Vol. 245, No. 2, 2010

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Volume entropy of Hilbert geometries

Gautier Berck, Andreas Bernig and Constantin Vernicos

Vol. 245 (2010), No. 2, 201–225
Abstract

We show that among all plane Hilbert geometries, the hyperbolic plane has maximal volume entropy. More precisely, we show that the volume entropy is bounded above by 2(3 d) 1, where d is the Minkowski dimension of the extremal set of K, and we construct an explicit example of a plane Hilbert geometry with noninteger volume entropy. In arbitrary dimension, the hyperbolic space has maximal entropy among all Hilbert geometries satisfying some additional technical hypothesis. To achieve this result, we construct a new projective invariant of convex bodies, similar to the centroaffine area.

Keywords
metric geometry, Hilbert geometry, convex geometry
Mathematical Subject Classification 2000
Primary: 51F99, 53A20, 53C60
Milestones
Received: 12 March 2009
Revised: 24 September 2009
Accepted: 24 September 2009
Published: 1 April 2010
Authors
Gautier Berck
Département de Mathématiques
Chemin du musée 23
1700 Fribourg
Switzerland
http://perso.unifr.ch/gautier.berck
Andreas Bernig
Institut für Mathematik
Johann Wolfgang Goethe-Universität Frankfurt
Robert-Mayer-Str. 10
D-60054 Frankfurt
Germany
http://www.uni-frankfurt.de/fb/fb12/mathematik/an/bernig
Constantin Vernicos
Department of Mathematics
Logic House, South Campus
National University of Ireland, Maynooth
Co. Kildare
Ireland
http://costia.free.fr/