 the Grass-
mann algebra with n generators Eη. Any cocycle C ∈ E ⊗

∧
of the Koszul complex

K ∗(
→

Xλ, E) is cohomologous to a cocycle C1 ∈ Eλ⊗
∧

.
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This corollary has a useful variant. Choose a supplementary subspace E (2) in E
of the stable subspace ker

→

Xλ :=
⋂
` ker(X` − λ` id) of joint eigenvectors, and

denote by
→

X (2) the restrictions of the operators
→

X to E (2); see Theorem 20. We can
iterate this procedure, choosing a supplementary subspace E (3) in E (2) of ker

→

X (2)
λ ,

introducing the restrictions
→

X (3) of the operators
→

X (2) to E (3), and so on, until we
get ker

→

X (s+1)
λ = 0. We will show that the direct sum of these kernels coincides

with the space Eλ above, so that Corollary 21 means that any cocycle C ∈ E ⊗
∧

of K ∗(
→

Xλ, E) is cohomologous to a cocycle C1 ∈
⊕s

a=1 ker
→

X (a)
λ ⊗

∧
, where of

course ker
→

X (1)
λ = ker

→

Xλ.

Proof of Corollary 21. Let Eλ :=ker
→

Xλ⊂ Eλ and denote by E(λ) a supplementary
subspace of Eλ in Eλ. Set

E = Eλ⊕
⊕

Eµ 6=Eλ
Eµ =: E1⊕ E2

and use the notation of Theorem 20. Assume that Eλ∈σ(
→

X ′), that is, that ker
→

X ′λ 6=0.
If e ∈ E2 is a nonvanishing joint eigenvector of the X ′` = p2 X`i2 with eigen-
values λ`, we have X`e = p1 X`e+λ`e for any `. Since E2 is fixed by the X`, we
get p1 X`e = 0, so that e ∈ E1 ∩ E2 = 0, a contradiction; finally Eλ /∈ σ(

→

X ′) and we
finish using Theorem 20.

On the other hand, set

E = Eλ⊕
(

E(λ)⊕
⊕

Eµ6=Eλ
Eµ
)
=: E1⊕ E2.

Note that the operators
→

X ′ in this decomposition coincide with the
→

X (2) above.
Now (X` − λ` id)e = p1 X`e ∈ E1 = ker

→

Xλ. Any e ∈ ker
→

X ′λ = ker
→

X (2)
λ belongs

to Eλ. Also ker
→

Xλ⊕ ker
→

X (2)
λ ⊂ Eλ; more generally,

⊕s
a=1 ker

→

X (a)
λ ⊂ Eλ. Since,

as is easily checked, the dimension of this direct sum is equal to the multiplicity m

(which is no less than dim Eλ) of E0 in the joint spectrum σ(
→

Xλ), this direct sum
coincides with Eλ. �

We next recover a well-known result, and then an important special case.

Corollary 22. Let
→

X ∈End×n
C
(E) be n commuting endomorphisms, and let Eλ∈Cn .

Then KH∗(
→

Xλ, E) is trivial if and only if dim(ker
→

Xλ)= 0.

Corollary 23. Assume the conditions of Corollary 21. If for any ` ∈ {1, . . . , n} the
kernel and image of X`−λ` id are supplementary in E , then any cocycle C ∈ E⊗

∧
of the Koszul complex K ∗(

→

Xλ, E) is cohomologous to a cocycle C1 ∈ ker
→

Xλ⊗
∧

.

Proofs. First the forward implication in Corollary 22. If there exists e∈ker
→

Xλ\{0},
then

K EXλe =
n∑
`=1

(X`− λ` id)eη` = 0,
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so that e is a nonbounding 0-cocycle. As for Corollary 23, it follows from the proof
of Corollary 21 that if there is a nonzero vector e ∈ ker

→

X (2)
λ ⊂ E (2), then for every

` we have (X`−λ` id)e∈ ker
→

Xλ∩im(X`−λ` id)= 0, so that e∈ ker
→

Xλ∩E (2)= 0,
which is a contradiction. �

5. Koszul cohomology associated with Poisson cohomology

We now return to the Koszul cohomology implemented by a SRMI tensor of Rn .
Recall the QPT tensor 3 from (1-1) and the conditions under which it is SRMI.
Theorems 13 and 15 identify the main building block of the LP-cohomology of 3
as the Koszul cohomology space KH∗(

→

X δ, Er ). We noted that this cohomology
can be deduced from its complex counterpart KH∗(

→

XC
δ , EC

r ), which, according
to Corollaries 21–23, is closely related to the joint eigenvectors and spectrum of
→

XC or
→

XC
δ . We now further investigate KH∗(

→

XC
δ , EC

r ). In particular, we reduce
its computation to a problem of linear algebra, and describe the spectrum of the
commuting transformations

→

XC
δ .

Proposition 24. Let a j = J−1Y j ∈ gl(n,R) for j ∈ {1, . . . , n}. Any basis of Cn

in which the Ea are upper-triangular naturally induces a basis of EC
r = Sr Cn∗ in

which the
→

XC
δ are upper-triangular.

In what follows, the use of super- and subscripts is dictated by aesthetics and
not by contra- or covariance.

Proof. Let x = (x1, . . . , xn) ∈ Rn and z = (z1, . . . , zn) ∈ Cn . As usual, we set
Yk=

∑
m `km∂xm =

∑
mp amp

k x p∂xm and use notations as xβ= xβ1
1 · · · x

βn
n for β ∈Nn .

We complexify

Er = Sr Rn∗
=
{

P ∈ C∞(Rn) : P(x)=
∑
|β|=r rβxβ, x ∈ Rn, rβ ∈ R

}
to EC

r ' Sr Cn∗ by replacing R with C. The complexification Y C
k ∈ EndC(EC

r ) of
Yk ∈ EndR(Er ) is the holomorphic vector field

Y C
k =

∑
mp

amp
k z p∂zm ∈ Vect10(Cn) of Cn .

There is a unitary matrix U ∈U(n,C) such that b j=U−1a jU is upper-triangular,
and there is a corresponding basis (e′1, . . . , e′n) of Cn such that the a j themselves
are upper-triangular. Let (ε′1, . . . , ε

′
n) be the corresponding dual basis.

Express z in this basis as z=
∑

j z j e′j ∈Cn . If viewed as a basis of the space EC
r

of degree r homogeneous polynomials of Cn , the induced basis of the space Sr Cn∗

of symmetric covariant r -tensors of Cn is the set zβ with β ∈ Nn and |β| = r .
To find the matrices of the operators

→

XC
δ in the basis zβ , we arrange its elements

by the lexicographic order ≺ and perform the coordinate change z = Uz and put
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∂z = ∂̃zz
−1
∂z in the first order differential operators (X j − δ j id)C. We get

(X j − δ j id)C =
∑

k

α jk
∑
m≤p

bmp
k zp∂zm − δ j idC

=

∑
km

α jkbmm
k (zm∂zm − idC)+

∑
k

∑
m<p

α jkbmp
k zp∂zm ,

since δ j = div X j =
∑

km α
jkamm

k =
∑

km α
jkbmm

k . These operators are then upper-
triangular in the zβ basis, since

(5-1) (X j − δ j id)Czβ =
∑
km

α jkbmm
k (βm − 1) zβ +

∑
k

∑
m<p

α jkbmp
k βm zβ−em+ep ,

where zβ−em+ep ≺ zβ . �

With matrices b j as above, let B ∈ gl(n,C) be the matrix B jk = bkk
j .

Theorem 25. The joint spectrum σr (
→

XC
δ ) of the

→

XC
δ is given by

σr (
→

XC
δ )=

{
αB I : I ∈ (N∪ {−1})n, |I | = r − n

}
⊂ Cn, where |I | =

∑
j I j .

Proof. This follows directly from Proposition 17 and (5-1). �

Remark. In Proposition 11, we showed Yk D = (div Yk)D that for all k, where
D = det ` ∈ En ⊂ EC

n . Then XC
j D = X j D = (div X j )D = δ j idC D for all j , so

that E0= (0, . . . , 0) ∈ σn(
→

XC
δ ). This is immediately recovered from Theorem 25.

Set Kr (
→

XC
δ ) = {I ∈ ker(αB) : I ∈ (N∪ {−1})n, |I | = r − n}. Corollary 22 can

then be reformulated as follows.

Corollary 26. KH∗(
→

XC
δ , EC

r ) is acyclic if and only if Kr (
→

XC
δ )=∅.

Proof. KH∗(
→

XC
δ , EC

r ) is trivial if and only if dim(ker
→

XC
δ )= 0, which is true if and

only if E0 /∈ σr (
→

XC
δ ), that is, if and only if Kr (

→

XC
δ )=∅. �

Example 27. Consider the structure 32 of the Dufour–Haraki classification as in
Theorem 4, and assume that a 6= 0 and b = 0. It is easily checked that the matrix

U =

 0 i/
√

2 −i/
√

2
0 1/
√

2 1/
√

2
1 0 0


transforms the matrices a` into upper-triangular matrices b`. A short computation
shows that K3t(

→

XC
δ ) for t ∈ N contains a single point It = (t − 1, t − 1, t − 1), so

that the multiplicity µ of E0 in the joint spectrum σ3t(
→

XC
δ ) equals 1; see the proof

of Theorem 25. It follows that the KH∗(
→

XC
δ , EC

3t) are not trivial; see Corollary 26.
Furthermore, since the matrices b` are in fact diagonal in this case, (5-1) implies
that zt

1z
t
2z

t
3 belongs to the kernel of the

→

XC
δ in EC

3t . Looking at dimensions, we see
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that this kernel is Czt
1z

t
2z

t
3 and that the reduced operators

→

XC ( j)
δ for j ∈ {2, . . . , s}

do not exist, that is, that s = 1. Then, since the change to canonical coordinates is
z=Uz by the proof of Proposition 24, the space KH p(

→

XC
δ , EC

3t) for p ∈ {0, 1, 2, 3}
and t ∈ N is contained in

zt
1z

t
2z

t
3

⊕
j1<...< jp

CY j1... jp = (z
2
1+ z2

2)
t zt

3

⊕
j1<...< jp

CY j1... jp .

This easy consequence agrees with the results of [Masmoudi and Poncin 2007]
modulo slight changes in notation — showing that the new approach is more effi-
cient, though the same results could also be obtained via complexification.

Example 28. For 33 of the Dufour–Haraki classification with parameter a = 0,
the multiplicity of E0 in the spectrum σr (

→

XC
δ ) equals 0 or 1, depending on the value

of r . The computations are similar to those of Example 27 except in the case
r = 3, which generates multiplicity 3. Since for 33 the matrices a` are already
lower-triangular, a coordinate change is not necessary, and it is easily seen that
s = 3 and

ker3
→

XC
δ = Cz2

1z3, ker3
→

XC(2)
δ = Cz1z2z3, ker3

→

XC(3)
δ = Cz2

2z3.

The next two theorems follow from similar computations; no proofs are given.
In both, the Yi are those defined in Theorem 4,

Theorem 29. If a 6= 0, the cohomology spaces of the structure 33 are

LH0∗(R,33)= R,

LH1∗(R,33)= RY1+RY2+RY3,

LH2∗(R,33)= RY23⊕RY31⊕R(2yz∂31+ y2∂12),

LH3∗(R,33)= R∂123⊕Ry2z∂123.

Theorem 30. If a 6= 0, the cohomology spaces of the structure 39 are

LH0∗(R,39)= R, LH2∗(R,39)=
⊕

r∈N H 2
r ,

LH1∗(R,39)= RY1+RY2+RY3, LH3∗(R,39)=
⊕

r∈N Rzr∂123,
where

H 2
0 = R∂23, H 2

1 = RC0
1 , H 2

3 = RC2
1 ,

H 2
2 = Rx2∂23+Rxz(∂23− 2−1∂31)+R(xz∂12− z2∂23)

+R(yz∂12+ (−27a2x2
− 9axz+ 3ay2

− z2)∂31),

H 2
r+1 = RCr

1 +RCr
2 for r ≥ 3,

with

Cr
1 =−a(xzr

+ r y2zr−1)∂12+ (9a2xyr
+ a(3r − 1)(r + 1)−1zr+1)∂23+ ayzr∂31
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and

Cr
2 =

(
9a2xy2zr−2

− 9ar−1xzr

+ 3a(r − 3)(r − 1)−1 y2zr−1
− 3(r − 1)r−1(r + 1)−1zr+1)∂23

+ (−a(r − 2)y4zr−3
+ y2zr−1)∂12

+ (6a(r − 1)−1xyzr−1
− ay3zr−2

− r−1 yzr )∂31,

and where the terms that contain a negative power of x , y, or z are ignored.
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INSTITUT ELIE CARTAN

B.P. 239
F-54 506 VANDOEUVRE-LES-NANCY CEDEX

FRANCE

Mohsen.Masmoudi@iecn.u-nancy.fr

NORBERT PONCIN

INSTITUTE OF MATHEMATICS

UNIVERSITY OF LUXEMBOURG, CAMPUS LIMPERTSBERG

162A, AVENUE DE LA FAÏENCERIE
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A CLASSIFICATION OF SPHERICAL CONJUGACY CLASSES
IN GOOD CHARACTERISTIC

GIOVANNA CARNOVALE

We classify spherical conjugacy classes in a simple algebraic group over an
algebraically closed field of good, odd characteristic.

Introduction

When studying a transitive action of a group G, it is particularly interesting to
understand when a given subgroup B of G acts with finitely many orbits. An
important case of such a situation in the theory of algebraic groups is when B
is a Borel subgroup of a connected reductive algebraic group G. The G-spaces
for which B acts with finitely many orbits in this case are the so-called spherical
homogeneous spaces, and they include important examples such as the flag variety
G/B and symmetric varieties. They are precisely those G-spaces for which the B-
action has a dense orbit in the Zariski topology [Brion 1986; Grosshans 1992; Knop
1995; Vinberg 1986]. One may want to understand when homogeneous spaces
that are relevant in algebraic Lie theory, such as nilpotent orbits in Lie(G) and
conjugacy classes in G for G reductive, are spherical. Spherical nilpotent orbits in
simple Lie algebras were classified in [Panyushev 1994; 1999] when the base field
is C and in [Fowler and Röhrle 2008] when it is an algebraically closed field of good
characteristic: They are precisely the orbits of type r A1 for r ≥ 0 in the simply-
laced case and of type r A1 + s Ã1 for r, s ≥ 0 in the multiply-laced case. As for
conjugacy classes, it is natural to use the interplay with the Bruhat decomposition,
since this has proved to be a fruitful tool in the past. For instance, it is essential
in describing regular conjugacy classes [Steinberg 1965], whose intersection with
Bruhat cells is the subject of ongoing research [Ellers and Gordeev 2004; 2007].
This approach has led to two characterizations of the spherical conjugacy classes
in a connected, reductive algebraic group G over an algebraically closed field of
zero or good, odd characteristic [Cantarini et al. 2005; Carnovale 2008; 2009].
The first one is given through a formula relating the dimension of a class O and the
Weyl group element whose associated Bruhat cell intersects O in a dense subset.

MSC2000: primary 20E45, 20F55, 20G99; secondary 14M15.
Keywords: algebraic group, conjugacy class, Bruhat decomposition, spherical homogeneous space.
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The second one states that spherical conjugacy classes are exactly those classes
intersecting only Bruhat cells corresponding to involutions in the Weyl group of G.
These characterizations can be used to give a complete list of the spherical classes
in G. This problem can be easily reduced to the case in which G is simple, so
we shall make this assumption from now on. The spherical conjugacy classes in
a simple algebraic group over C have been classified in [Cantarini et al. 2005],
making use of the classification of spherical nilpotent orbits. Spherical classes in
type G2 in good characteristic have been classified in [Carnovale 2009].

In the present paper, we complete the picture by classifying spherical classes
in a simple algebraic group G over a field of good, odd characteristic. In con-
trast to [Cantarini et al. 2005], this work is independent of the classification of
spherical nilpotent orbits existing in the literature. Since Springer isomorphisms
exist in good characteristic, it provides an elementary classification of spherical
nilpotent orbits alternative to [Fowler and Röhrle 2008], where Kempf–Russeau
theory is involved and where a computer program is needed to help deal with the
exceptional types. The crucial tools in our method are just those conditions in the
characterizations in [Cantarini et al. 2005; Carnovale 2008; 2009], whose proofs
are general and rather short. The arguments used for this classification can also be
transferred to the characteristic zero situation, providing an alternative, elementary
approach to [Panyushev 1994; 1999], although by case-by-case considerations.

After fixing notation and recalling basic notions in Section 1, we introduce
spherical conjugacy classes and their characterizations in Section 2. Section 3
provides the list of spherical conjugacy classes through a case-by-case analysis.

The result is as when the base field is C: In the simply-laced case, spherical
conjugacy classes are, up to a central element, either semisimple or unipotent, and
if G is simply-connected, the centralizers of the semisimple ones are all subgroups
of fixed points for an involution on G. By abuse of notation, we say that such
classes are symmetric.

In type G2, spherical conjugacy classes are again either semisimple or unipotent
but, as in types Bn and Cn , there are spherical semisimple classes that are not
symmetric. Just as in other situations involving spherical homogeneous spaces
(for example, in the description of maximal spherical ideals of Borel subalgebras
[Panyushev and Röhrle 2005]), the doubly-laced case is slightly more involved.
The new phenomenon in the present situation is that there appear spherical classes
that are neither semisimple nor unipotent.

1. Notation

Let G be a connected reductive algebraic group over an algebraically closed field k
of good odd characteristic [Springer and Steinberg 1970, Section I.4]. In Section 3,
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we will restrict to the case of simple G. When we consider an integer as an element
in k, we mean its image in the prime field of k. We denote by 8 and 8+ the
root system and the set of positive roots relative to a fixed Borel subgroup B and
a maximal torus T of G; denote by 1 = {α1, . . . , αn} the corresponding set of
simple roots. We number the simple roots as in [Bourbaki 1981, planches I–IX].
Denote the highest positive root by β1. For a root α, we denote the elements of the
associated root subgroup Xα by xα(t), and we put X ′α = Xα \ {1}. We denote the
maximal unipotent subgroup of B by U .

For elements in T in exceptional simple groups, we use the notation in [Steinberg
1968, Lemma 19], that is, every element in T can be expressed as a product of
hαi (ti ) for i = 1, . . . , n and nonzero ti ∈ k, with uniqueness if the group is simply
connected. The hαi (ti ) satisfy the commutation relations

hαi (t)xβ(r)hαi (t
−1)= xβ(t 〈β,αi 〉r) for β ∈8 and t, r ∈ k,

where 〈β, α〉 = β(hα) as usual; see [Steinberg 1968].
When G is simple of type An , Bn , Cn or Dn , we work with the corresponding

matrix groups, and we choose G and T so that the elements in T are diagonal. Let
X1, . . . , Xl be square matrices of size n j ≥1 for j =1, . . . , l. By diag(X1, . . . , Xl)

we mean the square matrix of size
∑

j n j with the blocks X1, . . . , Xl along its
diagonal. As usual, Ei j is a square matrix with the entry 1 in the i-th row and j-th
column and all other entries 0. We denote by tM the transpose of a matrix M .

We put W =N (T )/T , and sα indicates the reflection corresponding to the root α.
Given an element w ∈W , we denote by ẇ a representative of w in N (T ).

Let ` denote the usual length function on W , and let rk(1−w) denote the rank
of the endomorphism 1−w in the geometric representation of W .

We shall frequently use these properties of the Bruhat decomposition of G (see
[Bourbaki 1981, IV.2.4]):

X ′
−α ⊂ X ′αsαT X ′α ⊂ BsαB for all α ∈8+,(1)

BwBw′B = Bww′B if `(ww′)= `(w)+ `(w′).(2)

Given an element x ∈ G, we denote by Ox the conjugacy class of x in G and
by Hx the centralizer of x in H ≤ G. Denote by Z(K ) the center of an algebraic
group K and by K ◦ its identity component.

For the dimension of unipotent conjugacy classes in arbitrary good characteris-
tic, see [Carter 1985, Chapter 13] and [Premet 2003, Theorem 2.6].

For a conjugacy class O in G, we denote by V the set of its B-orbits.

2. Characterizations through the Bruhat decomposition

Here we introduce our characterizations of spherical conjugacy classes.
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Definition 2.1. Let G be a connected reductive algebraic group. A homogeneous
G-space X is spherical if it has a dense orbit for a Borel subgroup of G.

It is well known [Brion 1986; Grosshans 1992; Knop 1995; Vinberg 1986] that
O is a spherical conjugacy class in G if and only if its set of B-orbits V is finite.

Since G =
⋃
w∈W BwB, for every class O there is a natural map φ : V→ W

associating to v ∈ V the element w in the Weyl group of G for which v ⊂ BwB.
Besides, there is a uniquew∈W for which BwB∩O is dense in O, and this element,
which we denote by wO, is maximal in Im(φ) with respect to the Bruhat ordering
[Cantarini et al. 2005, page 32].

There are two characterizations of spherical classes in G.

Theorem 2.2 [Cantarini et al. 2005, Theorem 25; Carnovale 2008, Theorem 4.4].
A class O in a connected reductive algebraic group G over an algebraically closed
field of zero or good odd characteristic is spherical if and only if there exists v in V

such that `(φ(v))+ rk(1−φ(v))= dim O. If this is the case, v is the dense B-orbit
and φ(v)= wO.

Theorem 2.3 [Carnovale 2008, Theorem 2.7; Carnovale 2009, Theorem 5.7]. A
class O in a connected reductive algebraic group G over an algebraically closed
field of zero or odd, good characteristic is spherical if and only if Im(φ) contains
only involutions in W .

Since all Borel subgroups and all maximal tori are G-conjugate, the statement
in Theorem 2.3 is independent of the choice of B and T . By abuse of notation, we
say that g ∈ G is spherical if its class Og is.

Remark 2.4. Let g ∈ G. The B-orbits in Og are in one-to-one correspondence
with the (B,Gg)-double cosets in G. Therefore if x ∈ G is such that Gx = Gg,
then Og is spherical if and only if Ox is. In particular, if g2

∈ Z(G), then g and x
are semisimple. If G is affine, by [Borel 1969, Proposition 9.1] the orbit map is
separable, so the symmetric variety G/Gg =G/Gx is G-equivariantly isomorphic
to Og and Ox . By [Springer 1985, Corollary 4.3], the class Ox is spherical. Moti-
vated by this, we abuse notation when Gx = Gg and g2

∈ Z(G) by saying that Ox

is a symmetric conjugacy class.

Remark 2.5. Regular classes in a reductive algebraic group whose semisimple
quotient is not of type r A1 cannot be spherical. By [Steinberg 1965, Theorem 8.1],
regular classes intersect Bruhat cells corresponding to Coxeter elements.

We will frequently use the following observation.

Lemma 2.6. Let G be a connected reductive algebraic group, let T be a maximal
torus in G, and let H be a closed connected reductive subgroup of G containing T .
Let x ∈ H and suppose that Ox is spherical. Then the H-conjugacy class of x is
spherical.
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Proof. Let BH be a Borel subgroup of H containing T , and let B be a Borel
subgroup of G containing BH . Let y lie in the H -conjugacy class of x . For some
ẇ ∈ NH (T )= N (T )∩ H and for some b1, b2 ∈ BH ≤ B, we have

y = b1ẇb2 ∈ BH NH (T )BH ⊂ B N (T )B.

Since y ∈ Ox , we have ẇ2
∈ T by Theorem 2.3. As this holds for every y ∈ H , the

H -class of x satisfies the sufficient condition provided by Theorem 2.3. �

As a first application of Lemma 2.6 we have the following statement.

Lemma 2.7. Let G be a connected reductive algebraic group. Let g ∈ G with
Jordan decomposition g= su. If Og is spherical, then Os and Ou are spherical in G
and the G◦s -class of u is spherical.

Proof. It is well known that Gg = Gs ∩Gu . Therefore, if for a Borel subgroup B
of G there are finitely many (B,Gg) double cosets in G, there are finitely many
(B,Gs) double cosets and (B,Gu) double cosets in G. Thus if Og is spherical,
then Os and Ou are also spherical. For the last statement, by [Humphreys 1995,
Section 1.12], we have u ∈ G◦s , and we may apply Lemma 2.6 with H = G◦s . �

The next lemma helps show that certain classes in a group are not spherical.

Lemma 2.8. Let G be a connected reductive algebraic group, let T be a maximal
torus in G, and let H be a closed, connected, reductive subgroup of G containing T
such that its semisimple part is not of type r A1. Let x ∈ H and suppose that the
H-conjugacy class of x is regular. Then Ox is not spherical.

Proof. This is obtained by combining Lemma 2.6 with Remark 2.5. �

3. The classification

From now on G, will be a simple algebraic group. We aim at a classification of
spherical conjugacy classes in G in good odd characteristic. The main tools in
our classification will be the sufficient condition in Theorem 2.2 and the necessary
condition in Theorem 2.3.

If π : G1 → G2 is a central isogeny between two simple algebraic groups, a
conjugacy class Og in G1 is spherical if and only if π(Og) is spherical. Indeed,
let x ∈ G1, with G1,x its centralizer in G1 and G2,x the centralizer of π(x) in
G2. Also suppose B1 is a Borel subgroup of G1. Then π(B1) is a Borel subgroup
of G2, and the (B1,G1,x)-double cosets of G1 are in one-to-one correspondence
with the (B2,G2,x)-double cosets of G2. For this reason it is enough to provide
the classification for one representative for each isogeny class of simple groups.

By Remark 2.4, if x, y ∈ G and xy−1 is central, then Ox is spherical if and only
if Oy is. Thus it is enough to provide the classification up to a central element.
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If G is of type G2, Carnovale [2009, Section 2.1] gives the classification in good
characteristic; we provide it here for completeness.

Type G2.

Theorem 3.1. Let G be of type G2. The spherical classes are either semisimple
or unipotent. The semisimple ones are represented by hα1(−1) and hα1(ζ ) for ζ a
fixed primitive third root of 1. The unipotent ones are those of type A1 and Ã1.

Type An. In this section G = SLn+1(k), B is the subgroup of upper triangular
matrices, T is the subgroup of diagonal matrices in G, and U is the unipotent
radical of B. For a positive root α = αi +αi+1+ · · ·+α j we have

Xα = {1+ t Ei, j+1, t ∈ k} and X−α = tXα for every α ∈8.

Theorem 3.2. If n=1, all classes in G are spherical. If n≥2, the spherical classes
in G are either semisimple or unipotent up to a central element. The semisimple
ones are those corresponding to matrices with at most two distinct eigenvalues, and
they are all symmetric. The unipotent ones are those associated with the partitions
(2m, 1n+1−2m) for m = 1, . . . , [(n+ 1)/2].

Proof. If n = 1, all Bruhat cells correspond to involutions in W , so every class is
spherical by Theorem 2.3.

Unipotent classes. Let n ≥ 2, and let O = Ou be a unipotent class. By Jordan
theory, we may assume that u = xα1(c1) · · · xαn (cn) with ci ∈ {0, 1}. Then u lies
in the connected reductive subgroup H generated by T and by X±αi for all i such
that ci = 1. By [Steinberg 1965, Lemma 3.2 and Theorem 3.3], u is regular in H .
Lemma 2.8 implies that if Ou is spherical then ci ci+1= 0, so its associated partition
is of type (2m, 1n+1−2m). Conversely, let O j be the unipotent class corresponding
to (2 j , 1n+1−2 j ), with 2 j ≤ n + 1. Let βi = αi + · · · + αn−i+1 for i = 1, . . . , j .
The element x−β1(1) · · · x−β j (1) lies in O j . By (1) and (2) this element lies in
Bsβ1 · · · sβ j B, so its B-orbit satisfies the condition in Theorem 2.2, and thus O j is
spherical.

Semisimple classes. Let s = diag(λ1 In1, λ2 In2, . . . , λl Inl ) for distinct scalars λi . If
l>2, then s is conjugate to t=diag(λ1, λ2, λ3, t1) for some invertible diagonal sub-
matrix t1. Then t lies in the connected reductive subgroup H = 〈T, X±α1, X±α2〉,
and it is regular therein. It follows from Lemma 2.8 that if Os is spherical semi-
simple, then s has at most 2 eigenvalues. Conversely, suppose that s ∈ T has
2 eigenvalues. We may assume s = diag(λIm, µIn+1−m). Let ζ be a primitive
2(n+1)-st root of unity if n+1−m is odd, and let ζ = 1 if n+1−m is even. Let
also s0 = diag(ζ Im,−ζ In+1−m). Then s2

0 ∈ Z(G) and Gs = Gs0 . By Remark 2.4
the class Os is symmetric and hence spherical.
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Mixed classes. We now show that there is no spherical element x with Jordan
decomposition x = su such that s 6∈ Z(G) and u 6= 1. Were this the case, we
could assume by Lemma 2.7 that s = diag(λIm, µIn+1−m) with m ≥ 2 and that
u ∈U ∩Gs = 〈Xαi , i 6= m〉.

We could then choose u = xα1(t1) · · · xαm−1(tm−1)xαm+1(tm+1) · · · xαn (tn) with
ti ti+1 = 0 because u is spherical by Lemma 2.7. If u is nontrivial, we may assume
that tm−1 or tm+1 is nonzero. Put J = {i | ti 6= 0} and H = 〈T, X±αm , X±αi 〉i∈J .
Then su is regular in H . Since H contains at least a subgroup of type A2 we may
conclude using Lemma 2.8. �

Type Cn. Let us view G = Sp2n(k) as the subgroup of GL2n(k) of matrices pre-
serving the bilinear form whose matrix is

( 0 I
−I 0

)
in the canonical basis of k2n .

We choose B as the subgroup of G of matrices of the form
( A AX

0 tA−1

)
, where A

is an invertible upper triangular matrix, tA−1 is its inverse transpose, and X is a
symmetric matrix. The torus T is the subgroup of diagonal matrices in B. We have

Xαi = {I + t Ei,i+1− t En+i+1,n+i , t ∈ k} for i = 1, . . . , n− 1,

Xαn = {I + t En,2n, t ∈ k},

and X−α = tXα for every α ∈ 8. We recall that if g, h ∈ Sp2n(k) are GL2n(k)-
conjugate they are Sp2n(k)-conjugate [Springer and Steinberg 1970, IV.2.15(ii)].
It is well known that unipotent classes in G are parametrized through Jordan theory
by partitions where odd terms occur pairwise [Humphreys 1995, Section 7.11].

Theorem 3.3. Let G = Sp2n(k) for n ≥ 2. The nontrivial spherical semisimple
classes are represented by σl = diag(−Il, In−l,−Il, In−l) for l = 1, . . . , n − 1;
by aλ = diag(λIn, λ

−1 In); and, up to a sign, by cλ = diag(λ, In−1, λ
−1, In−1) for

λ ∈ k with λ2
6= 0, 1. The unipotent ones are those associated with the partitions

(2m, 12n−2m) for m = 1, . . . , n. The spherical classes that are neither semisimple
nor unipotent up to a sign are represented by the elements σlu, where u ∈ Gσl

∼=

Sp2l(k)×Sp2n−2l(k) is unipotent and corresponds to the partition (2, 12n−2).

Proof. Semisimple classes. Let s ∈ T , and let 3 be the set of eigenvalues of s.
Let us first suppose that |3| ≥ 4. If n= 2, then s is a regular element, and hence

it is not spherical. Let n ≥ 3.
If {±1} ⊂ 3, then s is conjugate to s ′ = diag(λ, 1,−1, t, λ−1, 1,−1, t−1) for

some invertible diagonal submatrix t and some nonzero λ ∈ k with λ2
6= 1.

If |{±1} ∩ 3| = 1, then, since eigenvalues come with their inverse, |3| ≥ 5
and s is conjugate to s ′ = diag(λ, µ,±1, t, λ−1, µ−1,±1, t−1) for some invertible
diagonal submatrix t and some λ 6= µ ∈ k with λ2

6= 1 6= µ2.
If {±1} ∩ 3 = ∅, then either |3| ≥ 6 or there are two reciprocally inverse

eigenvalues with multiplicity at least 2. In both cases, the matrix s is conjugate to
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s ′ = diag(λ, µ, ν, t, λ−1, µ−1, ν−1, t−1) for some invertible diagonal submatrix t
and some distinct λ,µ, ν ∈ k with λ2, µ2, ν2

6= 1 and ν possibly equal to λ−1.
In all these cases, the element s ′ is regular in H = 〈T, X±α1, X±α2〉; therefore

by Lemma 2.8 the class Os cannot be spherical.
Let us now suppose that |3| = 3. Then 3 = {η, λ, λ−1

} with η2
= 1 and

λ2
6= 1. If the multiplicity of λ±1 is greater than 1, then s is conjugate to some r ′=

diag(λ, λ−1, 1, r1, λ
−1, λ, 1, r−1

1 ) with r1 an invertible, diagonal submatrix. The
element r ′ lies and is regular in the subgroup H above described. By Lemma 2.8
the class Os cannot be spherical. On the other hand, if 3 = {λ±1, 1} with the
multiplicity of λ±1 equal to 1, then Os is spherical. Indeed, the representative of
such a class in [Cantarini et al. 2005, Theorem 15, page 42] works also in odd
characteristic and its B-orbit satisfies the condition of Theorem 2.2.

Now assume that |3| = 2. Then either 3 = {±1} so that Os is symmetric, or
3 = {λ, λ−1

} for λ2
6= 1 so that s is conjugate to aλ = diag(λIn, λ

−1 In), whose
centralizer is independent of λ in the given range. Since a2

ζ ∈ Z(G) if λ = ζ is
a primitive fourth root of 1, we may apply Remark 2.4 and conclude that aλ is
spherical.

Unipotent classes. Let Ou be a unipotent class and let λ be its associated partition.
Let µ= (µ1, . . . , µl) be obtained by taking a representative of each term occurring
pairwise in λ and let ν = (ν1, . . . , νm) be obtained by taking the remaining even
terms without repetition in λ, so that 2n= |ν|+2|µ|. A representative u′ of Ou can
be taken in the subgroup isomorphic to

Sp2µ1
(k)× · · ·×Sp2µl

(k)×Spν1
(k)× · · ·×Spνm

(k)

obtained by repeating the immersion of Sp2d1
(k)×Sp2d2

(k) into Sp2(d1+d2)
(k) given

by ((
A1 B1

C1 D1

)
,

(
A2 B2

C2 D2

))
7→


A1 B1

A2 B2

C1 D1

C2 D2

 .
The component of u′ in Spν j

(k) corresponds to the partition (ν j ) and is thus regular
in Spν j

(k), whereas the component of u′ in Sp2µi
(k) can be taken to lie and be

regular in the subgroup isomorphic to SLµi (k) obtained by the immersion mapping
M to diag(M, tM−1). Therefore, u′ is regular in the semisimple group

SLµ1(k)× · · ·×SLµl (k)×Spν1
(k)× · · ·×Spνm

(k).

By Remark 2.5 if u is spherical, we have µi ≤ 2 and ν j ≤ 2 for every i and
j . Conversely, let λ = (2 j , 12n−2 j ), and let O j be the unipotent class associated
with λ. Let βq = 2αq + · · · + 2αn−1+ αn for q = 1, . . . , n− 1 and βn = αn . The



SPHERICAL CONJUGACY CLASSES IN GOOD CHARACTERISTIC 33

element

x−β1(1) · · · x−β j (1)=
(

In

X j In

)
with X j = diag(I j , 0n− j )

lies in Bsβ1 · · · sβ j B by (1) and (2). Since it also lies in O j , its B-orbit satisfies the
condition in Theorem 2.2 for O j ; see [Cantarini et al. 2005, Theorem 12, page 36].
Thus, O j is spherical.

Mixed classes. Let g= su be the Jordan decomposition of a spherical element in G
with s 6∈ Z(G) and u 6= 1. Then Os is spherical and we may assume s equals aλ, cλ
or σl for some l. The case s = aλ is ruled out because dim Oaλu > dim Oaλ = dim B,
so Oaλu cannot have a dense B-orbit.

Assume that s = cλ. Then u ∈ Gs ∼= k∗× Sp2n−2(k) and it is spherical therein,
so it corresponds to a partition (2m, 12n−2−2m) for some m ≥ 1. The class Ocλu is
represented by cλxβ2(1) · · · xβm+1(1), with notation as before. Such an element is
regular in the subgroup H = 〈T, X±α1, X±βi , i = 2, . . . ,m+ 1〉. This case is thus
excluded by Lemma 2.8 because the semisimple part of H is of type C2×(m−1)A1.

It follows that s = σl for some l. Then Gs is generated by X±αi for i 6= l
and X±βl . We have u = (u1, u2) ∈ Gs ∼= Sp2l(k)× Sp2n−2l(k), and it is spherical
therein. Then u1 and u2 are spherical in the respective components. We claim that
u1 and u2 cannot be both nontrivial. If on the contrary u1 corresponded to the
partition λ= (2a, 12l−2a) and u2 corresponded to the partition µ= (2b, 12n−2l−2b)

with a, b≥ 1, the Gs-class of u1 would be represented by u′1= xβl−a+1(1) · · · xβl (1)
and the Gs-class of u2 would be represented by u′2 = xβl+1(1) · · · xβl+b(1). It is not
hard to verify that σlu′1u′2 is regular in 〈T, X±αl , X±βi , i = l − a + 1, . . . , l + b〉,
whose semisimple part is of type (a+ b− 2)A1+C2. By Lemma 2.8 this option
is excluded, and we have a+ b ≤ 1; hence at least one of the ui is trivial.

There is no loss of generality in assuming that u1=1. We claim that the partition
µ = (2b, 12n−2l−2b) associated with u2 has no repeated 2. Let b = 2h + j with
j = 0, 1 according to the parity of b, and assume that h ≥ 1. The Gs-class of u2 is
represented by u′2 = xαl+1(1)xαl+3(1) · · · xαl+2h−1(1)xβl+2h+1( j). The element σu′2 is
regular in 〈T, X±αl , X±αl+1, X±αl+3, . . . , X±α2h−1, X±β2h+1( j)〉, whose semisimple
part is of type A2×h Ã1× j A1, where Ã1 corresponds to a short root. By Lemma 2.8
the claim is proved.

Conversely, for all classes of type σlu with u∈Gσl corresponding to the partition
(2, 12n−2), the representative in [Cantarini et al. 2005, Theorem 21, page 50] is
defined in odd characteristic and its B-orbit satisfies the condition of Theorem 2.2.

�

Type Dn. Let n ≥ 4, and view O2n(k) as the subgroup of GL2n(k) of matrices
preserving the bilinear form whose matrix is

(
0 I
I 0

)
in the canonical basis of k2n ,
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so that G = SO2n(k) is viewed as the subgroup of such matrices of determinant 1.
We choose B as the subgroup of G of matrices of the form(

A AX
0 tA−1

)
,

where A is an invertible upper triangular matrix, tA−1 is its inverse transpose and
X is a skew-symmetric matrix. We fix T ⊂ B as its subgroup of diagonal matrices.

We have

Xαi = {I + t Ei,i+1− t En+i+1,n+i , t ∈ k} for i = 1, . . . , n− 1,

Xαn = {I + t En−1,2n − t En,2n−1, t ∈ k}

and t X−α = Xα for every α ∈8.
We recall that if g, h ∈ G are GL2n(k)-conjugate, they are O2n(k)-conjugate

[Springer and Steinberg 1970, IV.2.15(ii)] but not necessarily G-conjugate. How-
ever, conjugation by an element in O2n(k) determines an automorphism ψ of G,
so if h = ψ(g), the class Og is spherical if and only if ψ(Og) = Oψ(g) = Oh is.
For this reason, in what follows we will sometimes replace an element g ∈ G by a
GL2n(k)-conjugate h lying in G.

To list a representative for each spherical conjugacy class, we will then have to
verify whether an O2n(k)-class splits into two G-classes or not. We recall that such
a class splits into two classes if and only if the O2n(k)-centralizer of a representative
is contained in G.

It is well known that the even terms occur pairwise in the partition λ associated
with a unipotent conjugacy class in G via Jordan theory. Moreover, a unipotent
O2n(k)-class splits into two G-classes only if n is even and the associated partition
has only even terms [Humphreys 1995, Section 7.11].

Theorem 3.4. Let G = SO2n(k) for n ≥ 4. The spherical classes in G are either
semisimple or unipotent up to a central element. The nontrivial semisimple ones
are those represented by

σl = diag(−Il, In−l,−Il, In−l) for l = 1, . . . , n− 1;

cλ = diag(λ, In−1, λ
−1, In−1) for λ2

6= 0, 1, up to a sign,

and the pairs of SO2n(k)-classes into which the O2n(k)-class represented by aλ =
diag(λIn, λ

−1 In) splits, for λ2
6= 0, 1. The unipotent ones are those associated with

the partitions

(22m, 12n−4m) for m = 1, . . . , [n/2],

(3, 22m, 12n−3−4m) for m = 1, . . . , [n/2] − 1

and only (22(n/2)) for n even corresponds to two distinct conjugacy classes.
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Proof. Semisimple classes. Let s ∈ T , and let3 be its set of eigenvalues. Adapting
the analysis in type Cn and replacing s by a GL2n(k)-conjugate if necessary, we see
that if s is spherical, then |3| ≤ 3 and if |3| = 3, then, up to a sign,3={λ, λ−1, 1}
for some λ2

6= 1 and the multiplicity of λ and λ−1 is equal to 1.
On the other hand, if 3 = {λ, λ−1, 1} with the multiplicity of λ and λ−1 equal

to 1, then s is GL2n(k)-conjugate to cλ = diag(λ, In−1, λ
−1, In−1). Its centralizer

Gcλ is equal to the identity component H◦ of the centralizer H of the involu-
tion σ1 = diag(−1, In−1,−1, In−1). By [Borel 1969, Proposition 9.1], we have
Ocλ
∼=G/Gcλ =G/H◦. Since the index of H◦ in H is finite, Ocλ is spherical if and

only if G/H ∼= Oσ1 is, and therefore Ocλ is spherical. The centralizer in O2n(k) of
cλ contains the matrix

M =


In−1 On−1

0 1
On−1 In−1

1 0

 ,
so each cλ represents a single spherical SO2n(k)-conjugacy class.

Let now |3| = 2. If 3= {±1}, then s2
= 1 and Os is symmetric. The GL2n(k)-

class of s is represented by σl=diag(−Il, In−l,−Il, In−l) for some l=1, . . . , n−1.
The centralizer in O2n(k) of each σl contains the matrix M above described, so each
σl represents a single spherical SO2n(k)-conjugacy class.

If 3 = {λ, λ−1
} with λ2

6= 1, we may assume that s = aλ = diag(λIn, λ
−1 In)

whose centralizer is independent of λ in the given range. Since a2
ζ ∈ Z(G) for ζ a

primitive fourth root of 1, by Remark 2.4 all those classes are symmetric and hence
spherical. The O2n(k)-centralizer of aλ consists of all matrices diag(A,t A−1) for
some invertible n× n matrix A and hence is contained in SO2n(k). Therefore the
O2n(k)-class of each aλ splits into two spherical SO2n(k)-conjugacy classes.

Unipotent classes. By the discussion of GL2n(k)-conjugacy, it suffices to consider
a class for each admissible partition.

Let u be a unipotent element in G, with associated partition λ. Obtain µ =
(µ1, . . . , µl) by taking a representative of each term occurring pairwise in λ, and
ν= (ν1, . . . , νm) by taking the remaining distinct odd terms so that 2n= 2|µ|+|ν|.
A representative u′ of Ou can be taken in the subgroup isomorphic to SOν1+ν2(k)×
· · ·×SOνm−1+νm (k)×SO2µ1(k)×· · ·×SO2µl (k) obtained by repeatedly immersing
SO2d1(k)×SO2d2(k) into SO2(d1+d2)(k) by

((
A1 B1

C1 D1

)
,

(
A2 B2

C2 D2

))
7→


A1 B1

A2 B2

C1 D1

C2 D2

 .
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The component of u′ in SOνi+νi+1(k) is associated with the partition (νi , νi+1),
whereas the component of u′ in SO2µi (k) can be chosen to lie and be regular in the
subgroup isomorphic to SLµi (k) obtained by the immersion A 7→ diag(A, tA−1).
Thus u′ lies in SOν1+ν2(k)×· · ·×SOνm−1+νm (k)×SLµ1(k)×· · ·×SLµl (k). A class
in a semisimple group is spherical if and only if its projection onto each simple
component is. By Remark 2.5 applied to SLµ1(k)×· · ·×SLµl (k), we see that if u
is spherical, then µi ≤ 2 for all i . We now show that under the same assumption,
ν1 ≤ 3 so that ν is either (3, 1) or the empty partition. It is enough to analyze the
SOν1+ν2(k)-class O of the component of u′. Let ν1 = 2l + 1 and ν2 = 2 j − 1 with
l ≥ j ≥ 1, and let γ1, . . . , γl+ j be the simple roots of SOν1+ν2(k). The class O is
represented by x = diag(A,t A−1)

(
I X

I

)
, where

A =


1
1
. . .
. . .

. . . 1
1 1

 and X =


0 j−1

0 1
−1 0

0l−1

 .
Since diag(A,t A−1) lies in X ′

−γ1
· · · X ′

−γ j+l−1
and

(
I X

I

)
lies in B, it follows from

(1) and (2) that x lies in a cell corresponding to an involution only if j + l ≤ 2,
whence the claim.

Conversely, let Ou be a unipotent class corresponding to (22m, 12n−4m) or to
(3, 22m, 12n−3−4m). Cantarini et al. [2005, Theorem 12, pages 37–38] give matrices
that represent these classes also when char(k) is odd and their B-orbits satisfy the
condition in Theorem 2.2.

Mixed classes. We show that there is no spherical element with Jordan decompo-
sition g = su with s 6∈ Z(G) and u 6= 1. We may assume that s = cλ, σl , because
dim B = dim Oaλ < dim Oaλu .

The subgroup G◦cλ is of type Dn−1 × k∗ and is generated by T and the root
subgroups X±α2, . . . , X±αn . The element u ∈ G◦cλ corresponds to a partition π of
2n − 2 from which we may construct, as before, the partitions µ and ν. Since u
is spherical in G◦cλ , we have µ= (22a, 12b) with a possibly zero and ν = (3, 1) or
trivial. The Gcλ-class of u may be represented by the element

u′ = xα2(1)xα4(1) · · · xα2a (1)xα2a+2( j)xα2a+2+2α2a+3+···+2αn−2+αn−1+αn ( j),

where j = 1 if ν = (3, 1) and j = 0 if ν is trivial. Then cλu′ is regular in
〈T, X±α1, X±α2l , xα2a+2( j), xα2a+2+2α2a+3+···+2αn−2+αn−1+αn ( j)〉l=1,...,a . We may thus
apply Lemma 2.8 to deduce that s cannot be equal to cλ.

Let then s = σl for some l. The identity component of Gσ1 is equal to Gcλ , and
we may use the argument above to show that σ1u cannot be spherical. Let l ≥ 2.



SPHERICAL CONJUGACY CLASSES IN GOOD CHARACTERISTIC 37

Then G◦σl
∼= SO2l(k)×SO2n−2l(k) and it corresponds to the roots

α1, . . . , αl−1, αl+1+ 2αl+2+ · · ·+αn−1+αn, αl+1, . . . , αn.

Let u = (u1, u2) ∈ SO2l(k)× SO2n−2l(k) = G◦σl
. Since Gσl u = Gσl ∩ Gu1 ∩ Gu2

is contained in Gσl ui for i = 1, 2, it is enough to show that σlui is not spherical.
We will do so for u2, the other case being similar. Let λ be the partition associated
with u2, and let µ and ν be as above. We may find a representative u′2 in the
SO2n−2l(k)-class of u2 lying and being regular in a subgroup H constructed as
above for s = cλ. If u2 6= 1, the subgroup H contains the root subgroups X±αl+1

and σlu′2 is regular in H ′ = 〈T, H, X±αl 〉. This proves the claim. �

Type Bn. Let n ≥ 2. View O2n+1(k) as the subgroup of GL2n+1(k) of matrices
preserving the bilinear form whose matrix is1 0 0

0 0 In

0 In 0


in the canonical basis of k2n+1, so that G = SO2n+1(k) is the subgroup of such
matrices with unit determinant. Fix B to be the subgroup of matrices of the form 1 0 tγ

−Aγ A AX
0 0 tA−1

 ,
where A is an invertible upper triangular matrix, γ is a column in kn and the
symmetric part of X is −(1/2)γ tγ . We fix T ⊂ B as its subgroup of diagonal
matrices.

We have Xαi = {I + t Ei+1,i+2 − t En+i+2,n+i+1, t ∈ k} for i = 1, . . . , n − 1,
Xαn = {I + t E1,2n+1− t En+1,1}, and X−α = tXα for every α ∈8.

If g, h ∈ G are GL2n+1(k)-conjugate, then they are also O2n+1(k)-conjugate by
[Springer and Steinberg 1970, IV.2.15(ii)]. Thus, they are G-conjugate because
O2n+1(k)=G∪(−I2n+1)G. Partitions in which even terms occur pairwise param-
etrize unipotent conjugacy classes in G [Humphreys 1995, Section 7.11].

We shall frequently use the fact that the group SO2n(k) may be embedded into
G through the map ι defined by X 7→ diag(1, X). Denote the image of ι by K .

Theorem 3.5. Let G = SO2n+1(k). The spherical semisimple classes in G are
represented by

ρl = diag(1,−Il, In−l,−Il, In−l) for l = 1, . . . , n,

dλ = diag(1, λ, In−1, λ
−1, In−1),

bλ = diag(1, λIn, λ
−1 In) with λ2

6= 0, 1.
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The unipotent ones are those associated with (22m, 12n+1−4m) for m= 1, . . . , [n/2]
and (3, 22m, 12n−2−4m) for m = 1, . . . , [(n− 1)/2]. The spherical classes that are
neither semisimple nor unipotent are represented by ρnu, where u ∈G◦ρn

∼=SO2n(k)
is a unipotent element associated with (22m, 12n−4m) for m = 1, . . . , [n/2].

Proof. Semisimple classes. Let s ∈ T be a spherical element in G, and let 3 be its
set of eigenvalues. By the description of T , we always have 1∈3. By Lemma 2.6
applied to K and Theorem 3.4, we see that |3|≤4. We claim that |3|<4. Assume
that |3|=4. Then−1∈3 and s is conjugate to s ′=diag(1, λ,−1, t, λ−1,−1, t−1)

for some invertible diagonal submatrix t and some scalar λ with λ2
6= 1. Thus s ′

is regular in 〈T, X±α1, X±(α2+α3+···+αn)〉 whose semisimple part is of type B2, and
by Lemma 2.8 we have the claim. It follows that |3| = 2, 3. If |3| = 2, the
element s is conjugate to some involution ρl = diag(1,−Il, In−l,−Il, In−l) for
some l = 1, . . . , n; hence it is spherical. If |3| = 3, then 3 = {1, λ, λ−1

} and the
multiplicities of λ and 1 cannot be both greater than 1, by Lemma 2.6 applied to K
and the discussion in Theorem 3.4 for spherical semisimple elements. Thus, s is
conjugate either to bλ= diag(1, λIn, λ

−1 In) or to dλ= diag(1, λ, In−1, λ
−1, In−1),

for λ2
6= 1, 0. A representative of Obλ satisfying the condition in Theorem 2.2 is

found in [Cantarini et al. 2005, Theorem 15, page 44] and it is well defined in odd
characteristic too, so bλ is indeed spherical. Moreover, Gdλ = G◦ρ1

. Hence dλ is
also spherical because ρ1 is and the index of G◦ρ1

in Gρ1 is finite.

