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We classify spherical conjugacy classes in a simple algebraic group over an
algebraically closed field of good, odd characteristic.

Introduction

When studying a transitive action of a group G, it is particularly interesting to
understand when a given subgroup B of G acts with finitely many orbits. An
important case of such a situation in the theory of algebraic groups is when B
is a Borel subgroup of a connected reductive algebraic group G. The G-spaces
for which B acts with finitely many orbits in this case are the so-called spherical
homogeneous spaces, and they include important examples such as the flag variety
G/ B and symmetric varieties. They are precisely those G-spaces for which the B-
action has a dense orbit in the Zariski topology [Brion 1986; Grosshans 1992; Knop
1995; Vinberg 1986]. One may want to understand when homogeneous spaces
that are relevant in algebraic Lie theory, such as nilpotent orbits in Lie(G) and
conjugacy classes in G for G reductive, are spherical. Spherical nilpotent orbits in
simple Lie algebras were classified in [Panyushev 1994; 1999] when the base field
is C and in [Fowler and Rohrle 2008] when it is an algebraically closed field of good
characteristic: They are precisely the orbits of type rA; for r > 0 in the simply-
laced case and of type rA; + sA 1 for r, s > 0 in the multiply-laced case. As for
conjugacy classes, it is natural to use the interplay with the Bruhat decomposition,
since this has proved to be a fruitful tool in the past. For instance, it is essential
in describing regular conjugacy classes [Steinberg 1965], whose intersection with
Bruhat cells is the subject of ongoing research [Ellers and Gordeev 2004; 2007].
This approach has led to two characterizations of the spherical conjugacy classes
in a connected, reductive algebraic group G over an algebraically closed field of
zero or good, odd characteristic [Cantarini et al. 2005; Carnovale 2008; 2009].
The first one is given through a formula relating the dimension of a class O and the
Weyl group element whose associated Bruhat cell intersects O in a dense subset.
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The second one states that spherical conjugacy classes are exactly those classes
intersecting only Bruhat cells corresponding to involutions in the Weyl group of G.
These characterizations can be used to give a complete list of the spherical classes
in G. This problem can be easily reduced to the case in which G is simple, so
we shall make this assumption from now on. The spherical conjugacy classes in
a simple algebraic group over C have been classified in [Cantarini et al. 2005],
making use of the classification of spherical nilpotent orbits. Spherical classes in
type G, in good characteristic have been classified in [Carnovale 2009].

In the present paper, we complete the picture by classifying spherical classes
in a simple algebraic group G over a field of good, odd characteristic. In con-
trast to [Cantarini et al. 2005], this work is independent of the classification of
spherical nilpotent orbits existing in the literature. Since Springer isomorphisms
exist in good characteristic, it provides an elementary classification of spherical
nilpotent orbits alternative to [Fowler and Roéhrle 2008], where Kempf—Russeau
theory is involved and where a computer program is needed to help deal with the
exceptional types. The crucial tools in our method are just those conditions in the
characterizations in [Cantarini et al. 2005; Carnovale 2008; 2009], whose proofs
are general and rather short. The arguments used for this classification can also be
transferred to the characteristic zero situation, providing an alternative, elementary
approach to [Panyushev 1994; 1999], although by case-by-case considerations.

After fixing notation and recalling basic notions in Section 1, we introduce
spherical conjugacy classes and their characterizations in Section 2. Section 3
provides the list of spherical conjugacy classes through a case-by-case analysis.

The result is as when the base field is C: In the simply-laced case, spherical
conjugacy classes are, up to a central element, either semisimple or unipotent, and
if G is simply-connected, the centralizers of the semisimple ones are all subgroups
of fixed points for an involution on G. By abuse of notation, we say that such
classes are symmetric.

In type G, spherical conjugacy classes are again either semisimple or unipotent
but, as in types B, and C,, there are spherical semisimple classes that are not
symmetric. Just as in other situations involving spherical homogeneous spaces
(for example, in the description of maximal spherical ideals of Borel subalgebras
[Panyushev and Roéhrle 2005]), the doubly-laced case is slightly more involved.
The new phenomenon in the present situation is that there appear spherical classes
that are neither semisimple nor unipotent.

1. Notation

Let G be a connected reductive algebraic group over an algebraically closed field k
of good odd characteristic [Springer and Steinberg 1970, Section I.4]. In Section 3,
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we will restrict to the case of simple G. When we consider an integer as an element
in k, we mean its image in the prime field of k. We denote by ® and ®* the
root system and the set of positive roots relative to a fixed Borel subgroup B and
a maximal torus 7 of G; denote by A = {ay, ..., a,} the corresponding set of
simple roots. We number the simple roots as in [Bourbaki 1981, planches I-IX].
Denote the highest positive root by f;. For a root a, we denote the elements of the
associated root subgroup X, by x,(7), and we put X/, = X,, \ {1}. We denote the
maximal unipotent subgroup of B by U.

For elements in 7" in exceptional simple groups, we use the notation in [Steinberg
1968, Lemma 19], that is, every element in T can be expressed as a product of
hg, (t;) fori =1, ...,n and nonzero #; € k, with uniqueness if the group is simply
connected. The A, (t;) satisfy the commutation relations

oy ()x5 (), 171 = x5(¢P%)r)  for f e ®and 1, r €k,

where (£, a) = f(h,) as usual; see [Steinberg 1968].

When G is simple of type A,, B,, C, or D,, we work with the corresponding
matrix groups, and we choose G and T so that the elements in 7" are diagonal. Let
X1, ..., X; be square matrices of sizen; > 1 for j=1,...,[. By diag(X1, ..., X))
we mean the square matrix of size > inj with the blocks X1, ..., X; along its
diagonal. As usual, E;; is a square matrix with the entry 1 in the i-th row and j-th
column and all other entries 0. We denote by ‘M the transpose of a matrix M.

Weput W=N(T)/T, and s, indicates the reflection corresponding to the root «.
Given an element w € W, we denote by @ a representative of w in N(T).

Let £ denote the usual length function on W, and let k(1 — w) denote the rank
of the endomorphism 1 — w in the geometric representation of W.

We shall frequently use these properties of the Bruhat decomposition of G (see
[Bourbaki 1981, IV.2.4]):

(1) X', CX,sqTX, CBsyB forallae®",
) BwBw'B = Bww'B if {(ww) = (w) +{(w).

Given an element x € G, we denote by O, the conjugacy class of x in G and
by H, the centralizer of x in H < G. Denote by Z(K) the center of an algebraic
group K and by K° its identity component.

For the dimension of unipotent conjugacy classes in arbitrary good characteris-

tic, see [Carter 1985, Chapter 13] and [Premet 2003, Theorem 2.6].
For a conjugacy class O in G, we denote by V" the set of its B-orbits.

