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We classify spherical conjugacy classes in a simple algebraic group over an
algebraically closed field of good, odd characteristic.

Introduction

When studying a transitive action of a group G, it is particularly interesting to
understand when a given subgroup B of G acts with finitely many orbits. An
important case of such a situation in the theory of algebraic groups is when B
is a Borel subgroup of a connected reductive algebraic group G. The G-spaces
for which B acts with finitely many orbits in this case are the so-called spherical
homogeneous spaces, and they include important examples such as the flag variety
G/B and symmetric varieties. They are precisely those G-spaces for which the B-
action has a dense orbit in the Zariski topology [Brion 1986; Grosshans 1992; Knop
1995; Vinberg 1986]. One may want to understand when homogeneous spaces
that are relevant in algebraic Lie theory, such as nilpotent orbits in Lie(G) and
conjugacy classes in G for G reductive, are spherical. Spherical nilpotent orbits in
simple Lie algebras were classified in [Panyushev 1994; 1999] when the base field
is C and in [Fowler and Röhrle 2008] when it is an algebraically closed field of good
characteristic: They are precisely the orbits of type r A1 for r ≥ 0 in the simply-
laced case and of type r A1 + s Ã1 for r, s ≥ 0 in the multiply-laced case. As for
conjugacy classes, it is natural to use the interplay with the Bruhat decomposition,
since this has proved to be a fruitful tool in the past. For instance, it is essential
in describing regular conjugacy classes [Steinberg 1965], whose intersection with
Bruhat cells is the subject of ongoing research [Ellers and Gordeev 2004; 2007].
This approach has led to two characterizations of the spherical conjugacy classes
in a connected, reductive algebraic group G over an algebraically closed field of
zero or good, odd characteristic [Cantarini et al. 2005; Carnovale 2008; 2009].
The first one is given through a formula relating the dimension of a class O and the
Weyl group element whose associated Bruhat cell intersects O in a dense subset.

MSC2000: primary 20E45, 20F55, 20G99; secondary 14M15.
Keywords: algebraic group, conjugacy class, Bruhat decomposition, spherical homogeneous space.

25



26 GIOVANNA CARNOVALE

The second one states that spherical conjugacy classes are exactly those classes
intersecting only Bruhat cells corresponding to involutions in the Weyl group of G.
These characterizations can be used to give a complete list of the spherical classes
in G. This problem can be easily reduced to the case in which G is simple, so
we shall make this assumption from now on. The spherical conjugacy classes in
a simple algebraic group over C have been classified in [Cantarini et al. 2005],
making use of the classification of spherical nilpotent orbits. Spherical classes in
type G2 in good characteristic have been classified in [Carnovale 2009].

In the present paper, we complete the picture by classifying spherical classes
in a simple algebraic group G over a field of good, odd characteristic. In con-
trast to [Cantarini et al. 2005], this work is independent of the classification of
spherical nilpotent orbits existing in the literature. Since Springer isomorphisms
exist in good characteristic, it provides an elementary classification of spherical
nilpotent orbits alternative to [Fowler and Röhrle 2008], where Kempf–Russeau
theory is involved and where a computer program is needed to help deal with the
exceptional types. The crucial tools in our method are just those conditions in the
characterizations in [Cantarini et al. 2005; Carnovale 2008; 2009], whose proofs
are general and rather short. The arguments used for this classification can also be
transferred to the characteristic zero situation, providing an alternative, elementary
approach to [Panyushev 1994; 1999], although by case-by-case considerations.

After fixing notation and recalling basic notions in Section 1, we introduce
spherical conjugacy classes and their characterizations in Section 2. Section 3
provides the list of spherical conjugacy classes through a case-by-case analysis.

The result is as when the base field is C: In the simply-laced case, spherical
conjugacy classes are, up to a central element, either semisimple or unipotent, and
if G is simply-connected, the centralizers of the semisimple ones are all subgroups
of fixed points for an involution on G. By abuse of notation, we say that such
classes are symmetric.

In type G2, spherical conjugacy classes are again either semisimple or unipotent
but, as in types Bn and Cn , there are spherical semisimple classes that are not
symmetric. Just as in other situations involving spherical homogeneous spaces
(for example, in the description of maximal spherical ideals of Borel subalgebras
[Panyushev and Röhrle 2005]), the doubly-laced case is slightly more involved.
The new phenomenon in the present situation is that there appear spherical classes
that are neither semisimple nor unipotent.

1. Notation

Let G be a connected reductive algebraic group over an algebraically closed field k
of good odd characteristic [Springer and Steinberg 1970, Section I.4]. In Section 3,
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we will restrict to the case of simple G. When we consider an integer as an element
in k, we mean its image in the prime field of k. We denote by 8 and 8+ the
root system and the set of positive roots relative to a fixed Borel subgroup B and
a maximal torus T of G; denote by 1 = {α1, . . . , αn} the corresponding set of
simple roots. We number the simple roots as in [Bourbaki 1981, planches I–IX].
Denote the highest positive root by β1. For a root α, we denote the elements of the
associated root subgroup Xα by xα(t), and we put X ′α = Xα \ {1}. We denote the
maximal unipotent subgroup of B by U .

For elements in T in exceptional simple groups, we use the notation in [Steinberg
1968, Lemma 19], that is, every element in T can be expressed as a product of
hαi (ti ) for i = 1, . . . , n and nonzero ti ∈ k, with uniqueness if the group is simply
connected. The hαi (ti ) satisfy the commutation relations

hαi (t)xβ(r)hαi (t
−1)= xβ(t 〈β,αi 〉r) for β ∈8 and t, r ∈ k,

where 〈β, α〉 = β(hα) as usual; see [Steinberg 1968].
When G is simple of type An , Bn , Cn or Dn , we work with the corresponding

matrix groups, and we choose G and T so that the elements in T are diagonal. Let
X1, . . . , Xl be square matrices of size n j ≥1 for j =1, . . . , l. By diag(X1, . . . , Xl)

we mean the square matrix of size
∑

j n j with the blocks X1, . . . , Xl along its
diagonal. As usual, Ei j is a square matrix with the entry 1 in the i-th row and j-th
column and all other entries 0. We denote by tM the transpose of a matrix M .

We put W =N (T )/T , and sα indicates the reflection corresponding to the root α.
Given an element w ∈W , we denote by ẇ a representative of w in N (T ).

Let ` denote the usual length function on W , and let rk(1−w) denote the rank
of the endomorphism 1−w in the geometric representation of W .

We shall frequently use these properties of the Bruhat decomposition of G (see
[Bourbaki 1981, IV.2.4]):

X ′
−α ⊂ X ′αsαT X ′α ⊂ BsαB for all α ∈8+,(1)

BwBw′B = Bww′B if `(ww′)= `(w)+ `(w′).(2)

Given an element x ∈ G, we denote by Ox the conjugacy class of x in G and
by Hx the centralizer of x in H ≤ G. Denote by Z(K ) the center of an algebraic
group K and by K ◦ its identity component.

For the dimension of unipotent conjugacy classes in arbitrary good characteris-
tic, see [Carter 1985, Chapter 13] and [Premet 2003, Theorem 2.6].

For a conjugacy class O in G, we denote by V the set of its B-orbits.

2. Characterizations through the Bruhat decomposition

Here we introduce our characterizations of spherical conjugacy classes.
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Definition 2.1. Let G be a connected reductive algebraic group. A homogeneous
G-space X is spherical if it has a dense orbit for a Borel subgroup of G.