Unipotent classes. Let u be a spherical unipotent element in G associated with
the partition λ. Let µ and ν be constructed as in Theorem 3.4 with 2n + 1 =
2|µ| + |ν|. We may find a representative u′ of Ou in a subgroup isomorphic to
SOν1(k)×SOν2+ν3(k)× · · ·×SOνm−1+νm (k)×SO2µ1(k)× · · ·×SO2µl (k). Such a
subgroup can be obtained using the embeddings in the proof of Theorem 3.4 and
the embedding of SO2d1+1(k)×SO2d2(k) into SO2(d1+d2)+1(k) given by

 1 α1 β1

γ1 A1 B1

δ1 C1 D1

 ,(A2 B2

C2 D2

) 7→


1 α1 β1

γ1 A1 B1

A2 B2

δ1 C1 D1

C2 D2

 .
The component of u′ in SOν1(k) corresponds to (ν1), so it is regular therein. Hence,
its SOν1(k)-class is spherical only if ν1≤3. Therefore ν= (3) or ν= (1). Moreover,
as in Theorem 3.4, the component in SO2µ j (k) can be chosen to lie and be regular
in a subgroup isomorphic to SLµ j (k), forcing µi ≤ 2 for every i . Conversely, for a
unipotent class associated with (2m, 12n+1−4m) or (3, 22m, 12n−4m−2), the represen-
tatives in [Cantarini et al. 2005, Theorem 12, pages 38–39] are well defined in odd
characteristic, and the corresponding B-orbits satisfy the condition in Theorem 2.2.
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Mixed classes. Let g= su be the Jordan decomposition of a spherical element in G
with s, u 6= 1. If s = bλ for some λ, then u and bλ lie in Gbλ ⊂ K . By Lemma 2.6
the element su would be spherical in K , but this is excluded by Theorem 3.4.

If s = ρl for some l, its centralizer is isomorphic to SO2l(k)× SO2n−2l+1(k)
and it corresponds to the roots α1, . . . , αl−1, αl +2αl+1+· · ·+2αn , αl+1, . . . , αn .
Then u = (u1, u2) ∈ SO2l(k)×SO2n−2l+1(k).

First assume that u2 corresponds to the partition (3, 22a) of 2n− 2l+ 1, so that
n−l is odd. We claim that ρlu2 is not spherical. Then, since Gρl u ⊂Gρl u2 , we may
conclude that the class Oρl u cannot be spherical in this case. The SO2n−2l+1(k)-
class of u2 may be represented by the element u′2 = xαl+1(1)xαl+3(1) · · · xαn (1) so
that ρlu′2 is regular in 〈T, X±αl , X±αl+i 〉i≥1 and odd. Invoking Lemma 2.8, we prove
the claim.

If u2 does not correspond to the partition (3, 22a), we may find a representative
of Oρl u that lies in K . By Lemma 2.6 and Theorem 3.4, this is possible only if
ρl = ι(t) for some t ∈ Z(K ). Therefore g = ρnv = diag(1,−I2n)v for some
spherical unipotent v in G◦ρn

= K . We claim that the partition λ of 2n associated
with v has no term equal to 3. If λ = (3, 22a, 1c), the K -class of v could be
represented by v′ = xα1(1)xα3(1) · · · xα2a−1(1)xαn−1(1)xαn−1+2αn (1). The element
ρlv′ is regular in 〈T, X±α1, X±α3, . . . X±α2a−1, X±αn−1, X±αn 〉, whose semisimple
part is of type a A1×B2; hence the claim follows from Lemma 2.8. Conversely, let
g = ρnu with u corresponding to (22m, 12n−4m) for some m. The representative of
its class provided in [Cantarini et al. 2005, Theorem 21, page 52] is well defined
in odd characteristic and it allows application of Theorem 2.2.

Finally assume that s = dλ for some λ. Then u ∈ Gdλ = G◦ρ1
and we may apply

the arguments used for s = ρ1 to show that su cannot be spherical. �

Type E6.

Theorem 3.6. Let G be simply-connected of type E6. The spherical classes in G
are either semisimple or unipotent up to a central element. The semisimple ones are
symmetric and up to a central factor are represented by p1=h1(−1)h4(−1)h6(−1)
and p2,c = h1(c2)h2(c3)h3(c4)h4(c6)h5(c5)h6(c4) for c ∈ k with c3

6= 1, 0. The
unipotent ones are those of type A1, 2A1 and 3A1.

Proof. Semisimple classes. Let s ∈ T be spherical. We may apply [Humphreys
1995, Theorem 2.15] to choose s so that Gs is generated by T and X±α for α in
a subsystem 8(5)⊂8 with basis a subset 5 of 1∪ {−β1}. By Theorem 2.2 we
have dim Os ≤ `(w0)+ rk(1−w0) and a dimension count shows that 5 can only
be one of the following subsets:

51 = {α1, α3, α4, α5, α6,−β1}, 52 = {α1, α2, α4, α5, α6,−β1},

53 = {α1, α2, α3, α4, α6,−β1} of type A5× A1,
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or

54 = {α1, α2, α3, α4, α5}, 55 = {α2, α3, α4, α5,−β1},

56 = {α2, α3, α4, α5, α6} of type D5.

Let us put Hi = 〈T, X±α, α ∈5i 〉 for i = 1, . . . , 6. The sets 5i for i = 1, 2, 3
are R-bases for the span of 1, and one may find automorphisms of 8 mapping 5i

for i = 2, 3 to ±51. On the other hand, Aut(8) = {−w0}n W so any element s
whose centralizer is H2 or H3 is N (T )-conjugate to an element whose centralizer
is H1. The elements s for which Gs = H1 are p1 = h1(−1)h4(−1)h6(−1) and
zp1 for any z ∈ Z(G). Conjugation by these elements is an involution, so Op1 is
symmetric. This completes the analysis for 5i with i ≤ 3.

The subgroups H4 and H6 are ẇ0-conjugate, so any element whose centralizer
is H4 is N (T )-conjugate to an element whose centralizer is H6. Besides, the au-
tomorphism of 8 defined by α1 7→ −β1, α2 7→ α3, α3 7→ α2, α j 7→ α j for
j = 4, 5, 6 maps 54 onto 55. As before, we may conclude that H5 is N (T )-
conjugate to H4 and any element whose centralizer is H5 is N (T )-conjugate to
an element whose centralizer is H4. The elements whose centralizer is H4 are
p2,c= h1(c2)h2(c3)h3(c4)h4(c6)h5(c5)h6(c4) for c∈ k with c3

6= 1, 0. Multiplying
c by a third root of unity yields the same element multiplied by a central one. Since
p2,−1 is an involution, Op2,c is spherical by Remark 2.4. We claim that p2,c is not
conjugate to p2,d for c 6= d . If they were G-conjugate, they would be N (T )-
conjugate by [Springer and Steinberg 1970, Section 3.1], so there would exist a
σ ∈ W such that σ̇ p2,cσ̇

−1
= p2,d . Thus, σ would stabilize 8(54) and would

restrict to an automorphism of 8(54). Its restriction would therefore be of the
form τw, where τ acts an automorphism of the Dynkin diagram of type D5 and w
lies in the Weyl group W ′ of H4, which is contained in W . Then σw−1 would
lie in W , and it would act on 54 as τ . Besides, two automorphisms ψ1, ψ2 of 8
coinciding on 54 are equal. Indeed, for α = ψ1ψ

−1
2 (α6), we have 〈α j , α〉 = 0 for

j = 1, 2, 3, 4 and 〈α, α5〉 = −1. Such a root α can only be α6, so ψ1ψ
−1
2 = 1.

It follows that σw−1 is either the identity, when τ = 1, or it is the automorphism
mapping α j to α j for j = 1, 3, 4, interchanges α2 and α5, and maps α6 to −β1.
However, one may verify that the second possibility cannot happen because such
an automorphism is equal to s1s3s4s5s2s4s6s5s3s4s1s3s2s4s5s6(−w0); hence it does
not lie in W . Therefore τ = 1 and σ = w ∈ W ′. Since G p2,c = H4, conjugation
by the lift in N (T ) of an element in W ′ does not modify p2,c, so p2,c and p2,d

represent distinct classes.

Unipotent classes. Let O be a nontrivial spherical unipotent class. Then dim O ≤

`(w0)+ rk(1−w0) by Theorem 2.2, so O is of type A1, 2A1 or 3A1. Conversely,
the arguments in [Cantarini et al. 2005, Theorem 13, pages 39–40] apply in good
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characteristic and show that the listed orbits have a representative whose B-orbit
satisfies the conditions of Theorem 2.2.

Mixed classes. A dimension counting together with Lemma 2.7 shows that no class
Osu with s 6∈ Z(G) and u 6= 1 can be spherical. �

Type E7.

Theorem 3.7. Let G be simply-connected of type E7. The spherical classes in G
are either semisimple or unipotent up to a central element. The semisimple ones
are symmetric and are represented by q1 = h2(ζ )h5(−ζ )h6(−1)h7(ζ ), where ζ is
a fixed primitive fourth root of 1; q2 = h3(−1)h5(−1)h7(−1); zq1, and zq2 for
z∈ Z(G); and q3,a=h1(a2)h2(a3)h3(a4)h4(a6)h5(a5)h6(a4)h7(a3)with a2

6=1, 0.
The unipotent ones are those of type A1, 2A1, (3A1)

′, (3A1)
′′ and 4A1.

Proof. Semisimple classes. Let s ∈ T be a spherical element. Proceeding as we
did in Theorem 3.6, using that dim Os ≤ dim B, we may choose s so that Gs is
generated by T and X±α for α ∈8(5) where 5 is one of the following subsets of
1∪ {−β1}:

51 = {α1, α3, α4, α5, α6, α7,−β1} of type A7;

52 = {α2, α3, α4, α5, α6, α7,−β1},

53 = {α1, α2, α3, α4, α5, α7,−β1} of type D6× A1;

54 = {α1, α2, α3, α4, α5, α6} of type E6.

Let us put Hi = 〈T, X±α, α ∈5i 〉.
There is only one element, up to a central one, whose centralizer is H1, and this

is q1 = h2(ζ )h5(−ζ )h6(−1)h7(ζ ), where ζ is a fixed primitive fourth root of 1.
Since q2

1 = h2(−1)h5(−1)h7(−1) ∈ Z(G), the corresponding class is symmetric
by Remark 2.4. The root systems generated by 52 and 53 are mapped onto each
other by elements in Aut(8) = W . Thus, each element whose centralizer is H2

is N (T )-conjugate to one whose centralizer is H3, and it is enough to look at 52.
The elements whose centralizer is H2 are q2 = h3(−1)h5(−1)h7(−1) and zq2 for
z ∈ Z(G). The corresponding classes are symmetric. The elements whose central-
izer is H4 are q3,a = h1(a2)h2(a3)h3(a4)h4(a6)h5(a5)h6(a4)h7(a3) for a2

6= 1, 0.
For ξ a primitive fourth root of unity, we have q2

3,ξ ∈ Z(G) and hence all such
classes are symmetric. Multiplication of q3,a by the nontrivial central element
gives q3,−a . We claim that q3,a is never conjugate to q3,b for a 6= b. If they were
G-conjugate, they would be N (T )-conjugate, so there would exist a σ ∈ W for
which σ̇q3,a σ̇

−1
= q3,b. Such a σ would preserve 8(54), and its restriction to

it would be an automorphism. As in the proof of Theorem 3.6, we see that for
some w in the Weyl group W ′ of H4, the restriction to 8(54) of σw−1

∈ W
would come from an automorphism of the Dynkin diagram of type E6. There is no
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automorphism of8whose restriction to E6 is the nontrivial automorphism. Indeed,
if such an automorphism τ existed, for α = τ(α7) we would have 〈α, α j 〉 = 0 for
j = 2, 3, 4, 5, 6 and 〈α, α1〉 = −1, but there is no such α ∈8. Therefore σw−1 is
the identity on 8(54). By uniqueness of the extension of an automorphism from
E6 to E7 we have σ =w ∈W ′. Since Gq3,a = H4, conjugation by lifts in N (T ) of
elements in W ′ preserves q3,a .

Unipotent classes. Let u 6= 1 be a spherical unipotent element. Then dim Ou ≤

dim B, so Ou is either of type r A1 for some r , or of type A2. In the latter case,
u would be regular in a Levi subgroup of type A2, so this case cannot occur by
Remark 2.5. The arguments in [Cantarini et al. 2005, Theorem 13, pages 39–40]
apply also in good characteristic and show that for all unipotent classes of type
r A1, there is a representative whose B-orbit satisfies the condition in Theorem 2.2.

Mixed classes. We claim that there is no spherical element with Jordan decomposi-
tion g= su with s 6∈ Z(G) and u 6=1. Indeed, Os would be spherical and u would be
spherical in G◦s . A dimensional argument shows that this is possible only if s ∈ Oq2

up to a central element and u is nontrivial only in the component of type A1 in Gs .
It follows from the discussion of semisimple elements that we may choose s so
that Gs = H3 with notation as before, so that we may choose g to be conjugate to
sx−α7(1). Conjugation of g by x−α6(1) and Chevalley’s commutator formula would
give z= sx−α6(a)x−α7(1)x−α6−α7(b)∈Og for some nonzero a, b∈ k. Conjugating z
by a suitable element in X ′

−α6−α7
, we could get rid of the term in X ′

−α6−α7
, obtaining

an element in Og ∩ Bs6s7 B. By Theorem 2.3, the class Og cannot be spherical. �

Type E8.

Theorem 3.8. Let G be of type E8. The spherical classes are either semisimple
or unipotent. The semisimple ones are symmetric ,and they are represented by
r1 = h2(−1)h3(−1) and r2 = h2(−1)h5(−1)h7(−1). The unipotent ones are those
of type A1, 2A1, 3A1 and 4A1.

Proof. Semisimple classes. Let s ∈ T be a spherical element. Proceeding as we
did in Theorems 3.6 and 3.7 we see that, up to N (T )-conjugation, the central-
izer Gs is generated by T and by the X±α for α in a subsystem with basis either
{α2, α3, α4, α5, α6, α7, α8,−β1} of type D8 or {α1, α2, α3, α4, α5, α6, α7,−β1} of
type E7 × A1. Then s is conjugate either to r1 = h2(−1)h3(−1) or to r2 =

h2(−1)h5(−1)h7(−1). Since r2
1 = r2

2 =1 the corresponding classes are symmetric.

Unipotent classes. Let O be a nontrivial spherical unipotent class. Then dim O ≤

dim B, so O is either of type r A1 for some r , or it is of type A2. The latter case is
excluded as in the case of G of type E7. Conversely, the arguments in [Cantarini
et al. 2005, Theorem 13, pages 39–40] apply in good characteristic and show that
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for each orbit of type r A1 in G, we may find a representative whose B-orbit satisfies
the condition in Theorem 2.2.

Mixed classes. We claim that there is no spherical element with Jordan decompo-
sition g= su with s, u 6= 1. Indeed, by dimensional reasons, s would be conjugate
to r2 and u would lie in the component of type A1 in Gr2 =〈T, X±β1, X±αi 〉i=1,...,7.
In other words, we could assume g = r2x−β1(1). Let γ = β1−α8. Conjugation of
g by ṡγ gives t x−α8(a)∈ Og for some nonzero a ∈ k and some t ∈ T . Since r2 does
not commute with X ′

±(β1−α8−α7)
and sγ (α7+α8−β1)= α7, the element t does not

commute with X ′
±α7

. Since sγ (α7+α8)= α7+α8 and r2 does not commute with
X ′
±(α7+α8)

, the same holds for t . Then conjugation of t x−α8(a) by x−α7(1) would
give t x−α7(b)x−α8(a)x−α7−α8(c) ∈ Og for some nonzero b, c ∈ k. Conjugation by
a suitable element in X ′

−α7−α8
would yield an element x ∈ Og ∩ T X ′

−α7
X ′
−α8

. By
(1) and (2), x would lie in Og ∩ Bs7s8 B, leading to a contradiction. �

Type F4.

Theorem 3.9. Let G be of type F4. The spherical semisimple classes are symmet-
ric and represented by f1 = hα2(−1)hα4(−1) and f2 = hα3(−1). The spherical
unipotent ones are those of type r A1 + s Ã1 for r, s ∈ {0, 1}. There is a spherical
class that is neither semisimple nor unipotent, and it is represented by f2xβ1(1).

Proof. Semisimple classes. Let s ∈ T be a spherical element in G. A dimension
counting similar to the previous exceptional cases shows that Gs is N (T )-conjugate
to the subgroup generated by T and the root subgroups corresponding to roots in a
subsystem with basis either 51 = {−β1, α2, α3, α4} or 52 = {α1, α2, α3,−β1}.
They correspond to the involutions f1 = hα2(−1)hα4(−1) and f2 = hα3(−1),
respectively, which are indeed spherical.

Unipotent classes. Let O be a nontrivial spherical unipotent class in G. Then
dim O≤ dim B, so O is either of type A1, Ã1 or A1+ Ã1. Conversely, the arguments
in [Cantarini et al. 2005, Theorem 13, pages 39–40] hold in good characteristic and
show that Theorem 2.2 applies to these three classes.

Mixed classes. Let g= su be the Jordan decomposition of a spherical element with
s, u 6= 1. Since dim O f1 = dim B, we may assume s = f2. Also, G f2 is a reductive
group of type B4. A dimensional argument shows that u lies in the minimal unipo-
tent class in G f2 , so we may assume g= f2x−(2α1+3α2+4α3+2α4)(1)= f2x−β1(1). We
have dim Og = dim B. The proof in [Cantarini et al. 2005, Theorem 23] contains
an incorrect argument, which we rectify here.

The element f2 = hα3(−1) lies in the subgroup G1 = 〈X±αi , i = 2, 3, 4〉 of
type C3. By looking at the centralizer of f2 in G1 we see that, up to an element
in Z(G1), the G1-conjugacy class of f2 is represented by σ1 with notation as in
Theorem 3.3. By [Cantarini et al. 2005, Theorem 15, page 42], the G1-class of σ1
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has a representative in s4sα2+2α3+α4 T when k =C. The same matrix represents the
class in good characteristic. Besides, G1 centralizes X±β1 , so f2x−β1(1) can be
represented by an element z ∈ s4sα2+2α3+α4 T X ′

−β1
⊂ s4sα2+2α3+α4 T X ′β1

sβ1 X ′β1
⊂

X ′β1
w0s2T X ′β1

. Conjugating z by ṡ2ṡ1, we obtain an element z′ ∈ Bw0s1 B ∩ Og.
Thus, wOg ≥ w0s2 and wOg ≥ w0s1, forcing w0 = wOg (notation as in Section 2).
Then Og has a representative whose B-orbit satisfies the condition in Theorem 2.2
and therefore is spherical. �
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COUNTING CONJUGACY CLASSES IN THE UNIPOTENT
RADICAL OF PARABOLIC SUBGROUPS OF GLn(q)

SIMON M. GOODWIN AND GERHARD RÖHRLE

Let q be a power of a prime p. Let P be a parabolic subgroup of the general
linear group GLn(q) that is the stabilizer of a flag in Fn

q of length at most 5,
and let U = O p(P). We prove that, as a function of q, the number k(U) of
conjugacy classes of U is a polynomial in q with integer coefficients.

1. Introduction

Let GLn(q) be the finite general linear group defined over the field Fq of q elements,
where q is a power of a prime p. A longstanding conjecture attributed to G. Higman
[1960] asserts that the number of conjugacy classes of a Sylow p-subgroup of
GLn(q) is given by a polynomial in q with integer coefficients. This has been
verified by computer calculation by A. Vera-López and J. M. Arregi [2003] for
n≤ 13. G. R. Robinson [1998] and J. Thompson [2004] have shown much interest
in this conjecture. For recent related results, see [Alperin 2006; Evseev 2009;
Goodwin and Röhrle 2008; 2009a; 2009b; 2009c].

The following question is precisely Higman’s conjecture when P = B is a Borel
subgroup of GLn(q).

Question 1.1. Let P be a parabolic subgroup of GLn(q) and let U = Op(P). As
a function of q , is the number k(U ) of conjugacy classes of U a polynomial in q?

Here we recall that Op(P) is by definition the largest normal p-subgroup of P .
In this paper, we give an affirmative answer to Question 1.1 in the following cases.

Theorem 1.2. Let P be a parabolic subgroup of GLn(q) that is the stabilizer of
a flag in Fn

q of length at most 5, and let U = Op(P). Then, as a function of q ,
the number k(U ) of conjugacy classes of U is a polynomial in q with integer
coefficients.

MSC2000: primary 20G40; secondary 20E45, 20D15.
Keywords: Higman conjecture, parabolic subgroups, unipotent radical.
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We now explain the significance of the hypothesis imposed in Theorem 1.2. Let
P be a parabolic subgroup of GLn(Fq), and let U be the unipotent radical of P ,
where Fq denotes the algebraic closure of Fq . All instances when P acts on U
with a finite number of orbits were determined in [Hille and Röhrle 1999]; this
is precisely the case when P is the stabilizer of a flag in Fn

q of length at most 5.
So Theorem 1.2 deals with parabolic subgroups P of GLn(q) that correspond to
parabolic subgroups P of GLn(Fq) with a finite number of conjugacy classes in U .
In such cases, it is observed in [Hille and Röhrle 1999, Remark 4.13] that the
parameterization of the P-conjugacy classes in U is independent of q: This is the
crucial point that we require for our proof of Theorem 1.2.

The proof involves a translation of the problem to a representation theoretic
setting. More precisely, recall from [Hille and Röhrle 1999, Section 4] that the P-
conjugacy classes in U correspond bijectively to the so-called 1-filtered modules
of a certain quasihereditary algebra At . This allows us to see that the parameteri-
zation of the P-orbits in U is independent of q and that we can choose a set R of
representatives that are matrices with entries equal to 0 or 1. The other key point
is that the structures of the centralizers CP(x) and CU (x) for x ∈R do not depend
on q; this is covered in Propositions 2.2 and 2.4.

We now discuss some natural generalizations of Theorem 1.2. First consider the
case of a normal subgroup N of P with N ⊆ U . Still assuming that there is only
a finite number of P-orbits in U , we readily derive from the proof of Theorem 1.2
that k(U, N ), the number of U -conjugacy classes in N = N ∩ U , is given by
a polynomial in q with integer coefficients. It should also be possible to prove
that the number k(U, N ) is a polynomial in q with just the assumption that there
are finitely many P-orbits in N . For example, for N = U (l) the l-th member of
the descending central series of U , there is a classification of all instances when
P acts on U (l) with a finite number of orbits; see [Brüstle and Hille 2000]. In
such situations a generalization of the proof of Theorem 1.2 would require detailed
knowledge of the P-conjugacy classes in N .

It is also natural to consider the generalization of Question 1.1, where GLn(q) is
replaced by any finite reductive group G, and also to consider the number k(P,U )
of P-conjugacy classes in U rather than k(U ). (To avoid degeneracies in the
Chevalley commutator relations, it is sensible to only consider these generalizations
when q is a power of a good prime for G.)

At present there are no known examples in which k(U ) is not given by a poly-
nomial in q , and there are many cases not covered by Theorem 1.2, where k(U )
is given by a polynomial in q; see for example [Goodwin and Röhrle 2009b] and
[Vera-López and Arregi 2003]. However, it is not necessarily the case that k(P,U )
is a polynomial in q . Indeed in [Goodwin 2007, Example 4.6], it shown that in
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case G is of type G2, and P = B is a Borel subgroup of G, the number k(B,U ) is
given by two different polynomials depending on the residue of q modulo 3.

Let P be a parabolic subgroup of a reductive algebraic group G defined over Fq ,
and suppose that P has finitely many conjugacy classes in U ; let P and U be the
groups of Fq -rational points of P and U , respectively. Given the discussion after
Theorem 1.2, a natural generalization to consider is whether the number k(U ) of
conjugacy classes of U is a polynomial in q . Our proof of Theorem 1.2 is dependent
on the detailed information about the P-conjugacy classes in U . For this reason the
argument does not adapt to the case in which G is any finite reductive group. The
main difficulty is that it is not clear whether the parameterization of P-orbits in U
and the structure of centralizers depends on the characteristic of the underlying
ground field. Another problem is that centralizers C P(u) for u ∈ U need not be
connected, so determining the P-classes in U from the P-classes in U may be
nontrivial.

2. Translation to representation theory

Here, we recall the relationship established in [Hille and Röhrle 1999, Section 4]
between adjoint orbits of parabolic subgroups and modules for a certain quasi-
hereditary algebra. This relationship is central to our proof of Theorem 1.2. In
particular, it is crucial for Propositions 2.2 and 2.4, which describe the structure of
certain centralizers. Throughout this section we work in generality over any field,
before specializing to finite fields for the proof of Theorem 1.2 in Section 3.

Let K be any field, and let n, t ∈Z≥1. Let d = (d1, . . . , dt)∈Zt
≥0 with di ≤ di+1

and dt = n. We define the parabolic subgroup P(d)= PK (d) of GLn(K ) to be the
stabilizer of the flag 0⊆ K d1 ⊆ K d2 ⊆ . . .⊆ K dt in K n; any parabolic subgroup of
GLn(K ) is conjugate to P(d) for some d. We write

U (d)=UK (d)= {u ∈ GLn(K ) | (u− 1)Vi ⊆ Vi−1 for each i}

for the unipotent radical of P(d), and

u(d)= uK (d)= {x ∈Mn(K ) | xVi ⊆ Vi−1 for each i}

for the Lie algebra of U (d). Then P(d) acts on u(d) via the adjoint action, that is,
g · x = gxg−1 for g ∈ P(d) and x ∈ u(d). For x ∈ u(d), we write P · x for the
adjoint P-orbit of x and CP(x) for the centralizer of x in P; we define U · x and
CU (x) analogously.

Though we are primarily interested in the conjugacy classes of U (d) and the
P(d)-conjugacy classes in U (d), it is more convenient to consider the adjoint
P(d)-orbits in u(d). The map x 7→ 1 + x is a P(d)-equivariant isomorphism
between u(d) and U (d), which means that the adjoint P(d)-orbits in u(d) are in
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bijective correspondence with the P(d)-conjugacy classes in U (d); this allows us
to work with the adjoint orbits.

The quiver Qt is defined to have vertex set {1, . . . , t}, and there are arrows
αi : i → i + 1 and βi : i + 1→ i for i = 1, . . . , t − 1. Here is an example of
the quiver Qt for t = 5:

t
1

t
2

t
3

t
4

t
5

-
α1

-
α2

-
α3

-
α4

�
β1

�
β2

�
β3

�
β4

Let It = It,K be the ideal of the path algebra K Qt of Qt generated by the relations

(2-1) β1α1 = 0 and αiβi = βi+1αi+1 for i = 1, . . . , t − 2.

The algebra At =At,K is defined to be the quotient K Qt/It .
Recall that an At -module M is determined by a family of vector spaces M(i)

over K for i = 1, . . . , t such that M =
⊕t

i=1 M(i), and linear maps M(αi ) :

M(i)→ M(i + 1) and M(βi ) : M(i + 1)→ M(i) for i = 1, . . . , t − 1 that satisfy
the relations (2-1). The dimension vector dim M ∈Zt

≥0 of an At -module is defined
by dim M = (dim M(1), . . . , dim M(t)).

Let Mt = Mt,K be the category of At -modules M such that M(αi ) is injective
for all i . Write Mt(d) = Mt,K (d) for the class of modules in Mt with dimension
vector d. Hille and Röhrle show in [1999, Section 4] that the orbits of P(d) in
u(d) are in bijection with the isoclasses in Mt(d) and moreover, using [Dlab and
Ringel 1992, Sections 6 and 7],1 that there is a unique structure of a quasihereditary
algebra on At such that Mt is the category of 1-filtered At -modules.

Suppose for this paragraph that K is infinite. Using the above bijection and the
results from [DR], it was proved in [HR, Theorem 4.1] that there is a finite number
of P(d)-orbits in u(d) if and only if t ≤ 5. This is deduced from the fact that At

has finite 1-representation type if and only if t ≤ 5; see [DR, Proposition 7.2].
Let t ≤ 5. Because the results in [HR, Section 4] are proved for an arbi-

trary field — see [HR, Remark 4.13] — the parametrization of indecomposable 1-
filtered At -modules does not depend on the field K ; we explain this more explicitly
below. Let {I1, . . . , Im} be a complete set of representatives of isoclasses of inde-
composable 1-filtered At -modules, and write di for the dimension vector of Ii .
Let xi ∈ u(di ) be such that the P(di )-orbit of xi corresponds to the isoclass of Ii .
As discussed in [HR, Section 7] — see also [Brüstle et al. 1999, Figure 10] — one
can choose xi to be a matrix with entries 0 and 1, and these matrices do not depend
on K . In particular, this implies that the modules Ii are absolutely indecomposable.

Another important consequence for us is the following lemma.

1These two references are henceforth abbreviated as [HR] and [DR].
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Lemma 2.1. Assume t ≤5. We may choose a set R of representatives of the adjoint
P(d)-orbits in u(d) such that each element of R is a matrix with all entries equal
to 0 or 1. Moreover, the elements of R do not depend on the field K , that is, the
positions of entries equal to 1 do not depend on K .

We still assume that t ≤ 5, and let d ∈ Zt
≥0. Let P = P(d), U = U (d) and

x ∈u=u(d). For the proof of Theorem 1.2 we need information about the structure
of the centralizers CP(x) and CU (x); this is given by Propositions 2.2 and 2.4.

Let M be a 1-filtered At -module (with dimension vector d) whose isoclass
corresponds to the P-orbit of x . Extending the arguments of [HR, Section 4], one
can show that the automorphism group AutAt (M) of M is isomorphic to CP(x).
Below we explain the structure of EndAt (M) and AutAt (M); this uses standard
arguments that we outline here for convenience. We proceed to explain how CU (x)
is related to EndAt (M).

As above, let {I1, . . . , Im} be a complete set of representatives of isoclasses of
indecomposable 1-filtered At -modules. We may decompose M as a direct sum of
indecomposable modules

(2-2) M ∼=
m⊕

i=1

ni Ii , where ni ∈ Z≥0.

Then

EndAt (M)∼=
m⊕

i, j=1

ni n j HomAt (Ii , I j )

as a vector space and composition is defined in the obvious way.
We observed above that Ii is absolutely indecomposable, which means that

EndAt (Ii ) is a local ring, and that we have the decomposition EndAt (Ii )= K⊕mi ,
where K is acting by scalars and mi is the maximal ideal. Therefore,

n2
i EndAt (Ii )∼=Mni (K )⊕Mni (mi ),

where Mni (K ) is a subalgebra and Mni (mi ) is an ideal. In fact, Mni (mi ) is the
Jacobson radical of n2

i EndAt (Ii ).
Now one can see that the Jacobson radical of EndAt (M) is

J (EndAt (M))∼=
m⊕

i=1

Mni (mi )⊕
⊕
i 6= j

ni n j HomAt (Ii , I j ).

There is a complement to J (EndAt (M)) in EndAt (M) denoted by C(EndAt (M))
with

C(EndAt (M))∼=
m⊕

i=1

Mni (K ).
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We can now describe the automorphism group AutAt (M). We have

AutAt (M)∼=U (C(EndAt (M)))n (1M + J (EndAt (M))),

with U (C(EndAt (M))) the group of units of C(EndAt (M)) and 1M+J (EndAt (M))
the unipotent group {1M + φ | φ ∈ J (EndAt (M))}. We have U (C(EndAt (M))) ∼=∏m

i=1 GLni (K ), and therefore

AutAt (M)∼=
m∏

i=1

GLni (K )n N ,

where N is a split unipotent group over K . By saying N is a split unipotent group,
we mean that N has a normal series with all quotients isomorphic to the additive
group K . The dimension of N is

(2-3) δ :=

m∑
i=1

n2
i (dim EndAt (Ii )− 1)+

∑
i 6= j

ni n j dim HomAt (Ii , I j ).

One can compute all Hom-groups HomAt (Ii , I j ) from the underlying Auslander–
Reiten quivers of At in [DR, pages 221 and 222]; see also [Brüstle et al. 1999,
Appendix A]. The dimensions dim HomAt (Ii , I j ) are independent of K . Therefore,
the positive integer δ is also independent of K .

We said above that AutAt (M) is isomorphic to CP(x), so we have the following
proposition.

Proposition 2.2. The Levi decomposition of CP(x) is given by

CP(x)∼=
m∏

i=1

GLni (K )n N ,

where N , the unipotent radical of CP(x), is a split unipotent group over K of
dimension δ.

Remark 2.3. It is natural to ask whether Proposition 2.2 still holds if t > 5. The
arguments above do apply in case K is assumed to be algebraically closed. It would
be interesting to know what happens in general, and also if Corollary 3.1 holds for
t > 5.

We now wish to give the structure of the centralizer CU (x). By further extending
the arguments in [HR, Section 4], one sees that there is an isomorphism

CU (x)∼= 1M +End′At
(M),

where

End′At
(M) := {φ ∈ EndAt (M) | φM(l)⊆ M(l − 1) for all l};
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here we are identifying M(l− 1) with its image in M(l) under M(αl−1). We have
that End′At

(M) is a nilpotent ideal of EndAt (M). We define

Hom′At
(Ii , I j ) := {φ ∈ HomAt (Ii , I j ) | φ Ii (l)⊆ I j (l − 1) for all l}.

Then we have the isomorphism

End′At
(M)∼=

m⊕
i, j=1

ni n j Hom′At
(Ii , I j ).

We write

(2-4) δ′ := dim End′At
(M)=

m∑
i, j=1

ni n j dim Hom′At
(Ii , I j ).

From the Auslander–Reiten quivers of At exhibited in [DR, pages 221 and 222],
one can compute the dimensions dim Hom′At

(Ii , I j ). These integers are indepen-
dent of K , so that δ′ is also independent of K . The discussion above proves the
following proposition.

Proposition 2.4. The centralizer CU (x) is a δ′-dimensional split unipotent group
over K .

3. Proof of Theorem 1.2

Let q be a prime power and let K = Fq be the field of q elements. Let t ≤ 5 and
let d ∈ Zt

≥0. Let P = P(d), U =U (d) and u= u(d) be as in the previous section,
so that P is a parabolic subgroup of GLn(q).

The following corollary is a key step in our proof of Theorem 1.2. It follows
immediately from Propositions 2.2 and 2.4 along with the elementary fact that the
order of a general linear group over Fq is given by a polynomial in q . The positive
integers in the statement are determined in (2-2), (2-3) and (2-4).

Corollary 3.1. Let x ∈ u. Then there are positive integers n1, . . . , nm , δ and δ′

independent of q such that

|CP(x)| =
m∏

i=1

|GLni (q)| · q
δ and |CU (x)| = qδ

′

.

In particular, |CP(x)| and |CU (x)| are polynomials in q with integer coefficients.

Proof of Theorem 1.2. We must prove that k(U ) is given by a polynomial in q. As
discussed in the previous section k(U ) is equal to k(U, u), the number of adjoint U -
orbits in u. We will prove that k(U, u) is a polynomial in q with integer coefficients.
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We may choose a set of representatives R of the adjoint P-orbits in u, as in
Lemma 2.1, and consider R to be independent of q. We have

k(U, u)=
∑
x∈R

k(U, P · x),

where k(U, P · x) is the number of U -orbits contained in P · x . For x ∈ u and
g ∈ P , we have CU (g · x) = gCU (x)g−1. Therefore, we get |U · x | = |U · (g · x)|
and k(U, P · x)= |P · x |/|U · x |. It follows that

k(U, u)=
∑
x∈R

k(U, P · x)=
∑
x∈R

|P · x |
|U · x |

=
|P|
|U |

∑
x∈R

|CU (x)|
|CP(x)|

= |L|
∑
x∈R

|CU (x)|
|CP(x)|

,

where L is a Levi subgroup of P . Since |L| is a polynomial in q , Corollary 3.1
and the fact that R is independent of q imply k(U, u)= k(U ) is a rational function
in q . Since k(U ) takes integer values for all prime powers, standard arguments
show that k(U ) is in fact a polynomial in q with rational coefficients; see for
example [Goodwin and Röhrle 2009a, Lemma 2.11].

Let P be the subgroup of GLn(Fq) corresponding to P and let U be the unipotent
radical of P . The commuting variety of U is the closed subvariety of U×U defined
by

C(U)= {(u, u′) ∈ U ×U | uu′ = u′u}.

Setting C(U )=C(U)∩ (U ×U ) and using the Burnside counting formula, we get

|C(U )| =
∑
x∈U

|CU (x)| = |U | · k(U ).

Since |U | = qdim U and k(U ) is a polynomial in q with rational coefficients, so
is |C(U )|. Now using the Grothendieck trace formula applied to C(U) (see [Digne
and Michel 1991, Theorem 10.4]), standard arguments prove that the coefficients
of this polynomial are integers; see for example [Reineke 2006, Propopsition 6.1].
Thus, it follows that k(U ) is a polynomial function in q with integer coefficients,
as claimed. �

Remark 3.2. Let t ≤ 5 and d, d ′ ∈ Zt
≥0 with dt = d ′t = n. Suppose that P = P(d)

and Q = P(d ′) are associated parabolic subgroups of GLn(Fq), that is, P and Q
have Levi subgroups that are conjugate in GLn(q). This means that there is a σ ∈ Sn

such that di − di−1 = d ′σ(i)− d ′σ(i)−1 for all i = 1, . . . , t , with the convention that
d0= d ′0= 0. Let U =U (d) and V =U (d ′). A consequence of [HR, Corollary 4.7]
is that the number k(P,U ) of P-conjugacy classes in U is the same as k(Q, V );
see [Goodwin and Röhrle 2009a, Corollary 4.8] for similar phenomena. However,
it is not always the case that the number of conjugacy classes of U is the same
as the number of conjugacy classes of V . For example, take t = 3 and consider
the dimension vectors d = (2, 3, 4) and d ′ = (1, 3, 4). Then P(d) and P(d ′) are
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associated parabolic subgroups of GL4(q). Let U = U (d) and V = U (d ′). Then
by direct calculation one can check that

k(U )= (q − 1)3+ 6(q − 1)2+ 5(q − 1)+ 1

6= (q − 1)4+ 4(q − 1)3+ 6(q − 1)2+ 5(q − 1)+ 1= k(V ).
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THREE CLASSES OF PSEUDOSYMMETRIC CONTACT
METRIC 3-MANIFOLDS

FLORENCE GOULI-ANDREOU AND EVAGGELIA MOUTAFI

We study the class of pseudosymmetric contact metric 3-manifolds satis-
fying Qξ = ρξ , where ρ is a smooth function constant along the charac-
teristic flow. We classify the complete pseudosymmetric contact metric 3-
manifolds of constant type satisfying Qξ =ρξ , where ρ is a smooth function,
and we also classify the complete (κ, µ, ν)-contact metric pseudosymmetric
3-manifolds of constant type.

1. Introduction

A Riemannian manifold (Mm, g) is said to be semisymmetric if its curvature ten-
sor R satisfies the condition R(X, Y ) · R = 0 for all vector fields X, Y on M ,
where the dot means that R(X, Y ) acts as a derivation on R [Szabó 1982; 1985].
Semisymmetric Riemannian manifolds were first studied by E. Cartan. Obviously,
locally symmetric spaces (those with ∇R=0) are semisymmetric, but the converse
is not true, as was proved by H. Takagi [1972].

According to R. Deszcz [1992], a Riemannian manifold (Mm, g) is pseudo-
symmetric if its curvature tensor R satisfies R(X, Y ) · R = L((X ∧ Y ) · R), where
L is a smooth function and the endomorphism field X ∧ Y is defined by

(1-1) (X ∧ Y )Z = g(Y, Z)X − g(Z , X)Y

for all vectors fields X, Y, Z on M , and X ∧Y similarly acts as a derivation on R.
The condition R(X, Y ) · R = L((X ∧ Y ) · R) arose in the study of totally

umbilical submanifolds of semisymmetric manifolds, as well as in the study of
geodesic mappings of semisymmetric manifolds [Deszcz 1992]. If L is constant,
M is called a pseudosymmetric manifold of constant type. Obviously, pseudosym-
metric spaces generalize the semisymmetric ones where L = 0. In dimension 3,
the pseudosymmetry condition of constant type is equivalent to the condition that
the eigenvalues ρ1, ρ2, ρ3 of the Ricci tensor satisfy ρ1 = ρ2 (up to numeration)
and ρ3 = constant [Deprez et al. 1989; Kowalski and Sekizawa 1996b].

MSC2000: primary 53C15, 53C25, 53D10; secondary 53C35.
Keywords: pseudosymmetric manifolds, contact metric 3-manifolds.
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Three-dimensional pseudosymmetric spaces of constant type have been studied
by O. Kowalski and M. Sekizawa [1996b; 1996a; 1997; 1998]. N. Hashimoto and
M. Sekizawa [2000] classified 3-dimensional conformally flat pseudosymmetric
spaces of constant type, while G. Calvaruso [2006] gave the complete classifica-
tion of conformally flat pseudosymmetric spaces of constant type for dimensions
greater than two. J. T. Cho and J. Inoguchi [2005] studied pseudosymmetric contact
homogeneous 3-manifolds. Finally, M. Belkhelfa, R. Deszcz and L. Verstraelen
[Belkhelfa et al. 2005] studied pseudosymmetric Sasakian space forms in arbitrary
dimension.

This article studies 3-dimensional pseudosymmetric contact metric manifolds,
and is organized as follows. In Section 2, we give some preliminaries on pseudo-
symmetric manifolds and contact manifolds as well. In Section 3, we give the
necessary conditions for a 3-dimensional contact metric manifold to be pseudo-
symmetric. In the remaining sections, we use the results of Section 3 to study
3-dimensional contact metric manifolds that satisfy one of the following:

• M is pseudosymmetric with Qξ = ρξ , where ρ is a smooth function on M
constant along the characteristic flow.

• M is pseudosymmetric of constant type with Qξ=ρξ , where ρ a smooth func-
tion on M .

• M is pseudosymmetric of constant type and its curvature satisfies the (κ, µ, ν)-
condition.

2. Preliminaries

Let (Mm, g) for m ≥ 3 be a connected Riemannian smooth manifold. We denote
by ∇ the Levi-Civita connection of Mm and by R the corresponding Riemannian
curvature tensor with R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z .

A Riemannian manifold (Mm, g) for m ≥ 3 was called pseudosymmetric by
R. Deszcz [1992] if at every point of M the curvature tensor satisfies

(R(X, Y ) · R)(X1, X2, X3)= L(((X ∧ Y ) · R)(X1, X2, X3))

or equivalently

(2-1) R(X, Y )(R(X1, X2)X3)− R(R(X, Y )X1, X2)X3

− R(X1, R(X, Y )X2)X3− R(X1, X2)(R(X, Y )X3)

= L
(
(X ∧ Y )(R(X1, X2)X3)− R((X ∧ Y )X1, X2)X3

− R(X1, (X ∧ Y )X2)X3− R(X1, X2)((X ∧ Y )X3)
)
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for all vectors fields X , Y , X1, X2, X3 on M , where X ∧ Y is given by (1-1) and
L is a smooth function. For details and examples of pseudosymmetric manifolds,
see [Belkhelfa et al. 2002; Deszcz 1992].

A contact manifold is a smooth manifold M2n+1 endowed with a global 1-form η

such that η ∧ (dη)n 6= 0 everywhere. Then there is an underlying contact metric
structure (η, ξ, φ, g), where g is a Riemannian metric (the associated metric), φ is a
global tensor of type (1, 1), and ξ is a unique global vector field (the characteristic
or Reeb vector field). These structure tensors satisfy

(2-2) φ2
=−I + η⊗ ξ, η(X)= g(X, ξ), η(ξ)= 1,

dη(X, Y )= g(X, φY ), g(φX, φY )= g(X, Y )− η(X)η(Y ).

The associated metrics can be constructed by the polarization of dη on the contact
subbundle defined by η = 0. Denoting by L the Lie differentiation, we define the
tensors

(2-3) h = 1
2 Lξφ, τ = Lξg, l = R( · , ξ)ξ.

These tensors satisfy the formulas

(2-4)

φξ = hξ = lξ = 0, η ◦φ = η ◦ h = 0, dη(ξ, X)= 0,

Tr h = Tr hφ = 0, ∇Xξ =−φX −φh X, hφ =−φh,

h X = λX implies hφX =−λφX,

∇ξh = φ−φl −φh2, φlφ− l = 2(φ2
+ h2),

∇ξφ = 0, Tr l = g(Qξ, ξ)= 2n−Tr h2.

Now τ = 0 (or equivalently h = 0) if and only if ξ is Killing, and then M is
called K-contact. If the structure is normal, it is Sasakian. A K-contact structure
is Sasakian only in dimension 3, and this fails in higher dimensions. For details
about contact manifolds, see [Blair 2002].

Let (M, φ, ξ, η, g) be a 3-dimensional contact metric manifold. Let U be the
open subset of points p ∈ M such that h 6= 0 in a neighborhood of p, and let U0 be
the open subset of points p ∈M such that h= 0 in a neighborhood of p. Because h
is a smooth function on M , the set U∪U0 is an open and dense subset of M ; thus a
property that is satisfied in U0∪U is also satisfied in M . For any point p ∈U ∪U0,
there exists a local orthonormal basis {e, φe, ξ} of smooth eigenvectors of h in a
neighborhood of p (a φ-basis). On U , we put he = λe, where λ is a nonvanishing
smooth function that is supposed positive. From the third line of (2-4), we have
hφe =−λφe.
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Lemma 2.1 [Gouli-Andreou and Xenos 1998a]. On U we have

∇ξe = aφe, ∇ee = bφe, ∇φee =−cφe+ (λ− 1)ξ,

∇ξφe =−ae, ∇eφe =−be+ (1+ λ)ξ, ∇φeφe = ce,

∇ξξ = 0, ∇eξ =−(1+ λ)φe, ∇φeξ = (1− λ)e,

where a is a smooth function and

(2-5)
b = 1

2λ
((φe · λ)+ A), with A = S(ξ, e),

c = 1
2λ
((e · λ)+ B), with B = S(ξ, φe).

From Lemma 2.1 and the formula [X, Y ] = ∇X Y −∇Y X we can prove that

(2-6)

[e, φe] = ∇eφe−∇φee =−be+ cφe+ 2ξ,

[e, ξ ] = ∇eξ −∇ξe =−(a+ λ+ 1)φe,

[φe, ξ ] = ∇φeξ −∇ξφe = (a− λ+ 1)e,

and from (1-1) we estimate

(2-7)
(e∧φe)e =−φe, (e∧ ξ)e =−ξ, (φe∧ ξ)ξ = φe,

(e∧φe)φe = e, (e∧ ξ)ξ = e, (φe∧ ξ)φe =−ξ,

while (X ∧ Y )Z = 0 whenever X 6= Y 6= Z 6= X and X, Y, Z ∈ {e, φe, ξ}.
By direct computations we calculate the nonvanishing independent components

of the Riemannian (1, 3) curvature tensor field R to be

(2-8)

R(ξ, e)ξ =−I e− Zφe, R(e, φe)e =−Cφe− Bξ,

R(ξ, φe)ξ =−Ze− Dφe, R(ξ, e)φe =−K e+ Zξ,

R(e, φe)ξ = Be− Aφe, R(ξ, φe)φe = He+ Dξ,

R(ξ, e)e = Kφe+ I ξ, R(e, φe)φe = Ce+ Aξ,

R(ξ, φe)e =−Hφe+ Zξ,

where

(2-9)

C =−b2
− c2
+ λ2
− 1+ 2a+ (e · c)+ (φe · b),

H = b(λ− a− 1)+ (ξ · c)+ (φe · a),

K = c(λ+ a+ 1)+ (ξ · b)− (e · a),

I =−2aλ− λ2
+ 1,

D = 2aλ− λ2
+ 1,

Z = ξ · λ.
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Setting X = e, Y =φe and Z = ξ in the Jacobi identity [[X, Y ], Z ]+[[Y, Z ], X ]+
[[Z , X ], Y ] = 0 and using (2-6), we get

(2-10)
b(a+ λ+ 1)− (ξ · c)− (φe · λ)− (φe · a)= 0,

c(a− λ+ 1)+ (ξ · b)+ (e · λ)− (e · a)= 0,

or equivalently A = H and B = K .
The components of the Ricci operator Q with respect to a φ-basis are

(2-11)

Qe = (1
2r − 1+ λ2

− 2aλ)e+ Zφe+ Aξ,

Qφe = Ze+ ( 1
2r − 1+ λ2

+ 2aλ)φe+ Bξ,

Qξ = Ae+ Bφe+ 2(1− λ2)ξ,

where

(2-12) r = Tr Q = 2(1− λ2
− b2
− c2
+ 2a+ (e · c)+ (φe · b)).

The relations (2-9) and (2-12) yield

(2-13) C =−b2
− c2
+ λ2
− 1+ 2a+ (e · c)+ (φe · b)= 2λ2

− 2+ 1
2r,

and the relation on the last line of (2-4) gives Tr l = 2(1− λ2).

Definition 2.2 [Gouli-Andreou et al. 2008]. Let M3 be a 3-dimensional contact
metric manifold and h = λh+− λh− the spectral decomposition of h on U . If

∇h−X h−X = [ξ, h+X ]

for all vector fields X on M3 and all points of an open subset W of U , and if h = 0
on the points of M3 that do not belong to W , then the manifold is said to be a
semi-K-contact manifold.

From Lemma 2.1 and the relations (2-6), the condition above leads to [ξ, e] = 0
when X = e and to ∇φeφe= 0 when X =φe. Hence on a semi-K-contact manifold,
we have a+ λ+ 1= c = 0. If we apply the deformation

e→ φe, φe→ e, ξ →−ξ, λ→−λ, b→ c, c→ b,

the contact metric structure remains the same. Hence a 3-dimensional contact
metric manifold is semi-K-contact if a− λ+ 1= b = 0.

Definition 2.3. In [Koufogiorgos et al. 2008], a (κ, µ, ν)-contact metric manifold
is a contact metric manifold (M2n+1, η, ξ, φ, g) on which the curvature tensor sat-
isfies for every X, Y ∈ X (M) the condition

(2-14) R(X, Y )ξ = κ(η(Y )X − η(X)Y )+µ(η(Y )h X − η(X)hY )

+ ν(η(Y )φh X − η(X)φhY ),
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where κ, µ, ν are smooth functions on M . If ν = 0, we have a generalized (κ, µ)-
contact metric manifold [Koufogiorgos and Tsichlias 2000], and if also κ, µ are
constants, then M is a contact metric (κ, µ)-space [Blair et al. 1995; Boeckx 2000].

In [Koufogiorgos et al. 2008], it was proved that for a (κ, µ, ν)-contact metric
manifold M2n+1 of dimension greater than 3, the functions κ and µ are constants
and ν is the zero function; in [Koufogiorgos and Tsichlias 2000], this was proved
for generalized (κ, µ)-contact metric manifolds M2n+1 of dimension greater than 3.

Remark 2.4. If M3
=U0, the case treated in [Gouli-Andreou and Xenos 1998b],

then Lemma 2.1 is expressed in a similar form with λ= 0, e is a unit vector field
belonging to the contact distribution, and the functions A, B, D, H , I , K and Z
satisfy A = B = Z = H = K = 0, I = D = 1 and C = r/2− 2.

Proposition 2.5. In a 3-dimensional contact metric manifold, we have

(2-15) Qφ= φQ if and only if ξ ·λ= 2bλ−(φe ·λ)= 2cλ−(e ·λ)= aλ= 0.

Proof. The relations (2-11) by (2-2), (2-5), (2-9) and (2-13) yield

(Qφ−φQ)e = 2Ze+ 4aλφe+ Bξ,

(Qφ−φQ)φe = 4aλe− 2Zφe− Aξ,

(Qφ−φQ)ξ = Be− Aφe,

from which the proposition follows. �

3. Pseudosymmetric contact metric 3-manifolds

Let (M, η, g, φ, ξ) be a contact metric 3-manifold. In case M = U0, that is,
(ξ, η, φ, g) is a Sasakian structure, then M is a pseudosymmetric space of constant
type [Cho and Inoguchi 2005]. Next, assume that U is not empty, and let {e, φe, ξ}
be a φ-basis as in Lemma 2.1.

Lemma 3.1. A contact metric 3-manifold (M, η, g, φ, ξ) is pseudosymmetric if
and only if

(3-1)



B(ξ ·λ)+(−2aλ−λ2
+1)A = L A,

A(ξ ·λ)+(2aλ−λ2
+1)B = L B,

(ξ ·λ)( 1
2r+2λ2

−2)+AB = L(ξ ·λ),

A2
−|(ξ ·λ)|2+(2aλ−λ2

+1)(−2aλ−3λ2
+3− 1

2r)

= L(−2aλ−3λ2
+3− 1

2r),

B2
−|(ξ ·λ)|2+(−2aλ−λ2

+1)(2aλ−3λ2
+3− 1

2r)

= L(2aλ−3λ2
+3− 1

2r),
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where L is the function in the pseudosymmetry definition (2-1).