2. Characterizations through the Bruhat decomposition

Here we introduce our characterizations of spherical conjugacy classes.
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Definition 2.1. Let G be a connected reductive algebraic group. A homogeneous
G-space X is spherical if it has a dense orbit for a Borel subgroup of G.

It is well known [Brion 1986; Grosshans 1992; Knop 1995; Vinberg 1986] that
O is a spherical conjugacy class in G if and only if its set of B-orbits V" is finite.

Since G = |J, ey BwB, for every class O there is a natural map ¢: V" — W
associating to v € V" the element w in the Weyl group of G for which v C BwB.
Besides, there is a unique w € W for which Bw BNO is dense in O, and this element,
which we denote by wg, is maximal in Im(¢) with respect to the Bruhat ordering
[Cantarini et al. 2005, page 32].

There are two characterizations of spherical classes in G.

Theorem 2.2 [Cantarini et al. 2005, Theorem 25; Carnovale 2008, Theorem 4.4].
A class O in a connected reductive algebraic group G over an algebraically closed
field of zero or good odd characteristic is spherical if and only if there exists v in V'
such that £(¢ (v)) +1k(1 — ¢ (v)) = dim O. If this is the case, v is the dense B-orbit
and ¢ (v) = we.

Theorem 2.3 [Carnovale 2008, Theorem 2.7; Carnovale 2009, Theorem 5.7]. A
class O in a connected reductive algebraic group G over an algebraically closed
field of zero or odd, good characteristic is spherical if and only if Im(¢) contains
only involutions in W.

Since all Borel subgroups and all maximal tori are G-conjugate, the statement
in Theorem 2.3 is independent of the choice of B and 7. By abuse of notation, we
say that g € G is spherical if its class O, is.

Remark 2.4. Let g € G. The B-orbits in O, are in one-to-one correspondence
with the (B, G,)-double cosets in G. Therefore if x € G is such that G, = Gg,
then Oy is spherical if and only if O, is. In particular, if g% € Z(G), then g and x
are semisimple. If G is affine, by [Borel 1969, Proposition 9.1] the orbit map is
separable, so the symmetric variety G/ G, = G/ G, is G-equivariantly isomorphic
to O, and O,. By [Springer 1985, Corollary 4.3], the class O is spherical. Moti-
vated by this, we abuse notation when G, = G, and g% € Z(G) by saying that O,
is a symmetric conjugacy class.

Remark 2.5. Regular classes in a reductive algebraic group whose semisimple
quotient is not of type r A cannot be spherical. By [Steinberg 1965, Theorem 8.1],
regular classes intersect Bruhat cells corresponding to Coxeter elements.

We will frequently use the following observation.

Lemma 2.6. Let G be a connected reductive algebraic group, let T be a maximal
torus in G, and let H be a closed connected reductive subgroup of G containing T .
Let x € H and suppose that O, is spherical. Then the H-conjugacy class of x is
spherical.
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Proof. Let By be a Borel subgroup of H containing 7, and let B be a Borel
subgroup of G containing By. Let y lie in the H-conjugacy class of x. For some
w € Ny(T)=N(T)N H and for some b, b, € By < B, we have

y :bld)bz € BHNH(T)BH C BN(T)B.

Since y € 0, we have t? € T by Theorem 2.3. As this holds for every y € H, the
H-class of x satisfies the sufficient condition provided by Theorem 2.3. O

As a first application of Lemma 2.6 we have the following statement.

Lemma 2.7. Let G be a connected reductive algebraic group. Let g € G with
Jordan decomposition g = su. If O, is spherical, then O; and O, are spherical in G
and the G3-class of u is spherical.

Proof. It is well known that G, = G, N G,,. Therefore, if for a Borel subgroup B
of G there are finitely many (B, G4) double cosets in G, there are finitely many
(B, Gy) double cosets and (B, G,) double cosets in G. Thus if O, is spherical,
then Oy and O, are also spherical. For the last statement, by [Humphreys 1995,
Section 1.12], we have u € G§, and we may apply Lemma 2.6 with H = G;. [

The next lemma helps show that certain classes in a group are not spherical.

Lemma 2.8. Let G be a connected reductive algebraic group, let T be a maximal
torus in G, and let H be a closed, connected, reductive subgroup of G containing T
such that its semisimple part is not of type rAy. Let x € H and suppose that the
H-conjugacy class of x is regular. Then O, is not spherical.

Proof. This is obtained by combining Lemma 2.6 with Remark 2.5. 0

3. The classification

From now on G, will be a simple algebraic group. We aim at a classification of
spherical conjugacy classes in G in good odd characteristic. The main tools in
our classification will be the sufficient condition in Theorem 2.2 and the necessary
condition in Theorem 2.3.

If #: G| — G is a central isogeny between two simple algebraic groups, a
conjugacy class O, in G is spherical if and only if 7 (0,) is spherical. Indeed,
let x € Gy, with G, its centralizer in G| and G, the centralizer of 7 (x) in
G». Also suppose B is a Borel subgroup of G;. Then z (B;) is a Borel subgroup
of Gy, and the (B, G )-double cosets of G| are in one-to-one correspondence
with the (B2, G2, ,)-double cosets of G,. For this reason it is enough to provide
the classification for one representative for each isogeny class of simple groups.

By Remark 2.4, if x, y € G and xy~! is central, then O, is spherical if and only
if Oy is. Thus it is enough to provide the classification up to a central element.
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If G is of type G», Carnovale [2009, Section 2.1] gives the classification in good
characteristic; we provide it here for completeness.

Type G.

Theorem 3.1. Let G be of type G,. The spherical classes are either semisimple
or unipotent. The semisimple ones are represented by h,, (—1) and h, (¢) for  a
fixed primitive third root of 1. The unipotent ones are those of type A and A;.

Type A,. In this section G = SL,;(k), B is the subgroup of upper triangular
matrices, T is the subgroup of diagonal matrices in G, and U is the unipotent
radical of B. For a positive root a = a; +a; 41 +---+a; we have

Xo={1+1E; 1,1 €k} and X_,='X, foreverya e ®.

Theorem 3.2. Ifn=1, all classes in G are spherical. Ifn > 2, the spherical classes
in G are either semisimple or unipotent up to a central element. The semisimple
ones are those corresponding to matrices with at most two distinct eigenvalues, and
they are all symmetric. The unipotent ones are those associated with the partitions
Q" 12y form =1, ..., [(n+1)/2].

Proof. If n = 1, all Bruhat cells correspond to involutions in W, so every class is
spherical by Theorem 2.3.