It is well known [Brion 1986; Grosshans 1992; Knop 1995; Vinberg 1986] that
O is a spherical conjugacy class in G if and only if its set of B-orbits V is finite.

Since G =
⋃
w∈W BwB, for every class O there is a natural map φ : V→ W

associating to v ∈ V the element w in the Weyl group of G for which v ⊂ BwB.
Besides, there is a uniquew∈W for which BwB∩O is dense in O, and this element,
which we denote by wO, is maximal in Im(φ) with respect to the Bruhat ordering
[Cantarini et al. 2005, page 32].

There are two characterizations of spherical classes in G.

Theorem 2.2 [Cantarini et al. 2005, Theorem 25; Carnovale 2008, Theorem 4.4].
A class O in a connected reductive algebraic group G over an algebraically closed
field of zero or good odd characteristic is spherical if and only if there exists v in V

such that `(φ(v))+ rk(1−φ(v))= dim O. If this is the case, v is the dense B-orbit
and φ(v)= wO.

Theorem 2.3 [Carnovale 2008, Theorem 2.7; Carnovale 2009, Theorem 5.7]. A
class O in a connected reductive algebraic group G over an algebraically closed
field of zero or odd, good characteristic is spherical if and only if Im(φ) contains
only involutions in W .

Since all Borel subgroups and all maximal tori are G-conjugate, the statement
in Theorem 2.3 is independent of the choice of B and T . By abuse of notation, we
say that g ∈ G is spherical if its class Og is.

Remark 2.4. Let g ∈ G. The B-orbits in Og are in one-to-one correspondence
with the (B,Gg)-double cosets in G. Therefore if x ∈ G is such that Gx = Gg,
then Og is spherical if and only if Ox is. In particular, if g2

∈ Z(G), then g and x
are semisimple. If G is affine, by [Borel 1969, Proposition 9.1] the orbit map is
separable, so the symmetric variety G/Gg =G/Gx is G-equivariantly isomorphic
to Og and Ox . By [Springer 1985, Corollary 4.3], the class Ox is spherical. Moti-
vated by this, we abuse notation when Gx = Gg and g2

∈ Z(G) by saying that Ox

is a symmetric conjugacy class.

Remark 2.5. Regular classes in a reductive algebraic group whose semisimple
quotient is not of type r A1 cannot be spherical. By [Steinberg 1965, Theorem 8.1],
regular classes intersect Bruhat cells corresponding to Coxeter elements.

We will frequently use the following observation.

Lemma 2.6. Let G be a connected reductive algebraic group, let T be a maximal
torus in G, and let H be a closed connected reductive subgroup of G containing T .
Let x ∈ H and suppose that Ox is spherical. Then the H-conjugacy class of x is
spherical.
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Proof. Let BH be a Borel subgroup of H containing T , and let B be a Borel
subgroup of G containing BH . Let y lie in the H -conjugacy class of x . For some
ẇ ∈ NH (T )= N (T )∩ H and for some b1, b2 ∈ BH ≤ B, we have

y = b1ẇb2 ∈ BH NH (T )BH ⊂ B N (T )B.

Since y ∈ Ox , we have ẇ2
∈ T by Theorem 2.3. As this holds for every y ∈ H , the

H -class of x satisfies the sufficient condition provided by Theorem 2.3. �

As a first application of Lemma 2.6 we have the following statement.

Lemma 2.7. Let G be a connected reductive algebraic group. Let g ∈ G with
Jordan decomposition g= su. If Og is spherical, then Os and Ou are spherical in G
and the G◦s -class of u is spherical.

Proof. It is well known that Gg = Gs ∩Gu . Therefore, if for a Borel subgroup B
of G there are finitely many (B,Gg) double cosets in G, there are finitely many
(B,Gs) double cosets and (B,Gu) double cosets in G. Thus if Og is spherical,
then Os and Ou are also spherical. For the last statement, by [Humphreys 1995,
Section 1.12], we have u ∈ G◦s , and we may apply Lemma 2.6 with H = G◦s . �

The next lemma helps show that certain classes in a group are not spherical.

Lemma 2.8. Let G be a connected reductive algebraic group, let T be a maximal
torus in G, and let H be a closed, connected, reductive subgroup of G containing T
such that its semisimple part is not of type r A1. Let x ∈ H and suppose that the
H-conjugacy class of x is regular. Then Ox is not spherical.

Proof. This is obtained by combining Lemma 2.6 with Remark 2.5. �

3. The classification

From now on G, will be a simple algebraic group. We aim at a classification of
spherical conjugacy classes in G in good odd characteristic. The main tools in
our classification will be the sufficient condition in Theorem 2.2 and the necessary
condition in Theorem 2.3.

If π : G1 → G2 is a central isogeny between two simple algebraic groups, a
conjugacy class Og in G1 is spherical if and only if π(Og) is spherical. Indeed,
let x ∈ G1, with G1,x its centralizer in G1 and G2,x the centralizer of π(x) in
G2. Also suppose B1 is a Borel subgroup of G1. Then π(B1) is a Borel subgroup
of G2, and the (B1,G1,x)-double cosets of G1 are in one-to-one correspondence
with the (B2,G2,x)-double cosets of G2. For this reason it is enough to provide
the classification for one representative for each isogeny class of simple groups.

By Remark 2.4, if x, y ∈ G and xy−1 is central, then Ox is spherical if and only
if Oy is. Thus it is enough to provide the classification up to a central element.
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If G is of type G2, Carnovale [2009, Section 2.1] gives the classification in good
characteristic; we provide it here for completeness.

Type G2.

Theorem 3.1. Let G be of type G2. The spherical classes are either semisimple
or unipotent. The semisimple ones are represented by hα1(−1) and hα1(ζ ) for ζ a
fixed primitive third root of 1. The unipotent ones are those of type A1 and Ã1.

Type An. In this section G = SLn+1(k), B is the subgroup of upper triangular
matrices, T is the subgroup of diagonal matrices in G, and U is the unipotent
radical of B. For a positive root α = αi +αi+1+ · · ·+α j we have

Xα = {1+ t Ei, j+1, t ∈ k} and X−α = tXα for every α ∈8.

Theorem 3.2. If n=1, all classes in G are spherical. If n≥2, the spherical classes
in G are either semisimple or unipotent up to a central element. The semisimple
ones are those corresponding to matrices with at most two distinct eigenvalues, and
they are all symmetric. The unipotent ones are those associated with the partitions
(2m, 1n+1−2m) for m = 1, . . . , [(n+ 1)/2].

Proof. If n = 1, all Bruhat cells correspond to involutions in W , so every class is
spherical by Theorem 2.3.

Unipotent classes. Let n ≥ 2, and let O = Ou be a unipotent class. By Jordan
theory, we may assume that u = xα1(c1) · · · xαn (cn) with ci ∈ {0, 1}. Then u lies
in the connected reductive subgroup H generated by T and by X±αi for all i such
that ci = 1. By [Steinberg 1965, Lemma 3.2 and Theorem 3.3], u is regular in H .
Lemma 2.8 implies that if Ou is spherical then ci ci+1= 0, so its associated partition
is of type (2m, 1n+1−2m). Conversely, let O j be the unipotent class corresponding
to (2 j , 1n+1−2 j ), with 2 j ≤ n + 1. Let βi = αi + · · · + αn−i+1 for i = 1, . . . , j .
The element x−β1(1) · · · x−β j (1) lies in O j . By (1) and (2) this element lies in
Bsβ1 · · · sβ j B, so its B-orbit satisfies the condition in Theorem 2.2, and thus O j is
spherical.