Proof. Setting X1 = e, X2 = φe and X3 = ξ in (2-1), we obtain

(R(X, Y ) · R)(e, φe, ξ)= L
(
((X ∧ Y ) · R)(e, φe, ξ)

)
.

First we set X = e and Y = φe. Then by virtue of (2-7) and (2-8), we obtain

(B(ξ ·λ)+(−2aλ−λ2
+1)A)e+(A(ξ ·λ)+(2aλ−λ2

+1)B)φe= L(Ae+Bφe),

from which the first two equations of (3-1) follow at once.
Similarly, setting X = φe, Y = ξ we obtain(

A2
− |(ξ · λ)|2+ (2aλ− λ2

+ 1)(−2aλ− 3λ2
+ 2− 1

2r)
)
e

+
(
(ξ · λ)( 1

2r + 2λ2
− 2)+ AB

)
φe = L

(
(−2aλ− 3λ2

+ 2− 1
2r)e+ (ξ · λ)φe

)
,

from which we get the next two equations of (3-1).
Finally, setting X = e and Y = ξ , we have(

B2
− |(ξ · λ)|2+ (−2aλ− λ2

+ 1)(2aλ− 3λ2
+ 2− 1

2r)
)
φe

+
(
(ξ · λ)( 1

2r + 2λ2
− 2)+ AB

)
e = L

(
(2aλ− 3λ2

+ 2− 1
2r)φe+ (ξ · λ)e

)
,

from which we obtain the last equation of (3-1). Using the equations (2-9) and
(2-13), the system (3-1) takes the convenient form

(3-2)

Z B+ I A = L A,

Z A+DB = L B,

ZC+AB = L Z ,

A2
−Z2
+D(I−C)= L(I−C),

B2
−Z2
+ I (D−C)= L(D−C). �

Remark 3.2. If L = 0 , the manifold is semisymmetric and the system (3-2) is in
accordance with [Calvaruso and Perrone 2002, equations (3.1)–(3.5)].

Remark 3.3. If the manifold M3 is Sasakian and we work in a similar way, then
(3-2) is reduced to the equation (C − 1)(L − 1) = 0. Cho and Inoguchi [2005]
proved that M is a pseudosymmetric space of constant type. Hence, a Sasakian
3-manifold satisfying the condition R(X, Y ) · R = L((X ∧Y ) · R) with L 6= 1 is a
space of constant scalar curvature r = 6, where L is some constant function on M3.

Proposition 3.4. Let M3 be a 3-dimensional contact metric manifold satisfying
Qφ = φQ. Then M3 is a pseudosymmetric space of constant type.

Proof. Cho and Inoguchi [2005] have proved that contact metric 3-manifolds sat-
isfying Qφ = φQ are pseudosymmetric. We know from [Blair et al. 1990] that in
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these manifolds the Ricci operator has the form Q X=αX+βη(X)ξ or equivalently
the Ricci tensor is given by the equation

S = αg+βη⊗ η,

where α = 1
2(r −Tr l) and β = 1

2(3 Tr l − r), and the functions of the φ-sectional
curvature and Tr l are constants. By [Koufogiorgos 1995], the φ-sectional curvature
is given by r/2− Tr l. Hence in contact metric 3-manifolds with Qφ = φQ, the
function r =Tr Q is also constant; obviously the functions α and β in the equations
above are constants as well. The manifold is quasi-Einstein and hence pseudo-
symmetric, and because β is constant it is pseudosymmetric of constant type, that
is, L is constant. �

Remark 3.5. In dimension 3, the pseudosymmetry condition is equivalent to the
Ricci-pseudosymmetry condition R(X, Y )·S= L((X∧Y )·S), so (3-2) is also valid
for the Ricci-pseudosymmetric contact metric 3-manifolds [Arslan et al. 1997].

4. Pseudosymmetric contact metric 3-manifolds with Qξ = ρξ and ρ
constant in the direction of ξ

Theorem 4.1. Let M3 be a 3-dimensional pseudosymmetric contact metric mani-
fold such that Qξ = ρξ , where ρ is a smooth function on M3 constant along the
characteristic direction ξ . Then there are at most six open subsets of M3 for which
their union is an open and dense subset inside of the closure of M3 and each of
them as an open submanifold of M3 is either

(a) a Sasakian manifold,

(b) flat,

(c) locally isometric to one of the Lie groups SU(2) or SL(2,R) equipped with a
left invariant metric,

(d) pseudosymmetric of constant type L and of constant scalar curvature r equal
to 2(1− λ2

+ 2a),

(e) semi-K contact with L =−3a2
− 4a, or

(f) semi-K contact with L = a2.

Proof. We consider these next open subsets of M :

U0 = {p ∈ M : λ= 0 in a neighborhood of p},

U = {p ∈ M : λ 6= 0 in a neighborhood of p},

where U0 ∪U is open and dense subset of M .
If M = U0, then M is a pseudosymmetric space of constant type [Cho and

Inoguchi 2005]. Next, assume that U is not empty, and let {e, φe, ξ} be a φ-basis.
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The assumption Qξ = ρξ and (2-11) imply

φe · λ= 2bλ,(4-1)

e · λ= 2cλ,(4-2)

ρ = 2(1− λ2),(4-3)

where the smooth function ρ satisfies

(4-4) ξ · ρ = 0.

From (2-10), (4-1) and (4-2), we have

ξ · c =−(φe · a)+ b(a− λ+ 1),(4-5)

ξ · b = (e · a)− c(λ+ a+ 1).(4-6)

Under the conditions (4-1) and (4-2), the system (3-2) becomes

(4-7)

(C − L)Z = 0,

−Z2
+ (D− L)(I −C)= 0,

−Z2
+ (I − L)(D−C)= 0,

where Z ,C, I, D are given by (2-9) and (2-13) and L is the smooth function of
the pseudosymmetry condition.

From equations (4-3) and (4-4) we can deduce everywhere in U that

(4-8) ξ · λ= 0.

Differentiating the equations (4-1) and (4-2) with respect to e and φe respectively
and subtracting, we get

[e, φe]λ= 2b(e · λ)+ 2λ(e · b)− 2c(φe · λ)− 2λ(φe · c),

or because of (2-6), (4-1), (4-2) and (4-8), we obtain

(4-9) e · b = φe · c.

Differentiating Equations (4-1) and (4-8) with respect to ξ and φe respectively and
subtracting, we obtain [ξ, φe]λ= 2λ(ξ · b) or because of (2-6), (4-2) and (4-6)

ξ · b = c(λ− a− 1),(4-10)

e · a = 2cλ.(4-11)
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Differentiating (4-2) and (4-8) with respect to ξ and e respectively and subtracting
we obtain [ξ, e]λ= 2λ(ξ · c) or because of (2-6), (4-1) and (4-5)

ξ · c = b(λ+ a+ 1),(4-12)

φe · a =−2bλ.(4-13)

Differentiating (4-11) and (4-13) with respect to φe and e respectively and sub-
tracting, we get

[φe, e]a = 2b(e · λ)+ 2λ(e · b)+ 2c(φe · λ)+ 2λ(φe · c)

or because of (2-6), (4-1), (4-2), (4-9), (4-11) and (4-13)

(4-14) ξ · a =−2λ(e · b)− 2bcλ

Under the condition (4-8) everywhere in U the system (4-7) becomes{
(I −C)(D− L)= 0,
(D−C)(I − L)= 0.

or equivalently{
(−2aλ− 2λ2

+ 2+ b2
+ c2
− 2a− (e · c)− (φe · b))(2aλ− λ2

+ 1− L)= 0,
(2aλ− 2λ2

+ 2+ b2
+ c2
− 2a− (e · c)− (φe · b))(−2aλ− λ2

+ 1− L)= 0.

To study this system we consider the open subsets

V = {p ∈U : 2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0

in a neighborhood of p},

V ′ = {p ∈U : 2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b) 6= 0

in a neighborhood of p},

where V ∪ V ′ is open and dense in the closure of U . We also have the equation

(−2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b))(2aλ− λ2

+ 1− L)= 0.

Hence we consider the open subsets

V1 = {p ∈ V : −2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0

in a neighborhood of p},

V2 = {p ∈ V : −2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b) 6= 0

in a neighborhood of p},
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where the set V1 ∪ V2 is open and dense in the closure of V . For V ′, in which
−2aλ− λ2

+ 1− L = 0, we consider the open subsets

V3 = {p ∈ V ′ : −2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0

in a neighborhood of p},

V4 = {p ∈ V ′ : −2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b) 6= 0

in a neighborhood of p},

where V3 ∪ V4 is open and dense in the closure of V ′. We describe the previous
sets more precisely as

V1 = {p ∈ V ⊆U : −2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,

2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0

in a neighborhood of p},

V2 = {p ∈ V ⊆U : 2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,

2aλ− λ2
+ 1− L = 0

in a neighborhood of p},

V3 = {p ∈ V ′ ⊆U : −2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,

−2aλ− λ2
+ 1− L = 0

in a neighborhood of p},

V4 = {p ∈ V ′ ⊆U : −2aλ− λ2
+ 1− L = 0,

2aλ− λ2
+ 1− L = 0 in a neighborhood of p},

and the set
⋃

Vi is open and dense in the closure of U .
In V1, we have

−2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,

2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0.

Subtracting these two equations we find that a = 0 in V1 ⊂ U . Hence we
conclude that the structure has the property Qφ = φQ (Proposition 2.5), that L is
constant (Proposition 3.4) and the classification results from [Blair et al. 1990] and
[Blair and Chen 1992] hold.

In V2, we have

2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,

−2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b) 6= 0,
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(hence a 6= 0) or equivalently

2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,(4-15)

2aλ− λ2
+ 1− L = 0.(4-16)

Differentiating (4-15) with respect to ξ and using (4-8), (4-10), (4-12) and (4-14),
we obtain

(4-17) ξ · e · c+ ξ ·ϕe · b =−4bcλ2
+ 8bcλ− 4λ2(e · b)+ 4λ(e · b).

Differentiating (4-10) and (4-12) with respect to φe and e respectively, we use
(4-1), (4-2), (4-9), (4-11), (4-13), and adding we obtain

(4-18) φe · ξ · b+ e · ξ · c = 2λ(e · b)+ 8bcλ.

Subtract (4-17) and (4-18) and using (2-6), (4-9) and (4-14), we obtain

e · b = φe · c =−bc,(4-19)

ξ · a = 0.(4-20)

Differentiating (4-20) and (4-13) with respect to φe and ξ respectively and sub-
tracting, we obtain [φe, ξ ]a = 2λ(ξ · b), or because of (2-6), (4-10), (4-11) and
since λ 6= 0 in U , we have

(4-21) c(a− λ+ 1)= 0.

Differentiating (4-20) and (4-11) with respect to e and ξ respectively and subtract-
ing, we obtain [ξ, e]a = 2λ(ξ · c), or because of (2-6), (4-12), (4-13) and since
λ 6= 0 in U , we have

(4-22) b(a+ λ+ 1)= 0.

Differentiating (4-16) with respect to ξ , φe and e and using (4-1), (4-2), (4-8),
(4-11), (4-13) and (4-20) we obtain respectively

ξ · L = 0,(4-23)

φe · L = 4abλ− 8bλ2,(4-24)

e · L = 4acλ.(4-25)

To study the system (4-21) and (4-22), we consider the open subsets

G = {p ∈ V2 : b = 0 in a neighborhood of p},

G ′ = {p ∈ V2 : b 6= 0 in a neighborhood of p},
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where G∪G ′ is open and dense in the closure of V2. Having also c(λ−a−1)= 0
we consider the open subsets

G1 = {p ∈ G : c = 0 in a neighborhood of p},

G2 = {p ∈ G : c 6= 0 in a neighborhood of p},

where G1∪G2 is open and dense in the closure of G. The set G ′ (where b 6= 0 or
equivalently λ+ a+ 1= 0) is decomposed similarly as

G3 = {p ∈ G ′ : c = 0 in a neighborhood of p},

G4 = {p ∈ G ′ : c 6= 0 in a neighborhood of p},

where G3 ∪G4 is open and dense in the closure of G ′. The sets G1, G2, G3 and
G4 are described more specifically as

G1 = {p ∈ G ⊂ V2 : b = c = 0 in a neighborhood of p},

G2 = {p ∈ G ⊂ V2 : b = λ− a− 1= 0 in a neighborhood of p},

G3 = {p ∈ G ′ ⊂ V2 : c = λ+ a+ 1= 0 in a neighborhood of p},

G4 = {p ∈ G ′ ⊂ V2 : λ+ a+ 1= λ− a− 1= 0 in a neighborhood of p},

The set
⋃

Gi is open and dense subset of V2. We have V2⊂U , where λ 6= 0; hence
G4 =∅.

In G1, we have b= 0 and c= 0. From (4-1), (4-2), (4-8), (4-11), (4-13), (4-14),
(4-23), (4-24) and (4-25), we find that λ, a and L are constant in G1 with λ, a 6= 0;
hence from (2-12) the scalar curvature r = 2(1− λ2

+ 2a) is also constant.
In G2, we have b = 0 and λ− a − 1 = 0. Hence we have a semi-K contact

structure. Then (4-16) and a = λ− 1 give L = (λ− 1)2 = a2
6= 0.

In G3, we have c = 0 and λ+ a+ 1 = 0. Similarly, we have a semi-K contact
structure with L =−3λ2

− 2λ+ 1=−3a2
− 4a, with a 6= 0.

In V3,

− 2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,(4-26)

−2aλ− λ2
+ 1− L = 0.(4-27)

We similarly obtain the system of (4-21) and (4-22) with a 6= 0, while for the
function L , we have (4-23) as well as φe · L =−4abλ and e · L =−4acλ− 8cλ2.

We consider the open subsets

G ′1 = {p ∈ V3 : b = c = 0 in a neighborhood of p},

G ′2 = {p ∈ V3 : b = λ− a− 1= 0 in a neighborhood of p},

G ′3 = {p ∈ V3 : c = λ+ a+ 1= 0 in a neighborhood of p},

G ′4 = {p ∈ V3 : λ+ a+ 1= λ− a− 1= 0 in a neighborhood of p}.
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The set
⋃

G ′i is open and dense subset of V3. We have V3 ⊂ U , where λ 6= 0;
hence G ′4 is empty.

In G ′1, we have b = 0 and c = 0. As in case of G1, the functions λ, a, L and r
are constants.

In G ′2, we have b = 0 and λ− a − 1 = 0. Hence we have a semi-K contact
structure with L =−3λ2

+ 2λ+ 1=−3a2
− 4a, with a 6= 0.

In G ′3, we have c = 0 and λ+ a + 1 = 0. We have a semi-K contact structure
with L = (λ+ 1)2 = a2

6= 0.
In V4 we have −2aλ− λ2

+ 1− L = 0 and 2aλ− λ2
+ 1− L = 0. Subtracting

these two equations we obtain a = 0 in V4 ⊂ U , and hence as in case of V1 we
have the structure Qφ = φQ.

Finally, the sets U0, V1 and V4, G1 and G ′1, G3 and G ′2, G2 and G ′3 satisfy the
structures a, b and c, d , e and f respectively of Theorem 4.1. �

5. Pseudosymmetric contact metric 3-manifolds
of constant type with Qξ = ρξ

Theorem 5.1. Let M3 be a 3-dimensional pseudosymmetric contact metric man-
ifold of constant type such that Qξ = ρξ , where ρ is a smooth function on M3.
Then ρ is constant. If M3 is also complete then it is either a Sasakian manifold
(meaning Tr l = 2) or locally isometric to one of the following Lie groups equipped
with a left invariant metric: SU(2); SO(3); SL(2,R); E(2), the rigid motions of
Euclidean 2-space; E(1, 1), the rigid motions of Minkowski 2-space; or O(1, 2),
the Lorentz group of linear maps preserving the quadratic form t2

− x2
− y2.

Proof. We consider open subsets

U0 = {p ∈ M : λ= 0 in a neighborhood of p},

U = {p ∈ M : λ 6= 0 in a neighborhood of p},

where U0 ∪U is open and dense subset of M .
If M = U0, then it is a pseudosymmetric space of constant type; see [Cho and

Inoguchi 2005]. Next, assume that U is not empty, and let {e, φe, ξ} be a φ-basis.
The assumption Qξ = ρξ and (2-11) imply

φe · λ= 2bλ,(5-1)

e · λ= 2cλ,(5-2)

ρ = 2(1− λ2),(5-3)

where ρ is a smooth function on M . From (2-10), (5-1) and (5-2) we have

ξ · c =−(φe · a)+ b(a− λ+ 1),(5-4)

ξ · b = (e · a)− c(λ+ a+ 1).(5-5)
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Under the conditions (5-1) and (5-2) the system (3-2) becomes

(5-6)

(C − L)Z = 0,

−Z2
+ (D− L)(I −C)= 0,

−Z2
+ (I − L)(D−C)= 0,

where Z , C , I and D are given by (2-9) and (2-13) and L is the constant of the
pseudosymmetry condition.

We work in the open subset U and suppose that there is a point p in U where
Z = ξ · λ 6= 0. The function Z is smooth, so because of its continuity there is an
open neighborhood U1 of p such that U1 ⊂U and Z = ξ ·λ 6= 0 everywhere in U1.
From the first equation of (5-6), we get C = L in U1, or equivalently

(5-7) (e · c)+ (φe · b)= L + b2
+ c2
− λ2
+ 1− 2a.

Differentiating (5-7) with respect to ξ , we get

ξ · e · c+ ξ ·φe · b = 2b(ξ · b)+ 2c(ξ · c)− 2λ(ξ · λ)− 2(ξ · a),

which because of (5-4) and (5-5) becomes

(5-8) ξ · e · c+ ξ ·φe · b = 2b(e · a)− 2c(φe · a)− 2λ(ξ · λ)− 2(ξ · a)− 4bcλ.

Next, we differentiate (5-4) and (5-5) with respect to e and φe, respectively. Adding
the results, we have

e · ξ · c+φe · ξ · b =−[e, φe]a− (a+ λ+ 1)(φe · c)+ (a− λ+ 1)(e · b)

− c(φe · a)+ b(e · a)− 4bcλ.

Subtracting this from (5-8), we get

[ξ, e]c+ [ξ, φe]b = b(e · a)− c(φe · a)− 2(ξ · a)− 2λ(ξ · λ)+ [e, φe]a

+ (a+ λ+ 1)(φe · c)− (a− λ+ 1)(e · b),

or because of (2-6),

(a+ λ+ 1)(φe · c)+ (λ− a− 1)(e · b)

= b(e · a)− c(φe · a)− 2(ξ · a)− 2λ(ξ · λ)− b(e · a)

+ c(φe · a)+ 2(ξ · a)+ (λ+ a+ 1)(φe · c)+ (λ− a− 1)(e · b).

Equivalently, λ(ξ · λ) = 0, and because we work in U1 ⊂ U , we have ξ · λ = 0,
which is a contradiction. Hence, we can deduce everywhere in U that

(5-9) ξ · λ= 0.
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Working as previously, we obtain the equations

e · b = φe · c,(5-10)

ξ · b = c(λ− a− 1),(5-11)

e · a = 2cλ,(5-12)

ξ · c = b(λ+ a+ 1),(5-13)

φe · a =−2bλ.(5-14)

Under the condition (5-9) everywhere in U the system (5-6) becomes{
(I −C)(D− L)= 0,
(D−C)(I − L)= 0,

or equivalently{
(−2aλ− 2λ2

+ 2+ b2
+ c2
− 2a− (e · c)− (φe · b))(2aλ− λ2

+ 1− L)= 0,
(2aλ− 2λ2

+ 2+ b2
+ c2
− 2a− (e · c)− (φe · b))(−2aλ− λ2

+ 1− L)= 0.

To study this system, we consider (as previously) the open subsets

V1 = {p ∈U : − 2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,

2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0

in a neighborhood of p},

V2 = {p ∈U : 2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,

2aλ− λ2
+ 1− L = 0 in a neighborhood of p},

V3 = {p ∈U : − 2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,

− 2aλ− λ2
+ 1− L = 0 in a neighborhood of p},

V4 = {p ∈U : − 2aλ− λ2
+ 1− L = 0, 2aλ− λ2

+ 1− L= 0,

in a neighborhood of p}.

The set
⋃

Vi is open and dense in the closure of U . We shall prove that the
functions λ and a are constants at Vi for i = 1, 2, 3, 4.

In V1, we have

−2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,

2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0.

Subtracting these two equations we can deduce that a = 0 in V1 ⊂ U . Hence
from (5-12) and (5-14), we have c = b = 0, and from (5-1) and (5-2), we have
φe ·λ= e ·λ= 0, which together with (5-9) give λ= constant in V1. Moreover, if
we put a = b = c = 0 in one of the equations of the set V1, we finally get λ2

= 1.
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In V2,

2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,(5-15)

2aλ− λ2
+ 1− L = 0.(5-16)

Differentiating (5-16) with respect to ξ , φe and e and using (5-9), (5-12) and (5-14),
we obtain respectively

(5-17) ξ · a = 0,

b(a− 2λ)= 0, ac = 0.

Differentiating (5-12) and (5-17) with respect to ξ and e respectively and subtract-
ing, we obtain [ξ, e]a = 2λ(ξ · c) or because of (2-6), (5-13) and (5-14)

(5-18) b(λ+ a+ 1)= 0.

Similarly, differentiating (5-14) with respect to ξ and (5-17) with respect to φe and
subtracting, we have [ξ, φe]a =−2λ(ξ · b) or because of (2-6), (5-11) and (5-12)

(5-19) c(λ− a− 1)= 0.

We study the system of (5-18) and (5-19). As in the previous section, we consider
open subsets

G1 = {p ∈ V2 : b = c = 0 in a neighborhood of p},

G2 = {p ∈ V2 : b = λ− a− 1= 0 in a neighborhood of p},

G3 = {p ∈ V2 : c = λ+ a+ 1= 0 in a neighborhood of p},

G4 = {p ∈ V2 : λ+ a+ 1= λ− a− 1= 0 in a neighborhood of p},

The set
⋃

Gi is open and dense subset of V2. We have V2⊂U where λ 6= 0; hence
G4 is empty.

In G1, we have b= 0 and c= 0. From (5-1) and (5-2) we can conclude φe ·λ=
e · λ = 0, which together with (5-9) implies λ is constant in G1. Similarly from
(5-12), (5-14) and (5-17), a is constant.

In G2, we have b = 0 and λ− a − 1 = 0. The second of these together with
(5-16) gives λ2

− 2λ+ 1− L = 0. If we assume e · λ 6= 0, we differentiate this
equation twice with respect to e, and we obtain e · λ = 0, which contradicts our
assumption. Hence, e ·λ= 0 (and c = 0) and (5-1) gives φe ·λ= 0, or finally λ is
constant in G2 and a = λ− 1 is also constant.

In G3, we have c=0 and λ+a+1=0. The first equation gives e·λ=0 by (5-2),
while the second together with (5-16) gives−3λ2

−2λ+1−L = 0. Differentiating
this equation with respect to φe, we get (3λ+ 1)(φe · λ) = 0. Suppose there is a
point p ∈ G3 at which φe · λ 6= 0. Then, there is a neighborhood F of p in which
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φe · λ 6= 0. In that neighborhood we must have λ = −1/3 by the last equation;
hence φe · λ= 0, a contradiction. Thus φe · λ= 0 everywhere in G3, which gives
b = 0. In G3, we note that ξ · λ = φe · λ = e · λ = 0, so λ is constant in G3.
Obviously a is also constant because a = −λ− 1. Moreover, if we put b = c = 0
and a =−λ− 1 in (5-15), we get λ2

= 1.
We have proved that λ is constant at every Gi for i = 1, 2, 3, while the set

G1∪G2∪G3 is an open and dense subset of V2; hence λ is constant in V2 and the
equations b(a− 2λ)= 0 and ac = 0 are satisfied because b = c = 0.

In V3,

− 2aλ− 2λ2
+ 2+ b2

+ c2
− 2a− (e · c)− (φe · b)= 0,(5-20)

−2aλ− λ2
+ 1− L = 0.(5-21)

Working as we did for the set V2, we get again the first equation of (5-17), and

ab = 0 and c(a+ 2λ)= 0

and the system of (5-18) and (5-19). We similarly consider the open subsets

G ′1 = {p ∈ V3 : b = c = 0 in a neighborhood of p},

G ′2 = {p ∈ V3 : b = λ− a− 1= 0 in a neighborhood of p},

G ′3 = {p ∈ V3 : c = λ+ a+ 1= 0 in a neighborhood of p},

G ′4 = {p ∈ V3 : λ+ a+ 1= λ− a− 1= 0 in a neighborhood of p},

The set
⋃

G ′i is open and dense subset of V3. We have V3 ⊂ U where λ 6= 0;
hence G ′4 is empty.

In G ′1, we have b = 0 and c = 0. From (5-1) and (5-2), we can conclude
φe · λ = e · λ = 0, which together with (5-9) implies λ is constant in G ′1. From
(5-12), (5-14) and (5-17) we obtain that a constant in G ′1.

In G ′2, we have b = 0 and λ− a − 1 = 0. The first equation gives φe · λ = 0
from (5-1), while the second together with (5-21) gives −3λ2

+ 2λ+ 1− L = 0.
Differentiating this equation with respect to e, we get (−3λ+1)(e·λ)=0. Suppose
that there is a point p ∈G ′2 at which e ·λ 6= 0. Then, there is a neighborhood F ′ of
p in which e ·λ 6= 0. In that neighborhood we must have from the last equation that
λ = 1/3 and e · λ = 0, a contradiction. Hence e · λ = 0 everywhere in G ′2, which
gives c = 0. In G ′2, we note that ξ · λ = φe · λ = e · λ = 0, so λ is constant in G ′2.
Obviously a is also constant because a= λ−1. Moreover, if we put b= c= 0 and
a = λ− 1 in (5-20) we get λ2

= 1.
In G ′3, we have c = 0 and λ+ a + 1 = 0. The second equation together with

(5-21) gives λ2
+2λ+1−L=0. Assuming φe·λ 6=0, we differentiate this equation

twice with respect to φe and obtain φe · λ = 0, a contradiction. Thus, φe · λ = 0
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everywhere in G ′3, which gives b = 0. From (5-2), we get e · λ = 0. We note that
ξ · λ= φe · λ= e · λ= 0, so λ is constant in G ′3 and obviously so is a =−λ− 1.

We have proved that λ is constant in every G ′i for i = 1, 2, 3 while the set
G ′1∪G ′2∪G ′3 is open and dense in the closure of V3; hence λ is constant at V3 and
the equations ab = 0 and c(a+ 2λ)= 0 are satisfied because b = c = 0.

In V4, we have 2aλ− λ2
+ 1− L = 0 and −2aλ− λ2

+ 1− L = 0. Subtracting
these two equations, we can deduce that a = 0 in V4 ⊂U . Hence from (5-12) and
(5-14), we have c = b = 0, and from (5-1) and (5-2), we have φe · λ = e · λ = 0,
which together with (5-9) implies λ is constant in V4. Moreover, if we put a = 0
in one of the equations of the set V4, we finally obtain λ2

= 1− L ≥ 0.
We have proved that λ is constant in every Vi for i = 1, 2, 3, 4. The set V1 ∪

V2∪V3∪V4 is open and dense inside of the closure of U ; hence λ is constant at U
and because of (5-3) the function ρ is constant at U . Finally if the manifold M3 is
complete, we may use the main theorem of [Koufogiorgos 1995] to complete the
proof. �

6. Pseudosymmetric (κ, µ, ν)-contact metric
3-manifolds of constant type

Theorem 6.1. A 3-dimensional (κ, µ, ν)-contact metric pseudosymmetric man-
ifold of constant type is either a Sasakian manifold or a (κ, µ)-contact metric
manifold. In the second case, if M3 is also complete, then it is locally isometric
to one of the following Lie groups equipped with a left invariant metric: SU(2);
SO(3); SL(2,R); E(2), the rigid motions of Euclidean 2-space; E(1, 1), the rigid
motions of Minkowski 2-space; or O(1, 2), the Lorentz group consisting of linear
transformations preserving the quadratic form t2

− x2
− y2).

Proof. We work as in the previous section. If M=U0, then (ξ, η, φ, g) is a Sasakian
structure that is a pseudosymmetric space of constant type with κ = 1, µ ∈ R and
h = 0. Next, assume that U is not empty, and let {e, φe, ξ} be a φ-basis. From
(2-14) we can calculate these components of the Riemannian curvature tensor:

R(ξ, e)ξ =−(κ + λµ)e− λνφe, R(e, φe)ξ = 0,

R(ξ, φe)ξ =−λνe− (κ − λµ)φe.

By virtue of (2-8), we can conclude that

(6-1) A = B = 0, Z = λν, D = κ − λµ, I = κ + λµ,

and hence the system (3-2) gives again the system (5-6). First we get Z=ξ ·λ=0 or
equivalently ν= 0 and then that λ, a are constants. Finally from (2-9) and (6-1) we
have κ = 1−λ2 and µ=−2a, and from the main theorem of [Koufogiorgos 1995]
and [Boeckx 2000, Theorem 3], we can complete the proof. �
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SCOTT AND SWARUP’S REGULAR NEIGHBORHOOD
AS A TREE OF CYLINDERS

VINCENT GUIRARDEL AND GILBERT LEVITT

Let G be a finitely presented group. Scott and Swarup have constructed a
canonical splitting of G that encloses all almost invariant sets over virtually
polycyclic subgroups of a given length. We give an alternative construction
of this regular neighborhood by showing that it is the tree of cylinders of a
JSJ splitting.

1. Introduction

Scott and Swarup [2003] have constructed a canonical graph of groups decomposi-
tion (or splitting) of a finitely presented group G; this splitting encloses all almost
invariant sets over virtually polycyclic subgroups of a given length n (the VPCn

groups), and in particular over virtually cyclic subgroups for n = 1.
Almost invariant sets generalize splittings: Whereas a splitting is analogous to

an embedded codimension-one submanifold of a manifold M , an almost invariant
set is analogous to an immersed codimension-one submanifold.

Two splittings are compatible if they have a common refinement, in that both
can be obtained from the refinement by collapsing some edges. For example,
two splittings induced by disjoint embedded codimension-one submanifolds are
compatible.

Enclosing is a generalization of this notion to almost invariant sets: Take, in
the analogy above, two codimension-one submanifolds F1 and F2 of M with F1

immersed and F2 embedded. Then F1 is enclosed in a connected component of
M \ F2 if one can isotope F1 into this component.

Scott and Swarup’s construction is called the regular neighborhood of all almost
invariant sets over VPCn subgroups. This is analogous to the topological regular
neighborhood of a finite union of (nondisjoint) immersed codimension-one sub-
manifolds: It defines a splitting that encloses the initial submanifolds.

One main virtue of their splitting is that it is canonical: It is invariant under
automorphisms of G. Because of this, it is often quite different from usual JSJ

MSC2000: primary 20E08; secondary 20F65, 20E06.
Keywords: JSJ decomposition, tree of cylinder, almost invariant set, torus theorem, canonical

splitting, tree.
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splittings, which are unique only up to deformation. There the canonical object is
the JSJ deformation space [Forester 2003; Guirardel and Levitt 2009].

The main reason for this rigidity is that the regular neighborhood is defined in
terms of enclosing. Enclosing, like compatibility of splittings, is more rigid than
domination, which is the basis for usual JSJ theory. For instance, any two splittings
in Culler–Vogtmann’s outer space dominate each other, but they are compatible if
and only if they lie in a common simplex.

We have shown a general construction producing a canonical splitting Tc from a
canonical deformation space: the tree of cylinders [Guirardel and Levitt 2008]. It
also enjoys strong compatibility properties. In this paper, we show that the splitting
constructed by Scott and Swarup is a subdivision of the tree of cylinders of the usual
JSJ deformation space.

More precisely, let TJ be the Bass–Serre tree of a JSJ splitting of G over VPCn

groups, as constructed for instance in [Dunwoody and Sageev 1999]. To construct
the tree of cylinders, say that two edges are in the same cylinder if their stabilizers
are commensurable. Cylinders are subtrees, and the tree Tc dual to the covering of
TJ by cylinders is the tree of cylinders of TJ ; see [Guirardel and Levitt 2008] or
Section 2b below.

Theorem 4.1. Let G be a finitely presented group, and let n ≥ 1. Assume that
G does not split over a VPCn−1 subgroup, and that G is not VPCn+1. Let TJ be
a JSJ tree of G over VPCn subgroups, and let Tc be its tree of cylinders for the
commensurability relation.

Then the Bass–Serre tree of Scott and Swarup’s regular neighborhood of all
almost invariant subsets over VPCn subgroups is equivariantly isomorphic to a
subdivision of Tc.

This gives a new proof that this regular neighborhood is a tree. Deriving the
regular neighborhood from a JSJ splitting, instead of building it from an abstract
betweenness relation, seems to greatly simplify the construction, by completely
avoiding the notion of good or good-enough position for almost invariant subsets.

There are two ingredients in our approach, to be found in Sections 3 and 4.
(Section 2 recalls basic material about trees of cylinders, almost invariant sets,
cross-connected components, and regular neighborhoods.)

The first ingredient is a general fact about almost invariant sets that are based
on a given tree T . Consider any simplicial tree T with an action of G. Any edge
e separates T into two half-trees, and this defines almost invariant sets Ze and Z∗e
(see Section 3a). The collection B(T ) of almost invariant subsets based on T is
then defined by taking Boolean combinations of such sets Ze.

Following Scott and Swarup, one defines cross-connected components of B(T )
by using crossing of almost invariant sets. The set of cross-connected components
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is then endowed with a betweenness relation that allows one to construct a bipartite
graph RN(B(T )) associated to B(T ). This is the regular neighborhood of B(T );
see Definition 2.2.

Theorem 3.3. Let G be a finitely generated group, and T a tree with a minimal
action of G. Assume that no two groups commensurable to edge stabilizers are
contained in each other with infinite index.

Then the regular neighborhood RN(B(T )) is equivariantly isomorphic to a
subdivision of Tc, the tree of cylinders of T for the commensurability relation;
in particular, RN(B(T )) is a tree.

The hypothesis about edge stabilizers holds in particular if all edge stabilizers
of T are VPCn for a fixed n.

This theorem remains true if one enlarges B(T ) to B(T )∪QH(T ) by including
almost invariant sets enclosed by quadratically hanging vertices of T . Geometri-
cally, such a vertex is associated to a fiber bundle over a 2-dimensional orbifold O.
Any simple closed curve on O gives a way to blow up T by creating new edges
and therefore new almost invariant sets. These sets are in QH(T ), as well as those
associated to immersed curves on O. Under the same hypotheses as Theorem 3.3,
we show in Theorem 3.11 that the regular neighborhood RN(B(T )∪QH(T )) also
is a subdivision of Tc.

The second ingredient, specific to the VPCn case, is due to (but not explic-
itly stated by) Scott and Swarup [2003]. We believe it is worth emphasizing this
statement, as it gives a very useful description of almost invariant sets over VPCn

subgroups in terms of a JSJ splitting TJ . In plain words, it says that any almost
invariant set over a VPCn subgroup is either dual to a curve in a QH subgroup, or
is a Boolean combination of almost invariant sets dual to half-trees of TJ .

Theorem 4.2 [Dunwoody and Swenson 2000; Scott and Swarup 2003]. Let G and
TJ be as in Theorem 4.1.

For any almost invariant subset X over a VPCn subgroup, the equivalence class
[X ] belongs to B(TJ )∪QH(TJ ).

Theorem 4.2 is essentially another take on the proof of Scott and Swarup’s
[2003, Theorem 8.2], and makes a crucial use of algebraic torus theorems of
[Dunwoody and Swenson 2000; Dunwoody and Roller 1993]. We give a proof
in Section 4.

Theorem 4.1 is a direct consequence of Theorems 4.2 and 3.11.

2. Preliminaries

Let G be a fixed finitely generated group, which, in Section 4, is finitely presented.
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2a. Trees. If 0 is a graph, we denote by V (0) its set of vertices and by E(0) its
set of (closed) nonoriented edges.

A tree always means a simplicial tree T on which G acts without inversions.
Given a family E of subgroups of G, an E-tree is a tree whose edge stabilizers
belong to E. We denote by Gv or Ge the stabilizer of a vertex v or an edge e.

Given a subtree A, we denote by prA the projection onto A, mapping x to the
point of A closest to x . If A and B are disjoint, or intersect in at most one point,
then prA(B) is a single point, and we define the bridge between A and B as the
segment joining prA(B) to prB(A).

A tree T is nontrivial if there is no global fixed point, and minimal if there is no
proper G-invariant subtree.

An element or a subgroup of G is elliptic in T if it has a global fixed point.
An element that is not elliptic is hyperbolic. It has an axis on which it acts as a
translation. If T is minimal, then it is the union of all translation axes of elements
of G. In particular, if Y ⊂ T is a subtree, then any connected component of T \Y
is unbounded.

A subgroup A consisting only of elliptic elements fixes a point if it is finitely
generated, a point or an end in general. If a finitely generated subgroup A is not
elliptic, there is a unique minimal A-invariant subtree.

A tree T dominates a tree T ′ if there is an equivariant map f : T → T ′. Equiv-
alently, any subgroup that is elliptic in T is also elliptic in T ′. Having the same
elliptic subgroups is an equivalence relation on the set of trees, and the equivalence
classes are called deformation spaces; see [Forester 2002; Guirardel and Levitt
2007] for details.

2b. Trees of cylinders. Two subgroups A and B of G are commensurable if A∩B
has finite index in both A and B.

Definition 2.1. We fix a conjugacy-invariant family E of subgroups of G such that

• any subgroup A commensurable with some B ∈ E lies in E, and

• if A, B ∈ E are such that A ⊂ B, then [B : A]<∞.

An E-tree is a tree whose edge stabilizers belong to E.

For instance, E may consist of all subgroups of G that are virtually Zn for some
fixed n, or all subgroups that are virtually polycyclic of Hirsch length exactly n.

In [Guirardel and Levitt 2008], we associated a tree of cylinders Tc to any E-
tree T , as follows. Two (nonoriented) edges of T are equivalent if their stabilizers
are commensurable. A cylinder of T is an equivalence class Y . We identify Y with
the union of its edges, which is a subtree of T .

Two distinct cylinders meet in at most one point. One can then define the tree
of cylinders of T as the tree Tc dual to the covering of T by its cylinders, as in



SCOTT AND SWARUP’S REGULAR NEIGHBORHOOD AS A TREE OF CYLINDERS 83

[Guirardel 2004, Definition 4.8]. Formally, Tc is the bipartite tree with vertex set
V (Tc)= V0(Tc)t V1(Tc) defined as follows:

(1) V0(Tc) is the set of vertices x of T belonging to (at least) two distinct cylinders;

(2) V1(Tc) is the set of cylinders Y of T ;

(3) there is an edge ε = (x, Y ) between x ∈ V0(Tc) and Y ∈ V1(Tc) if and only
if x (viewed as a vertex of T ) belongs to Y (viewed as a subtree of T ).

Alternatively, one can define the boundary ∂Y of a cylinder Y as the set of vertices
of Y belonging to another cylinder, and obtain Tc from T by replacing each cylinder
by the cone on its boundary.

All edges of a cylinder Y have commensurable stabilizers, and we denote by
C ⊂ E the corresponding commensurability class. We sometimes view V1(Tc) as
a set of commensurability classes.

2c. Almost invariant subsets. Given a subgroup H ⊂ G, consider the action of
H on G by left multiplication. A subset X ⊂ G is H-finite if it is contained in
the union of finitely many H -orbits. Two subsets X and Y are equivalent if their
symmetric difference X + Y is H -finite. We denote by [X ] the equivalence class
of X , and by X∗ the complement of X .

An H-almost invariant subset (or an almost invariant subset over H ) is a subset
X ⊂ G that is invariant under the (left) action of H and equivalent to the right-
translate Xs for all s ∈ G. An H -almost invariant subset X is nontrivial if neither
X nor its complement X∗ is H -finite. Given H <G, the set of equivalence classes
of H -almost invariant subsets is a Boolean algebra BH for the usual operations.

If H contains H ′ with finite index, then any H -almost invariant subset X is also
H ′-almost invariant. Furthermore, two sets X and Y are equivalent over H ′ if and
only if they are equivalent over H . It follows that, given a commensurability class
C of subgroups of G, the set of equivalence classes of almost invariant subsets over
subgroups in C is a Boolean algebra BC.

Two almost invariant subsets X over H and Y over K are equivalent if their
symmetric difference X+Y is H -finite. By [Scott and Swarup 2003, Remark 2.9],
this is a symmetric relation: X + Y is H -finite if and only if it is K -finite. If X
and Y are nontrivial, equivalence implies that H and K are commensurable.

The algebras BC are thus disjoint, except for the (trivial) equivalence classes of
∅ and G that belong to every BC. We denote by B the union of the algebras BC. It
is the set of equivalence classes of all almost invariant sets, but it is not a Boolean
algebra in general. There is a natural action of G on B induced by left translation
(or conjugation).

2d. Cross-connected components and regular neighborhoods. Let X be an H -
almost invariant subset, and Y a K -almost invariant subset. One says that X
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crosses Y , or the pair {X, X∗} crosses {Y, Y ∗}, if none of the four sets X (∗)
∩ Y (∗)

is H -finite (we denote by X (∗)
∩Y (∗) the four possible intersections X ∩Y , X∗∩Y ,

X ∩ Y ∗, and X∗ ∩ Y ∗). By [Scott 1998], this is a symmetric relation. Note that X
and Y do not cross if they are equivalent, and that crossing depends only on the
equivalence classes of X and Y . Following [Scott and Swarup 2003], we will say
that X (∗)

∩ Y (∗) is small if it is H -finite (or equivalently K -finite).
Now let X be a subset of B. Let X be the set of nontrivial unordered pairs
{[X ], [X∗]} for [X ] ∈ X. A cross-connected component (CCC) of X is an equiv-
alence class C for the equivalence relation generated on X by crossing. We often
say that X , rather than {[X ], [X∗]}, belongs to C , or represents C . We denote by H

the set of cross-connected components of X.
Given three distinct cross-connected components C1,C2,C3, we say that C2 is

between C1 and C3 if there are representatives X i of Ci satisfying X1 ⊂ X2 ⊂ X3.
A star is a subset 6 ⊂H containing at least two elements, and maximal for the

property that, given C,C ′ ∈ 6, no C ′′ ∈H is between C and C ′. We denote by S

the set of stars.

Definition 2.2. Let X⊂B be a collection of almost invariant sets. Its regular neigh-
borhood RN(X) is the bipartite graph whose vertex set is HtS (a vertex is either
a cross-connected component or a star), and whose edges are pairs (C, 6)∈H×S

with C ∈6. If X is G-invariant, then G acts on RN(X) .

This definition is motivated by the following remark, whose proof we leave to
the reader.

Remark 2.3. Let T be any simplicial tree. Suppose that H⊂ T meets any closed
edge in a nonempty finite set. Define betweenness in H by C2 ∈ [C1,C3] ⊂ T .
Then the bipartite graph defined as above is isomorphic to a subdivision of T .

In the situation of Scott and Swarup [2003], a main result is that RN(X) is a
tree. We will reprove this fact by identifying RN(X) with a subdivision of the tree
of cylinders.

3. Regular neighborhoods as trees of cylinders

Now we fix a family E as in Definition 2.1. It is stable under commensurability,
and a group of E cannot contain another with infinite index. Let T be an E-tree.

In Section 3a, we define the set B(T ) of almost invariant sets based on T , and we
state the main result, Theorem 3.3: The regular neighborhood RN(B(T )) of B(T )
is up to subdivision the tree of cylinders Tc. In Section 3b, we represent elements of
B(T ) by special subforests of T . We then study the cross-connected components
of B(T ). We prove Theorem 3.3 in Section 3d by constructing a map8 from the set
of cross-connected components to Tc. In Section 3e we generalize Theorem 3.3 to
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Theorem 3.11 by including almost invariant sets enclosed by quadratically hanging
vertices of T .

3a. Almost invariant sets based on a tree. We fix a basepoint v0 ∈ V (T ). If e
is an edge of T , we denote by e̊ the open edge. Let Te and T ∗e be the connected
components of T \ e̊. The set of g ∈ G such that gv0 ∈ Te (respectively gv0 ∈ T ∗e )
is an almost invariant set Ze (respectively Z∗e ) over Ge. Up to equivalence, it is
independent of v0. When we need to distinguish between Ze and Z∗e , we orient e
and declare that the terminal vertex of e belongs to Te.

Now consider a cylinder Y ⊂T and the corresponding commensurability class C.
Any Boolean combination of the Ze for e ∈ E(Y ) is an almost invariant set over
some subgroup H ∈ C.

Definition 3.1. Given a cylinder Y , associated to a commensurability class C, the
Boolean algebra of almost invariant subsets based on Y is the subalgebra BC(T )
of BC generated by the classes [Ze] for e ∈ E(Y ).

The set of almost invariant subsets based on T is the union B(T )=
⋃

C BC(T ),
a subset of B=

⋃
C BC; just like B, it is a union of Boolean algebras but not itself

a Boolean algebra.

Proposition 3.2. Let T and T ′ be minimal E-trees. Then B(T ) = B(T ′) if and
only if T and T ′ belong to the same deformation space.

More precisely, T dominates T ′ if and only if B(T ′)⊂B(T ).

Proof. Suppose T dominates T ′. After subdividing T (this does not change B(T )),
we may assume that there is an equivariant map f : T → T ′ sending every edge to
a vertex or an edge. We claim that, given e′ ∈ E(T ′), there are only finitely many
edges ei ∈ E(T ) such that f (ei )= e′. To see this, we may restrict to a G-orbit of
edges of T , since there are finitely many such orbits. If e and ge both map onto e′,
then g ∈Ge′ . Because of the hypotheses on E, the stabilizer Ge is contained in Ge′

with finite index. The claim follows.
Choose basepoints v ∈ T and v′ = f (v) ∈ T ′. Then Ze′ (defined using v′) is a

Boolean combination of the sets Zei (defined using v), so B(T ′)⊂B(T ).
Conversely, assume B(T ′)⊂B(T ). Let K ⊂G be a subgroup elliptic in T . We

show that it is also elliptic in T ′.
If not, we can find an edge e′ = [v′, w′] ⊂ T ′, and sequences gn ∈ G and

kn ∈ K , such that the sequences gnv
′ and gnknv

′ have no bounded subsequence,
and e′ ⊂ [gnv

′, gnknv
′
] for all n. (If K contains a hyperbolic element k, we choose

e′ on its axis, and we define gn = k−n and kn = k2n; if K fixes an end ω, we want
g−1

n e′ ⊂ [v′, knv
′
], so we choose e′ and gn such that all edges g−1

n e′ are contained
on a ray ρ going out to ω, and then we choose kn .) Defining Ze′ using the vertex v′

and a suitable orientation of e′, we have gn ∈ Ze′ and gnkn /∈ Ze′ .
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Using a vertex of T fixed by K to define the almost invariant sets Ze, we see
that any element of B(T ) is represented by an almost invariant set X satisfying
X K = X . In particular, since B(T ′)⊂B(T ), there exist finite sets F1 and F2 such
that Z = (Ze′ \ Ge′F1) ∪ Ge′F2 is K -invariant on the right. For every n, one has
gnkn ∈Ge′F2 (if gn, gnkn ∈ Z ) or gn ∈Ge′F1 (if not), so one of the sequences gnknv

′

or gnv
′ has a bounded subsequence (because Ge′ is elliptic), a contradiction. �

Remark. The only fact used in the proof is that no edge stabilizer of T has infinite
index in an edge stabilizer of T ′.

Theorem 3.3. Let T be a minimal E-tree, with E as in Definition 2.1, and Tc its
tree of cylinders for the commensurability relation. Let X = B(T ) be the set of
almost invariant subsets based on T .

Then RN(X) is equivariantly isomorphic to a subdivision of Tc.

By Proposition 3.2, and [Guirardel and Levitt 2008, Theorem 1], RN(X) and Tc

only depend on the deformation space of T .
To prove the version of Theorem 3.3 stated in the introduction, one takes E to

be the family of subgroups commensurable to an edge stabilizer of T .
The theorem will be proved in the next three subsections. We always fix a base

vertex v0 ∈ T .

3b. Special forests. Let S and S′ be subsets of V (T ). We say that S and S′ are
equivalent if their symmetric difference is finite; we say S is trivial if it is equivalent
to ∅ or V (T ).

The coboundary δS is the set of edges having one endpoint in S and one in S∗

(the complement of S in V (T )). We shall be interested in sets S with finite
coboundary. Since δ(S ∩ S′)⊂ δS ∪ δS′, they form a Boolean algebra.

We also view such an S as a subforest of T , by including all edges whose end-
points are both in S; we can then consider the (connected) components of S. The
set of edges of T is partitioned into edges in S, edges in S∗, and edges in δS= δS∗.
Note that S is equivalent to the set of endpoints of its edges. In particular, S is finite
(as a set of vertices) if and only if it contains finitely many edges.

We say that S is a special forest based on a cylinder Y if δS = {e1, . . . , en} is
finite and contained in Y . If nonempty, S contains at least one vertex of Y . Each
component of S (viewed as a subforest) is a component of T \{e̊1, . . . , e̊n}, and S∗

is the union of the other components of T \ {e̊1, . . . , e̊n}.
We define BY as the Boolean algebra of equivalence classes of special forests

based on Y .
Given a special forest S based on Y , we define X S = {g | gv0 ∈ S}. It is

an almost invariant set over H =
⋂

e∈δS Ge, a subgroup of G belonging to the
commensurability class C associated to Y ; we denote its equivalence class by [X S].
Every element of B(T ) may be represented in this form. More precisely:
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Lemma 3.4. Let Y be a cylinder associated to a commensurability class C. Then
the map S 7→ [X S] induces an isomorphism of Boolean algebras between BY

and BC(T ).

Proof. It is easy to check that S 7→ [X S] is a morphism of Boolean algebras. It is
onto because the set Te used to define the almost invariant set Ze is a special forest
(based on the cylinder containing e). It remains to determine the “kernel”, namely
to show that X S is H -finite if and only if S is finite (where H denotes any group
in C).

First suppose that S is finite. Then S is contained in Y since it contains any
connected component of T \ Y that it intersects. Since δS is finite, no vertex x
of S has infinite valence in T . In particular, for each vertex x ∈ S, the group Gx is
commensurable with H . It follows that {g ∈ G | g .v0 = x} is H -finite, and X S is
H -finite.

If S is infinite, one of its components is infinite, and by minimality of T there
exists a hyperbolic element g ∈ G such that gnv0 ∈ S for all n ≥ 0. Thus gn

∈ X S

for n ≥ 0. If X S is H -finite, one can find a sequence ni going to infinity, and
hi ∈ H , such that gni = hi gn0 . Since H is elliptic in T , the sequence hi gn0v0 is
bounded, a contradiction. �

Lemma 3.5. Let S and S′ be special forests.

(1) If S and S′ are infinite and based on distinct cylinders, and if S ∩ S′ is finite,
then S ∩ S′ =∅.

(2) If X S crosses X S′ , then S and S′ are based on the same cylinder.

(3) X S ∩ X S′ is small if and only if S ∩ S′ is finite.

Proof. For part (1), assume that S and S′ are infinite and based on Y 6= Y ′, and
that S ∩ S′ is finite. Let [u, u′] be the bridge between Y and Y ′ (with u = u′ if Y
and Y ′ intersect in a point). Since u and u′ lie in more than one cylinder, they have
infinite valence in T .

Assume first that u∈ S. Then S contains all components of T \{u}, except finitely
many of them (which intersect Y ). In particular, S contains Y ′. If S′ contains u′,
it contains u by the same argument, and S ∩ S′ contains infinitely many edges
incident on u, a contradiction. If S′ does not contain u′, it is contained in S, also a
contradiction.

We may therefore assume u /∈ S and u′ /∈ S′. It follows that S (respectively S′) is
contained in the union of the components of T \ {u} (respectively T \ {u′}) which
intersect Y (respectively Y ′), so S and S′ are disjoint.

Part (2) is a consequence of [Scott and Swarup 2003, Proposition 13.5], but here
is a direct argument. Assume that S and S′ are based on Y 6= Y ′, and let [u, u′]
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be as above. Up to replacing S and S′ by their complements, we have u /∈ S and
u′ /∈ S′. The argument above shows that S ∩ S′ =∅, so X S does not cross X S′ .