Unipotent classes. Let n > 2, and let 0 = 0, be a unipotent class. By Jordan
theory, we may assume that u = x4, (c1) - - - Xq, (cn) With ¢; € {0, 1}. Then u lies
in the connected reductive subgroup H generated by T and by X, for all i such
that ¢; = 1. By [Steinberg 1965, Lemma 3.2 and Theorem 3.3], u is regular in H.
Lemma 2.8 implies that if O, is spherical then c;c;4+1 =0, so its associated partition
is of type (2, 1"+1=2m) Conversely, let O ; be the unipotent class corresponding
to 2/, 1"172)), with2j <n+1. Let fi =a; + -+ ap_iy1 fori =1,..., j.
The element x_p, (1) ---x_p,(1) lies in 0;. By (1) and (2) this element lies in
Bsp, -+ - sp, B, so its B-orbit satisfies the condition in Theorem 2.2, and thus 0 is
spherical.

Semisimple classes. Let s = diag(A11,,, A21y,, . .., A11,,) for distinct scalars ;. If
[ > 2, then s is conjugate to r =diag(1;, A2, 43, t1) for some invertible diagonal sub-
matrix #;. Then # lies in the connected reductive subgroup H = (T, X+4,, X+a,)>
and it is regular therein. It follows from Lemma 2.8 that if O is spherical semi-
simple, then s has at most 2 eigenvalues. Conversely, suppose that s € T has
2 eigenvalues. We may assume s = diag(A1l,, ul,+1—-m). Let ¢ be a primitive
2(n+ 1)-st root of unity if n + 1 —m is odd, and let y =1 if n 4+ 1 —m is even. Let
also so = diag({ In, —¢ In+1-m)- Then s3 € Z(G) and G, = G,. By Remark 2.4
the class Oy is symmetric and hence spherical.
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Mixed classes. We now show that there is no spherical element x with Jordan
decomposition x = su such that s ¢ Z(G) and u # 1. Were this the case, we
could assume by Lemma 2.7 that s = diag(Al,,, ul,+1—,) with m > 2 and that
uelUNGg=(Xy,1 #m).

We could then choose u = x4, (t1) - - - X4, (tn—1)Xap ) (tm41) - - - Xg, (t,) With
titiy+1 = 0 because u is spherical by Lemma 2.7. If u is nontrivial, we may assume
that #,,,_1 or f;,41 is nonzero. Put J = {i | ; # 0} and H = (T, X4q,,» X+qa,)ict-
Then su is regular in H. Since H contains at least a subgroup of type A, we may
conclude using Lemma 2.8. O

Type C,. Let us view G = Sp,, (k) as the subgroup of GL,,(k) of matrices pre-
serving the bilinear form whose matrix is (_9{) in the canonical basis of k*".
We choose B as the subgroup of G of matrices of the form (6‘ ,ﬁfﬂ ) where A
is an invertible upper triangular matrix, ‘A~! is its inverse transpose, and X is a

symmetric matrix. The torus 7 is the subgroup of diagonal matrices in B. We have

X(X,' = {I +tEi,i+1 _tEn+i+l,n+iat € k} fori = 1, R (A 1,
Xan = {I +tEn,2n>t € k}a

and X_, = 'X, for every a € ®. We recall that if g, h € Sp,, (k) are GLy, (k)-
conjugate they are Sp,, (k)-conjugate [Springer and Steinberg 1970, IV.2.15(ii)].
It is well known that unipotent classes in G are parametrized through Jordan theory
by partitions where odd terms occur pairwise [Humphreys 1995, Section 7.11].

Theorem 3.3. Let G = Sp,, (k) for n > 2. The nontrivial spherical semisimple
classes are represented by oy = diag(—1;, I,—;, =1}, I,—;) for l = 1,...,n — 1;
by a; = diag(A1,, A7) and, up to a sign, by ¢, = diag(4, I,,—1, 2L I,—1) for
) € k with 22 # 0, 1. The unipotent ones are those associated with the partitions
@™, 1272 form = 1, ..., n. The spherical classes that are neither semisimple
nor unipotent up to a sign are represented by the elements oju, where u € G5 =
Sp,; (k) x Sp,,,_»;(k) is unipotent and corresponds to the partition (2, 1*"~2).

Proof. Semisimple classes. Let s € T, and let A be the set of eigenvalues of s.

Let us first suppose that |[A| > 4. If n =2, then s is a regular element, and hence
it is not spherical. Let n > 3.

If {1} C A, then s is conjugate to s’ = diag(4, 1, —1,¢, A7, 1, —=1,¢~") for
some invertible diagonal submatrix # and some nonzero 1 € k with A2 # 1.

If |{£1} N A] = 1, then, since eigenvalues come with their inverse, |A| > 5
and s is conjugate to s’ = diag(4, u, +1, ¢, 271 ,u_], +1, r~") for some invertible
diagonal submatrix ¢ and some A # u € k with 2% # 1 # u°.

If {1} N A = &, then either |A| > 6 or there are two reciprocally inverse
eigenvalues with multiplicity at least 2. In both cases, the matrix s is conjugate to
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s’ = diag(A, u,v,t, 27", =1, v, t71) for some invertible diagonal submatrix ¢

and some distinct 4, u, v € k with 22, 42, v? # 1 and v possibly equal to 27!

In all these cases, the element s’ is regular in H = (T, X14,, X14,); therefore
by Lemma 2.8 the class O, cannot be spherical.

Let us now suppose that |[A| = 3. Then A = {5, A, A~'} with #> = 1 and
2% # 1. If the multiplicity of A*! is greater than I, then s is conjugate to some ' =
diag(4, YR TSR I rl_l) with | an invertible, diagonal submatrix. The
element ' lies and is regular in the subgroup H above described. By Lemma 2.8
the class O; cannot be spherical. On the other hand, if A = {(A*1, 1} with the
multiplicity of %! equal to 1, then O; is spherical. Indeed, the representative of
such a class in [Cantarini et al. 2005, Theorem 15, page 42] works also in odd
characteristic and its B-orbit satisfies the condition of Theorem 2.2.

Now assume that |A| = 2. Then either A = {£1} so that Oy is symmetric, or
A = {A, 271} for A% # 1 so that s is conjugate to a, = diag(41,, 2~11,), whose
centralizer is independent of A in the given range. Since a? e Z(G)ifA1=¢1s
a primitive fourth root of 1, we may apply Remark 2.4 and conclude that a; is
spherical.

