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VOLUME ENTROPY OF HILBERT GEOMETRIES

GAUTIER BERCK, ANDREAS BERNIG AND CONSTANTIN VERNICOS

We show that among all plane Hilbert geometries, the hyperbolic plane has
maximal volume entropy. More precisely, we show that the volume entropy
is bounded above by 2/(3 − d) ≤ 1, where d is the Minkowski dimension
of the extremal set of K , and we construct an explicit example of a plane
Hilbert geometry with noninteger volume entropy. In arbitrary dimension,
the hyperbolic space has maximal entropy among all Hilbert geometries
satisfying some additional technical hypothesis. To achieve this result, we
construct a new projective invariant of convex bodies, similar to the centro-
affine area.

1. Introduction

In his famous Fourth Problem, Hilbert asked for a characterization of metric ge-
ometries whose geodesics are straight lines. He constructed a special class of
examples, now called Hilbert geometries [Hilbert 1895; 1999], which have since
attracted much interest; see, for example, [Nasu 1961; de la Harpe 1993; Karlsson
and Noskov 2002; Socié-Méthou 2004; Foertsch and Karlsson 2005; Benoist 2006;
Colbois and Vernicos 2007], and the two complementary surveys [Benoist 2008]
and [Vernicos 2005].

A Hilbert geometry is a particularly simple metric space on the interior of a
compact convex set K (see the definition below). This metric happens to be a
complete Finsler metric whose set of geodesics contains the straight lines. Since
the definition of the Hilbert geometry only uses cross-ratios, the Hilbert metric is
a projective invariant. In the particular case where K is an ellipsoid, the Hilbert
geometry is isometric to the usual hyperbolic space.

An important part of the above mentioned works, and of older ones, is to study
how different or close to the hyperbolic geometry these geometries can be. For
instance, if K is not an ellipsoid, Kay [1967, Corollary 1] showed that the met-
ric is never Riemannian. This result is related to the fact that among all finite-
dimensional normed vector spaces, many notions of curvatures are only satisfied

MSC2000: 51F99, 53A20, 53C60.
Keywords: metric geometry, Hilbert geometry, convex geometry.
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and 200020-121506/1.

201



202 GAUTIER BERCK, ANDREAS BERNIG AND CONSTANTIN VERNICOS

by the Euclidean spaces [Kelly and Paige 1952; Kelly and Straus 1958; 1968].
However, if ∂K is sufficiently smooth, then the flag curvature, an analog of the
sectional curvature, of the Hilbert metric is constant and equals−1; see [Shen 2001,
Example 9.2.2]. Hence one can ask whether or not these geometries behave like
negatively curved Riemannian manifolds. The example of the triangle geometry
that is isometric to a two-dimensional normed vector space shows that things are a
little more involved (see [de la Harpe 1993], and also theorems cited below). The
present work is partially inspired by the feeling that Hilbert geometries might be
thought of as geometries with Ricci curvature bounded from below, and focuses
on the volume growth of balls.

Unlike the Riemannian case, where there is only one natural choice of volume,
there are several good choices of volume on a Finsler manifold. We postpone
this issue to Section 2 and fix just one volume (like the n-dimensional Hausdorff
measure) for the moment.

Let B(o, r) be the metric ball of radius r centered at o. The volume entropy
of K is defined by the limit (provided it exists)

(1) Ent K := lim
r→∞

log Vol B(o, r)
r

.

The entropy depends neither on the particular choice of the base point o∈ int K ,
nor on the particular choice of the volume. If h = Ent K , then Vol B(o, r) behaves
roughly as ehr .

It is well known and easy to prove (see S. Gallot, D. Hulin and J. Lafontaine
[Gallot et al. 2004, Section III.H]) that the volume of a ball of radius r in the
n-dimensional hyperbolic space is given by

nωn

∫ r

0
(sinh s)n−1ds = O(e(n−1)r ),

where ωn is the volume of the Euclidean unit ball of dimension n. It follows that
the entropy of an ellipsoid equals n− 1.

In general, it is not known whether the limit above exists, although it does in
several cases: It exists if the convex set K is divisible, which means that a discrete
subgroup of the group of isometries of the Hilbert geometry acts cocompactly
[Benoist 2004]. If the convex set is sufficiently smooth (for example, C2 with
positive curvature suffices), the entropy exists and equals n−1 (see the theorem of
Colbois and Verovic below). In general, one may define lower and upper entropies
Ent and Ent by replacing the limit in the definition (1) by lim inf or lim sup.

There is a well known conjecture (whose origin seems difficult to locate) saying
that the hyperbolic space has maximal entropy among all Hilbert geometries of the
same dimension:
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Conjecture. For any n-dimensional Hilbert geometry, Ent K ≤ n− 1.

Notice that an analogous result in Riemannian geometry is a consequence of
Bishop’s volume comparison theorem for complete Riemannian manifolds of Ricci
curvature bounded by −(n− 1) [Gallot et al. 2004, Theorem 3.101(i)].

Several particular cases of the conjecture were treated in the literature. The
following one shows that the volume entropy does not characterize the hyperbolic
geometry among all Hilbert geometries.

Theorem [Colbois and Verovic 2004]. If K is C2-smooth with strictly positive
curvature, then the Hilbert metric of K is bi-Lipschitz to the hyperbolic metric and
therefore Ent K = n− 1.

The case of convex polytopes is rather well understood.

Theorem [Bernig 2009; Vernicos 2008b]. The Hilbert metric associated to a con-
vex body K is bi-Lipschitz to a normed space if and only if K is a polytope. In
particular, the entropy of a polytope is 0.

The two-dimensional case was earlier obtained by Colbois, Vernicos, and Verovic
in [Colbois et al. 2008].

Instead of taking the volume of balls, a natural choice is to study the volume
growth of the metric spheres S(o, r). One may define a (spherical) entropy by

(2) Ents K := lim
r→∞

log Vol S(o, r)
r

,

provided the limit exists. In general, one may define upper and lower spherical
entropies Ent

s
K and Ents K by replacing the limits in (2) by a lim sup or lim inf.

The next theorem is a spherical version of the theorem of Colbois and Verovic.

Theorem [Borisenko and Olin 2008]. If K is an n-dimensional convex body of
class C3 with positive Gauss curvature, then Ents = n− 1.

Our first main theorem treats the two-dimensional case. Recall that an extremal
point of a convex body K is a point that is not a convex combination of two other
points of K .

First main theorem. Let K be a two-dimensional convex body. Let d be the upper
Minkowski dimension of the set of extremal points of K . Then the entropy of K is
bounded by

(3) Ent K ≤ 2
3−d

≤ 1.

The inequality is sharp if K is smooth or contains some positively curved smooth
part in the boundary. In this case the upper Minkowski dimension of ex K and
the entropy are both 1. On the other hand, for polygons the upper Minkowski
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dimension of the set of extremal points and the entropy both vanish (see the theorem
of [Colbois et al. 2008]), and the inequality is not sharp in this case.

It should be noted that the entropy behaves in a rather subtle way (see also
[Vernicos 2008a] for a technical study of the entropy, complementary to this paper).
As we have seen above, the entropy of a polygon vanishes. In contrast to this, we
will construct a convex body with piecewise affine boundary whose entropy is
between 1/4 and 3/4.

Our second main theorem applies in all dimensions. It weakens in a substantial
way the assumptions in the theorem of Colbois and Verovic and strengthens its
conclusions, for it gives not only the precise value of the entropy but also the
entropy coefficient. To state it, we introduce a projective invariant of convex bodies,
which is interesting in itself.

Let V be an n-dimensional vector space with origin o. Given a convex body K
containing o in the interior, we define a positive function a on the boundary by the
condition that for p∈ ∂K we have−a(p)p∈ ∂K . The letter a stands for antipodal.
If V is endowed with a Euclidean scalar product, we let k(p) be the Gauss curvature
and n(p) be the outer normal vector at a boundary point p (whenever they are well-
defined, which is almost everywhere the case following [Alexandroff 1939]).

Definition. The centroprojective area of K is

(4) Ap(K ) :=
∫
∂K

√
k

〈n, p〉(n−1)/2

( 2a
1+a

)(n−1)/2
d A.

It is not quite obvious (but true, as we shall see) that this definition does not
depend on the choice of the scalar product. In fact, the centroprojective area is
invariant under projective transformations fixing the origin. The reader familiar
with the theory of valuations may notice the similarity with the centroaffine surface
area, whose definition is the same except that the second factor (containing the
function a) does not appear. We refer to [Laugwitz 1965; Leichtweiß 1998] for
more information on affine and centroaffine differential geometry.

Second main theorem. If ∂K is C1,1 or if n = 2, then

(5) lim
r→∞

Vol B(o, r)

sinhn−1 r
=

1
n−1

Ap(K ).

In the first case, Ap(K ) 6= 0 and hence Ent K = n− 1.

Our next theorem, together with the previous ones, shows that it suffices to
assume K to be merely of class C1,1 in the theorem of Borisenko and Olin.

Theorem. For each convex body K ,

Ents K = Ent K and Ent
s

K = Ent K .
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Plan of the paper. In the next section, we collect some well-known facts about
convex bodies, Hilbert geometries and volumes on Finsler manifolds, and we prove
a number of easy lemmas. Using some inequalities for volumes in normed spaces,
we show that entropy and spherical entropy coincide for general convex bodies.

In Section 3, we use the lemmas to prove our main theorems. In Section 4, we
give an intrinsic definition of the centroprojective surface area and study some of
its properties. In particular, we show that it is upper semicontinuous with respect
to Hausdorff topology.

2. Preliminaries on convex bodies and Hilbert geometries

2.1. Convex bodies. Let V be a finite-dimensional real vector space. By a convex
body, we mean a compact convex set K ⊂ V with nonempty interior (note that
this last condition is sometimes not required in the literature). Most of the time,
the convex bodies will be assumed to contain the origin in their interiors. In such
a case, we will as usual call the Minkowski functional the positive, homogeneous
function of degree 1 whose level set at height 1 is the boundary ∂K . It is a con-
vex function, which by Alexandroff’s theorem admits a quadratic approximation
almost everywhere [Alexandroff 1939; Evans and Gariepy 1992, page 242]. In
the following, boundary points where Alexandroff’s theorem applies will be called
smooth. If we assume the vector space to be equipped with an inner product, the
principal curvatures of the boundary and its Gauss curvature k are well defined at
every smooth point.

We will be concerned with generalizations and variations of Blaschke’s rolling
theorem, a proof of which may be found in [Leichtweiß 1993].

Theorem 2.1 [Blaschke 1956]. Let K be a convex body in Rn whose boundary is
C2 with everywhere positive Gaussian curvature. Then there are two positive radii
R1 and R2 such that for every boundary point p, there exists a ball of radius R1

(respectively R2) containing p on its boundary and contained in K (respectively
containing K ).

We first remark that for the “inner part” of Blaschke’s result, the regularity of the
boundary may be lowered. Recall that the boundary of a convex body is C1,1

provided it is C1 and the Gauss map is Lipschitz continuous. Roughly speaking,
the second condition says that the curvature of the boundary remains bounded,
even if it is only almost everywhere defined. The following proposition then gives
a geometrical characterization of such bodies [Hörmander 2007, Proposition 2.4.3;
Bangert 1999; Hug 1999b].

Proposition 2.2. The boundary of a convex body K is C1,1 if and only if there
exists some R > 0 such that K is the union of balls with radius R.
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Without assumption on the boundary, there is still an integral version of Blaschke’s
rolling theorem.

Theorem 2.3 [Schütt and Werner 1990]. For a convex body K containing the unit
ball of a Euclidean space and p ∈ ∂K , let R(p) ∈ [0,∞) be the radius of the
biggest ball contained in K and containing p. Then for all 0< α < 1,

(6)
∫
∂K

R−αdHn−1 <∞.

We will need the following refinement of this theorem.

Proposition 2.4. In the same situation as in Theorem 2.3, for each Borel subset
B ⊂ ∂K we have

(7)
∫

B
R−αdHn−1

≤ 2(n− 1)α
( 2α

1−2α−1

)α
(Hn−1(B))1−α(Hn−1(∂K ))α.

In particular, for some constant C depending on K , we have

(8)
∫

B
R−1/2dHn−1

≤ C(Hn−1(B))1/2.

Proof. By [Schütt and Werner 1990, Lemma 4], we have for 0≤ t ≤ 1

(9) Hn−1({p ∈ ∂K | R(p)≤ t})≤ (n− 1)t Hn−1(∂K ),

from which we deduce that, for each 0< ε < 1,

(10)
∫
∂K∩{R<ε}

R−αdHn−1
=

∞∑
i=0

∫
∂K∩{ε2−i−1≤R<2−i ε}

R−αdHn−1

≤

∞∑
i=0

(ε2−i−1)−α Hn−1(∂K ∩ {ε2−i−1
≤R<2−iε})

≤

∞∑
i=0

(ε2−i−1)−α(n− 1)2−iε Hn−1(∂K )

= ε1−α(n− 1) 2α

1−2α−1 Hn−1(∂K ).

It follows that∫
B

R−αdHn−1
=

∫
B∩{R<ε}

R−αdHn−1
+

∫
B∩{R≥ε}

R−αdHn−1

≤ ε1−α(n− 1) 2α

1−2α−1 Hn−1(∂K )+ ε−α Hn−1(B).

We get the inequality of the lemma by choosing

ε :=
1− 2α−1

2α(n− 1)
Hn−1(B)

Hn−1(∂K )
. �
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2.2. Hilbert geometries. The Hilbert distance between two distinct points x and y
in int K is defined by

d(x, y) := 1
2

∣∣log[a, b, x, y]
∣∣,

where a and b are the intersections of the line passing through x and y with the
boundary ∂K , and [a, b, x, y] denotes the cross-ratio (adopting the convention of
[Bridson and Haefliger 1999]).

This distance is invariant under projective transformations. If K is an ellipsoid,
the Hilbert geometry on int K is isometric to hyperbolic n-space.

Unbounded closed convex sets with nonempty interiors and not containing a
straight line are projectively equivalent to convex bodies. Therefore, the definition
of the distance naturally extends to the interiors of such convex sets. In particular,
the convex sets bounded by parabolas are also isometric to the hyperbolic space.

Let us assume the origin o lies inside the interior of K . We will write B(r) for
the metric ball of radius r and centered at o. Its boundary, the metric sphere, will
be denoted by S(r). Let a : ∂K→R+ be defined by the equation−a(p)p∈ ∂K , so
the letter a refers to the antipodal point. It is an easy exercise to check that metric
spheres are parameterized by the boundary ∂K as

S(r)= {φ(p, r) : p ∈ ∂K },

where

(11) φ : ∂K ×R+→ int K , (p, r) 7→ a e2r
−1

ae2r+1
p.

The Hilbert distance comes from a Finsler metric on the interior of K . Given
x ∈ int K and v ∈ Tx V , the Finsler norm of v is given by

(12) ‖v‖x =
1
2

( 1
t1
+

1
t2

)
,

where t1, t2 > 0 are such that x ± tiv ∈ ∂K . Again, we do not exclude that one of
the ti is infinite. Equivalently, if Fx is the Minkowski functional of K − x , then

‖v‖x =
1
2(Fx(v)+ Fx(−v)).

The Finsler metric makes it possible to measure the length of a differentiable
curve c : I → int K by

l(c) :=
∫

I

∥∥c′(t)
∥∥

c(t)dt.

It is less trivial to measure the area (or volume) of higher dimensional subsets
of int K . In fact, different notions of volume are being used. The most important
ones are the Busemann definition (which is equal to the Hausdorff n-dimensional
measure) and the Holmes–Thompson definition. In the following, only properties
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of volumes in Finsler spaces (as defined in [Álvarez Paiva and Thompson 2004])
will be used:

• Vol is a Borel measure on int K that is absolutely continuous with respect to
Lebesgue measure.

• If A ⊂ K ⊂ L , where K , L are compact convex sets, then the measure of A
with respect to K is larger than the measure of A with respect to L .

• If K is an ellipsoid, then Vol(A) is the hyperbolic volume of A.

We will mainly investigate the following projective invariants of convex bodies.

Definition 2.5. The upper and lower volume entropies of K are

Ent(K ) := lim sup
r→∞

log(Vol B(r))
r

and Ent(K ) := lim inf
r→∞

log(Vol B(r))
r

.

If the upper and lower volume entropies of K coincide, their common value is
called the volume entropy of K and is denoted by Ent K .

Note that these invariants are independent of the choice of the center and of the
choice of the volume definition.

2.3. Busemann’s density. For simplicity, we restrict ourselves to Busemann’s vol-
ume, although all results remain true for every other choice of volume. The reason
is that the proofs of the crucial Propositions 2.7 and 2.8 below do not use any
particular property of Busemann’s volume, but only the axioms satisfied by every
definition of volume.

The density of Busemann’s volume (with respect to some Lebesgue measure L)
is given by σ(x) = ωn/L(Bx), where Bx is the tangent unit ball of the Finsler
metric at x and ωn is the (Euclidean) volume of the unit ball in Rn . The volume of
a Borel subset A ⊂ int K is thus given by Vol(A)=

∫
A σdL.

We now state and prove some propositions concerning upper bounds and asymp-
totic behaviors of Busemann’s densities for points that are close to the boundaries
of particular convex sets. We will make use of an auxiliary inner product, call-
ing L and µ the corresponding Lebesgue measure and volume n-form. Busemann
densities are defined with this particular choice of measure.

Proposition 2.6. Let K and K ′ be closed convex sets not containing any straight
line and let σ : int K → R and σ ′ : int K ′→ R be their corresponding Busemann
densities. Let p ∈ ∂K , let E0 be a support hyperplane of K at p, and let E1 be a
hyperplane parallel to E0 intersecting K . Suppose that K and K ′ have the same
intersection with the strip between E0 and E1 (in particular p ∈ ∂K ′). Then

lim
y→p

σ(y)/σ ′(y)= 1.
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Proof. Let d be the distance between E0 and E1, and let (yi ) be a sequence of
points of int K converging to p. We may suppose that the distance di between yi

and E0 is strictly less than d. For every fixed point yi and nonzero tangent vector
v ∈ Tyi K , let t1, t2 ∈ R+ ∪ {∞} be such that yi ± t1,2v ∈ ∂K ; let t ′1 and t ′2 be the
corresponding numbers for K ′. Since at least one of yi + t1v and yi − t2v is inside
the strip, say yi + t1v, we must have t1 = t ′1.

Either t2 = t ′2 and ‖v‖i = ‖v‖′i , or t2 6= t ′2, in which case

t1
t2
,

t ′1
t ′2
≤

di

d − di
.

Therefore,
d − di

d
≤
‖v‖i

‖v‖′i
=

1+ (t1/t2)
1+ (t ′1/t ′2)

≤
d

d − di
,

which shows that, as functions on RPn−1, the ‖ ·‖i/‖ ·‖′i uniformly converge to 1.
Hence, for every ε and every i large enough, (1−ε)Byi ⊂ B ′yi

⊂ (1+ε)Byi , which
implies the convergence of σ/σ ′ to 1. �

Proposition 2.7. Let V = Rn with its usual scalar product. Let P be the convex
set bounded by the parabola y =

∑n−1
i=1 (ci/2)x2

i , with c1, . . . , cn−1 > 0. Then

(13) σ(0, . . . , 0, 1− λ)=
√

c
(2(1− λ))(n+1)/2 , where c =

n−1∏
i=1

ci .

Proof. By the invariance of the Hilbert metric under projective transformations,
the tangent unit sphere at any point of int P is an ellipse. At the point (0, . . . , 0,
1− λ), the symmetry implies that the principal axes of this ellipse are parallel to
the coordinate axes. Hence σ = 1/

∏n
i=1 li , where the li for i = 1, . . . , n are the

Euclidean lengths of the principal half-axes.
Now li =

√
2(1− λ)/ci for i = 1, . . . , n− 1 and ln = 2(1− λ). �

Proposition 2.8. Assume the origin o is inside int K . For a smooth point p of ∂K ,
let n(p) be the outward normal vector and let k(p) be the Gauss curvature of ∂K
at p. Then

(14) lim
λ→1

σ(λp)(1− λ)(n+1)/2
=

√
k(p)

(2〈p, n(p)〉)(n+1)/2 .

Proof. Let us choose a frame (p; v1, . . . , vn−1, vn), where v1, . . . , vn−1∈Tp∂K are
unit vectors tangent to the principal curvature directions of ∂K at p and vn =−p.
In these coordinates, the boundary of K is locally the graph of a function

y =
n−1∑
i=1

(ci/2)x2
i + R(|x |),
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with R(|x |) = o(|x |2) and c1, . . . , cn−1 ≥ 0. We set c :=
∏n−1

i=1 ci . Then a short
computation shows that dx1∧ · · · ∧ dxn−1∧ dy = µ/m, where µ is the Euclidean
n-form and m := µ(v1, . . . , vn) = 〈p, n(p)〉. Also, the Gauss curvature at p is
given by k(p)= cmn−1.

Let us fix ε > 0. Locally, the parabola defined by y =
∑n−1

i=1
1
2(ci + ε)x2

i lies
inside K . Cutting it with some horizontal hyperplane, we obtain a convex body K ′

inside K . In particular, the metric of K ′ is greater than or equal to the metric of K ;
hence, σ ′(λp)≥ σ(λp) for λ near 1.

Then by Propositions 2.6 and 2.7,

(15) lim sup
λ→1

σ(λp)(1−λ)(n+1)/2
≤ lim
λ→1

σ ′(λp)(1−λ)(n+1)/2
=

√∏n−1
i=1 (ci + ε)

2(n+1)/2m
.

Since σ > 0, this already settles the case k = c = 0, since ε was arbitrarily small.
If c > 0 and 0< ε <min{c1, . . . , cn−1}, the parabola P defined by

y =
n−1∑
i=1

ci − ε

2
x2

i

locally contains K . Cutting it with some horizontal hyperplane, we obtain a convex
body K ′ inside P . Again by Propositions 2.6 and 2.7,

(16) lim inf
λ→1

σ(λp)(1−λ)(n+1)/2
≥ lim inf

λ→1
σ ′(λp)(1−λ)(n+1)/2

=

√∏n−1
i=1 (ci − ε)

2(n+1)/2m
.

From (15) and (16) (with ε→ 0) we get

lim
λ→1

σ(λp)(1− λ)(n+1)/2
=

√
c

2(n+1)/2m
. �

Section 3 will start with the proof of a slight and somewhat technical refinement
of our second main theorem. To state it precisely, we need to introduce the pseudo-
Gauss curvature of the boundary of a convex set K in Rn .

For a smooth point p∈ ∂K , let n(p) be the outward normal of ∂K at p. For each
unit vector e ∈ Tp∂K , let He(p) be the affine plane containing p and directed by
the vectors e and n(p). We define Re as the radius of the biggest disc containing p
inside Ke := K ∩ He(p).

Definition 2.9. The pseudo-Gauss curvature k̄(p) of ∂K at p is the minimum of
the numbers

∏n−1
i=1 Rei (p)

−1, where e1, . . . , en−1 ranges over all orthonormal bases
of Tp∂K .
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Proposition 2.10. Let V be a Euclidean vector space of dimension n. Let K be a
convex body containing the unit ball B. Then for 1

2 ≤ λ < 1 and p ∈ ∂K ,

(17) σ(λp)≤
ωnn!