Semisimple classes. Let s = diag(λ1 In1, λ2 In2, . . . , λl Inl ) for distinct scalars λi . If
l>2, then s is conjugate to t=diag(λ1, λ2, λ3, t1) for some invertible diagonal sub-
matrix t1. Then t lies in the connected reductive subgroup H = 〈T, X±α1, X±α2〉,
and it is regular therein. It follows from Lemma 2.8 that if Os is spherical semi-
simple, then s has at most 2 eigenvalues. Conversely, suppose that s ∈ T has
2 eigenvalues. We may assume s = diag(λIm, µIn+1−m). Let ζ be a primitive
2(n+1)-st root of unity if n+1−m is odd, and let ζ = 1 if n+1−m is even. Let
also s0 = diag(ζ Im,−ζ In+1−m). Then s2

0 ∈ Z(G) and Gs = Gs0 . By Remark 2.4
the class Os is symmetric and hence spherical.



SPHERICAL CONJUGACY CLASSES IN GOOD CHARACTERISTIC 31

Mixed classes. We now show that there is no spherical element x with Jordan
decomposition x = su such that s 6∈ Z(G) and u 6= 1. Were this the case, we
could assume by Lemma 2.7 that s = diag(λIm, µIn+1−m) with m ≥ 2 and that
u ∈U ∩Gs = 〈Xαi , i 6= m〉.

We could then choose u = xα1(t1) · · · xαm−1(tm−1)xαm+1(tm+1) · · · xαn (tn) with
ti ti+1 = 0 because u is spherical by Lemma 2.7. If u is nontrivial, we may assume
that tm−1 or tm+1 is nonzero. Put J = {i | ti 6= 0} and H = 〈T, X±αm , X±αi 〉i∈J .
Then su is regular in H . Since H contains at least a subgroup of type A2 we may
conclude using Lemma 2.8. �

Type Cn. Let us view G = Sp2n(k) as the subgroup of GL2n(k) of matrices pre-
serving the bilinear form whose matrix is

( 0 I
−I 0

)
in the canonical basis of k2n .

We choose B as the subgroup of G of matrices of the form
( A AX

0 tA−1

)
, where A

is an invertible upper triangular matrix, tA−1 is its inverse transpose, and X is a
symmetric matrix. The torus T is the subgroup of diagonal matrices in B. We have

Xαi = {I + t Ei,i+1− t En+i+1,n+i , t ∈ k} for i = 1, . . . , n− 1,

Xαn = {I + t En,2n, t ∈ k},

and X−α = tXα for every α ∈ 8. We recall that if g, h ∈ Sp2n(k) are GL2n(k)-
conjugate they are Sp2n(k)-conjugate [Springer and Steinberg 1970, IV.2.15(ii)].
It is well known that unipotent classes in G are parametrized through Jordan theory
by partitions where odd terms occur pairwise [Humphreys 1995, Section 7.11].

Theorem 3.3. Let G = Sp2n(k) for n ≥ 2. The nontrivial spherical semisimple
classes are represented by σl = diag(−Il, In−l,−Il, In−l) for l = 1, . . . , n − 1;
by aλ = diag(λIn, λ

−1 In); and, up to a sign, by cλ = diag(λ, In−1, λ
−1, In−1) for

λ ∈ k with λ2
6= 0, 1. The unipotent ones are those associated with the partitions

(2m, 12n−2m) for m = 1, . . . , n. The spherical classes that are neither semisimple
nor unipotent up to a sign are represented by the elements σlu, where u ∈ Gσl

∼=

Sp2l(k)×Sp2n−2l(k) is unipotent and corresponds to the partition (2, 12n−2).

Proof. Semisimple classes. Let s ∈ T , and let 3 be the set of eigenvalues of s.
Let us first suppose that |3| ≥ 4. If n= 2, then s is a regular element, and hence

it is not spherical. Let n ≥ 3.
If {±1} ⊂ 3, then s is conjugate to s ′ = diag(λ, 1,−1, t, λ−1, 1,−1, t−1) for

some invertible diagonal submatrix t and some nonzero λ ∈ k with λ2
6= 1.

If |{±1} ∩ 3| = 1, then, since eigenvalues come with their inverse, |3| ≥ 5
and s is conjugate to s ′ = diag(λ, µ,±1, t, λ−1, µ−1,±1, t−1) for some invertible
diagonal submatrix t and some λ 6= µ ∈ k with λ2

6= 1 6= µ2.
If {±1} ∩ 3 = ∅, then either |3| ≥ 6 or there are two reciprocally inverse

eigenvalues with multiplicity at least 2. In both cases, the matrix s is conjugate to
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s ′ = diag(λ, µ, ν, t, λ−1, µ−1, ν−1, t−1) for some invertible diagonal submatrix t
and some distinct λ,µ, ν ∈ k with λ2, µ2, ν2

6= 1 and ν possibly equal to λ−1.
In all these cases, the element s ′ is regular in H = 〈T, X±α1, X±α2〉; therefore

by Lemma 2.8 the class Os cannot be spherical.
Let us now suppose that |3| = 3. Then 3 = {η, λ, λ−1

} with η2
= 1 and

λ2
6= 1. If the multiplicity of λ±1 is greater than 1, then s is conjugate to some r ′=

diag(λ, λ−1, 1, r1, λ
−1, λ, 1, r−1

1 ) with r1 an invertible, diagonal submatrix. The
element r ′ lies and is regular in the subgroup H above described. By Lemma 2.8
the class Os cannot be spherical. On the other hand, if 3 = {λ±1, 1} with the
multiplicity of λ±1 equal to 1, then Os is spherical. Indeed, the representative of
such a class in [Cantarini et al. 2005, Theorem 15, page 42] works also in odd
characteristic and its B-orbit satisfies the condition of Theorem 2.2.

Now assume that |3| = 2. Then either 3 = {±1} so that Os is symmetric, or
3 = {λ, λ−1

} for λ2
6= 1 so that s is conjugate to aλ = diag(λIn, λ

−1 In), whose
centralizer is independent of λ in the given range. Since a2

ζ ∈ Z(G) if λ = ζ is
a primitive fourth root of 1, we may apply Remark 2.4 and conclude that aλ is
spherical.

Unipotent classes. Let Ou be a unipotent class and let λ be its associated partition.
Let µ= (µ1, . . . , µl) be obtained by taking a representative of each term occurring
pairwise in λ and let ν = (ν1, . . . , νm) be obtained by taking the remaining even
terms without repetition in λ, so that 2n= |ν|+2|µ|. A representative u′ of Ou can
be taken in the subgroup isomorphic to

Sp2µ1
(k)× · · ·×Sp2µl

(k)×Spν1
(k)× · · ·×Spνm

(k)

obtained by repeating the immersion of Sp2d1
(k)×Sp2d2

(k) into Sp2(d1+d2)
(k) given

by ((
A1 B1

C1 D1

)
,

(
A2 B2

C2 D2

))
7→


A1 B1

A2 B2

C1 D1

C2 D2

 .
The component of u′ in Spν j

(k) corresponds to the partition (ν j ) and is thus regular
in Spν j

(k), whereas the component of u′ in Sp2µi
(k) can be taken to lie and be

regular in the subgroup isomorphic to SLµi (k) obtained by the immersion mapping
M to diag(M, tM−1). Therefore, u′ is regular in the semisimple group

SLµ1(k)× · · ·×SLµl (k)×Spν1
(k)× · · ·×Spνm

(k).