For part (3), first suppose that S ∩ S′ is finite. If, say, S is finite, then X S is
H -finite by Lemma 3.4, so X S ∩ X S′ is small. Assume therefore that S and S′ are
infinite. If they are based on distinct cylinders, then X S ∩ X S′ = ∅ by part (1). If
they are based on the same cylinder, then S ∩ S′ is itself a finite special forest, so
X S ∩ X S′ = X S∩S′ is small by Lemma 3.4. Conversely, if S ∩ S′ is infinite, one
shows that X S ∩ X S′ is not H -finite as in the proof of Lemma 3.4, using g such
that gnv ∈ S ∩ S′ for all n ≥ 0. �

Remark 3.6. If S and S′ are infinite and X S ∩ X S′ is small, then S and S′ are
equivalent to disjoint special forests. This follows from the lemma if they are
based on distinct cylinders. If not, one replaces S′ by S′ ∩ S∗.

3c. Peripheral cross-connected components. Theorem 3.3 is trivial if T is a line,
so we can assume that each vertex of T has valence at least 3 (we now allow G
to act with inversions). We need to understand cross-connected components. By
Lemma 3.5(2), every such component is based on a cylinder, so we focus on a
given Y . We first define peripheral special forests and almost invariant sets.

Recall that ∂Y is the set of vertices of Y that belong to another cylinder. Let
v ∈ ∂Y be a vertex whose valence in Y is finite. Let e1, . . . , en be the edges of Y
containing v, oriented towards v. Let Sv,Y = Te1 ∩ · · · ∩ Ten (recall that Te denotes
the component of T \ e̊ containing the terminal point of e). It is a subtree satisfying
Sv,Y ∩ Y = {v}, with coboundary δSv,Y = {e1, . . . , en}. We say that Sv,Y , and any
special forest equivalent to it, is peripheral (but S∗v,Y is not peripheral in general).

We denote by Xv,Y the almost invariant set corresponding to Sv,Y , and we say
that X is peripheral if it is equivalent to some Xv,Y . Both Sv,Y and S∗v,Y are infinite,
so Xv,Y is nontrivial by Lemma 3.4.

We claim that Cv,Y = {{[Xv,Y ], [X∗v,Y ]}} is a complete cross-connected compo-
nent of B(T ), called a peripheral CCC. Indeed, assume that Xv,Y crosses some X S .
Then S is based on Y by Lemma 3.5, but since Sv,Y contains no edge of Y , it is
contained in SX or S∗X , which prevents crossing.

Note that if Cv,Y = Cv′,Y ′ , then Y = Y ′ (because an H -almost invariant subset
determines the commensurability class of H ), and v= v′ except when Y is a single
edge vv′, in which case Xv,Y = X∗v′,Y .

Lemma 3.7. Let Y be a cylinder. There is at most one nonperipheral cross-
connected component CY based on Y . There is exactly one if and only if |∂Y | 6=2, 3.

Proof. The proof is in three parts.
We first claim that, given any infinite connected nonperipheral special forest S

based on Y , there is an edge e ⊂ S ∩ Y such that both connected components of
S \ {e̊} are infinite.
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Assume there is no such e. Then S ∩ Y is locally finite: Given v ∈ S, all but
finitely many components of S \ {v} are infinite, so infinitely many edges incident
on v satisfy the claim if v has infinite valence in S ∩ Y .

Since S is infinite and nonperipheral, S∩Y is not reduced to a single point. We
orient every edge e of S ∩ Y so that S ∩ Te is infinite and S ∩ T ∗e is finite. If a
vertex v of S∩Y is terminal in every edge of S∩Y that contains it, S is peripheral.
We may therefore find an infinite ray ρ ⊂ S ∩ Y consisting of positively oriented
edges. Since every vertex of T has valence ≥ 3, every vertex of ρ is the projection
onto ρ of an edge of δS, contradicting the finiteness of δS. This proves the claim.

Secondly, to show that there is at most one nonperipheral cross-connected com-
ponent, we fix two nontrivial forests S and S′ based on Y , and we show that X S

and X S′ are in the same CCC if they do not belong to peripheral CCCs. We can
assume that X S ∩ X S′ is small, and by Remark 3.6 that S ∩ S′ is empty. We may
also assume that every component of S and S′ is infinite.

Since S is not peripheral, it contains two disjoint infinite special forests S1 and S2

based on Y : This is clear if S has several components, and follows from the claim
otherwise. Construct S′1 and S′2 similarly. Then X S1∪X S′1 crosses both X S and X S′ ,
so X S and X S′ are in the same cross-connected component.

Finally, we discuss the existence of CY . If |∂Y |≥4, choose v1, . . . , v4 ∈ ∂Y , and
consider edges e1, e2, e3 of Y such that each vi belongs to a different component
Si of T \ {e̊1, e̊2, e̊3}. These components are infinite because vi ∈ ∂Y , and X S1∪S2

belongs to a nonperipheral CCC.
If ∂Y is empty, then Y = T and existence is clear. If ∂Y is nonempty, minimality

of T implies that Y is the convex hull of ∂Y (replacing every cylinder by the
convex hull of its boundary yields an invariant subtree). From this we deduce that
|∂Y | 6= 1, and every CCC based on Y is peripheral if |∂Y | equals 2 or 3. There is
one peripheral CCC if |∂Y |= 2 (that is, Y is a single edge) and three if |∂Y |= 3. �

Remark 3.8. The proof shows that, if |∂Y | ≥ 4, then for all u 6= v in ∂Y , the
nonperipheral CCC is represented by a special forest S such that u ∈ S and v ∈ S∗.

3d. Proof of Theorem 3.3. From now on we assume that T has more than one
cylinder; otherwise there is exactly one cross-connected component, and both
RN(X) and Tc are points.

It will be helpful to distinguish between a cylinder Y ⊂ T or a point η ∈ ∂Y ,
and the corresponding vertex of Tc. We therefore denote by Yc or ηc the vertex of
Tc corresponding to Y or η.

Recall that H denotes the set of cross-connected components of X = B(T ).
Consider the map 8 :H→ Tc defined as follows:

• If C = CY is a nonperipheral CCC, then 8(C)= Yc ∈ V1(Tc).
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• If C =Cv,Y is peripheral, and #∂Y ≥ 3, then8(C) is the midpoint of the edge
ε = (vc, Yc) of Tc.

• If #∂Y = 2, and C is the peripheral CCC based on Y , then 8(C)= Yc.

In all cases, the distance between 8(C) and Yc is at most 1/2. If C is peripheral,
8(C) has valence 2 in Tc.

Clearly, 8 is one-to-one. By Remark 2.3, it now suffices to show that the image
of 8 meets every closed edge, and 8 preserves betweenness: For C1,C2,C3 ∈H,
C2 is between C1 and C3 if and only if 8(C2) ∈ [8(C1),8(C3)].

The first fact is clear because 8(H) contains all vertices Yc ∈ V1(Tc) with
|∂Y | 6= 3 and the three points at distance 1/2 from Yc if |∂Y | = 3. To control
betweenness, we need a couple of technical lemmas.

If S is a nontrivial special forest, we denote by [[S]] the cross-connected com-
ponent represented by the almost invariant set X S .

Let Y ⊂ T be a cylinder. We denote by prY : T → Y the projection. If Y ′ is
another cylinder, then prY (Y

′) is a single point. This point belongs to two cylinders
and hence defines a vertex of V0(Tc) that is at distance 1 from Yc on the segment
of Tc joining Yc to Y ′c.

Let Y be a cylinder with |∂Y | ≥ 4. For each nontrivial special forest S′ that
is either based on some Y ′ 6= Y , or based on Y and peripheral, we define a point
ηY (S′)∈Y ⊂T as follows. If S′ is based on Y ′ 6=Y , we define ηY (S′) to be prY (Y

′).
If S′ is equivalent to some Sv,Y , we define ηY (S′)= v; note that in this case ηY (S′∗)
is not defined.

Lemma 3.9. Let Y be a cylinder with |∂Y | ≥ 4. Consider two nontrivial special
forests S, S′ with [[S′]] 6= CY and [[S]] = CY , and assume S′ ⊂ S.

Then η = ηY (S′) ∈ Y is defined, η ∈ S, and S′ contains an equivalent subforest
S′′ with S′′ ⊂ pr−1

Y ({η})⊂ S.
Moreover, 8([[S′]]) lies in the connected component of Tc \ {Yc} containing ηc.

Proof. Let Y ′ be the cylinder on which S′ is based.
If Y ′ = Y , then S′∗ is not peripheral, so S′ is peripheral. Thus η is defined, and

S′ is equivalent to its subforest S′′ = SY,η. Then S′′ = pr−1
Y ({η}) ⊂ S. In this case

8([[S′]]) is the midpoint of the edge (ηc, Yc) of Tc.
Assume that Y ′ 6= Y . Then η = prY (Y

′) ∈ S; otherwise Y ′ would be disjoint
from S and hence from S′, a contradiction. It follows that pr−1

Y ({η})⊂ S. If η ∈ S′,
then S′ contains the complement of pr−1

Y ({η}), so S = T , a contradiction. Thus
η /∈ S′ and therefore S′ ⊂ pr−1

Y ({η}). The “moreover” is clear in this case since ηc

is between Yc and Y ′c, and 8([[S′]]) is at distance ≤ 1/2 from Y ′c. �

Lemma 3.10. Let S = SY,u be peripheral, and let S′ be a nontrivial special forest
with [[S′]] 6= [[S]]. Recall that uc is the vertex of Tc associated to u.



SCOTT AND SWARUP’S REGULAR NEIGHBORHOOD AS A TREE OF CYLINDERS 91

(1) If S′ ⊂ S, then 8([[S′]]) belongs to the component of Tc \ {8([[S]])} that
contains uc.

(2) If S ⊂ S′, then 8([[S′]]) belongs to the component of Tc \ {8([[S]])} that does
not contain uc.

Proof. If S′ ⊂ S, then S′ is based on some Y ′ 6= Y . Since S′ ⊂ S = pr−1
Y ({u}), we

have Y ′ ⊂ pr−1
Y ({u}) and uc is between Yc and Y ′c in Tc. The result follows since

8([[S]]) is 1/2-close to Yc and 8([[S′]]) is 1/2-close to Y ′c.
If S ⊂ S′ and Y 6= Y ′, we have prY (Y

′) 6= u because S′ 6= T , and the lemma
follows. If Y = Y ′, the lemma is immediate. �

We can now show that 8 preserves betweenness. Consider three distinct cross-
connected components C1,C2,C3 ∈ H. Let Y2 be the cylinder on which C2 is
based. Note that |∂Y2| ≥ 4 if C2 is nonperipheral.

First assume that C2 is between C1 and C3. By definition, there exist almost
invariant subsets X i representing Ci such that X1 ⊂ X2 ⊂ X3. By Lemma 3.4,
one can find special forests Si with [X Si ] = [X i ]. By Remark 3.6, since the Ci are
distinct, one can assume S1 ⊂ S2 ⊂ S3 (if necessary, replace S2 by S2 ∩ S3, and
then S1 by S1 ∩ S2 ∩ S3).

If S2 is peripheral, 8(C1) and8(C3) are in distinct components of Tc \{8(C2)}

by Lemma 3.10, so 8(C2) ∈ [8(C1),8(C3)]. If S∗2 is peripheral, we apply the
same argument using S∗3 ⊂ S∗2 ⊂ S∗1 .

Assume therefore that C2 is nonperipheral. Lemma 3.9 implies that the points
η1 = ηY2(S1) and η3 = ηY2(S

∗

3 ) are defined, and η1 ∈ S2 and η3 ∈ S∗2 . In particular,
we have η1 6= η3. By the “moreover”, we get 8(C2) ∈ [8(C1),8(C3)] since
8(C2)= (Y2)c.

Now assume that C2 is not between C1 and C3, and choose Si with [[Si ]] = Ci .
By Remark 3.6, we may assume that for each i ∈ {1, 3} some inclusion S(∗)

i ⊂ S(∗)

2
holds. Since C2 is not between C1 and C3, we may assume after changing Si to S∗i
if needed that S1 ⊂ S2 and S3 ⊂ S2.

If S2 or S∗2 is peripheral, Lemma 3.10 implies that 8(C1) and 8(C3) lie in
the same connected component of Tc \ {8(C2)}, so 8(C2) is not between 8(C1)

and 8(C3).
Assume therefore that C2 is nonperipheral. Lemma 3.9 says that the points

η1= ηY2(S1) and η3= ηY2(S3) are defined, and we may assume Si ⊂ pr−1
Y2
({ηi }). If

η1 = η3, then 8(C2) does not lie between 8(C1) and 8(C3) by the “moreover” of
Lemma 3.9. If η1 6= η3, consider S̃2 with [[S̃2]] = C2 such that η1 ∈ S̃2 and η3 ∈ S̃∗2
(it exists by Remark 3.8). Then S1 ⊂ pr−1

Y2
(η1) ⊂ S̃2 and S3 ⊂ pr−1

Y2
(η3) ⊂ S̃∗2 , so

C2 lies between C1 and C3, a contradiction.
This ends the proof of Theorem 3.3. �
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3e. Quadratically hanging vertices. We say that a vertex stabilizer Gv of T is
a QH-subgroup if there is an exact sequence 1 → F → Gv

π
→ 6 → 1, where

6 = π1(O) is a hyperbolic 2-orbifold group and every incident edge group Ge is
peripheral: It is contained with finite index in the preimage by π of a boundary
subgroup B = π1(C), with C a boundary component of O. We say that v is a
QH-vertex of T .

We now define almost invariant sets based on v. They will be included in our
description of the regular neighborhood.

We view 6 as a convex cocompact Fuchsian group acting on H2. Let H be any
nonperipheral maximal two-ended subgroup of 6 (represented by an immersed
curve or 1-suborbifold). Let γ be the geodesic invariant by H . It separates H2 into
two half-spaces P±, which may be interchanged by certain elements of H .

Let H 0 be the stabilizer of P+, which has index at most 2 in H , and let x0 be a
basepoint. We define an H 0-almost invariant set X ⊂ 6 as the set of g ∈ 6 such
that gx0 ∈ P+. (If H is the fundamental group of a two-sided simple closed curve
on O, there is a one-edge splitting of 6 over H , and X is a Ze as in Section 3a.)

The preimage of X in Gv is an almost invariant set Xv over the preimage H0

of H 0. We extend it to an almost invariant set X of G as follows. Let S′ be the set
of vertices u 6=v of T such that, denoting by e the initial edge of the segment [v, u],
the geodesic of H2 invariant under Ge ⊂ Gv lies in P+; note that it lies in either
P+ or P−. Then X is the union of Xv with the set of g /∈ Gv such that gv ∈ S′.

Starting from H , we have thus constructed an almost invariant set X , which is
well defined up to equivalence and complementation (because of the choices of
x0 and P±). We say that X is a QH-almost invariant subset based on v. We let
QHv(T ) be the set of equivalence classes of QH-almost invariant subsets obtained
from v as above (varying H ), and we let QH(T ) be the union of all QHv(T )when v
ranges over all QH-vertices of T .

Theorem 3.11. With E and T as in Theorem 3.3, let X̂ = B(T ) ∪QH(T ). Then
RN(X̂) is isomorphic to a subdivision of Tc.

Proof. The proof is similar to that of Theorem 3.3.
If X is a QH-almost invariant subset as constructed above, we call S = S′ ∪ {v}

the QH-forest associated to X . We say that it is based on v. The coboundary of S
is infinite, but all its edges contain v. We may therefore view S as a subtree of T
(the union of v with certain components of T \ {v}). It is a union of cylinders. We
let S∗ = (T \ S)∪ {v}, so that S ∩ S∗ = {v}.

Note that S cannot contain a peripheral special forest Sv,Y , with Y a cylinder
containing v (this is because the subgroup H ⊂6 was chosen nonperipheral).

Conversely, given a QH-forest S, one can recover H0, which is the stabilizer of S,
and the equivalence class of X . In other words, there is a bijection between QHv(T )
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and the set of QH-forests based on v. We denote by X S the almost invariant set X
corresponding to S (it is well defined up to equivalence). Note that X S is not a
subset of {g ∈ G | gv ∈ S}, and these sets have the same intersection with G \Gv.

The following fact is analogous to Lemma 3.5.

Lemma 3.12. Let S be a QH-forest based on v. Let S′ be a nontrivial special
forest, or a QH-forest based on v′ 6= v.

(1) X S ∩ X S′ is small if and only if S ∩ S′ =∅.

(2) X S and X S′ do not cross.

Proof. When S′ is a special forest, we use v as a basepoint to define X S′ as the set
{g | gv ∈ S′}. Beware that X S is properly contained in {g | gv ∈ S}.

We claim that if S′ is a special forest with v /∈ S′ and S∩S′ 6=∅, then X S′ ⊂ X S .
Let Y ′ be the cylinder on which S′ is based. Since each connected component of
S′ contains a point in Y ′, there is a point w 6= v in S ∩ Y ′. Since S is a union of
cylinders, S contains Y ′. All connected components of S′ therefore contain a point
of S and so are contained in S \ {v} since v /∈ S′. We deduce X S′ ⊂ X S .

We now prove (1). If S ∩ S′ = ∅, then X S ∩ X S′ = ∅. We assume S ∩ S′ 6= ∅,
and we show that X S ∩ X S′ is not small. If S′ is a QH-forest, then v ∈ S′ or v′ ∈ S.
If for instance v ∈ S′, then X S∩X S′ is not small because it contains X S∩Gv. Now
assume that S′ is a special forest. If v ∈ S′, the same argument applies, so assume
that v /∈ S′. The claim implies X S′ ⊂ X S , so X S ∩ X S′ is not small.

To prove (2), first consider the case where S′ is a QH-forest. Up to changing S
and S′ to S∗ or S′∗, one can assume S ∩ S′ = ∅, so X S does not cross X S′ . If S′

is a special forest, we can assume v /∈ S′ by changing S′ to S′∗. By the claim, X S

does not cross X S′ . �

The lemma implies that no element of QH(T ) crosses an element of B(T ), and
elements of QHv(T ) do not cross elements of QHv′(T ) for v 6= v′.

Since QHv(T ) is a cross-connected component, the set Ĥ of cross-connected
components of B(T )∪QH(T ) is therefore the set of cross-connected components
of B(T ), together with one new cross-connected component QHv(T ) for each QH-
vertex v.

One extends the map8 defined in the proof of Theorem 3.3 to a map 8̂ : Ĥ→Tc

by sending QHv(T ) to v (viewed as a vertex of V0(Tc) since a QH-vertex belongs
to infinitely many cylinders). We need to prove that 8̂ preserves betweenness.

Lemmas 3.9 and 3.10 extend immediately to the case where S′ is a QH-forest:
one just needs to define ηY (S′)= prY (v

′) for S′ based on v′, so that v′ plays the role
of Y ′ in the proofs. (In the proof of Lemma 3.9, the assertion that η /∈ S′ should
be replaced by the fact that S′ ∩ Y contains no edge; this holds since otherwise S′

would contain Y .) This allows to prove that, if C2 is not a component QHv(T ),
then8(C2) is between8(C1) and8(C3) if and only if C2 lies between C1 and C3.
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To treat the case when C2 = QHv(T ), we need a cylinder-valued projection ηv.
Let Y be a cylinder or a QH-vertex distinct from v. We define ηv(Y ) as the cylinder
of T containing the initial edge of [v, x] for any x ∈ Y different from v. Equiv-
alently, ηv(Y ) is Y if v ∈ Y , the cylinder containing the initial edge of the bridge
joining x to Y otherwise.

If v lies in a cylinder Y 0, denote by η−1
v (Y

0) the union of cylinders Y such that
ηv(Y ) = Y 0. Equivalently, this is the set of points x ∈ T such that x = v or [x, v]
contains an edge of Y 0.

As before, [[S]] denotes the cross-connected component represented by X S .

Lemma 3.13. Let S be a QH-forest based on v. Let S′ be a nontrivial special
forest, or a QH-forest based on v′ 6= v. Let Y ′ be the cylinder or QH-vertex on
which S′ is based, and let Y ′0 = ηv(Y ′).

If S′ ⊂ S, then S′ ⊂ η−1
v (Y

′0)⊂ S.
Moreover, 8([[S′]]) and Y ′0c lie in the same component of Tc \ {8([[S]])}.

We leave the proof of this lemma to the reader.
Assume now that S1 ⊂ S2 ⊂ S3 with [[Si ]] =Ci and S2 based on v. For i = 1, 3,

let Y 0
i = ηv(Yi ). Then S1 ⊂ η

−1
v (Y

0
1 ) ⊂ S2 and S∗3 ⊂ η

−1
v (Y

0
3 ) ⊂ S∗2 . In particular,

Y 0
1 6=Y 0

3 . Since (Y 0
1 )c and (Y 0

3 )c are neighbors of vc, they lie in distinct components
of Tc \ {8(C2)}. By Lemma 3.13, so do 8([[S1]]) and 8([[S3]]).

Conversely, assume that C2 does not lie between C1 and C3, and consider S1⊂ S2

and S3 ⊂ S2 with [[Si ]] = Ci . For i = 1, 3, let Y 0
i be as above. If Y 0

1 = Y 0
3 , then

8(C2) is not between 8(C1) and 8(C3) by Lemma 3.13, and we are done. If
Y 0

1 6= Y 0
3 , these cylinders correspond to distinct peripheral subgroups of Gv, with

invariant geodesics γ1 6= γ3. There exists a nonperipheral group H ⊂ 6, as in the
beginning of this subsection, whose invariant geodesic separates γ1 and γ3. Let
S′2 be the associated QH-forest. Then [[S′2]] = C2 and, up to complementation,
η−1
v (Y

0
1 )⊂ S′2 and η−1

v (Y
0
3 )⊂ S′2

∗. It follows that S1 ⊂ S′2 and S∗3 ⊂ S′2
∗, so C2 lies

between C1 and C3, contradicting our assumptions. �

4. The regular neighborhood of Scott and Swarup

A group is VPCn if some finite index subgroup is polycyclic of Hirsch length n. For
instance, VPC0 groups are finite groups, VPC1 groups are virtually cyclic groups,
and VPC2 groups are virtually Z2 (but not all VPCn groups are virtually abelian
for n ≥ 3).

Fix n ≥ 1. We assume that G is finitely presented and does not split over a
VPCn−1 subgroup. We also assume that G itself is not VPCn+1. All trees we
consider here are assumed to have VPCn edge stabilizers.

A subgroup H ⊂ G is universally elliptic if it is elliptic in every tree. A tree is
universally elliptic if all its edge stabilizers are.
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A tree is a JSJ tree (over VPCn subgroups) if it is universally elliptic, and max-
imal for this property: it dominates every universally elliptic tree. JSJ trees exist
(because G is finitely presented) and belong to the same deformation space, called
the JSJ deformation space; see [Guirardel and Levitt 2009].

A vertex stabilizer Gv of a JSJ tree is flexible if it is not VPCn and is not univer-
sally elliptic. It follows from [Dunwoody and Sageev 1999] that a flexible vertex
stabilizer is a QH-subgroup, as defined in Section 3e: There is an exact sequence
1→ F→Gv→6→1, where6=π1(O) is the fundamental group of a hyperbolic
2-orbifold, F is VPCn−1, and every incident edge group Ge is peripheral. Note
that the QH-almost invariant subsets X constructed in Section 3e are over VPCn

subgroups.
We can now describe the regular neighborhood of all almost invariant subsets

of G over VPCn subgroups as a tree of cylinders.

Theorem 4.1. Let G be a finitely presented group, and let n ≥ 1. Assume that G
does not split over a VPCn−1 subgroup and that G is not VPCn+1. Let T be a JSJ
tree over VPCn subgroups, and let Tc be its tree of cylinders for the commensura-
bility relation.

Then Scott and Swarup’s regular neighborhood of all almost invariant subsets
over VPCn subgroups is equivariantly isomorphic to a subdivision of Tc.

This is immediate from Theorem 3.11 and Theorem 4.2, which says one can read
any almost invariant set over a VPCn subgroup in a JSJ tree T , and which follows
from [Dunwoody and Swenson 2000] and [Scott and Swarup 2003, Theorem 8.2].

Theorem 4.2. Let G and T be as above.
For any almost invariant subset X over a VPCn subgroup, the equivalence class
[X ] belongs to B(T )∪QH(T ).

Proof. We essentially follow the proof by Scott and Swarup [2003],1 and we adopt
their definitions. All trees considered here have VPCn edge stabilizers.

Let X be a nontrivial almost invariant subset over a VPCn subgroup H . We first
consider the case where X crosses strongly some other almost invariant subset.
Then by [Dunwoody and Swenson 2000, Proposition 4.11], H is contained as a
nonperipheral subgroup in a QH-vertex stabilizer W of some tree T ′. When acting
on T , the group W fixes a QH-vertex v∈T ; see [Guirardel and Levitt 2009, Remark
7.20].

Note that H is not peripheral in Gv, because it is not peripheral in W . Since
(G, H) only has 2 coends [2003, Proposition 13.8], there are (up to equivalence)
only two almost invariant subsets over subgroups commensurable with H (namely
X and X∗), and therefore [X ] ∈ QHv(T ).

1From here on, [2003] refers to [Scott and Swarup 2003].
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From now on, we assume that X crosses strongly no other almost invariant sub-
set over a VPCn subgroup. Then, by [Dunwoody and Roller 1993] and [Dunwoody
and Swenson 2000, Section 3], there is a nontrivial tree T0 with one orbit of edges
and an edge stabilizer H0 commensurable with H .

Since X crosses strongly no other almost invariant set, H and H0 are universally
elliptic; see [Guirardel 2005, Lemme 11.3]. In particular, T dominates T0. It
follows that there is an edge of T with stabilizer contained in H0 (necessarily with
finite index). This edge is contained in a cylinder Y associated to the commensu-
rability class of H .

The main case is when T has no edge e such that Ze crosses X . (See Section 3a
for the definition of Ze.) The following lemma implies that X is enclosed in some
vertex v of T .

Lemma 4.3. Suppose G is finitely generated. Let X ⊂ G be a nontrivial almost
invariant set over a finitely generated subgroup H. Let T be a tree with an action
of G. If X crosses no Ze, then X is enclosed in some vertex v ∈ T .

Proof. The argument follows a part of the proof of [2003, Proposition 5.7].
Given two almost invariant subsets, we use the notation X ≥ Y when Y ∩ X∗ is

small. The noncrossing hypothesis says that each edge e of T may be oriented so
that Ze ≥ X or Ze ≥ X∗. If one can choose both orientations for some e, then X is
equivalent to Ze, so X is enclosed in both endpoints of e and we are done.

We orient each edge of T in this manner. We color the edge blue or red according
to whether Ze ≥ X or Ze ≥ X∗. No edge can have both colors. If e is an oriented
edge, and if e′ lies in T ∗e , then e′ is oriented towards e, so that Ze ⊂ Ze′ , and e′ has
the same color as e. In particular, given a vertex v, either all edges containing v
are oriented towards v, or there exists exactly one edge containing v and oriented
away from v, and all edges containing v have the same color.

If v is as in the first case, X is enclosed in v by definition. If there is no such v,
then all edges have the same color and are oriented towards an end of T . By [2003,
Lemma 2.31], G is contained in the R-neighborhood of X for some R > 0, so X
is trivial, a contradiction. �

Let v be a vertex of T enclosing X . In particular, H ⊂Gv. The set Xv = X∩Gv

is an H -almost invariant subset of Gv (note that Gv is finitely generated). By
[2003, Lemma 4.14], there is a subtree S ⊂ T containing v, with S \{v} a union of
components of T \ {v}, such that X is equivalent to Xv ∪ {g | g .v ∈ S \ {v}}.

Lemma 4.4. The H-almost invariant subset Xv of Gv is trivial.

Proof. Otherwise, by [Dunwoody and Roller 1993; Dunwoody and Swenson 2000],
there is a Gv-tree T1 with one orbit of edges and an edge stabilizer H1 commen-
surable with H , and an edge e1 ⊂ T1, such that Ze1 lies up to equivalence in the
Boolean algebra generated by the orbit of Xv under the commensurator of H in Gv.
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Note that Ge is elliptic in T1 for each edge e of T incident to v: By symmetry of
strong crossing [2003, Proposition 13.3], Ge does not cross strongly any translate
of X , and thus does not cross strongly Ze1 , so Ge is elliptic in T1 [Guirardel 2005,
lemme 11.3]. This ellipticity allows us to refine T by creating new edges with
stabilizer conjugate to H1. Since H1 is universally elliptic, this contradicts the
maximality of the JSJ tree T . �

After replacing X by an equivalent almost invariant subset or its complement,
and possibly changing S to (T \ S)∪ {v}, we can assume that X = {g | g .v /∈ S}.
Recall that Y is the cylinder defined by the commensurability class of H .

Lemma 4.5. The coboundary δS, consisting of edges vw with w /∈ S, is a finite set
of edges of Y .

This implies that [X ] ∈B(T ), ending the proof when X crosses no Ze.

Proof of Lemma 4.5. Let E be the set of edges of δS, oriented so that X =
⊔

e∈E Ze

(we use v as a basepoint to define Ze). Let A be a finite generating system of G
such that, for all a ∈ A, the open segment (av, v) does not meet the orbit of v.
One can construct such a generating system from any finite generating system by
iteratively replacing {a} by the pair {g, g−1a} if (av, v) contains some g .v.

Let 0 be the Cayley graph of (G, A). For any subset Z ⊂ G, denote by δZ the
set of edges of 0 having one endpoint in Z and the other endpoint in G \Z . By our
choice of A, no edge joins a vertex of Ze to a vertex of Ze′ for e 6= e′. It follows
that δX =

⊔
e∈E δZe.

Since δX is H -finite, the set δZe is H -finite for each e ∈ E , and E is contained
in a finite union of H -orbits. Let e ∈ E . Since δZe is Ge-invariant and H -finite,
Ge∩H has finite index in Ge. Since Ge and H are both VPCn , they are commen-
surable, so the H -orbit of e is finite. It follows that E ⊂ Y and that E is finite. �

We now turn to the case when X crosses some of the Ze. For each e ∈ E(T ),
the intersection number i(Ze, X) is finite [Scott 1998], which means that there are
only finitely many edges e′ in the orbit of e such that Ze′ crosses X . Since T/G is
finite, let e1, e−1

1 , e2, e−1
2 , . . . , en, e−1

n be the finite set of oriented edges e such that
Ze crosses X , where we denote by e 7→ e−1 the orientation-reversing involution.
Note that ei ⊂ Y by [2003, Proposition 13.5]. Now X is a finite union of sets of the
form X ′ = X ∩ Ze±1

1
∩ · · · ∩ Ze±1

n
. Since X ′ does not cross any Ze, its equivalence

class lies in B(T ) by the argument above and so does [X ]. �
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QUANTIZATION OF POISSON–HOPF STACKS ASSOCIATED
WITH GROUP LIE BIALGEBRAS

GILLES HALBOUT AND XIANG TANG

Let G be a simply connected Poisson–Lie group and g its Lie bialgebra.
Suppose that g is a group Lie bialgebra. This means that there is an action
of a discrete group 0 on G deforming the Poisson structure into cobound-
ary equivalent ones. This induces the existence of a Poisson–Hopf algebra
structure on the direct sum over 0 of formal functions on G, with Poisson
structures translated by 0. A quantization of this algebra can be obtained
by taking the linear dual of a quantization of the 0 Lie bialgebra g, which is
the infinitesimal of a0 Poisson–Lie group. In this paper we find out an inter-
esting structure on the dual Lie group G∗. We prove that we can construct
a stack of Poisson–Hopf algebras and prove the existence of the associated
deformation quantization of it. This stack can be viewed as the function
algebra on “the formal Poisson group” dual to the original 0 Poisson–Lie
group. To quantize this stack, we apply Drinfeld functors to quantization of
the associated 0 Lie bialgebra.

Introduction

In this paper, we study examples of Poisson–Hopf stacks and their quantization.
Enriquez and Halbout [2008] considered quantization of a 0 Lie bialgebra (LBA).
As an outcome, they constructed a functor from the category of 0 Lie bialgebra to
the category of 0 quantized universal enveloping algebras (QUE). Our goal here
is to study the objects dual to 0 Lie bialgebras and their quantizations.

There are two kinds of duality map we can apply to a 0 Lie bialgebra: One is
to consider the algebra of functions on G. We obtain a direct sum

⊕
γ∈0 Oγ of

formal functions on G, with Poisson structures translated by 0. When 0 is not a
finite group, the coproduct 1 maps Oγ to an infinite sum. In general,

⊕
γ∈0 Oγ is a

Poisson algebra but does not have a Hopf algebra structure because an infinite sum
appears in the coproduct. Nevertheless, we will still call

⊕
γ∈0 Oγ a 0 Poisson–

Hopf algebra. (We do have a collection of Poisson algebras and Poisson morphisms
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Tang is partially supported by NSF grant 0604552, and thanks Institut de Mathématiques et de Mod-
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1γ,γ′ : Oγγ′→ Oγ ⊗ Oγ′ that satisfy coassociativity rules). A quantization of such
a 0 Poisson–Hopf algebra defines the function algebra on a 0 quantum group. We
refer to [Majid and Soı̆bel’man 1994] for examples of quantum Weyl groups, and
[Enriquez and Halbout 2008] for quantization in the general case.

In this paper, we apply a duality map different from the function dual above. We
study the structures on the dual group G∗ by applying the Drinfeld functor to a 0
universal enveloping algebra. We discover a stack of Poisson formal series Hopf
algebras (PFSHA as defined in Section 1) dual to a 0 Lie bialgebra; this duality is
similar to the one between Lie bialgebras and Poisson–Lie groups. Then we study
deformation quantization of this stack. We construct the deformation quantization
by applying the Drinfeld functor to a 0 quantized universal enveloping algebra, and
obtain a stack of quantized formal series Hopf algebras (QFSHA). We summarize
our results in a commutative diagram:

0-LBA
EH //

OO

≈

��

0-QUE
OO

Dr

��
0-PFSHA

Quant // 0-QFSHA

Let 0 be a discrete group, G a simply connected Lie group and g its Lie algebra.
Suppose that g is a 0 Lie bialgebra (or equivalently that G is a 0 Poisson group),
that is, a Lie algebra (g, µg) together with a Lie cobracket δe, an action of 0,
θ :0→Aut(g, µg) and f :0→

∧2(g) a map satisfying compatibility rules such that
0 acts on the double. Precise definitions and equivalent categories corresponding
to these objects will be recalled in Section 1. Examples of 0 Lie bialgebras arise
when G is a Poisson–Lie group with Lie bialgebra (g, µg, δg), and 0 ⊂ G is a
discrete subgroup. Another example is when g is a Kac–Moody Lie algebra g, and
0 is a covering of the Weyl group of g. In the latter case, a quantization was given
[Majid and Soı̆bel’man 1994]. Quantization of a general 0 Lie bialgebra was done
in [Enriquez and Halbout 2008], as we will review in Section 1.

What structure does one get on the corresponding dual groups? Considering the
function algebra of a formal group, we get a trivial stack of Poisson–Hopf algebras.
In Section 3, we prove that we get a nontrivial stack of Poisson algebras of functions
on the formal Poisson–Lie group G∗ dual to a 0 Poisson–Lie group G. To do so,
we will construct “lifts” of the elements ( f (γ))γ∈0 in the function algebra on G∗.
In Section 2, we recall basic definitions of stacks and explain our main results.

In Section 4, we construct quantization of these nontrivial Poisson–Hopf stacks.
To do so we use quantization [Enriquez and Halbout 2008] of a 0 Lie bialgebra.
To deduce from it a quantization of a nontrivial Poisson–Hopf stack, we use the
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Drinfeld functor and prove that quantization of the elements ( f (γ))γ∈0 can be made
“admissible”, that is, they will give quantizations of the corresponding “lifts”.

Finally, in Section 5, we give an explicit example corresponding to the case
where G is a simple Lie group and 0 is a covering of the corresponding Weyl
group. In this case, quantization of Majid and Soı̆bel’man [1994] will lead to an
explicit quantization of the nontrivial Poisson–Hopf stack.

Our results fit very well within Bressler, Gorokhovsky, Nest and Tsygan’s frame-
work [Bressler et al. 2007] of deformation quantization of gerbes. On one hand,
our results provide interesting examples of quantization of stacks; on the other,
the problems we deal with in this paper are more special and complicated because
we need to treat Hopf algebra structure. In [Kirillov and Reshetikhin 1990] and
[Soı̆bel’man 1991] quantum Weyl groups are used to study R-matrices, and we
hope that the results in this paper will shed a light on the general 0 R-matrices.

1. 0 Lie bialgebras and equivalent categories

We recall some results of [Enriquez and Halbout 2008].

0 Lie algebras. A group Lie algebra is a triple (0, g, θg), where 0 is a group, g

is a Lie algebra and θg : 0→ Aut(g) is a group morphism. It is the infinitesimal
version of a 0 action on a group G. Group Lie algebras form a category.

If 0 is a discrete group, a 0 Lie algebra is a pair (g, θg) such that (0, g, θg) is a
group Lie algebra. 0 Lie algebras form a subcategory of group Lie algebras. Such
a 0 Lie algebra will be said to be the infinitesimal of a 0 group G.

A group cocommutative bialgebra is a triple (0,U, i), where 0 is a group, U is a
cocommutative bialgebra, U =

⊕
γ∈0Uγ is a decomposition of U and i :k0→U is

a bialgebra morphism, such that UγUγ′ ⊂Uγγ′ , 1U (Uγ)⊂U⊗2
γ and i is compatible

with the 0 grading.
We then define a 0 cocommutative bialgebra as a pair (U, i) such that (0,U, i)

is a group cocommutative bialgebra. 0 cocommutative bialgebras form a category.
The category of group (or 0) cocommutative bialgebras contains as a full sub-

category the category of group (respectively 0) universal enveloping algebras,
where (U, 0, i) satisfies the additional requirement that Ue is a universal envelop-
ing algebra.

Let O be a commutative algebra (in a symmetric monoidal category S) with a
decomposition O=

⊕
γ∈0 Oγ . Suppose that OγOγ′ = 0 for γ 6= γ′ and that we have

algebra morphisms

1γ′γ′′ : Oγ′γ′′→ Oγ′ ⊗Oγ′′, η : k→ Oe, ε : Oe→ k

satisfying axioms such that these morphisms add up to a bialgebra structure on O

when 0 is finite. Then we define a group commutative bialgebra (in a symmetric
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monoidal category S) as a triple (0,O, j), where 0 is a group and j : O→ k0 is a
morphism of commutative algebras compatible with the 0 gradings and the maps
1γ′γ′′ on both sides. We define 0 commutative bialgebras as above.

Define the category of group (or 0) formal series Hopf (FSH) algebras as a
full subcategory of the category of group (respectively 0) commutative bialgebras
in S = {provector spaces} by the condition that Oe (or equivalently, each Oγ) is a
formal series algebra. Such an FSH algebra corresponds to functions on the formal
dual group of a 0 group G.

Proposition 1.1 [Enriquez and Halbout 2008]. (1) We have (anti)equivalences of
categories

{group Lie algebras} ↔ {group universal enveloping algebras}

↔ {group FHS algebras},

where the last map is an antiequivalence.

(2) If 0 is a group, these (anti)equivalences restrict to

{0-Lie algebras} ↔ {0-universal enveloping algebras} ↔ {0-FHS algebras}.

We denote the 0 universal enveloping algebra corresponding to a 0 Lie algebra
(0, g, θg) as U (g)o0. It is isomorphic to U (g)⊗k0 as a vector space. If we denote
by x 7→ [x] and γ 7→ [γ] the natural maps g→U (g)o0 and 0→U (g)o0, then
the bialgebra structure of U (g)o0 is given by

[γ][x][γ−1
] = [θγ(x)], [γ][γ′] = [γγ′], 1([γ])= [γ]⊗ [γ],

[x][x ′] − [x ′][x] = [[x, x ′]], [e] = 1, 1([x])= [x]⊗ 1+ 1⊗[x].

When 0 is finite, the corresponding 0 FSH algebra is then (U (g)o k0)∗, and
in general, this is

⊕
γ∈0(U (g)⊗kγ)∗.

0 Lie bialgebras.

Definition 1.2. A group Lie bialgebra is a 5-uple (0, g, θg, δg, f ), where (0, g, θg)
is a group Lie algebra, δg : g→

∧2(g) is1 such that (g, δg) is a Lie bialgebra, and
f : 0→

∧2(g) is a map γ 7→ fγ such that

(a)
∧2(θγ) ◦ δ ◦ θ

−1
γ (x)= δ(x)+ [ fγ, x ⊗ 1+ 1⊗ x] for any x ∈ g,

(b) fγγ′ = fγ +
∧2(θγ)( fγ′),

(c) (δ⊗ id)( fγ)+ [ f 1,3
γ , f 2,3

γ ] + cyclic permutations= 0.

1We view
∧2(V ) as a subspace of V⊗2.
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Group Lie bialgebras form a category. When 0 is fixed, one defines the category
of 0 Lie bialgebras as above.

A co-Poisson structure on a group cocommutative bialgebra (0,U, i) is a co-
Poisson structure δU : A→

∧2(U ) such that δU (Uγ)⊂
∧2(Uγ). Co-Poisson group

cocommutative bialgebras form a category.
Co-Poisson group universal enveloping algebras form a full subcategory of the

latter category. One defines the full subcategories of co-Poisson 0 cocommutative
bialgebras and co-Poisson 0 enveloping algebras as above.

A Poisson structure on a group commutative bialgebra (0,O, j) is a Poisson
bialgebra structure { · , · } :

∧2(O)→ O such that {Oγ,Oγ} ⊂ Oγ and {Oγ,Oγ′} = 0
if γ 6= γ′. Poisson group bialgebras form a category, and Poisson group FSH
algebras form a full subcategory when S = {provector spaces}. One defines the
full subcategories of Poisson 0 bialgebras and Poisson 0 FSH algebras as above.

Example. Let G be a Poisson–Lie (for example, algebraic) group, and let 0 ⊂ G
be a subgroup (which we view as an abstract group). We define θγ :=Ad(γ), where
Ad :G→AutLie(g) is the adjoint action. If P :G→

∧2(g) is the Poisson bivector
satisfying P(gg′) = P(g′)+

∧2(Ad(g′))(P(g)), then we set fγ := −P(γ). Then
(g, 0, f ) is a 0 Lie bialgebra.

Example. Let (g, rg) be a quasitriangular Lie bialgebra and let θ : 0→Aut(g, tg)
be an action of 0 on g by Lie algebra automorphisms preserving tg := rg + r2,1

g .
If we set fγ := θ⊗2

γ (r) − r , then (g, θ, f ) is a 0 Lie bialgebra (we call this a
quasitriangular 0 Lie bialgebra). For example, g is a Kac–Moody Lie algebra, and
0 = W̃ is a covering of the Weyl group of g; see [Majid and Soı̆bel’man 1994].

Proposition 1.3 [Enriquez and Halbout 2008]. (1) We have category (anti)equi-
valences

{group bialgebras} ↔ {co-Poisson group universal enveloping algebras}

↔ {Poisson group FSH algebras}.

(2) The (anti)equivalences above restrict to category (anti)equivalences

{0-bialgebras} ↔ {co-Poisson 0 universal enveloping algebras}

↔ {Poisson 0 FSH algebras}.

If (g, θg, δg) is a 0 Lie bialgebra, then the co-Poisson structure on U :=U (g)o0
is given by δU ([x])= [δg(x)] and δU ([γ])=−[ fγ]([γ]⊗[γ]). Here we also denote
by x 7→ [x] the natural map

∧2(g)→
∧2(U (g)o0).

Quantization of 0 Lie bialgebras. In a symmetric monoidal category S, let a 0
graded bialgebra be a bialgebra A (in S) equipped with a grading A =

⊕
γ∈0 Aγ ,

such that AγAγ′ ⊂ Aγγ′ and 1A(Aγ)⊂ A⊗2
γ .
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Assume that A is a 0 graded bialgebra in the category of topologically free
k[[h̄]]-modules and that A is quasicocommutative in that A0 := A/h̄ A is cocom-
mutative. Then we get a co-Poisson structure on A0. It is 0 graded in that
δA0((A0)γ) ⊂

∧2((A0)γ). We therefore get a classical limit functor, class, from
{0-graded quasicocommutative bialgebras} to {0-graded co-Poisson bialgebras}.

Definition 1.4. A quantization functor for 0 Lie bialgebras is a functor

{co-Poisson 0 universal enveloping algebras}

→ {0-graded quasicocommutative bialgebras},

which is right inverse to class.

Assume that (g, θ, f ) is a 0 Lie bialgebra. Let (Ue, ∗ ,1e) be the Etingof–
Kazhdan quantization of (g, δ); we will denote the multiplication by me. We get
this from [Enriquez and Halbout 2008]:

Proposition 1.5. There exist sets (Fγ,γγ′)γ,γ′∈0 of elements in U⊗2, with Fγ,γγ′ =
1+ h̄ f1+O(h̄2) and Alt(f1) =

∧2(θγ)( fγ′), sets (vγ,γγ′,γγ′γ′′)γ,γ′,γ′′∈0 of elements
in 1+ h̄2U , sets (Uγ,mγ,1γ)γ∈0 of bialgebras, and sets (iγ,γγ′)γ,γ′∈0 of algebra
morphisms from (Uγ,mγ) to (Uγγ′,mγγ′), such that

• 1γ = i⊗2
e,γ ◦Ad(Fe,γ) ◦1e ◦ i−1

e,γ ,

• (Fe,γ ⊗ 1) ∗ (1e⊗ id)(Fe,γ)= (1⊗Fe,γ) ∗ (id⊗1e)(Fe,γ),

• Fe,γγ′ = v⊗2
e,γ,γγ′ ∗ (i

⊗2
e,γ)
−1(Fγ,γγ′) ∗Fe,γ ∗1e(ve,γ,γγ′)

−1,

• ie,γγ′ = iγ,γγ′ ◦ ie,γ ◦Ad(v−1
e,γ,γγ′),

• ve,γγ′,γγ′γ′′ ∗ ve,γ,γγ′ = ve,γ,γγ′γ′′ ∗ i−1
e,γ(vγ,γγ′,γγ′γ′′).

Here to make the formulas shorter we have chosen to write the above equations
with e being the unit of the group 0; however, the formulas are still valid if we
replace e by any other element of the group and multiply γ, γγ′ and γγ′γ′′ on the
left by this element.

We then get a quantization of the 0 Lie bialgebra by setting U = S(g)⊗k0[[h̄]]
and putting [x |γ] := x ⊗ γ and [x ⊗ x ′ |γ, γ′] := (x ⊗ γ)⊗ (x ′⊗ γ′) ∈U⊗2.

There are unique linear maps m :U⊗2
→U and 1 :U →U⊗2 such that

m : [x |γ][x ′ |γ′] 7→ [x ∗ i−1
e,γ(θγ(x

′)) ∗ v−1
e,γ,γγ′ |γγ

′
],

1 : [x |γ] 7→ [1e(x) ∗F−1
e,γ |γ, γ].

The unit for U is [1|e], and the counit is the map [x |γ] 7→ δγ,eε(x).

Proposition 1.6 [Enriquez and Halbout 2008]. This defines a bialgebra structure
on U , quantizing the co-Poisson bialgebra structure induced by (g, θ, f ).
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2. Stacks and main results

It is well known that the semiclassical limit of a quantum group is a Poisson–
Lie group. In this paper, we attempt to answer, What is the semiclassical limit
corresponding to a “0 coboundary quantum group”? We hope to say that this
semiclassical object is a “stack” of Poisson–Lie groups G∗ over the classifying
stack B0 of the group 0. Toward this, we construct a stack of Poisson–Hopf
algebras over the groupoid 0o 0 (a transformation groupoid associated to the 0
right action on 0) and also a quantization of such a stack. Because of the existence
of the twisted cocycle, we expect that such an algebroid stack is not trivial. We
also hope that our construction will eventually lead to a complete description of
the semiclassical limit of a 0-coboundary quantum group.

Definition 2.1. A stack on M is

• an open cover of M =
⋃

Ui ,

• a sheaf of rings Ai on every Ui ,

• an isomorphism of sheaves of rings Gi j : A j |Ui∩U j → Ai |Ui∩U j for every i, j ,

• an invertible element ci jk ∈ Ai |Ui∩U j∩Uk for every i, j, k satisfying
(1) Gi j G jk = Ad(ci jk)Gik and
(2) ci jkcikl = Gi j (c jkl)ci jl for every i, j, k, l.

If two such data (U ′i , A′i ,G ′i j , c′i jk) and (U ′′i , A′′i ,G ′′i j , c′′i jk) are given on M , an
isomorphism between them is

• an open cover M =
⋃

Ui refining both {U ′i } and {U ′′i },

• isomorphisms Hi : A′i → A′′i on Ui , and

• invertible elements bi j of A′i |Ui∩U j such that

(1) G ′′i j = Hi Ad(bi j )G ′i j H−1
j and

(2) H−1
i (c′′i jk)= bi j G ′i j (b jk)ci jkb−1

ik .

Inspired by Definition 2.1, we define a stack over a discrete groupoid. Let G be
a discrete groupoid with its unit space G0.

Definition 2.2. A stack on G consists of

• a collection of rings Ax on every point x of G0,

• an isomorphism of sheaves of rings Tg : At (g)→ As(g) for every arrow g ∈G,
where s, t are the source and target maps of G, and

• an invertible element cg1,g2 ∈ As(g1) for every pair of composable arrows in G

such that
(1) Tg1 ◦Tg2 =Ad(cg1,g2)Tg1g2 , where by Ad(cg1,g2) we mean the conjugation

operator on As(g1) associated to the invertible element cg1,g2 , and
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(2) cg1,g2cg1g2,g3 = Tg1(cg2,g3)cg1,g2g3 for every triple of composable arrows
g1, g2, g3 in G.

One can generalize the equivalence between stacks of Definition 2.1, but we
omit the details here.

Our main result will involve the notion of a stack of Poisson–Hopf algebras.

Definition 2.3. A stack of Poisson–Hopf algebras over a discrete groupoid G is

• a collection Ax of Poisson–Hopf algebras (Ax ,mx ,1x , { · , · }x)x∈G0 ,

• a Poisson morphism Tg : At (g)→ As(g) for g ∈G, and

• an invertible element cg1,g2 ∈ As(g1) for every pair of composable arrows in G

such that

(1) Tg1 ◦Tg2 =Ad(cg1,g2)Tg1g2 , where by Ad(cg1,g2), we mean the conjugation
operator on As(g1) associated to the invertible element cg1,g2 , and

(2) cg1,g2cg1g2,g3 = Tg1(cg2,g3)cg1,g2g3 for every triple of composable arrows
g1, g2, g3.

In what follows, we consider the groupoid 0o0 defined by the action of 0 on
0 itself by right multiplication. As 0 is discrete, 0o0 is a discrete groupoid. We
will use (γ, γγ′) to denote an arrow in 0o0 mapping from γ to γγ′. The product
of a pair of composable arrows (γ, γγ′) and (γγ′, γγ′γ′′) in 0 o 0 is (γ, γγ′γ′′).
For our main results, we associate an Poisson–Hopf algebra OG∗γ to each point γ in
the unit space of 0o0, and we will prove the existence of a stack of Poisson–Hopf
algebras over the groupoid 0o0.

Theorem 2.4. Associated to a coboundary Lie bialgebra (0, g, θg, δg, f ), there is
a stack of Poisson–Hopf algebras over the groupoid 0o0.

To be compatible with the result of Proposition 1.5, we will mainly prove the
following results.

• There is a set (OG∗γ )γ∈0 of Poisson–Hopf algebras (OG∗γ ,mγ,1γ, { · , · }γ)γ∈0.

• Associated to each arrow (γ, γγ′) in 0o0, there is a Poisson morphism jγ,γγ′
from OG∗γ to OG∗γγ′ .