2n(1− λ)(n+1)/2 k̄(p)1/2.

Proof. We use the same notation as in the definition of k̄. We may suppose that
Ri := Rei (p)>0 for all i ; otherwise the statement is trivial. By the definition of Ri ,
there is a 2-disc Bi (p) of radius Ri inside Kei containing p. Let us denote by B(ei )

the intersection of B with the affine plane p+ Hei . Since B(ei ) and Bi (p)⊂ K ,

Ĉi := conv(B(ei )×{0} ∪ Bi (p)×{1})⊂ Kei ×[0, 1].

Note that Ĉi is a truncated cone. Let Ei be the plane containing the line that is
parallel to Tp∂Kei and that passes through the points o× {0} and p × {1}. With
π : V × [0, 1] → V the projection on the first component, Ci := π(Ei ∩ Ĉi ) ⊂ K
is bounded by a truncated conic.

In the nonorthogonal frame (o; p, ei ), Ci is given by

(2Ri − 1)x2
+ 2(1− Ri )x + y2

1 ≤ 1 for 0≤ x ≤ 1.

Now let C be the convex hull of the union of the Ci . Then the polytope P with
vertices(

λ, 0, . . . ,±
√
(1− λ)(2λRi − λ+ 1), 0, . . . , 0

)
, (1, E0), (2λ− 1, E0)

lies inside C , with all but the last vertex being on the boundaries of the Ci .
Its volume is given by

(18) L(P)=
2n
〈p, n(p)〉

n!
(1− λ)(n+1)/2

n−1∏
i=1

(2λRi − λ+ 1)1/2

≥
2n

n!
(1−λ)(n+1)/2(R1 · R2 · · · Rn−1)

1/2
=

2n

n!
(1−λ)(n+1)/2k̄−1/2(p).

The factor 〈p, n(p)〉 in the first line appears because our coordinate system is not
orthonormal. Since the unit ball is contained in K , this factor is at least 1.

From P ⊂ C ⊂ K and the fact that P is centered at λp, we deduce that

σ(λp)≤
ωn

L(P)
≤
ωnn!
2n (1− λ)−(n+1)/2 k̄1/2(p). �

The next proposition will be needed in the construction of a convex body with
entropy between 0 and 1.

Proposition 2.11. Let K = oab be a triangle with 1 ≤ oa and ob ≤ 2, such that
the distance from o to the line passing through a and b is at least 1. Let p be a
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point in the interior of the side ab and suppose that min{ap, bp} ≥ ε > 0. Then for
λ≥ 1/2, Busemann’s density of K at λp is bounded above by

σ(λp)≤ 32π max
{ 1
ε(1−λ)

,
1
ε2

}
.

Proof. The hypothesis on the triangle implies that sin(abo), sin(bao)≥ 1/2.
Let a′ be the intersection with ob of the line passing through a and z := λp, and

define b′ similarly.
The unit tangent ball at z is a hexagon centered at z. The length of one of its

half-diagonals is the harmonic mean of za and za′; the length of the second half-
diagonal is the harmonic mean of zb and zb′; and the third half-diagonal has length

2op
1
λ
+

1
1−λ

≥ 1− λ.

An easy geometric argument shows that

za′, zb ≥ 1
2 pb sin(abo)≥ 1

4ε and za, zb′ ≥ 1
2 pa sin(bao)≥ 1

4ε.

The area A of the hexagon is at least half of the minimal product of two of its
half-diagonals; hence, A ≥min{ 18ε(1− λ),

1
32ε

2
}. �

2.4. Volume entropy of spheres. By definition, the entropy controls the volume
growth of metric balls in Hilbert geometries. We show in this section that it
coincides with the growth of areas of metric spheres. Again, there are several
definitions of area of hypersurfaces in Finsler geometry. For simplicity, we con-
sider Busemann’s definition, which gives the Hausdorff (n−1)-measure of these
hypersurfaces.

Lemma 2.12 (rough monotonicity of area). There exist a monotone function f and
a constant C1 > 1 such that for all r > 0,

(19) C−1
1 f (r)≤ Area(S(r))≤ C1 f (r).

Proof. Let f (r) be the Holmes–Thompson area of S(r). Since all area definitions
agree up to some universal constant, inequality (19) is trivial. It remains to show
that f is monotone.

If ∂K is C2 with everywhere positive Gaussian curvature, then the tangent unit
spheres of the Finsler metric are quadratically convex. According to [Álvarez Paiva
and Fernandes 1998, Theorem 1.1 and Remark 2], there exists a Crofton formula
for the Holmes–Thompson area, from which the monotonicity of f easily follows.

Such smooth convex bodies are dense in the set of all convex bodies for the
Hausdorff topology; see for example [Hörmander 2007, Lemma 2.3.2]. By ap-
proximation, it follows that f is monotone for arbitrary K . �
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Lemma 2.13 (coarea inequalities). There exists a constant C2 > 1 such that

C−1
2 Area(S(r))≤ ∂

∂r
Vol(B(r))≤ C2 Area(S(r)) for all r > 0.

Proof. Let µ := σdx1∧· · ·∧dxn be the volume form, and let α be the (n−1)-form
on S(r) whose integral equals the area.

Since
Vol(B(r))=

∫ r

0

∫
S(s)

i∂rµ ds,

where ∂r at λp ∈ S(s) is the tangent vector multiple of Eop with unit Finsler norm,
we have to compare i∂rµ and α.

We will assume that S(r) is differentiable at λp. The section of the unit tangent
ball by the tangent space Tλp S(r) will be called γ . By the definition of Busemann
area, the area of γ measured with the form α is the constant α(γ )= ωn−1.

In the same way, calling 0 the half unit ball containing ∂r and bounded by γ ,
one has µ(0)= 1

2ωn .
Since 0 is convex, it contains the cone with base γ and vertex ∂r . Therefore,

(20) 1
n i∂rµ(γ )≤

1
2ωn.

By Brunn’s theorem (see for example [Koldobsky 2005, Theorem 2.3]), the
sections of the tangent unit ball with hyperplanes parallel to γ have an area less than
or equal to the area of γ . Also the tangent unit ball has a supporting hyperplane at ∂r

which is parallel to γ . Therefore, by Fubini’s theorem, the cylinder γ ×([0, 1] ·∂r )

has a volume greater than or equal to the volume of 0 (even if it generally does
not contain 0). Hence,

(21) 1
2ωn ≤ i∂rµ(γ ).

Inequalities (20) and (21) give

1
2
ωn
ωn−1

α(γ )≤ i∂rµ(γ )≤
n
2
ωn
ωn−1

α(γ ),

from which the result easily follows. �

Theorem 2.14. The spherical entropy coincides with the entropy. More precisely,

lim sup
r→∞

log Area(S(r))
r

= Ent K and lim inf
r→∞

log Area(S(r))
r

= Ent K .

Proof. For convenience, let V (r) := Vol B(r) and A(r) := Area S(r).
Using the previous two lemmas, one has, for all r > 0,

V (r)=
∫ r

0
V ′(s) ds ≤ C2

∫ r

0
A(s) ds ≤ C1C2

∫ r

0
f (s) ds

≤ C1C2 f (r)r ≤ C2
1C2 A(r)r.
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It follows that

Ent K = lim sup
r→∞

log V (r)
r

≤ lim sup
r→∞

log C2
1C2 A(r)r

r
= lim sup

r→∞

log Area(S(r))
r

.

Similarly, for each ε > 0,

V (r(1+ ε))=
∫ r(1+ε)

0
V ′(s) ds ≥ C−1

1 C−1
2

∫ r(1+ε)

0
f (s) ds

≥ C−1
1 C−1

2

∫ r(1+ε)

r
f (s) ds ≥ C−1

1 C−1
2 f (r)rε ≥ C−2

1 C−1
2 A(r)rε,

and hence

(1+ ε)Ent K = (1+ ε) lim sup
r→∞

log V (r(1+ ε))
r(1+ ε)

≥ lim sup
r→∞

log C−1
2 C−2

1 A(r)rε
r

= lim sup
r→∞

log Area(S(r))
r

.

Letting ε→ 0 gives the first equality. The second one follows in a similar way. �

3. Entropy bounds

3.1. Upper entropy bound in arbitrary dimension. Our second main theorem will
follow from the next result.

Theorem 3.1. Let K be an n-dimensional convex body and o ∈ int K . For a point
p ∈ ∂K , we denote by k̄(p) its pseudo-Gauss curvature as in Definition 2.9. If

(22)
∫
∂K

k̄1/2(p)dp <∞,

then

(23) lim
r→∞

Vol B(o, r)

sinhn−1 r
=

1
n−1

Ap(K ).

In particular, Ent K ≤ n− 1, and if Ap(K ) 6= 0, then Ent K = n− 1.

Proof. Using the parameterization (11), the volume of metric balls is given by

Vol(B(r))=
∫ r

0

∫
∂K

F(p, r) dHn−1,

where F(p, r) := σ(φ(p, r)) Jacφ(p, r).
The Jacobian may be explicitly computed:

Jacφ(p, r)=
(e2r
− 1)n−1e2r

(ae2r + 1)n+1 2an(1+ a)〈p, n(p)〉.
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In particular,

(24) lim
r→∞

e2r Jacφ(p, r)= 2(1+ a)〈p, n(p)〉/a.

On the other hand, for each smooth boundary point p we have, by Proposition 2.8,

(25) lim
r→∞

σ(φ(p, r))
e(n+1)r =

√
k(p)

(2〈p, n(p)〉)(n+1)/2
a(n+1)/2

(1+a)(n+1)/2 .

Then, by Proposition 2.10 and the hypothesis (22),

(26) lim
r→∞

1
e(n−1)r

∫
∂K

F(p, r) dHn−1
=

∫
∂K

lim
r→∞

F(p, r)
e(n−1)r dHn−1

=

∫
∂K

lim
r→∞

σ(φ(p, r))
e(n+1)r lim

r→∞
e2r Jacφ(p, r) dHn−1

=

∫
∂K

√
k(p)

(2〈p, n(p)〉)(n−1)/2

( a
1+a

)n−1/2
dHn−1

=
1

2n−1 Ap(K ).

By L’Hôpital’s rule, we get

lim
r→∞

Vol(B(r))
e(n−1)r = lim

r→∞

∫ r
0

∫
∂K F(p, s)dHn−1ds

(n− 1)
∫ r

0 e(n−1)sds
=

1
2n−1(n−1)

Ap(K ). �

Remark. The metric balls B(r) are projective invariants of K . There is an affine
version of the previous theorem using the affine balls Ba(r) := tanh(r)K (where
multiplication is with respect to the center o). Under the same assumptions as in
Theorem 3.1, we obtain that

lim
r→∞

Vol Ba(r)
e(n−1)r =

1
2n−1(n−1)

Aa(K ),

where Aa(K ) is the centroaffine area (see Section 4). The proof goes as the one
above by replacing the function a by 1.

Corollary 3.2. Suppose K is an n-dimensional convex body of class C1,1. Then

Ent K = n− 1.

Proof. For any p ∈ ∂K , R(p) is the biggest radius of a ball in K containing p. By
Proposition 2.2, there exists a constant R > 0 such that R(p)≥ R for all p ∈ ∂K .
It follows that the hypothesis (22) is satisfied and therefore Ent K ≤ n− 1.

The Gauss map G :∂K→ Sn−1 is well defined and continuous. As a consequence
of [Hug 1999a, Theorem 2.3] and [Hug 1998, Equation 2.7], the standard measure
on the unit sphere is the push-forward of k · dHn−1, that is,

G∗(k · dHn−1
|∂K )= dHn−1

|Sn−1,
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and hence the curvature has a positive integral. Therefore, Ap(K ) > 0, and (23)
implies that Ent K = n− 1. �

Corollary 3.3. If K is an arbitrary n-dimensional convex body with Ap(K ) 6= 0,
then Ent K ≥ n− 1.

Proof. Arguing as in the proof of Theorem 3.1 and using Fatou’s lemma instead of
the dominated convergence theorem gives the result. �

3.2. The plane case. Let us now assume that n= 2. By Theorem 2.3, the hypoth-
esis (22) is satisfied for each convex body K . Therefore

(27) Ent K ≤ 1

and

lim
r→∞

Vol B(o, r)
sinh r

=Ap(K ).

Next, we are going to prove a better bound for Ent K . To state our main result,
we need to recall some basic notions of measure theory in a Euclidean space and
refer to [Mattila 1995] for details. For a nonempty bounded set A, let N (A, ε)
be the minimal number of ε-balls needed to cover A. Then the upper Minkowski
dimension of A is defined as

dim A := inf
{
s : lim supε→0 N (A, ε)εs

= 0
}
.

One should note that this dimension is invariant under bi-Lipschitz maps. In
particular, it does not depend on a particular choice of inner product, and it is
invariant under projective maps provided the considered subsets are bounded.

Recall that a point p ∈ K is called extremal if it is not a convex combination of
other points of K . The set of extremal points is a subset of ∂K , which we denote
by ex K .

First main theorem. Let K be a plane convex body, and let d be the upper
Minkowski dimension of ex K . Then the entropy of K is bounded by

Ent K ≤ 2
3−d

≤ 1.

Proof. Since the entropy is independent of the choice of the center, we may suppose
that the Euclidean unit ball around o is the maximum volume ellipsoid inside K .
Then K is contained in the ball of radius 2 [Barvinok 2002].

Set ε := e−αr , where α ≤ 1 will be fixed later. Divide the boundary of K into
two parts:

∂K =B∪G,

where B (the bad part) is the closed ε-neighborhood around the set of extremal
points of K and G (the good part) is its complement.



VOLUME ENTROPY OF HILBERT GEOMETRIES 217

Using Proposition 2.4 and equalities (24) and (25), we get an upper bound for
large values of r :

(28)
∫ r

r/2

∫
B
σ(φ(p, s)) Jacφ(p, s) dH1ds ≤ O

(
er
√

H1(B)
)
.

Next, let p ∈ G. The endpoints of the maximal segment in ∂K containing p are
extremal points of K and hence of distance at least ε from p. Therefore K contains
a triangle as in Proposition 2.11, and if s ≥ r/2, and r is sufficiently large,

σ(φ(p, s))= σ(λ · p)≤ 32 max
{ 1
ε(1−λ)

,
1
ε2

}
=

32
ε(1−λ)

.

Integrating this from r/2 to r yields

(29)
∫ r

r/2

∫
G
σ(φ(p, s)) Jacφ(p, s) dH1ds = O(eαr ).

Let d be the upper Minkowski dimension of the set of extremal points of K .
Then, for each η > 0, N (ex K , ε) = o(ε−d−η) as ε→ 0. By the definition of N ,
there is a covering of ex K by N (ex K , ε) balls of radius ε. Hence there is a
covering of B by N (ex K , ε) balls with radius 2ε. The intersection of a 2ε-ball
with ∂K has length less than 4πε. It follows that H1(B)= o(ε−d−η+1). Since the
volume of B(r/2) is bounded by O(er/2) (see (27)), the volume of B(r) is bounded
by

Vol B(r)= Vol B(r/2) +
∫ r

r/2

∫
B
σ(φ(p, s)) Jacφ(p, s)dH1ds

+

∫ r

r/2

∫
G
σ(φ(p, s)) Jacφ(p, s)dH1ds

= O(er/2)+ O(er(1−(α(1−d−η))/2))+ O(eαr ).

We fix α such that 1− α(1− d − η)/2 = α, that is, α := 2/(3− d − η) > 2/3.
Then Vol B(r)= O(eαr ), which implies that the (upper) entropy of K is bounded
by α. Since η > 0 was arbitrary, the result follows. �

3.3. An example of noninteger entropy. We will construct a plane convex body
with piecewise affine boundary whose entropy is strictly between 0 and 1.

Let us choose a real number s > 2 and set αi := Cs/i s , where Cs > 0 is
sufficiently small, such that 3

∑
∞

i=1 αi < π . We consider a centrally symmetric
sequence E of points on S1 such that the angles between consecutive points are
α1, α1, α1, α2, α2, α2, . . . (each angle appearing three times).

Theorem 3.4. The entropy of K = conv(E) is bounded by

0< 1
s
≤ Ent K ≤ Ent K ≤ 2s−2

3s−4
< 1.
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Proof for lower bound. The unit sphere of radius r in the Hilbert geometry K is
tanh r K and consists of an infinite number of segments.

An easy geometric computation shows that the middle segment Si (r) corre-
sponding to α := αi has for each r ≥ 0 length bounded from below by

l(Si (r))≥ log
( 2 tanh r

1−tanh r
tan(α/2) sin(α)+ 1

)
.

Set i0(r) := b(2Cs)
1/ser/s

c. Then, for sufficiently large r ,

2 tanh r
1− tanh r

tan(αi/2) sin(αi )≤ 1 for all i ≥ i0(r).

By the concavity of the log-function, we have log(1+ x) ≥ x log 2 ≥ x/2 for
0≤ x ≤ 1. Therefore

l(S(r))≥
∞∑

i=i0

tanh r
1−tanh r

tan(αi/2) sin(αi ).

For sufficiently large r , the first factor is bounded from below by e2r/4, while the
second is bounded from below by α2

i . We thus get

l(S(r))≥ e2r

4

∞∑
i=i0

α2
i = C2

s
e2r

4

∞∑
i=i0

1
i2s ≥ C2

s
e2r

4

∫
∞

i0

1
x2s dx = C2

s
e2r

4(2s−1)i2s−1
0

.

Replacing our explicit value for i0 gives l(S(r))≥ Cer/s for sufficiently large r
and some constant C (again depending on s). Hence Ent K ≥ 1/s.

Proof for upper bound. For the upper bound in the statement, we apply our first
main theorem. For this, we have to find an upper bound on the Minkowski dimen-
sion of ex K = E .

Since the Minkowski dimension is invariant under bi-Lipschitz maps, we may
replace distances on the unit circle by angular distances.

E has two accumulation points ±x0. For ε > 0, let N (ε) be the number of
ε-balls needed to cover E . We take one such ball around ±x0 and one further ball
for each point in E not covered by these two balls.

The three points corresponding to the angle αi are certainly in the ε-neighbor-
hood of ±x0, provided that 3

∑
∞

j=i α j ≤ ε.
Now we compute

∞∑
j=i

α j = Cs

∞∑
j=i

1
j s ≤ Cs

∫
∞

i−1

1
x s dx =

Cs

s− 1
1

(i−1)s−1 .

It follows that all i satisfying i ≥ i0 := (3Cs/(s− 1))1/(s−1) ε1/(1−s)
+ 1 also

satisfy the inequality above, and hence N (ex K , ε)≤ 6i0+ 2≤ Cε−1/(s−1).
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It follows that the upper Minkowski dimension is not larger than 1/(s−1). The
upper bound of First main theorem gives

Ent K ≤ 2s−2
3s−4

. �

4. Centroprojective and centroaffine areas

In this section, we will take a closer look at the centroprojective area, which was
introduced (in a nonintrinsic way) in the definition on page 204.

4.1. Basic definitions and properties. Geometrically speaking, both centroaffine
and centroprojective areas are Riemannian volumes of the boundary ∂K .

We first give intrinsic definitions of the centroaffine metric and area. Let K be
a convex body with a distinguished interior point, which we may suppose to be
the origin o of V . The Minkowski functional of K is the unique positive function
F that is homogeneous of degree 1 and whose level set at height 1 is the bound-
ary ∂K . This function is convex and, according to Alexandroff’s theorem, has
almost everywhere a quadratic approximation.

Definition 4.1. Let v be a tangent vector to ∂K at a smooth point p. Then the
centroaffine seminorm of v is ‖v‖a :=

√
Hessp F(v, v).

The square of the centroaffine seminorm is a quadratic function on the tangent,
and hence we may define as usual a volume form, say ωa (which vanishes if ‖ · ‖a
is not definite).

Definition 4.2. The centroaffine area of K is Aa(K ) :=
∫
∂K |ωa|.

It easily follows from the definitions that the centroaffine area is indeed an affine
invariant of pointed convex bodies. Moreover, it is finite and vanishes on polytopes.
The next proposition relates our definitions with the classical ones; its proof is a
straightforward computation.

Proposition 4.3. If the space is equipped with a Euclidean inner product, then the
centroaffine area is given by

Aa(K )=
∫
∂K

√
k

〈n, p〉(n−1)/2 d A,

with k the Gaussian curvature of ∂K at p, where n is the unit vector normal to
Tp∂K , and where d A is the Euclidean area.

To introduce the centroprojective area, we will consider a compact convex subset
of the (real) n-dimensional projective space. Here the word “convex” means that
each intersection with a projective line is connected.
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The definitions of the centroprojective seminorm and area are merely the same
as the centroaffine ones, but one has to replace the Minkowski functional by a
projectively invariant function.

Definition 4.4. Let K ⊂Pn be a convex body and o ∈ int K . The projective gauge
function is

G K : P
n
\ {o} → R∪ {∞}, x 7→ 2[q1, o, x, q2],

where q1 and q2 are the two intersections of ∂K with the line going through o
and x .

Since the order of q1 and q2 is not fixed, this function is multivalued (in fact
double-valued). Identifying R∪ {∞} with P1, this function is continuous.

If p belongs to the boundary of K , then the two values of G K (p) are different,
one of them being 2, the other being ∞. Hence there is some neighborhood U
of p such that the restriction of G K to U is the union of two continuous (in fact
smooth) functions G+K and G−K on U , where G+K (p)= 2 and G−K (p)=∞.

Let v be a tangent vector to ∂K at a smooth point p. Since the restriction
of G+K to ∂K ∩U is constant, the derivative of G+K in the direction of v vanishes.
Therefore, the Hessian of the restriction of G+K to the tangent line is well defined.

Definition 4.5. The centroprojective seminorm of v is

‖v‖p :=
√

HesspG+K (v, v).

If we let ωp be the induced volume form on ∂K , the centroprojective area of K
is Ap(K ) :=

∫
∂K |ωp|.

Proposition 4.6. In a Euclidean space,

Ap(K )=
∫
∂K

√
k

〈n, p〉(n−1)/2

( 2a
1+a

)(n−1)/2
d A.

In particular, the intrinsic definition of Ap agrees with the definition given in the
introduction.

Proof. An easy computation shows that

[q1, o, x, q2] =
1+ a(q2)

F(x)+ a(q2)
F(x).

Then, if p is a smooth point of ∂K and v ∈ Tp∂K ,

HesspG K (v, v)=
2a(p)

1+ a(p)
Hessp F(v, v). �
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4.2. Properties of the centroprojective area. Both centroaffine and centroprojec-
tive areas vanish on polytopes, and hence they are not continuous with respect to
the Hausdorff topology on (pointed) bounded convex bodies. Nevertheless, the
centroaffine area is upper-semicontinuous [Lutwak 1996]. The same holds true for
the centroprojective area as shown in the next theorem.

Theorem 4.7. The centroprojective area is finite, invariant under projective trans-
formations, and upper-semicontinuous.

Proof. From the above intrinsic definition, it follows that Ap is invariant under
projective transformations. Also, since the function a on the boundary is bounded
and positive, and since the centroaffine area is finite, it follows from Proposition 4.6
that the centroprojective area is also finite. It remains to show that it is upper-
semicontinuous. Our proof is based on the fact that the centroaffine surface area
Aa is semicontinuous [Lutwak 1996].