By Remark 2.5 if u is spherical, we have µi ≤ 2 and ν j ≤ 2 for every i and
j . Conversely, let λ = (2 j , 12n−2 j ), and let O j be the unipotent class associated
with λ. Let βq = 2αq + · · · + 2αn−1+ αn for q = 1, . . . , n− 1 and βn = αn . The
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element

x−β1(1) · · · x−β j (1)=
(

In

X j In

)
with X j = diag(I j , 0n− j )

lies in Bsβ1 · · · sβ j B by (1) and (2). Since it also lies in O j , its B-orbit satisfies the
condition in Theorem 2.2 for O j ; see [Cantarini et al. 2005, Theorem 12, page 36].
Thus, O j is spherical.

Mixed classes. Let g= su be the Jordan decomposition of a spherical element in G
with s 6∈ Z(G) and u 6= 1. Then Os is spherical and we may assume s equals aλ, cλ
or σl for some l. The case s = aλ is ruled out because dim Oaλu > dim Oaλ = dim B,
so Oaλu cannot have a dense B-orbit.

Assume that s = cλ. Then u ∈ Gs ∼= k∗× Sp2n−2(k) and it is spherical therein,
so it corresponds to a partition (2m, 12n−2−2m) for some m ≥ 1. The class Ocλu is
represented by cλxβ2(1) · · · xβm+1(1), with notation as before. Such an element is
regular in the subgroup H = 〈T, X±α1, X±βi , i = 2, . . . ,m+ 1〉. This case is thus
excluded by Lemma 2.8 because the semisimple part of H is of type C2×(m−1)A1.

It follows that s = σl for some l. Then Gs is generated by X±αi for i 6= l
and X±βl . We have u = (u1, u2) ∈ Gs ∼= Sp2l(k)× Sp2n−2l(k), and it is spherical
therein. Then u1 and u2 are spherical in the respective components. We claim that
u1 and u2 cannot be both nontrivial. If on the contrary u1 corresponded to the
partition λ= (2a, 12l−2a) and u2 corresponded to the partition µ= (2b, 12n−2l−2b)

with a, b≥ 1, the Gs-class of u1 would be represented by u′1= xβl−a+1(1) · · · xβl (1)
and the Gs-class of u2 would be represented by u′2 = xβl+1(1) · · · xβl+b(1). It is not
hard to verify that σlu′1u′2 is regular in 〈T, X±αl , X±βi , i = l − a + 1, . . . , l + b〉,
whose semisimple part is of type (a+ b− 2)A1+C2. By Lemma 2.8 this option
is excluded, and we have a+ b ≤ 1; hence at least one of the ui is trivial.

There is no loss of generality in assuming that u1=1. We claim that the partition
µ = (2b, 12n−2l−2b) associated with u2 has no repeated 2. Let b = 2h + j with
j = 0, 1 according to the parity of b, and assume that h ≥ 1. The Gs-class of u2 is
represented by u′2 = xαl+1(1)xαl+3(1) · · · xαl+2h−1(1)xβl+2h+1( j). The element σu′2 is
regular in 〈T, X±αl , X±αl+1, X±αl+3, . . . , X±α2h−1, X±β2h+1( j)〉, whose semisimple
part is of type A2×h Ã1× j A1, where Ã1 corresponds to a short root. By Lemma 2.8
the claim is proved.

Conversely, for all classes of type σlu with u∈Gσl corresponding to the partition
(2, 12n−2), the representative in [Cantarini et al. 2005, Theorem 21, page 50] is
defined in odd characteristic and its B-orbit satisfies the condition of Theorem 2.2.

�

Type Dn. Let n ≥ 4, and view O2n(k) as the subgroup of GL2n(k) of matrices
preserving the bilinear form whose matrix is

(
0 I
I 0

)
in the canonical basis of k2n ,
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so that G = SO2n(k) is viewed as the subgroup of such matrices of determinant 1.
We choose B as the subgroup of G of matrices of the form(

A AX
0 tA−1

)
,

where A is an invertible upper triangular matrix, tA−1 is its inverse transpose and
X is a skew-symmetric matrix. We fix T ⊂ B as its subgroup of diagonal matrices.

We have

Xαi = {I + t Ei,i+1− t En+i+1,n+i , t ∈ k} for i = 1, . . . , n− 1,

Xαn = {I + t En−1,2n − t En,2n−1, t ∈ k}

and t X−α = Xα for every α ∈8.
We recall that if g, h ∈ G are GL2n(k)-conjugate, they are O2n(k)-conjugate

[Springer and Steinberg 1970, IV.2.15(ii)] but not necessarily G-conjugate. How-
ever, conjugation by an element in O2n(k) determines an automorphism ψ of G,
so if h = ψ(g), the class Og is spherical if and only if ψ(Og) = Oψ(g) = Oh is.
For this reason, in what follows we will sometimes replace an element g ∈ G by a
GL2n(k)-conjugate h lying in G.

To list a representative for each spherical conjugacy class, we will then have to
verify whether an O2n(k)-class splits into two G-classes or not. We recall that such
a class splits into two classes if and only if the O2n(k)-centralizer of a representative
is contained in G.

It is well known that the even terms occur pairwise in the partition λ associated
with a unipotent conjugacy class in G via Jordan theory. Moreover, a unipotent
O2n(k)-class splits into two G-classes only if n is even and the associated partition
has only even terms [Humphreys 1995, Section 7.11].

Theorem 3.4. Let G = SO2n(k) for n ≥ 4. The spherical classes in G are either
semisimple or unipotent up to a central element. The nontrivial semisimple ones
are those represented by

σl = diag(−Il, In−l,−Il, In−l) for l = 1, . . . , n− 1;

cλ = diag(λ, In−1, λ
−1, In−1) for λ2

6= 0, 1, up to a sign,

and the pairs of SO2n(k)-classes into which the O2n(k)-class represented by aλ =
diag(λIn, λ

−1 In) splits, for λ2
6= 0, 1. The unipotent ones are those associated with

the partitions

(22m, 12n−4m) for m = 1, . . . , [n/2],

(3, 22m, 12n−3−4m) for m = 1, . . . , [n/2] − 1

and only (22(n/2)) for n even corresponds to two distinct conjugacy classes.



SPHERICAL CONJUGACY CLASSES IN GOOD CHARACTERISTIC 35

Proof. Semisimple classes. Let s ∈ T , and let3 be its set of eigenvalues. Adapting
the analysis in type Cn and replacing s by a GL2n(k)-conjugate if necessary, we see
that if s is spherical, then |3| ≤ 3 and if |3| = 3, then, up to a sign,3={λ, λ−1, 1}
for some λ2

6= 1 and the multiplicity of λ and λ−1 is equal to 1.
On the other hand, if 3 = {λ, λ−1, 1} with the multiplicity of λ and λ−1 equal

to 1, then s is GL2n(k)-conjugate to cλ = diag(λ, In−1, λ
−1, In−1). Its centralizer

Gcλ is equal to the identity component H◦ of the centralizer H of the involu-
tion σ1 = diag(−1, In−1,−1, In−1). By [Borel 1969, Proposition 9.1], we have
Ocλ
∼=G/Gcλ =G/H◦. Since the index of H◦ in H is finite, Ocλ is spherical if and

only if G/H ∼= Oσ1 is, and therefore Ocλ is spherical. The centralizer in O2n(k) of
cλ contains the matrix

M =


In−1 On−1

0 1
On−1 In−1

1 0

 ,
so each cλ represents a single spherical SO2n(k)-conjugacy class.