• Associated to a pair of composable arrows (γ, γγ′) and (γγ′, γγ′γ′′) in 0o0,
there is an element uγ,γγ′,γγ′γ′′ of OG∗γ satisfying relations

(1) jγ,γγ′γ′′ = jγγ′,γγ′γ′′ ◦ jγ,γγ′ ◦ Ad?γ (u
−1
γ,γγ′,γγ′γ′′), where Ad?γ (u

−1
γ,γγ′,γγ′γ′′)

is the conjugation operator associated to u−1
γ,γγ′,γγ′γ′′ with respect to the

Baker–Campbell–Hausdorff product ?γ , and
(2) uγ,γγ′γ′′,γγ′γ′′γ′′′ ?γ uγ,γγ′,γγ′γ′′ = uγ,γγ′,γγ′γ′′γ′′′ ?γ j−1

γ,γγ′(uγγ′,γγ′γ′′,γγ′γ′′γ′′′).
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With the above data ((OG∗γ ,mγ,1γ, { · , · }γ)γ∈0, jγ,γγ′, uγ,γγ′,γγ′γ′′), if we define
Tγ,γγ′ : OG∗γγ′→ OG∗γ by Tγ,γγ′ = j−1

γ,γγ′ and c(γ,γγ′),(γγ′,γγ′γ′′) ∈ OG∗γ to be u−1
γ,γγ′,γγ′γ′′ ,

then we can easily check that we do obtain a stack of Poisson–Hopf algebras over
0o0 satisfying Definition 2.2.

We will then prove the existence of a stack of Hopf algebras quantizing this
stack of Poisson–Hopf algebras:

Theorem 2.5. There is a stack of Hopf algebras quantizing the stack of Poisson–
Hopf algebras over 0 o 0 defined in Theorem 2.4. Namely, we have a collection
of the following data:2

• (Aγ, ∗γ)γ∈0, which are deformation quantizations3 of the Poisson algebras
(OG∗γ , { · , · }γ)γ∈0,

• algebra morphisms iγ,γγ′ : Aγ→ Aγγ′ , and

• elements vγ,γγ′,γγ′γ′′ of Aγ such that evγ,γγ′,γγ′γ′′ := exp(vγ,γγ′,γγ′γ′′/h̄) satisfy
relations
(1) iγ,γγ′γ′′ = iγγ′,γγ′γ′′ ◦ iγ,γγ′ ◦Ad(ev−1

γ,γγ′,γγ′γ′′) and
(2) evγ,γγ′γ′′,γγ′γ′′γ′′′∗γevγ,γγ′,γγ′γ′′=evγ,γγ′,γγ′γ′′γ′′′∗γ i−1

γ,γγ′(evγγ′,γγ′γ′′,γγ′γ′′γ′′′).

From our setup in this section, one can see that the facts that 0 is a group and
that we have a transformation groupoid 0o0 are not crucial in our construction.
It is natural to expect a more general theory for quantization of a G-coboundary
Lie bialgebras with G a discrete groupoid or even just category.

3. A stack of Poisson bialgebras of functions on the formal group G∗

Let (g, θg, δg, f ) be a 0 Lie bialgebra. In this section we will construct a stack of
Poisson bialgebras of functions on a formal Poisson group G∗.

Notations. Let (g, δ) be a Lie bialgebra. Let (U (g),10, δ) be its corresponding
cocommutative co-Poisson bialgebra, which can be seen as the dual of the function
algebra of the formal Poisson–Lie group G corresponding to (g, δ). In the same
way, we will define OG∗ as the commutative Poisson–Hopf algebra of functions
of the formal Poisson–Lie group G∗ corresponding to the dual Lie bialgebra g∗.
We define by mG∗ ⊂ OG∗ the maximal ideal of this ring. If k is an integer ≥ 1,
we denote by O(G∗)k the ring of formal functions on (G∗)k , by m(G∗)k its maximal
ideal, and by mi

(G∗)k the i-th power of this ideal.
If f, g ∈m2

(G∗)k , then the series

f ? g = f + g+ 1
2{ f, g}+ · · · + Bn( f, g)+ · · ·

2Similarly to what we did for Theorem 2.4, we will take the inverse of iγ,γγ′ and evγ,γγ′,γγ′γ′′ to
construct the corresponding data for the stack of Hopf algebras.

3Deformation quantization here means that Aγ/h̄Aγ = OG∗γ , and 1
h̄ [ · , · ]∗γ = { · , · }γ + O(h̄).
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is convergent, where
∑

i≥1 Bi (x, y) is the Baker–Campbell–Hausdorff (BCH) se-
ries specialized to the Poisson bracket of m2

(G∗)k . The ? product defines a group
structure on m2

(G∗)k .
A useful technical lemma was proved in [Enriquez et al. 2003, page 2477]

for mg∗ and is still true for mG∗ :

Lemma 3.1. For any k ≥ 1 and n ≥ 2, f, h ∈m2
(G∗)k and g ∈mn

(G∗)k , one has

f ? (h+ g)= f ? h+ g and ( f + g) ? h = f ? h+ g modulo mn+1
(G∗)k .

When (g, θg, δg, f ) is a 0 Lie bialgebra we thus get a collection of Lie bialge-
bras and so a collection (OG∗γ ,mγ,1γ, { · , · }γ)γ∈0 of Poisson bialgebras. We will
denote by ?γ the corresponding BCH products.

“Lifts” and functional equations. We will now construct “lifts” f̃γ,γγ′ ∈ m⊗̂2
G∗ of

the elements
∧2(θγ)( fγ′), γ, γ′ ∈ 0 that will satisfy similar relation as Fγ,γγ′ in

Proposition 1.5. The proof in this subsection is a direct generalization of the results
in [Enriquez and Halbout 2007], and some parts are transcribed almost verbatim.

If f ∈ O⊗̂n
G∗ and P1, . . . , Pm are disjoint subsets of {1, . . . ,m}, one defines

f P1,...,Pn using the coproduct of OG∗ :

Definition 3.2. If I1, . . . , Im are disjoint ordered subsets of {1, . . . , n}, (U,1) is
a Hopf algebra, and a ∈U⊗m , we define

a I1,...,In = σI1,...,Im ◦ (1
|I1|⊗ · · ·⊗1|In |)(a),

with 1(1) = id, 1(2) =1, and 1(n+1)
= (id⊗n−1

⊗1) ◦1(n). Here

σI1,...,Im :U
⊗
∑

i |Ii |→U⊗n

is the morphism corresponding to the map {1, . . . ,
∑

i |Ii |} → {1, . . . , n} taking
(1, . . . , |I1|) to I1, (|I1| + 1, . . . , |I1| + |I2|) to I2, and so on.

When U is cocommutative, this definition depends only on the underlying sets
I1, . . . , Im .

Proposition 3.3. Let γ, γ′ be in 0. Then there exists f̃γ,γγ′ in m⊗̂2
G∗ , the image of

which in g⊗2 under the square of the projection mG∗ → mG∗/m
2
G∗ = g equals∧2(θγ)( fγ′), and such that

(1) ( f̃γ,γγ′ ⊗ 1) ?γ (1γ ⊗ id)( f̃γ,γγ′)= (1⊗ f̃γ,γγ′) ?γ (id⊗1γ)( f̃γ,γγ′).

The element f̃γ,γγ′ is unique up to the action of m2
G∗ by λ· f̃ =λ1?γλ

2?γ f̃ ?γ(−λ)12.
We will call f̃ a twist for 1γ .
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Proof. Let us construct f̃γ,γγ′ by induction, by constructing a convergent sequence
f̃ N
∈m⊗̂2

G∗ (N ≥ 2) satisfying (1) in m⊗̂3
G∗/(m

⊗̂3
G∗ ∩mN

(G∗)3), where mN
(G∗)3 is the N -th

power of m(G∗)3 . When N = 3, we take f̃ 2 to be any lift of
∧2(θγ)( fγ′) to m⊗̂2

G∗ ;
then (1) is automatically satisfied.

Let N be an integer no less than 3; assume that we have constructed f̃ N in m⊗̂2
G∗

satisfying (1) in m⊗̂3
G∗/(m

⊗̂3
G∗∩mN

(G∗)3). Set αN
1,2,3 := f̃ N

1,2?γ f̃ N
12,3− f̃ N

2,3?γ f̃ N
1,23. Then

αN
1,2,3 belongs to m⊗̂3

G∗ ∩mN
(G∗)3 , and in m⊗̂4

G∗/(m
⊗̂4
G∗ ∩mN+1

(G∗)4), we have the equalities

αN
12,3,4 = f̃ N

1,2 ?γ α
N
12,3,4 = f̃ N

1,2 ?γ f̃ N
12,3 ?γ f̃ N

123,4− f̃ N
1,2 ?γ f̃ N

3,4 ?γ f̃ N
12,34

= αN
1,2,3+ f̃ N

2,3 ?γ f̃ N
1,23 ?γ f̃ N

123,4− f̃ N
3,4 ?γ f̃ N

1,2 ?γ f̃ N
12,34

(using Lemma 3.1)

= αN
1,2,3+ f̃ N

2,3 ?γ f̃ N
1,23 ? f̃ N

123,4− f̃ N
3,4 ? ( f̃ N

2,34 ?γ f̃ N
1,234+α

N
1,2,34)

(using Lemma 3.1 and the definition of αN
1,2,34)

= αN
1,2,3+ f̃ N

2,3 ?γ (α
N
1,23,4+ f̃ N

23,4 ?γ f̃ N
1,234)

−αN
1,2,34− f̃ N

3,4 ?γ f̃ N
2,34 ?γ f̃ N

1,234

(using the definition of αN
1,23,4 and Lemma 3.1)

= αN
1,2,3+α

N
1,23,4+ ( f̃ N

3,4 ?γ f̃ N
2,34+α

N
2,3,4) ?γ f̃ N

1,234

−αN
1,2,34− f̃ N

3,4 ?γ f̃ N
2,34 ?γ f̃ N

1,234

(using the definition of αN
2,3,4 and Lemma 3.1)

= αN
1,2,3+α

N
1,23,4−α

N
1,2,34+α

N
2,3,4 (using Lemma 3.1).

Let us denote by αN the image of αN in (m⊗̂3
g∗ ∩ mN

(g∗)3
)/(m⊗̂3

g∗ ∩ mN+1
(g∗)3

) =

(S>0(g)⊗3)N . Then we get

αN
12,3,4+α

N
1,2,34 = α

N
1,2,3+α

N
1,23,4+α

N
2,3,4,

meaning that α is a cocycle for the subcomplex (S>0(g)⊗·, d) of the co-Hochschild
complex. By using [Drinfeld 1989, Proposition 3.11], one proves that the k-th
cohomology group of this subcomplex is

∧k(g), and that the antisymmetrization
map coincides with the canonical projection from the space of cocycles to the
cohomology group. For N = 3, the equations of Definition 1.2 imply Alt(α3)= 0,
and hence α3 is the coboundary of an element β

3
∈ (S>0(g)⊗2)3, and αN for N > 3

is the coboundary of an element βN
∈ (S>0(g)⊗2)N since the degree N part of the

cohomology vanishes. We then set f̃ N+1
:= f̃ N

+ βN , where βN
∈ m⊗̂2

G∗ ∩mN
(G∗)2

is a representative of βN . Then this f̃ N+1 satisfies (1) in m⊗̂3
G∗/(m

⊗̂3
G∗ ∩mN+1

(G∗)3).
The sequence ( f̃ N )N≥2 has a limit f̃ , which then satisfies (1).
The second part of the theorem can be proved in the same way or by analyzing

the choices for β
N

in the proof above. �
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Isomorphism of formal Poisson groups G∗γ ' G∗γγ′ .
Proposition 3.4. Let γ, γ′ ∈ 0 and let G∗γ and G∗γγ′ be the formal Poisson–Lie
groups associated to the corresponding Lie cobrackets. There exists an isomor-
phism of Poisson algebras jγ,γγ′ : OG∗γ ' OG∗γγ′ .

Proof. Let P :
∧2(OG∗γ )→OG∗γ be the Poisson bracket on OG∗γ corresponding to the

Lie–Poisson Poisson structure on G∗γ . Then (OG∗γ ,m0, P,1γ) is a Poisson formal
series Hopf (PFSH) algebra; it corresponds to the formal Poisson–Lie group G∗γ
equipped with its Lie–Poisson structure.

Set f̃ ?γ,γγ′1γ(a)= f̃γ,γγ′ ?γ 1γ(a) ?γ (− f̃γ,γγ′) for any a ∈ OG∗γ . It follows from
the fact that f̃γ,γγ′ satisfies Equation (1) that (OG∗γ ,m0, P, f̃ ?γ,γγ′1γ) is a PFSH
algebra.

Let us denote by PFSHA and LBA the categories of PSFH algebras and Lie bial-
gebras. We have a category equivalence c : PFSHA→ LBA, taking (O,m, P,1)
to the Lie bialgebra (c, µ, δ), where c :=m/m2 (here m⊂ O is the maximal ideal),
the Lie cobracket of c is induced by 1−12,1

: m→
∧2(m), and the Lie bracket

of c is induced by the Poisson bracket P :
∧2(m)→m. The inverse of the functor

c takes (c, µ, δ) to O= Ŝ(c) equipped with its usual product; 1 depends only on δ
and P depends on (µ, δ).

Then c restricts to a category equivalence cfd : PFSHAfd → LBAfd of sub-
categories of finite-dimensional objects (in the case of PFSH, we say that O is
finite-dimensional if and only if m/m2 is).

Let dual : LBAfd→ LBAfd be the duality functor. It is a category antiequiva-
lence; we have dual(g, µ, δ) = (g∗, δt , µt). Then dual ◦cfd : PFSHAfd→ LBAfd

is a category antiequivalence. Its inverse is the usual functor g 7→ U (g)∗. If G is
the formal Poisson–Lie group with Lie bialgebra g, one sets OG =U (g)∗.

Let us apply the functor c to (OG∗γ ,m0, P, f̃ ?γ,γγ′1γ). We obtain c=m/m2
= g;

the Lie bracket is unchanged with respect to the case f̃γ,γγ′ = 0, so it is the Lie
bracket of g; the Lie cobracket is δγγ′(x)= δγ+[

∧2(θγ)( fγ′), x⊗1+1⊗x] since the
reduction of f̃γ,γγ′ modulo (mG∗γ )

2
⊗̂mG∗γ+mG∗γ ⊗̂ (mG∗γ )

2 is equal to
∧2(θγ)( fγ′).

Then applying dual ◦cfd to (OG∗γ ,m0, P, f̃ ?γ,γγ′1γ), we obtain the Lie bialgebra
(g∗, δγγ′). So this PFSH algebra is isomorphic to the PFSH algebra of the formal
Poisson–Lie group G∗γγ′ . Let us call such a PFSH algebra morphism jγ,γγ′ .

In particular, the Poisson algebras OG∗γ and OG∗γγ′ are isomorphic. �

Remark 3.5. It is easy to check that the map g = mG∗γ/m
2
G∗γ
→ mG∗γγ′/m

2
G∗γγ′
= g

induced by the isomorphism jγ,γγ′ is the identity.

Remark 3.6. We have proved a result stronger than the existence of a Poisson
algebra morphism jγ,γγ′ : OG∗γ ' OG∗γγ′ . This morphism intertwines the coproducts
as

1γγ′ = j⊗2
γ,γγ′ ◦ f̃ ?γ,γγ′1γ ◦ j−1

γ,γγ′ .
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Composition of equivalences.

Lemma 3.7. For γ, γ′ in 0, the element ( j⊗2
γ,γγ′)

−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′ is a solution
of the equation

(2) (g̃⊗ 1) ?γ (1γ ⊗ id)(g̃)= (1⊗ g̃) ?γ (id⊗1γ)(g̃).

Proof. One can check this directly. Notice that f̃γγ′,γγ′γ′′ is a twist for 1γγ′ . There-
fore ( j⊗2

γ,γγ′)
−1( f̃γγ′,γγ′γ′′) is a twist for

( j⊗2
γ,γγ′)

−1
◦1γγ′ ◦ jγ,γγ′ = f̃ ?γ,γγ′1γ.

Accordingly the element ( j⊗2
γ,γγ′)

−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′ is a twist for 1γ . �

Note that the image of ( j⊗2
γ,γγ′)

−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′ under the square of the
projection mG∗→mG∗/m

2
G∗ = g equals∧2(θγ)( fγ′)+

∧2(θγγ′)( fγ′′)=
∧2(θγ)( fγ′ +

∧2(θγ′)( fγ′′))=
∧2(θγ)( fγ′γ′′).

Thanks to Proposition 3.3, there exists an element uγ,γγ′,γγ′γ′′ in 1+m2
G∗ such that

f̃γ,γγ′γ′′ = u⊗2
γ,γγ′,γγ′γ′′ ?γ ( j⊗2

γ,γγ′)
−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′ ?γ 1γ(uγ,γγ′,γγ′γ′′)−1.

Finally, in the previous section, we defined jγ,γγ′ , jγγ′,γγ′γ′′ and jγ,γγ′γ′′ such that

1γγ′γ′′ = j⊗2
γ,γγ′γ′′ ◦ f̃ ?γ,γγ′γ′′1γ ◦ j−1

γ,γγ′γ′′

= j⊗2
γ,γγ′γ′′

◦ (u⊗2
γ,γγ′,γγ′γ′′ ?γ ( j⊗2

γ,γγ′)
−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′ ?γ 1γ(uγ,γγ′,γγ′γ′′)−1)?1γ

◦ j−1
γ,γγ′γ′′

= ( jγ,γγ′γ′′ ◦Ad?γ (uγ,γγ′,γγ′γ′′))
⊗2
◦ (( j⊗2

γ,γγ′)
−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′)?1γ
◦ ( jγ,γγ′γ′′ ◦Ad?γ (uγ,γγ′,γγ′γ′′))

−1

= ( jγ,γγ′γ′′ ◦Ad?γ (uγ,γγ′,γγ′γ′′) ◦ j−1
γ,γγ′ ◦ j−1

γγ′,γγ′γ′′)
⊗2
◦1γγ′γ′′

◦ ( jγ,γγ′γ′′ ◦Ad?γ (uγ,γγ′,γγ′γ′′) ◦ j−1
γ,γγ′ ◦ j−1

γγ′,γγ′γ′′)
−1.

By the equivalence cfd between the category PFSHAfd and LBAfd, we get

jγ,γγ′γ′′ = jγγ′,γγ′γ′′ ◦ jγ,γγ′ ◦Ad?γ (u
−1
γ,γγ′,γγ′γ′′).

Cocycle relation for the uγ,γγ′,γγ′γ′′ .

Proposition 3.8. For any γ, γ′, γ′′, γ′′′ in 0, we have

uγ,γγ′γ′′,γγ′γ′′γ′′′ ?γ uγ,γγ′,γγ′γ′′ = uγ,γγ′,γγ′γ′′γ′′′ ?γ j−1
γ,γγ′(uγγ′,γγ′γ′′,γγ′γ′′γ′′′).
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Proof. To shorten the notation, we will write f̃1,2 for f̃γ,γγ′ , f̃2,3 for f̃γγ′,γγ′γ′′ and so
on, and the same for the j · ,· and the u · ,· ,· . We will omit the BCH product ?γ and
write ? for the product ?γγ′ ,10 for the coproduct1γ , and1 for the coproduct1γγ′ .
We will also write j ( · ) instead of j⊗2( · ) when no confusion is possible.

We have by definition f̃1,410u1,3,4 = u⊗2
1,3,4 j−1

1,3 ( f̃3,4) f̃1,3. Multiplying this on
the right by 10u1,2,3 and using the fact that f̃1,310u1,2,3 = u⊗2

1,2,3 j−1
1,2 ( f̃2,3) f̃1,2, we

get
f̃1,410u1,3,410u1,2,3 = u⊗2

1,3,4 j−1
1,3 ( f̃3,4)u⊗2

1,2,3 j−1
1,2 ( f̃2,3) f̃1,2.

Using now that j−1
1,3 ( · )u1,2,3 = u1,2,3 j−1

1,2 ◦ j−1
2,3 ( · ), we get

(3) f̃1,410u = u⊗2 j−1
1,2 ◦ j−1

2,3 ( f̃3,4) j−1
1,2 ( f̃2,3) f̃1,2,

where u = u1,3,4u1,2,3. On the other hand, we have

f̃2,4 ?1u2,3,4 = u⊗2
2,3,4 ? j−1

2,3 ( f̃3,4) ? f̃2,3.

Using the Poisson algebra morphism j1,2 and that j−1
1,2 ◦1= f̃1,210( j−1

1,2 ( · )) f̃ −1
1,2 ,

we get

(4) j−1
1,2 ( f̃2,4) f̃1,210( j−1

1,2 (u2,3,4)) f̃ −1
1,2 = j−1

1,2 (u
⊗2
2,3,4) j−1

1,2 ◦ j−1
2,3 ( f̃3,4) j−1

1,2 ( f̃2,3).

From f̃1,410u1,2,4 = u⊗2
1,2,4 j−1

1,2 ( f̃2,4) f̃1,2, using (4) we get

(5) f̃1,410(u′)= (u′)⊗2 j−1
1,2 ◦ j−1

2,3 ( f̃3,4) j−1
1,2 ( f̃2,3) f̃1,2,

where u′ = u1,2,4 j−1
1,2 (u2,3,4). Then (3) and (5) imply that if w = u(u′)−1, then

f̃1,410(w) = w f̃1,4, and so if w′ = j1,4(w), then 10(w
′) = w′. Recall that

w′ ∈ 1+m2
G∗ by similar properties of ui, j,k . Suppose that w′ 6= 1 and set i ≥ 2

the largest possible i such that w′ is in 1+mi
G∗ but not in 1+mi+1

G∗ . Let w′ be the
projection of w′ in mi

G∗/m
i+1
G∗ . The relation 10(w

′) = w′ implies that w′ is in g

and so in m1
G∗ which is a contradiction. Thus we have proved that w=w′ = 1 and

so that u = u′. �

4. Quantization

Duality of QUE and QFSH algebras. In this subsection, we recall some facts from
[Drinfeld 1987], whose proofs can be found in [Gavarini 2002]. Let us denote
by QUE the category of quantized universal enveloping (QUE) algebras and by
QFSH the category of quantized formal series Hopf (QFSH) algebras. We denote
by QUEfd and QFSHfd the subcategories corresponding to finite dimensional Lie
bialgebras.

We have contravariant functors

QUEfd→QFSHfd, U 7→U∗ and QFSHfd→QUEfd, O 7→ O◦.
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These functors are inverse to each other. Here U∗ is the full topological dual of U ,
that is, the space of all continuous (for the h̄-adic topology) K[[h̄]]-linear maps
U → K[[h̄]], and O◦ is the space of continuous K[[h̄]]-linear forms O→ K[[h̄]],
where O is equipped with the m-adic topology (here m⊂ O is the maximal ideal).

We also have covariant functors

QUE→QFSH, U 7→U ′ and QFSH→QUE, O 7→ O∨.

These functors are also inverse to each other. Here U ′ is a subalgebra of U , while
O∨ is the h̄-adic completion of

∑
k≥0 h̄−kmk

⊂ O[1/h̄].
We also have canonical isomorphisms (U ′)◦ ' (U∗)∨ and (O∨)∗ ' (O◦)′.
If a is a finite-dimensional Lie bialgebra and U =Uh̄(a) is a QUE algebra quan-

tizing a, then U∗ = OA,h̄ is a QFSH algebra quantizing the Poisson–Lie group A,
with Lie bialgebra a, and U ′=OA∗,h̄ is a QFSH algebra quantizing the Poisson–Lie
group A∗, with Lie bialgebra a∗. If now O= OA,h̄ is a QFSH algebra quantizing A,
then O◦ = Uh̄(a) is a QUE algebra quantizing a, and O∨ = Uh̄(a

∗) is a QFSH
algebra quantizing a∗.

We now compute these functors explicitly in the case of cocommutative QUE
and commutative QFSH algebras. If U =U (a)[[h̄]] with cocommutative coproduct
(where a is a Lie algebra), then U ′ is a completion of U (h̄a[[h̄]]); this is a flat
deformation of Ŝ(a) equipped with its linear Lie–Poisson structure. If G is a formal
group with function ring OG , then O := OG[[h̄]] is a QFSH algebra, and O∨ is
a commutative QUE algebra; it is a quantization of S(g∗), with a commutative
product, a cocommutative coproduct, and a co-Poisson structure induced by the
Lie bracket of g.

Proof that “twists” can be made admissible.

Definition 4.1. An element x in a QUE algebra U is admissible if x ∈ 1+ h̄U , and
if h̄ log x is in U ′ ⊂U .

In this subsection, we will prove that for γ, γ′ in 0, the twist Fγ,γγ′ defined in
Proposition 1.5 is twist equivalent to an admissible one.

Proposition 4.2. Let Fγ,γγ′ be the element in U⊗2 introduced in Proposition 1.5.
Then there exists elements bγ,γγ′ in U such that

bz
γ,γγ′Fγ,γγ′ := b⊗2

γ,γγ′Fγ,γγ′1γ(b
−1
γ,γγ′)

is admissible.

Proof. Let us denote F0=Fγ,γγ′ . We will follow the proof of [Enriquez and Halbout
2007, Proposition 5.2]. Let us construct b = bγ,γγ′ as a product · · · b2b1, where
bn ∈ 1+ h̄nU0, so that if Fn := bn · · · bz

1 F0, then h̄ log(Fn)∈U ′⊗̂2
0 + h̄n+2U ⊗̂2

0 ; here
U0 denotes the augmentation ideal.
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We have already h̄ log(F0) ∈ h̄2U ⊗̂2
0 .

Expand F0 = 1⊗2
+ h̄ f1+ · · · . Then Alt(f1) = r . Moreover, the coefficient of

h̄ in F1,2
0 F12,3

0 = F2,3
0 F1,23

0 yields d(f1) = 0, where d : U (g)⊗2
0 → U (g)⊗3

0 is the
co-Hochschild differential. It follows that f1 = r + d(a1) for some a1 ∈ U (g)0.
Then if we set b1 := exp(h̄a1) and F1 = bz

1 F0, we get F1 ∈ 1⊗2
+ h̄r + h̄2U ⊗̂2

0 .
Then h̄ log(F1) ∈ h̄2r + h̄3U ⊗̂2

0 ⊂U ′⊗̂2
0 + h̄3U ⊗̂3

0 .
Assume that for n ≥ 2, we have constructed b1, . . . , bn−1 such that

αn−1 := h̄ log(Fn−1) ∈U ′⊗̂2
0 + h̄n+1U ⊗̂2

0 .

Let us recall two technical lemmas from [Enriquez and Halbout 2007]:

Lemma 4.3. The quotient (U ′+h̄nU )/(U ′+h̄n+1U ) identifies with U (g)/U (g)≤n .
In the same way, the quotient (U ′⊗̂k

0 + h̄nU ⊗̂k
0 )/(U ′⊗̂k

0 + h̄n+1U ⊗̂k
0 ) identifies with

U (g)⊗k
0 /(U (g)⊗k

0 )≤n and the quotient (U ′⊗̂k
0 + h̄nU ⊗̂k

0 )g/(U ′⊗̂k
0 + h̄n+1U ⊗̂k

0 )g of
g-invariant subspaces identifies with (U (g)⊗k

0 )g/(U (g)⊗k
0 )

g
≤n .

Lemma 4.4. Assume that n ≥ 2. If f1, f2 ∈ (U ′0)
2
+ h̄n+1U0 and g, h ∈ h̄nU0, then

( f1+g) ?h̄ ( f2+h)= g+h modulo (U ′0)
2
+ h̄n+1U0, where ?h̄ is the CBH product

for the Lie bracket [a, b]h̄ = [a, b]/h̄.

Let us denote by α the image of the class of αn−1 in U (g)⊗2
0 /(U (g)⊗2

0 )≤n+1

under the isomorphism of this space with

(U ′⊗̂2
0 + h̄n+1U ⊗̂2

0 )/(U ′⊗̂2
0 + h̄n+2U ⊗̂2

0 )

(see Lemma 4.3). Let α∈U (g)⊗2
0 be a representative of α. Then αn−1=α

′
+h̄n+1α,

where α′ ∈U ′⊗̂2
0 + h̄n+2U ⊗̂2

0 . Then the twist equation gives

(−α′− h̄n+1α)1,23 ?h̄ (−α
′
− h̄n+1α)2,3 ?h̄ (α

′
+ h̄n+1α)1,2 ?h̄ (α

′
+ h̄n+1α)12,3

= 0.

By Lemma 4.4, the image of this equality in (U ⊗̂3
+h̄n+1U ′⊗̂3)/(U ⊗̂3

+h̄n+2U ′⊗̂3)'

U (g)⊗3/(U (g)⊗3)≤n+1 is d(α) = 0, where d is the co-Hochschild differential on
the quotient U (g)⊗ ·0 /(U (g)⊗ ·0 )≤n+1. Since n ≥ 2, the relevant cohomology group
vanishes, so α = d(β), where β ∈U (g)0/(U (g)0)≤n+1. Let β ∈U (g)0 be a repre-
sentative of β and set

bn := exp(h̄nβ), Fn := bz
n Fn−1, αn := h̄ log(Fn).

Then αn = (h̄n+1β)1?h̄ (h̄n+1β)2?h̄ αn−1?h̄ (−h̄n+1β)12. According to Lemma 4.4,
the image of αn in

(U ⊗̂2
0 + h̄n+1U ′⊗̂2

0 )/(U ⊗̂2
0 + h̄n+2U ′⊗̂2

0 )'U (g)⊗2
0 /(U (g)⊗2

0 )≤n+1

is α− d(β) = 0. So αn belongs to U ⊗̂2
0 + h̄n+2U ′⊗̂2

0 , as required. This proves the
induction step. �
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The proof of Theorem 2.5. Thanks to the previous subsection, we now know that
there exists an element bγ,γγ′ in U such that bz

γ,γγ′Fγ,γγ′ := b⊗2
γ,γγ′Fγ,γγ′1γ(b

−1
γ,γγ′)

is admissible. Let us define

F′γ,γγ′ = bz
γ,γγ′Fγ,γγ′, i′γ,γγ′ = iγ,γγ′ ◦Ad(b−1

γ,γγ′)

and
v′γ,γγ′,γγ′γ′′ = bγ,γγ′γ′′vγ,γγ′,γγ′γ′′ i−1

γ,γγ′(b
−1
γγ′,γγ′γ′′)b

−1
γ,γγ′ .

Clearly, F′γ,γγ′ , i′γ,γγ′ and v′γ,γγ′,γγ′γ′′ still satisfy the conclusion of Proposition 1.5.
Applying the functor QUE → QFSH explained on page 112 to the algebras

(Uγ,γ ,1γ), we get algebras (U ′γ, ∗γ,1γ), which are quantizations of the Poisson
algebras (OG∗γ , { · , · }γ). Since the twists F′γ,γγ′ are admissible, the algebra mor-
phisms i′γ,γγ′ restrict to the QFSH algebras U ′γ . Then Theorem 2.5 will follow
from this:

Proposition 4.5. The elements v′γ,γγ′,γγ′γ′′ are admissible.

Proof. Let us denote v= v′γ,γγ′,γγ′γ′′ . Suppose v is not admissible and let n be the
bigger i such that α0 := h̄ log(v)∈U0+ h̄n+1U0. By the assumption on v, we know
that n ≥ 2. Let us denote by α the image of the class of α0 in U (g)0/(U (g)0)≤n+1

under the isomorphism of this space with (U0 + h̄n+1U0)/(U0 + h̄n+2U0); see
Lemma 4.3. Let α ∈U (g)0 be a representative of α. Then α0 = α

′
+ h̄n+1α, where

α′ ∈U0+ h̄n+2U0. Let f , f ′ and f ′′ be respectively the h̄ logs of F′γ,γγ′ , F′γγ′,γγ′γ′′
and Fγ,γγ′γ′′ . Then the compatibility equation for composition of twists gives

f ′′ = (α′+ h̄n+1α)⊗2 ?h̄ i−1
γ,γγ′( f ′) ?h̄ f ?h̄ (−α

′
− h̄n+1α)12

= 0.

According to Lemma 4.4, the image of this equation in

(U ⊗̂2
+ h̄n+1U ′⊗̂2)/(U ⊗̂2

+ h̄n+2U ′⊗̂2)'U (g)⊗2/(U (g)⊗2)≤n+1

is d(α)= 0. So α ∈ g, which is a contradiction with n ≥ 2. �

5. Example of simple group with action of the Weyl group

Quantization of Majid and Soı̆bel’man. We start by briefly recalling Majid and
Soı̆bel’man’s approach [1994] to the quantum Weyl group. Let g be a complex sim-
ple Lie algebra, and let Uh̄(g) be the natural deformation of the universal envelop-
ing algebra U (g). Lustig [1990] and Soı̆bel’man [1991] first independently noticed
that a simple reflection w in the Weyl group W of g defines an automorphism αw
on Uh̄(g). Then one can extend Uh̄(g) by elements w with αw(g)=wgw−1 for all
simple reflections in W . The extended algebra is called the “quantum Weyl group”
and denoted by Ũh̄(g). In [Kirillov and Reshetikhin 1990] and [Soı̆bel’man 1991],
this algebra is used to construct explicit solutions to the Yang–Baxter equation.
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Majid and Soı̆bel’man also discovered the bicrossed product structure on Ũh̄(g).
For 1 ≤ i, j ≤ rank(g), let wi be simple reflections in W , and let t j be elements
in the maximal torus corresponding to φ j

(
−1 0

0 −1

)
with φ j : sl2 ↪→ g embedding to

the j-th vertex of the Dynkin diagram. Then define W̃ to be the group generated
by wi and t j , which is a covering of the Weyl group W with the kernel isomorphic
to the direct sum of k-copies of Z2, where k = rank(g). The quantum Weyl group
Ũh̄(g) is proved in [Majid and Soı̆bel’man 1994, Corollary 3.4] to be isomorphic
to the bicrossed product

kW̃ψ
FGα,χ Uh̄(g),

defined in terms of linear maps

α :Uh̄(g)⊗ kW̃ →Uq(g), a⊗wt 7→ t−1αw(a)t,

χ : kW̃ ⊗ kW̃ →Uh̄(g), w1t1⊗w2t2 7→ x−1,

ψ : kW̃ →Uh̄(g)⊗Uh̄(g), wt 7→ (w−1
⊗w−1)1w.

Here, x is an element in Uh̄(g) such that αw1w2(αw1 (t1)t2) = αw1t1αw2t2 Adx−1 with
x ∈Uh̄(g).

Proposition 5.1. The quantum Weyl group Ũh̄(g) is a quantization of the 0 = W̃
Lie bialgebra (g, [ · , · ], δ), where (g, [ · , · ], δ) is the Lie bialgebra structure on g

corresponding to the deformation Uh̄(g), and W̃ acts on g as the Weyl group (t acts
on g by adjoint action), and fγ =

∧2(γ) ◦ δ ◦ γ−1
− δ for γ ∈ W̃ .

Proof. Inspired by the above bicrossed product structure on Ũh̄(g), we introduce
the 0 quantized universal enveloping algebras for 0 = W̃ generated as follows:

• Set (Uh̄(g)γ,mγ,1γ) = (Uh̄(g),m,1γ), where m is the canonical multi-
plication on Uh̄(g) and 1γ = α( · , γ)⊗2

◦ Ad(ψ(γ)) ◦ 1 ◦ α−1( · , γ) with
1 the canonical coproduct on Uh̄(g).

• Define iγ,γγ′ : (Uh̄(g),mγ)→ (Uh̄(g),mγγ′) by ie,γ=α( · ⊗γ) :Uh̄(g)→Uh̄(g)

and iγ,γγ′ = ie,γ′ .

• Set Fe,γ ∈ Uh̄(g)
⊗2 equal to ψ(γ) and put Fγ,γγ′ = Fe,γ′ . By [Majid and

Soı̆bel’man 1994, Lemma 3.3], we have

Fe,wi t = ψ(wi )= e
1
2 h̄ Hi⊗Hi/(αi ,αi )(Ri )

−1
12 = 1+ h̄ f1+ O(h̄2)

for any reflection wi ∈W . (Here (Hi , X+i , X−i ) corresponds to the embedding
φi : sl2 ↪→ g for the i-th root αi with normal (αi , αi ).) Because the first order
part of e

1
2 h̄ Hi⊗Hi/(αi ,αi ) is symmetric, the antisymmetrization of f1 is equal to

the antisymmetrization of the first order term of (Ri )
−1
21 , which is equal to the

definition of fwi by the asymptotic expansion of Ri . This result extends to an
arbitrary element γ simply because wi generates W .
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• Set ve,γ,γγ′ = χ(γ, γγ
′) ∈ Uh̄(g)

⊗2. By the definition of χ(γ, γγ′), we can
choose v to be an element in 1+ h̄2Uh̄(g) because the α action is associative
up to the h̄-linear terms by [Kirillov and Reshetikhin 1990, Formula (13)] and
[Levendorskiı̆ and Soı̆bel’man 1990, Prop 1.4.10].

It is easy to check that the cocycle conditions for α, χ,ψ , and their compatibili-
ties are equivalent to the conditions for (Uh̄,m,1γ, iγ,γγ′, Fγ,γγ, vγ,γγ′,γγ′γ′′) to be
a 0 = W̃ quantized universal enveloping algebra. Therefore, the corresponding 0
quantized universal enveloping algebra is isomorphic to Ũh̄(g). �

Admissibility of the twists.

Corollary 5.2. The twists Fγ,γγ′ and vγ,γγ′,γγ′γ′′ defined in Proposition 5.1 are
admissible. Therefore, the quantum Weyl group defines a stack of formal series
Hopf algebras quantizing the corresponding stack of Poisson–Hopf algebras dual
to (W̃ , g, [ · , · ], δ, fγ).

Proof. We look at the formulas for Fe,wt . By the one for ψ , if wi is a simple
reflection, then Fe,wi t = e

1
2 h̄ Hi⊗Hi/(αi ,αi )(Ri )

−1
12 . Taking h̄ log on Fe,w, we have

h̄2 1
2 Hi ⊗ Hi/(αi , αi )+ h̄ log((Ri )

−1
12 ).

The first term is primitive as Hi is primitive, and the second term h̄ log((Ri )
−1
12 )

is primitive because h̄ log(Ri ) is primitive, which was proved in [Enriquez and
Halbout 2003, Theorem 0.1]. Therefore, we conclude that Fe,wi t is admissible
whenw is a simple reflection. This property extends to a general element γ directly
by products.

By Proposition 4.5, we also know that v is admissible because F is admissible.
We conclude the corollary by Theorem 2.5. �
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THE KAUFFMAN BRACKET SKEIN MODULE OF SURGERY
ON A (2, 2b) TORUS LINK

JOHN M. HARRIS

We show that the Kauffman bracket skein modules of certain manifolds
obtained from integral surgery on a (2, 2b) torus link are finitely generated,
and list the generators for select examples.

1. Introduction

Kauffman [1988] presented an elegant construction of the Jones polynomial, an
invariant of oriented links in S3, by constructing a new invariant, the Kauffman
bracket polynomial. The Kauffman bracket is an invariant of unoriented framed
links in S3, defined by the skein relations

(1)
〈 〉

= A
〈 〉

+ A−1
〈 〉

,

(2) 〈L ∪ unknot〉 = (−A−2− A2)〈L〉.
For the invariant to be well defined, one also must normalize it by choosing a

value for the empty link, for instance 〈empty link〉 = 1.
Alternatively, we can use the skein relations to construct a module of equivalence

classes of links in S3, or, for that matter, in any oriented 3-manifold. See Przytycki
[1991] and Turaev [1988].

Definition 1. Let N be an oriented 3-manifold, and let R be a commutative ring
with identity, with a specified unit A. The Kauffman bracket skein module of N ,
denoted S(N ; R, A), or simply S(N ), is the free R-module generated by the framed
isotopy classes of unoriented links in N , including the empty link, quotiented by
the skein relations that define the Kauffman bracket.

Since every crossing and unknot can be eliminated from a link in S3 by the
skein relations, S(S3) is generated by the empty link. Kauffman’s argument that
his bracket polynomial is well defined shows that S(S3) is free on the empty link.

For R = Z[A±1], Hoste and Przytycki have computed the skein modules of all
of the closed, oriented manifolds of genus 1: In [1993], they computed S(L(p, q)),

MSC2000: 57M27.
Keywords: skein theory, Poincaré homology sphere, quaternionic manifold.
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1 = = −1 = =

Figure 1. Examples of twist notation.

which is free on bp/2c+1 generators, and in [1995] they computed S(S1× S2)∼=
Z[A±1] ⊕ (⊕∞i=1 Z[A±1]/(1− A2i+4)). Over Z[A±1], localized by inverting all
of the cyclotomic polynomials, Gilmer and the author have computed the skein
module of the quaternionic manifold [Gilmer and Harris 2007].

Additionally, Bullock [1997a] has determined whether or not the skein module
obtained from integral surgery on a trefoil is finitely generated. In this paper, we
obtain a similar result for integral surgery on a (2, 2b) torus link.

Notation 2. For any integer n, let

n

. . .

denote n full twists in the depicted strands. For example, see Figure 1.

Definition 3. We define M(α, β, γ ) to be the manifold obtained by surgery on the
torus link

α β γ

with the blackboard framing.

Theorem 4. For all integers α, β, and γ such that

a = |α|> 1, b = |β|> 1, c = |γ |> 1,

a−1 < b−1+ c−1, b−1 < a−1+ c−1, c−1 < a−1+ b−1,

S(M(α, β, γ )) is finitely generated.

For specific values of α, β, and γ , we can use brute-force computation to refine
our result, explicitly listing generating sets for S(M(α, β, γ )).
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Notation 5. We refer to the collection of loops

α β γ

i
... j

... k
...

in M(α, β, γ ) using the algebraic notation x i y j zk .

In particular, we obtain the following for S(M(2,−2, 2)), S(M(3,−2, 3)), and
S(M(3,−2, 5)), which are respectively the skein modules of the 3-, 4-, and 5-fold
branched cyclic coverings of S3 over the trefoil, as listed by Rolfsen [1976].

α β γ fundamental group generators

2 −2 2 quaternion group 1, z, z2, y, x
3 −2 3 binary tetrahedral group 1, z, z2, z3, y, x , x2

3 −2 5 binary icosahedral group 1, z, z2, z3, z4, z5, y, x , x2

Note that the generating set for the skein module of the quaternionic manifold
essentially coincides with what was shown in [Gilmer and Harris 2007] over the
ring R′ obtained from Z[A±1] by inverting the multiplicative set generated by the
elements of the set {An−1 | n ∈ Z+}. Since any dependence relation over Z[A±1]
would hold over R′ and since S(M(2,−2, 2); R′, A) is a free module of rank 5,
we obtain the following:

Corollary 6. S(M(2,−2, 2);Z[A±1], A) is a free module of rank 5.

This result was conjectured in [Gilmer and Harris 2007]. The quaternionic man-
ifold is the first closed, irreducible, genus two 3-manifold whose Kauffman bracket
skein module has been computed.

2. Twists and loops

Twists have many useful properties, a few of which are listed in Figure 2. Note that,
to obtain clearer diagrams, we represent a fixed but arbitrary number of parallel
strands with a thick line.

We are most interested in using skein relations and isotopy to rewrite one strand,
twisted with others, as a linear combination involving loops encircling the others,
as in Figure 3.

In fact, by repeating the steps performed in Figure 3, we obtain this:
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m

n
= m+ n

m

n

=
n

m

n = n

Figure 2. Useful properties of twists.

Lemma 7. For each integer n > 0,

n =
∑
j<n

nµ j

n

j...

+
∑

j<n−1
nν j

n

j...

for some nµ0, . . . , nµn−1, nν0, . . . , nνn−2 ∈ R with nµn−1 = An−1, and

−n =
∑
j<n

−nµ j

−n

j...

+
∑

j<n−1

−nν j

−n

j...

for some −nµ0, . . . ,−nµn−1,−nν0, . . . ,−nνn−2 ∈ R with −nµn−1 = A1−n .

Proof. For n = 1 and n = 2, the result is obtained in Figure 3.
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1 = =

1

,

2 =

2

= A

2

+ A−1

2

,

= A

2

− A2

2

Figure 3. Examples of rewriting twists.

Let n > 2, and suppose that the result holds for all k < n. Then

n =

n

n... =

n

n...
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= A

n

n− 1... + A−1

n

n−2...

= A n− 1

1

− A2 n− 2

2

Hence, the first equation follows by induction on n. The second equation can
be obtained by reversing all of the crossings in the first. �

By rotating the diagrams in Lemma 7 by 180 degrees, we obtain another:

Lemma 8. For each integer n > 0,

n =
∑
j<n

nµ j

n

j...

+
∑

j<n−1
nν j

n

j...
,

where nµn−1 = An−1, and

−n =
∑
j<n

−nµ j

−n

j...

+
∑

j<n−1
−nν j

−n

j...
,

where −nµn−1 = A1−n .
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In particular, if a component of a link is only twisted about one set of other
strands, we obtain an immediate corollary of Lemma 7:

Lemma 9. For each integer n > 0,

n =
∑
i≤n

nρi

n

i
...
,

for some nρ0, . . . , nρn ∈ R with nρn =−An+2, and

−n =
∑
i≤n

−nρi

−n

i
...
,

for some −nρ0, . . . ,−nρn ∈ R with −nρn =−A−n−2.

Similarly, the corollary of Lemma 8:

Lemma 10. For each integer n > 0,

n =
∑
i≤n

nρi

n

i
...
,

where nρn =−An+2, and

−n =
∑
i≤n

−nρi

−n

i
...
,

where −nρn =−A−n−2.
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Remark 11. We only need the explicitly computed coefficients in Lemmas 7–10
for the proofs that follow, but the other coefficients are not too difficult to compute
explicitly as well: For n > 0, we have nρ j =−A3

nµ j−1+ (−A−2− A2) nν j , and
for n > 2, we have nµ j = A n−1µ j−1− A2

n−2µ j and nν j = A n−1ν j−1− A2
n−2ν j ,

yielding

nµ j =
{
(−1)(n− j−1)/2

((n+ j−1)/2
j

)
An−1 for n+ j odd and 0≤ j < n,

0 otherwise

and

nν j =
{
(−1)(n− j)/2

((n+ j−2)/2
j

)
An for n+ j even and 0≤ j < n− 1,

0 otherwise.

Suppose that a component of a link is twisted with two sets of strands. While
more complicated than in the cases previously considered, it is still possible to
rewrite the component as a linear combination of loops around the other strands:

Lemma 12. For all integers m, n > 0,

m n =
∑

i≤m, j≤n

σi, j

m

i
...

n

j... +
∑

i<m, j<n

τi, j

m

i
...

n

j... ,

for some σ0,0, . . . , σm,n, τ0,0, . . . , τm−1,n−1 ∈ R with σm,n =−Am+n+2.

Proof. Applying Lemma 7, and then applying Lemma 8 to each diagram of the
resulting linear combination, we have

m n =
∑

i<m, j<n

(mµi )(nµ j )

m n

i
... j...
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+
∑

i≤m, j<n−1

−A3(mµi )(nν j )

m

i
...

n

j...

+
∑

i<m−1, j≤n

−A3(mνi )(nµ j )

m

i
...

n

j...

+
∑

i<m−1, j<n−1

(−A2− A−2)(mνi )(nν j )

m

i
...

n

j...

Since

=−A4 − A2

the result follows. �

Lemma 13. For all integers m, n > 0,

m −n =
∑

i≤m, j<n−1
i<m−1, j≤n

σi, j

m

i
...

−n

j... +
∑

i<m, j<n

τi, j

m

i
...

−n

j...

where τm−1,n−1 = Am−n .
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Proof. Applying Lemma 7, and then applying Lemma 8 to each diagram of the
resulting linear combination, we get

m −n =
∑

i<m, j<n

(mµi )(−nµ j )

m −n

i
... j...

+
∑

i≤m, j<n−1

−A3(mµi )(−nν j )

m

i
...

−n

j...

+
∑

i<m−1, j≤n

−A−3(mνi )(−nµ j )

m

i
...

−n

j...

+
∑

i<m−1, j<n−1

(−A2− A−2)(mνi )(−nν j )

m

i
...

−n

j...
�

By an argument similar to that for Lemma 13, we obtain this:

Lemma 14. For all integers m, n > 0,

−m n =
∑

i≤m, j<n−1
i<m−1, j≤n

σi, j

−m

i
...

n

j... +
∑

i<m, j<n

τi, j

−m n

i
... j...

,

where τm−1,n−1 = An−m .
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By an argument similar to that for Lemma 12, we obtain this:

Lemma 15. For all integers m, n > 0,

−m −n =
∑

i≤m, j≤n

σi, j

−m

i
...

−n

j... +
∑

i<m, j<n

τi, j

−m −n

i
... j...

,

where σm,n =−A−m−n−2.

Remark 16. In Lemmas 12–15, the coefficients depend on the number of twists
as in Lemmas 7–10: for example, σi, j would be written more precisely as m,nσi, j

in Lemma 12. Since we do not need to refer to the coefficients by name in the
following sections, we have simplified the notation for the sake of readability.

3. Finitely generating the skein module

Since all links in the exterior of the surgery description of M(α, β, γ ) can be iso-
toped into a genus two handlebody and since the skein relations allow us to remove
all crossings in a diagram, S(M(α, β, γ )) is generated by {x i y j zk}.
Definition 17. For a = |α|, b= |β|, c= |γ |> 0, we define a strict linear ordering
on the generating set {x i y j zk} of M(α, β, γ ). We say x i y j zk < xm ynz p if any of
the following hold:

• i
a
+ j

b
+ k

c
<

m
a
+ n

b
+ p

c
.

• i
a
+ j

b
+ k

c
= m

a
+ n

b
+ p

c
, i(k+ 1) < m(p+ 1).

• i
a
+ j

b
+ k

c
= m

a
+ n

b
+ p

c
, i(k+ 1)= m(p+ 1),

max
( j

b
,

k
c

)
<max

(n
b
,

p
c

)
.

• i
a
+ j

b
+ k

c
= m

a
+ n

b
+ p

c
, i(k+ 1)= m(p+ 1),

max
( j

b
,

k
c

)
=max

(n
b
,

p
c

)
, j < n.

• i
a
+ j

b
+ k

c
= m

a
+ n

b
+ p

c
, i(k+ 1)= m(p+ 1),

max
( j

b
,

k
c

)
=max

(n
b
,

p
c

)
, j = n, k < p.
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Suppose that

a, b, c > 1, a−1 < b−1+ c−1, b−1 < a−1+ c−1, c−1 < a−1+ b−1.

By sliding over an attached 2-handle, we obtain useful relations:

Definition 18. The Type I relation is

α− r β − s γ

r s
... t
=

α− r β − s γ

r s
... t

First, note that by Lemmas 12–15, each side of the relation can be written as a
linear combination of loops of the form x i y j zk , since for all nonnegative integers
u, v, and w,

α β γ

w
...v

...u...

=
α β γ

w+ 1...v
...u ...

Note that when r ≥ 0 and s ≥ 0, the greatest term appearing on the left side of
the Type I relation, rewritten as a linear combination of loops, is xr yszt :

When r, s > 0, by Lemma 12, xr yszt and xr−1 ys−1zt+1 appear as the greatest
terms of their respective types.

Since c−1 < a−1+ b−1,

r
a
+ s

b
+ t

c
>
( r

a
+ s

b
+ t

c

)
+
(
−1

a
− 1

b
+ 1

c

)
= r−1

a
+ s−1

b
+ t+1

c
.

When either r = 0 or s= 0, the claim follows by Lemma 9 or Lemma 10. When
both are 0, the claim follows trivially.

Also note that as long as r > 0 or s > 0, the leading coefficient is −Ar+s+2.
Similarly, when r ≤ 0 and s ≤ 0, the greatest term appearing on the left side

of the Type I relation is x−r y−szt , and as long as both are nonzero, its coefficient
is −Ar+s−2.

When r > 0 and s < 0, the greatest term appearing on the left side of the Type I
relation is xr−1 y−s−1zt+1:
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By Lemma 13, xr−1 y−s−1zt+1, xr−2 y−szt , and xr y−s−2zt appear as the greatest
terms of their respective types. Since b−1 < a−1+ c−1,

r−1
a
+−s−1

b
+ t+1

c
>
(r−1

a
+−s−1

b
+ t+1

c

)
+
(
−1

a
+1

b
−1

c

)
= r−2

a
+−s

b
+ t

c
.

Since a−1 < b−1+ c−1,

r−1
a
+−s−1

b
+ t+1

c
>
(r−1

a
+−s−1

b
+ t+1

c

)
+
(1

a
− 1

b
− 1

c

)
= r

a
+−s−2

b
+ t

c
.