Let K be a bounded convex body containing the origin in its interior, and let
(Ki ) be a sequence of convex bodies with the same properties converging to K .
Set

τ(p) :=
( 2a(p)

1+ a(p)

)(n−1)/2
for p ∈ ∂K ,

which is a continuous function on ∂K .
For each i , if ai is the function corresponding to Ki and pi is the radial projection

of p on ∂Ki , define τi ∈ C(∂K ) by

τi (p) :=
( 2ai (pi )

1+ ai (pi )

)(n−1)/2
.

Since Ki→ K , τi converges uniformly to τ . Therefore ‖τi−τ‖∞< ε for fixed
ε > 0 and all sufficiently large i .

Take a triangulation of the sphere and let ∂K =
⋃m

j=11 j be its radial projection.
Define ∂Ki =

⋃m
j=11i j similarly.

Choosing this triangulation sufficiently thin, there exist t1, . . . , tm ∈ R+ such
that |τ(p)− t j |< ε on 1 j . By the triangle inequality, |τi (p)− t j |< 2ε on 1i j .

We define

Ap(Ki ,1i j ) :=

∫
1i j

√
k(x)

〈n(x), x〉(n−1)/2 τi dHn−1(x).

Clearly, Ap(Ki ) =
∑m

j=1 Ap(Ki ,1i j ). We define Ap(K ,1 j ), Aa(Ki ,1i j ) and
Aa(K ,1 j ) similarly.

Fix p j in the interior of 1 j and consider the convex hulls 1̂i of 1 j ∪ {−p j }

and 1̂i j of 1i j ∪−p j . The boundary of 1̂i j is the union of 1i j and flat simplices;
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hence Aa(Ki ,1i j )=Aa(1̂i j ). By the semicontinuity of Aa , we obtain

lim sup
i→∞

Aa(Ki ,1i j )= lim sup
i→∞

Aa(1̂i j )≤Aa(1̂ j )=Aa(K ,1 j ).

It follows that

lim sup
i→∞

Ap(Ki )= lim sup
i→∞

m∑
j=1

Ap(Ki ,1i j )

≤ lim sup
i→∞

m∑
j=1

Aa(Ki ,1i j )(t j + 2ε)≤
m∑

j=1

Aa(K ,1 j )(t j + 2ε).

On the other hand,

Ap(K )=
m∑

j=1

Ap(K ,1 j )≥

m∑
j=1

Aa(K ,1 j )(t j − ε),

from which we deduce that lim supi→∞Ap(Ki )≤Ap(K )+ 3εAa(K ). �

The centroaffine surface area has the following important properties:

• Aa is a valuation on the space of compact convex subsets of V containing o
in the interior. This means that whenever K , L , K ∪ L are such bodies, then

Aa(K ∪ L)=Aa(K )+Aa(L)−Aa(K ∩ L).

• Aa is upper semicontinuous with respect to the Hausdorff topology.

• Aa is invariant under GL(V ).

A recent theorem by M. Ludwig and M. Reitzner [2007] states that the vector
space of functionals with these three properties is generated by the constant valu-
ation and Aa . The centroprojective surface area satisfies the last two conditions,
but is not a valuation.
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CHEMIN DU MUSÉE 23
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ON ROUGH-ISOMETRY CLASSES OF HILBERT GEOMETRIES

THOMAS FOERTSCH

We prove that Hilbert geometries on uniformly convex Euclidean domains
with C2-boundaries are roughly isometric to the real hyperbolic spaces of
corresponding dimension.

1. Introduction

Hilbert geometries generalize the Klein model of the real hyperbolic space from
ellipsoids in En , the n-dimensional Euclidean space, to arbitrary bounded convex
subsets of En . Karlsson and Noskov [2002] provide necessary conditions as well
as sufficient conditions on the boundary of such a convex subset in order for its
associated Hilbert geometry to be Gromov hyperbolic. Benoist [2003] even pre-
cisely determined such convex subsets, the associated Hilbert geometries of which
are Gromov hyperbolic. Namely, such a bounded convex subset yields a Gromov
hyperbolic Hilbert geometry if and only if its Euclidean boundary is locally the
graph of a “quasisymmetrically convex” function.

Benoist [2006] proved that every two-dimensional Gromov hyperbolic Hilbert
geometry is quasi-isometric to the real hyperbolic space of corresponding dimen-
sion. Here he also provides examples of Hilbert geometries in dimension≥3 which
are not quasi-isometric to real hyperbolic spaces.

For related discussions of non-Gromov hyperbolic Hilbert geometries, see also
[Bernig 2009; Bletz-Siebert and Foertsch 2007; Colbois and Verovic 2008; Colbois
et al. 2008].

Restricting their attention to so-called strictly (or, as one might prefer, uni-
formly) convex domains, Colbois and Verovic [2004] proved that the Hilbert ge-
ometries of such domains are bi-Lipschitz equivalent to the real hyperbolic space
of corresponding dimension.

The purpose of this paper is to prove that such Hilbert geometries are even
rough-isometric to the real hyperbolic spaces of corresponding dimension.

MSC2000: primary 53C60; secondary 51F99.
Keywords: Hilbert geometries, Gromov hyperbolicity, rough isometry.
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Recall that a map f : X −→Y between metric spaces is called a rough-isometric
embedding if there exists some k ≥ 0 such that

|xx ′| − k ≤ | f (x) f (x ′)| ≤ |xx ′| + k for all x, x ′ ∈ X.

If, moreover, for all y ∈ Y there exists an x ∈ X such that |y f (x)| ≤ k, then f is
called a rough isometry.

Recall further that Gromov hyperbolicity is a rough-isometry invariant, and in
the course setting of Gromov hyperbolic spaces, what one is generally interested
in are the corresponding rough-isometry classes.

Theorem 1.1. Let D be an open, bounded convex domain in En . Suppose further
that the boundary ∂D is of class C2 and the curvature of ∂D is nonzero everywhere.
Then the Hilbert geometry (D, hD

κ ) associated with D is rough-isometric to Hn
κ .

The proof relies on the equivalence of rough-isometry classes of visual, Gromov
hyperbolic spaces and bi-Lipschitz classes of their boundaries at infinity. We recall
in Section 2 the precise definition of Hilbert geometries and summarize such facts
on Gromov hyperbolic spaces as will be needed in the proof of Theorem 1.1. In
Section 3 we give proofs of some elementary geometric lemmata, which will also
be quoted in the proof of Theorem 1.1 in Section 4.

2. Preliminaries

2.1. Hilbert geometries on uniformly convex domains with C2-boundary. Let
En = (Rn, de) = (Rn, | · |) denote the n-dimensional Euclidean space. For the
Euclidean distance of x, y ∈ En we write |xy|, and for the line segment between x
and y we write [x, y], while L(x, y) denotes the whole straight line in En through
x and y.

Given an open bounded convex domain D ⊂ En with boundary ∂D ⊂ En and
some κ < 0 the Hilbert metric hD

κ : D × D −→ R+0 is defined as follows. For
x, y ∈ D one defines

hκ(x, y) := hD
κ (x, y) :=

{ 1√−κ log
|yξx,y| |xξy,x |
|xξx,y| |yξy,x | if x 6= y,

0 if x = y,

where ξx,y ∈ L(x, y)∩ ∂D is uniquely determined by the condition |ξx,y x |< |ξx,y y|
(ξy,x ∈ L(x, y)∩ ∂D by |ξy,x x |> |ξy,x y|, respectively). The expression

|yξx,y| |xξy,x |
|xξx,y| |yξy,x |

is called the cross ratio of the four collinear ordered points ξx,y, x, y, ξy,x and is
invariant under projective transformations. For the basic properties of the distance
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hκ see [Busemann 1955; de la Harpe 1993]; for example, the topology induced by
hκ on D coincides with the subspace topology inherited from En . We shall refer
to the metric space (D, hκ) as a Hilbert geometry.

Note that if D is a ball or an ellipsoid, the associated Hilbert metric space
(D, hκ) is isometric to the real hyperbolic space of constant sectional curvature
κ of corresponding dimension.

Now let D ⊂ Rn be an open bounded convex domain with boundary of class
C2. Let further ρ : Rn −→ R be a C2-function satisfying ρ|D > 0, ρ|∂D = 0,
and ρ|Rn\D < 0 such that its gradient ∇ρ is a unit vector field normal to ∂D and
directed inside D. By Wx : Tx∂D −→ Tx∂D we denote the curvature (or Wein-
garten) operator which assigns to each v ∈ Tx∂D the directional derivative of ∇ρ
in direction v. From this curvature operator one obtains the second fundamental
form I Ix as the following bilinear form on Tx∂D:

I Ix(v,w) = 〈w,Wx(v)〉 =
n∑

i, j=1

∂2ρ

∂x i∂x j viw j for v,w ∈ Tx∂D.

We call kx(u) := I Ix(u, u) the normal curvature of ∂D at x in the direction of the
unit tangent vector u.

In the case where the curvature of ∂D is nonzero everywhere, that is, where I I
is positive definite everywhere, there exists some constant kD > 0 such that

(1) k−1
D ≤ kx

( u
‖u‖

)
≤ kD for x ∈ ∂D, u ∈ Tx∂D.

2.2. Gromov hyperbolic spaces and their boundaries at infinity. For X a metric
space, the Gromov product of two points of X with respect to a third is defined by

(x · y)o := 1
2(|xo| + |yo| − |xy|) for o, x, y ∈ X.

The space X is called Gromov hyperbolic if there exists δ ≥ 0 such that

(2) (x · y)o ≥ min{(x · z)o, (z · y)o} − δ for o, x, y, z ∈ X.

This notion of Gromov hyperbolicity is a rough-isometry invariant, and the objects
of interest in this asymptotic theory are the corresponding rough-isometry classes
rather than the spaces themselves.

To a Gromov hyperbolic metric space one associates a boundary at infinity,
endowed with a certain quasimetric. For a broad class of Gromov hyperbolic spaces
(those satisfying the visuality assumption — see below), the bi-Lipschitz class of
this quasimetric canonically corresponds to the rough isometry class of the space.

Now let X be a Gromov hyperbolic metric space. A sequence {xi } of points
xi ∈ X converges to infinity if limi, j→∞(xi · x j )o =∞. Two sequences {xi }, {x ′i }
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that converge to infinity are considered equivalent if limi (xi ·x ′i )o=∞. Using the δ-
inequality (2), one easily sees that this defines an equivalence relation for sequences
in X converging to infinity. The boundary at infinity ∂∞X of X is defined as the
set of equivalence classes of sequences converging to infinity.

For points ξ, ξ ′ ∈ ∂∞X one defines their Gromov product with respect to the
basepoint o ∈ X by

(ξ · ξ ′)o := inf lim inf
i−→∞

(xi · x ′i )o,
where the infimum is taken over all sequences {xi } ∈ ξ and {x ′i } ∈ ξ ′.

It is a well-known fact (see for instance the remark following [Bridson and
Haefliger 1999, Definition 1.19]) that in the geodesic setting the Gromov product
(ξ · ξ ′)o roughly measures the distance of o to the geodesic connecting ξ to ξ ′. As
we are going to use this fact later on, we formulate it as follows:

Lemma 2.1. Fix δ > 0. Then there exists a constant K such that if (X, d) is
a proper geodesic Gromov hyperbolic space satisfying the δ-inequality (2), then
|d(x, im{γ }− (ξ · ξ ′)x)|< k for all x ∈ X, ξ, ξ ′ ∈ ∂∞X and every geodesic line γ
in (X, d) with c(−∞)= ξ and c(∞)= ξ ′.

From the inequality (2) it immediately follows that ρo : ∂∞X × ∂∞X −→ R+0 ,
given by ρo(ξ, ξ

′) := e−(ξ ·ξ ′)o , is a eδ-quasimetric, that is,

ρo(ξ, ξ
′) ≤ eδ max{ρo(ξ

′, ξ ′′), ρo(ξ
′′, ξ ′)} for ξ, ξ ′, ξ ′′ ∈ ∂∞X.

It is directly clear from the definition of the boundary quasimetrics that Gromov
hyperbolic spaces X and X ′ which are rough-isometric to each other,

X
rough∼= X ′,

give rise to boundary quasimetric spaces (∂∞X, ρo) and (∂∞X ′, ρo′) which are
bi-Lipschitz equivalent,

(∂∞X, ρo)
bi-Lip∼= (∂∞X ′, ρo′).

For the converse statement to be true, it is clear that one has to ask the boundary
somehow to represent the entire space. More precisely, recall that a metric space is
called roughly geodesic if there exists some k ≥ 0 such that any two points in the
space can be joined by a k-rough geodesic, that is, a k-rough isometric embedding
of a closed interval. A Gromov hyperbolic space X is called visual if for some
o ∈ X and some k ≥ 0 every point x ∈ X lies on a k-rough geodesic ray initiating
in o. In particular, a visual Gromov hyperbolic space is roughly geodesic.

Bonk and Schramm [2000] described the morphism classes of the spaces on the
one hand, and those of their boundaries, on the other hand, which correspond to
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each other under the assumption of visuality. The statement we will refer to can
also be deduced as a corollary of [Buyalo and Schroeder 2007, Theorem 7.1.2].

Theorem 2.2 [Bonk and Schramm 2000; Buyalo and Schroeder 2007, Theorem
7.1.2]. Let X and X ′ be visual Gromov hyperbolic spaces, and let o ∈ X as well as
o′ ∈ X ′. Then

X
rough∼= X ′ ⇐⇒ (∂∞X, ρo)

bi-Lip∼= (∂∞X ′, ρo′).

Note that in the case where the Gromov hyperbolic metric space is a CAT(−1)-
space, the quasimetric ρo indeed satisfies the triangle inequality and hence is a
metric. This was shown by Bourdon [1995]. In particular, consider the real hy-
perbolic space Hn in the Poincaré ball model. Then the Bourdon metric ρo with
respect to the center of the ball o is precisely given by half the Euclidean metric
on ∂∞Hn = Sn−1 ⊂ En [Buyalo and Schroeder 2007, p. 21].

Finally note that for a Gromov hyperbolic Hilbert geometry (D, hD), the Gro-
mov boundary can naturally be identified with ∂D, which follows from [Karlsson
and Noskov 2002, Theorem 5.2] and [Foertsch and Karlsson 2005, Proposition 2].

Moreover, Hilbert geometries are visual. In fact, for any basepoint o ∈ D, every
x ∈ D lies on a geodesic ray initiating in o.

3. Four elementary geometric lemmata

This section contains the proofs of four elementary geometric lemmata, which will
be referred to in the proof of Theorem 1.1 in Section 4. The complete section may
be skipped at a first reading. The statements are not surprising, but we provide the
proofs for the convenience of the reader.

Lemma 3.1. Let γ : [0, a] −→ E2 be an arc-length parameterized straight line
segment of length 0 < a ≤ 2ρ in a ball B(r, ρ) around the origin o ∈ E2 with
γ (0), γ (a) ∈ ∂B(o, ρ), and denote by l = l(ρ, a) > 0 the distance of γ (a/2) to the
two-point set L(o, γ (a/2))∩ ∂B(o, ρ), for a < 2ρ, and l = ρ otherwise. Then

1
3(ρ)

√
l(ρ, a) ≤ a ≤ 3(ρ)

√
l(ρ, a) for a ∈ [0, 2ρ],

with 3(ρ) :=max{2√2ρ, 1/(2
√
ρ)}.

Proof. This immediately follows from a = 2
√

2ρ− l(ρ, a)
√

l(ρ, a) and 0 ≤
l(ρ, a)≤ ρ. �

Now let R > r > 0 and let S be a straight line segment in E2 of length x , the
endpoints of which lie on ∂B(o, R). B(o, R) \ S consists of two connected com-
ponents B̃ and B̂. For x < r , let B̃(S) be the component disjoint from B(o, R−r).
Given p ∈ B(o, R− r) and q ∈ S, define

w = w(p, q) := L(p, q) ∩ B̃(S) ∩ ∂B(o, R)
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t=0
t=ρ2−

t=ρ2

p

q

q

q ′

q ′

α(p,q)

w(pq)

T

R R−r

u=R−
√

R2−(x/2)2

Figure 1. Notation in Lemma 3.2.

and set
m = m(x, R, r) := max

p∈B(o,R−r)
q∈S

|qw(p, q)|.

Lemma 3.2. Fix R > r > 0. Then

m(x, R, r) ≤ 3̃
(

R−
√

R2− (x/2)2
)

for 3̃= 3̃(r, R) := sin−1(arctan r/(4R)).

Proof. For p ∈ B(o, R−r) and q ∈ S, let α= α(p, q) denote the angle α(p, q) :=
6 q(L(p, q), S) ∈ (0, π/2]. Further, let T denote the tangential line to ∂ B̃(S) \ S
parallel to S, and set q ′ := T ∩ L(p, q) and v := |qq ′|. Then

|qw(p, q)| < v = u
sinα(p, q)

with u := R−
√

R2− (x/2)2.

Therefore it remains to prove that there exists α0 > 0 such that α(p, q) ≥ α0 for
all p ∈ B(o, R− r) and q ∈ S.

Since x < r , we deduce u < r/2 and therefore dist(S, ∂B(o, R − r)) > r/2. It
follows that we can choose

α0 := arctan
r/2
2R
= arctan

r
4R
. �

Let ρ2 > ρ1 > 0 be fixed and Cρ2,Cρ1 be circles in E2 of radius ρ2 and ρ1,
respectively, such that #(Cρ1 ∩Cρ2)= 1 with the center oρ1 of Cρ1 in the bounded
component of R2 \C2. Let q := Cρ1 ∩Cρ2 , and denote by oρ2 the center of Cρ2 .
Further, let L0 be the straight line through oρ2 orthogonal to L(q, oρ2). By H we
denote the half-space in E2 defined by L0 such that H contains the center oρ1 of
Cρ1 . Now let L t ⊂ H be the parallel to L0 in distance t of oρ2 for all t ∈ [0, ρ2)
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oρ1
oρ2

ηη′ χχ ′
L t

t=0
t=ρ2−ρ1

t=ρ2

Cρ1

Cρ2

Figure 2. Illustration of the situation considered in Lemma 3.3.

and define χt , χ
′
t , ηt , η

′
t ∈ E2 via {χt , χ

′
t } = L t ∩Cρ2 and {ηt , η

′
t } = L t ∩Cρ1 for all

t ∈ [ρ2− ρ1, ρ2).

Lemma 3.3. Let ρ2 >ρ1 > 0. Then |χtχ
′
t | ≤ 3̂ |ηtη

′
t | for all t ∈ [ρ2−ρ1, ρ2), with

3̂= 3̂(ρ1, ρ2) := √(2ρ2−ρ1)/ρ1.

Proof. Consider the function f : [ρ2−ρ1, ρ2)−→ R+ given by

f (t) := |χt χ̄t |2
|ηt η̄t |2 =

ρ2
2− t2

ρ12− (t − (ρ2− ρ1))2
for all t ∈ [ρ2− ρ1, ρ2).

With f ′(t) 6= 0 for all t ∈ (ρ2− ρ1, ρ2), as well as

lim
t→ρ2

f (t)= ρ2/ρ1 ≤ (2ρ2− ρ1)/ρ1 = f (ρ2− ρ1),

the claim follows. �

Lemma 3.4. Let D be a bounded, convex domain in En+1 with C1-boundary ∂D.
Then (∂D, de|∂D×∂D) is bi-Lipschitz equivalent to (Sn, de|Sn).

Proof. Let x ∈ D and let r > 0 be such that Br (x) ⊂ D. Consider the map
ϕ : (∂D, de|∂D×∂D)−→ (∂Br (x), de|∂Br (x)×∂Br (x)), given by

ξ 7→ η ∈ L(x, ξ)∩ ∂Br (x) with |ηξ | = dist(ξ, L(x, ξ)∩ ∂Br (x)).

Obviously, |ξξ ′| ≤ |ϕ(ξ)ϕ(ξ ′)| for all ξ, ξ ′ ∈ ∂D. Moreover, for all α > 0 there
exists µ(α) such that

|ξξ ′| ≥ µ(α) |ϕ(ξ)ϕ(ξ ′)| for ξ, ξ ′ ∈ ∂D, with 6 x(ξ, ξ
′)≥ α.

Therefore we only have to consider angles approaching zero.
Let Rξ,x := |ξ x | and let Rx := {max Rξ x | ξ ∈ ∂D}. Let further Tξ denote the

tangent to ∂D at ξ ∈ ∂D and set γxξ := 6 ξ (Tξ , L(x, ξ)) ∈ (0, π2 ). Then, since D is
C1 and convex and ∂D is compact, there exists γ0 > 0 such that

inf{γxξ | ξ ∈ ∂D} = min{γxξ | ξ ∈ ∂D} ≥ γ0.
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x

DD

η

η′

ξ ξ

ξ ′
ξ ′

ξ ′′
α π−α

2

γxξ

π+α
2

Br (x)Br (x) Rξ x

BRξ x (x)

γ̃α

Figure 3. Notation used in the proof of Lemma 3.4.

Now consider ξ, ξ ′ ∈ ∂D with 6 x(ξ, ξ
′) = α. Let Cx,ξ,ξ ′(Rξ,x) be the circle in

span{x, ξ, ξ ′} of radius Rξ,x and center x , and let ξ ′′ := L(x, ξ ′) ∩ Cx,ξ,ξ ′(Rξ,x)
with

∣∣|ξ ′′x | − |ξ ′x |∣∣= |ξ ′ξ ′′|. Since 6 ξ (x, ξ ′′)= 1
2(π −α)= 6 ξ ′′(x, ξ), we find

Lξα
sin 1

2(π −α)
= lξα

sin γ̃α
,

where Lξα := |ξ ′ξ |, lξα := |ξ ′′ξ | and γ̃α := 6 ξ ′(ξ ′′, ξ).
Now, since sin γ̃α → sin γx,ξ ≥ sin γ0 as α→ 0, it follows that for all ξ ∈ ∂D

there exists α0(ξ) such that

Lξα ≤
sin 1

2(π −α)
sin 1

2γ0
lξα

for all α ≤ α0(ξ). Thus, since ∂D is compact, there also exist α0 > 0 as well as
µ > 0 such that Lξα ≤ µlξα for all α < α0, from which the claim follows. �

4. Proof of Theorem 1.1

We prove that (D, h−1)
rough∼= Hn

−1. The rest of the claim follows as usual by merely
rescaling the metric.

From [Karlsson and Noskov 2002, Theorem 5.2] and [Foertsch and Karlsson
2005, Proposition 2] it follows that the Gromov boundary at infinity of (D, h−1)

can naturally be identified with ∂D ⊂Dn . The main goal of this proof is to verify
that for x ∈ D the visual quasimetric ρx on ∂D is bi-Lipschitz equivalent to the
restriction of the Euclidean metric de = | · | to ∂D.

Let kD be as in (1) and set ρ1 :=
√

k−1
D and ρ2 :=

√
kD . Fix x ∈ D and let

Rx > rx > 0 be such that B(x, rx)⊂ D ⊂ B(x, Rx). We want to show that
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ρx

bi-Lip∼= de|∂D =: | · | |∂D.

(i) In the first step we establish that

there exists λ > 0 such that e−(ξ ·ξ
′)x ≥ 1

λ
|ξξ ′|, for all ξ, ξ ′ ∈ ∂D.