Unipotent classes. Let O, be a unipotent class and let 4 be its associated partition.
Let = (u1, ..., ;) be obtained by taking a representative of each term occurring
pairwise in A and let v = (v, ..., v;;) be obtained by taking the remaining even
terms without repetition in 4, so that 2n = |v|42|u|. A representative u’ of 0, can
be taken in the subgroup isomorphic to

Sp2,ul (k) XX Sp2,ul (k) X Spv1 (k) X X Spvm (k)

obtained by repeating the immersion of Sp,,, (k) X Sp,,, (k) into Spy4, 14,) (k) given

by
A B,

A] B] A2 Bz . A2 BZ
C, D)’ \C, Dy Ci D
C2 D,

The component of u’ in Spvj (k) corresponds to the partition (v;) and is thus regular
in Spvj (k), whereas the component of u” in Sp, 4, (k) can be taken to lie and be
regular in the subgroup isomorphic to SL,, (k) obtained by the immersion mapping
M to diag(M,'M~"). Therefore, u’ is regular in the semisimple group

SLy, (k) x -+ x SLy, (k) x Sp,, (k) x - -- x Sp,, (k).

By Remark 2.5 if u is spherical, we have u; < 2 and v; < 2 for every i and
j. Conversely, let A = (27, 12"72/), and let © ;j be the unipotent class associated
with A. Let 8, =2a,+---+20,-1 +a, forg=1,...,n—1and f, = a,. The
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element

I,

xp (1)« ox_p, (1) = ( ) with X; = diag(/;, 0,—;)

X; I,
lies in Bsg, - --sp, B by (1) and (2). Since it also lies in 0y, its B-orbit satisfies the
condition in Theorem 2.2 for O} see [Cantarini et al. 2005, Theorem 12, page 36].

Thus, O; is spherical.

Mixed classes. Let g = su be the Jordan decomposition of a spherical element in G
with s € Z(G) and u # 1. Then O is spherical and we may assume s equals a;, ¢,
or g; for some /. The case s = a, is ruled out because dim 0,,,, > dim 0,, = dim B,
so Oy, cannot have a dense B-orbit.

Assume that s = ¢;. Then u € Gy = k* x Sp,,,_, (k) and it is spherical therein,
so it corresponds to a partition (2", 12"_2_2’") for some m > 1. The class O, is
represented by c;xg,(1) - - - xp,,, (1), with notation as before. Such an element is
regular in the subgroup H = (T, X1, X1p,,i =2,...,m+ 1). This case is thus
excluded by Lemma 2.8 because the semisimple part of H is of type C, x (m—1)A.

It follows that s = o; for some [. Then G, is generated by X4, for i #/
and X1p. We have u = (u1, uz) € Gy = Sp,;(k) x Sp,,_,;(k), and it is spherical
therein. Then u and u; are spherical in the respective components. We claim that
uy and uy cannot be both nontrivial. If on the contrary u; corresponded to the
partition 4 = (2%, 1%=24) and u; corresponded to the partition U= (2P, 12n=2=2b)y
with a, b > 1, the G,-class of u; would be represented by u =xp,_,. (1) --xp(1)
and the Gy-class of u, would be represented by u’, = xg,,, (1) - - - xg,,, (1). It is not
hard to verify that o;u/u) is regular in (T, X4, X4p,,i =1l —a+1,...,1+D),
whose semisimple part is of type (¢ +b —2)A; + C>. By Lemma 2.8 this option
is excluded, and we have a + b < 1; hence at least one of the u; is trivial.

There is no loss of generality in assuming that «; = 1. We claim that the partition
u = (2P, 120=2=2b) agsociated with u, has no repeated 2. Let b = 2h + j with
j =0, 1 according to the parity of b, and assume that 4 > 1. The G;-class of u; is
represented by u), = xq,,, (1)xg, 5 (1) - - - Xg 0, (1)X,15,, (). The element o is
regular in (T, X+, X461, Xtoy50 - -+ » Xtay,_y» X+p5,1 (J)), Whose semisimple
partis of type Ay xhA| x j A, where A| corresponds to a short root. By Lemma 2.8
the claim is proved.

Conversely, for all classes of type o;u with u € G, corresponding to the partition
(2, 12"=2), the representative in [Cantarini et al. 2005, Theorem 21, page 50] is
defined in odd characteristic and its B-orbit satisfies the condition of Theorem 2.2.

O

Type D,. Let n > 4, and view Oy, (k) as the subgroup of GL,, (k) of matrices

preserving the bilinear form whose matrix is (9 /) in the canonical basis of k",
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so that G = SO,, (k) is viewed as the subgroup of such matrices of determinant 1.
We choose B as the subgroup of G of matrices of the form

A AX
0 tAfl ’

where A is an invertible upper triangular matrix, ‘A" is its inverse transpose and
X is a skew-symmetric matrix. We fix T C B as its subgroup of diagonal matrices.
We have

Xai = {I +tEi,i+1 —tEn+i+1,n+i,t € k} fori = 1, R (A 1,
sz,, = {I + tEn—l,Zn - tEn,Zn—la re k}

and'X_, = X, for every a € ®.

We recall that if g, h € G are GL,,(k)-conjugate, they are Oy, (k)-conjugate
[Springer and Steinberg 1970, IV.2.15(ii)] but not necessarily G-conjugate. How-
ever, conjugation by an element in Oy, (k) determines an automorphism y of G,
so if h = w(g), the class O, is spherical if and only if y(0g) = 0y,(g) = O, is.
For this reason, in what follows we will sometimes replace an element g € G by a
GL,, (k)-conjugate i lying in G.

To list a representative for each spherical conjugacy class, we will then have to
verify whether an O,,, (k)-class splits into two G-classes or not. We recall that such
a class splits into two classes if and only if the O,,, (k)-centralizer of a representative
is contained in G.

It is well known that the even terms occur pairwise in the partition 4 associated
with a unipotent conjugacy class in G via Jordan theory. Moreover, a unipotent
O, (k)-class splits into two G-classes only if n is even and the associated partition
has only even terms [Humphreys 1995, Section 7.11].

Theorem 3.4. Let G = SOy, (k) for n > 4. The spherical classes in G are either
semisimple or unipotent up to a central element. The nontrivial semisimple ones
are those represented by

o] = diag(—ll, In,], —Il, Infl) fOi’l = 1, cee, 1 — 1;
¢, =diag(A, I_1, A7, I,_1)  for A2 #0, 1, up to a sign,

and the pairs of SOy, (k)-classes into which the Oy, (k)-class represented by a) =
diag(AI,, 27'1,) splits, for 2> #0, 1. The unipotent ones are those associated with
the partitions

(22m, 12n—4m)y form=1,...,[n/2),
(3,22 127374y form=1,...,[n/2]—1

and only (22/2)) for n even corresponds to two distinct conjugacy classes.
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Proof. Semisimple classes. Let s € T, and let A be its set of eigenvalues. Adapting
the analysis in type C,, and replacing s by a GL,,, (k)-conjugate if necessary, we see
that if s is spherical, then |A| <3 and if |A| =3, then, up to a sign, A = {4, 27!, 1}
for some A2 # 1 and the multiplicity of 2 and 2! is equal to 1.