Also note that in this case, the leading coefficient is Ar+s .
Similarly, when r < 0 and s > 0, the greatest term appearing on the left side is

x−r−1 ys−1zt+1, with coefficient Ar+s .
Likewise, the greatest term on the right side is x |α−r |−1 y|β−s|−1zt+1, when α−r

and β − s are nonzero with different signs, and the greatest term on the right side
is x |α−r |y|β−s|zt otherwise.

By sliding over the other attached 2-handle, we obtain additional relations:

Definition 19. The Type II relation is

α− r β − s γ − t

r
... s t

=
α β − s γ − t

r
s t

···

α− r β − s γ − t

r
... s t

As with the Type I relation, each side of the relation can be rewritten as a linear
combination of loops of the form x i y j zk .

Also, as with the Type I relation, the greatest term appearing on the left side
of the Type II relation is xr+1 y|s|−1z|t |−1 when the signs of s and t differ, with
coefficient As+t . Otherwise, the greatest term appearing on the left side is xr y|s|z|t |,
and as long as one of s and t are nonzero, the leading coefficient is −As+t±2.

Finally, as with the Type I relation, the greatest term on the right side of the
Type II relation is xr+1 y|β−s|−1z|γ−t |−1 when the signs of β − s and γ − t differ,
and the greatest term appearing on the left side is xr y|β−s|z|γ−t | otherwise.

Theorem 20. For all integers a, b, c > 1 such that

a−1 < b−1+ c−1, b−1 < a−1+ c−1, c−1 < a−1+ b−1,

S(M(a, b, c)) is finitely generated.

Proof. We show that with respect to our previously defined ordering, x i y j zk can
be rewritten as linear combinations of lesser terms whenever i ≥ a, j ≥ b, or
k ≥ c. We accomplish this by choosing a Type I or Type II relation in which
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x i y j zk appears as the greatest term on the left side, as in the previous discussion.
We then show that x i y j zk is greater than the greatest term on the right side of the
relation. Hence, by subtracting all of the terms less than x i y j zk from both sides
of the equation and dividing both sides by the (invertible, as previously discussed)
coefficient of x i y j zk , we successfully rewrite x i y j zk .

Case 1. Suppose i ≥ a. Let r = i , s = j , and t = k. Since r > 0 and s ≥
0, the greatest term on the left of the Type I relation is x i y j zk . Since a − r =
a− i ≤ 0, the greatest term on the right side is x i−a y j−bzk if j ≥ b or i = a, and
x i−a−1 yb− j−1zk+1 if j < b and i > a.

Case 1.1. Suppose j ≥ b or i = a. Then

i
a
+ j

b
+ k

c
>

i−a
a
+ j − b

b
+ k

c
,

and thus x i y j zk > x i−a y j−bzk .

Case 1.2. Suppose j < b and i > a. Then

i
a
+ j

b
+ k

c
>

i
a
− j

b
+ k

c
= i−a

a
+ b− j

b
+ k

c

>
( i−a

a
+ b− j

b
+ k

c

)
+
(
−1

a
− 1

b
+ 1

c

)
= i−a−1

a
+ b− j − 1

b
+ k+1

c
.

Hence, x i y j zk > x i−a−1 yb− j−1zk+1.

Case 2. Suppose i < a and j ≥ b. Let r = i , s = j , and t = k. Since r ≥ 0
and s > 0, the greatest term on the left of the Type I relation is x i y j zk . Since
a − r = a − i > 0 and b − s = b − j ≤ 0, the greatest term on the right side is
xa−i−1 y j−b−1zk+1 if j > b, and xa−i zk if j = b.

Case 2.1. Suppose j > b. Then

i
a
+ j

b
+ k

c
>− i

a
+ j

b
+ k

c
= a−i

a
+ j − b

b
+ k

c

>
(a−i

a
+ j − b

b
+ k

c

)
+
(
−1

a
− 1

b
+ 1

c

)
= a−i−1

a
+ j − b− 1

b
+ k+1

c
,

and thus x i y j zk > xa−i−1 y j−b−1zk+1.
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Case 2.2. Suppose j = b. Then

i
a
+ j

b
+ k

c
= i

a
+ 1+ k

c
>− i

a
+ 1+ k

c
= a−i

a
+ k

c
,

and hence x i y j zk > xa−i zk .

Case 3. Suppose i < a, j < b, and k ≥ c. Let r = i , s = j , and t = k. Since
s ≥ 0 and t > 0, the greatest term on the left of the Type II relation is x i y j zk . Since
c− t = c− k ≤ 0, the greatest term on the right side is x i+1 yb− j−1zk−c−1 if k > c,
and x i yb− j if k = c.

Case 3.1. Suppose k > c. Then

i
a
+ j

b
+ k

c
>

i
a
− j

b
+ k

c
= i

a
+ b− j

b
+ k−c

c

>
( i

a
+ b− j

b
+ k−c

c

)
+
(1

a
− 1

b
− 1

c

)
= i+1

a
+ b− j − 1

b
+ k−c−1

c
,

and thus x i y j zk > x i+1 yb− j−1zk−c−1.

Case 3.2. Suppose k = c. Then

i
a
+ j

b
+ k

c
= i

a
+ j

b
+ 1> i

a
− j

b
+ 1= i

a
+ b− j

b
,

and so x i y j zk > x i yb− j . �

Remark 21. Note that we can refine the generating set obtained in the proof above,
through additional applications of the Type I and Type II relations. For instance,
we can rewrite x i y j zk when

• i < a, j < b, and i/a+ j/b > 1;

• i < a, j < b, i/a+ j/b = 1, and i > a/2;

• j < b, k < c, and j/b+ k/c > 1; or

• j < b, k < c, j/b+ k/c = 1, and k > c/2.

Theorem 22. For all integers a, b, c > 1 such that

a−1 < b−1+ c−1, b−1 < a−1+ c−1, c−1 < a−1+ b−1,

S(M(a,−b, c)) is finitely generated.

Proof. We show that with respect to our previously defined ordering, x i y j zk can
be rewritten as linear combinations of lesser terms whenever i ≥ a, j ≥ b, or
k > c(2−2/b). As in the previous proof, we accomplish this by choosing a Type I
or Type II relation in which x i y j zk appears as the greatest term on the left side,
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and then show that x i y j zk is greater than the greatest term on the right side of the
relation. Here, however, the task is a bit more difficult, since the difference in signs
prevents us from proceeding in a completely straightforward manner.

Case 1. Suppose i ≥ a. Let r = i , s = j , and t = k. Since r > 0 and s ≥ 0, the
greatest term on the left of the Type I relation is x i y j zk . Then a− r = a− i ≤ 0
and −b− s = −b− j < 0, and thus x i−a yb+ j zk is the greatest term on the right.
Then

i
a
+ j

b
+ k

c
= i−a

a
+ b+ j

b
+ k

c
and i(k+ 1) > (i − a)(k+ 1),

so x i y j zk > x i−a yb+ j zk .

Case 2. Suppose i < a and j ≥ b.

Case 2.1. Suppose k > 0. Let r = i + 1, s = − j − 1, and t = k − 1. Since
r > 0 and s < 0, the greatest term on the left of the Type I is relation x i y j zk =
x (i+1)−1 y−(− j−1)−1z(k−1)+1. Since a−r=a−i−1≥0 and−b−s=−b+ j+1>0,
xa−i−1 y−b+ j+1zk−1 is the greatest term on the right. Then

i
a
+ j

b
+ k

c
>
( i

a
+ j

b
+ k

c

)
+
(
−1

a
+ 1

b
− 1

c

)
= a−i−1

a
+ −b+ j + 1

b
+ k−1

c
,

and thus x i y j zk > xa−i−1 y−b+ j+1zk−1.

Case 2.2. Suppose k = 0.

Case 2.2.1. Suppose i > 0. Let r = i−1, s =− j−1, and t = 1. Since s < 0 and
t > 0,the greatest term on the left of the Type II relation is x i y j . Then −b− s =
−b+ j + 1 > 0 and c− t = c− 1 > 0, and thus x i−1 y−b+ j+1zc−1 is the greatest
term on the right. Then

i
a
+ j

b
+ k

c
>
( i

a
+ j

b
+ k

c

)
+
(
−1

a
+ 1

b
− 1

c

)
= i−1

a
+ −b+ j + 1

b
+ c−1

c
,

and thus x i y j > x i−1 y−b+ j+1zc−1.

Case 2.2.2. Suppose i = 0. Let r = 0, s =− j , and t = 0. Since t = 0, the greatest
term on the left of the Type II relation is y j . Then

−b− s =−b+ j ≥ 0 and c− t = c > 0,

and thus y−b+ j zc is the greatest term on the right. Then j/b= (−b+ j)/b+c/c and
0(0+ 1) = 0(c+ 1). When j > b, we have max( j/b, 0) > max(−b+ j/b, c/c),
and when j = b, we have max( j/b, 0) = 1 = max((−b + j)/b, c/c) and also
j = b > 0=−b+ j . Hence y j > y−b+ j zc.

Case 3. Suppose i < a, j < b, and k > c(2− 2/b). (Hence, k > c.)
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Case 3.1. Suppose i > 0. Let r = i − 1, s = − j − 1, and t = k + 1. Since s < 0
and t > 0, the greatest term on the left of the Type II relation is x i y j zk . Since
−b− s =−b+ j + 1≤ 0 and c− t = c− k− 1< 0, the greatest term on the right
is x i−1 yb− j−1zk−c+1. Then

i
a
+ j

b
+ k

c
>
( i

a
+ j

b
+ k

c

)
+
(
−1

a
− 1

b
+ 1

c

)
= i−1

a
+ b− j − 1

b
+ k−c+1

c
,

and thus x i y j > x i−1 yb− j−1zk−c+1.

Case 3.2. Suppose i = 0.

Case 3.2.1. Suppose j = b− 1. Let r = 1, s = −b, and t = k − 1. Since r > 0
and s < 0, the greatest term on the left of the Type I relation is yb−1zk . Then
a− r = a− 1 > 0 and −b− s = 0, and thus xa−1zk−1 is the greatest term on the
right. Since

b−1
b
+ k

c
>
(b−1

b
+ k

c

)
+
(
−1

a
+ 1

b
− 1

c

)
= a−1

a
+ k−1

c
,

yb−1zk > xa−1zk−1.

Case 3.2.2. Suppose j < b−1. Let r = 0, s = j , and t = k. Since s ≥ 0 and t > 0,
the greatest term on the left of the Type II relation is y j zk . −b− s = −b− j < 0
and c− k < 0, and thus, yb+ j zk−c is the greatest term on the right. Then

j
b
+ k

c
= b+ j

b
+ k−c

c
, 0(k+ 1)= 0(k− c+ 1),

and max( j/b, k/c)= k/c >max(b+ j/(b), (k− c)/c) since k > c((2b− 2)/b)≥
c((b+ j)/b). Hence y j zk > yb+ j zk−c. �

Proof of Theorem 4. If α, β and γ are all positive, the result follows by Theorem 20.
If α, β and γ are all negative, the result follows as well, since S(M(α, β, γ )) is
isomorphic to S(M(−α,−β,−γ )).

Suppose that exactly one of α, β and γ is negative. If β < 0, the result follows
by Theorem 22. If α < 0, by sliding the right handle over the left and performing
isotopy, we see that M(α, β, γ ) is identical to M(γ, α, β), and so the result follows.
Similarly, if γ < 0, by sliding the left handle over the right, M(α, β, γ ) is seen to
be identical to M(β, γ, α), and so again the result follows.

If exactly one of α, β, and γ is positive, then S(M(−α,−β,−γ )) is finitely
generated, and thus S(M(α, β, γ )) is finitely generated as well. �

4. Examples

While the previous proofs yield a finite set of generators for S(M(α, β, γ )), they
do not exploit the full potential of the Type I and Type II relations. Using the
following Python code, we can refine our results for S(M(a,−b, c)).
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def greaterthan(a,b,c,i,j,k,m,n,p):
if i*b*c + j*a*c + k*a*b > m*b*c + n*a*c + p*a*b:

return True
elif i*b*c + j*a*c + k*a*b == m*b*c + n*a*c + p*a*b:

if i*(k+1) > m*(p+1):
return True

elif i*(k+1) == m*(p+1):
if max(j*c,k*b) > max(n*c,p*b):

return True
elif max(j*c,k*b) == max(n*c,p*b):

if j > n:
return True

elif j == n:
if k > p:

return True
return False

def left1(i,j,k):
L = []
if i > 0 or j > 0:

L.append([i,j,k])
L.append([-i,-j,k])

if k > 0:
L.append([i+1,-j-1,k-1])
L.append([-i-1,j+1,k-1])

return L

def left2(i,j,k):
L = []
if j > 0 or k > 0:

L.append([i,j,k])
L.append([i,-j,-k])

if i > 0:
L.append([i-1,j+1,-k-1])
L.append([i-1,-j-1,k+1])

return L

def right1(a,b,c,r,s,t):
if (a-r > 0 and -b-s < 0) or (a-r < 0 and -b-s > 0):

return [abs(a-r)-1,abs(-b-s)-1,t+1]
return [abs(a-r),abs(-b-s),t]
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def right2(a,b,c,r,s,t):
if (-b-s > 0 and c-t < 0) or (-b-s < 0 and c-t > 0):

return [r+1,abs(-b-s)-1,abs(c-t)-1]
return [r,abs(-b-s),abs(c-t)]

def generatingset(a,b,c):
GS = []
MGS = []
for i in range(a):

for j in range(b):
k = 0
while b*k <= 2*c*(b-1):

GS.append([i,j,k])
k += 1

for T in GS:
rewrite = False
for L in left1(T[0],T[1],T[2]):

R = right1(a,b,c,L[0],L[1],L[2])
if greaterthan(a,b,c,T[0],T[1],T[2],R[0],R[1],R[2]):

rewrite = True or rewrite
for L in left2(T[0],T[1],T[2]):

R = right2(a,b,c,L[0],L[1],L[2])
if greaterthan(a,b,c,T[0],T[1],T[2],R[0],R[1],R[2]):

rewrite = True or rewrite
if not rewrite:

MGS.append(T)
return MGS

Using this code, we obtain the generating sets listed in the introduction for
S(M(2,−2, 2)), S(M(3,−2, 3)), and S(M(3,−2, 5)), and we find that our gen-
erating set is minimal for S(M(2,−2, 2);Z[A±1], A).

As for getting minimality of our generating sets for S(M(3,−2, 3); R[A±1], A)
and S(M(3,−2, 5); R[A±1], A), we might consider S(M(3,−2, 3); R,−1) and
S(M(3,−2, 5); R,−1), as they are isomorphic to the skein algebras of their fun-
damental groups, which are generated by representatives of conjugacy classes.
For S(M(3,−2, 3); R[A±1], A), however, this will not help, as only three of the
conjugacy classes of the binary tetrahedral group are self-inversive, and hence
S(M(3,−2, 3); R,−1) can be generated by five elements. See [Przytycki and
Sikora 2000].

Still, for S(M(3,−2, 5); R[A±1], A), we can hope to gain some insight, as its
conjugacy classes are self-inversive, and since we have the following result:
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Proposition 23. Suppose that a set L = {L1, . . . , Ln} of links in M represents a
generating set for S(M; R[A±1], A).

(1) If L yields a minimal generating set for S(M; R,−1), then L represents a
minimal generating set for S(M; R[A±1], A).

(2) If L yields a linearly independent set for S(M; R,−1) and S(M; R[A±1], A)
has no (A+ 1) torsion, then L represents a basis for S(M; R[A±1], A).

(3) If L yields a linearly independent set for S(M; R,−1) and S(M; R[A±1], A)
has torsion, then S(M; R[A±1], A) has (A+ 1) torsion.

Proof. (1) Suppose that Ln = f1(A)L1+· · ·+ fn−1(A)Ln−1 in S(M; R[A±1], A).
Then Ln = f1(−1)L1+ · · ·+ fn−1(−1)Ln−1 in S(M; R,−1), a contradiction.

(2) Suppose that f1(A)L1 + · · · + fn(A)Ln = 0 in S(M; R[A±1], A). Then in
S(M; R,−1), we have f1(−1)L1+· · ·+ fn(−1)Ln=0. Now L1, . . . , Ln is a basis
of S(M; R,−1), so fi (−1)= 0 for each i , and thus (A+1)| fi for each i . Hence,
(A+1)(g1(A)L1+· · ·+ gn(A)Ln)= 0 for some g1, . . . gn . S(M; R[A±1], A) has
no (A+1) torsion, so g1(A)L1+· · ·+ gn(A)Ln = 0. Hence, S(M; R[A±1], A) is
free.

(3) If L yields a linearly independent set for S(M; R,−1), and S(M; R[A±1], A)
has torsion, then L cannot represent a basis; and hence S(M; R[A±1], A) must
have (A+ 1) torsion by (2). �

Remark 24. The existence of torsion is a topic of particular interest in skein theory.
For example, see the study of (A+ 1) torsion in [McLendon 2006].

Let G be the binary icosahedral group, with presentation 〈r, s |r5 = s3 = (rs)2〉.
Since G is finite, the skein algebra of G over C is isomorphic to C[X (G)], the
SL(2,C) character variety of G, a result of [Przytycki and Sikora 2000]; see also
[Bullock 1997b].

Let σ0 be the trivial 2-dimensional representation of G, let σ1 be the represen-
tation of G that sends r and s to

A1 = 1
5

[ −3e5− e2
5+ e3

5− 2e4
5 e5− 3e2

5− 2e3
5− e4

5
e5+ 2e2

5+ 3e3
5− e4

5 −2e5+ e2
5− e3

5− 3e4
5

]
and

B1 = 1
5

[ −e5− 2e2
5− 3e3

5− 4e4
5 2e5− e2

5+ e3
5− 2e4

5
2e5− e2

5+ e3
5− 2e4

5 −4e5− 3e2
5− 2e3

5− e4
5

]
,

respectively, and let σ2 be the representation of G that sends r and s to

A2 =
[

e5− e2
5 −e2

5− e4
5

−e5− e4
5 −e5− e3

5

]
and B2 =

[
1 −e3

5
e2

5 0

]
,

respectively, where e5 = e2π i/5.
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Using GAP [GAP 2007], we can see that σ0, σ1, and σ2 are SL(2,C) represen-
tations of G, and any SL(2,C) representation σ of G is equivalent to one of them:
If irreducible, σ is equivalent to σ1 or σ2, and if reducible, σ is equivalent to σ0,
since G is perfect. See [Culler and Shalen 1983].

Let χ0, χ1, and χ2 be the characters of σ0, σ1, and σ2, respectively, and for each
g∈G, let τg be the evaluation map defined on the characters of G by τg(χ)=χ(g).
Note that since 1, r , r2, r3, r4, r5, rs, s, and s2 represent the conjugacy classes
of G, C[X (G)] is generated by τ1, τr , τr2 , τr3 , τr4 , τr5 , τrs , τs , and τs2 .

τ1 τr τr2 τr3 τr4 τr5 τrs τs τs2

χ0 2 2 2 2 2 2 2 2 2
χ1 2 −e5− e4

5 e2
5+ e3

5 −e2
5− e3

5 e5+ e4
5 −2 0 1 −1

χ2 2 −e2
5− e3

5 e5+ e4
5 −e5− e4

5 e2
5+ e3

5 −2 0 1 −1

From the table, we can see that the following relations hold in C[X (G)]:
τs2 = 3τs − 2τ1, τrs = 2τs − τ1, τr5 = 4τs − 3τ1,

τr4 = 4τs − τr − 2τ1, τr3 = 3τs − τr − τ1, τr2 = τs + τr − τ1

Furthermore, {τ1, τr , τs} are linearly independent in C[X (G)], since the matrix τ1(χ0) τr (χ0) τs(χ0)

τ1(χ1) τr (χ1) τs(χ1)

τ1(χ2) τr (χ2) τs(χ2)

=
 2 2 2

2 −e5− e4
5 1

2 −e2
5− e3

5 1


is invertible.

Thus, S(M(3,−2, 5);C,−1) is 3-dimensional, and therefore we cannot use
Proposition 23 to show that our generating set for S(M(3,−2, 5);C[A±1], A) is
minimal. Hence, we are left with the following:

Question. For some ring R and unit A, is {1, z, z2, z3, z4, z5, y, x, x2} a minimal
generating set for S(M(3,−2, 5); R, A)? If not, it is generated by {1, z, x} for
every ring R and unit A?
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TRANSITIVE ACTIONS AND EQUIVARIANT COHOMOLOGY
AS AN UNSTABLE A∗-ALGEBRA

VOLKER HAUSCHILD

A graded F p-algebra A with action of the Steenrod algebra A∗ is said to
be Steenrod presentable if there is a polynomial ring P = F p[u1, . . . , un]

with an action of A∗ and an A∗-invariant ideal I ⊂ P such that A = P/I
and the induced action of A∗ on P/I is the given one. It is shown that
an action ϕ of a simple compact Lie group G on a homogeneous Kähler
manifold X = G/H has a Steenrod presentable equivariant cohomology for
almost all primes p if and only if ϕ is conjugate to the standard action by
left translation. Application to the case H = T a maximal torus reproduces
a former result of the author: namely, that every topological G-action on
G/T is conjugate to the standard action by left translation with isotropy
group a maximal torus.

1. Introduction

Suppose X to be a space, and let A = H∗(X; Fp) be its cohomology with coeffi-
cients in the prime field Fp. Then on A there is an unstable action of the p-Steenrod
algebra A∗. On the other hand, given a presentation A = P/I , for an ideal I ⊂ P
where P is the polynomial algebra P = Fp[h1, . . . , hn], with deg hi = di , one
might ask whether the given action of A∗ is induced by an action of A∗ on the
polynomial algebra that leaves the defining ideal stable. In the case p 6= 2 and
di prime to p for all i , a necessary condition condition is given by a theorem of
Adams and Wilkerson [1980]; see also [Smith 1995, Theorem 10.5.1]. In particular
it follows from this theorem that the polynomial ring P must be the invariant ring

P = Fp[x1, . . . , xn]
W , deg xi = 2,

where W ⊂GL(n, Fp) is a finite group of order d1 . . . dn generated by pseudoreflec-
tions acting on Fp[x1, . . . , xn] = Fp[V ] in the standard way [Smith 1995; 1997].

MSC2000: primary 57S10, 57S25; secondary 55S10.
Keywords: transitive actions, Steenrod algebra, equivariant cohomology, homogeneous Kähler
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This implies that the degrees di can only assume certain precise values, which
are exactly the Weyl–Coxeter degrees of the group W ; see for example [Smith
1995, p. 199].

In the following, we say that the Fp-algebra A with an unstable action of A∗ is
Steenrod presentable if there is a polynomial ring P = Fp[x1, . . . , xn]

W with the
standard action of the Steenrod algebra A∗ and an A∗-stable ideal I ⊂ P such that
A ∼= P/I with the induced A∗-module structure.

As the main example of Steenrod presentable Fp-algebras, we consider the co-
homology of homogeneous spaces X =G/H, where H ⊂G is a closed connected
maximal rank subgroup of a compact connected Lie group G. Then there is the
standard fibration

G/H −→ BH −→ BG,

where BK is the classifying space for the topological group K . If H ⊂ G is
a subgroup of maximal rank and if nor G neither H have p-torsion, the ring
H∗(G/H ; Fp) has a presentation

H∗(G/H ; Fp)∼=
H∗(BH ; Fp)

H∗+(BG; Fp) · H∗(BH ; Fp)

such that the action of the Steenrod algebra A∗ on H∗(G/H ; Fp) is induced by the
standard action of A∗ on the ring H∗(BH ; Fp).

So, throughout this note we shall assume that p 6= 2 and that BG and BH do not
have p-torsion for all primes to be considered.

Suppose a compact connected Lie group K is acting in a reasonable way on
X = G/H . Then X is totally nonhomologous to zero in the fibration

X −→ X K −→ BK ,

where X K = EK ×K X is the Borel construction. Write H∗(X; Fp) = P/I0,
P = Fp[h1, . . . , hn], where the ideal I0 ⊂ P is generated by a set g1, . . . , gn of
multiplicative generators of the invariant ring RG = H∗(BG; Fp) ⊂ H∗(BH ; Fp).
As can be shown in the same way as in the proof of [Hauschild 1986, Theorem 1.1],
the equivariant cohomology H∗K (X; Fp) = H∗(X K ; Fp) is a graded algebra over
R= H∗(BK ; Fp), which can be written as H∗K (X; Fp)= PR/I , where PR = R⊗P
and I is an ideal generated by homogeneous elements of the form 1⊗ g j − r j ,
where the r j are elements of the ideal R+PR generated by the augmentation ideal
of R. On the ring PR = H∗(BK ; Fp)⊗Fp H∗(BH ; Fp) there is the natural unstable
A∗-module structure and the equivariant cohomology is Steenrod presentable if I
is stable under this A∗-action inducing the given A∗-action on the quotient. More-
over, since the isomorphism H∗(X; Fp)∼= H∗K (X; Fp)/H∗

+
(BK ; Fp)H∗K (X; Fp) is

induced by the inclusion i : X → X K of the fiber, the Steenrod presentation of
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H∗K (X; Fp) induces the Steenrod presentation of H∗(X; Fp). For more informa-
tion on Steenrod powers acting on equivariant cohomology, see [Allday and Puppe
1993; Quillen 1971].

2. Steenrod powers and rational cohomology

Observe that X =G/H is now the fiber of two fibrations, and that in both fibrations
it is totally nonhomologous to zero. Consequently there is the canonical epimor-
phism j∗ : H∗(BH ; Fp)→ H∗(X; Fp) induced by the inclusion j : X → BH of
the fiber. Moreover, let i∗ be induced by the inclusion i : X → X K of the fiber in
the Borel fibration. Both maps commute of course with the respective A∗-module
structures.

Observation 1. The equivariant cohomology H∗K (X; Fp) is Steenrod presentable
if and only if there is a homomorphism J : H∗(BH ; Fp)→ H∗K (X; Fp) making the
following diagram commute:

H∗K (X; Fp)

H∗(BH ; Fp) j∗
-

J
-

H∗(X; Fp)

i∗

?

Proof. Let π : X K→ BK be the projection in the Borel fibration, and then consider
the homomorphism π∗⊗ J : H∗(BK ; Fp)⊗H∗(BH ; Fp)→ H∗K (X; Fp). This map
is surjective and commutes with the respective A∗-actions. Let I = Ker(π∗⊗ J );
then H∗K (X; Fp)= (H∗(BK ; Fp)⊗ H∗(BH ; Fp))/I is a Steenrod presentation.

On the other hand, given a Steenrod presentation

H∗K (X; Fp)= (H∗(BK ; Fp)⊗ H∗(BH ; Fp))/I,

and J : H∗(BH ; Fp)→ H∗K (X; Fp) given by

H∗(BH ; Fp) 3 ξH 7→ 1⊗ ξH mod I,

then J commutes with the A∗-actions and i∗ ◦ J = j∗. �

Let X, X ′ be spaces such that the rational cohomology rings H∗(X;Q) and
H∗(X ′;Q) are finitely generated as graded Q-algebras. Then we have to define
what it means for a homomorphism θ : H∗(X;Q)← H∗(X ′;Q) to commute with
Steenrod powers for almost all primes p. Let y1, . . . , ym ∈ H∗(X ′;Q) be a set of
multiplicative generators; similarly, let x1, . . . , xn ∈ H∗(X;Q) be a set of multi-
plicative generators. Then θ(yi ) = pi (x1, . . . , xn) ∈ H∗(X;Q) are polynomials.
Let Primeθ be the (finite) subset of primes which appear as divisors of the de-
nominators of the coefficients of the pi . Then for all p /∈ Primeθ there are unique
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homomorphisms θp, θ p which make the following diagram commute [Adams and
Mahmud 1976]:

H∗(X;Q) �
θ

H∗(X ′;Q)

H∗(X;Z(p))

6

�
θp H∗(X ′;Z(p))

6

H∗(X; Fp)
?

�
θ p H∗(X ′; Fp)

?

Here the vertical maps are induced by the canonical maps Z(p)→Q and Z(p)→Fp

respectively. We say that θ commutes with the Steenrod powers for almost all
primes p if the θ p commute with Steenrod powers for p /∈ Primeθ .

Definition 2. Let K be a compact Lie group acting on X =G/H . Then we say that
the rational equivariant cohomology H∗K (X;Q) is Steenrod presentable if there is
a lifting J of the edge homomorphism j∗

H∗K (X;Q)

H∗(BH ;Q) j∗
-

J
-

H∗(X;Q)

i∗

?

such that J p : H∗(BH ; Fp) → H∗K (X; Fp) commutes with Steenrod powers for
almost all p.

A homogeneous space G/H such that rank G = rank H is Kähler if and only if
H = Z(K ) is the centralizer of a (not necessarily maximal) torus K , or, equiva-
lently, if H is conjugate to an isotropy group of the adjoint representation [Besse
1987, Chapter 8].

Here is the main theorem of this article.

Theorem 3. Let G be a simple compact connected Lie group and H ⊂ G be a
closed connected subgroup of maximal rank such that X = G/H is Kähler and let
G act topologically on X = G/H. Then the following statements are equivalent.

(i) The equivariant cohomology H∗G(X;Q) is Steenrod presentable.

(ii) The group G acts transitively on X with an isotropy group conjugate to K ,
where K is a maximal rank subgroup of G isomorphic to H by an automor-
phism of G which is inner with the possible exception of the even Spin groups.

(iii) There is an isomorphism H∗G(X;Q)∼= RH as RG-algebras.
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As a corollary, we recover an earlier result from [Hauschild 1985]. (See also
[Hauschild 1986] and the introduction of [Hauschild 2006], where the uniqueness
problem for locally smooth SU(n+ 1)-actions on SU(n+ 1)/S(U (n− 1)×U (2))
is considered.)

Theorem 4. Let G be a simple compact connected Lie group, and let T ⊂ G be a
maximal torus. Let G act nontrivially on X = G/T via ϕ. Then up to conjugacy,
ϕ is the standard transitive G-action on X with isotropy group conjugate to T .

Proof (for a proof using obstruction theory, see the Appendix). Write H∗(BT ;Q)=

Q[x1, . . . , xn], deg xi = 2. Let RG = H∗(BG;Q) and write

H∗G(X;Q)=
RG[X1, . . . , Xn]

I
, deg X i = 2.

Define J (xi )= X i , where the X i is the class of X i . Let p be a prime such that Jp

and J p are defined.
The values of the Steenrod powers Pk(xi ) and Pk(X i ) are completely deter-

mined by the instability conditions, that is, we have Pk(xi ) = x p
i for k = 1 and

Pk(xi ) = 0 for k > 1. The same holds in H∗G(X; Fp); that is, Pk(X i ) = X p
i for

k = 1 and Pk(X i ) = 0 for k > 1. It follows that Pk J p(xi ) = J pPk(xi ) for all i .
By simple induction using the Cartan rule, one gets the relation Pk

◦ J p = J p ◦Pk

for all k ≥ 0 and almost all primes p. So, the equivariant cohomology is Steenrod
presentable and the result follows from Theorem 3. �

3. A proof of the main theorem

The following definitions synthesize certain cohomological properties of symplec-
tic manifolds and are taken from the paper [Allday 1998]. We consider cohomology
with coefficients in a field Q, with char Q=0. As a coefficient field of cohomology,
the symbol Q will be omitted in this paragraph.

Definition 5. Let X be a Poincaré duality space over Q with formal dimension 2n.

(i) The space X is said to be c-symplectic (that is, cohomologically symplectic)
if there is w ∈ H 2(X) such that wn

6= 0.

(ii) If X is c-symplectic, for 0 ≤ j ≤ n, consider the map w j
: H n− j (X) →

H n+ j (X), defined as a 7→ w j a, for all a ∈ H n− j (X). Then X is said to
satisfy the hard Lefschetz condition if w j is an isomorphism for all j . In this
case X is also said to be c-Kähler.

Let X be a c-symplectic space with w ∈ H 2(X) as in the definition above. Let
G be a compact connected Lie group acting on X . Then g∗(w)=w for all g ∈ G.
In this way any action of a compact connected Lie group on a c-symplectic space
is considered to be a cohomologically symplectic action.
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Definition 6. Let X be a c-symplectic space with c-symplectic class w ∈ H 2(X).
Let a torus G act on X . Then the action is said to be cohomologically Hamilton-
ian (c-Hamiltonian) if w ∈ Im{i∗ : H 2

G(X)→ H 2(X)}, where i : X → XG is the
inclusion of the fiber in the bundle XG→ BG .

The main reason we have restricted ourselves to homogeneous spaces G/H
with the Kähler property is the following result, which can be considered a gener-
alization of a theorem of Atiyah [1983] (see also [Guillemin and Sternberg 1982;
Audin 1991, Corollary 4.2.3]). For the definition of uniformity see [Allday and
Puppe 1993, Definition 3.6.17]. For other consequences of the Kähler property,
see [Allday et al. 2002].

Theorem 7 [Allday 1998]. Let the r-torus G = T r act on a closed c-symplectic
manifold X in an effective, uniform, c-Hamiltonian way. Then X G has at least
r + 1 connected components.

The conditions of the theorem are always satisfied if X is totally nonhomologous
to zero in the Borel fibration [Allday and Puppe 1993]. Let G be a torus and
suppose G is acting on a c-symplectic manifold X with vanishing odd cohomology.
As we have seen before, the equivariant cohomology can be written as H∗G(X) =
RG[h1, . . . , hn]/I where RG = H∗(BG) and the h1, . . . , hn is a system of homoge-
neous multiplicative generators, I the defining ideal. Let X G

= F1+F2+· · ·+Fs be
the decomposition of the fixed space X G into its connected components. Then for
every α, 1≤α≤s, we choose a point pα∈ Fα and define a prime ideal Pα as the ker-
nel of the composed homomorphism RG[h1, . . . , hn]→ H∗G(X)→ H∗G(pα)∼= RG .

Here the first homomorphism is the natural projection and the second is given by
restricting equivariant cohomology classes to EG×G {pα}. Then the radical of I is
given by

√
I =

⋂
α Pα. Moreover there is a natural bijection between the primary

components of the ideal I and the connected components of X G . For more details
on these standard facts on equivariant cohomology see [Allday and Puppe 1993;
Hsiang 1975]. The following lemma is an immediate consequence of the result of
Allday.

Lemma 8. Let the r-torus G = T r act on a closed c-symplectic manifold X with
vanishing odd cohomology. Suppose G is acting on X in an effective, uniform,
c-Hamiltonian way. Then there exists a connected component F of X G such that
the prime ideal P ⊂ R[h1, . . . , hn] belonging to F is of the kind P = (h1−β1, . . . ,

hn −βn) with βi ∈ Rdeg hi and some βi 6= 0.

Proof of the main theorem. (i)⇒ (ii): Let RG = H∗(BG) and let RH = H∗(BH )∼=

Q[h1, . . . , hn]. Suppose H∗G(X)= (RG⊗Q RH )/IG to be a Steenrod presentation.
Let T ⊂ G be a maximal torus; then the equivariant cohomology of the induced
T -action is given by H∗T (X) ∼= H∗G(X)⊗RG RT . Let IT ⊂ RG ⊗Q RT be the ideal
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generated by IG , that is, IT = IG ·(RT ⊗Q RH ); then H∗T (X)∼= RT [h1, . . . , hn]/IT .
By the previous lemma there is a connected component F ⊂ X T of the fixed set X T

such that the corresponding prime ideal has the form P = (h1− β1, . . . , hn − βn)

with (β1, . . . , βn) 6= 0. In particular, the restriction homomorphism H∗T (X) →
H∗T ({p}) ∼= RT , p ∈ F is nontrivial. Let G p ⊂ G be the isotropy group of p. It
follows from the commutativity of the diagram

H∗T (X) - H∗T ({p})∼= RT

H∗G(X)

∪
6

resp

- H∗G(G(p))∼= RG p

∪
6

that the restriction homomorphism

resp : H∗G(X)→ H∗G(G(p))∼= RG p

must also be nontrivial. Let U = Go
p be the connected component of the unit

element in G p, and let η : H∗(BG p)→ H∗(BU ) be the homomorphism induced by
the inclusion U ⊂ G p. Then consider the composition θ = η ◦ resp ◦J

θ : H∗(BH )
J- H∗G(X)

resp- H∗(BG p)
η- H∗(BU ).

It follows from the construction and the hypothesis that θ commutes with the
Steenrod powers in A∗ for almost all primes p. Let LT be the Lie algebra of the
maximal torus T . Let 6 ⊂ LT be the kernel of the projection LT → T . After
[Adams and Mahmud 1976, Theorem 1.5] there is an R-linear map φ : LT → LT
carrying 6⊗Q into 6⊗Q such that the following diagram is commutative.

H∗(BH )
θ- H∗(BU )

H∗(BT )
?

φ∗- H∗(BT )
?

Here φ∗ is the graded ring homomorphism induced by the linear map φ. The
existence of this map is a consequence of [Adams and Mahmud 1976, Lemma 1.2].
The vertical maps are the homomorphisms induced by the standard fibrations BT→

BH and BT → BU . It follows from our assumption that θ is nontrivial, which
implies that φ∗ is also nontrivial. Observe that the map θ induces exactly the
homomorphism θ : H∗(G/H)→H∗(G/U ) induced by the map G/U→G/G p∼=
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G(p)⊂ X = G/H . This means that we have a commutative diagram

H∗(X)
θ- H∗(G/U )

H∗(BH )

6

θ- H∗(BU )

6

where the vertical maps are the edge homomorphisms for the fibrations BH→ BG

and BU → BG , respectively. It follows that θ sends the ideal

H∗
+
(BG) · H∗(BH )⊂ H∗(BH )

generated by the invariants of the Weyl group in H∗(BH ) into the ideal

H∗
+
(BG) · H∗(BU )⊂ H∗(BU )

generated by the same invariants in H∗(BU ). Then φ∗ sends the ideal

H∗
+
(BG) · H∗(BT )⊂ H∗(BT )

into the ideal
H∗
+
(BG) · H∗(BT )⊂ H∗(BT ),

therefore inducing a graded and nontrivial homomorphism

φ∗ : H∗(G/T )−→ H∗(G/T ).

Since G is a simple Lie group we can apply [Hauschild 1985, Lemma 4.1]. There-
fore φ∗ must be a surjective map and consequently must be an isomorphism. Now
the commutative diagrams above induce a commutative diagram

H∗(G/H)
θ- H∗(G/U )

H∗(G/T )
?

φ∗- H∗(G/T )
?

where the vertical maps are the respective inclusions of invariants under the Weyl
groups W H,WU respectively. It follows that the homomorphism θ must be in-
jective which implies dimensions cdQ(X)≤ cdQ(G/U ) for the respective rational
cohomology. But G/H and G/U are closed oriented manifolds and therefore
dim X ≤dim G/U , which implies dim X =dim G(p). It follows that X =G/G p,
that is, the action is transitive. Now X is 1-connected and therefore G p must be
connected, that is, G p = Go

p = U . It follows that G/H = G/U and θ is an
isomorphism. By a theorem of Papadima [1986], the isomorphism φ∗ is induced
by an automorphism of the root system of G. This implies that the root systems
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of the maximal rank subgroups H and U are conjugate by such an automorphism,
and consequently, the groups H and U are conjugate by an automorphism which
is inner with the possible exception of the Spin groups.

(ii) ⇒ (i): We have XG = EG ×G G/U ∼= EG/U = BU . But H ∼= U and so
XG ∼= BH and therefore H∗G(X)∼= RH as RG-algebras.

(iii)⇒ (i): Take J = Id : RH → RH . �

Appendix

Proof of Theorem 4 using obstruction theory. Let π : XG→ BG be the projection,
let b ∈ BG , and let Xb = π

−1(b) ⊂ XG be the fiber over b. Let ib : Xb→ XG be
the corresponding inclusion. Then consider the extension problem

Xb
j- BT

XG

ib
?

∩

j′
-

The obstruction to extend the inclusion j : Xb→ BT to a map j ′ : XG→ BT is to
be found in the group H 3(XG, Xb;π2(BT )). Consider the following piece of the
long exact cohomology sequence of the pair (XG, Xb).

H 2(XG;Z)→ H 2(Xb;Z)→ H 3(XG, Xb;Z)→ H 3(XG,Z)→ . . .

Now the first arrow, induced by the inclusion of the fiber, is surjective whereas
H 3(XG;Z) = 0. It follows H 3(XG, Xb;Z) = 0 and so H 3(XG, Xb;Z

n) = 0. We
thus have a lifting J = j ′∗ which gives rise to the commutative diagram

H∗G(X;Z)

H∗(BT ;Z) j∗
-

J -

H∗(X;Z).

i∗b
?

By the definition of J as a map induced geometrically, we conclude that H∗G(X;Q)
is Steenrod presentable. Using the equivalence between (i) and (ii) in Theorem 3
and the standard fact that two maximal tori are conjugate, the result follows. �
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HORIZONTAL HEEGAARD SPLITTINGS
OF SEIFERT FIBERED SPACES

JESSE JOHNSON

We show that if an orientable Seifert fibered space M with an orientable
genus g base space admits a strongly irreducible horizontal Heegaard split-
ting, then there is a one-to-one correspondence between isotopy classes of
strongly irreducible horizontal Heegaard splittings and elements of Z2g .
This correspondence is determined by the slopes of intersection of each
Heegaard splitting with a set of 2g incompressible tori in M. We also show
there are Seifert fibered spaces with infinitely many nonisotopic Heegaard
splittings that determine Nielsen equivalent generating systems for the fun-
damental group of M.

1. Introduction

Certain closed Seifert fibered spaces are known to admit a type of Heegaard split-
ting called a horizontal Heegaard splitting. Bachman and Derby-Talbot [2006]
showed that any Seifert fibered space that admits a strongly irreducible horizontal
splitting admits infinitely many isotopy classes of horizontal splittings. We improve
their analysis to show the following:

Let M be an orientable Seifert fibered space with base space an orientable genus
g surface, and let T1, . . . , T2g be vertical tori in M such that Ti ∩T j is a single loop
for i odd and j = i + 1 (or vice versa), and empty otherwise. The complement in
M of a regular neighborhood of these tori is a Seifert fibered space over a g-times
punctured sphere.

Theorem 1. If M admits a strongly irreducible horizontal Heegaard splitting and
M is not a circle bundle, then for every 2g-tuple of integers (s1, . . . , s2g) ∈ Z2g,
there is a unique (up to isotopy) strongly irreducible, horizontal Heegaard split-
ting that intersects each Ti in a family of essential loops with slope si . Moreover,
Heegaard splittings that define distinct 2g-tuples of slopes are not isotopic.

MSC2000: 57N10.
Keywords: Heegaard splitting, Seifert fibered space, Nielsen equivalence.
Research supported by NSF MSPRF grant 0602368.
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A Heegaard splitting for a compact, closed, orientable 3-manifold M is a triple
(6, H1, H2), where 6 ⊂ M is a compact, closed, two-sided surface and the sub-
sets H1 and H2 of M are handlebodies (that is, homeomorphic copies of closed
regular neighborhoods of connected, finite graphs in S3) with ∂H1=6= ∂H2 and
H1 ∪ H2 = M .

A Heegaard splitting (6, H1, H2) is strongly irreducible if every essential, prop-
erly embedded disk in H1 intersects every essential, properly embedded disk in H2.
We will describe the construction of a horizontal Heegaard splitting in Section 3.

Given a Heegaard splitting (6, H1, H2) of M , there is a smooth function f from
M to the interval [0, 1] such that the preimage of each point in (0, 1) is a surface
isotopic to 6 and the preimages of {0} and {1} are graphs (called spines) in H1

and H2. Such a function is called a sweep-out [Johnson 2005] and the restriction
of f to a vertical torus in M is (generically) a Morse function. A Morse function on
a torus always has level sets that are essential in the torus. Level sets of a Morse
function are pairwise disjoint and disjoint essential loops in a torus are parallel,
so f determines a unique isotopy class of simple closed curves in the torus.

We will describe below how a simple closed curve in a vertical torus determines
a rational number called its slope. Different sweep-outs will restrict to different
Morse functions on T , so a Heegaard splitting may determine more than one slope.
We will show that in many cases if two sweep-outs come from the same Heegaard
splitting, then they will determine the same slope on the vertical torus. In particular,
for M a Seifert fibered space with orientable base space and T1, . . . , T2g vertical
tori in M as above, we show the following:

Lemma 2. If a strongly irreducible Heegaard splitting of a Seifert fibered space
M determines more than one slope in a vertical torus Ti , then M is a circle bundle.

This is proved in Section 3, based on techniques developed in Section 2, and
shows one direction of Theorem 1. The other direction follows from the construc-
tion of horizontal Heegaard splittings and is also proved in Section 3.

Weidmann has shown, in the appendix of [Bachman and Derby-Talbot 2006],
that every circle bundle contains a unique irreducible Heegaard splitting (up to
isotopy). The only circle bundles with strongly irreducible Heegaard splittings are
circle bundles over the circle (all of which are lens spaces) and the circle bundle
over the torus with Euler number one.

In Sections 4 and 5, we consider the generating set for the fundamental group
of M . Two generating sets are called Nielsen equivalent if one can be changed to
the other by a finite number of type-one Tietze moves (that is, by replacing the i-th
generator with its inverse or with the product of the i-th and the j-th generator for
some i 6= j).
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The fundamental group of each handlebody in a Heegaard splitting is a free
group. The inclusion of its fundamental group into π1(M) determines a generating
set for π1(M). If the handlebodies of two Heegaard splittings determine generating
sets for π1(M) that are not Nielsen equivalent, then these two splittings can not be
isotopic. Lustig and Moriah have used Nielsen equivalence to distinguish vertical
Heegaard splittings of Seifert fibered spaces [1991] as well as Heegaard splittings
of certain hyperbolic 3-manifolds [1997]. We show that, unfortunately, Nielsen
class does not always distinguish nonisotopic Heegaard splittings. In particular,
we describe in Section 5 a family of Seifert fibered space over the torus with two
singular fibers such that each admits infinitely many nonisotopic Heegaard split-
tings whose handlebodies determine Nielsen equivalent generating sets in π1(M).

2. Toroidal summands

Let M be a compact, closed, orientable, irreducible 3-manifold (not necessarily a
Seifert fibered space), and let N ⊂ M be a submanifold homeomorphic to T × S1,
where T is a once punctured torus. Assume ∂N is incompressible in M . (If ∂N
is compressible in M , then it compresses to a sphere in the complement of N , so
because M is irreducible, M must be a solid torus.)

Two canonical simple closed curves in ∂N are picked out by the topology: a
meridian µ that is the boundary of an incompressible torus T ×{y} in T × S1 (for
some y ∈ S1) and a longitude λ that is the slope of a vertical loop {x}×S1 (y ∈ ∂T ).
The meridian µ is the unique (up to isotopy) loop in ∂N that is homology trivial in
N , so it is determined independently of the product structure on N . Every essential
annulus properly embedded in N has boundary parallel to λ, so this loop is also
independent of the product structure. Any simple closed curve in ∂N is a sum
pµ+ qλ, and thus determines a fraction p/q ∈Q∪ {1/0}, called its slope.

For any essential, simple closed curve ` in T , the subset `× S1
⊂ T × S1 is a

nonseparating incompressible torus in M . We can define slopes µ′ = `× {y} for
y ∈ S1 and λ′ = {x} × S1 for x ∈ `, so again each loop in `× S1 determines a
slope p/q . In this case, the loop µ′ is determined by the product structure of N ,
not the topology alone. A different product structure will imply a different µ′. For
our purposes, it suffices to fix a product structure on N , since we will always be
dealing with these slopes in a relative way.

Let (6, H1, H2) be a Heegaard splitting for M . Let f : M→[0, 1] be a sweep-
out such that each level surface of f is isotopic to 6. Let S = `× S1 be a vertical
torus in N . After an arbitrarily small isotopy of f , the restriction of f to S will
be a Morse function. As mentioned above, a Morse function on a torus always has
an essential level set and the essential levels define a single isotopy class of simple
closed curves. Thus f determines a unique slope in S.
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We will say that 6 determines a slope p/q on S if there is a sweep-out f with
level sets isotopic to 6 such that the restriction of f to S has a level set in S with
slope p/q . As noted above, a Heegaard splitting may determine more than one
slope. If the intersection of 6 with S contains an essential loop of slope p/q ,
then f can be chosen so that 6 is a level set of f (rather than just isotopic to one),
so 6 determines the slope p/q . Conversely, for any sweep-out for 6, each level
surface is isotopic to 6. Thus 6 determines a slope p/q in S if and only if 6 can
be isotoped so that the intersection contains a loop with that slope.

Lemma 3. If a strongly irreducible genus g Heegaard splitting (6, H1, H2) for
M determines more than one slope in a vertical torus S in N , then 6 can be
isotoped so that the closure of6\N in the closure of M\N is a properly embedded
incompressible genus g−3 surface whose boundary is a pair of loops in ∂N , each
with slope 1 or −1.

Before we begin the proof, recall that a smooth function f is Morse if every
critical point is nondegenerate and no two critical points are in the same level. A
function is near-Morse if either all but one of its critical points are nondegenerate
and all are in distinct levels, or all its critical points are nondegenerate and all but
two are in distinct levels.

Proof. If (6, H1, H2) determines more than one slope in S, then there are sweep-
outs f and f ′ such that6 is isotopic to both a level surface of f and of f ′ and such
that the essential level sets of f |S and f ′|S determine different slopes. Because f
and f ′ are sweep-outs for the same Heegaard splitting, there is an isotopy of M
taking a level surface of f ′ to a level surface of f . In particular, there is a family
of sweep-outs { ft | t ∈ [0, 1]} such that f0 determines the same slope in S as f ′

and f1 determines the same slope in S as f .
Assume the family of sweep-outs is generic with respect to S, that is, that ft |S is

Morse for all but finitely many values of t . At the finitely many non-Morse values,
the restriction will fail to be Morse because either two critical points pass through
the same level, as in Figure 1, or there is a single degenerate critical point. For any
value t0 such that ft0 |S is a Morse function, there is a neighborhood of t0 in [0, 1]
such that for any t in this neighborhood, ft |S is isotopic (in S) to ft0 |S . Thus the
slope of the essential levels can only change at the near-Morse values of t .

If two essential loops in a torus are disjoint, then they are parallel, and thus
define the same slope. Thus if the essential slope changes at a near-Morse value t0,
then the regular levels of ft0 |S must all be trivial in S. This is the case if and only
if each component of the complement of the critical levels is contained in an open
disk in S. If ft0 |S is a near-Morse function with a degenerate critical point (but
its critical points are in distinct levels), then the complement of the critical levels
must still contain an essential level loop. The only type of intermediate function
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Figure 1. The slope of the level loops in a Morse function on a
torus changes when two saddle singularities pass through the same
level. The surface is embedded so that the Morse function is a
height function.

that does not contain an essential regular level is one in which ft0 |S has two saddles
at the same level, and this level set cuts S into disks. This is shown in Figure 1.
Thus if the slope changes, there must be such an intermediate function.

The critical level containing the two saddle singularities is a graph with two
valence four vertices and thus four edges. There are exactly two (homeomorphism
classes of) connected graphs with four edges and two valence four vertices: Let 00

be a two-vertex graph in which two edges pass between the two vertices and one
edge goes from each vertex back to itself. Let 01 be a two-vertex graph in which
each edge goes from one vertex to the other.

Let 0 be a critical level set of a near-Morse function on an oriented surface
S such that 0 is homeomorphic to 00 or 01. Given an orientation for an edge
of 0, the orientation of S defines a transverse orientation. Choose an orientation
for each edge so that the transverse orientation points in the direction in which the
near-Morse function is increasing. The embedding of 0 suggests a cyclic ordering
of the ends of the edges that enter each vertex. Because each vertex is at a saddle
singularity, the edges must alternate whether they point towards the vertex or away.

If 0 is homeomorphic to 00, then for each edge that passes from a vertex to
itself, one end points towards the vertex and the other away. Thus the ends of each
such edge are adjacent in the cyclic ordering around the vertex. This implies that
a regular neighborhood in S of 0 is a planar subsurface. If S is a torus, then the
complement of 0 must contain a component that is not contained in a disk in S.