Let therefore ξ, ξ ′ ∈ ∂D and y ∈ [ξ, ξ ′] satisfying d(x, y) = dist(x, [ξ, ξ ′]). Note
that for x ∈ [ξ, ξ ′]we have e−(ξ ·ξ ′)x = 1 and e−(ξ ·ξ ′)x ≥ 1

λ |ξξ ′| holds for λ≥ diam D.
Therefore we can assume in the following without loss of generality that x /∈[ξ, ξ ′].

Now let y′ ∈ [ξ, ξ ′] ∩ D be arbitrary and A, B ∈ L(x, y′) ∩ ∂D be defined
via |Ax | < |Ay| and |By| < |Bx |. Then, due to Lemma 2.1 and the inequalities
rx ≤|x A|, |y′A|, |x B|≤2Rx , we deduce the existence of λ̃1, λ̃2>0 only depending
on (D, h−1), rx and Rx such that

e−(ξ ·ξ)x ≥ 1

λ̃1
e−h1(x,y) ≥ 1

λ̃1
e−h1(x,y′) = 1

λ̃1

√
|x A| |y′B|
|x B| |y′A| ≥

1

λ̃2

√|y′B|.
Thus it remains to show that there exists λ̃3 > 0 only depending on (D, h−1), rx

and Rx such that for all ξ, ξ ′ ∈ ∂D there exists y′ as above satisfying

(3)
√|y′B| ≥ 1

λ̃3
|ξξ ′|.

To prove this, consider the two-dimensional plane 6 spanned by x, ξ, ξ ′. The
set (6 ∩ D) \ [ξ, ξ ′] consists of two connected components. Denote by 6̃ the
connected component of this set not containing x . Since ∂D is C2, there exists
B ∈ ∂6̃ \ [ξ, ξ ′] ⊂ ∂D such that the tangent T (B) of ∂6̃ at B is parallel to [ξ, ξ ′].

Let T (B)⊥ ⊂ 6 denote the straight line through B orthogonal to T (B). Let
further Cρ2 be the circle of radius ρ2 in 6 through B, tangent to T (B), which

A

B
xr

ξ

ξ ′

Cρ2

η

η′

L(ξ,ξ ′)

y ′
ỹ

D ∩ 6

T (B)

Figure 4. Situation in step (i) of the proof.
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lies on the same side of T (B) in 6 as D does. Now set y′ := [x, B] ∩ [ξ, ξ ′],
ỹ := T (B)⊥ ∩ [ξ, ξ ′] as well as η, η′ ∈ L(ξ, ξ ′) ∩Cρ2 such that |ηξ | < |ηξ ′| and
|η′ξ ′|< |η′ξ |.

Now we consider two cases:

• If dist([ξ, ξ ′], T (B)) ≥ ρ2, then (3) holds trivially for |y′B| as above once
λ3 ≥ diam(D)/

√
ρ2.

• If dist([ξ, ξ ′], T (B)) < ρ2 we find with Lemma 3.1:

|ξξ ′| ≤ |ηη′| ≤ 3(ρ2)
√

l(ρ2, |ηη′|) = 3(ρ2)
√
|ỹ B| ≤ 3(ρ2)

√|y′B|.
(ii) In the second step we establish that

there exists λ > 0 such that e−(ξ ·ξ
′)x ≤ λ|ξξ ′|, for all ξ, ξ ′ ∈ ∂D.

To do this, we choose x to be particularly nice: Let E ∈ ∂D, take the ball Bρ1 of
radius ρ1 tangent to the tangent hyperplane H(E) of ∂D at E such that Bρ1

◦ ⊂ D,
and let x be the center of Bρ1 . With x defined like this we have |xξ | ≥ ρ1 for all
ξ ∈ ∂D.

Now, for ξ, ξ ′ ∈ ∂D, ξ 6= ξ ′, arbitrarily choose y as above and let x̄ = ξx,y, ȳ =
ξy,x ∈ ∂D be as in the definition of the Hilbert distance between x and y. Once
again we can assume without loss of generality that x /∈ [ξ, ξ ′]. Due to Lemma
2.1 and rx ≤ |x x̄ |, |yx̄ |, |x ȳ| ≤ 2Rx we deduce the existence of λ̃4, λ̃5 > 0 only
depending on (D, h−1), rx and Rx such that

e−(ξ ·ξ
′)x ≤ λ̃4e−h1(x,y) = λ̃4

√
|x x̄ | · |y ȳ|
|x ȳ| · |yx̄ | ≤ λ̃5

√|y ȳ|.

B

ξ

ξ ′

L(ξ,ξ ′) T (B)

Bξ
ρ2

Bξ ′
ρ2

Bρ1 (x)

Ŵ1

Ŵ2

Figure 5. Notation in the proof of step (ii), with i0 = 1.
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Thus it remains to show that there exists λ̃6 > 0 only depending on (D, h1), rx and
Rx such that for all ξ, ξ ′ ∈ ∂D, the inequality

√|y ȳ| ≤ λ̃6|ξξ ′| holds.
Since |y ȳ| ≤ diam(D), it suffices to restrict our attention to those ξ, ξ ′ ∈ ∂D

satisfying |ξξ ′|< 1/n for arbitrary but fixed n ∈ N. We choose n as follows.
Let ξ, ξ ′ ∈ ∂D and 6 := span{x, ξ, ξ ′} as above. Let further Bξρ2 and Bξ

′
ρ2 denote

the balls of radius ρ2 through ξ and ξ ′ in 6 tangential to the tangents of ∂D ∩6
in ξ and ξ ′, respectively, such that D ⊂ Bξρ2 ∩ Bξρ2 =: σ .

Then ∂σ \{ξ, ξ ′} consists of two arcs γ1 and γ2 of length l(γ1) and l(γ2), respec-
tively. Since ρ1 and ρ2 are fixed, it is immediate that there exists an n0= n0(ρ1, ρ2)

such that from |ξξ ′|< 1
n0

, it follows that min{l(γ1), l(γ2)}<ρ1. Let us now assume
without loss of generality (see above) that |ξξ ′|< 1

n0
.

We take i0 ∈ {1, 2} such that l(γi0) = min{l(γ1), l(γ2)} < ρ1 and denote the
connected components of σ \ {ξ, ξ ′} by 01 and 02 such that ∂0i = [ξ, ξ ′] ∪ γi ,
i = 1, 2.

Since for each point z ∈ 0i0 we have dist{z, ∂D} < ρ1, we deduce x /∈ 0i0 and
thus ȳ∈0i0 for ȳ= ξy,x , as in the definition of the Hilbert distance between x and y.

Now let B ∈0i0 and T (B) be as in (i), and denote by Bρ1 and Bρ2 the balls in 6
of radii ρ1 and ρ2 through B, tangent to T (B), which lie on the same side of T (B)
in 6 as D does. We denote the center of Bρ1 by oρ1 and write Tρ1 for the straight
line through oρ1 parallel to T (B). Further, let S be the strip bounded by T (B) and
Tρ1 . Since B ∈0i0 and thus |ξ B|, |ξ ′B|<ρ1, it follows that ξ, ξ ′ ∈ (S∩ Bρ2)\ B◦ρ1

.
Thus we are exactly in the situation to apply Lemmata 3.1, 3.2 and 3.3. Let

therefore y′ := T (B)⊥ ∩ [ξ, ξ ′]. Then we get√|y ȳ| ≤3̃(ρ1, ρ2) ·
√|y′B| (by Lemma 3.2)

≤3̃(ρ1, ρ2) ·3(ρ2) · |χχ ′| (by Lemma 3.1)

≤3̃(ρ1, ρ2) ·3(ρ2) · 3̂(ρ1, ρ2) · |ηη′| (by Lemma 3.3)

≤3̃(ρ1, ρ2) ·3(ρ2) · 3̂(ρ1, ρ2) · |ξξ ′| =: λ̃6 · |ξξ ′|,
where {χ, χ ′} := L(ξ, ξ ′) ∩ Cρ2 and {η, η′} := L(ξ, ξ ′) ∩ Cρ1 and Cρi := ∂Bρi ,
i = 1, 2. Thus, applying Lemma 3.4, we have indeed established that the visual
metric ρx on the boundary at infinity of (D, h−1) is bi-Lipschitz equivalent to the
angular boundary metric on ∂Hn

−1. The claim therefore follows from Theorem 2.2
together with the obvious fact that (D, h−1) is visual. �
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53115 BONN

GERMANY

foertsch@math.uni-bonn.de
http://www.math.uni-bonn.de/people/foertsch/



PACIFIC JOURNAL OF MATHEMATICS
Vol. 245, No. 2, 2010

ANALYTIC PROPERTIES OF DIRICHLET SERIES
OBTAINED FROM THE ERROR TERM

IN THE DIRICHLET DIVISOR PROBLEM

JUN FURUYA AND YOSHIO TANIGAWA

We discuss some analytic properties of Dirichlet series

Y(s)=
∞∑

n=1

d(n)1(n)n−s for Re s > 5
4 ,

where d(n) is the divisor function and 1(x) is the error term in the Dirichlet
divisor problem. In particular, we study an analytic continuation and an
order of Y(s). As applications, we study an analytic continuation and orders
of several kinds of Dirichlet series related to 1(x).

1. Introduction and statement of results

Let d(n) be the divisor function, and let 1(x) be the error term in the Dirichlet
divisor problem, defined by

(1-1) 1(x)=
∑
n≤x

d(n)− x(log x + 2γ − 1),

where γ is the Euler constant. A long history of research on1(x) has not settled the
famous conjecture that 1(x)= O(x1/4+ε), where ε is an arbitrarily small positive
number. An efficient way to investigate 1(x) is to consider the Dirichlet series
whose coefficients involve 1(x) or the related integrals.

In [Furuya et al. 2010], we considered properties of the Dirichlet series D j (s)
defined by

D j (s)=
∞∑

n=1

1(n) j

ns ,

for j = 1 and 2. It is easily seen that these functions are absolutely convergent for
σ > 5/4 for j = 1 and σ > 3/2 for j = 2. Here, and in what follows, we denote the
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complex number s as s = σ + i t with real numbers σ and t . We have established
the analytic continuation and the locations of poles of these functions:

Theorem [Furuya et al. 2010, Theorems 1 and 2]. The function D1(s) can be
continued to the whole complex plane as a meromorphic function. This function
has a double pole at s = 1 and a simple pole at s = −2n with a nonnegative
integer n. In particular, the Laurent expansion of D1(s) at s = 1 is given by

D1(s)=
1

2(s− 1)2
+
γ + 1

4

s− 1
+ O(1).

The function D2(s) can be continued to the region Re s > 2/3 as a meromorphic
function. This function has a simple pole at s = 3/2 and a triple pole at s = 1.

One of the results in [Furuya et al. 2010] is the relationship between the Dirichlet
series D2(s) and Lau and Tsang’s conjecture [1995, Formula 1.3],∫ x

1
1(u)2du = c1x3/2

−
1

4π2 x log2 x + c2x log x + O(x),(1-2)

where c1 and c2 are certain constants. In particular, it was suggested that the second
and third terms on the right side of (1-2) come from the residues of D2(s) at s = 1
[Furuya et al. 2010, Section 5].

In this paper, we first consider the Dirichlet series Y (s) defined by

Y (s)=
∞∑

n=1

d(n)1(n)
ns ,

which can be regarded as a modification of D1(s) and D2(s). We can easily see
that the function Y (s) is absolutely convergent in σ >5/4, similarly to D1(s), since
d(n)= O(nε) for an arbitrarily small positive number ε and∑

n≤x

|1(n)| = O(x5/4).

As for the other analytic properties of Y (s), we obtain this:

Theorem 1. The Dirichlet series Y (s) can be continued analytically to the region
Re s >−1/3 as a meromorphic function. In the region Re s ≥ 1/2, it has a simple
pole at s = 1/2 with

Res
s=1/2

Y (s)= 1
16π2

∞∑
n=1

d(n)2

n3/2 ,

and it also has a pole of fourth order at s = 1, whose Laurent expansion at s = 1
is given by

Y (s)= 3
π2(s−1)4

+
12(π2γ − 3ζ ′(2))

π4(s− 1)3
+

a−2

(s− 1)2
+

a−1

s− 1
+ · · · ,
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with some constants a j , where ζ(s) denotes the Riemann zeta function. In the
region −1/3< Re s < 1/2, the function Y (s) has poles at s = ρ/2 if ρ satisfies the
conditions ζ(ρ)= 0 and ζ(ρ/2) 6= 0.∗

We shall give the proof of this theorem in two ways; see Sections 3 and 7.
As the first application of Theorem 1, we shall study the Dirichlet series related

to the coefficient of 1̃(n) defined by

1̃(x)=
∑
n≤x

′

d(n)− x(log x + 2γ − 1)− 1
4 ,

where
∑
′

n≤x indicates that the last term is to be halved if x is an integer. Commonly
this definition is used as the error term instead of (1-1). Many properties of 1(x)
also hold in the case 1̃(x); for example, these functions have same upper and lower
bounds as x→∞. For the mean value theorem, we can see that∫ x

1
1(u) du = 1

4 x + O(x3/4) and
∫ x

1
1̃(u) du = O(x3/4)

for x ≥ 1, though the asymptotic behaviors, in particular the main terms of the
higher power cases from 2 to 9, are the same. However, the difference between
1(n) and 1̃(n) for natural numbers n is essential in the study of the “discrete”
mean values. Actually, these functions are connected by the relation

(1-3) 1̃(n)=1(n)− 1
2 d(n)− 1

4 ,

for a natural number n; hence we have

∑
n≤x

1̃(n)k =
∑
n≤x

1(n)k +
k−1∑
b=0

k−b∑
a=0

k!(−1)b−k2a+2b−2k

a!b!(k− a− b)!

∑
n≤x

d(n)a1(n)b,

with a fixed natural number k [Furuya 2007, Formula 5.1]. In view of this formula,
studying the discrete mean values of 1̃(n) will require that we understand the
function

∑
n≤x d(n)a1(n)b. As noted in [Furuya 2007], it is very difficult to study

this kind of sum in the case a ≥ 2.
Now we consider the Dirichlet series

D̃ j (s)=
∞∑

n=1

1̃(n) j

ns for j = 1 and 2.

It is easily seen that these functions are absolutely convergent for σ > 5/4 for j = 1
and σ > 3/2 for j = 2, similarly to the cases of D j (s). For the other properties,
we have the following corollary.

∗Needless to say, the last condition ζ(ρ/2) 6= 0 holds if the Riemann Hypothesis is true.
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Corollary 1. (1) The function D̃1(s) can be continued to the whole complex plane
as a meromorphic function with a simple pole at s = −2n for a nonnegative
integer n; in particular, this function is holomorphic at s = 1. The residue of
D̃1(s) at s =−2n is the same as that of D1(s) and is given by

Res
s=−2n

D̃1(s)=−
ζ(−2n− 1)

2n+ 1
.

(2) The function D̃2(s) can be continued analytically as a meromorphic function
to the region Re s > 2/3, where it has a simple pole at s = 3/2 and a pole of
fourth order at s = 1. The residue of D̃2(s) at s = 3/2 is given by

Res
s=3/2

D̃2(s)=
1

4π2

∞∑
n=1

d(n)2

n3/2 .

The proof of this corollary is based on the relation (1-3), Theorem 1, and the
known results concerning D j (s) and ζ(s). Actually, we have by (1-3) that

D̃1(s)= D1(s)− 1
2ζ

2(s)− 1
4ζ(s),

D̃2(s)= D2(s)− 1
2 D1(s)+ 1

4ζ
2(s)+ 1

16ζ(s)+
ζ 4(s)

4ζ(2s)
− Y (s).

The corollary follows immediately from these. (In fact, we need not use Theorem 1
to prove (1); we need only apply [Furuya et al. 2010, Theorem 1].)

Comparing this corollary with [Furuya et al. 2010, Theorems 1 and 2], we can
see that the behaviors of D̃ j (s) and D j (s) are different. We also note that the
residue of D̃2(s) at s = 3/2 is the same as that of I2(s), which is defined in the
beginning of Section 2; see also Lemma 2 below.

We further study the properties of Dirichlet series related to 1(x), especially
the orders of D2(s) and Y (s), whose analytic properties are poorly understood.
Namely, their functional equations, approximate functional equations, and mean
values are not known. It seems difficult to study the orders of these Dirichlet series
in a satisfactory way. However:

Theorem 2. Let s = σ + i t be a complex variable. For |t | ≥ 2, we have

Y (s)�
{

1 for σ > 5/4,
|t |(5−4σ)/3 log5/2

|t | for 1/2≤ σ ≤ 5/4.

Theorem 3. Let s = σ + i t be a complex variable. For |t | ≥ 2, we have

D2(s)�


1 for σ > 3/2,
log|t | for σ = 3/2,
|t |3−2σ log4

|t | for 1< σ < 3/2.
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These are obtained by using mean value theorems of 1(x) and the Phragmén–
Lindelöf convexity theorem. The factor log4

|t | in Theorem 3 corresponds to the
error estimate of the mean square of 1(x) [Preissmann 1988]. We can improve
it slightly by using the recent result of Lau and Tsang [2009, Theorem 2], but for
simplicity we use the result of Preissmann here.

Finally, as an application of Theorem 1, we will study an analytic continuation
of a certain kind of multiple zeta function. Such functions are of current interest,
especially those of the Euler–Zagier type∑

n1<n2<···<nk

1
ns1

1 ns2
2 . . . n

sk
k
.

As a generalization, one can consider two types of multiple series,

(1-4)
∑

n1<n2<···<nk

a1(n1)a2(n2) · · · ak(nk)

ns1
1 ns2

2 · · · n
sk
k

and

(1-5)
∑

n1<n2<···<nk

a1(n1)a2(n2− n1) · · · ak(nk − nk−1)

ns1
1 ns2

2 · · · n
sk
k

,

where a j (n) are certain arithmetical functions. Under suitable assumptions on the
Dirichlet series

∑
∞

n=1 a j (n)n−s j , the analytic properties for the multiple series of
type (1-5) can be easily derived. Compared with (1-5), the series of type (1-4) is
rather difficult, and it seems that [Akiyama and Ishikawa 2002] is the only character
mod q j is treated in the case a j (n)= χ j (n); that paper made use of the periodicity
of χ j to reduce the problem to the multiple Hurwitz zeta function∑

n1<n2<···<nk

1
(n1+α1)s1(n2+α2)s2 . . . (nk+αk)sk

.

The multiple series that we consider here is of the form

(1-6) D(s1, s2)=
∑
m<n

d(m)d(n)
ms1ns2

.

For Re s2 > 1 and Re(s1 + s2) > 2, the series in (1-6) is absolutely convergent
and represents a holomorphic function in s1 and s2. Since the divisor function d(n)
is not periodic, we should adopt a different approach than Akiyama and Ishikawa.

In the case s1= s2= s, it is easy to see that D(s, s) has an analytic continuation
to the whole plane C, since trivially

D(s, s)= 1
2ζ(s)

4
−
ζ(2s)4

2ζ(4s)
.
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For general s j , the analytic continuation of (1-6) is as follows:

Theorem 4. The multiple zeta function D(s1, s2) can be continued analytically to
a function meromorphic in the region in C2 given by

Re s1+Re s2 >
1
2 .

To prove Theorem 4, we employ previous results about the Dirichlet series
D j (s), Y (s), and I j (s) and their derivatives. More precisely, we will express
D(s1, s2) in terms of these functions and then use their analytic continuations. We
can determine the singularities of D(s1, s2) in the region Re s1 + Re s2 > 1/2 by
using the explicit formula (6-3) for D(s1, s2). However, we shall omit the details of
these properties since we would like to state the properties of D(s1, s2) as simply
as possible.

2. Preliminaries

Here we prepare some lemmas. The first concerns the analytic properties of the
integrals

I j (s)=
∫
∞

1
u−s1(u) j du for j = 1 and 2.

We easily see that these integrals are absolutely convergent in the region σ > 5/4
for j = 1 and σ > 3/2 for j = 2.

Lemma 1 [Sitaramachandra Rao 1987]. The function I1(s) can be continued to the
whole complex plane as a function holomorphic except for a simple pole at s = 1,†

and is expressed explicitly by

(2-1) I1(s)=
ζ 2(s− 1)

s− 1
−

2γ − 1
s− 2

−
1

(s− 2)2
.

Lemma 2 [Furuya et al. 2010, Lemma 4]. The function I2(s) can be continued
analytically to the right half-plane σ > 2/3. It has a simple pole at s = 3/2 with
residues

Res
s=3/2

I2(s)=
1

4π2

∞∑
n=1

d(n)2

n3/2 ,

while it has a triple pole at s = 1.

We will need several results about sums of 1(n).

Lemma 3. Let 1(x) be the error term defined by (1-1). Then∑
n≤x

1(n)2 = c1x3/2
+ F(x),

†The function I1(s) is holomorphic at s = 2, since the integral of I1(s) converges absolutely for
s = 2. (This can also be checked using the Laurent expansion around s = 2 of the right side of (2-1).)
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with F(x)= O(x log4 x), where c1 is the constant defined in (1-2).

Proof. This formula can be proved directly by using [Furuya 2005, Theorem 1]
and the asymptotic formula

(2-2)
∫ x

1
1(u)2du = c1x3/2

+ O(x log4 x)

due to Preissmann [1988]. �

Lemma 4.∑
n≤x

d(n)1(n)= 1
2

∑
n≤x

d(n)2+ 1
21(x)

2
−

1
2(2γ − 1)2+

∫ x

1
(log u+ 2γ )1(u) du.

We can write this sum explicitly as an asymptotic formula∑
n≤x

d(n)1(n)= 1
2π2 x log3 x + c3x log2 x + c4x log x + c5x + O(x3/4 log x),

with suitable constants c3, c4 and c5.

Proof. The first formula is derived from [Furuya 2007, Theorem 1] by putting
f (n) = d(n), which implies g(x) = x(log x + 2γ − 1) and E(x) = 1(x). The
second formula is [Furuya 2007, Corollary 1]. �

3. The function Y(s)

Let N be a sufficiently large positive number and let

(3-1) YN (s)=
∑
n≤N

d(n)1(n) n−s

for σ > 5/4. Also put g(x) = x(log x + 2γ − 1). Then by partial summation and
the first formula of Lemma 4, we have

YN (s) = N−s
∑
n≤N

d(n)1(n)+ s
∫ N

1
u−s−1

∑
n≤u

d(n)1(n) du

= s
∫ N

1
u−s−1

(
1
2

∑
n≤u

d(n)2+ 1
21(u)

2
−

1
2(2γ−1)2+

∫ u

1
g′(v)1(v) dv

)
du

+ O(N 1−σ log3 N ).

For the double integral on the right side, we have∫ N

1
u−s−1

∫ u

1
g′(v)1(v) dv du =

∫ N

1
g′(v)1(v)

∫ N

v

u−s−1 du dv

=
1
s

∫ N

1
u−s g′(u)1(u) du+ O(N 1−σ log N ).
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Furthermore, we have∑
n≤x

d(n)2n−s
= x−s

∑
n≤x

d(n)2+ s
∫ x

1
u−s−1

∑
n≤u

d(n)2du

by partial summation; hence,

s
∫ N

1
u−s−1

∑
n≤u

d(n)2du =
∑
n≤N

d(n)2n−s
+ O(N 1−σ log3 N ).