Let now |3| = 2. If 3= {±1}, then s2
= 1 and Os is symmetric. The GL2n(k)-

class of s is represented by σl=diag(−Il, In−l,−Il, In−l) for some l=1, . . . , n−1.
The centralizer in O2n(k) of each σl contains the matrix M above described, so each
σl represents a single spherical SO2n(k)-conjugacy class.

If 3 = {λ, λ−1
} with λ2

6= 1, we may assume that s = aλ = diag(λIn, λ
−1 In)

whose centralizer is independent of λ in the given range. Since a2
ζ ∈ Z(G) for ζ a

primitive fourth root of 1, by Remark 2.4 all those classes are symmetric and hence
spherical. The O2n(k)-centralizer of aλ consists of all matrices diag(A,t A−1) for
some invertible n× n matrix A and hence is contained in SO2n(k). Therefore the
O2n(k)-class of each aλ splits into two spherical SO2n(k)-conjugacy classes.

Unipotent classes. By the discussion of GL2n(k)-conjugacy, it suffices to consider
a class for each admissible partition.

Let u be a unipotent element in G, with associated partition λ. Obtain µ =
(µ1, . . . , µl) by taking a representative of each term occurring pairwise in λ, and
ν= (ν1, . . . , νm) by taking the remaining distinct odd terms so that 2n= 2|µ|+|ν|.
A representative u′ of Ou can be taken in the subgroup isomorphic to SOν1+ν2(k)×
· · ·×SOνm−1+νm (k)×SO2µ1(k)×· · ·×SO2µl (k) obtained by repeatedly immersing
SO2d1(k)×SO2d2(k) into SO2(d1+d2)(k) by

((
A1 B1

C1 D1

)
,

(
A2 B2

C2 D2

))
7→


A1 B1

A2 B2

C1 D1

C2 D2

 .
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The component of u′ in SOνi+νi+1(k) is associated with the partition (νi , νi+1),
whereas the component of u′ in SO2µi (k) can be chosen to lie and be regular in the
subgroup isomorphic to SLµi (k) obtained by the immersion A 7→ diag(A, tA−1).
Thus u′ lies in SOν1+ν2(k)×· · ·×SOνm−1+νm (k)×SLµ1(k)×· · ·×SLµl (k). A class
in a semisimple group is spherical if and only if its projection onto each simple
component is. By Remark 2.5 applied to SLµ1(k)×· · ·×SLµl (k), we see that if u
is spherical, then µi ≤ 2 for all i . We now show that under the same assumption,
ν1 ≤ 3 so that ν is either (3, 1) or the empty partition. It is enough to analyze the
SOν1+ν2(k)-class O of the component of u′. Let ν1 = 2l + 1 and ν2 = 2 j − 1 with
l ≥ j ≥ 1, and let γ1, . . . , γl+ j be the simple roots of SOν1+ν2(k). The class O is
represented by x = diag(A,t A−1)

(
I X

I

)
, where

A =


1
1
. . .
. . .

. . . 1
1 1

 and X =


0 j−1

0 1
−1 0

0l−1

 .
Since diag(A,t A−1) lies in X ′

−γ1
· · · X ′

−γ j+l−1
and

(
I X

I

)
lies in B, it follows from

(1) and (2) that x lies in a cell corresponding to an involution only if j + l ≤ 2,
whence the claim.

Conversely, let Ou be a unipotent class corresponding to (22m, 12n−4m) or to
(3, 22m, 12n−3−4m). Cantarini et al. [2005, Theorem 12, pages 37–38] give matrices
that represent these classes also when char(k) is odd and their B-orbits satisfy the
condition in Theorem 2.2.

Mixed classes. We show that there is no spherical element with Jordan decompo-
sition g = su with s 6∈ Z(G) and u 6= 1. We may assume that s = cλ, σl , because
dim B = dim Oaλ < dim Oaλu .

The subgroup G◦cλ is of type Dn−1 × k∗ and is generated by T and the root
subgroups X±α2, . . . , X±αn . The element u ∈ G◦cλ corresponds to a partition π of
2n − 2 from which we may construct, as before, the partitions µ and ν. Since u
is spherical in G◦cλ , we have µ= (22a, 12b) with a possibly zero and ν = (3, 1) or
trivial. The Gcλ-class of u may be represented by the element

u′ = xα2(1)xα4(1) · · · xα2a (1)xα2a+2( j)xα2a+2+2α2a+3+···+2αn−2+αn−1+αn ( j),

where j = 1 if ν = (3, 1) and j = 0 if ν is trivial. Then cλu′ is regular in
〈T, X±α1, X±α2l , xα2a+2( j), xα2a+2+2α2a+3+···+2αn−2+αn−1+αn ( j)〉l=1,...,a . We may thus
apply Lemma 2.8 to deduce that s cannot be equal to cλ.

Let then s = σl for some l. The identity component of Gσ1 is equal to Gcλ , and
we may use the argument above to show that σ1u cannot be spherical. Let l ≥ 2.



SPHERICAL CONJUGACY CLASSES IN GOOD CHARACTERISTIC 37

Then G◦σl
∼= SO2l(k)×SO2n−2l(k) and it corresponds to the roots

α1, . . . , αl−1, αl+1+ 2αl+2+ · · ·+αn−1+αn, αl+1, . . . , αn.

Let u = (u1, u2) ∈ SO2l(k)× SO2n−2l(k) = G◦σl
. Since Gσl u = Gσl ∩ Gu1 ∩ Gu2

is contained in Gσl ui for i = 1, 2, it is enough to show that σlui is not spherical.
We will do so for u2, the other case being similar. Let λ be the partition associated
with u2, and let µ and ν be as above. We may find a representative u′2 in the
SO2n−2l(k)-class of u2 lying and being regular in a subgroup H constructed as
above for s = cλ. If u2 6= 1, the subgroup H contains the root subgroups X±αl+1

and σlu′2 is regular in H ′ = 〈T, H, X±αl 〉. This proves the claim. �

Type Bn. Let n ≥ 2. View O2n+1(k) as the subgroup of GL2n+1(k) of matrices
preserving the bilinear form whose matrix is1 0 0

0 0 In

0 In 0


in the canonical basis of k2n+1, so that G = SO2n+1(k) is the subgroup of such
matrices with unit determinant. Fix B to be the subgroup of matrices of the form 1 0 tγ

−Aγ A AX
0 0 tA−1

 ,
where A is an invertible upper triangular matrix, γ is a column in kn and the
symmetric part of X is −(1/2)γ tγ . We fix T ⊂ B as its subgroup of diagonal
matrices.

We have Xαi = {I + t Ei+1,i+2 − t En+i+2,n+i+1, t ∈ k} for i = 1, . . . , n − 1,
Xαn = {I + t E1,2n+1− t En+1,1}, and X−α = tXα for every α ∈8.