Thus if the slope defined by the Morse function changes, the level containing two
saddles must be homeomorphic to 01. There is a unique (up to homeomorphism)
way that such a graph can be embedded in a torus so that its complement is a
collection of disks. This is shown at the bottom left of Figure 2. The top left
picture shows the intersection of this level set with a square whose sides are glued
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Figure 2. Extending a level surface of ft0 locally from a critical
level in S with two saddles produces a sphere with four punctures.

to construct the torus, chosen so that the two vertices of 0 are in the two edges of
the glued square.

Let R be a regular neighborhood of S, and let F be the level surface of ft0 that
contains the critical level. The surface F intersects R as shown on the right of
Figure 2. Because of the identifications at the edges of the square, this intersection
is a sphere with four punctures, which we will call U , and a (possibly empty) col-
lection of annuli. The boundary loops of U (and thus the boundary loops of F \ R)
determine slopes in S that intersect at one point. Note that F is isotopic to 6
because it is a level surface of a sweep-out for (6, H1, H2).

Claim. The intersection F ∩ S consists of the graph U ∩ S and a (possibly empty)
collection of loops that are trivial in both S and F.

Proof. It suffices to show that the curves in F ∩ S other than U ∩ S are trivial in F .
Let g be the restriction of the sweep-out ft0 to the surface S. Each level set of g
is the intersection of S with a level surface of ft0 . There is a canonical way (up
to isotopy) to identify this level surface with 6, so each loop component of each
level set of g determines an isotopy class of simple closed curves in6. At a central
singularity in g, a loop corresponding to a trivial loop in 6 is added or removed.
At a level where there is a single saddle singularity in g, one loop is turned into
two, or vice versa by a band summing operation.

For t near 0, these simple closed curves bound disks in H1, and near 1 they
bound disks in H2. For any regular level of g, consisting of a number of simple
closed curves, the corresponding isotopy classes of loops in6 are pairwise disjoint.
Because 6 is strongly irreducible, a fixed level set of g cannot determine essential
loops in 6 bounding disks on both sides. Every regular level of g contains a trivial
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loop in S, so one of the loops in 6 determined by this regular level bounds a disk
in H1 or H2.

The disks cannot switch from one side to the other at a critical level with a single
saddle since the loops in 6 before and after the band summing are disjoint. Thus
the switch occurs at the single level of g with two saddle singularities. In particular,
the loops that limit onto this level set bound disks in opposite handlebodies (though
these disks are not disjoint), so the remaining loops of intersection must be trivial
in F . �

To complete the proof, isotope F so as to remove any loops that are trivial
in both F and S. Bachman and Derby-Talbot [2006] pointed out that after these
trivial loops are removed, S \F is a pair of compressing disks for F whose bound-
aries, when made transverse, intersect at four points. These compressing disks
are on opposite sides of F and are contained in the regular neighborhood R. Any
compressing disk for F \ R is disjoint from each of the disks in S \ F . Because
(6, H1, H2) is strongly irreducible and F is isotopic to 6, the surface 6 \ R must
be incompressible in M \ R.

The manifold N \ R is homeomorphic to a pair of pants cross S1. Any incom-
pressible surface in N \R is one of the following forms: a vertical torus or annulus
isotopic to an essential loop or arc cross S1. A horizontal pair of pants is a properly
embedded surface that intersects each vertical S1 transversely at a single point. The
surface F ∩ (N \ R) has boundary, so it is not a vertical torus and must consist of
some number of horizontal pairs of pants. The pairs of pants intersect R in the
loops ∂U . As noted above, these loops have slopes in the boundary of the closure
of R that, when projected into S, intersect at one point.

The first homology group of N \ R is isomorphic to Z×Z2, where the first Z is
generated by the S1 factor of the pair of pants cross a circle. The three boundary
loops of a component of F ∩ (N \ R) bound a pair of pants, so the sum of the
homology elements they generate is zero. The first coordinates of the two loops
in ∂R differ by exactly one (since they intersect at a single point in S), so the first
coordinate of the third loop must be 1 or −1. In other words, the third cuff of each
pair of pants must have slope 1 or −1 in ∂N .

The surface F ∩N is the union of a four times punctured sphere F ∩ R and two
pairs of pants F ∩ (N \ R), so F ∩N is a twice punctured genus two surface. Thus
F \ N is an incompressible, twice punctured genus g− 3 surface whose boundary
has slope 1 or −1 in ∂N . �

3. Seifert fibered spaces

Let M be a Seifert fibered space, and let c⊂M be a critical fiber. The complement
in M of a regular neighborhood U of c is a surface bundle. Let F be a leaf of
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this bundle, and assume that ∂F consists of a single loop in ∂U that is a longitude
of the solid torus U . Let 6 be union of two disjoint leaves parallel to F and an
annulus in U connecting the boundaries of these leaves. Each component of the
complement in M of 6 is homeomorphic to the union of F × (0, 1) and a regular
neighborhood of ∂F × (0, 1).

Because F is a surface with boundary, this set is a handlebody, so 6 determines
a Heegaard splitting (6, H1, H2). A Heegaard splitting constructed in this way
is called a horizontal Heegaard splitting. Recall the collection {Ti } of vertical tori
defined in Section 1. The slope that (6, H1, H2) determines on each Ti is precisely
the slope of intersection between F and Ti .

Sedgwick [1999] showed that a horizontal Heegaard splitting is irreducible if
and only if the multiplicity of c is greater than the least common multiple of the
multiplicities of the other critical fibers. In particular, if 6 is strongly irreducible,
then the winding number of c must be the largest over all the critical fibers in M .
Thus if (6′, H ′1, H ′2) is a second strongly irreducible horizontal Heegaard splitting
of M , then 6′ is constructed starting from the same fiber c. The incompressible
surface F is uniquely determined (up to isotopy) by the slopes of intersection be-
tween F and each Ti . Thus if 6 and 6′ determine the same slope in each Ti , then
they were constructed from the same c and F , and are therefore isotopic.

Proof of Lemma 2. The discussion above shows that if two strongly irreducible,
horizontal Heegaard splittings determine the same slope with each Ti , then they
are isotopic. We will prove the converse. Without loss of generality, assume i is
odd, so that Ti ∩ Ti+1 is a single simple closed curve.

A regular neighborhood N of Ti ∪ Ti+1 is homeomorphic to a punctured torus
cross a circle. Because Ti and Ti+1 are each isotopic to a union of regular fibers
in M , we can assume that N is also a union of regular fibers. The complement
in M of N is a Seifert fibered space, so every incompressible surface in M \ N
is either a vertical torus or a horizontal incompressible surface. The only one of
these surfaces that has boundary in ∂N is a horizontal surface.

Assume for contradiction that 6 determines more than one slope in Ti . Then
by Lemma 3 there is an incompressible surface F in the complement of N that
intersects the boundary in two parallel loops with slope ±1. A horizontal in-
compressible surface in a Seifert fibered space is nonseparating, so F (which is
separating) must be a union of two horizontal surfaces. The complement M \ N
is a Seifert fibered space whose fibers in ∂M match the fibers in N , and thus have
slope∞ in ∂N .

Each boundary component of F has slope ±1, so each regular fiber of the
fibrations intersects each component of F at a single point. The number of in-
tersections of a singular fiber with a horizontal surface is a proper integral fraction
of the number of intersections with the nearby regular fibers, so M \ N contains
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no singular fibers. This implies that N contains no singular fibers, so M must be a
circle bundle. �

Proof of Theorem 1. By Lemma 2, a strongly irreducible horizontal Heegaard
splitting is uniquely determined by the 2g-tuple of slopes it determines with the
incompressible tori {Ti }. To show a one-to-one correspondence to Z2g, we need
only show that if M admits a strongly irreducible horizontal Heegaard splitting,
then for any 2g-tuple there is a strongly irreducible horizontal Heegaard splitting
that determines this 2g-tuple of slopes.

If M has a strongly irreducible, horizontal Heegaard splitting (6, H1, H2), then
6 was constructed from some critical fiber c and an incompressible surface F in
the complement of c that intersects each regular fiber at two points. The critical
fiber c can always be taken to be disjoint from each Ti .

Given positive integers n and i ≤ g, consider n parallel copies T2i . Because F
intersects each regular fiber at two points and the torus T2i is a union of regular
fibers, the surface F will intersect each copy T j

2i of T2i in two simple closed curves.
Let U be a regular neighborhood of a component of F ∩ T j

2i . The intersection of
F ∪T j

2i with U is the union of a pair of annuli that intersect in a common essential
loop. There are two ways to replace these two intersecting annuli with two disjoint
annuli. If we make this replacement in the same way in each neighborhood, the
resulting surface will have slope either n or −n in T2i+1. For every other T j , the
slopes of F ∩ T j and F ′ ∩ T j agree. (This operation is called a Haken sum.) We
say that the surface with slope n is the result of spinning F around T2i n times.

Similarly, spinning F around T2i+1 changes its slope with T2i but not with the
other vertical tori. Thus by spinning F around the vertical tori, one can construct a
horizontal surface F ′ that intersects the vertical tori {Ti } in any 2g-tuple. This F ′

has the same boundary as F in ∂N (c), so F ′ ∪ A is a horizontal Heegaard surface
6′ for M . There are two ways to see that 6′ is a strongly irreducible, horizontal
Heegaard surface. First, the reader can check that there is a homeomorphism from
M to itself taking 6 onto 6′. Second, both Heegaard splittings are constructed
from the same critical fiber in M , so by Sedgwick’s results [1999], both are strongly
irreducible. The Heegaard surface 6′ determines the same 2g-tuple of integers
as F ′, so for each 2g-tuple of integers, there is a strongly irreducible, horizontal
Heegaard splitting whose slopes in {Ti } realize those values. �

4. Double primitive knots

Here, we will construct a family of 3-manifolds with infinitely many nonisotopic
genus three Heegaard splittings. In the next section, we will show that for certain
Seifert fibered spaces over the torus with two critical fibers, the Heegaard splittings
all determine the same Nielsen classes of generators for the fundamental group.
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Let X be a compact, closed, orientable, irreducible 3-manifold with a genus two
Heegaard splitting (6′, H ′1, H ′2), and let `⊂6′ be a simple closed curve such that
` intersects some essential, properly embedded disk Di ⊂ H ′i at a single point for
i = 1, 2. Such a loop is called double primitive. (A knot in S3 that is isotopic to a
double primitive loop in a genus two Heegaard splitting is called a Berge knot.)

Let Y ⊂ X be a regular neighborhood of a double primitive loop ` ⊂ 6′. The
intersection ∂Y∩6′ is a pair of loops `′1 and `′2 in the torus ∂Y . Define N = T×S1,
where T is a once punctured torus, and let x1 and x2 be points in S1. Let M be the
result of gluing X \ Y to N by a map that sends `′i to ∂T ×{xi } for i = 1, 2.

Lemma 4. 6 =6′ ∪ (T ×{x1, x2}) is a genus three Heegaard surface for M.

Proof. The complement in N of (T × {x1, x2}) consists of two components, each
of whose closure is a genus two handlebody T × I , where I ⊂ S1 is one of the two
intervals with endpoints x1 and x2. Let N1 and N2 be these handlebodies. Then
each of N1 ∩ ∂N and N2 ∩ ∂N is an annulus.

In M , the complement M1 = H ′1 \ Y is a handlebody. Because ` is double
primitive, the intersection of M1 with the closure of Y is an annular neighborhood
A of a loop in ∂M1 that intersects some properly embedded, essential disk D⊂M1

at a single point. A closed regular neighborhood U in M1 of A∪D is a solid torus
such that U intersects the closure of M1 \U in a disk. In M , the set U is a regular
neighborhood of an annulus in the boundary of N1. Thus N1∪U is a handlebody.

The set M1 ∪ N1 is the union of the closure of M1 \U (which is a handlebody)
and the handlebody N1 ∪ U . The two handlebodies intersect in a disk, so their
union is a handlebody H1. A similar argument for M2 implies that N2 ∪ M2 is a
handlebody H2. Thus 6 = ∂H1 = ∂H2 is a Heegaard surface for M . �

The Heegaard surface 6 =6′ ∪ (T ×{x1, x2}) determines a Heegaard splitting
(6, H1, H2) such that H ′1 ⊂ H1 and H ′2 ⊂ H2. Lemma 4 requires that for s ∈ S1,
∂T ×{s} is sent to the same slope in ∂Y as `′1, but there is no requirement for the
slope that a loop {t}×S1 (where t ∈ ∂T ) is glued to. Thus there are infinitely many
gluings that will produce a manifold with a genus three Heegaard splitting.

Lemma 5. If (6, H1, H2) is weakly reducible, then X \ Y is a solid torus.

Proof. Because M has Heegaard genus at most three, it cannot be a connect sum
of T 3 with a nontrivial manifold. If ∂N is compressible, then it compresses down
to a sphere, which must bound a ball. Thus if ∂N is compressible, X \Y is a solid
torus. We will therefore assume that ∂N is incompressible.

Assume 6 be weakly reducible. By Casson and Gordon’s theorem [1987], if
(6, H1, H2) is weakly reducible, 6 is reducible or compresses to a separating
incompressible surface S in M . In the second case, each component of the com-
plement of S has a Heegaard splitting that comes from compressing 6.
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The 3-manifold M does not admit a genus two Heegaard splitting because by the
main theorem of [Kobayashi 1984], if a closed 3-manifold M contains a separating
incompressible torus and a genus two Heegaard splitting, then each piece of the
complement is either a Seifert fibered space over a disk, an annulus or a Möbius
band, the complement of a (1, 1) knot in a lens space, or the complement of a two-
bridge knot in S3. (In fact, the theorem is much stronger than this, but that’s all
we need.) The component N is not one of these three types, so M does not admit
a genus two Heegaard splitting. Because 6 is not reducible, the weak reduction
must determine a separating incompressible surface S ⊂ M .

Because S is the result of compressing the genus three surface 6 at least twice,
S must consist of one, two or three tori. Because each component of M \ S has a
Heegaard splitting that comes from compressing the genus three surface 6, each
component of M \ S has Heegaard genus at most two. Any submanifold of M
containing N has Heegaard genus at least three (for the same reason that M has
Heegaard genus at least three), so S must intersect N .

Any incompressible surface in N is either a vertical torus or a horizontal once
punctured torus. If S∩N contains a horizontal punctured torus, then S\N contains
a disk, so ∂N is compressible into X , which contradicts the assumption on ∂N .

Thus S consists of vertical tori in N . Because it is separating, S must consist
of a union U ⊂ N of two parallel vertical tori (each of which is nonseparating).
Each component of M \U has a Heegaard splitting induced from 6 and such a
splitting has genus at most two. One component is homeomorphic to a torus cross
an interval. The other is the union of X \ Y and a pair of pants cross an interval.

Let Z be this second component. Note that if X \ Y is not a solid torus, then
the fundamental group of X \ Y has rank at least two. The fundamental group of
a pair of pants cross an interval is the direct product of Z and a free group F2 on
two generators. By Van Kampen’s theorem, the fundamental group of Z is the
quotient of the free product π1(X \Y )∗ (F2

×Z) by two relations, one that equates
an element of F2 to an element of π1(X \Y ), and the other that equates a generator
of Z to an element of π1(X \Y ). There is thus a homomorphism from π1(Z) onto
the direct product π1(X \Y )×Z. If Z admits a genus two Heegaard splitting, then
π1(Z) has rank at most 2, so π1(X \ Y ) has rank at most one, implying X \ Y is a
solid torus. �

Let α and β be essential simple closed curves in T whose intersection is a single
point. Define Sα =α×S1 and Sβ =β×S1. Because6 contains T×x1 and T×x2,
it determines the slope 0 in both Sα and Sβ . Let 6i be the result of spinning 6
i times around Sβ as in Section 3. If two such surfaces 6i and 6 j (for i 6= j)
are isotopic, then 6i determines both the slope i and the slope j . By Lemma 3,
this implies that 6 can be isotoped to intersect X \ Y in an incompressible, twice
punctured, genus zero surface, that is, an annulus.
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m
E

Figure 3. The construction of the surface E .

Assume that 6 can be isotoped to intersect X \Y in an incompressible, properly
embedded annulus A. If A is boundary compressible, then because X is irreducible,
A must be boundary parallel. Isotoping A out of X \ Y makes 6 disjoint from
∂(X \ Y ). This implies that ∂(X \ Y ) must be compressible because a Heegaard
surface cannot be made disjoint from a closed incompressible surface. Thus we
have proved the following:

Lemma 6. If ∂(X \Y ) is incompressible in M and X \Y does not contain a prop-
erly embedded, essential (that is, incompressible and boundary incompressible)
annulus, then M admits infinitely many nonisotopic Heegaard splittings.

Note that if M is the complement of a knot K in S3, then Lemma 6 holds
whenever K is not a torus knot or a cable knot.

5. Nielsen equivalence

Let (O, B1, B2) be a genus one Heegaard splitting of S3, and let K ⊂ O be a
simple closed curve that does not bound a disk in S3. (The curve K is a nontrivial
torus knot.) We can give each solid torus B1 and B2 a Seifert fibration such that
K ⊂ ∂Bi is a fiber. This defines a Seifert fibration of S3 such that there is a regular
neighborhood Y of K consisting of a union of fibers. Thus the complement in S3

of Y is a Seifert fibered space over the disk with two singular fibers. A regular
fiber in ∂Y determines the same slope as O ∩ ∂Y .

Let m be the boundary of a small disk D that intersects K in a single point
and O in a single arc, as in Figure 3. Let U be an open regular neighborhood
of m. Define E to be the union of the twice punctured torus O \U and the annulus
∂U ∩ B1. (Here U is the closure of the open set U .) Define E ′ to be the union of
O \U and ∂U ∩ B2.

Because m bounds a disk that intersects K at a single point, there is a homeo-
morphism from S3 to the result of 1 Dehn surgery on m that takes K onto itself.
Let F be the image in this homeomorphism of E , and let F ′ be the image of E ′.
In other words, F and F ′ are the result of “twisting” E and E ′, respectively, about
the meridian m. The differences E ′ \ E and E \ E ′ are annuli whose union bounds
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the solid torus U . The annuli meet in meridians of the solid torus. After the Dehn
surgery, F ′ \ F and F \ F ′ again bound the solid torus, but this time they meet
along a longitude of the solid torus. Thus there is an isotopy from F ′ \F to F \F ′.
Extending this isotopy to all of F ′ takes F ′ onto F , so F and F ′ are isotopic in S3

fixing F ′ ∩ Y = F ∩ Y .
The surface F is the result of adding a trivial handle to the genus one Heegaard

surface O . Thus F defines a genus two Heegaard splitting (6′, H ′1, H ′2) for S3

where 6′ = F , H ′1 = B1 \U , and H ′2 = B2 ∪U . The intersection D ∩ H ′2 ∩ B1

is an essential disk properly embedded in H ′2 and intersects K at a single point.
Thus K is primitive in H ′2. Because F ′ is isotopic to F , a similar argument for F ′

implies that K is also primitive in H ′1. (The reader can check that F results from
taking the standard unknotting graph consisting of a core for B1 and a short arc
to K , then pushing K into the resulting Heegaard surface in a way that makes it
double primitive.)

Let T be a once punctured torus, let s1 and s2 be points in S1, and let t1 and t2 be
points in ∂T . Each component of O∩∂Y intersects each component of 6′∩∂Y at
a single point, so these four loops cut ∂Y into four squares. The loops ti × S1 and
∂T × si intersect at one point for each pair, so they form a homeomorphic pattern
in ∂T ×S1. Let M be the result of gluing S3

\Y to T ×S1 so that the loops O∩∂Y
are sent to t1 × S1 and t2 × S1 while the loops 6′ ∩ ∂Y are sent to ∂T × s1 and
∂T × s2.

Since K is double primitive in6, Lemma 4 implies6= (6′\Y )∪(T×(s1∪s2))

is the surface in a genus three Heegaard splitting (6, H1, H2) for M . By Lemma 5,
this Heegaard splitting is strongly irreducible. Moreover, because loops of the
Seifert fibration in ∂(S3

\ Y ) are glued to vertical loops in T × S1 (which can be
thought of as loops of a Seifert fibration for N ), M is a Seifert fibered space.

Let α and β be simple closed curves in T that intersect in a single point. As in the
previous section, we can spin 6 around the vertical torus Sβ = β× S1 to construct
an infinite family of Heegaard splittings {(6i , H i

1, H i
2)} such that 6i determines

the slope i in the vertical torus Sα = α× S1.

Lemma 7. The Heegaard splittings (6i , H i
1, H i

2) and (6 j , H j
1 , H j

2 ) are isotopic
if and only if i = j . However, the generating set for π1(M) defined by the inclusion
map π1(H i

1)→ π1(M) is Nielsen equivalent to that defined by π1(H
j

1 )→ π1(M)
for all i and j . The generating set determined by π1(H i

2) → π1(M) is Nielsen
equivalent that defined by π1(H

j
2 )→ π1(M) as well.

Proof. There is an essential annulus properly embedded in S3
\ Y , so Lemma 6

is not enough to distinguish Heegaard splittings by their slopes. However, this
annulus intersects ∂Y in the same slope as O ∩ ∂Y , which determines the slope
∞ in ∂T × S1. Since there is no incompressible surface with slope ±1, Lemma 3
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implies that6i determines a unique slope on any vertical torus in T×S1. Since6i

determines slope i and6 j determines slope j , we conclude6i and6 j are isotopic
if and only if i = j .

All that remains is to show that the Nielsen classes of the generators for π1(M)
determined by these Heegaard splittings are all equivalent. We will show this for
60 and 61. A similar argument works for any 6i and 6i+1 and the general result
follows by induction on |i |.

We will choose as the base point for π1(M) a point p = (a, b) ∈ ∂T × S1. The
fundamental group of the punctured torus T × {b} (with base point b ∈ ∂T ) is a
free group on two generators. Let x and y be the inclusion into π1(M) of these
generators. We can choose x and y so that an arc representing x intersects Sβ
at a single point and is disjoint from Sα. Similarly, we can assume that an arc
representing y intersects Sα at a single point and is disjoint from Sβ .

Let z be the element of π1(M) defined by the loop a× S1. Let t be the element
of π1(M) defined by a path that follows a short arc into B1 ⊂ S3, then follows
a core of B1 disjoint from the disk D, and then follows the short arc back to p.
Because z is determined by a regular fiber and t is determined by a singular fiber
of order t , we have z = t p for some integer p.

The fundamental group of H 0
1 is generated by x , y and t , so it induces the

Nielsen class [x, y, t] for π1(M). The only generator for H 0
1 that intersects Sβ

is x . Spinning 60 around Sβ replaces x with xz= zx or xz−1
= z−1x , while fixing

y and t . Without loss of generality, we will assume it replaces x with xt . Thus
H 1

1 determines the Nielsen class [xz, y, t]. We noted above that z = t p, so the
new generating set is in fact [xt p, y, t], which is Nielsen equivalent to [x, y, t], the
generating set for H 0

1 . The generating sets induced by π1(H 0
1 ) and π1(H 1

1 ), and
by induction of any π1(H i

1), are Nielsen equivalent.
Above, we constructed 60 from the surface F in the knot complement M \ Y .

Switching the roles of B1 and B2 in this construction switches F and F ′, so the
resulting Heegaard splitting would be constructed from F ′. However, we noted
that F ′ is isotopic to F in M \ Y . Thus the Heegaard splitting that results from
switching the roles of B1 and B2 is isotopic to (60, H 0

2 , H 0
1 ), that is, the same

Heegaard surface, but with the order of the handlebodies switched. We can thus
apply the argument above to H 0

2 and H 1
2 , implying that the generating sets induced

by π1(H i
2) and π1(H

j
2 ) are Nielsen equivalent for all i, j . �
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REPRESENTATIONS OF MULTILOOP ALGEBRAS

MICHAEL LAU

We describe the finite-dimensional simple modules of all the (twisted and
untwisted) multiloop algebras and classify them up to isomorphism.

1. Introduction

Multiloop algebras are multivariable generalizations of the loop algebras appearing
in affine Kac–Moody theory. The study of these algebras and their extensions
includes a substantial literature on (twisted and untwisted) multiloop, toroidal, and
extended affine Lie algebras. This paper describes the finite-dimensional simple
modules of multiloop algebras and classifies them up to isomorphism.

Let g be a finite-dimensional simple Lie algebra over an algebraically closed
field F of characteristic zero. Suppose that σ1, . . . , σN : g→ g are commuting
automorphisms of finite orders m1, . . . ,m N , respectively. For each i , fix a primitive
mi -th root of unity ξi ∈ F . Then g decomposes into common eigenspaces relative
to these automorphisms:

g=
⊕
k∈G

gk,

where gk = {x ∈ g | σi x = ξ
ki
i x} and k is the image of each k ∈ ZN under the

canonical map ZN
→ G = Z/m1Z× · · · × Z/m N Z. The multiloop algebra of g,

relative to these automorphisms, is the Lie algebra

L= L(g; σ1, . . . , σN )=
⊕
k∈ZN

gk ⊗ Ftk,

where Ftk is the span of tk
= tk1

1 · · · t
kN
N , and multiplication is defined pointwise.

If the automorphisms σ1, . . . , σN are all trivial, L is called an untwisted multiloop
algebra. Otherwise, it is a twisted multiloop algebra.

In the one variable case (untwisted and twisted loop algebras), a proof of the
classification of the finite-dimensional simple modules appears in [Chari 1986;

MSC2000: 17B10, 17B65.
Keywords: multiloop algebras, toroidal Lie algebras, finite-dimensional modules.
The author gratefully acknowledges support from the University of Windsor and the Natural Sciences
and Engineering Research Council of Canada.
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Chari and Pressley 1986; 1987; 1988]. A complete list of these modules also
appears explicitly in [Rao 1993], and a very recent paper [Chari et al. 2008] gives
a detailed discussion of this problem in the twisted loop case.

A description of the finite-dimensional simple modules of the untwisted mul-
tiloop Lie algebras was first given by S. E. Rao [2001]. Subsequent work by
P. Batra [2004] provided a complete (but redundant) list of the finite-dimensional
simple modules when σ1 is a diagram automorphism and the other automorphisms
σ2, . . . , σN are all trivial.

In the one variable case, every twisted loop algebra L(g; τ ◦ γ ) defined by an
inner automorphism τ and a diagram automorphism γ is isomorphic to L(g; γ )

[Kac 1990, Proposition 8.5]. It thus suffices to consider twists only by diagram
automorphisms in this setting. Unfortunately, this is far from true in the multivari-
able case. See [Gille and Pianzola 2007, Remark 5.9], for instance. It has recently
been shown that the centreless core of almost every extended affine Lie algebra
is a multiloop algebra [Allison et al. 2009], using results of [Allison et al. 2008;
Neher 2004]. Even for these multiloop algebras, any number of the automorphisms
σi can be nontrivial, and any number of them can fail to be diagram automorphisms.

In this paper, we consider an arbitrary (twisted or untwisted) multiloop alge-
bra L. From any ideal I of L, we construct a G-graded ideal I = I (I) of the
ring R = F[t±1

1 , . . . , t±1
N ] of Laurent polynomials. If I is the kernel of a finite-

dimensional irreducible representation, the 0-component I0 of I turns out to be a
radical ideal of the 0-component of R. The resulting decomposition of I0 into an
intersection of a finite number of maximal ideals produces an isomorphism

ψa : L/I→ g⊕ · · ·⊕ g (r copies)

whose composition with the quotient map π :L→L/I is evaluation at an r -tuple
a = (a1, . . . , ar ) of points ai ∈ (F×)N :

ψa ◦π : x ⊗ f (t) 7→ ( f (a1)x, . . . , f (ar )x)

for any x ⊗ f (t) ∈ L. Since the finite-dimensional simple modules of the semi-
simple Lie algebra g⊕· · ·⊕g are the tensor products of finite-dimensional simple
modules for g, we obtain a complete (but redundant) list of the finite-dimensional
irreducible representations of L (Corollary 4.4). Namely, any finite-dimensional
simple module for L is of the form

V (λ, a)= Vλ1(a1)⊗ · · ·⊗ Vλr (ar ),

where Vλi is the g-module of dominant integral highest weight λi , and Vλi (ai )

is the L-module obtained by evaluating elements of L at the point ai , and then
letting the resulting element of g act on Vλi . The r -tuples a = (a1, . . . , ar ) that
occur in this process must satisfy the condition that the points m(ai ) are all distinct,
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where m(ai )= (a
m1
i1 , . . . , am N

i N ) is determined by the orders m1, . . . ,m N of the auto-
morphisms σ1, . . . , σN . Conversely, the L-module V (λ, a) is finite-dimensional
and simple if the ai satisfy this condition (Theorem 4.5).

In the second half of the paper, we establish necessary and sufficient conditions
for L-modules V (λ, a) and V (µ, b) to be isomorphic. Namely, we “pull back” a
triangular decomposition N−⊕H⊕N+ of g⊕· · ·⊕g to a triangular decomposition
ψ−1

a (N−)⊕ψ−1
a (H)⊕ψ−1

a (N+) of L/I. The modules V (λ, a) and V (µ, b) are
highest weight with respect to this decomposition of L/I, and they are isomorphic
if and only if they have the same highest weights. We conclude with three equiva-
lent criteria for isomorphism in terms of an explicit formula in Theorem 5.4, orbits
under a group action in Corollary 5.9, and equivariant maps in Corollary 5.10.
These are the first such isomorphism results for modules in any multiloop setting.

Interestingly, the triangular decomposition N−⊕H⊕N+ is replaced with a new
triangular decomposition ψbψ

−1
a (N−)⊕ψbψ

−1
a (H)⊕ψbψ

−1
a (N+) of g⊕r in the

computation of the highest weight of V (µ, b). Unlike diagram automorphisms,
arbitrary finite-order automorphisms σi often fail to stabilize any triangular de-
composition of a finite-dimensional semisimple Lie algebra. This fact is reflected
in the change of triangular decomposition on g⊕r , and it is one of the reasons that
past work considered only twists by diagram automorphisms.

Another novelty in this classification is the passage from twists by a single non-
trivial automorphism σ1 to a family of nontrivial automorphisms σ1, . . . , σN . Here
the major obstacle to past approaches was reliance on the representation theory of
the fixed point subalgebra g0 under the action of the automorphisms. While this
was a great success when working with twists by a single automorphism, it cannot
be used when considering twists by more than one automorphism, since the algebra
g0 is then often 0. We avoid this pitfall by using a new approach that does not rely
on the usual Dynkin diagram folding arguments.

We expect the methods of this paper to be widely applicable. For example,
the arguments given here classify the finite-dimensional simple modules of the
Lie algebra Map(X, g) of g-valued regular functions on any affine variety X ;
namely, they are tensor products of evaluation modules at distinct points of X .
Since the release of earlier versions of this paper, our approach has already been
adapted to classify modules for Lie algebras g⊗ A of g-valued functions on affine
schemes Spec(A) and their invariants under more general finite group actions
[Chari et al. 2009; Neher et al. 2009]. Another promising direction is the classifi-
cation of ZN -graded-simple modules of L(g; σ1, . . . , σN ) with finite-dimensional
graded components. See [Pal and Batra 2008; Rao 2001] for partial results.

Notation. Throughout this paper, F will be an algebraically closed field of char-
acteristic zero. All Lie algebras, linear spans, and tensor products will be taken
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over F unless otherwise indicated. We will denote the integers by Z, the nonneg-
ative integers by Z+, and the nonzero elements of F by F×.

2. Multiloop algebras and their ideals

The following proposition is an immediate consequence of general facts about
reductive Lie algebras.

Proposition 2.1. Let L be a perfect Lie algebra over F , and let φ : L→ End V be
a finite-dimensional irreducible representation. Then L/ kerφ is a semisimple Lie
algebra.

Proof. The representation φ descends to a faithful representation of L/ kerφ.
By [Bourbaki 1960, Proposition 6.4.5], any Lie algebra with a faithful finite-
dimensional irreducible representation is reductive. Also, L is perfect. Therefore,
L/ kerφ is perfect and reductive, and hence semisimple. �

We now focus our attention on multiloop algebras. Let g be a finite-dimensional
simple Lie algebra over F , and let R= F[t±1

1 , . . . , t±1
N ] be the commutative algebra

of Laurent polynomials in N variables. The untwisted multiloop algebra is the Lie
algebra g⊗ R with (bilinear) pointwise multiplication given by

[x ⊗ f, y⊗ g] = [x, y]⊗ f g for all x, y ∈ g and f, g ∈ R.

Suppose that g is equipped with N commuting automorphisms σ1, . . . , σN : g→ g

of finite orders m1, . . . ,m N , respectively. For each i , fix ξi ∈ F to be a primitive
mi -th root of 1. Then g has a common eigenspace decomposition g =

⊕
k∈G gk ,

where k is the image of k = (k1, . . . , kN ) ∈ ZN under the canonical map

ZN
→ G = Z/m1Z× · · ·×Z/m N Z,

and

gk = {x ∈ g | σi x = ξ
ki
i x for i = 1, . . . , N }.

The (twisted) multiloop algebra L= L(g; σ1, . . . , σN ) is the Lie subalgebra

L=
⊕
k∈ZN

gk ⊗ Ftk
⊆ g⊗ R,

where tk
= tk1

1 · · · t
kN
N is multiindex notation.

Note that R has a G-grading

(2.2) R =
⊕
k∈G

Rk,
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where R0 = F[t±m1
1 , . . . , t±m N

N ] and Rk = tk R0 for every k ∈ ZN . In this notation,

L=
⊕
k∈G

(gk ⊗ Rk).

Fix an F-basis

(2.3) {xk j | j = 1, . . . , dim gk}

of gk for all k ∈ G. Then

(2.4) L=
⊕
k∈G

dim gk⊕
j=1

(Fxk j ⊗ Rk).

Since g is simple (hence perfect) and graded, each xk j can be expressed as a sum
of brackets of homogeneous elements y, z ∈ g, with deg y + deg z = k. For each
such k ∈ ZN and pair y, z, there exist a, b ∈ ZN with deg y = a, deg z = b, and
a + b = k. Then the sum of the brackets [y ⊗ ta, z ⊗ tb

] will be xk j ⊗ tk . Since
these elements span L, it is clear that L is perfect. See also [Allison et al. 2006,
Lemma 4.9].

Let πk j be the projection πk j :L→Fxk j⊗Rk relative to the decomposition (2.4).
We will view πk j as a projection L→ Rk by identifying xk j ⊗ f with f for all
f ∈ Rk . Let I be an ideal of the Lie algebra L, and let I = I (I) be the ideal of R
generated by ⋃

k∈G

dim gk⋃
j=1

πk j (I).

Note that the definition of I is independent of the choice of homogeneous basis
{xk j } of g, and the ideal I is G-graded since its generators are homogeneous with
respect to the G-grading of R. That is,

I =
⊕
k∈G

Ik, where Ik = I ∩ Rk .

Moreover, t`−k Ik ⊆ I ∩ R` = I` = t`−k(tk−` I`)⊆ t`−k Ik , so

(2.5) I` = t`−k Ik for all k, ` ∈ ZN .

We will use the following technical lemma to show that I= L∩ (g⊗ I ).

Lemma 2.6. Let

Y =
∑
r∈G

dim gr∑
n=1

xrn ⊗πrn(Y ) ∈ I.

Then xki ⊗ tk−`π` j (Y ) ∈ I for all k, ` ∈ ZN , 1≤ i ≤ dim gk , and 1≤ j ≤ dim g`.
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Proof. The finite-dimensional simple Lie algebra g is a finite-dimensional simple
g-module (and hence a finite-dimensional simple U(g)-module) under the adjoint
action of g. Fix k, ` ∈ ZN , i ∈ {1, . . . , dim gk} and j ∈ {1, . . . , dim g`}. By the
Jacobson density theorem, there exists u ∈ U(g) such that

u .xrn =

{
xki if r = ` and n = j,
0 otherwise

for all r ∈G and n ∈ {1, . . . , gr }. By the Poincaré–Birkhoff–Witt theorem, we can
write u =

∑a
s=1 ps , where a ≥ 1 and each ps is a monomial in the variables in

{xrn | r ∈ G, n = 1, . . . , dim gr }. Considering the induced G-grading of U(g), we
can assume that each ps is homogeneous of degree k− `. Write

ps = cs

∏
r∈G

dim gr∏
n=1

(xrn)
b(s)rn , where cs ∈ F and b(s)rn ∈ Z+.

Since ps is homogeneous of degree k− ` in the G-grading of U(g), we can
choose α(s, r , n, 1), α(s, r , n, 2), . . . , α(s, r , n, b(s)rn )∈ZN for each s ∈ {1, . . . , a},
r ∈ G, and n ∈ {1, . . . , dim gr } so that

(i) r = α(s, r , n, 1)= · · · = α(s, r , n, b(s)rn ) and

(ii)
∑
r∈G

dim gr∑
n=1

b(s)rn∑
b=1

α(s, r , n, b)= k− `.

Then

p̃s = cs

∏
r∈G

dim gr∏
n=1

b(s)rn∏
b=1

(xrn ⊗ tα(s,r ,n,b))

is in the universal enveloping algebra U(L) of L, which acts on I via the adjoint
action of L on I, and

∑a
s=1 p̃s .Y = xki⊗ tk−`π` j (Y ), so xki⊗ tk−`π` j (Y )∈I. �

Proposition 2.7. In the notation introduced above,

I= L∩ (g⊗ I )(2.8)

=

⊕
k∈G

gk ⊗ Ik .(2.9)

Proof. The second equality (2.9) and the inclusion I⊆L∩ (g⊗ I ) are clear, so it
remains only to verify the reverse inclusion L∩ (g⊗ I ) ⊆ I. In light of (2.9), it
suffices to show that xki ⊗ f ∈ I for all k ∈ G, i ∈ {1, . . . , dim gk}, and f ∈ Ik .
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By the definition of I , there exist Y` j ∈ I and f` j ∈ Rk−` such that

f =
∑
`∈G

dim g`∑
j=1

f` jπ` j (Y` j ).

By Lemma 2.6, xki ⊗ trπ` j (Y` j ) ∈ I for all r, ` ∈ ZN satisfying r = k− `. Since
each f` j ∈ Rk−` is an F-linear combination of {tr

| r = k− `}, we see that

xki ⊗ f` jπ` j (Y` j ) ∈ I

for all ` ∈ G and j = 1, . . . , dim g`. Thus xki ⊗ f ∈ I. �

We close this section by considering the structure of I0 ⊆ R0 in the case where
I is the kernel of an irreducible finite-dimensional representation of L. Clearly I0
is an ideal of R0. Moreover, it is a radical ideal:

Proposition 2.10. Let φ : L→ End V be a finite-dimensional irreducible repre-
sentation of the multiloop algebra L, and let I = kerφ. Define I = I (I) ⊆ R as
above. Then the graded component I0 is a radical ideal of R0.

Proof. Suppose p is an element of
√

I0, the radical of the ideal I0 = I ∩ R0 of R0.
Choose k ∈ ZN so that gk 6= 0, and let x ∈ gk be a nonzero element.

For y ⊗ f ∈ L, let 〈y ⊗ f 〉 ⊆ L be the ideal (of L) generated by y ⊗ f . Let
J = 〈x ⊗ tk p〉, and note that the n-th term J (n) in the derived series of J satisfies
J (n) ⊆ L ∩ (g⊗ 〈pn

〉), where 〈pn
〉 is the principal ideal of R generated by pn .

Since I` = t` I0 for all ` ∈ ZN by (2.5), and since pn
∈ I0 for n sufficiently large,

we see that J (n) ⊆ L∩ (g⊗ I ) for n� 0. Then by Proposition 2.7, J (n) ⊆ I, so

J+I
I
⊆ Rad(L/I).

Since Rad(L/I) = 0 by Proposition 2.1, we see that x ⊗ tk p ∈ I. That is,
p = t−k(tk p) ∈ t−k Ik = I0, and thus

√
I0 = I0. �

3. Some commutative algebra

In this short section, we recall some basic commutative algebra that will be useful
for classifying modules for multiloop algebras. Let F , F×, and R be as before. For
any ideal I ⊆ R, let V(I )={x ∈ (F×)N

| f (x)=0 for all f ∈ I } be the (quasiaffine)
variety corresponding to I , and let Poly(S) = {g ∈ R | g(s) = 0 for all s ∈ S} be
the ideal associated with any subset S ⊆ (F×)N .

Proposition 3.1. Let I be an ideal of R = F[t±1
1 , . . . , t±1

N ]. Then

Poly(V(I ))=
√

I .
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Proof. It is straightforward to verify that the usual proofs of the Hilbert Null-
stellensatz (see [Atiyah and Macdonald 1969, page 85] for instance) also hold for
this Laurent polynomial analogue. �

The following crucial lemma is an easy consequence of Proposition 3.1:

Lemma 3.2. Let J be a radical ideal of R for which the quotient R/J is a finite-
dimensional vector space over F. Then there exist distinct points a1, . . . , ar ∈

(F×)N such that
J =ma1 ∩ · · · ∩mar ,

where mai = 〈t1 − ai1, . . . , tN − ai N 〉 is the maximal ideal corresponding to ai =

(ai1, . . . , ai N ) for i = 1, . . . , r . Moreover, the set {a1, . . . , ar } is unique.

Proof. Clearly, a ∈ V(J ) implies that J ⊆ ma , so J ⊆
⋂

a∈V(J )ma . Conversely, if
f ∈

⋂
a∈V(J ) ma and x ∈ V(J ), then f (x) = 0 and f ∈ Poly(V(J )) =

√
J = J .

Hence J =
⋂

a∈V(J )ma .
Since J ⊆ ma1 ∩ · · · ∩mar for all subsets {a1, . . . , ar } ⊆ V(J ), we see that the

(F-vector space) dimension of R/(ma1 ∩ · · · ∩ mar ) is bounded by dimF (R/J ).
Take a finite collection {a1, . . . , ar } of points in V(J ) for which this dimension is
maximal. Then ma1∩· · ·∩mar ∩mar+1 =ma1∩· · ·∩mar for all points ar+1 ∈V(J ),
so

J =
⋂

b∈V(J )

mb=ma1 ∩ · · · ∩mar ∩

( ⋂
b∈V(J )

mb

)
=ma1 ∩ · · · ∩mar .

To see that {a1, . . . , ar } ⊆ (F×)N is uniquely determined, suppose that J =
ma1 ∩ · · · ∩mar =mb1 ∩ · · · ∩mbs for some a1, . . . , ar , b1, . . . , bs ∈ (F×)N . Then

{a1, . . . , ar } = V(ma1 ∩ · · · ∩mar )

= V(J )

= V(mb1 ∩ · · · ∩mbs )= {b1, . . . , bs}. �

Note that the ideal I0 ⊆ R0 of Proposition 2.10 is radical and cofinite. View-
ing R0 = F[t±m1

1 , . . . , t±m N
N ] as the ring of Laurent polynomials in the variables

tm1
1 , . . . , tm N

N , we see that

I0 = Ma1 ∩ · · · ∩Mar ,

where {a1, . . . , ar } = V(I0) is a set of distinct points in (F×)N , and

Mai = 〈t
m1
1 − ai1, . . . , tm N

N − ai N 〉R0

is the maximal ideal of R0 corresponding to the point ai = (ai1, . . . , ai N ). Then
by the Chinese remainder theorem, we have the following corollary:
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Corollary 3.3. Let I0 and R0 be as in Proposition 2.10. Then there exist unique
(up to reordering) points a1, . . . , ar ∈ (F×)N such that the canonical map

R0/I0→R0/Ma1 × · · ·× R0/Mar , f + I0 7→( f +Ma1, . . . , f +Mar )

is a well-defined F-algebra isomorphism.

4. Classification of simple modules

We now return to classifying the finite-dimensional simple modules of multiloop
algebras. As in Section 2, let g be a finite-dimensional simple Lie algebra, and let
φ : L→ End V be a finite-dimensional irreducible representation of a multiloop
algebra L = L(g; σ1, . . . , σN ) defined by commuting automorphisms σ1, . . . , σN

of order m1, . . . ,m N , respectively.
Define I, I , G, and R as in Section 2. Then we see that

L=
⊕
k∈G

gk ⊗ Rk and I=
⊕
k∈G

gk ⊗ Ik,

by Proposition 2.7. Since I is a G-graded ideal of L, we have

L/I=
⊕
k∈G

((gk ⊗ Rk)/(gk ⊗ Ik))=
⊕
k∈G

gk ⊗ (Rk/Ik).

Each graded component Rk/Ik of R/I is an R0-module, and it is easy to check
that the map

µk : R0/I0→ Rk/Ik, f + I0 7→ tk f + Ik

is a well-defined R0-module homomorphism for each k ∈ZN and f ∈ R0. By (2.2)
and (2.5), Rk = tk R0 and t−k Ik = I0, so the map µk is both surjective and injective.
Hence the following lemma holds:

Lemma 4.1. Let k ∈ ZN . Then the map µk : R0/I0 → Rk/Ik is a well-defined
isomorphism of R0-modules. In particular, each graded component Rk/Ik has the
same dimension (as a vector space), that is, dim(Rk/Ik)= dim(R0/I0).

Let a1, . . . , ar ∈ (F×)N be the (unique) points defined by Corollary 3.3, and let
bi = (bi1, . . . , bi N ) be a point in (F×)N such that bm j

i j = ai j for all 1 ≤ i ≤ r and
1 ≤ j ≤ N . Recall that Ik = tk I0 for all k ∈ ZN , and I0 is contained in the ideal
Mai of R0 for i = 1, . . . , r . Therefore, the map

ψ = ψb : L→ g⊕ · · ·⊕ g (r copies),

x ⊗ f 7→ ( f (b1)x, . . . , f (br )x)

descends to a well-defined Lie algebra homomorphism

(4.2) ψ : L/ kerφ→ g⊕ · · ·⊕ g.
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Theorem 4.3. The map ψ : L/ kerφ → g ⊕ · · · ⊕ g in (4.2) is a Lie algebra
isomorphism.

Proof. Let k ∈ ZN , and let ψk : gk ⊗ (Rk/Ik)→ gk ⊕ · · ·⊕ gk be the restriction of
ψ to the graded component gk ⊗ (Rk/Ik) of L/ kerφ.

The map ψ is injective if each ψk is injective. In the notation of (2.3), if

u =
dim gk∑

j=1

xk j ⊗ (t
k f j (t)+ Ik)

is in the kernel of ψk for some collection of f j ∈ R0, then bk
i f j (bi ) = 0 for all i

and j . Then for all i and j , we have f j (bi ) = 0 and f j ∈ Mai , where Mai is the
ideal of R0 generated by {tm`

` − ai` | ` = 1, . . . , N }. Hence f j ∈
⋂r

i=1 Mai = I0,
so tk f j (t) ∈ tk I0 = Ik , and

dim gk∑
j=1

xk j ⊗ tk f j (t) ∈ gk ⊗ Ik ⊆ kerφ.

Hence u = 0 in L/ kerφ, so ψk (and thus ψ) is injective.
By Lemma 4.1, dim(R`/I`)= dim(R0/I0) for all ` ∈ ZN . Therefore,

dim(L/ kerφ)=
∑
`∈G

(dim g`)(dim(R`/I`))= dim(R0/I0) dim g.

Since F is algebraically closed, R0/Mai
∼= F for every i , so the (F-vector space)

dimensions satisfy

dim(R0/I0)= dim(R0/Ma1 × · · ·× R0/Mar )= r,

by Corollary 3.3. Therefore, ψ is an injective homomorphism between two Lie
algebras of equal dimension, so ψ is an isomorphism. �

The finite-dimensional simple modules over direct sums of copies of the Lie
algebra g are tensor products of finite-dimensional simple modules over g. (See
[Bourbaki 1958, section 7, numéro 7] for instance.) We can thus conclude that the
finite-dimensional simple modules for multiloop algebras are pullbacks (under ψ)
of tensor products of finite-dimensional simple modules over g.

Fix a Cartan subalgebra h⊂ g, a base1 of simple roots, and weights λi ∈ h∗ for
i = 1, . . . , r . Then we will write Vλi (bi ) for the simple g-module Vλi of highest
weight λi , equipped with the L-action given by

(x ⊗ f (t)).v = f (bi )xv for all x ⊗ f ∈ L and v ∈ Vλi .
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The tensor product of such a family of evaluation modules will be denoted

V (λ, b)= Vλ1(b1)⊗ · · ·⊗ Vλr (br ),

and we will write m(bi ) for the point (bm1
i1 , . . . , bm N

i N ) ∈ (F
×)N for i = 1, . . . , r .

We have now proved one of our main results:

Corollary 4.4. Let V be a finite-dimensional simple module for the multiloop
algebra L. Then there exist b1, . . . , br ∈ (F×)N and λ1, . . . , λr dominant integral
weights for g such that V ∼= V (λ, b), where m(bi ) 6= m(b j ) whenever i 6= j . �

Conversely, if the points m(bi )∈ (F×)N are pairwise distinct, then such a tensor
product of evaluation modules is simple:

Theorem 4.5. Let λ1, . . . , λr be dominant integral weights for g, and suppose
b1, . . . , br ∈ (F×)N satisfy the property that m(bi ) 6=m(b j ) whenever i 6= j . Then
V (λ, b) is a finite-dimensional simple L-module.

Proof. Let I0 be the intersection
⋂r

i=1 Mai of the maximal ideals Mai of R0 that
correspond to the points ai = m(bi ). For any k, ` ∈ ZN , we see that tk−` I0 = I0 if
k = ` as elements of G = Z/m1Z× · · · × Z/m N Z. Thus tk I0 = t` I0 if k = `, so
we can unambiguously define Ik = tk I0 for any k ∈ ZN .

Since a1, . . . , ar are pairwise distinct points in (F×)N , the proof of Theorem 4.3
(in particular, the appeal to Corollary 3.3) shows that the map

ψ : L→ g⊕ · · ·⊕ g (r copies),

x ⊗ f (t) 7→ ( f (b1)x, . . . , f (br )x)

is surjective. Then since each Vλi is a simple g-module, we see that the tensor
product Vλ1 ⊗ · · · ⊗ Vλr is a simple module over g ⊕ · · · ⊕ g, and the pullback
V (λ, b) is a simple L-module. �

Remark 4.6. It is not difficult to verify that if m(bi ) = m(b j ) for some i 6= j for
which λi and λ j are both nonzero, then V (λ, b) is not simple. However, as we do
not need this fact for the classification of simple modules, we will omit its proof.

5. Isomorphism classes of simple modules

By Corollary 4.4 and Theorem 4.5, the finite-dimensional simple modules of the
multiloop algebra L(g; σ1, . . . , σN ) are precisely the tensor products

(5.1) V (λ, a)= Vλ1(a1)⊗ · · ·⊗ Vλr (ar )

for which all the λi ∈ h∗ are dominant integral, and m(ai ) 6=m(a j ) whenever i 6= j .
If λi = 0 for some i , then Vλi (ai ) is the trivial module, and (up to isomorphism)
this term can be omitted from the tensor product (5.1). With the convention that
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empty tensor products of L-modules are the 1-dimensional trivial module, we may
assume that every λi is a nonzero dominant integral weight in (5.1).

To proceed further, we will need a lemma about how highest weights depend on
triangular decompositions.

Let L be a finite-dimensional semisimple Lie algebra with Cartan subalgebra
H and base of simple roots 1 ⊂ H∗. The group Aut L of automorphisms of L is
(canonically) a semidirect product of the group Int L of inner automorphisms and
the group Out L of diagram automorphisms with respect to (H,1):

Aut L = Int L o Out L .

See [Jacobson 1962, IX.4] for instance. Every automorphism θ can therefore be
decomposed as θ = τ ◦ γ with an inner part τ ∈ Int L and outer part γ ∈ Out L .

Lemma 5.2. Let H be a Cartan subalgebra of a finite-dimensional semisimple
Lie algebra L , and let 1 ⊂ H∗ be a base of simple roots. Suppose that V is a
finite-dimensional simple L-module of highest weight λ with respect to (H,1),
and θ ∈ Aut L. Write θ = τ ◦ γ for some τ ∈ Int L and γ ∈ Out L.

Then 1 ◦ θ−1
= {α ◦ θ−1

| α ∈1} is a base of simple roots for L , relative to the
Cartan subalgebra θ(H) ⊂ L , and V has highest weight λ ◦ τ−1 with respect to
(θ(H),1 ◦ θ−1).