Therefore

YN (s)= 1
2

∑
n≤N

d(n)2n−s
+

1
2 s
∫ N

1
u−s−11(u)2du−

(2γ − 1)2

2

+

∫ N

1
u−s g′(u)1(u)du+ O(N 1−σ log3 N ).

In the above formula, we let N →∞ and get

(3-2) Y (s)=
ζ(s)4

2ζ(2s)
+

s I2(s+ 1)
2

−
(2γ − 1)2

2
+ 2γ I1(s)− I ′1(s).

This expression holds for σ > 5/4. But we can easily see, by (3-2) and the analytic
properties of ζ(s), I j (s) (for j = 1, 2) and I ′1(s), that Y (s) is continued analytically
from σ > 5/4 to the region σ >−1/3.

Furthermore, we see that Y (s) has poles at s = 1/2 and s = 1 in the region
σ ≥ 1/2. For −1/3< σ < 1/2, the assertion in the theorem is easily derived from
the right side of (3-2). The residue at s = 1/2 is derived easily from Lemma 2, and
the Laurent expansion of Y (s) at s = 1 is derived also by the right side of (3-2).
This completes the proof of Theorem 1. �

4. The order of Y(s)

In this section, we prove Theorem 2. Specifically, we determine the order of Y (s)
on the vertical lines σ = 1/2 and σ = 5/4 and apply the Phragmén–Lindelöf
convexity theorem for 1/2≤ σ ≤ 5/4.

First we consider the order of Y (s) on the line σ = 1/2. From (3-2), we have

Y (1
2+i t)=

ζ(1
2 + i t)4

2ζ(1+ 2i t)
+

1
2 + i t

2
I2(

3
2+i t)−

(2γ − 1)2

2
+2γ I1(

1
2+i t)− I ′1(

1
2+i t).

It is easily seen that

ζ( 1
2 + i t)4

ζ(1+ 2i t)
� |t |2/3 log7

|t | � |t |.
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We also have I1(
1
2 + i t)� |t |−1

|ζ(− 1
2 + i t)|2� |t | from Lemma 1, and

I ′1(
1
2 + i t)� |t |−1

|ζ(− 1
2 + i t)ζ ′(− 1

2 + i t)| � |t | log|t |

similarly. So it remains to consider I2(
3
2 + i t):

Lemma 5. I2(
3
2 + i t)� log|t | as |t | →∞.

Proof. Assume σ > 3/2, and let X be a large parameter. Splitting the integral at X ,
we have

I2(s)=
∫ X

1
u−s1(u)2du+

∫
∞

X
u−s1(u)2du =: J (1)X (s)+ J (2)X (s).

Using the mean value estimate (2-2) and integration by parts, we have

J (2)X (s)=
[
u−s(c1u3/2

+O(u log4 u))
]∞

X
+ s

∫
∞

X
u−s−1(c1u3/2

+ O(u log4 u)) du

=
3c1

2s− 3
X−s+3/2

+ O(X1−σ log4 X)+ O
(
|t |
∫
∞

X
u−σ log4 u du

)
.

The integral in the last term converges absolutely in the region σ > 1 and is esti-
mated as O(|t |X1−σ log4 X). Hence we have

J (2)X ( 3
2 + i t)� |t |−1

+ X−1/2 log4 X + |t |X−1/2 log4 X.

Meanwhile,

J (1)X ( 3
2 + i t)�

∫ X

1
u−3/212(u) du� log X.

By taking, for example, X = |t |3, we obtain the lemma. �

From these estimates, we obtain

(4-1) Y ( 1
2 + i t)� |t | log|t |.

Next we consider the order on the line σ = 5/4. Assuming first that σ > 5/4 as
usual, we define

EN (s)= Y (s)− YN (s)=
∑
n>N

d(n)1(n)
ns ,

where YN (s) is the function defined by (3-1).
Using partial summation and the second formula in Lemma 4, we have

EN (s)=−N−s
( 1

2π2 N log3 N + c3 N log2 N + c4 N log N + c5 N
)

+ s
∫
∞

N
u−s−1

( 1
2π2 u log3 u+ c3u log2 u+ c4u log u+ c5u

)
du

+ O(|t |N 3/4−σ log N )
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=
1

2π2(s−1)
N 1−s log3 N +

(
3s

2π2(s−1)2
+

c3

s− 1

)
N 1−s log2 N

+

(
6s

2π2(s−2)3
+

2c3s
(s− 1)2

+
c4

s− 1

)
N 1−s log N

+

(
6s

2π2(s−1)4
+

2c3s
(s− 1)3

+
c4s

(s− 1)2
+

c5

s− 1

)
N 1−s

+ O
(
|t |N 3/4−σ log N

)
.

Hence, we get the estimate

(4-2) EN (s)�
N 1−σ log3 N
|t |

+ |t |N 3/4−σ log N

for σ > 5/4. Note that (4-2) holds true for σ > 3/4.
On the other hand, the first part of this division can be estimated as

YN (
5
4 + i t)�

(∑
n≤N

d(n)2

n

)1/2(∑
n≤N

1(n)2

n3/2

)1/2

� log5/2 N .

Taking N = |t |2, we then get

(4-3) Y ( 5
4 + i t)� log5/2

|t |.

By (4-1), (4-3) and the Phragmén–Lindelöf principle, we obtain

Y (σ + i t)� |t |(5−4σ)/3 log5/2
|t | for 1/2≤ σ ≤ 5/4,

which completes the proof of Theorem 3. �

5. The order of D2(s)

Let σ > 3/2. We divide the infinite series as
∞∑

n=1

1(n)2

ns =

(∑
n≤N

+

∑
n>N

)
1(n)2

ns = D(1)
2,N (s)+ D(2)

2,N (s).

By using partial summation and Lemma 2, we have

(5-1)

D(2)
2,N (s)=

3
2 c1

s− 3
2

N−s+3/2
− N−s F(N )+ s

∫
∞

N
u−s−1 F(u) du

=

3
2 c1

s− 3
2

N−s+3/2
+ O

(
|s|N 1−σ log4 N

)
.

This estimate actually holds for σ > 1, and thus this formula gives the analytic
continuation of D(2)

2,N (s) from σ > 3/2 into σ > 1.
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We treat the case s = 3
2 + i t . By (5-1), we have

D(2)
2,N (

3
2 + i t)� |t |−1

+ |t |N−1/2 log4 N .

We have, by partial summation and Lemma 2 again,

D(1)
2,N (

3
2 + i t)�

∑
n≤N

1(n)2

n3/2 � log N .

Hence, by taking N = |t |3, we have D2(
3
2 + i t)� log|t |. This estimate gives the

second assertion of Theorem 3.
To prove the third, we first consider the case s = 1+ ε+ i t , where ε is a fixed

positive small number. By (5-1), we get

D(2)
2,N (1+ ε+ i t)� |t |−1 N 1/2−ε

+ |t |N−ε log4 N ,

and
D(1)

2,N (1+ ε+ i t)� N 1/2−ε.

Hence, by taking N = |t |2, we get D2(1+ ε+ i t)� |t |1−2ε log4
|t |.

Applying the Phragmén–Lindelöf convexity principle, we obtain

D2(σ + i t)� |t |3−2σ log4
|t |

for 1< σ < 3/2. This completes the proof of Theorem 3. �

6. Proof of Theorem 4

Let

S(s1, s2)=
∑
m≤n

d(m)d(n)
ms1ns2

.

To prove Theorem 4, it is enough to consider the series S(s1, s2), since

(6-1) D(s1, s2)= S(s1, s2)−
ζ 4(s1+ s2)

ζ(2(s1+ s2))
.

Let s j = σ j + i t j be complex variables. First assume that σ1 > 1 and σ2 > 1.
For a large positive number N , we consider the finite sum

SN (s1, s2) :=
∑

m≤n≤N

d(m)d(n)
ms1ns2

.

By partial summation and (1-1), we have

SN (s1, s2)=
∑
n≤N

d(n)
ns2

∑
m≤n

d(m)
ms1
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=

∑
n≤N

d(n)
ns2

(
1

ns1

∑
m≤n

d(m)+ s1

∫ n

1
u−s1−1

(∑
m≤u

d(m)
)

du
)

=

∑
n≤N

d(n)(g(n)+1(n))
ns1+s2

+ s1
∑
n≤N

d(n)
ns2

∫ n

1
u−s1−1g(u) du

+ s1
∑
n≤N

d(n)
ns2

∫ n

1
u−s1−11(u) du,

where g(u)= u(log u+2γ −1) as before. In the last term above, split the integral
as
∫ n

1 =
∫ N

1 −
∫ N

n . Then interchange the order of integral and summation and use
partial summation and (1-1) again. We get eight terms:

SN (s1, s2)=
∑
n≤N

d(n)g(n)
ns1+s2

+

∑
n≤N

d(n)1(n)
ns1+s2

+ s1
∑
n≤N

d(n)
ns2

∫ n

1
u−s1−1g(u) du

+ s1

(∑
n≤N

d(n)
ns2

) ∫ N

1
u−s1−11(u) du

− s1

∫ N

1
u−s1−s2−11(u)g(u) du− s1

∫ N

1
u−s1−s2−11(u)2du

− s1s2

∫ N

1
u−s1−11(u)

∫ u

1
v−s2−1g(v) dvdu

− s1s2

∫ N

1
u−s1−11(u)

∫ u

1
v−s2−11(v) dvdu,

which we define as
∑8

j=1 I j,N (s1, s2). We consider each I j (s1, s2) as N →∞. It
is easy to see that

lim
N→∞

I1,N (s1, s2)=−(ζ
2)′(s1+ s2− 1)+ (2γ − 1)ζ 2(s1+ s2− 1).

By elementary calculations, we have

lim
N→∞

I3,N (s1, s2)=
s1

s1− 1
(ζ 2)′(s1+ s2− 1)

− s1

(
1

(s1−1)2
+

2γ − 1
s1− 1

)(
ζ 2(s1+ s2− 1)− ζ 2(s2)

)
.

The terms I j,N (s1, s2) for j=2, 4, 5, 6, 7 can be written in terms of the functions
Y (s), I1(s), I ′1(s) and I2(s). In fact, we have

lim
N→∞

I2,N (s1, s2)= Y (s1+ s2),

lim
N→∞

I4,N (s1, s2)= s1ζ
2(s2)I1(s1+ 1),
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lim
N→∞

I5,N (s1, s2)=−s1
(
−I ′1(s1+ s2)+ (2γ − 1)I1(s1+ s2)

)
,

lim
N→∞

I6,N (s1, s2)=−s1 I2(s1+ s2+ 1),

and

lim
N→∞

I7,N (s1, s2)=−
s1s2

s2− 1
I ′1(s1+ s2)

+ s1s2

(
1

(s2−1)2
+

2γ − 1
s2− 1

)(
I1(s1+ s2)− I1(s1+ 1)

)
.

By Theorem 1 and Lemmas 1 and 2, the terms limN→∞ I j,N (s1, s2) for j=1, . . . , 7
can be continued meromorphically to the region σ1+ σ2 >−1/3.

We treat the term I8,N (s1, s2) with the following lemma.

Lemma 6. Let

I (N )(s1, s2)=

∫ N

1
u−s1−11(u)

∫ N

u
v−s2−11(v) dv du,

and
I (s1, s2)= lim

N→∞
I (N )(s1, s2).

Then I (s1, s2) defines a holomorphic function in the region σ2>
1
4 and σ1+σ2>

1
2 .

Proof. In the region σ2 >
1
4 and σ1+ σ2 >

1
2 ,

I (N )(s1, s2)�

∫ N

1
u−σ1−1

|1(u)|u−σ2+1/4du� 1,

since ∫ b

a
uβ |1(u)| du� aβ+5/4

for a ≤ b and β <−5/4. The lemma follows immediately. �

Now we consider the double integral

JN (s1, s2)=

∫ N

1
u−s1−11(u)

∫ u

1
v−s2−11(v) dv du.

Splitting the innermost integral in JN (s1, s2) as
∫ u

1 =
∫ N

1 −
∫ N

u , we have

JN (s1, s2)=

∫ N

1
u−s1−11(u) du

∫ N

1
u−s2−11(u) du− I (N )(s1, s2).

In σ2 >
1
4 and σ1+ σ2 >

1
2 , we have

J (s1, s2) := lim
N→∞

JN (s1, s2)= I1(s1+ 1)I1(s2+ 1)− I (s1, s2).

Hence, J (s1, s2) is a meromorphic function there by Lemmas 1 and 6.
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On the other hand, by the symmetric property

JN (s1, s2)+ JN (s2, s1)=

∫ N

1
u−s1−11(u)du

∫ N

1
u−s2−11(u) du,

we obtain

(6-2) J (s1, s2)= I1(s1+ 1)I1(s2+ 1)− J (s2, s1).

By applying the above argument on I (s2, s1), we see that J (s1, s2) is also defined
in the region σ1 >

1
4 and σ1+ σ2 >

1
2 . Therefore we conclude that

lim
N→∞

I8,N (s1, s2)=−s1s2 J (s1, s2)

is meromorphic in σ1+ σ2 >
1
2 . This completes the proof of Theorem 4. �

More concretely, the explicit form of the analytic continuation of S(s1, s2) is
given by

(6-3) S(s1, s2)= Y (s1+ s2)− s1 I2(s1+ s2+ 1)− s1s2 I1(s1+ 1)I1(s2+ 1)

−
s1

s2− 1
I ′1(s1+ s2)+ s1

( s2

(s2− 1)2
+

2γ − 1
s2− 1

)
I1(s1+ s2)

+ s1ζ
2(s2)I1(s1+ 1)− s1s2

( 1
(s2− 1)2

+
2γ − 1
s2− 1

)
I1(s1+ 1)

+
1

s1−1
(ζ 2)′(s1+ s2− 1)−

( s1

(s1− 1)2
+

2γ − 1
s1− 1

)
ζ 2(s1+ s2− 1)

+ s1

(
1

(s1−1)2
+

2γ − 1
s1− 1

)
ζ 2(s2)+ s1s2 I (s1, s2).

From this formula, we can determine the locations of singularities of S(s1, s2), and
thus D(s1, s2) by (6-1), but we omit the details of this topic here.

7. An alternative approach to Theorem 1

We now give a proof of Theorem 1 by approaching (3-2) differently. In fact, we
will not use the first result in Lemma 4, which is an identity for

∑
n≤x d(n)1(n).

Let YN (s) and g(x) be defined as above. By (1-1), we have

YN (s)=
∑
n≤N

d(n)
ns

(∑
m≤n

d(m)− g(n)
)

=

(∑
n≤N

d(n)
)(∑

n≤N

d(n)
ns

)
−

∑
m≤N

(
d(m)

∑
n≤m

d(n)
ns

)
+

∑
n≤N

d(n)2

ns −
∑
n≤N

d(n)
ns g(n).
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Further, since∑
m≤N

d(m)
∑
n≤m

d(n)
ns =

∑
m≤N

d(m)
ms (g(m)+1(m))

+ s
∑
m≤N

d(m)
∫ m

1
u−s−1(g(u)+1(u))du

by partial summation, we have, for σ > 5/4,

2YN (s)−
ζ 4(s)
ζ(2s)

=

(∑
n≤N

d(n)
)(∑

n≤N

d(n)
ns

)
− 2

∑
n≤N

d(n)
ns g(n)

− s
∑
m≤N

d(m)
∫ m

1
u−s−1(g(u)+1(u))du+ O(N 1−σ log3 N ).

We now consider the transformation of
∫ N

1 u−s12(u) du. We have by (1-1)∫ N

1
u−s12(u) du =

∫ N

1
u−s1(u)

(∑
n≤u

d(n)− g(u)
)

du

=

∑
n≤N

d(n)
∫ N

n
u−s1(u)du−

∫ N

1
u−s1(u)g(u) du

=

(∫ N

1
u−s1(u) du

)∑
n≤N

d(n)−
∑
n≤N

d(n)
∫ n

1
u−s1(u) du

−

∫ N

1
u−s1(u)g(u) du.

We obtain by this formula, and by applying partial summation to
∑

n≤N d(n)n−s ,∑
n≤N d(n)g(n)n−s , and

∑
n≤N d(n)

∫ n
1 u−s−1g(u) du, that

2YN (s)−
ζ 4(s)
ζ(2s)

− s I2(s+ 1)+ 2I ′1(s)− 4γ I1(s)

=

(
N−s

∑
n≤N

d(n)− 2N−s g(N )
)∑

n≤N

d(n)+ s
∫ N

1
u−s−1g(u)2du

+ 2
∫ N

1
g(u)

(
u−s g′(u)− su−s−1g(u)

)
du+ O(N 5/4−σ log N )

for σ > 5/4. Furthermore, by applying the estimate 1(x) = O(x1/3) and the
formula

2
∫ N

1
u−s g(u)g′(u) du = N−s g(N )2− (2γ − 1)2+ s

∫ N

1
u−s−1g(u)2 du,
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which has been proved by integration by parts, we obtain

2YN (s)−
ζ 4(s)
ζ(2s)

−s I2(s+1)+2I ′1(s)−4γ I1(s)=−(2γ −1)2+O(N 5/4−σ log N )

for σ > 5/4. Thus, as N tends toward infinity, we obtain again (3-2). �
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A CONSTANT RANK THEOREM FOR LEVEL SETS OF
IMMERSED HYPERSURFACES IN Rn+1 WITH PRESCRIBED

MEAN CURVATURE

CHANGQING HU, XI-NAN MA AND QIANZHONG OU

We prove a constant rank theorem on the second fundamental forms of level
sets of immersed hypersurfaces in Rn+1 with prescribed mean curvature.

1. Introduction

Constant rank theorems have been a powerful tool in the study of convex solu-
tions to partial differential equations. Caffarelli and Friedman [1985] first proved
a constant rank theorem on solutions to a class of semilinear elliptic PDEs in two
dimensions and hence proved the strict convexity of the solutions. Singer, Wong,
Yau and Yau explored a similar idea [Singer et al. 1985]. Korevaar and Lewis
[1987] extended Caffarelli and Friedman’s results to the n-dimensional case. In
the last decade, the constant rank theorem has been extended to fully nonlinear
elliptic PDEs [Guan and Ma 2003; Caffarelli et al. 2007; Guan et al. 2006]; these
authors found important applications for it in some geometric problems. For the
convexity of level sets, Korevaar proved a constant rank theorem:

Theorem 1.1 [Korevaar 1990]. Let� be a connected domain in Rn . Let u ∈C4(�)

solve

(1-1) Lu := A
(
1u−

ui u j

|∇u|2
ui j

)
+ B

( ui u j

|∇u|2
ui j

)
= f (u, |∇u|),

where A, B, f are C2 functions of u, and µ := |∇u|. These satisfy the structure
conditions

(i) (
√

A/B )µµ ≥ 0, and

(ii) ( f (u, µ)/Bµ2)µµ ≤ 0.

MSC2000: primary 35J15; secondary 53A10.
Keywords: constant rank theorem, level sets, mean curvature.
Hu was partially supported by NSFC numbers 10871138 and 10871139. Ma and Ou were supported
by NSFC numbers 10671186 and 10871187.
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Suppose that |∇u| 6= 0 and that u has convex level sets {x ∈� | u(x)≤ c}. Then
all the level sets of u have second fundamental forms with (the same) constant rank
throughout �.

The equations in Theorem 1.1 include p-Laplacian equations and mean curva-
ture equations as special cases. In these cases we respectively take

A = µp−2, B = (p− 1)µp−2 and A = 1√
1+µ2

, B = 1
(1+µ2)3/2

.

Korevaar [1990] used this theorem to prove some interesting results on the con-
vexity of the level sets of solutions to elliptic PDEs. Recently, Xu [2008] gener-
alized Theorem 1.1 to the case where the function f in (1-1) also depends on the
coordinate variable x , and accordingly the structure condition (ii) turns into

µ3 f (x, u, 1/µ)
B(u, 1/µ)

is convex in (x, µ).

In this paper, we will prove an analogous result on a class of immersed hyper-
surfaces in Rn+1 with prescribed mean curvature.

Let Mn be a smooth immersed hypersurface in Rn+1, and let X : M→Rn+1 be
the immersion satisfying

(1-2) H =− f (X, N ),

where H and N are respectively the mean curvature and unit normal vectors of Mn

at X , and f is a smooth function in Rn+1
× Rn+1. Let ξ be a fixed unit vector

in Rn+1. Then the height function of Mn corresponding to ξ can be expressed as
u(X)=〈X, ξ〉; here 〈 · , · 〉means the usual Euclidean inner product in Rn+1. Now,
the level set of Mn corresponding to ξ with height c is defined as

(1-3) 6c = {X ∈ Mn
| u(X)= c}.

Suppose u has no critical point on Mn . Then 6c can be considered as a hyper-
surface in the hyperplane 5= {X ∈ Rn+1

| 〈X, ξ〉 = c}.
With the above notations, our constant rank theorem on the level sets of an

immersed hypersurface with prescribed mean curvature can be stated as follows:

Theorem 1.2. Let Mn be an immersed hypersurface in Rn+1 whose mean curva-
ture satisfies (1-2). Assume that the height function u of Mn corresponding to ξ
has no critical point, and that the level sets are all locally convex with respect to
the normal direction −Du, that is, their second fundamental forms are positive
semidefinite. Then the second fundamental forms of all the level sets have (the
same) constant rank, provided f (X, N )= f (X)≥ 0 and the matrix

(1-4) 2 f
∂2 f

∂X A∂X B
− 3

∂ f
∂X A

∂ f
∂X B
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is positive semidefinite, where 1 ≤ A, B ≤ n + 1. In other words, when f is a
positive function, the condition (1-4) simply means that f −1/2 is a concave function
in Rn+1.

Remark 1.3. For the more general case where H = − f (X, N ) as in (1-2), by
(3-28) and (3-29) in Section 3, we still can choose the structure conditions on f
to ensure the result of Theorem 1.2. For example, if f (X, N ) = 〈ξ, N 〉β with
〈ξ, N 〉> 0 on Mn , then the structure condition is β ≥ 1 or β ≤ 0.

Remark 1.4. Throughout, we adapt these conventions: The hypersurface Mn is
orientable. We choose the unit normal vector field N so that it represents the
orientation of Mn . The unit vector field normal to the level set 6c is obtained by
projecting N onto the hyperplane 5= {X ∈ Rn+1

| 〈X, ξ〉 = c}.

When do the solutions of elliptic PDEs have convex level sets? Gabriel [1957]
proved that the level sets of the Green function on a 3-dimensional convex domain
are strictly convex. Lewis [1977] extended Gabriel’s result to p-harmonic functions
in higher dimensions. Caffarelli and Spruck [1982] generalized Lewis’s result to
a class of semilinear elliptic PDEs. For recent progress, see [Colesanti and Salani
2003] and [Cuoghi and Salani 2006]. The constant rank theorem is an important
step for the concrete convexity theorem, since one can use it to prove strict con-
vexity results, as in, for example, [Korevaar 1990]. In practice, one always runs
into difficulty at the critical points of the solution (or height functions in our case).
In some sense our constant rank theorem is only a local and intermediate result.