On the other hand, if A = {4, A~!, 1} with the multiplicity of 1 and 1~! equal
to 1, then s is GL,, (k)-conjugate to ¢; = diag(4, I,,—1, A=Y, I,_1). Tts centralizer
G, is equal to the identity component H° of the centralizer H of the involu-
tion o7 = diag(—1, I,_1, —1, I,,_1). By [Borel 1969, Proposition 9.1], we have
0., =G/G., =G/H". Since the index of H° in H is finite, O, is spherical if and
only if G/H = O,, is, and therefore O, is spherical. The centralizer in O, (k) of
¢, contains the matrix

so each c; represents a single spherical SO, (k)-conjugacy class.

Let now |A| =2. If A = {£1}, then s> =1 and O is symmetric. The GL,, (k)-
class of s is represented by o; =diag(—1;, I,,_;, —1;, I,—;) forsome =1, ..., n—1.
The centralizer in O, (k) of each o; contains the matrix M above described, so each
o7 represents a single spherical SO,, (k)-conjugacy class.

If A ={A, 27"} with A2 # 1, we may assume that s = a; = diag(11,, A~'1,)
whose centralizer is independent of 4 in the given range. Since a? € Z(G) for ¢ a
primitive fourth root of 1, by Remark 2.4 all those classes are symmetric and hence
spherical. The Oy, (k)-centralizer of a, consists of all matrices diag(A,’A_l) for
some invertible n x n matrix A and hence is contained in SO, (k). Therefore the
O, (k)-class of each a, splits into two spherical SO, (k)-conjugacy classes.

Unipotent classes. By the discussion of GL;, (k)-conjugacy, it suffices to consider
a class for each admissible partition.

Let u be a unipotent element in G, with associated partition A. Obtain u =
(u1, ..., ) by taking a representative of each term occurring pairwise in 4, and
v=(v1, ..., Vy) by taking the remaining distinct odd terms so that 2n = 2| u|+|v|.
A representative u’ of 0, can be taken in the subgroup isomorphic to SOy, ., (k) x
xS0y, 4, (k) x SOz, (k) x - - - x SOy, (k) obtained by repeatedly immersing
SO2q, (k) x SO24, (k) into SOz(4, +4,) (k) by

A B

Al By Ay By . A B>
C] D1 ’ Cz D2 Cl Dl

C D,
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The component of u’ in SO,,,,,, (k) is associated with the partition (v;, vi11),
whereas the component of u’ in SO,,, (k) can be chosen to lie and be regular in the
subgroup isomorphic to SL,, (k) obtained by the immersion A — diag(A, ‘AT,
Thus u' lies in SO, 1, (k) X - - - xSO,,,_, 4v,, (k) x SL, (k) x - - - x SL, (k). A class
in a semisimple group is spherical if and only if its projection onto each simple
component is. By Remark 2.5 applied to SL, (k) x - - - x SL, (k), we see that if u
is spherical, then u; <2 for all i. We now show that under the same assumption,
V1 < 3 so that v is either (3, 1) or the empty partition. It is enough to analyze the
SOy, 4, (k)-class O of the component of u’. Let vy =2/ + 1 and v, =2j — 1 with
I >j=>1,andlet yi,..., y4+; be the simple roots of SO,, 4,,(k). The class O is
represented by x = diag(A,’A~") (! ¥), where

1 0j—1
1 0 1
A = X =
‘ and 10
11 01
Since diag(A,’A™") lies in X/_y1 . -X/_),HF1 and (1 ’1() lies in B, it follows from

(1) and (2) that x lies in a cell corresponding to an involution only if j +/ < 2,
whence the claim.

Conversely, let 0, be a unipotent class corresponding to (22, 12=#") or to
(3, 2%, 121—3=%m) _Cantarini et al. [2005, Theorem 12, pages 37—38] give matrices
that represent these classes also when char(k) is odd and their B-orbits satisfy the
condition in Theorem 2.2.

Mixed classes. We show that there is no spherical element with Jordan decompo-
sition g = su with s ¢ Z(G) and u # 1. We may assume that s = ¢,, o7, because
dim B =dim0,; < dimO,,,.

The subgroup G¢, is of type D,_1 x k* and is generated by 7" and the root
subgroups X.ig,, ..., X+q,. The element u € Ggﬁ_ corresponds to a partition 7 of
2n — 2 from which we may construct, as before, the partitions x and v. Since u
is spherical in G¢ , we have y = (22, 1Py with a possibly zero and v = (3, 1) or
trivial. The G, -class of u may be represented by the element

u' = Xay (1 )xa4 (1) © KXo, (1 )xaz,,+2 (j)xaza+2+2a2a+3+---+2an—2+an—1 +a, (J),

where j = 1 if v = (3,1) and j = 0 if v is trivial. Then c,u’ is regular in
(T, Xta;> Xtay» Xooat2 (), Xarar24+200a43++205—2+0n—1+an (J))i=1,...a- We may thus
apply Lemma 2.8 to deduce that s cannot be equal to c,.

Let then s = ¢; for some /. The identity component of G, is equal to G,, and
we may use the argument above to show that o u cannot be spherical. Let [ > 2.
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Then Gy, = S0y (k) x SOy, (k) and it corresponds to the roots
Ofyeeoy Q1,041 + 20012+ -+ At + Ay A1, - o, A

Let u = (uy, up) € SOy (k) x SOz, _2(k) = Ggl. Since G4,y = G, NGy, NGy,
is contained in G, for i =1, 2, it is enough to show that o;u; is not spherical.
We will do so for u5, the other case being similar. Let 4 be the partition associated
with u;, and let x4 and v be as above. We may find a representative u}, in the
SO,,—9;(k)-class of u, lying and being regular in a subgroup H constructed as
above for s = ¢;. If uy # 1, the subgroup H contains the root subgroups X,
and oyu’, is regular in H' = (T, H, X 4,,). This proves the claim. Il

Type B,. Let n > 2. View Oy, (k) as the subgroup of GLj, (k) of matrices
preserving the bilinear form whose matrix is

100
00 I,
01, 0

in the canonical basis of k"1, so that G = SOy,+1(k) is the subgroup of such
matrices with unit determinant. Fix B to be the subgroup of matrices of the form

1 0 1y
—Ay A AX |,
0 0 Al

where A is an invertible upper triangular matrix, y is a column in k" and the
symmetric part of X is —(1/2)y’y. We fix T C B as its subgroup of diagonal
matrices.

We have Xo; = {1 + tEi 1 iv2 —tEptivontyiv1st € k}yfori=1,...,n—1,
Xa,, ={I +ZE1’2,,+1 — tEn-‘rl,l}’ and X_, =X, for every o € .