Proof. Any diagram automorphism with respect to (H,1) will preserve H and 1,
so V has highest weight λ with respect to (γ (H),1◦γ−1)= (H,1). Therefore, it
is enough to prove the lemma for the case where θ = τ is an inner automorphism.
Since inner automorphisms are products of automorphisms of the form exp(ad x)
for ad-nilpotent elements x ∈ L , we may also assume without loss of generality
that τ = exp(ad u) for some ad-nilpotent element u.

Let ρ : L → End V be the homomorphism describing the action of L on V .
Then for any v ∈ V ,

(5.3) τ(h).v = (exp(ad u)(h)).v= eρ(u)ρ(h)e−ρ(u)v,

where eρ(u) denotes the matrix exponential of the endomorphism ρ(u).
The map eρ(u) is invertible, so for any nonzero element

w ∈ V H
α := {v ∈ V | h .v = α(h)v for all h ∈ H},

we see that eρ(u)w 6= 0, and using (5.3),

τ(h).eρ(u)w = eρ(u)ρ(h)e−ρ(u)eρ(u)w = α(h)eρ(u)w.

That is,

eρ(u)V H
α ⊆ V τ(H)

α◦τ−1 := {v ∈ V | h .v = α ◦ τ−1(h).v for all h ∈ τ(H)}.
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The reverse inclusion follows similarly by considering τ−1
= exp(− ad u), so

eρ(u)V H
α = V τ(H)

α◦τ−1

for all α ∈ H∗. In the case where V is the adjoint module L , we now see that α
is a root relative to H if and only if α ◦ τ−1 is a root relative to τ(H). It follows
easily that 1 ◦ τ−1 is a base of simple roots for L , with respect to the Cartan
subalgebra τ(H).

The second part also follows easily, since V τ(H)
λ◦τ−1 = eρ(u)V H

λ is nonzero, but
V τ(H)
λ◦τ−1

+α◦τ−1 = eρ(u)V H
λ+α = 0 for all α ∈ 1. That is, the highest weight of V is

λ ◦ τ−1, relative to (τ (H),1 ◦ τ−1)= (θ(H),1 ◦ θ−1). �

Fix a base1 of simple roots with respect to a Cartan subalgebra h⊆ g. The next
theorem gives necessary and sufficient conditions for modules of the form V (λ, a)
to be isomorphic.

Theorem 5.4. Let λ= (λ1, . . . , λr ) and µ= (µ1, . . . , µs) be sequences of nonzero
dominant integral weights with respect to 1. Suppose that a = (a1, . . . , ar ) and
b = (b1, . . . , bs) are sequences of points in (F×)N such that m(ai ) 6= m(a j ) and
m(bi ) 6= m(b j ) whenever i 6= j .

Then the finite-dimensional simple L-modules V (λ, a) and V (µ, b) are isomor-
phic if and only if r = s and there is a permutation π ∈ Sr satisfying the conditions

m(ai )= m(bπ(i)) and λi = µπ(i) ◦ γi

for i = 1, . . . , r , where γi is the outer part of the automorphism ωi : g→ g defined
by ωi (x)= (bk

π(i)/a
k
i )x for all k ∈ ZN and x ∈ gk .

Proof. Let φλ,a : L → End V (λ, a) and φµ,b : L → End V (µ, b) be the Lie
algebra homomorphisms defining the representations V (λ, a) and V (µ, b). By
Theorem 4.3, the kernel of φλ,a is equal to the kernel of the evaluation map ψa ,
defined by

ψa : L→ g⊕ · · ·⊕ g, x ⊗ f 7→ ( f (a1)x, . . . , f (ar )x)

for all x ⊗ f ∈ L. Similarly, kerφµ,b = kerψb.
If the L-modules V (λ, a) and V (µ, b) are isomorphic, then kerφλ,a = kerφµ,b,

so kerψa = kerψb. But kerψa =
⊕

k∈G gk ⊗ Ik , where Ik = tk I0 for all k ∈ ZN ,
and

I0 = Mm(a1) ∩ · · · ∩Mm(ar ),

where Mm(ai ) = 〈t
m1
1 − am1

i1 , . . . , tm N
N − am N

i N 〉R0
is the maximal ideal of R0 that

corresponds to the point m(ai ) = (a
m1
i1 , . . . , am N

i N ). Since kerψa = kerψb, we see
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that (in the notation of Section 3)

{m(a1), . . . ,m(ar )} = V(Mm(a1) ∩ · · · ∩Mm(ar ))

= V(I0)

= V(Mm(b1) ∩ · · · ∩Mm(bs))= {m(b1), . . . ,m(bs)}.

Hence r = s, and there is a permutation π ∈ Sr such that m(ai ) = m(bπ(i)) for
i = 1, . . . , r . We will write π(b)= (bπ(1), . . . , bπ(r)).

Let g=n−⊕h⊕n+ be the triangular decomposition of g relative to1. Assuming
that r = s and m(ai ) = m(bπ(i)) for all i , view Vλ = Vλ1 ⊗ · · · ⊗ Vλr and Vπ(µ) =
Vµπ(1) ⊗ · · ·⊗ Vµπ(r) as highest weight modules of the semisimple Lie algebra g⊕r

relative to the triangular decomposition

(5.5) g⊕r
= (n⊕r

−
)⊕ (h⊕r )⊕ (n⊕r

+
).

The highest weights of Vλ and Vπ(µ) are λ and π(µ)= (µπ(1), . . . , µπ(r)), respec-
tively, where λ(h1, . . . , hr ) =

∑
i λi (hi ) for all (h1, . . . , hr ) ∈ h⊕r , and π(µ) ∈

(h⊕r )∗ is defined analogously.
We can pull back the triangular decomposition (5.5) via the isomorphism ψa :

L/ kerψa → g⊕r defined in (4.2). Then V (λ, a) and V (µ, b) are irreducible
highest weight modules of the semisimple Lie algebra L/ kerψa relative to the
triangular decomposition

(5.6) L/ kerψa = ψ
−1
a (n⊕r

−
)⊕ψ−1

a (h⊕r )⊕ψ−1
a (n⊕r

+
).

The L-modules V (λ, a) and V (µ, b) are isomorphic if and only if they have the
same highest weights relative to the decomposition (5.6). Since ψa maps the de-
composition (5.6) to the decomposition (5.5), the highest weight of V (λ, a) is
clearly λ ◦ψa : ψ

−1
a (h⊕r )→ F .

The highest weight of V (µ, b) is ν ◦ψπ(b), where ν ∈ (ψπ(b)ψ−1
a (h⊕r ))∗ is the

highest weight of Vπ(µ) relative to the new triangular decomposition

g⊕r
= ψπ(b)ψ

−1
a (n⊕r

−
)⊕ψπ(b)ψ

−1
a (h⊕r )⊕ψπ(b)ψ

−1
a (n⊕r

+
).

Let ψπ(b)ψ−1
a = τ ◦ γ be a decomposition into an inner automorphism τ and

a diagram automorphism γ with respect to (h⊕r ,1). By Lemma 5.2, we have
ν = π(µ) ◦ τ−1, so the two modules V (λ, a) and V (µ, b) are isomorphic if and
only if λ ◦ψa = π(µ) ◦ τ

−1
◦ψπ(b) on ψ−1

a (h⊕r ). That is, V (λ, a) ∼= V (µ, b) if
and only if

λ= π(µ) ◦ γ

on h⊕r . To finish the proof, it is enough to write down an explicit formula for the
automorphism ψπ(b)ψ

−1
a = τ ◦ γ of g⊕r .
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For each x ∈ g, let x i
= (0, . . . , x, . . . , 0) ∈ g⊕r , where x is in the i-th position.

If k ∈ ZN and x ∈ gk , then we see that

ψ−1
a (x i )= a−k

i x ⊗ tk fi (t)+ kerψa

in L/ kerψa , for any fi (t) ∈ R0 with fi (a j )= δi j for all j = 1, . . . , r . Since fi ∈

R0= F[t±m1
1 , . . . , t±m N

N ] and m(a j )=m(bπ( j)) for all j , we see that fi (bπ( j))=δi j ,
and

ψπ(b)ψ
−1
a (x i )= (bk

π(i)/a
k
i )x

i . �

Theorem 5.4 may also be interpreted in terms of a group action on the space of
parameters (λ, a) defining the finite-dimensional simple modules of L. Let Gr

=

G×· · ·×G (r factors), where G is the finite abelian group G = 〈σ1〉× · · ·×〈σN 〉

as before. Note that G acts on (F×)N via the primitive mi -th roots of unity ξi used
in the definition of L:

(σ c1
1 , . . . , σ

cN
N ).(d1, . . . , dN )= (ξ

c1
1 d1, . . . , ξ

cN
N dN )

for any (c1, . . . , cN )∈ZN and (d1, . . . , dN )∈ (F×)N . Form the semidirect product
Gr o Sr by letting the symmetric group Sr act on Gr (on the left) by permuting the
factors of Gr . That is,

π(ρ1, . . . , ρr )= (ρπ(1), . . . , ρπ(r)) for all π ∈ Sr and ρi ∈ G.

This semidirect product acts on the space of ordered r -tuples of points in the torus
(F×)N by letting Gr act diagonally and letting Sr permute the points:

(5.7) ρπa = (ρ1 .aπ(1), . . . ρr .aπ(r)),

for all ρ = (ρ1, . . . , ρr ) ∈ Gr , π ∈ Sr , and r -tuples a = (a1, . . . , ar ) of points
ai ∈ (F×)N .

The group Gr o Sr also acts on the space of r -tuples λ of nonzero dominant
integral weights. For each ρ = (ρ1, . . . , ρr ) ∈ Gr , write ρi = (σ

ρi1
1 , . . . , σ

ρi N
N ) for

some nonnegative integers ρi j . Let the ρi act on g by

ρi (x)= σ
ρi1
1 · · · σ

ρi N
N x

for all x ∈ g, and on the weights λi by

ρi (λi )= λi ◦ γ (ρ
−1
i ),

where γ (ρ−1
i ) is the outer part of the automorphism ρ−1

i : g→ g. Then Gr o Sr

acts on each λ= (λ1, . . . , λr ) by

(5.8) ρπλ= (λπ(1) ◦ γ (ρ
−1
1 ), . . . , λπ(r) ◦ γ (ρ

−1
r )).
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Combining (5.7) and (5.8) gives an action of Gr o Sr on the set of pairs (λ, a),
where λ is an r -tuple of nonzero dominant integral weights λi and a is an r -tuple
of points ai ∈ (F×)N . Namely, let

ρπ(λ, a)= (ρπλ, ρπa).

In terms of this action, the isomorphism classes of the finite-dimensional simple
L-modules are labeled by orbits of the groups Gr o Sr .

Corollary 5.9. Let λ= (λ1, . . . , λr ) andµ= (µ1, . . . , µs) be sequences of nonzero
dominant integral weights with respect to 1. Suppose a = (a1, . . . , ar ) and b =
(b1, . . . , bs) are sequences of points in (F×)N with m(ai ) 6= m(a j ) and m(bi ) 6=

m(b j ) whenever i 6= j . Then V (λ, a) and V (µ, b) are isomorphic if and only if
r = s and (λ, a)= ρπ(µ, b) for some (ρ, π) ∈ Gr o Sr .

Proof. Note that m(ai ) = m(bπ(i)) if and only if the coordinates ai j of ai =

(ai1, . . . , ai N ) differ from the coordinates bπ(i) j of bπ(i) by an m j -th root of unity.
Since ξ j is a primitive m j -th root of unity, this happens if and only if there are
integers ρi j such that ai j = ξ

ρi j
j bπ(i) j . In terms of group actions, this is precisely

the existence of ρi = (σ
ρi1
1 , . . . , σ

ρi N
N ) ∈ G with ai = ρi .bπ(i). In other words,

m(ai )= m(bπ(i)) for all i if and only if a = ρπb for some ρ ∈ Gr and π ∈ Sr .
Since ξρi j

j = ai j/bπ(i) j , we see that

ρ−1
i (x)= σ−ρi1

1 · · · σ
−ρi N
N x = ξ−ρi1k1

1 · · · ξ
−ρi N kN
N x = (bk

π(i)/a
k
i )x

for all k ∈ZN and x ∈ gk . Therefore, the automorphism ωi of Theorem 5.4 is equal
to ρ−1

i , and λ= ρπµ is equivalent to the condition that λi =µπ(i)◦γi for every i . �

For any diagram automorphism σ1, the finite-dimensional simple modules for
the twisted (single) loop algebra L(g; σ1) were classified in [Chari et al. 2008].
Recently, E. Neher, A. Savage, and P. Senesi [Senesi 2009] have reinterpreted this
work in terms of finitely supported σ1-equivariant maps F×→ P+, where P+ is
the set of nonzero dominant integral weights of g with respect to a fixed Cartan
subalgebra and base of simple roots. Theorem 5.4 and Corollary 5.9 can be used
to extend this perspective to the multiloop setting.

Let λ= (λ1, . . . , λr ) and a= (a1, . . . , ar ) be as in Theorem 5.4. Each evaluation
module Vλi (ai ) corresponds to a map

χλi ,ai
: (F×)N

→ P+, x 7→ δx,aiλi .

The isomorphism class [λ, a] of the tensor product V (λ, a) can then be identified
with the sum of all the characters χη0,c0

for which (η0, c0) = (µ1, b1) for some
µ= (µ1, . . . , µr ) and b = (b1, . . . , br ) with (µ, b) in the Gr o Sr -orbit of (λ, a).
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That is, we let

χ
[λ,a] =

∑
g∈G

r∑
i=1

χλi◦γ (g−1),g .ai
.

Thus to each isomorphism class of finite-dimensional simple L(g; σ1, . . . , σN )-
modules, we associate a finitely supported G-equivariant map

χ
[λ,a] : (F

×)N
→ P+.

From Corollary 5.9 and the construction of χ
[λ,a], it is easy to see that distinct

isomorphism classes get sent to distinct functions.
Conversely, any finitely supported G-equivariant map f : (F×)N

→ P+ corre-
sponds to an isomorphism class [λ, a] of finite-dimensional simple L-modules, as
follows. By G-equivariance, the support supp f of f decomposes into a disjoint
union of G-orbits. Choose representatives a1, . . . , ar ∈ (F×)N to label each G-
orbit in supp f . Since the G-orbits are disjoint, m(ai ) 6= m(a j ) whenever i 6= j ,
and by definition of f , the r -tuple λ := ( f (a1), . . . , f (ar )) consists of nonzero
dominant integral weights. Then by Theorem 4.5, V (λ, a) is a finite-dimensional
simple L-module, and by Corollary 5.9, the isomorphism class [ f ] := [λ, a] of
this module is independent of the choice of orbit representatives a1, . . . , ar . It is
now straightforward to verify that χ

[ f ] = f for all finitely supported G-equivariant
maps f : (F×)N

→ P+.

Corollary 5.10. The isomorphism classes of finite-dimensional simple L-modules
are in bijection with the finitely supported G-equivariant maps (F×)N

→ P+. �
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GRADIENT AND HARNACK INEQUALITIES
ON NONCOMPACT MANIFOLDS WITH BOUNDARY

FENG-YU WANG

By using the reflecting diffusion process and a conformal change of metric,
a generalized maximum principle is established for (unbounded) time-space
functions on a class of noncompact Riemannian manifolds with (nonconvex)
boundary. As applications, Li–Yau-type gradient and Harnack inequalities
are derived for the Neumann semigroup on a class of noncompact manifolds
with (nonconvex) boundary. These generalize some previous ones obtained
for the Neumann semigroup on compact manifolds with boundary. As a
byproduct, the gradient inequality for the Neumann semigroup derived by
Hsu on a compact manifold with boundary is confirmed on these noncom-
pact manifolds.

1. Introduction

Suppose M is a d-dimensional connected complete Riemannian manifold, and
let L = 1+ Z , where Z is a C1 vector field satisfying the curvature-dimension
condition of Bakry and Émery [1984] given by

(1-1) 02( f, f ) := 1
2 L|∇ f |2−〈∇L f,∇ f 〉 ≥

(L f )2

m
−K |∇ f |2 for f ∈C∞(M)

for some constants K ≥ 0 and m > d. By [Qian 1998, page 138], this condition is
equivalent to

(1-2) Ric−∇Z − Z⊗Z
m−d

≥−K .

When Z = 0 and M is either without boundary or compact and with a convex
boundary ∂M , Li and Yau [1986] found a now-famous gradient estimate for the
(Neumann) semigroup Pt generated by L:

(1-3) |∇ log Pt f |2−α∂t log Pt f ≤ dα2

2t
+

dα2K
4(α−1)

for t > 0 and α > 1

MSC2000: 58J35, 60J60.
Keywords: gradient estimate, Harnack inequality, generalized maxium principle.
Supported in part by National Natural Science Foundation of China, number 10721091, and the 973
Project.
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for all positive f ∈ Cb(M). We note that in [Li and Yau 1986] the second term
on the right side of (1-3) is dα2K/(

√
2(α−1)), but

√
2 here can be replaced by 4

according to a refined calculation; see for example [Davies 1989].
As an application, (1-3) implies a parabolic Harnack inequality for Pt :

(1-4) Pt f (x)≤
( t+s

t

)dα/2
(Pt+s f (y)) exp

(
αρ(x, y)2

4s
+

αK ds
4(α−1)

)
for t > 0 and x, y ∈ M,

where α > 1 and f ∈Cb(M) is positive. From this Harnack inequality, one obtains
Gaussian-type heat kernel bounds for Pt ; see [Li and Yau 1986; Davies 1989].

The gradient estimate (1-3) has been extended and improved in several papers.
See for example [Bakry and Qian 1999] for an improved version for α = 1 with
Z 6= 0 and ∂M =∅, and see [Wang 1997] for an extension to a compact manifold
with nonconvex boundary. The aim of this paper is to investigate the gradient and
Harnack inequalities for Pt on noncompact manifolds with (nonconvex) boundary.

Recall that the key step of Li and Yau’s argument for the gradient estimate (1-3)
is to apply the maximum principle to the reference function

G(t, x) := t (|∇ log Pt f |2−α∂t log Pt f )(x) for t ∈ [0, T ] and x ∈ M.

When M is compact without boundary, the maximum principle says that for any
smooth function G on [0, T ] × M with G(0, · ) ≤ 0 and sup G > 0, there exists
a maximal point of G at which ∇G = 0, ∂t G ≥ 0, and 1G ≤ 0. When M is
compact with a convex boundary, the same assertion holds for the above specified
function G, as observed in [Li and Yau 1986, proof of Theorem 1.1]. In [1997],
J. Wang extended this maximum principle on a compact manifold with nonconvex
boundary by taking

G(t, x)= t (φ|∇ log Pt f |2−α∂t log Pt f )(x) for t ∈ [0, T ] and x ∈ M

for a nice function φ compensating the concavity of the boundary.
As for a noncompact manifold without boundary, Li and Yau [1986] established

the gradient estimate by applying the maximal principle to a sequence of functions
with compact support that approximate the original function G. An alternative is
to apply directly the following generalized maximum principle:

Lemma 1.1 [Yau 1975]. For any bounded smooth function G on [0, T ] ×M with
G(0, · )≤ 0 and sup G > 0, there exists a sequence {(tn, xn)}n≥1⊂ [0, T ]×M such
that

(i) 0< G(tn, xn) ↑ sup G as n ↑∞, and

(ii) for any n ≥ 1,

LG(tn, xn)≤ 1/n, |∇G(tn, · )(xn)| ≤ 1/n, ∂t G(tn, xn)≥ 0.
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To apply this generalized maximal principle for the gradient estimate, one has
to first confirm the boundedness of G(t, · ) := t (|∇ log Pt f |2 − α∂t log Pt f ) on
[0, T ]×M for T > 0.

Since the boundedness of this type of reference function is unknown when M
is noncompact with a nonconvex boundary, we shall establish a generalized maxi-
mum principle on a class of noncompact manifolds with boundary for not necessar-
ily bounded functions. Applying this principle to a suitable reference function G,
we derive the Li–Yau-type gradient and Harnack inequalities for Neumann semi-
groups. To establish such a maximum principle, we adopt a localization argument
so that the classical maximum principle can be applied.

For M noncompact without boundary, Li and Yau [1986] used such a localiza-
tion argument to apply the maximal principle to functions with compact support;
they then passed to the desired global estimate by taking a limit. To do this, they
constructed cut-off functions using ρo, the Riemannian distance function to a fixed
point o ∈ M . It turns out that this argument works also when ∂M is convex; see
Section 2.1. For the nonconvex case, we will use the conformal change of metric
introduced in [Wang 2007] to make a nonconvex boundary convex; see Section 2.2.

Assumption A. The manifold M is connected and complete with boundary ∂M
and such that either

(1) ∂M is convex, or

(2) the second fundamental form of ∂M is bounded, the sectional curvature of M
is bounded from above, and the injectivity radius i∂M of ∂M is positive.

Recall that the Riemannian distance function ρ∂M to the boundary is smooth on
the set {ρ∂M < i∂M}.

Let N be the inward unit normal vector field on ∂M . The second fundamental
form of ∂M is

II(X, Y )=−〈∇X N , Y 〉 for X, Y ∈ T ∂M.

The boundary ∂M is called convex if II≥ 0. We are now ready to state our gener-
alized maximal principle for possibly unbounded functions.

Theorem 1.2. Let M satisfy A, and let L satisfy (1-2). Let T > 0, and let G be a
smooth function on [0, T ]×M such that N G|∂M ≥ 0, G(0, · )≤ 0 and sup G > 0.
Then for any ε > 0, there exists a sequence {(tn, xn)}n≥1 ⊂ (0, T ] × M such that
Lemma 1.1(i) holds and for any n ≥ 1

LG(tn, xn)≤
G(tn, xn)

1+ε

n
, |∇G(tn, xn)| ≤

G(tn, xn)
1+ε

n
,

∂t G(tn, xn)≥ 0.
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Applying Theorem 1.2 to a proper choice of function G, we will derive the
Li–Yau-type gradient estimate (1-5). We shall prove that the reflecting diffusion
process X t generated by L on M is non explosive, so that the corresponding Neu-
mann semigroup Pt can be formulated as

Pt f (x)= Ex f (X t) for t ≥ 0, x ∈ M , and f ∈ Cb(M),

where Ex is the expectation taken for X0 = x .

Theorem 1.3. Let M satisfy A, and suppose L satisfies (1-2) with ‖Z‖∞ < ∞.
Then the reflecting L-diffusion process on M is nonexplosive and the correspond-
ing Neumann semigroup Pt satisfies these assertions:

(i) If ∂M is convex, then (1-3) holds with m in place of d.

(ii) If ∂M is nonconvex with II ≥ −σ for some σ > 0, then for any bounded
φ ∈ C∞(M) with φ ≥ 1 and N logφ|∂M ≥ 2σ , the gradient inequality

(1-5) |∇ log Pt f |2−α∂t log Pt f ≤
m(1+ ε)α2

2(1− ε)t
+

mα2K (φ, ε, α)
4(α−‖φ‖∞)

holds for all positive f ∈ Cb(M), α > ‖φ‖∞, t > 0, ε ∈ (0, 1) and

K (φ, ε, α) :=

1+ε
1−ε

(
K + 1

ε‖∇ logφ‖2
∞
+

1
2 sup(−φ−1Lφ)+

mα2
‖∇ logφ‖2

∞
(1+ ε)

8(α−‖φ‖∞)2ε(1− ε)

)
.

We emphasize that the results in Theorem 1.3 are new for noncompact manifolds
with boundary. When M is compact with a convex boundary, the first assertion was
proved in [Li and Yau 1986] by using the classical maximum principle on compact
manifolds, while when M is compact with a nonconvex boundary, an inequality
similar to (1-5) was proved in [Wang 1997] by using the “interior rolling R-ball”
condition.

These two theorems will be proved in Sections 2 and 3. By a standard argument
due to Li and Yau [1986], the gradient estimate (1-5) implies a Harnack inequality.
Let ρ(x, y) be the Riemannian distance between x, y ∈ M , that is, the infimum of
the length of all smooth curves in M that link x and y.

Corollary 1.4. In the situation of Theorem 1.3 the Neumann semigroup Pt satisfies

(1-6) Pt f (x)≤( t+s
t

)m(1+ε)α/2(1−ε)
(Pt+s f (y)) exp

(
αρ(x, y)2

4s
+
αmK (φ, ε, α)s
4(α−‖φ‖∞)

)
for all positive f ∈ Cb(M), t, ε ∈ (0, 1), α > ‖φ‖∞ and x, y ∈ M. In particular,
if ∂M is convex, then (1-4) holds with m in place of d and for all α > 1.
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To derive explicit inequalities for the nonconvex case, we shall take a specific
choice of φ as in [Wang 2007]. Let i∂M be the injectivity radius of ∂M , and let
ρ∂M be the Riemannian distance to the boundary. We shall take φ = ϕ ◦ ρ∂M for
a nice reference function ϕ on [0,∞). More precisely, let the sectional curvature
satisfy SectM ≤ k and −σ ≤ II≤ γ for some k, σ, γ > 0. Let

h(s)= cos(
√

k s)− (γ /
√

k) sin(
√

k s) for s ≥ 0.

Then h is the unique solution to the differential equation h′′+kh=0 with boundary
conditions h(0)=1 and h′(0)=−γ . By the Laplacian comparison theorem for ρ∂M

(see [Kasue 1984, Theorem 0.3] or [Wang 2007]),

(1-7) 1ρ∂M ≥
(d − 1)h′

h
(ρ∂M) and ρ∂M < i∂M ∧ h(−1)(0),

where h(−1)(0) = (1/
√

k) arcsin(
√

k/
√

k+ γ 2) is the first zero point of h. Fix a
positive number r0 ≤ i∂M ∧ h(−1)(0), and let

δ =
2σ(1− h(r0))

d−1∫ r0
0 (h(s)− h(r0))d−1 ds

,

ϕ(r)= 1+ δ
∫ r

0
(h(s)− h(r0)

1−d ds
∫ r0

s∧r0

(h(u)− h(r0))
d−1 du.

It is easy to see that ϕ ◦ ρ∂M is differentiable with a Lipschitzian gradient. By a
simple approximation argument, we may apply Theorem 1.3 and Corollary 1.4 to
φ = ϕ ◦ ρ∂M ; see [Wang 2007, page 1436].

Obviously, (1-7) and N =∇ρ∂M imply

1ϕ ◦ ρ∂M ≥−δ and N logϕ ◦ ρ∂M |∂M = ϕ
′(0)/ϕ(0)= 2σ.

Moreover, by [Wang 2007, (20)] we have

δ ≤ 2σdr−1
0 and ϕ(r0)≤ 1+ σdr0.

Thus, for φ := ϕ ◦ ρ∂M we have

−φ−1Lφ ≤ 2σdr−1
0 + 2σ‖Z‖∞, ‖∇ logφ‖2

∞
≤ 4σ 2,

‖φ‖∞ ≤ ϕ(r0)≤ 1+ σdr0.

Combining these with Theorem 1.3 and Corollary 1.4, we obtain these explicit
inequalities on a class of nonconvex and noncompact manifolds:

Corollary 1.5. Let i∂M > 0, and suppose γ ≥ II ≥ −σ and SectM ≤ k for some
γ, σ, k > 0. If (1-2) holds and ‖Z‖∞ <∞, then for any positive number

r0 ≤min
{
i∂M , (1/

√
k) arcsin(

√
k/
√

k+ γ 2)
}
,



190 FENG-YU WANG

the inequalities

|∇ log Pt f |2−α∂t log Pt f ≤
m(1+ ε)α2

2(1− ε)t
+

mα2Kε

4(α− 1− σdr0)

and

Pt f (x)≤
( t+s

t

)m(1+ε)α/2(1−ε)
(Pt+s f (y)) exp

(
αρ(x, y)2

4s
+

mαKεs
4(α− 1− σdr0)

)
for x, y ∈ M

hold for all positive f ∈ Cb(M), t > 0, ε ∈ (0, 1), α > 1+ σdr0, and

Kε =
1+ε
1−ε

(
K + 4σ 2

ε
+
σd
r0
+ σ‖Z‖∞+

mα2σ 2(1+ ε)
2(α− 1− σdr0)2ε(1− ε)

)
.

Combining our gradient estimate with an approximation and a probabilistic
argument, we can derive the gradient estimate (1-9) for a class of noncompact
manifolds:

Theorem 1.6. Let M satisfy A, and let L satisfy (1-2) with ‖Z‖∞ < ∞. Let κ1

and κ2 be positive elements of Cb(M) such that

(1-8) Ric −∇Z ≥−κ1 and II≥−κ2

hold on M and ∂M, respectively. Then

(1-9) |∇Pt f |(x)≤ Ex
(
|∇ f |(X t) exp

(∫ t

0
κ1(Xs)ds+

∫ t

0
κ2(Xs)dls

))
holds for all f ∈ C1

b(M), t > 0, and x ∈ M.

Inequality (1-9) was first derived by Hsu [2002] on a compact manifold with
boundary. In [2002, Theorem 3.7], Hsu applied the Itô formula to F(Ut , T −
t) := U−1

t ∇PT−t f (X t), where Ut is the horizontal lift of X t on the frame bundle
O(M). Since M is compact, the (local) martingale part of this process is a real
martingale (it may not be for noncompact M). Then the desired gradient estimate
followed immediately from [2002, Corollary 3.6]. In Section 4, we will prove the
boundedness of ∇P( · ) f on [0, T ]×M for any T > 0 and f ∈C1

b(M), which leads
to a simple proof of (1-9) for a class of noncompact manifolds.

2. Proof of Theorem 1.2

We consider the convex case and pass to the nonconvex case using the conformal
change of metric constructed in [Wang 2007]. Without loss of generality, we may
assume that sup G := sup[0,T ]×M > 1. (Otherwise, we simply replace G by mG
for a sufficiently large m > 0.)
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2.1. Convex ∂ M. Fix o∈M , and let ρo be the Riemannian distance to the point o.
Since ∂M is convex, there exists a minimal geodesic in M of length ρ(x, y) that
links any x and y in M ; see for example [Wang 2005a, Proposition 2.1.5]. So,
by (1-2) and a comparison theorem (see [Qian 1998])

Lρo ≤
√

K (m− 1) coth
(√

K/(m− 1) ρo
)

holds outside {o}∪cut(o), where cut(o) is the cut locus of o. In the sequel, we will
set Lρo = 0 on cut(o) so that this implies

(2-1) L
√

1+ ρ2
o ≤ c1 on M

for some constant c1 > 0.
Let h ∈ C∞0 ([0,∞)) be decreasing such that

h(r)=


1 if r ≤ 1,
exp(−(3− r)−1) if r ∈ [2, 3),
0 if r ≥ 3.

Obviously, for any ε > 0 we have

(2-2) sup
[0,∞)

{
|hε−1h′′| + |hε−1h′|

}
<∞.

Let W =
√

1+ ρ2
o , and take ϕn = h(W/n) for n ≥ 1. Then

(2-3) {ϕn = 1} ↑ M as n ↑∞.

So, according to (2-1) and (2-2),

(2-4)

|∇ logϕn| ≤
c

nϕεn
,

ϕ−1
n Lϕn =

h′(W/n)
nh(W/n)

LW +
h′′(W/n)

n2h(W/n)
|∇W |2 ≥− c

nϕεn

holds for some constant c > 0 and all n ≥ 1.
Let Gn(t, x)= ϕn(x)G(t, x) for t ∈ [0, T ] and x ∈ M . Since Gn is continuous

with compact support, there exists (tn, xn) ∈ [0, T ]×M such that

Gn(tn, xn)= max
[0,T ]×M

Gn.

By (2-3) and that sup G > 1, we have limn→∞ G(tn, xn)= sup G > 1. By renum-
bering from a sufficient large n0, we may assume that Gn(tn, xn) is greater than 1
and is increasing in n. In particular, Lemma 1.1(i) holds and

(2-5) ϕn(xn)≥ 1/G(tn, xn) for n ≥ 1.
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Moreover, since Gn(0, · )≤ 0, we have tn > 0 and ∂t G(tn, xn)≥ 0 for n ≥ 1. Thus,
it remains to confirm that

(2-6)
|∇G(tn, xn)| ≤ cG(tn, xn)

1+ε/n and

LG(tn, xn)≤ cG(tn, xn)
1+ε/n for n ≥ 1

for some constant c> 0. Indeed, by using a subsequence {(tmn, xmn)}n≥1 for m ≥ c
to replace {(tn, xn)}n≥1, one may reduce (2-6) with some c > 0 to that with c = 1.

Since xn is the maximal point of Gn , we have ∇Gn(tn, xn)= 0 if xn ∈ M \∂M .
If xn ∈ ∂M , we have N Gn(tn, xn)≤ 0. Recall that N G(tn, · )≥ 0 and G(tn, xn)> 0.
Then, noting that Nρ0 ≤ 0 together with h′ ≤ 0 implies Nϕn ≥ 0, we conclude that
N Gn(tn, xn) ≥ 0. Hence, N Gn(tn, xn) = 0. Moreover, since xn is the maximal
point of Gn(tn, · ) on the closed manifold ∂M , we have U Gn(tn, xn) = 0 for all
U ∈ T ∂M . Therefore, ∇Gn(tn, xn) = 0 also holds for xn ∈ ∂M . Combining this
with (2-4) and (2-5), we obtain

|∇G(tn, xn)| ≤
G(tn, xn)

ϕn(xn)
|∇ϕn| ≤

cG(tn, xn)
1+ε

n
,

which proves the first inequality in (2-6).
Finally, by (2-4), the inequality

ϕn LnG+GLnϕn + 2〈∇G,∇ϕn〉 ≥ ϕn LnG−
cϕ1−ε

n

n
G−

2cϕ1−ε
n

n
|∇G| =:8

holds on {Gn > 0} \ cut(o). By Lemma 2.1 below we obtain at the point (tn, xn)

that

LG ≤ c
nϕεn

G+ 2c
nϕn
|∇G|.

Combining this with (2-5) and the first inequality in (2-6), we get

LG(tn, xn)≤
c
n

G1+2ε(tn, xn)

for some constant c > 0 and all n ≥ 1. Since ε > 0 is arbitrary, we may replace ε
by ε/2 (recall that G(tn, xn)≥ 1). This proves the second inequality in (2-6).

Lemma 2.1. The reflecting L-diffusion process is nonexplosive, and for any 8 in
Cb(M) such that

8≤ LGn = GLϕn +ϕn LG+ 2〈∇ϕn,∇G〉 on {Gn > 0} \ cut(o),

we have 8(tn, xn)≤ 0 for all n ≥ 1.

Proof. Let X t be the reflecting L-diffusion process generated by L , and let Ut

be its horizontal lift on the frame bundle O(M). By the Itô formula for ρo(X t)
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found by Kendall [1987] for ∂M = ∅ and by the fact that Nρo|∂M ≤ 0 when ∂M
is nonempty but convex, we have

(2-7) dρo(X t)=
√

2〈∇ρo(X t),Ut dBt 〉+ Lρo(X t)dt − dlt + dl ′t ,

where Bt is the d-dimensional Brownian motion, where Lρo is taken to be zero on
{o}∪cut(o), and where lt and l ′t are two increasing processes such that l ′t increases
only when X t = o, while lt increases only when X t ∈ cut(o)∪∂M (note that l ′t = 0
for d ≥ 2). Combining this with (2-1) we obtain

d
√

1+ ρ2
o(X t)≤ dMt + L

√
1+ ρ2

o(X t) dt ≤ dMt + c1 dt

for some martingale Mt . This implies immediately that X t does not explode.
Now, let us take X0 = xn . Since h′ ≤ 0, it follows from (2-7) that

(2-8) dϕn(X t)≥
√

2〈∇ϕn(X t),Ut dBt 〉+ Lϕn(X t)dt,

where we set Lϕn = 0 on cut(o) as above.
On the other hand, since N G(tn, · ) ≥ 0, we may apply the Itô to G(tn, X t) to

obtain

(2-9) dG(tn, X t)≥
√

2〈∇G(tn, X t),Ut dBt 〉+ LG(tn, X t)dt.

Because Gn(tn, xn) > 0, there exists an r > 0 such that Gn > 0 on B(xn, r), the
geodesic ball in M centered at xn with radius r . Let

τ = inf{t ≥ 0 : X t /∈ B(xn, r)}.

Then (2-8) and (2-9) imply

dGn(tn, X t)≥ dMt + LGn(tn, · )(X t)dt ≥ dMt +8(tn, X t)dt for t ≤ τ

for some martingale Mt . Since Gn(tn, X t)≤ Gn(tn, xn) and X0 = xn , this implies
that

0≥ EGn(tn, X t∧τ )−Gn(tn, xn)≥ E

∫ t∧τ

0
8(tn, Xs)ds.

Therefore, the continuity of 8 implies that

8(tn, xn)= lim
t→0

1
E(t∧τ)

E

∫ t∧τ

0
8(tn, Xs)ds ≤ 0. �

2.2. Nonconvex ∂ M. Under our assumptions on M , there exists a constant R > 1
and a function φ ∈ C∞(M) such that

1≤ φ ≤ R, |∇φ| ≤ R, N logφ|∂M ≥ σ.

By [Wang 2007, Lemma 2.1], the boundary ∂M is convex under the new metric
〈 · , · 〉′ := φ−2

〈 · , · 〉. Let L ′ = φ2L . By [Wang 2007, Equation (9)], the vector
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U ′ := φU is unit under the new metric for any unit vector U ∈ T M , and the
corresponding Ricci curvature satisfies

(2-10) Ric′(U ′,U ′)≥ φ2 Ric(U,U )+φ1φ− (d − 3)|∇φ|2

− 2(Uφ)2+ (d − 2)φ Hessφ(U,U ).

Let 1′ be the Laplacian induced by the new metric. By [Wang 2007, Lemma 2.2],
we have

L ′ := φ2L =1′+ (d − 2)φ∇φ+φ2 Z =:1′+ Z ′.

Noting that

∇
′

X Y =∇X Y −〈X,∇ logφ〉Y −〈Y,∇ logφ〉X +〈X, Y 〉∇ logφ for X, Y ∈ T M,

we have

〈∇U ′Z ′,U ′〉′ = 〈∇U Z ′,U 〉− 〈Z ′,∇ logφ〉

= φ2
〈∇U Z ,U 〉+ (Uφ2)〈Z ,U 〉+ (d − 2)(Uφ)2

+ (d − 2)φ Hessφ(U,U )−〈Z ′,∇ logφ〉.

Combining this with (2-10) and the properties of φ mentioned above, we find a
constant c1 > 0 such that

(2-11) Ric′(U,′U ′)−〈∇ ′U ′Z
′,U ′〉′ ≥ φ2(Ric−∇Z)(U,U )− c1 for |U | = 1.

Moreover, since

(Z ′⊗′ Z ′)(U ′,U ′) := (〈Z ′,U ′〉′)2 = φ−2
〈Z ′,U 〉2

≤ 2(d − 2)2〈∇φ,U 〉2+ 2φ2
〈Z ,U 〉2

≤ 2(d − 2)2 R2
+ 2φ2(Z ⊗ Z)(U,U ),

it follows from (1-2) and (2-11) that

Ric′−∇ ′Z ′−
Z ′⊗′ Z ′

2(m− d)
≥−φ2K − c2 ≥−K ′

holds for the metric 〈 · , · 〉′ and some constants c2, K ′>0. Therefore, we may apply
Lemma 2.1 to L ′ on the convex Riemannian manifold (M, 〈 · , · 〉′) to conclude that
the desired sequence {(tn, xn)} exists.

3. Proofs of Theorem 1.3 and Corollary 1.4

Proof of Theorem 1.3. When ∂M is convex, Lemma 2.1 ensures that X t does
not explode. If ∂M is nonconvex, this can be confirmed by reparametrizing the
time of the process. More precisely, let X ′t be the reflecting diffusion process
on M generated by L ′ := φ2L constructed in Section 2.2. Since L ′ = 1′ + Z ′
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satisfies (1-2) for some K > 0 on the convex manifold (M, 〈 · , · 〉′), the process X ′t
generated by L ′ is nonexplosive by Lemma 2.1. Since X t = X ′

ξ−1(t), where ξ−1 is
the inverse of

t 7→ ξ(t)=
∫ t

0
φ2(X ′s)ds,

we have t‖φ‖−2
∞
≤ ξ−1(t)≤ t , and the process X t is nonexplosive as well.

Let f ∈ C1
b(M) be strictly positive, and let u(t, x) = log Pt f (x). For a fixed

number T > 0, we will apply Theorem 1.2 to the reference function

G(t, x)= t
{
φ(x)|∇u|2(t, x)−αut(t, x)

}
for t ∈ [0, T ] and x ∈ M.

Note that II≥−σ and N logφ ≥ 2σ imply

Nφ ≥ 2σφ,

N |∇Pt f |2 = 2 HessPt f (N ,∇Pt f )= 2II(∇Pt f,∇Pt f )≥−2σ |∇Pt f |2.

Since Pt f and hence ut satisfy the Neumann boundary condition, this implies that

N G = t
{
(Nφ)|∇u|2+

φ

(Pt f )2
N |∇Pt f |2

}
≥ t{2σφ|∇u|2− 2σφ|∇u|2} = 0

on ∂M .

According to [Ledoux 2000, (1.14)], inequality (1-2) implies

(3-1) L|∇u|2− 2〈∇Lu,∇u〉 ≥ −2K |∇u|2+
|∇|∇u|2|2

2|∇u|2
.

By multiplying this inequality by ε and (1-1) by 2(1− ε) and by combining the
results, we obtain

L|∇u|2 ≥ 2〈∇Lu,∇u〉− 2K |∇u|2+
2(1− ε)(Lu)2

m
+
ε|∇|∇u|2|2

2|∇u|2
.

It is also easy to check that Lu = ut −|∇u|2 and ∂t |∇u|2 = 2〈∇u,∇ut 〉. Then we
arrive at

(3-2) (L − ∂t)|∇u|2

≥
2(1− ε)

m
(|∇u|2− ut)

2
+
ε|∇|∇u|2|2

2|∇u|2
− 2〈∇u,∇|∇u|2〉− 2K |∇u|2.

On the other hand,

−α(L − ∂t)ut = 2α〈∇u,∇ut 〉 = 2〈∇u,∇(φ|∇u|2− t−1G)〉

= 2φ〈∇u,∇|∇u|2〉+ 2|∇u|2〈∇u,∇φ〉− 2t−1
〈∇u,∇G〉.
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Combining this with (3-2), we obtain

(L − ∂t)G = −
G
t
+ t
(
φ(L − ∂t)|∇u|2+ |∇u|2Lφ+ 2〈∇φ,∇|∇u|2〉

)
+ t
(
2φ〈∇u,∇|∇u|2〉+ 2|∇u|2〈∇u,∇φ〉− 2t−1

〈∇u,∇G〉
)

≥ −
G
t
+

2(1− ε)φt
m

(|∇u|2− ut)
2
+
εφt |∇|∇u|2|2

2|∇u|2
− 2Kφt |∇u|2

− 2|∇u| · |∇G| − 2t |∇u|3|∇φ| − 2t |∇φ| · |∇|∇u|2| + t |∇u|2Lφ.

Noting that

εφt |∇|∇u|2|2

2|∇u|2
− 2t |∇φ| · |∇|∇u|2| ≥ −

2t |∇φ|2|∇u|2

εφ
,

we get

(3-3) (L−∂t)G ≥−
G
t
+

2(1− ε)φt
m

(|∇u|2−ut)
2
−2Kφt |∇u|2−2|∇u| · |∇G|

− 2t |∇u|3|∇φ| + t |∇u|2Lφ−
2t |∇φ|2|∇u|2

εφ
.

We assume that sup G > 0, otherwise the proof is done. Since G(0, · )= 0 and
N G|∂M ≥ 0, we can apply Theorem 1.2. Let {(tn, xn)} be fixed in Theorem 1.2
with, for example, ε = 1/2. Then,

(3-4) (L − ∂t)G(tn, xn)≤
G3/2(tn, xn)

n
and |∇G|(tn, xn)≤

G3/2(tn, xn)

n
.

From now on, we evaluate functions at the point (tn, xn), so that t = tn .
Let µ= |∇u|2/G. We have

|∇u|2− ut =

(
µ−

(µt − 1)φ
αt

)
G =

µt (α−φ)+φ
αt

G.

Combining this with (3-3) and (3-4), we arrive at

(3-5)
2(1− ε)φ(µt (α−φ)+φ)2

mα2t
G2

≤
G3/2

n
+

G
t
+

2
√
µG2

n
+ 2t |∇φ|(µG)3/2+ (2kφ+ 2ε−1φ−1

|∇φ|2− Lφ)µtG.

Since it is easy to see that

(µt (α−φ)+φ)2 ≥max
{
φ2, 4µt (α−φ)φ, (2t (α−φ))3/2

√
φµ3/2},
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we may multiply both sides of (3-5) by t (µt (α−φ)+φ)−2G−2 to obtain

2(1− ε)φ
mα2 ≤

c′t
n(1∧

√
G)
+

1
φ2G
+

2K + 2ε−1
|∇ logφ|2−φ−1Lφ

4(α−φ)G
t

+
|∇ logφ|

√
tφ

(α−φ)3/2
√

2G

≤
c′t

n(1∧
√

G)
+

1
φ2G
+

2K + 2ε−1
|∇ logφ|2−φ−1Lφ

4(α−φ)G

+
|∇ logφ|2mα2(1+ ε)t
16(α−φ)3ε(1− ε)G

+
2(1− ε)εφ
mα2(1+ ε)

for some constant c′ > 0. Taking n→∞ and noting that φ ≥ 1, we conclude that
θ := sup G satisfies

2(1− ε)
mα2(1+ ε)

≤
1
θ

(
1+

2K + 2ε−1
‖∇ logφ‖2

∞
+ sup(−φ−1Lφ)

4(α−‖φ‖∞)
T

+
‖∇ logφ‖2

∞
mα2(1+ ε)T

16(α−‖φ‖∞)3ε(1− ε)

)
.

Combining this with θ ≥ G(T, x) = T (φ(x)|∇u|2(T, x)− αut(T, x)) for x ∈ M ,
we obtain

φ(x)|∇u|2(T, x)−αut(T, x)

≤
mα2(1+ ε)

2(1− ε)

( 1
T
+

2K + 2ε−1
‖∇ logφ‖2

∞
+ sup(−φ−1Lφ)

4(α−‖φ‖∞)

+
‖∇ logφ‖2

∞
mα2(1+ ε)

16(α−‖φ‖∞)3ε(1− ε)

)
for all x ∈ M . Then the proof is completed since T > 0 is arbitrary. �

Proof of Corollary 1.4. By Theorem 1.3, the proof is standard according to [Li and
Yau 1986]. For x, y ∈ M , let γ : [0, 1] → M be the shortest curve in M linking x
and y such that |γ̇ | = ρ(x, y). Then, for any s, t > 0 and f ∈ C∞b (M), it follows
from (1-5) that

d
dr

log Pt+rs f (γr )= s∂u log Pu f (γr )|u=t+rs +〈γ̇r ,∇Pt+rs f (γr )〉

≥
s
α
|∇ log Pt+rs f |2(γr )− ρ(x, y)|∇ log f |(γr )

− s
( m(1+ ε)α

2(1− ε)(t + rs)
+

mαK (φ, ε, α)
4(α− 1‖φ‖∞)

)
≥ −

α
4s
− s

( m(1+ ε)α
2(1− ε)(t + rs)

+
mαK (φ, ε, α)
4(α−‖φ‖∞)

)
.
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We complete the proof by integrating with respect to dr over [0, 1]. �

4. Proof of Theorem 1.6

We first provide a simple proof of (1-9) under an extra assumption that |∇P( · ) f |
is bounded on [0, T ] × M for any T > 0; we then drop this assumption by an
approximation argument.

Lemma 4.1. If that f ∈ C1
b(M) is such that |∇P( · ) f | is bounded on [0, T ] × M

for any T > 0, then (1-9) holds.

Proof. For any ε > 0, let ηs =
√
ε+ |∇Pt−s f |2(Xs) for s ≤ t . By the Itô formula,

we have

dηs = dMs +
L|∇Pt−s f |2− 2〈∇L Pt−s f,∇Pt−s f 〉

2
√
ε+ |∇Pt−s f |2)2

(Xs)ds

−
|∇|∇Pt−s f |2|2

4(ε+ |∇Pt−s f |2)3/2
(Xs)ds+

N |∇Pt−s f |2

2
√
ε+ |∇Pt−s f |2

(Xs)dls

for s ≤ t , where Ms is a local martingale. Combining this with (1-8) and (3-1),
with κ1 in place of K0, we obtain

dηs ≥ dMs −
κ1|∇Pt−s f |2√
ε+ |∇Pt−s f |2

(Xs)ds−
κ2|∇Pt−s f |2√
ε+ |∇Pt−s f |2

(Xs)dls

≥ dMs − κ1(Xs)ηs ds− κ2(Xs)ηs dls for s ≤ t.

Now ηs is bounded on [0, t], and by the proof of [Wang 2005b, Lemma 2.1] we
have Eeλlt <∞ for all λ > 0. This implies that

[0, t] 3 s 7→
√
ε+ |∇Pt−s f |2(Xs) exp

(∫ s

0
κ1(Xs)ds+

∫ s

0
κ2(Xs)dls

)
is a submartingale for any ε > 0. Letting ε ↓ 0 we conclude that

[0, t] 3 s 7→ |∇Pt−s f |(Xs) exp
(∫ s

0
κ1(Xs)ds+

∫ s

0
κ2(Xs)dls

)
is a submartingale as well. �

According to Lemma 4.1, it suffices to confirm the boundedness of |∇P( · ) f | on
[0, T ] ×M for any T > 0 and f ∈ C1

b(M). We shall start from f ∈ C∞0 (M) with
N f |∂M = 0, then pass to f ∈ C1

b(M) by combining an approximation argument
and Lemma 4.1.

Case a. Let f ∈ C∞0 (M) with N f |∂M = 0. We have

(4-1) Pt f = f +
∫ t

0
Ps L f ds.
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Since L f is bounded, there is a c> 0 such that L f +c≥ 1. Applying Corollary 1.5
with for example α = 2+ σdr0 and ε = 1/2, but using L f + c in place of f , we
obtain

|∇Ps L f | = |∇Ps(L f + c)|

≤ ‖L f + c‖∞
(
α‖Ps L2 f ‖∞+

m(1+ ε)α2

2(1− ε)s
+

mα2Kε

4(α− 1− σdr0)

)1/2

≤ c1/
√

s for s ≤ T

for some constant c1 > 0. Combining this with (4-1) we conclude that, for some
constant c2 > 0,

|∇Pt f | ≤ |∇ f | +
∫ t

0

c1
√

s
ds ≤ c2 for t ≤ T .

Case b. Let f ∈C∞0 (M). There exists a sequence of functions { fn}n≥1⊂C∞0 (M)
such that N fn|∂M = 0, fn→ f uniformly as n→∞, and ‖∇ fn‖∞ ≤ 1+‖∇ f ‖∞
holds for any n ≥ 1; see for example [Wang 1994]. By Case a and Lemma 4.1,
(1-9) holds with fn in place of f , so that

|Pt fn(x)− Pt fn(y)|
ρ(x, y)

≤ C for t ≤ T, n ≥ 1, x 6= y

for some constant C > 0. Letting first n→ 0 and then y→ x , we conclude that
|∇P( · ) f | is bounded on [0, T ]×M .

Case c. Let f ∈ C∞b (M). Let {gn}n≥1 ⊂ C∞0 ) be such that 0≤ gn ≤ 1, |∇gn| ≤ 2
and gn ↑ 1 as n ↑ ∞. By Case b and Lemma 4.1, we may apply (1-9) to gn f in
place of f such that

|Pt(gn f )(x)− Pt(gn f )(y)|
ρ(x, y)

≤ C for t ≤ T, n ≥ 1, x 6= y

for some constant C > 0. By the same reason as in Case b, we conclude that
|∇P( · ) f | is bounded on [0, T ]×M .

Case d. Finally, for f ∈ C1
b(M), there exist { fn}n≥1 ⊂ C∞b (M) such that fn→ f

uniformly as n →∞ and ‖∇ fn‖∞ ≤ ‖∇ f ‖∞ + 1 for any n ≥ 1. The proof is
completed by the same reason as in Cases b and c. �
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