In Section 2, we will give a formula for the curvatures of the level sets of an
immersed hypersurface in Rn+1. We prove it by the method of moving frames. We
prove our main result, Theorem 1.2, in Section 3 using a calculation similar to the
one in [Xu 2008].

2. Formulas of curvature of level sets

For a C2 function u defined in a n-dimensional domain � in Rn , let κ1, . . . , κn−1

be the principal curvatures of the level sets of u with respect to the normal direction
−Du. Then the k-th curvature of the level sets, denoted by Lk , is the k-th elemen-
tary symmetric function of κ1, . . . , κn−1. Clearly, L1 and Ln−1 are respectively the
mean curvature and Gauss curvature of the level sets. If u has no critical point,
that is, |∇u| 6= 0, then Trudinger [1997] (see also [Gilbarg and Trudinger 1977])
expressed Lk as

(2-1) Lk =
∂σk+1(D2u)

∂ui j
ui u j |∇u|−k−2,

where we use summation convention for repeated indices, and where σk(D2u) is
the k-th elementary symmetric function of the eigenvalues of the Hessian (D2u).
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There is an formula analogous to (2-1) on hypersurfaces in Rn+1:

Proposition 2.1. Let Mn be a smoothly immersed hypersurface in Rn+1. Let u be
its height function and 6c one of its level sets, with respect to a fixed unit vector ξ ,
as given in the last section. Then the k-th curvature of the level set 6c with respect
to −Du is

(2-2) Lk =
∂σk+1(B)
∂hi j

ui u j |∇u|−(k+2).

Here B= (hi j ) is the second fundamental form of Mn , σk(B) is the k-th elementary
symmetric function of the eigenvalues of B, and ui for 1≤ i ≤ n are the first order
covariant derivatives of u computed in any orthonormal frame field on Mn .

Huang [1992] gave the formula (2-2) for n = 2. Here we give a complete proof
by using moving frames. In this section, indices will run from 1 to n − 1 when
lower case and Greek; Latin indices will run from 1 to n when lower case and from
1 to n+ 1 when upper case.

For an orthonormal frame field {X; eA} in Rn+1, we have

(2-3) d X = ωAeA and deA = ωA,BeB,

where {ωA} is the dual frame of {eA}, and {ωA,B} are connection forms. Then the
structure equations read as

(2-4) dωA = ωA,B ∧ωB and dωA,B = ωA,C ∧ωC,B .

If we choose en+1 to be the unit normal vector field N of Mn , then ωn+1 = 0
on Mn , and hence by (2-4)

(2-5) ωn+1,i ∧ωi = 0.

Then Cartan’s lemma implies ωn+1,i = hi jω j and hi j = h j i , where B = (hi j ) is
the second fundamental form of Mn .

Proof of Proposition 2.1. First, we check that the right side of (2-2) is independent
of the choice of the frame fields {X; ei } on Mn . Then we can just prove (2-2) in a
special frame field.

Suppose {X; ēi } is another frame field on Mn . Then there is an orthogonal
transformation T such that (ē1, . . . , ēn)= (e1, . . . , en)T . Then

(2-6) (u1, . . . , un)= (u1, . . . , un)T,

where ∇u = ui ei = ui ēi is the gradient of u. Also, for the dual frame field and the
connection forms we have

(ω1, . . . , ωn)= (ω1, . . . , ωn)T,

(ω1,n+1, . . . , ωn,n+1)= (ω1,n+1, . . . , ωn,n+1)T .
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Furthermore, for the second fundamental form we have

(2-7) B = T−1 BT .

Obviously σk(B) and |∇u| are invariant under the transformation T . Then the
following equalities show that the right side of (2-2) is independent of the choice
of {e1, . . . , en}:

(2-8)
∂σk(B)
∂hi j

ui u j =
∂σk(B)
∂ h̄ml

∂ h̄ml

∂hi j
ui u j =

∂σk(B)
∂ h̄ml

∂(T mph pq Tql)

∂hi j
ui u j

=
∂σk(B)
∂ h̄ml

T mi T jlui u j =
∂σk(B)
∂ h̄ml

Timui T jlu j =
∂σk(B)
∂ h̄ml

umul .

Now we adapt the frame field above so that along the level set 6c, the eα are its
tangential vectors. Furthermore, we choose another frame field ẽA in Rn+1 so that
ẽn+1 = ξ and ẽα = eα, and so that ẽn lies in the hyperplane 5 and is normal to 6c

with the same direction of the projection of en+1 = N on 5. With respect to this
frame field, the structure equations of 6c are

(2-9) dω̃i = ω̃i, j ∧ ω̃ j and dω̃i j = ω̃i,l ∧ ω̃l, j .

On 6c, we have ω̃n = 0, which implies

(2-10) ω̃n,α = h̃αβω̃β and h̃αβ = h̃βα,

where h̃αβ is the second fundamental form of 6c in 5 (with respect to the unit
normal ẽn).

Clearly en, en+1 and ẽn, ẽn+1 are in the same 2-plane perpendicular to the eα.
Let φ be the angle between en and ẽn . Then we have

(2-11) ẽn = encosφ+ en+1 sinφ and ẽn+1 =−ẽnsinφ+ en+1 cosφ.

Accordingly,

(2-12) ω̃n=ωn cosφ+ωn+1 sinφ, ω̃n+1=−ωn sinφ+ωn+1 cosφ, ω̃α=ωα.

Taking the exterior derivative of (2-12), and using (2-4) and (2-12) again, we
get

(2-13)
dω̃n = (dφ+ωn,n+1)∧ ω̃n+1+ ((cosφ)ωn,α + (sinφ)ωn+1,n)∧ωα,

dω̃n+1 = (−dφ+ωn+1,n)∧ ω̃n + ((cosφ)ωn+1,α − (sinφ)ωn,α)∧ωα.

Notice that ω̃n = ω̃n+1 = 0 on 6c. Comparing (2-13) with (2-9), we have

(2-14)
ω̃n,α = (cosφ)ωn,α + (sinφ)ωn+1,α,

ω̃n+1,α = (− sinφ)ωn,α + (cosφ)ωn+1,α.
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On the other hand, 〈ẽα, ξ〉 = 0 on 6c, and since d(〈ẽα, ξ〉) = 〈ω̃α,AẽA, ξ〉, we
have ω̃α,n+1 = 0. This together with (2-14) implies

(2-15)
ω̃n,α =

cos2 φ

sinφ
ωn+1,α + (sinφ)ωn+1,α

=
1

sinφ
ωn+1,α =

1
sinφ

(hαβωβ + hαnωn).

Combining this with (2-10) gives

(2-16) h̃αβ =
1

sinφ
hαβ and hα,n = 0.

From the definition of the height function u, we can see ui = ei (〈X, ξ〉)=〈ei , ξ〉;
in particular, un = 〈en, ξ〉. Note that ẽn+1= ξ , hence the second equation of (2-11)
implies un =− sinφ and 〈ξ, en+1〉 = cosφ. By the decomposition

ξ =

n∑
1

〈ξ, ei 〉ei +〈ξ, en+1〉en+1

we deduce that 1 = |∇u|2+ cos2 φ and therefore |∇u| = ± sinφ. With en chosen
suitably we may assume sinφ > 0. Then (2-16) becomes

(2-17) h̃αβ =
1
|∇u|

hαβ and hαn = 0.

From this one can easily see that

(2-18)
Lk = σk(h̃αβ)=

1
|∇u|k

σk(hαβ)

=
1

|∇u|k+2

∂σk+1(B)
∂hnn

unun =
∂σk+1(B)
∂hi j

ui u j |∇u|−(k+2),

where we have used |un| = |∇u|. �

3. Proof of Theorem 1.2

We adapt the notations in Section 2, and collect these formulas for convenience:

(3-1)

X i = ei ,

X i j =−hi j en+1 (Gauss formula),

en+1,i = hi j e j (Weingarten formula),

hi jk = hik j (Codazzi equation),

Ri jkl = hikh jl − hilh jk (Gauss equation),

hi jkl = hi jlk + him Rmjkl + h jm Rmikl,
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and for the smooth function u on Mn we also have the Ricci identity

ui jk = uik j + um Rmi jk,

where Ri jkl is the Riemann curvature tensor, and as for the rest of this section,
repeated indices are summed from 1 to n, unless otherwise stated.

Proof of Theorem 1.2. Suppose the second fundamental forms of the level sets
of Mn take the minimum rank k with k ≤ n− 2 at a point P ∈ Mn . We will treat
the case k > 0 first, and then show how to modify the argument for the case k = 0.
With the assumption that the level sets are all locally convex, we find easily that

(3-2)
Lr (P)= 0 for all r > k,

Lr (P) > 0 for all r ≤ k,

and moreover

(3-3)

Z := {X ∈ Mn
| the second fundamental form

of the level sets of Mn has rank k at X}

= {X ∈ Mn
| Lk+1(X)= 0}.

Obviously Z is a closed set in Mn . If we can show that Z is also open in Mn —
that is, that there is a neighborhood UP of P in Mn such that Lk+1 ≡ 0 on UP —
then Z = Mn , which is the result in the theorem.

Now Lk+1(P) = 0 = minX∈Mn Lk+1(X), so by the strong maximum principle,
we need only to show that

(3-4) 1Lk+1(X)≤ 0 mod {Lk+1(X),∇Lk+1(X)} in UP ,

where we modify the terms of Lk+1 and its first derivatives, coefficients are locally
bounded, and 1 is the Beltrami–Laplace operator on Mn .

For the rest of this section, define

W := (hi j ) with i, j ≤ n− 1, L := Lk+1, F := σk+2(B),

and

F i j
:=

∂F
∂hi j

, F i j,rs
:=

∂2 F
∂hi j∂hrs

, F i j,rs,pq
:=

∂3 F
∂hi j∂hrs∂h pq

.

Hence, by (2-2),

(3-5) |∇u|k+3L = F i j ui u j .

Taking the covariant derivative of this, we get

(3-6)
(|∇u|k+3L)α = |∇u|k+3Lα + (|∇u|k+3)αL ,

(F i j ui u j )α = F i j,rshrsαui u j + 2F i j uiαu j .
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Taking the covariant derivative again, we get

(3-7)

(|∇u|k+3L)αα = |∇u|k+3Lαα + 2(|∇u|k+3)αLα + (|∇u|k+3)ααL ,

(F i j ui u j )αα = F i j,rs,pqh pqαhrsαui u j + F i j,rshrsααui u j

+ 4F i j,rshrsαuiαu j + 2F i j uiααu j + 2F i j uiαu jα.

For a fixed point X0 in UP , choose a frame {e1, . . . , en} such that ui through un−1

vanish, |un| = |∇u|> 0, the form W is diagonal, and h11 ≥ h22 ≥ · · · ≥ hn−1,n−1.
Then by (3-2) we see that with UP small enough

(3-8)
hrr (X0)= 0 mod {L(X0),∇L(X0)} for all r > k,

hrr (X0) > ε > 0 mod {L(X0),∇L(X0)} for all r ≤ k,

where ε is a positive sufficiently small number (maybe depending on UP ).
In the following, all the calculations will be done at X0, and the terms of L(X0)

and ∇L(X0) will be dropped, that is, all the equalities or inequalities should be
understood mod{L(X0),∇L(X0)}.

Denote G := {h11, . . . , hkk} and B := {hk+1,k+1, . . . , hn−1,n−1}. Use the same
symbols for G := {1, . . . , k} and B := {k+1, . . . , n−1} (it won’t cause confusion).

Now, by L(P)= 0=minX∈Mn L(X) we get

(3-9) 0= (|∇u|k+3L)α = (F i j ui u j )α = F i j,rshrsαui u j + 2F i j uiαu j

= u2
n Fnn,rr hrrα + 2un F inuiα

= u2
nσk(G)

∑
r∈B hrrα + 2un Fnnunα + 2un

∑n−1
i=1 F inuiα

= u2
nσk(G)

∑
r∈B hrrα − 2unσk(G)

∑
i∈B hni uiα.

Clearly

(3-10)

ui = 〈X, ξ〉i = 〈X i , ξ〉 = 〈ei , ξ〉,

ui j = 〈X i j , ξ〉 = −〈hi j N , ξ〉 := hi jw,

where w =−〈N , ξ〉 = ±
√

1− |∇u|2.
Substituting (3-10) into (3-9), using (3-8), and noting that W is diagonal, we

deduce

(3-11)

∑
i∈B hi iα = 0 for all α < n,

un
∑

i∈B hi in = 2
∑

i∈B h2
niw.

By (3-7) we have

(|∇u|k+3L)αα = |∇u|k+3Lαα + 2(|∇u|k+3)αLα + (|∇u|k+3)ααL = (F i j ui u j )αα.
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That is,

(3-12) |∇u|k+3Lαα = F i j,rs,pqh pqαhrsαui u j + F i j,rshrsααui u j

+ 4F i j,rshrsαuiαu j + 2F i j uiααu j + 2F i j uiαu jα

= u2
n Fnn,rs,pqh pqαhrsα + u2

n Fnn,rshrsαα

+ 4un F in,rshrsαuiα + 2un F inuiαα + 2F i j uiαu jα,

which we decompose as I+ II+ III+ IV , where

(3-13)
I := u2

n Fnn,rs,pqh pqαhrsα, II := 4un F in,rshrsαuiα,

III := u2
n Fnn,rshrsαα + 2un F inuiαα, IV := 2F i j uiαu jα.

Next we will compute the above terms step by step. First

(3-14)
I := u2

n Fnn,rs,pqh pqαhrsα

= u2
n Fnn,rr,sshrrαhssα + u2

n Fnn,rs,sr hrsαhsrα=: I1+ I2,

and

(3-15)

I1 := u2
n Fnn,rr,sshrrαhssα

= 2u2
n

∑
r∈G,s∈B

Fnn,rr,sshrrαhssα + u2
n

∑
r,s∈B

Fnn,rr,sshrrαhssα

= 2u2
n

∑
r∈G,s∈B

σk−1(G |r)hrrαhssα + u2
nσk−1(G)

∑
r,s∈B,r 6=s

hrrαhssα,

where here and below we use the notation σk−1(G |r) := σk−1(G\{hrr }) and the
convention σ0 = 1. Substituting (3-11) into (3-15) yields

I1 = 2u2
n

∑
r∈G,s∈B

σk−1(G |r)hrrαhssα + u2
nσk−1(G)

∑
r∈B

hrrα

(∑
s∈B

hssα − hrrα

)

= 4wun

∑
s∈B

h2
sn

∑
r∈G

σk−1(G |r)hrrn − u2
nσk−1(G)

n∑
α=1

∑
r∈B

h2
rrα

+ 4w2σk−1(G)
(∑

s∈B

h2
sn

)2
.

For the remaining term in (3-14), we have

I2 = 2u2
n

∑
r∈G,s∈B

Fnn,rs,sr hrsαhsrα + u2
n

∑
r,s∈B

Fnn,rs,sr hrsαhsrα

=−2u2
n

n∑
α=1

∑
r∈G,s∈B

σk−1(G |r)h2
rsα − u2

nσk−1(G)
n∑
α=1

∑
r,s∈B,r 6=s

h2
rsα.
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So for the first term in (3-13) we have

(3-16) I = 4wun

∑
i∈G, j∈B

σk−1(G |i)hi inh2
jn − 2u2

n

n∑
α=1

∑
i∈G, j∈B

σk−1(G |i)h2
i jα

+ 4w2σk−1(G)
(∑

j∈B

h2
jn

)2
− u2

nσk−1(G)
n∑
α=1

∑
i, j∈B

h2
i jα.

To compute the second term in (3-13), first we have by using (3-10)

(3-17) II = 4wun F in,rshrsαhiα

= 4wun Fnn,rshrsαhnα + 4wun

n−1∑
i=1

F in,ni hniαhiα

+ 4wun

n−1∑
i, j=1

F in, j i h j iαhiα + 4wun

n−1∑
i=1

F in,rr hrrαhiα.

We decompose the last four terms as II1+ II2+ II3+ II4. By (3-11), the first can
be treated as

II1 = 4wun Fnn,rr hrrαhnα = 4wunσk(G)
∑
r∈B

hrrαhnα

= 4wunσk(G)
∑
r∈B

hrrnhnn = 8w2σk(G)hnn

∑
r∈B

h2
rn.

For the second and the third terms, straightforward calculations show that

(3-18) II2 =−4wunσk(G)
∑
i∈B

hniαhiα =−4wunσk(G)
∑
i∈B

hnni hin,

and

(3-19) II3 = 4wun

∑
i, j∈B

F in, j i h j iαhiα

+ 4wun

∑
i∈G, j∈B

F in, j i h j iαhiα + 4wun

∑
j∈G,i∈B

F in, j i h j iαhiα

= 4wunσk−1(G)
∑

i, j∈B,i 6= j

h jnhi jnhin + 4wun

∑
i∈G, j∈B

σk−1(G |i)hnj h j iαhiα

+ 4wun

∑
i∈G, j∈B

σk−1(G |i)hni hi jnh jn.
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Again by (3-11), the fourth term can be treated as

II4 = 4wun

∑
i,r∈B

F in,rr hrrαhiα + 4wun

∑
i∈G,r∈B

F in,rr hrrαhiα

+ 4wun

∑
r∈G,i∈B

F in,rr hrrαhiα

=−4wunσk−1(G)
∑

i,r∈B,i 6=r

hinhrrαhiα − 4wun

∑
i∈G,r∈B

σk−1(G |i)hni hrrαhiα

− 4wun

∑
r∈G,i∈B

σk−1(G |r)hni hrrαhiα

=−4wunσk−1(G)
∑

i,r∈B,i 6=r

h2
inhrrn − 4wun

∑
i∈G,r∈B

σk−1(G |i)hni hrri hi i

− 4wun

∑
i∈G,r∈B

σk−1(G |i)h2
ni hrrn − 4wun

∑
r∈G,i∈B

σk−1(G |r)h2
ni hrrn

=−4wunσk−1(G)
∑
i∈B

h2
in

(∑
r∈B

hrrn − hi in

)
− 4wun

∑
i∈G

σk−1(G |i)hi i hni

∑
r∈B

hrri − 4wun

∑
i∈G

σk−1(G |i)h2
ni

∑
r∈B

hrrn

− 4wun

∑
r∈G,i∈B

σk−1(G |r)h2
ni hrrn

= 4wunσk−1(G)
∑
i∈B

h2
inhi in − 8w2σk−1(G)

(∑
i∈B

h2
in

)2

− 8w2
∑

i∈G,r∈B

σk−1(G |i)h2
inh2

rn − 4wun

∑
i∈B

h2
ni

∑
r∈G

σk−1(G |r)hrrn.

It follows that

(3-20) II = 8w2σk(G)hnn

∑
j∈B

h2
nj − 4wunσk(G)

∑
j∈B

hnnj hnj

− 8w2
∑

i∈G, j∈B

σk−1(G |i)h2
inh2

jn − 4wun

∑
i∈G, j∈B

σk−1(G |i)h2
nj hi in

+ 4wun

∑
i∈G, j∈B

σk−1(G |i)hiαh jnhi jα + 4wun

∑
i∈G, j∈B

σk−1(G |i)hni hnj hi jn

+ 4wunσk−1(G)
∑

i, j∈B,i 6= j

hni hnj hi jn + 4wunσk−1(G)
∑
j∈B

h2
nj h j jn

− 8w2σk−1(G)
(∑

j∈B

h2
nj

)2
.
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Now we deal with the third term in (3-13):

(3-21)

III := u2
n Fnn,rshrsαα + 2un F inuiαα

= u2
n Fnn,rr hrrαα + 2un Fnnunαα + 2un

n−1∑
i=1

F inuiαα.

We decompose the last three terms as III1+III2+III3. Using the exchange formula
in (3-1), we can calculate

III1 = u2
nσk(G)

∑
r∈B

hrrαα

= u2
nσk(G)

∑
r∈B

(hrααr + hrm Rmαrα + hαm Rmrrα)

= u2
nσk(G)

∑
r∈B

hααrr

+ u2
nσk(G)

∑
r∈B

(hrm(hmr hαα − hmαhαr )+ hαm(hmr hrα − hmαhrr ))

= u2
nσk(G)

∑
r∈B

Hrr + u2
nσk(G)

∑
r∈B

(Hhrmhmr − hrr hmαhαm)

= u2
nσk(G)

∑
j∈B

H j j + u2
n Hσk(G)

∑
j∈B

h2
jn,

and III2 = 2unσk+1(W )unαα = 0. For the third term, we have

III3 =−2unσk(G)
∑
i∈B

hinuiαα

=−2unσk(G)
∑
i∈B

hin(uααi + um Rαmαi )

=−2unσk(G)
∑
i∈B

hin(Hw)i − 2unσk(G)
∑
i∈B

hinum(hααhmi − hαi hmα)

=−2unσk(G)
∑
i∈B

hin(Hiw− Hhi j u j )

− 2u2
nσk(G)

∑
i∈B

h2
in H + 2u2

nσk(G)
∑
i∈B

h2
inhnn

=−2wunσk(G)
∑
j∈B

hin H j + 2u2
nσk(G)hnn

∑
j∈B

h2
jn.

We have used in the calculations above that

wi =−〈N , ξ〉i =−〈Ni , ξ〉 = −〈hi j e j , ξ〉 = −hi j u j .
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Substituting our results for III1, III2, and III3 into (3-21) yields

(3-22) III = u2
nσk(G)

∑
j∈B

H j j + u2
nσk(G)H

∑
j∈B

h2
jn

− 2wunσk(G)
∑
j∈B

h jn H j + 2u2
nσk(G)hnn

∑
j∈B

h2
jn.

We decompose the final term in (3-13) as IV1+ IV2+ IV3+ IV4 by

IV := 2F i j uiαu jα

= 2Fnnunαunα + 4
n−1∑
i=1

F inuiαunα + 2
n−1∑
i=1

F i i uiαuiα + 2
n−1∑

i, j=1
i 6= j

F i j uiαu jα

It follows that IV1 = 2Fnnunαunα = 2σk+1(W )unαunα = 0, and

(3-23) IV2 =−4
n−1∑
i=1

σk(W |i)hinuiαunα =−4σk(G)
∑
i∈B

hinuiαunα

=−4w2σk(G)
∑
i∈B

h2
inhnn.

For the last two terms, we have

IV3 = 2
∑
i∈G

F i i uiαuiα + 2
∑
i∈B

F i i uiαuiα

=−2
∑

i∈G, j∈B

σk−1(G |i)h2
jnuiαuiα + 2σk(G)

∑
i∈B

hnnuiαuiα

− 2
∑

i, j∈B,i 6= j

σk(G)h2
jnuiαuiα − 2

∑
j∈G,i∈B

σk−1(G | j)h2
jnuiαuiα

=−2w2
∑

i∈G, j∈B

σk−1(G |i)h2
jnh2

i i − 2w2
∑

i∈G, j∈B

σk−1(G |i)h2
jnh2

in

+ 2w2σk(G)
∑
i∈B

hnnh2
in − 2w2σk−1(G)

∑
i, j∈B,i 6= j

h2
inh2

jn

− 2w2
∑

j∈G,i∈B

σk−1(G | j)h2
jnh2

in

=−2w2
∑

i∈G, j∈B

σk−1(G |i)h2
i i h

2
jn − 4w2

∑
i∈G, j∈B

σk−1(G |i)h2
inh2

jn

+ 2w2σk(G)
∑
i∈B

hnnh2
in − 2w2σk−1(G)

∑
i, j∈B,i 6= j

h2
inh2

jn,



268 CHANGQING HU, XI-NAN MA AND QIANZHONG OU

and

IV4 = 2
∑

i, j∈G,i 6= j

F i j uiαu jα + 4
∑

i∈G, j∈B

F i j uiαu jα + 2
∑

i, j∈B,i 6= j

F i j uiαu jα

= 0+ 4
∑

i∈G, j∈B

σk−1(G |i)hinh jnuiαu jα + 2σk−1(G)
∑

i, j∈B,i 6= j

hinh jnuiαu jα

= 4w2
∑

i∈G, j∈B

σk−1(G |i)h2
inh2

jn + 2w2σk−1(G)
∑

i, j∈B,i 6= j

h2
inh2

jn.