If g, h € G are GLy, 4 (k)-conjugate, then they are also Oy, (k)-conjugate by
[Springer and Steinberg 1970, IV.2.15(i)]. Thus, they are G-conjugate because
02,+1(k) = GU(—1I,41)G. Partitions in which even terms occur pairwise param-
etrize unipotent conjugacy classes in G [Humphreys 1995, Section 7.11].

We shall frequently use the fact that the group SO,, (k) may be embedded into
G through the map 1 defined by X — diag(1, X). Denote the image of by K.

Theorem 3.5. Let G = SOy,11(k). The spherical semisimple classes in G are
represented by

dlag(l Ila n—I» Il, n— l) forlzl,...,l’l,
d/l diag(1, 4, L,—1, A", I,—1),
m:m%amhj*@) with A2 #£0, 1.
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The unipotent ones are those associated with (22", 12" H1=4m) form =1, ..., [n/2]
and (3,27 1277274 form = 1, ..., [(n — 1)/2). The spherical classes that are
neither semisimple nor unipotent are represented by p,u, where u € G =505, (k)
is a unipotent element associated with (2*", 1" =4 form =1, ..., [n/2].

Proof. Semisimple classes. Let s € T be a spherical element in G, and let A be its
set of eigenvalues. By the description of T', we always have 1 € A. By Lemma 2.6
applied to K and Theorem 3.4, we see that | A| <4. We claim that |A| <4. Assume
that |[A|=4. Then —1 € A and s is conjugate to s’ =diag(1, 4, —1, 7, A7 =1,
for some invertible diagonal submatrix ¢ and some scalar 2 with 12 # 1. Thus s’
is regular in (T, X+4,, X+ (sy4a3+-+a,)) Whose semisimple part is of type By, and
by Lemma 2.8 we have the claim. It follows that |[A] = 2,3. If |A| = 2, the
element s is conjugate to some involution p; = diag(1, —1;, I,—;, —1I;, I,—;) for
some [ =1, ..., n; hence it is spherical. If |A| = 3, then A = {1, 1, 47!} and the
multiplicities of A and 1 cannot be both greater than 1, by Lemma 2.6 applied to K
and the discussion in Theorem 3.4 for spherical semisimple elements. Thus, s is
conjugate either to b; = diag(1, Al,, A~'1,) or to d; = diag(1, A, I,_1, A~%, I,_1),
for A2 # 1, 0. A representative of Op, satisfying the condition in Theorem 2.2 is
found in [Cantarini et al. 2005, Theorem 15, page 44] and it is well defined in odd
characteristic too, so b, is indeed spherical. Moreover, G, = GZI. Hence d; is
also spherical because p; is and the index of G, inGy is finite.

Unipotent classes. Let u be a spherical unipotent element in G associated with
the partition 4. Let x4 and v be constructed as in Theorem 3.4 with 2n + 1 =
2|u| + |v]. We may find a representative u’ of O, in a subgroup isomorphic to
SOy, (k) x SOy 415 (k) X - -+ x SOy, 4, (k) x SOz, (k) x - - - x 8O, (k). Such a
subgroup can be obtained using the embeddings in the proof of Theorem 3.4 and
the embedding of SOyg,4+1(k) X SO24, (k) into SOz, +4,)+1(k) given by

I o B

1 a1 B A, B 71 A B
y1 A1 B |, Co D = A B>

(51 C] D] 2 2 51 Cl Dl
Cy D,

The component of " in SO,,, (k) corresponds to (v1), so it is regular therein. Hence,
its SO, (k)-class is spherical only if v; <3. Therefore v = (3) or v = (1). Moreover,
as in Theorem 3.4, the component in SO, ; (k) can be chosen to lie and be regular
in a subgroup isomorphic to SL, ; (k), forcing u; <2 for every i. Conversely, for a
unipotent class associated with (2™, 12”+1_4’”) or (3,2%", 12”_4”’_2), the represen-
tatives in [Cantarini et al. 2005, Theorem 12, pages 38-39] are well defined in odd
characteristic, and the corresponding B-orbits satisfy the condition in Theorem 2.2.
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Mixed classes. Let g = su be the Jordan decomposition of a spherical element in G
with s, u # 1. If s = b, for some 4, then u and b, lie in G, C K. By Lemma 2.6
the element su would be spherical in K, but this is excluded by Theorem 3.4.

If s = p; for some [, its centralizer is isomorphic to SOy (k) x SOz;—2;41(k)
and it corresponds to the roots ay, ..., aj_1, o + 20041+ - -+ 204, O+1, - .., 0y.
Then u = (uy, uz) € SOy (k) x SOz, 241 (k).

First assume that u, corresponds to the partition (3, 22%) of 2n — 2 + 1, so that
n—1[is odd. We claim that p;u; is not spherical. Then, since G, C G ,4,, we may
conclude that the class 0, cannot be spherical in this case. The SO, _41(k)-
class of u may be represented by the element u), = xg,,, (1)xg, 5 (1) - - - X4, (1) sO
that p;u), is regular in (7, X+4,, X44,,;)i>1and odd- Invoking Lemma 2.8, we prove
the claim.

If u, does not correspond to the partition (3, 224), we may find a representative
of 0y, that lies in K. By Lemma 2.6 and Theorem 3.4, this is possible only if
pi1 = 1(t) for some t € Z(K). Therefore g = p,v = diag(l, —I»,)v for some
spherical unipotent v in Gj, = K. We claim that the partition 4 of 2n associated
with v has no term equal to 3. If 1 = (3, 22a 19), the K-class of v could be
represented by v/ = x4, (1)x45(1) -+ - X0y, , (1)Xg,_, (1)Xq, 424, (1). The element
pv' is regular in (T, X44,, Xtass - - - Xtony 1> Xta, » X+a,)» Whose semisimple
part is of type a A1 x By; hence the claim follows from Lemma 2.8. Conversely, let
g = pnu With u corresponding to (22", 12"=%") for some m. The representative of
its class provided in [Cantarini et al. 2005, Theorem 21, page 52] is well defined
in odd characteristic and it allows application of Theorem 2.2.

Finally assume that s = d; for some 4. Then u € G4, = G, and we may apply
the arguments used for s = p; to show that su cannot be spherical. U

Type Eg.

Theorem 3.6. Let G be simply-connected of type Eg. The spherical classes in G
are either semisimple or unipotent up to a central element. The semisimple ones are
symmetric and up to a central factor are represented by py =h(—1)hg(—1)he(—1)
and py. = hi(c®)ha(c*)h3(c*)ha(c®)hs(c®)he(c?) for ¢ € k with ¢ # 1,0. The
unipotent ones are those of type A1, 2A and 3A,.