If g, h ∈ G are GL2n+1(k)-conjugate, then they are also O2n+1(k)-conjugate by
[Springer and Steinberg 1970, IV.2.15(ii)]. Thus, they are G-conjugate because
O2n+1(k)=G∪(−I2n+1)G. Partitions in which even terms occur pairwise param-
etrize unipotent conjugacy classes in G [Humphreys 1995, Section 7.11].

We shall frequently use the fact that the group SO2n(k) may be embedded into
G through the map ι defined by X 7→ diag(1, X). Denote the image of ι by K .

Theorem 3.5. Let G = SO2n+1(k). The spherical semisimple classes in G are
represented by

ρl = diag(1,−Il, In−l,−Il, In−l) for l = 1, . . . , n,

dλ = diag(1, λ, In−1, λ
−1, In−1),

bλ = diag(1, λIn, λ
−1 In) with λ2

6= 0, 1.
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The unipotent ones are those associated with (22m, 12n+1−4m) for m= 1, . . . , [n/2]
and (3, 22m, 12n−2−4m) for m = 1, . . . , [(n− 1)/2]. The spherical classes that are
neither semisimple nor unipotent are represented by ρnu, where u ∈G◦ρn

∼=SO2n(k)
is a unipotent element associated with (22m, 12n−4m) for m = 1, . . . , [n/2].

Proof. Semisimple classes. Let s ∈ T be a spherical element in G, and let 3 be its
set of eigenvalues. By the description of T , we always have 1∈3. By Lemma 2.6
applied to K and Theorem 3.4, we see that |3|≤4. We claim that |3|<4. Assume
that |3|=4. Then−1∈3 and s is conjugate to s ′=diag(1, λ,−1, t, λ−1,−1, t−1)

for some invertible diagonal submatrix t and some scalar λ with λ2
6= 1. Thus s ′

is regular in 〈T, X±α1, X±(α2+α3+···+αn)〉 whose semisimple part is of type B2, and
by Lemma 2.8 we have the claim. It follows that |3| = 2, 3. If |3| = 2, the
element s is conjugate to some involution ρl = diag(1,−Il, In−l,−Il, In−l) for
some l = 1, . . . , n; hence it is spherical. If |3| = 3, then 3 = {1, λ, λ−1

} and the
multiplicities of λ and 1 cannot be both greater than 1, by Lemma 2.6 applied to K
and the discussion in Theorem 3.4 for spherical semisimple elements. Thus, s is
conjugate either to bλ= diag(1, λIn, λ

−1 In) or to dλ= diag(1, λ, In−1, λ
−1, In−1),

for λ2
6= 1, 0. A representative of Obλ satisfying the condition in Theorem 2.2 is

found in [Cantarini et al. 2005, Theorem 15, page 44] and it is well defined in odd
characteristic too, so bλ is indeed spherical. Moreover, Gdλ = G◦ρ1

. Hence dλ is
also spherical because ρ1 is and the index of G◦ρ1

in Gρ1 is finite.

Unipotent classes. Let u be a spherical unipotent element in G associated with
the partition λ. Let µ and ν be constructed as in Theorem 3.4 with 2n + 1 =
2|µ| + |ν|. We may find a representative u′ of Ou in a subgroup isomorphic to
SOν1(k)×SOν2+ν3(k)× · · ·×SOνm−1+νm (k)×SO2µ1(k)× · · ·×SO2µl (k). Such a
subgroup can be obtained using the embeddings in the proof of Theorem 3.4 and
the embedding of SO2d1+1(k)×SO2d2(k) into SO2(d1+d2)+1(k) given by

 1 α1 β1

γ1 A1 B1

δ1 C1 D1

 ,(A2 B2

C2 D2

) 7→


1 α1 β1

γ1 A1 B1

A2 B2

δ1 C1 D1

C2 D2

 .
The component of u′ in SOν1(k) corresponds to (ν1), so it is regular therein. Hence,
its SOν1(k)-class is spherical only if ν1≤3. Therefore ν= (3) or ν= (1). Moreover,
as in Theorem 3.4, the component in SO2µ j (k) can be chosen to lie and be regular
in a subgroup isomorphic to SLµ j (k), forcing µi ≤ 2 for every i . Conversely, for a
unipotent class associated with (2m, 12n+1−4m) or (3, 22m, 12n−4m−2), the represen-
tatives in [Cantarini et al. 2005, Theorem 12, pages 38–39] are well defined in odd
characteristic, and the corresponding B-orbits satisfy the condition in Theorem 2.2.
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Mixed classes. Let g= su be the Jordan decomposition of a spherical element in G
with s, u 6= 1. If s = bλ for some λ, then u and bλ lie in Gbλ ⊂ K . By Lemma 2.6
the element su would be spherical in K , but this is excluded by Theorem 3.4.

If s = ρl for some l, its centralizer is isomorphic to SO2l(k)× SO2n−2l+1(k)
and it corresponds to the roots α1, . . . , αl−1, αl +2αl+1+· · ·+2αn , αl+1, . . . , αn .
Then u = (u1, u2) ∈ SO2l(k)×SO2n−2l+1(k).

First assume that u2 corresponds to the partition (3, 22a) of 2n− 2l+ 1, so that
n−l is odd. We claim that ρlu2 is not spherical. Then, since Gρl u ⊂Gρl u2 , we may
conclude that the class Oρl u cannot be spherical in this case. The SO2n−2l+1(k)-
class of u2 may be represented by the element u′2 = xαl+1(1)xαl+3(1) · · · xαn (1) so
that ρlu′2 is regular in 〈T, X±αl , X±αl+i 〉i≥1 and odd. Invoking Lemma 2.8, we prove
the claim.

If u2 does not correspond to the partition (3, 22a), we may find a representative
of Oρl u that lies in K . By Lemma 2.6 and Theorem 3.4, this is possible only if
ρl = ι(t) for some t ∈ Z(K ). Therefore g = ρnv = diag(1,−I2n)v for some
spherical unipotent v in G◦ρn

= K . We claim that the partition λ of 2n associated
with v has no term equal to 3. If λ = (3, 22a, 1c), the K -class of v could be
represented by v′ = xα1(1)xα3(1) · · · xα2a−1(1)xαn−1(1)xαn−1+2αn (1). The element
ρlv′ is regular in 〈T, X±α1, X±α3, . . . X±α2a−1, X±αn−1, X±αn 〉, whose semisimple
part is of type a A1×B2; hence the claim follows from Lemma 2.8. Conversely, let
g = ρnu with u corresponding to (22m, 12n−4m) for some m. The representative of
its class provided in [Cantarini et al. 2005, Theorem 21, page 52] is well defined
in odd characteristic and it allows application of Theorem 2.2.

Finally assume that s = dλ for some λ. Then u ∈ Gdλ = G◦ρ1
and we may apply

the arguments used for s = ρ1 to show that su cannot be spherical. �

Type E6.

Theorem 3.6. Let G be simply-connected of type E6. The spherical classes in G
are either semisimple or unipotent up to a central element. The semisimple ones are
symmetric and up to a central factor are represented by p1=h1(−1)h4(−1)h6(−1)
and p2,c = h1(c2)h2(c3)h3(c4)h4(c6)h5(c5)h6(c4) for c ∈ k with c3

6= 1, 0. The
unipotent ones are those of type A1, 2A1 and 3A1.