Our final result for IV is then

(3-24) IV =−2w2σk(G)hnn

∑
j∈B

h2
jn − 2w2

∑
i∈G, j∈B

σk−1(G |i)h2
i i h

2
jn.

Combining (3-16), (3-20), (3-22) and (3-24) with (3-12) we have

(3-25) |∇u|k+3Lαα := I+ II+ III+ IV := A+ B+C,

where

C := σk−1(G)
(

4wun

∑
i, j∈B
i 6= j

hni hnj hi jn + 4wun

∑
j∈B

h2
nj h j jn

− 4w2
(∑

j∈B

h2
nj

)2
− u2

n

n∑
α=1

∑
i, j∈B

h2
i jα

)

=−σk−1(G)
n∑
α=1

∑
i, j∈B

(unhi jα − 2whnj hiα)
2,

and

A := σk(G)
(

u2
n

∑
j∈B

H j j − 2wun

∑
j∈B

h jn H j − 4wun

∑
j∈B

hnnj hnj

+ u2
n H

∑
j∈B

h2
jn + 2u2

nhnn

∑
j∈B

h2
jn + 6w2hnn

∑
j∈B

h2
nj

)

= σk(G)
(

u2
n

∑
j∈B

H j j − 6wun

∑
j∈B

h jn H j + (3u2
n + 6w2)H

∑
j∈B

h2
jn

)
+ σk(G)

(
−(6w2

+ 2u2
n)

∑
i∈G, j∈B

hi i h2
jn + 4wun

∑
i∈G, j∈B

hi i j hnj

)
.
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The summand B is grouped in terms of σk−1(G |i). We decompose the last two
terms as A1+ A2. It follows that

(3-26) B+ A2 =

n∑
α=1

∑
i∈G, j∈B

σk−1(G |i)(−8w2h2
iαh2

jn + 8wunhiαh jnhi jα

− 2u2
nh2

i jα − 2u2
nh2

i i h
2
jn)

=−2
n∑
α=1

∑
i∈G, j∈B

σk−1(G |i)(unhi jα − 2whiαh jn)
2

− 2u2
nσk(G)σ1(G)

∑
j∈B

h2
jn.

Combining (3-25) with (3-26), we finally get

(3-27) |∇u|k+3Lαα = σk(G)
(

u2
n

∑
j∈B

H j j − 6wun

∑
j∈B

h jn H j

+ (3u2
n + 6w2)H

∑
j∈B

h2
jn

)
− 2

n∑
α=1

∑
i∈G, j∈B

σk−1(G |i)(unhi jα

− 2whiαh jn)
2
− 2u2

nσk(G)σ1(G)
∑
j∈B

h2
jn

− σk−1(G)
n∑
α=1

∑
i, j∈B

(unhi jα − 2whnj hiα)
2.

Then, for H =− f (X, N ), the structure conditions on f is

(3-28) −u2
n f j j + 6wunhnj f j − (6− 3u2

n) f h2
nj ≤ 0 for each j ∈ B,

where we have used w2
+ u2

n = 1. Now we can use the following formulas to get
the structure condition on f . Following Guan, Lin, and Ma [Guan et al. 2006], we
have for each i ∈ {1, 2, . . . , n}

(3-29)

fi =

n+1∑
A=1

fX A eA
i + fen+1(en+1)i ,

fi i =

n+1∑
A,C=1

fX A XC eA
i eC

i +

n+1∑
A=1

fX A X A
ii + 2

n+1∑
A=1

fX Aen+1eA
i (en+1)i

+ fen+1,en+1(en+1)i (en+1)i + fen+1(en+1)i i .

For example, if f (X, N )= f (X), then f satisfies

(3-30) 3(1− u2
n) f 2

j ≤ (2− u2
n) f f j j
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and f ≥ 0. Since 0< u2
n ≤ 1, we reduce the structure conditions on f to

(3-31) f ≥ 0 and 3 f 2
j ≤ 2 f f j j for all j ∈ B.

So the structure conditions is f ≥ 0 and the matrix

2 f
∂2 f

∂X A∂X B
− 3

∂ f
∂X A

∂ f
∂X B

is positive semidefinite, where 1≤ A, B≤n+1. Clearly (3-27) implies (3-4) under
these conditions, which proves the case in which k > 0.

In case k = 0, only A1 appears in (3-25), so this obviously finishes the proof of
Theorem 1.2. �
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SYMPLECTIC SUPERCUSPIDAL REPRESENTATIONS OF
GL(2n) OVER p-ADIC FIELDS

DIHUA JIANG, CHUFENG NIEN AND YUJUN QIN

This is part two of the authors’ work on supercuspidal representations of
GL(2n) over p-adic fields. We consider the complete relations among the
local theta correspondence, local Langlands transfer, and the local descent
attached to a given irreducible symplectic supercuspidal representation of
p-adic GL2n. This is the natural extension of the work of Ginzburg, Rallis
and Soudry and of Jiang and Soudry on the local descents and the local
Langlands transfers. The approach undertaken in this paper is purely local.
A mixed approach with both local and global methods, which works for
more general classical groups, has been considered by Jiang and Soudry.

1. Introduction

Let F be a p-adic local field of characteristic zero. Let τ be an irreducible unitary
supercuspidal representation of GL2n(F). By the local Langlands conjecture for
GL2n(F), which is now a theorem of Harris and Taylor [2001] and of Henniart
[2000], there exists an irreducible admissible 2n-dimensional representation φ of
the local Weil group WF, that is, the local Langlands parameter

φ :WF→ GL2n(C),

corresponding to τ with a set of required conditions. We say that τ is of symplectic
type if the image φ(WF) is contained in the symplectic subgroup Sp2n(C) of the
complex dual group GL2n(C) of GL2n(F).

Because of their deep connection with Galois representations, symplectic su-
percuspidal representations (or more importantly cuspidal automorphic representa-
tions) have recently received much attention; see for instance [Ginzburg et al. 2004;
Chenevier and Clozel 2009]. The symplectic irreducible unitary supercuspidal
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representations of GL2n(F) were characterized in [Shahidi 1990; 1992; Jacquet
and Rallis 1996; Ginzburg et al. 1999; Jiang and Soudry 2003; 2004; Jiang and
Qin 2007; Jiang et al. 2008] and were discussed in detail in [Jiang et al. 2008, Sec-
tion 5]. We state these results as follows; the theorem’s notation and terminology
will explained in Section 2.

Theorem 1.1. Suppose τ is an irreducible unitary supercuspidal representation of
GL2n(F). Then the following are equivalent.

(1) τ is of symplectic type.

(2) The local exterior square L-factor L(s, τ,32) has a pole at s = 0.

(3) The local exterior square γ-factor γ(s, τ,32, ψ) has a pole at s = 1.

(4) τ has a nonzero Shalika model.

(5) The unitarily induced representation ISO4n (s, τ ) of SO4n(F) is reducible at
s = 1. In this case, ISO4n (1, τ ) has the unique Langlands quotient LSO4n (1, τ ),
which has a nonzero generalized Shalika model.

(6) τ is a local Langlands functorial transfer from SO2n+1(F).

(7) τ has a nonzero linear model, that is, a GLn(F)× GLn(F)-invariant func-
tional.

(8) The unitarily induced representation ISp4n (s, τ ) of Sp4n(F) is reducible at
s = 1/2, and ISp4n (1/2, τ ) has the unique Langlands quotient LSp4n (1/2, τ ),
which has a nonzero symplectic linear model, that is, a Sp2n(F)× Sp2n(F)-
invariant functional.

(9) τ is a local Langlands functorial ψ-transfer from S̃p2n(F).

If one of the above holds for τ , then τ is self-dual.

The local Langlands functorial ψ-transfer from an irreducible ψ-generic super-
cuspidal representation π̃ of S̃p2n(F) to the irreducible supercuspidal representa-
tion τ of GL2n(F) is given by the [Ginzburg et al. 1999, corollary of Section 1.5].
The local exterior square L-function and gamma factor are given by the Shahidi
method.

The equivalence of the characterizations in Theorem 1.1 can be explained by
Figure 1. The complex dual groups of SO2n+1(F) and the double metaplectic
cover S̃p2n(F) of Sp2n(F) are the same, namely, Sp2n(C). In Figure 1, the map
θc is the local theta correspondence for the reductive dual pairs (SO4n,Sp4n) and
(SO2n+1, S̃p2n). The map G-G is the local Gelfand–Graev coefficient that takes
representations from SO4n to SO2n+1. The map F-J is the local Fourier–Jacobi
coefficient that takes representations from Sp4n to S̃p2n . The map Lq is the com-
position of the parabolic induction from the standard parabolic subgroups with the
Levi subgroup isomorphic to GL2n in SO4n and Sp4n , and that takes the unique
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SO4n

G-G

��

oo θc // Sp4n

F-J

��

(A)

(B) GL2n

Lq

cc

Lq

<<

(C)

(D)

SO2n+1

Lt

<<

oo
θc

// S̃p2n

Lt

aa

Diagram 1

Langlands quotient from the induced representations of SO4n and Sp4n , respec-
tively. It is clear that G-G ◦ Lq and F-J ◦ Lq are the local descents from GL2n to
SO2n+1 and S̃p2n , respectively, in the sense of Ginzburg, Rallis and Soudry. Finally
the map Lt is the local Langlands functorial transfer from SO2n+1 to GL2n and from
S̃p2n to GL2n .

For a given irreducible unitary symplectic supercuspidal representation τ of
GL2n(F), the maps in Figure 1 can be realized as in Figure 2, where notation
is as follows. First, σ is an irreducible generic supercuspidal representation of
SO2n+1(F), which lifts to τ by the local Langlands functorial transfer from SO2n+1

to GL2n , and π̃ is an irreducibleψ-generic supercuspidal representation of S̃p2n(F),

LSO4n (1, τ )

G-G

��

oo θc // LSp4n (1/2, τ )

F-J

��

(A)

(B) τ

Lq

cc

Lq

::

(C)

(D)

σ

Lt

;;

oo
θc

// π̃

Lt

dd

Diagram 2
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which lifts to τ by the local Langlands functorialψ-transfer from S̃p2n(F) to GL2n .
Consider the maximal parabolic subgroup P of SO4n with Levi subgroup GL2n .
Then the unitarily parabolic induction ISO4n (1, τ ) has a unique Langlands quo-
tient LSO4n (1, τ ), and similarly the unitarily parabolic induction ISp4n (1/2, τ ) has
a unique Langlands quotient LSp4n (1/2, τ ). Finally, the local Gelfand–Graev coef-
ficient takes LSO4n (1, τ ) from SO4n(F) back to SO2n+1(F) and the local Fourier–
Jacobi coefficient takes LSp4n (1/2, τ ) from Sp4n(F) back to S̃p2n(F), respectively.
Detailed discussion of these maps is found in Section 2.

Theorem 1.2. For an irreducible unitary symplectic supercuspidal representation
τ of GL2n(F), Figure 2 is commutative.

Now we explain the relation between Theorem 1.1 and Theorem 1.2, or the
commutative diagrams Figure 1 and Figure 2.

Jiang and Soudry [2003] proved that for a given irreducible unitary symplectic
supercuspidal representation τ of GL2n(F), there exists uniquely an irreducible
generic supercuspidal representation σ of SO2n+1(F) and an irreducible ψ-generic
supercuspidal representation π̃ of S̃p2n(F), such that the subdiagram (D) is com-
mutative. The local Langlands functorial transfer property for τ is equivalent to
the existence of a pole at s = 0 of the local exterior square L-factor L(s, τ,32),
or equivalently by definition a pole at s = 1 of the local exterior square γ-factor
γ(s, τ,32, ψ). One very interesting point is the characterization in terms of the
existence of a nonzero Shalika model (or functional) or of a nonzero linear model
(or functional), following the idea of relative trace formula approach to the global
Langlands functorial transfers. It was proved in [Jiang et al. 2008] that for an
irreducible unitary supercuspidal representation τ of GL2n(F), the existence of a
nonzero Shalika model for τ is equivalent to the existence of a nonzero linear model
for τ , although this result had been expected for a while. Jacquet and Rallis [1996]
proved that the existence of a nonzero Shalika model for τ implies the existence
of a nonzero linear model for τ .

For an irreducible unitary supercuspidal representation τ of GL2n(F), why does
the existence of a nonzero linear model for τ determine the local Langlands functo-
rial transfer from S̃p2n(F) to GL2n , while the existence of a nonzero Shalika model
for τ determines the local Langlands functorial transfer from SO2n+1 to GL2n? To
answer this, Ginzburg, Rallis, and Soudry [Ginzburg et al. 1999] showed that if an
irreducible unitary supercuspidal representation τ of GL2n(F) has a nonzero linear
model, that is, a nonzero GLn(F)×GLn(F)-invariant functional, then the unique
Langlands quotient LSp4n (1/2, τ ) of the unitarily parabolic induction ISp4n (1/2, τ )
(which is reducible) has a nonzero symplectic linear model, that is, a nonzero
Sp2n(F)×Sp2n(F)-invariant functional. Based on the existence of a nonzero sym-
plectic linear model for LSp4n (1/2, τ ), they show that the ψ-local descent (the
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Fourier–Jacobi ψ-functor in this case) yields π̃ back to S̃p2n(F). This proves that
the subdiagram (C) is commutative.

The local descent τ 7→ σ from GL2n(F) to SO2n+1(F) was first obtained in
[Jiang and Soudry 2003] by combining the subdiagrams (C) and (D) and by using
the local converse theorem. More recently, Jiang and Soudry (see [Soudry 2008])
obtained the local descent τ 7→σ from GL2n(F) to SO2n+1(F) via the global theory
of the automorphic descent [Ginzburg et al. 2001]. Their method works for other
classical groups as well.

In [Jiang and Qin 2007; Jiang et al. 2008], we began the task of establishing
the local descent τ 7→ σ from GL2n(F) to SO2n+1(F) by using the existence of
a nonzero Shalika model for τ of GL2n(F) and of a nonzero generalized Shalika
model for the Langlands quotient LSO4n (1, τ ) of SO4n(F). We proved by a purely
local argument in [Jiang et al. 2008, Theorem 3.1] that for an irreducible unitary
supercuspidal representation τ of GL2n(F)with a nonzero Shalika model, the local
Gelfand–Graev coefficient (a special type of twisted Jacquet functor) of the Lang-
lands quotient LSO4n (1, τ ) of SO4n(F), which is a representation of SO2r+1(F),
vanishes for all r < n. Here, again using a purely local argument, we show
that for an irreducible unitary supercuspidal representation τ of GL2n(F) with a
nonzero Shalika model, the local Gelfand–Graev coefficient of the Langlands quo-
tient LSO4n (1, τ ) of SO4n(F) to SO2n+1(F) is an irreducible generic supercuspidal
representation of SO2n+1(F); this, Theorem 2.5, is our main result. The proof idea
was suggested by the global argument as in [Ginzburg et al. 2001]. Our proof goes
similarly to the case of symplectic linear models in [Ginzburg et al. 1999], but is
essentially based on the existence and uniqueness of a generalized Shalika model
for the Langlands quotient LSO4n (1, τ ) of SO4n(F). The technical details are of
independent interest, and are found in Sections 3, 4 and 5.

One fact that needs to be shown here is that the local Gelfand–Graev coeffi-
cient on SO2n+1(F) from LSO4n (1, τ ) of SO4n(F) lifts to τ via the local Langlands
functorial transfer. In [Jiang and Soudry 2003; Soudry 2008], a global argument
is used to show that this is the case. However, one would like to prove this by
a purely local argument. One way to do this is to calculate explicitly the local
Rankin–Selberg integral for the tensor product L-functions for SO2n+1×GLr by
using the supercuspidal representation constructed explicitly by the local Gelfand–
Graev coefficient from LSO4n (1, τ ) of SO4n(F) to SO2n+1(F); however we do not
do this here. Hence, the subdiagram (B) is commutative by Theorem 2.5 and the
result in [Jiang and Soudry 2003; Soudry 2008].

Finally, we show that the subdiagram (A) is also commutative by using results of
G. Muic [2006], which show that the Langlands quotient LSO4n (1, τ ) of SO4n(F)

and the Langlands quotient LSp4n (1/2, τ ) of Sp4n(F) correspond to each other via
the local theta correspondence. By combining this with Theorem 1.1, one deduces
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that the generalized Shalika model on SO4n(F) and the symplectic linear model
of Sp4n(F) are related by the local theta correspondence. It would be interesting
to check directly, without using Theorem 1.1, that the local theta correspondence
relates the generalized Shalika model on SO4n(F) and the symplectic linear model
of Sp4n(F).

In future work, we will study the explicit relations between Diagrams 1 and 2
and refined structures of the corresponding local Arthur packets.

2. Main result

We introduce definitions of various models and of the local descent in the case
under consideration, and then state the main result for the local descent.

2.1. Shalika and generalized Shalika models. Let F be a finite extension of the
p-adic number field Qp for some rational prime p. Take the maximal parabolic
subgroup Pn,n = Mn,n Nn,n of GL2n with

Mn,n = GLn ×GLn,

Nn,n =

{
n(X)=

( In X
0 In

)
∈ GL2n

}
.

Let ψ be a nontrivial character of F. Define a character ψNn,n
(n(X))= ψ(tr(X)).

The stabilizer of ψNn,n
in Mn,n is GL1n , the diagonal embedding of GLn into Mn,n .

Denote by
Sn = GL1n oNn,n

the Shalika subgroup. Denote by ψSn
the extension of ψNn,n

from Nn,n to the
Shalika subgroup Sn such that ψSn

is trivial on GL1n . The Shalika functionals of
an irreducible admissible representation (τ, Vτ ) of GL2n(F) are nonzero elements
of the space HomSn(F)(Vτ , ψSn

). By the Frobenius reciprocity

HomSn(F)(Vτ , ψSn
)∼= HomGL2n(F)(Vτ , IndGL2n(F)

Sn(F)
(ψSn

)),

any nonzero Shalika functional `ψ in HomSn(F)(Vτ , ψSn
) gives rise to an embed-

ding
Vτ ↪→ IndGL2n(F)

Sn(F)
(ψSn

),

the image of which is called a local Shalika model of Vτ . Jacquet and Rallis [1996]
(and also Nien [2009] by different argument) proved that the local Shalika model
is unique for any irreducible admissible representation of GL2n(F).

Jiang and Qin [2007] introduced the generalized Shalika model for SO4n(F).
Let ν1 = 1 and inductively define

(2-1) νn =

(
1

νn−1

)
for n ≥ 2 and n ∈ N.
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Let SO4n be the even special orthogonal group attached to the nondegenerate 4n-
dimensional quadratic vector space over F with respect to ν4n . That is,

SO4n = {g ∈ GL4n |
tg · ν4n · g = ν4n}.

Let P2n=M2nV2n be the Siegel parabolic subgroup of SO4n , consisting of elements
of the form

(2-2) (g, X)=
(

g 0
0 g∗

)(
In X

In

)
,

where g ∈ GL2n and g∗ = ν2n
tg−1ν2n , and X satisfies tX =−ν2n Xν2n .

The generalized Shalika group H2n of SO4n is the subgroup of P consisting of
elements (g, X) with g ∈ Sp2n . Here the symplectic group is given by

Sp2n = {g ∈ GL2n |
tg · J2n · g = J2n}, where J2n =

(
νn

−νn

)
for n ∈ N.

Define a character ψH of H2n(F) (we write H = H2n when n is understood) by
letting

ψH((g, X))= ψ(tr(J2n Xν2n))

= ψ(tr((diag(−In, In))X)).

It is well defined. The generalized Shalika functional or ψH-functional of an ir-
reducible admissible representation (σ, Vσ ) of SO4n(F) is a nonzero functional in
the space

HomSO4n(F)(Vσ , IndSO4n(F)
H2n(F)

(ψH))= HomH2n(F)(Vσ , ψH).

Nien [2010] has shown the uniqueness of the generalized Shalika model. Hence
one can use a nonzero generalized Shalika functional to define a generalized Sha-
lika model for σ . To relate the Shalika model on GL2n and the generalized Shalika
model on SO4n , we consider the following parabolic induction.

For an irreducible, unitary, supercuspidal representation (τ, Vτ ) of GL2n(F),
we consider the unitary representation I(s, τ ) of SO4n(F) induced from the Siegel
parabolic subgroup P2n =M2nV2n , where the Levi part M2n is isomorphic to GL2n ,
via the bijection

a ∈ GL2n 7→ m(a) := diag(a, a∗) ∈ M2n.

More precisely, a section φτ,s in I(s, τ ) is a smooth function from SO4n(F) to Vτ
such that

φτ,s(m(a)ng)= |det a|s/2+(2n−1)/2τ(a)φτ,s(g),

where m(a) ∈ M2n with a ∈ GL2n(F) and n ∈ V2n . In other words, one has

I(s, τ )= IndSO4n(F)
P2n(F)

(|det|s/2 · τ).
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In the introduction, we used notation ISO4n (s, τ ) for I(s, τ ) as a reminder that it is
a representation of SO4n . From now on, we simply use the notation I(s, τ ).

The relation between the Shalika model on GL2n and the generalized Shalika
model on SO4n is given by the following theorem.

Theorem 2.2 [Jiang and Qin 2007, Theorem 3.1]. The induced representation
I(s, τ ) admits a nonzero generalized Shalika functional only when s = 1. In that
case, I(1, τ ) admits a nonzero generalized Shalika functional if and only if the su-
percuspidal datum τ admits a nonzero Shalika functional. The generalized Shalika
functionals of I(1, τ ) are unique up to scalar, and if nonzero, they must factor
through the unique Langlands quotient L(1, τ ).

Again from now on we simply use L(1, τ ) rather than LSO4n (1, τ ).

2.3. A family of degenerate Whittaker models. Degenerate Whittaker models for
a reductive group G can be defined for any given nilpotent orbit in the Lie algebra g

of G; see [Mœglin and Waldspurger 1987]. Here, we consider a family of nilpotent
orbits O2n,2n−k of SO4n corresponding to a family of partitions [2(2n−k)+1, 12k−1

]

for k = 1, 2, . . . , 2n. This family of degenerate Whittaker models on SO4n(F) was
considered in [Ginzburg et al. 1997] for construction of automorphic L-functions of
orthogonal groups, and in [Ginzburg et al. 1999] for construction of the Ginzburg–
Rallis–Soudry global descents. We take a family of unipotent subgroups Nk of
SO4n consisting of elements of type

(2-3) n = n(u, b, z)=

u b z
I4n−2k b′

u′

 ∈ SO4n,

where u = (ui, j ) ∈ Uk , the maximal unipotent subgroup of GLk consisting of all
upper triangular unipotent matrices in GLk , the block b= (bi, j ) is the implied size,
and b′ and u′ are determined by b and u so that n belongs to SO4n . We define a
character ψk on Nk by

(2-4) ψk(n) := ψ(u1,2+ · · ·+ uk−1,k)ψ(bk,2n−k + bk,2n−k+1).