Proof. Semisimple classes. Let s € T be spherical. We may apply [Humphreys
1995, Theorem 2.15] to choose s so that G is generated by T and X, for a in
a subsystem ®(I1) C ® with basis a subset I of A U{—p;}. By Theorem 2.2 we

have dim O; < £(wq) + rk(1 — wg) and a dimension count shows that IT can only
be one of the following subsets:

ITy = {a1, a3, 04, as, a6, =1}, 2 ={ai, a2, as, as, ag, —p1},

I3 ={ai1, a2, a3, as, ag, —f1}  of type As x Ay,



40 GIOVANNA CARNOVALE

or

[y ={a1, a2, a3, a4, as}, 15 ={az, a3, as, as, —p1},

Il = {as, a3, aa, as, 0} of type Ds.

Letusput H; = (T, X414, €Il;) fori =1,...,6. The sets II; fori =1,2,3
are R-bases for the span of A, and one may find automorphisms of ® mapping II;
for i =2, 3 to ££I1;. On the other hand, Aut(®) = {—wg} x W so any element s
whose centralizer is H, or Hz is N(T')-conjugate to an element whose centralizer
is H;. The elements s for which Gy, = Hy are p; = hi{(—1)h4(—1)hg(—1) and
zp1 for any z € Z(G). Conjugation by these elements is an involution, so 0, is
symmetric. This completes the analysis for II; with i < 3.

The subgroups Hs and Hg are wg-conjugate, so any element whose centralizer
is Hy is N(T)-conjugate to an element whose centralizer is Hg. Besides, the au-
tomorphism of @ defined by a; — —p1, az = a3, a3z +— oz, a; +— a; for
j =4,5,6 maps I14 onto IIs. As before, we may conclude that Hs is N(T)-
conjugate to Hy and any element whose centralizer is Hs is N(T)-conjugate to
an element whose centralizer is Hs. The elements whose centralizer is H4 are
P2.c =h1(cDha(c?)h3(cMha(c®)hs(c?)he(c*) for ¢ € k with ¢ # 1, 0. Multiplying
¢ by a third root of unity yields the same element multiplied by a central one. Since
p2,—1 1s an involution, O,  is spherical by Remark 2.4. We claim that p, . is not
conjugate to p 4 for ¢ # d. If they were G-conjugate, they would be N(T)-
conjugate by [Springer and Steinberg 1970, Section 3.1], so there would exist a
o € W such that ¢ pz,c&_l = p2.4. Thus, ¢ would stabilize ®(I14) and would
restrict to an automorphism of ®(I14). Its restriction would therefore be of the
form 7w, where 7 acts an automorphism of the Dynkin diagram of type Ds and w
lies in the Weyl group W’ of Hj, which is contained in W. Then o w~' would
lie in W, and it would act on I14 as 7. Besides, two automorphisms 1, y, of ®
coinciding on Il are equal. Indeed, for o = w1y, ! (a6), we have (a;, a) =0 for
j=1,2,3,4 and (a, as) = —1. Such a root a can only be a¢, so 1/111//2_1 =1.
It follows that o w ™! is either the identity, when 7 = 1, or it is the automorphism
mapping a; to a; for j =1, 3,4, interchanges a; and as, and maps a¢ to —f.
However, one may verify that the second possibility cannot happen because such
an automorphism is equal to §1535455525456555354515352545556(—wp); hence it does
not lie in W. Therefore 7 = 1 and ¢ = w € W'. Since G, = H,, conjugation
by the lift in N(T') of an element in W’ does not modify ps ., so p2. and ps 4
represent distinct classes.

Unipotent classes. Let O be a nontrivial spherical unipotent class. Then dim0 <
£(wop) 4+ rk(1 — wq) by Theorem 2.2, so O is of type A, 2A; or 3A;. Conversely,
the arguments in [Cantarini et al. 2005, Theorem 13, pages 39-40] apply in good
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characteristic and show that the listed orbits have a representative whose B-orbit
satisfies the conditions of Theorem 2.2.

Mixed classes. A dimension counting together with Lemma 2.7 shows that no class
Oy, with s € Z(G) and u # 1 can be spherical. O

Type E7.

Theorem 3.7. Let G be simply-connected of type Eq. The spherical classes in G
are either semisimple or unipotent up to a central element. The semisimple ones
are symmetric and are represented by q1 = ho(O)hs(—)he(—1)h7(0), where ( is
a fixed primitive fourth root of 1; q» = h3(—=1)hs(—1)h7(=1); zq1, and zq, for
2€Z(G); and q3.o =h1(a*)ha(a®)h3(a®)ha(a®)hs(a®)he(a*)h7(a®) witha® #1, 0.
The unipotent ones are those of type A1, 2A1, (3A1), (3A1)” and 4A,.

Proof. Semisimple classes. Let s € T be a spherical element. Proceeding as we
did in Theorem 3.6, using that dim O; < dim B, we may choose s so that G; is
generated by 7' and X, for a € ®(I1) where II is one of the following subsets of
AU{=pi}:

Iy = {ai, a3, a4, as, ag, a7, —f1}  of type Az;

HZ = {az, a3, 04, A5, 06, 07, _IBI}’

3 = {a1, a2, a3, a4, a5, 07, =1} of type De x Ay;

Iy = {a1, a2, a3, aa, as, ag} of type Eg.

Letus put H; = (T, X144, a € 11;).

There is only one element, up to a central one, whose centralizer is H;, and this
is g1 = ha(O)hs(—=)he(—1)h7(0), where ¢ is a fixed primitive fourth root of 1.
Since q12 = hy(—1)hs(—1)h7(—1) € Z(G), the corresponding class is symmetric
by Remark 2.4. The root systems generated by I, and II3 are mapped onto each
other by elements in Aut(®) = W. Thus, each element whose centralizer is H;
is N(T')-conjugate to one whose centralizer is H3, and it is enough to look at IT,.
The elements whose centralizer is H; are g = h3(—1)hs(—1)h7(—1) and zg, for
7z € Z(G). The corresponding classes are symmetric. The elements whose central-
izer is Hy are 3., = hi(a®)ha(a®)hs3(a*)ha(a®)hs(a@)he(a*)h7(a®) for a® # 1, 0.
For & a primitive fourth root of unity, we have q32g € Z(G) and hence all such
classes are symmetric. Multiplication of g3, by the nontrivial central element
gives g3, _,. We claim that g3 , is never conjugate to g3 ; for a # b. If they were
G-conjugate, they would be N(T')-conjugate, so there would exist a ¢ € W for
which d'CI3,aO"_1 = q3,b. Such a o would preserve ®(Il4), and its restriction to
it would be an automorphism. As in the proof of Theorem 3.6, we see that for
some w in the Weyl group W’ of Hj, the restriction to ®(I14) of cw™! € W
would come from an automorphism of the Dynkin diagram of type E¢. There is no



42 GIOVANNA CARNOVALE

automorphism of ® whose restriction to Ej¢ is the nontrivial automorphism. Indeed,
if such an automorphism 7 existed, for « = 7(a7) we would have (a, a ;) = 0 for
j=2,3,4,5,6and (a, a;) = —1, but there is no such a € ®. Therefore cw ™! is
the identity on ®(I14). By uniqueness of the extension of an automorphism from
Eg to E7 we have 0 = w € W'. Since G, , = Hy, conjugation by lifts in N(7') of

elements in W’ preserves g3 4.