Proof. Semisimple classes. Let s ∈ T be spherical. We may apply [Humphreys
1995, Theorem 2.15] to choose s so that Gs is generated by T and X±α for α in
a subsystem 8(5)⊂8 with basis a subset 5 of 1∪ {−β1}. By Theorem 2.2 we
have dim Os ≤ `(w0)+ rk(1−w0) and a dimension count shows that 5 can only
be one of the following subsets:

51 = {α1, α3, α4, α5, α6,−β1}, 52 = {α1, α2, α4, α5, α6,−β1},

53 = {α1, α2, α3, α4, α6,−β1} of type A5× A1,
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or

54 = {α1, α2, α3, α4, α5}, 55 = {α2, α3, α4, α5,−β1},

56 = {α2, α3, α4, α5, α6} of type D5.

Let us put Hi = 〈T, X±α, α ∈5i 〉 for i = 1, . . . , 6. The sets 5i for i = 1, 2, 3
are R-bases for the span of 1, and one may find automorphisms of 8 mapping 5i

for i = 2, 3 to ±51. On the other hand, Aut(8) = {−w0}n W so any element s
whose centralizer is H2 or H3 is N (T )-conjugate to an element whose centralizer
is H1. The elements s for which Gs = H1 are p1 = h1(−1)h4(−1)h6(−1) and
zp1 for any z ∈ Z(G). Conjugation by these elements is an involution, so Op1 is
symmetric. This completes the analysis for 5i with i ≤ 3.

The subgroups H4 and H6 are ẇ0-conjugate, so any element whose centralizer
is H4 is N (T )-conjugate to an element whose centralizer is H6. Besides, the au-
tomorphism of 8 defined by α1 7→ −β1, α2 7→ α3, α3 7→ α2, α j 7→ α j for
j = 4, 5, 6 maps 54 onto 55. As before, we may conclude that H5 is N (T )-
conjugate to H4 and any element whose centralizer is H5 is N (T )-conjugate to
an element whose centralizer is H4. The elements whose centralizer is H4 are
p2,c= h1(c2)h2(c3)h3(c4)h4(c6)h5(c5)h6(c4) for c∈ k with c3

6= 1, 0. Multiplying
c by a third root of unity yields the same element multiplied by a central one. Since
p2,−1 is an involution, Op2,c is spherical by Remark 2.4. We claim that p2,c is not
conjugate to p2,d for c 6= d . If they were G-conjugate, they would be N (T )-
conjugate by [Springer and Steinberg 1970, Section 3.1], so there would exist a
σ ∈ W such that σ̇ p2,cσ̇

−1
= p2,d . Thus, σ would stabilize 8(54) and would

restrict to an automorphism of 8(54). Its restriction would therefore be of the
form τw, where τ acts an automorphism of the Dynkin diagram of type D5 and w
lies in the Weyl group W ′ of H4, which is contained in W . Then σw−1 would
lie in W , and it would act on 54 as τ . Besides, two automorphisms ψ1, ψ2 of 8
coinciding on 54 are equal. Indeed, for α = ψ1ψ

−1
2 (α6), we have 〈α j , α〉 = 0 for

j = 1, 2, 3, 4 and 〈α, α5〉 = −1. Such a root α can only be α6, so ψ1ψ
−1
2 = 1.

It follows that σw−1 is either the identity, when τ = 1, or it is the automorphism
mapping α j to α j for j = 1, 3, 4, interchanges α2 and α5, and maps α6 to −β1.
However, one may verify that the second possibility cannot happen because such
an automorphism is equal to s1s3s4s5s2s4s6s5s3s4s1s3s2s4s5s6(−w0); hence it does
not lie in W . Therefore τ = 1 and σ = w ∈ W ′. Since G p2,c = H4, conjugation
by the lift in N (T ) of an element in W ′ does not modify p2,c, so p2,c and p2,d

represent distinct classes.

Unipotent classes. Let O be a nontrivial spherical unipotent class. Then dim O ≤

`(w0)+ rk(1−w0) by Theorem 2.2, so O is of type A1, 2A1 or 3A1. Conversely,
the arguments in [Cantarini et al. 2005, Theorem 13, pages 39–40] apply in good
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characteristic and show that the listed orbits have a representative whose B-orbit
satisfies the conditions of Theorem 2.2.

Mixed classes. A dimension counting together with Lemma 2.7 shows that no class
Osu with s 6∈ Z(G) and u 6= 1 can be spherical. �

Type E7.

Theorem 3.7. Let G be simply-connected of type E7. The spherical classes in G
are either semisimple or unipotent up to a central element. The semisimple ones
are symmetric and are represented by q1 = h2(ζ )h5(−ζ )h6(−1)h7(ζ ), where ζ is
a fixed primitive fourth root of 1; q2 = h3(−1)h5(−1)h7(−1); zq1, and zq2 for
z∈ Z(G); and q3,a=h1(a2)h2(a3)h3(a4)h4(a6)h5(a5)h6(a4)h7(a3)with a2

6=1, 0.
The unipotent ones are those of type A1, 2A1, (3A1)

′, (3A1)
′′ and 4A1.

Proof. Semisimple classes. Let s ∈ T be a spherical element. Proceeding as we
did in Theorem 3.6, using that dim Os ≤ dim B, we may choose s so that Gs is
generated by T and X±α for α ∈8(5) where 5 is one of the following subsets of
1∪ {−β1}:

51 = {α1, α3, α4, α5, α6, α7,−β1} of type A7;

52 = {α2, α3, α4, α5, α6, α7,−β1},

53 = {α1, α2, α3, α4, α5, α7,−β1} of type D6× A1;

54 = {α1, α2, α3, α4, α5, α6} of type E6.

Let us put Hi = 〈T, X±α, α ∈5i 〉.
There is only one element, up to a central one, whose centralizer is H1, and this

is q1 = h2(ζ )h5(−ζ )h6(−1)h7(ζ ), where ζ is a fixed primitive fourth root of 1.
Since q2

1 = h2(−1)h5(−1)h7(−1) ∈ Z(G), the corresponding class is symmetric
by Remark 2.4. The root systems generated by 52 and 53 are mapped onto each
other by elements in Aut(8) = W . Thus, each element whose centralizer is H2

is N (T )-conjugate to one whose centralizer is H3, and it is enough to look at 52.
The elements whose centralizer is H2 are q2 = h3(−1)h5(−1)h7(−1) and zq2 for
z ∈ Z(G). The corresponding classes are symmetric. The elements whose central-
izer is H4 are q3,a = h1(a2)h2(a3)h3(a4)h4(a6)h5(a5)h6(a4)h7(a3) for a2

6= 1, 0.
For ξ a primitive fourth root of unity, we have q2

3,ξ ∈ Z(G) and hence all such
classes are symmetric. Multiplication of q3,a by the nontrivial central element
gives q3,−a . We claim that q3,a is never conjugate to q3,b for a 6= b. If they were
G-conjugate, they would be N (T )-conjugate, so there would exist a σ ∈ W for
which σ̇q3,a σ̇

−1
= q3,b. Such a σ would preserve 8(54), and its restriction to

it would be an automorphism. As in the proof of Theorem 3.6, we see that for
some w in the Weyl group W ′ of H4, the restriction to 8(54) of σw−1

∈ W
would come from an automorphism of the Dynkin diagram of type E6. There is no
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automorphism of8whose restriction to E6 is the nontrivial automorphism. Indeed,
if such an automorphism τ existed, for α = τ(α7) we would have 〈α, α j 〉 = 0 for
j = 2, 3, 4, 5, 6 and 〈α, α1〉 = −1, but there is no such α ∈8. Therefore σw−1 is
the identity on 8(54). By uniqueness of the extension of an automorphism from
E6 to E7 we have σ =w ∈W ′. Since Gq3,a = H4, conjugation by lifts in N (T ) of
elements in W ′ preserves q3,a .

Unipotent classes. Let u 6= 1 be a spherical unipotent element. Then dim Ou ≤

dim B, so Ou is either of type r A1 for some r , or of type A2. In the latter case,
u would be regular in a Levi subgroup of type A2, so this case cannot occur by
Remark 2.5. The arguments in [Cantarini et al. 2005, Theorem 13, pages 39–40]
apply also in good characteristic and show that for all unipotent classes of type
r A1, there is a representative whose B-orbit satisfies the condition in Theorem 2.2.

Mixed classes. We claim that there is no spherical element with Jordan decomposi-
tion g= su with s 6∈ Z(G) and u 6=1. Indeed, Os would be spherical and u would be
spherical in G◦s . A dimensional argument shows that this is possible only if s ∈ Oq2

up to a central element and u is nontrivial only in the component of type A1 in Gs .
It follows from the discussion of semisimple elements that we may choose s so
that Gs = H3 with notation as before, so that we may choose g to be conjugate to
sx−α7(1). Conjugation of g by x−α6(1) and Chevalley’s commutator formula would
give z= sx−α6(a)x−α7(1)x−α6−α7(b)∈Og for some nonzero a, b∈ k. Conjugating z
by a suitable element in X ′

−α6−α7
, we could get rid of the term in X ′

−α6−α7
, obtaining

an element in Og ∩ Bs6s7 B. By Theorem 2.3, the class Og cannot be spherical. �

Type E8.

Theorem 3.8. Let G be of type E8. The spherical classes are either semisimple
or unipotent. The semisimple ones are symmetric ,and they are represented by
r1 = h2(−1)h3(−1) and r2 = h2(−1)h5(−1)h7(−1). The unipotent ones are those
of type A1, 2A1, 3A1 and 4A1.

Proof. Semisimple classes. Let s ∈ T be a spherical element. Proceeding as we
did in Theorems 3.6 and 3.7 we see that, up to N (T )-conjugation, the central-
izer Gs is generated by T and by the X±α for α in a subsystem with basis either
{α2, α3, α4, α5, α6, α7, α8,−β1} of type D8 or {α1, α2, α3, α4, α5, α6, α7,−β1} of
type E7 × A1. Then s is conjugate either to r1 = h2(−1)h3(−1) or to r2 =

h2(−1)h5(−1)h7(−1). Since r2
1 = r2

2 =1 the corresponding classes are symmetric.

Unipotent classes. Let O be a nontrivial spherical unipotent class. Then dim O ≤

dim B, so O is either of type r A1 for some r , or it is of type A2. The latter case is
excluded as in the case of G of type E7. Conversely, the arguments in [Cantarini
et al. 2005, Theorem 13, pages 39–40] apply in good characteristic and show that
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for each orbit of type r A1 in G, we may find a representative whose B-orbit satisfies
the condition in Theorem 2.2.

Mixed classes. We claim that there is no spherical element with Jordan decompo-
sition g= su with s, u 6= 1. Indeed, by dimensional reasons, s would be conjugate
to r2 and u would lie in the component of type A1 in Gr2 =〈T, X±β1, X±αi 〉i=1,...,7.
In other words, we could assume g = r2x−β1(1). Let γ = β1−α8. Conjugation of
g by ṡγ gives t x−α8(a)∈ Og for some nonzero a ∈ k and some t ∈ T . Since r2 does
not commute with X ′

±(β1−α8−α7)
and sγ (α7+α8−β1)= α7, the element t does not

commute with X ′
±α7

. Since sγ (α7+α8)= α7+α8 and r2 does not commute with
X ′
±(α7+α8)

, the same holds for t . Then conjugation of t x−α8(a) by x−α7(1) would
give t x−α7(b)x−α8(a)x−α7−α8(c) ∈ Og for some nonzero b, c ∈ k. Conjugation by
a suitable element in X ′

−α7−α8
would yield an element x ∈ Og ∩ T X ′

−α7
X ′
−α8

. By
(1) and (2), x would lie in Og ∩ Bs7s8 B, leading to a contradiction. �

Type F4.

Theorem 3.9. Let G be of type F4. The spherical semisimple classes are symmet-
ric and represented by f1 = hα2(−1)hα4(−1) and f2 = hα3(−1). The spherical
unipotent ones are those of type r A1 + s Ã1 for r, s ∈ {0, 1}. There is a spherical
class that is neither semisimple nor unipotent, and it is represented by f2xβ1(1).

Proof. Semisimple classes. Let s ∈ T be a spherical element in G. A dimension
counting similar to the previous exceptional cases shows that Gs is N (T )-conjugate
to the subgroup generated by T and the root subgroups corresponding to roots in a
subsystem with basis either 51 = {−β1, α2, α3, α4} or 52 = {α1, α2, α3,−β1}.
They correspond to the involutions f1 = hα2(−1)hα4(−1) and f2 = hα3(−1),
respectively, which are indeed spherical.

Unipotent classes. Let O be a nontrivial spherical unipotent class in G. Then
dim O≤ dim B, so O is either of type A1, Ã1 or A1+ Ã1. Conversely, the arguments
in [Cantarini et al. 2005, Theorem 13, pages 39–40] hold in good characteristic and
show that Theorem 2.2 applies to these three classes.

Mixed classes. Let g= su be the Jordan decomposition of a spherical element with
s, u 6= 1. Since dim O f1 = dim B, we may assume s = f2. Also, G f2 is a reductive
group of type B4. A dimensional argument shows that u lies in the minimal unipo-
tent class in G f2 , so we may assume g= f2x−(2α1+3α2+4α3+2α4)(1)= f2x−β1(1). We
have dim Og = dim B. The proof in [Cantarini et al. 2005, Theorem 23] contains
an incorrect argument, which we rectify here.

The element f2 = hα3(−1) lies in the subgroup G1 = 〈X±αi , i = 2, 3, 4〉 of
type C3. By looking at the centralizer of f2 in G1 we see that, up to an element
in Z(G1), the G1-conjugacy class of f2 is represented by σ1 with notation as in
Theorem 3.3. By [Cantarini et al. 2005, Theorem 15, page 42], the G1-class of σ1
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has a representative in s4sα2+2α3+α4 T when k =C. The same matrix represents the
class in good characteristic. Besides, G1 centralizes X±β1 , so f2x−β1(1) can be
represented by an element z ∈ s4sα2+2α3+α4 T X ′

−β1
⊂ s4sα2+2α3+α4 T X ′β1

sβ1 X ′β1
⊂

X ′β1
w0s2T X ′β1

. Conjugating z by ṡ2ṡ1, we obtain an element z′ ∈ Bw0s1 B ∩ Og.
Thus, wOg ≥ w0s2 and wOg ≥ w0s1, forcing w0 = wOg (notation as in Section 2).
Then Og has a representative whose B-orbit satisfies the condition in Theorem 2.2
and therefore is spherical. �
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