Unipotent classes. Let u # 1 be a spherical unipotent element. Then dim0, <
dim B, so 0, is either of type rA| for some r, or of type A;. In the latter case,
u would be regular in a Levi subgroup of type A;, so this case cannot occur by
Remark 2.5. The arguments in [Cantarini et al. 2005, Theorem 13, pages 39—40]
apply also in good characteristic and show that for all unipotent classes of type
r Ay, there is a representative whose B-orbit satisfies the condition in Theorem 2.2.

Mixed classes. We claim that there is no spherical element with Jordan decomposi-
tion g =su with s ¢ Z(G) and u # 1. Indeed, O; would be spherical and u would be
spherical in G§. A dimensional argument shows that this is possible only if s € 0,
up to a central element and « is nontrivial only in the component of type A; in Gj.
It follows from the discussion of semisimple elements that we may choose s so
that Gy = H3 with notation as before, so that we may choose g to be conjugate to
§X_g,(1). Conjugation of g by x_, (1) and Chevalley’s commutator formula would
give 2=5X_q(a)x_g; (1)X_g4—a, (b) € O, for some nonzero a, b € k. Conjugating z
by a suitable element in X’ ag—az> WE could get rid of the term in X’ dg—ar® obtaining
an element in O, N Bses7 B. By Theorem 2.3, the class O cannot be spherical. [

Type Eg.

Theorem 3.8. Let G be of type Eg. The spherical classes are either semisimple
or unipotent. The semisimple ones are symmetric ,and they are represented by
r1 =ha(—1)h3(=1) and rp = hp(—1)h5(—1)h7(=1). The unipotent ones are those
of type A1,2A1,3A1 and 4A,.

Proof. Semisimple classes. Let s € T be a spherical element. Proceeding as we
did in Theorems 3.6 and 3.7 we see that, up to N(7T)-conjugation, the central-
izer Gy is generated by T and by the X4, for a in a subsystem with basis either
{az, 03, a4, as, as, a7, ag, —p1} of type Dg or {ay, az, a3, a4, as, ag, a7, —f1} of
type E7 x Aj. Then s is conjugate either to r; = hy(—1)h3(—1) or to rp, =
ha(—=1)hs(—1)h7(—1). Since r? =r; = 1 the corresponding classes are symmetric.

Unipotent classes. Let O be a nontrivial spherical unipotent class. Then dim0 <
dim B, so O is either of type r A; for some r, or it is of type A,. The latter case is
excluded as in the case of G of type E7. Conversely, the arguments in [Cantarini
et al. 2005, Theorem 13, pages 39—40] apply in good characteristic and show that
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for each orbit of type r A in G, we may find a representative whose B-orbit satisfies
the condition in Theorem 2.2.

Mixed classes. We claim that there is no spherical element with Jordan decompo-
sition g = su with s, u # 1. Indeed, by dimensional reasons, s would be conjugate
to r and u would lie in the component of type Ay in G, =(T, X1p,, X+4,)i=1,....7-
In other words, we could assume g =r>x_g, (1). Let y = 1 — ag. Conjugation of
g by s, gives tx_u(a) € O, for some nonzero a € k and some ¢ € T. Since r, does
not commute with X’i(ﬂl_ag_m) and s, (a7 4 ag — B1) = a7, the element ¢ does not
commute with X;Em. Since s, (a7 + ag) = a7 + ag and r, does not commute with
X /ﬂ:(a7 +ag)» the same holds for 7. Then conjugation of tx_gq(a) by x_,, (1) would
give 1x_q, (b)x_gg(a)x_4;—qs(c) € O, for some nonzero b, ¢ € k. Conjugation by
a suitable element in X’ ;. would yield an element x € O, N T X" X" . By
(1) and (2), x would lie in O, N Bs7sg B, leading to a contradiction. O

Type F4.

Theorem 3.9. Let G be of type Fy. The spherical semisimple classes are symmet-
ric and represented by fi = hg,(—1)he,(—1) and f» = h,,(—1). The spherical
unipotent ones are those of type r Ay +sA for r,s € {0, 1}. There is a spherical
class that is neither semisimple nor unipotent, and it is represented by frxp, (1).

Proof. Semisimple classes. Let s € T be a spherical element in G. A dimension
counting similar to the previous exceptional cases shows that G is N (T)-conjugate
to the subgroup generated by 7' and the root subgroups corresponding to roots in a
subsystem with basis either I1; = {—f1, az, a3, a4} or I, = {a1, az, a3, —f1}.
They correspond to the involutions f; = hg,(—1)he,(—1) and fo = he(—1),
respectively, which are indeed spherical.

Unipotent classes. Let O be a nontrivial spherical unipotent class in G. Then
dim 0 <dim B, so O is either of type A, Al or A —1—141 . Conversely, the arguments
in [Cantarini et al. 2005, Theorem 13, pages 39—40] hold in good characteristic and
show that Theorem 2.2 applies to these three classes.

Mixed classes. Let g = su be the Jordan decomposition of a spherical element with
s,u # 1. Since dim 0y, = dim B, we may assume s = f. Also, G 4, is a reductive
group of type Bs. A dimensional argument shows that u lies in the minimal unipo-
tent class in G ,, S0 we may assume g = f2X_(2q,+3ur+4a34+204) (1) = f2x_p, (1). We
have dim O, = dim B. The proof in [Cantarini et al. 2005, Theorem 23] contains
an incorrect argument, which we rectify here.

The element f, = h,,(—1) lies in the subgroup G| = (X4q,, | = 2,3,4) of
type Cz. By looking at the centralizer of f, in G| we see that, up to an element
in Z(Gy), the Gi-conjugacy class of f; is represented by o with notation as in
Theorem 3.3. By [Cantarini et al. 2005, Theorem 15, page 42], the G -class of o}
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has a representative in $484,+2¢;+a,7 When k = C. The same matrix represents the
class in good characteristic. Besides, G centralizes X1p,, so fox_g (1) can be
represented by an element z € saSa,4203+as T X g, C SaSoo+203+as T X 55 X}y C
X, wos2T Xy . Conjugating z by $»81, we obtain an element z' € Bwosi B N 0.
Thus, we, > Wos2 and we, > WoSs1, forcing wgy = woe, (notation as in Section 2).
Then O, has a representative whose B-orbit satisfies the condition in Theorem 2.2
and therefore is spherical. (]
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