When k = 2n − 1, the subgroup Nk coincides with the unipotent radical N of
the Borel subgroup of SO4n , and ψk is the generic character of N . Let π be an
irreducible admissible representation (π, Vπ ) of SO4n(F). Then π has a nonzero
ψk-functional if

(2-5) HomSO4n(F)(Vπ , IndSO4n(F)
Nk(F)

(ψk))∼= HomNk(F)(Vπ , ψk) 6= 0.

In this case, a nonzero element in HomNk(F)(Vπ , ψk) is called a ψk-functional
of Vπ , or more precisely, a ψk-degenerate Whittaker functional of Vπ . For each
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ψk-functional `ψk , we define

(2-6) Wψk ,v(g) := `ψk (π(g)(v)) for v ∈ Vπ ,

which yields a ψk-degenerate Whittaker model (also called an (Nk, ψk)-model)
for Vπ . In particular, when k = 2n − 1, it produces a Whittaker model for Vπ .
Note that the different choices of the representatives in the F-rational points of
the unipotent orbit O2n,k(F) produce different characters for Nk(F), and hence
different degenerate Whittaker models. However, the centralizers are all isomor-
phic, which is the F-split SO4n−2k−1(F). This is different from the case of odd
orthogonal groups considered in [Jiang and Soudry 2007].

We recall the definition of Jacquet functor and module. Fix a closed subgroup
P̃ = Ñ o M̃ of SO4n with unipotent radical Ñ and a character χ on Ñ normalized
by M̃ . Then for a representation (Vπ , π) of SO4n(F), its Jacquet module with
respect to (Ñ , χ) is defined by

J{Ñ , χ}(π)= Vσ/Span{σ(n)v−χ(n)v | n ∈ Ñ , v ∈ Vπ },

viewed as a representation of M̃ . We call J{Ñ , χ} the Jacquet functor with re-
spect to (Ñ , χ). We write J{Ñ } for J{Ñ , χ} when χ is trivial. For the family
of ψk-degenerate Whittaker models, we abbreviate the corresponding family of
ψk-twisted Jacquet modules by

(2-7) J{ψk}(Vπ ) := J{Nk, ψk}(Vπ ),

viewed as a representation of SO4n−2k−1(F).

Theorem 2.4 [Jiang et al. 2008, Theorem 3.1]. Suppose (π, Vπ ) is an irreducible
admissible representation of SO4n(F). If π has a nonzero generalized Shalika
model, then the ψk-twisted Jacquet modules J{ψk}(Vπ ) are all zero for n≤ k ≤ 2n.

For an irreducible unitary supercuspidal representation τ of GL2n(F) with a
nonzero Shalika model, we apply the family of the ψk-twisted Jacquet functors to
the Langlands quotient L(1, τ ). By Theorem 2.4, the first interesting representation
we get from L(1, τ ) is at k = n− 1, that is,

(2-8) σn−1 = σn−1(τ ) := J{ψn−1}(L(1, τ )),

which is an admissible representation of SO2n+1(F). We call σn−1 the local descent
of τ from GL2n to SO2n+1. The main result of this paper is this:

Theorem 2.5. Suppose τ is an irreducible unitary supercuspidal representation of
GL2n(F) with a nonzero Shalika model. Then its local descent σn−1 is irreducible,
generic, and a supercuspidal representation of SO2n+1(F).
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We prove Theorem 2.5 in Sections 3, 4, and 5. In Section 3, we prove that
the local descent σn−1 as defined in (2-8) is quasisupercuspidal, which means the
(nontwisted) Jacquet module J{N }(σn−1) is trivial for the unipotent radical N of
every standard proper parabolic group of SO2n+1; see Theorem 3.1 for details.
Hence we can write the local descent σn−1 as a direct sum

σn−1 = σ
1
n−1⊕ · · ·⊕ σ

r
n−1⊕ · · · ,

where the σ i
n−1 are irreducible supercuspidal representations of SO2n+1(F). We

show in Theorem 4.1(2) that the local descent σn−1 has a nonzero Whittaker func-
tional, which is unique up to a scalar. Hence among the summands σ i

n−1, one and
only one has a nonzero Whittaker functional, that is, it is generic. Finally, we prove
in Theorem 5.1(2) that every irreducible supercuspidal summand in σn−1 is generic.
This implies that the local descent σn−1 has only one irreducible summand, and
therefore, σn−1 is irreducible, generic, and supercuspidal, proving Theorem 2.5.

3. Supercuspidality of the local descent

We first prove the quasisupercuspidality of σn−1 = σn−1(τ ) = J{ψn−1}(L(1, τ )),
as defined in (2-8) for any irreducible unitary supercuspidal representation τ of
GL2n(F) with a nonzero Shalika model.

We relate any standard Jacquet module of σn−1 to further descent σk of L(1, τ )
with k ≥ n in the tower of the local Gelfand–Graev models for the Langlands
quotient L(1, τ ). Because L(1, τ ) has a nonzero generalized Shalika model, all
standard Jacquet modules of σn−1 must be zero by Theorem 2.4. The same proof
can be used to show that the local descents from L(1, τ ) satisfy the local tower
property as in [Ginzburg et al. 1999], but we omit the details here.

First we have to fix notation. Consider the embedding of elements in SO2k−1

into SO2k , so that the embedding of unipotent elements are described explicitly.
Let n = n(u, b, c) be a unipotent element of SO2k−1 of type

(3-1) n = n(u, b, c)=

u b c
1 b′

u∗

 ∈ SO2k−1

where u is in Uk−1, the maximal upper triangular unipotent subgroup of GLk−1.
Then the embedding of n under the embedding from SO2k−1 into SO2k is given by

(3-2) n 7→ ι(n)=


u b −b c

1 0 −b′

1 b′

u∗

 ∈ SO2k .
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Theorem 3.1. Let τ be an irreducible supercuspidal representation of GL2n(F)

with n≥2, such that L(s, τ,32) has a pole at s=0. Then σn−1=J{ψn−1}(L(1, τ ))
is a quasisupercuspidal representation of SO2n+1(F).

Proof. For simplicity, we set σ :=L(1, τ ), which is an admissible representation of
SO2n+1(F). Denote by Un−1 be the maximal (upper triangular) unipotent subgroup
of GLn−1(F). Recall that N2n is the unipotent radical of Siegel parabolic groups
of SO4n . For x ∈F, denote by ui, j (x) the unipotent matrix in SO4n corresponding
to x(ei − e j ), the x-multiple of root ei − e j , and let Ui, j = {ui, j (x) | x ∈ F}.

There are n unipotent radicals Qk for 1 ≤ k ≤ n corresponding to standard
maximal parabolic subgroups of SO2n+1, and given by

Qk =


Ik C D

I2n−2k+1 C∗

Ik

⊂ SO2n+1 .

Denote by ι the embedding of elements of SO2n+1 into SO2n+2 as in (3-2).
Let H1 = ι(Qk)Nn−1, and denote its elements by

w(r, x, y, A, B)=


r x yIk A B

I2n−2k+2 A∗

Ik

 x ′

r∗

 for r ∈ Un−1.

Write r = (ri, j ) and x = (xi, j ) and so on. Let ψH1
be the trivial extension of ψn−1

to H1, that is,

ψH1
(w(r, x, y, A, B))= ψ(r1,2+ · · ·+ rn−2,n−1)ψ(xn−1,n+1+ xn−1,n+2).

To show that J{ψn−1}(σ ) is supercuspidal, it suffices to show that

J{ι(Qk)}(J{ψn−1}(σ ))= 0 for all 1≤ k ≤ n.

We begin by assuming to the contrary that J{ι(Qk)}(J{ψn−1}(σ )) 6= 0 for some
1≤ k ≤ n. Then there exists a nonzero functional 81 on Vσ such that

(3-3) 81(σ (g)v)= ψH1
(g)81(v)

holds for g ∈ H1 and v ∈ Vσ .
Let H2 be the complement of

∏n−1
i=1 Ui,n in H1, and define a character ψH2

on H2

by ψH2
=ψH1

|H2
. Then81(σ (g)v)=ψH2

(g)81(v) for g ∈ H2 and v ∈ Vσ . Denote
by η the permutation matrix in SO4n corresponding to the permutation product
(1, . . . , n− 1, n)(3n+ 1, . . . , 4n) of two cycles. Let H3 = ηH2η

−1 and ψH3
(g)=

ψH2
(η−1gη) for g ∈ H3. Now we have a nontrivial functional 83 on Vσ such that
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83(σ (g)v)= ψH3
(g)83(v) for g ∈ H3 and v ∈ Vσ . Note that the functional 83 is

given by 83(v)=82(ηv) for v ∈ Vσ .
Let H4 be a subgroup of H3

⋂
Nn , consisting of elements of the form of

h = (hi, j )=


In (0n×(k−1) | ∗) ∗

I2n

_
∗

0
^

In

 , with h1,2n =−h1,2n+1.

Let ψH4
= ψH3

|H4
. That is, ψH4

(h)= ψ(hn,2n + hn,2n+1).
Let H5 =U1,2n H4 and let ψH5

be the character of H5 extending ψH4
with trivial

value on U1,2n . For u1,2n(x) ∈U1,2n , the adjoint action ad(u1,2n(x)) preserves H4

and ψH4
. Therefore there exists a character χ on U1,2n and a functional 84 on Vσ

such that

(3-4) 84(σ (ug)v)= χ(u)ψH4
(g)84(v)

for u ∈U1,2n , g ∈ H4 and v ∈ Vσ .
Assume that χ(x)= ψ(ax) for some a ∈ F. Note that

ad(un,1(−a))u1,2n(x)= u1,2n(x)un,2n(−ax).

Also, ad(un,1(−a)) preserves both H4 and ψH4
. Define 85(v) = 84(un,1(−a)v).

Then

(3-5) 85(σ (g)v)= ψH5
(g)85(v)

for g ∈ H5 and v ∈ Vσ .
Let X0 = H5 and ψ (0) = ψH5

. For 1 ≤ m ≤ n, let Xm = Um,m+1 · · ·Um,n+k−1

and write its elements by

Xm(Ex)= diag(r, I2, r∗) for r = (ri, j ) ∈ U2n−1 and Ex ∈ Fn+k−m−1,

where the m-th row of r is (0m−1, 1, Ex, 0n−k+1) and ri, j = δi, j for i 6=m. Let ψ (m)

be the restriction of the character ψn of Nn to the subgroup Xm · · · X1 H5.
For each 0≤m ≤ n, we claim in general that there exists a nontrivial functional

8m on Vσ such that

(3-6) 8m(uv)= ψ (m)(u)8m(v)

for u ∈ Xm · · · X1 H5 and v ∈ Vσ .
We proceed by induction. For m = 0, the claim is true by Equation (3-5).

Assume that the claim is true for 0≤ j − 1≤ n− 2.
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Note that X j is abelian and that ad(X j (Ex)) preserves X j−1 · · · X1 H5 andψ ( j−1).
Hence there exists a character χ j on X j such that

(3-7) 8 j−1(σ (ug)v)= χ j (u)ψ ( j−1)(g)8 j−1(v)

holds for u ∈ X j , g ∈ X j−1 · · · X1 H5 and v ∈ Vσ .
Assume that

χ j (X j (t1, . . . , tn+k− j−1))= ψ(a1t1+ · · ·+ an+k− j−1tn+k− j−1) for ai ∈ F.

If ai = 0 for all 1 ≤ i ≤ n + k − j − 1, then Equation (3-7) induces a nontrivial
functional on Vτ that is invariant under τ(u),

u ∈
{(

I j ∗

I2n− j

)
∈ GL2n

}
.

This contradicts the supercuspidality of τ . Hence there exists a nonzero ai . Let

m0 =min{1≤ i ≤ n+ k− j − 1 | ai 6= 0}.

Case 1. If m0 = 1, define 8 j (v)=8 j−1(λ̃v), where λ̃= diag(λ, λ∗) ∈ SO4n and

λ=



I j

a1

a2 1
... In+k− j−3

an+k− j−1 1
In−k


∈ GL2n .

Note that

ad(λ̃)X j (t1, . . . , tn+k− j−1)

= X j (−a−1
1 t1− a−1

1 a2t2 · · · − a−1
1 an+k− j−1tn+k− j−1, t2, . . . , tn+k− j−1).

Moreover, ad(λ̃) preserves both X j−1 · · · X1 H5 and ψ ( j−1). Hence

(3-8) 8 j (σ (u)v)= ψ ( j)(u)8 j (v) for u ∈ X j · · · X1 H5.

Case 2. If m0> 1, take θ = u j+1,m0(1) and θ̃ = diag(θ, θ∗)∈SO4n , and then define
8′′j (v)=8 j−1(θ̃v). Then, for u ∈ X j , g ∈ X j−1 · · · X1 H5 and v ∈ Vσ ,

8′′j (σ (ug)v)= χ ′(u)ψ ( j−1)(g)8′′j (v)

holds for some character χ ′ on X j satisfying

χ ′(X j (x1, . . . , xn+k− j−1))= ψ(b1x1+ · · ·+ bn+k− j−1xn+k− j−1),
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with b1 6= 0. By repeating the same procedure as in the first case, we again reach
the conclusion Equation (3-8).

By induction, we have shown that

8n−1(σ (u)v)= ψ (n−1)(u)8n−1(v) for u ∈ Xn−1 · · · X1 H5.

By similar argument, we also obtain that 8′n(σ (ug)v) = χ ′′(u)ψ (n−1)(g)8′n(v),
where u ∈ Xn , g ∈ Xn−1 · · · X1 H5 and v ∈ Vσ holds for some character χ ′′ on Xn

satisfying χ ′′(Xn(x1, . . . , xk−1))= ψ(d1x1+ · · ·+ dk−1xk−1).
Finally, we take 8n(v)=8

′
n(diag(γ, γ∗)v) for v ∈ Vσ , where

γ =


In

Ik−1

 0, . . . , d1
...

0, . . . , dk−1


In−k+1

 ∈ GL2n,

and obtain that 8n(σ (u)v) = ψ (n)(u)8n(v) for u ∈ Xn · · · X1 H5 and v ∈ Vσ .
Since Nn = Xn · · · X1 H5, this gives a nontrivial ψn-functional on Vσ , contradicting
Theorem 2.4’s conclusion that generalized Shalika models and (Nn, ψn)-models
are disjoint. The initial assumption must be false, so

J{ι(Qk)}(J{ψn−1}(σ ))= 0 for all 1≤ k ≤ n

and J{ψn−1}(σ ) is quasisupercuspidal. �

4. Genericity of the local descent

By Theorem 3.1, the local descent σn−1 = σn−1(τ )=J{ψn−1}(L(1, τ )) as defined
in (2-8) is a quasisupercuspidal representation of SO2n+1(F). We may write

σn−1 = σ
1
n−1⊕ · · ·⊕ σ

r
n−1⊕ · · · ,

where the σ i
n−1 are irreducible supercuspidal representations of SO2n+1(F). Note

that τ is an irreducible unitary supercuspidal representation of GL2n(F) with a
nonzero Shalika model.

With regard to the Whittaker functional of σn−1=J{ψn−1}(L(1, τ )), recall from
(2-3) and (2-4) that

(4-1) Nn−1 =

n(z, x, y)=

z x y
I2n+2 x ′

z′

 z ∈ Un−1

⊂ SO4n

and the character ψn−1 of Nn−1 is given by

ψn−1(n(z, x, y))= ψ(z1,2+ · · ·+ zn−2,n−1)ψ(xn−1,n+1+ xn−1,n+2).
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As in (2-7), the twisted Jacquet module σn−1 = J{ψn−1}(L(1, τ )) is a represen-
tation of SO2n+1(F). Let Zk be the standard maximal unipotent subgroup of the
split special orthogonal group SOk consisting of upper-triangular matrices with 1
along the diagonals. That is,

(4-2) Z2n+1 =

z(u, b, w)=

u b w

1 b′

u′

 ∈ SO2n+1 u = (ui, j ) ∈ Un

 .
We may write b= (b1, . . . , bn)

t
∈Fn . The Whittaker character ψZ2n+1

of Z2n+1 is
defined by

(4-3) ψZ2n+1
(z(u, b, w))= ψ(u1,2+ · · ·+ un−1,n − bn).

By the Frobenius reciprocity law, in order to show that σn−1 has a nonzero Whit-
taker functional, it suffices to show that the twisted Jacquet module

J{Z2n+1, ψZ2n+1
}(σn−1)= J{Z2n+1, ψZ2n+1

}(J{ψn−1}(L(1, τ )))

is nonzero.
To compose the two twisted Jacquet functors J{Z2n+1, ψZ2n+1} and J{ψn−1},

we set E1 = ι̃(Z2n+1)Nn−1 and let ψE1
be the character of E1 defined by

ψE1
(vn)= ψZ2n+1

(v)ψn−1(n) for v ∈ Z2n+1 and n ∈ Nn−1,

where ι̃ : SO2k+1 ↪→ SO4n is given by

g ∈ SO2k+1 7→ ι̃(g)= diag(I2n−k−1, ι(g), I2n−k−1)

for any k = 0, 1, . . . , 2n− 1, and the embedding ι is defined in (3-2). Hence

J{E1, ψE1}(Vπ )= J{Z2n+1, ψZ2n+1} ◦J{ψn−1}(Vπ )

for any irreducible admissible representation (π, Vπ ) of SO4n(F).
We put k = 2n in the maximal unipotent subgroup of SO4n defined in (2-3), so

that

(4-4) N2n =

{
n(z, y)=

(z y
z′
)

z ∈ U2n

}
.

Define a degenerate character ψ̃ of N2n by

ψ̃(n(z, y))= ψ(z1,2+ · · ·+ z2n−1,2n).

We define the twisted Jacquet module J{N2n, ψ̃}(Vπ ) for any irreducible admissi-
ble representation (π, Vπ ) of SO4n(F).

Theorem 4.1. Let π be an irreducible smooth representation of SO4n that admits
a nonzero generalized Shalika model.



288 DIHUA JIANG, CHUFENG NIEN AND YUJUN QIN

(1) There exists a vector space isomorphism between the two twisted Jacquet
modules, that is,

J{E1, ψE1
}(Vπ )' J{N2n, ψ̃}(Vπ ).

(2) The local descent σn−1 has a nonzero Whittaker functional, which is unique
up to a scalar.

Proof. The proof of (1) needs to use the local version of the Fourier expansion for
representations, in particular, the [Ginzburg et al. 1999, General Lemma]. We treat
the various cases in Sections 4.2–4.12.

We show here that (2) follows from (1). Take π to be L(1, τ ) and consider
J{N2n, ψ̃}(Vπ )=J{N2n, ψ̃}(L(1, τ )). We may write N2n =U2n nV2n , where V2n

is the unipotent radical of the Siegel parabolic subgroup P2n of SO4n as defined in
(2-2). Then we decompose the twisted Jacquet functor as

J{N2n, ψ̃} = J{U2n, ψU2n }
GL2n ◦J{V2n}

where the left part of the composition is the Whittaker functor of GL2n and the right
is the nontwisted Jacquet functor (that is, the constant term functor along V2n).

Consider first J{V2n}(L(1, τ )). By [Bernstein and Zelevinsky 1977, Geometric
Lemma], we obtain that

J{V2n}(L(1, τ ))' τ ⊗ |det|−1/2

as representations of GL2n(F). By the local uniqueness of Whittaker model of τ ,
we see that the space

J{U2n, ψU2n }
GL2n ◦J{V2n}(L(1, τ ))

is one-dimensional. Therefore, J{E1, ψE1}(L(1, τ )) is one-dimensional by (1); in
particular, the local descent σn−1 has a unique Whittaker functional. �

4.2. We start to prove (1) of Theorem 4.1 by constructing a few intermediate
twisted Jacquet modules relating J{E1, ψE1}(Vπ ) and J{N2n, ψ̃}(Vπ ). The re-
lations are explained in terms of the local versions of Fourier expansions for rep-
resentations; this is called the General Lemma in [Ginzburg et al. 1999], and also
here.

In this subsection and Section 4.3, we consider the general case when (π, Vπ )
is any smooth representation of SO4n(F).

Let

C1 = { ι̃(v)n | v ∈ Z2n+1, n = n(z, x, y) such that xn−1,1 = 0}.
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Let ψC1
= ψE1

|C1
. For i = 1, . . . , n, let

X i =


In−1 x 0

I2n+2 x ′

In−1

 ∈ Nn−1 xs,t ∈ δs,n−1δt,i ·F

 ,
where δi, j is defined by that δi,i = 1 and δi, j = 0 if i 6= j . For i = 1, . . . , n−1, set

Yi = {I4n + λEn+i−1,2n+1− λE2n,3n+2−i | λ ∈ F} ⊂ SO4n,

where Ei, j = (ek,l), ek,l = δk,iδl, j , and set

Yn =


I2n−2

h
I2n−2

 h =


1 x 0 0

1 0 0
1 −x

1


⊂ SO4n .

Note that X1 is the complement of C1 in E1, that is, E1 = C1 o X1. Let D1 =

C1 o Y1, and letψD1
be the trivial extension of ψC1

to D1. This forms a setting
which for which the General Lemma applies. Hence we have

J{E1, ψE1}(Vπ )' J{D1, ψD1}(Vπ ).

For i = 2, . . . , n, define a series of subgroups Ci of Z2n+2 Nn−1 by

Ci =

vn v =

(u t w

ι(h) t ′

u′

)
∈ Z2n+2,

u ∈ Ui−1, h ∈ Z2n+3−2i ,

n = n(z, x, y) ∈ Nn−1,

xn−1,1 = xn−1,2 = · · · = xn−1,i = 0

 ,
where Z2n+2 is identified with its embedding in the middle diagonal part of SO4n .
Let ψ i be the character of Ci defined by

ψ i (vn)= ψn−1(n)ψ(u1,2+ · · ·+ ui−2,i−1+ ti−1,1)ψZ2n+3−2i
(h).

Then X i and Yi both normalize Ci and ψ i . The trivial extensions of ψ i to Ci o X i

and Ci o Yi are still denoted by ψ i . Let Di := Ci o Yi . Then Di−1 ' Ci o X i for
i = 2, . . . n and the characters ψ i−1 and ψ i of Di−1 are equal. Again, this is the
setting of the General Lemma, and we obtain

J{Di−1, ψ
i−1
}(Vπ )' J{Di , ψ

i
}(Vπ ) for i = 2, . . . , n.

Hence we obtain a vector space isomorphism of twisted Jacquet modules:

J{E1, ψE1}(Vπ )' J{Dn, ψ
n
}(Vπ ).
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Note that

Dn =


(z y w

h y′

z′

)
h =


1 f̃ − f w

1 0 f
1 − f̃

1

 ∈ Z4,

z ∈ U2n−2 with zn−1,i = 0 for i ≥ n


⊂ Z4n.

Then we also have the isomorphism J{Dn, ψ
n
}(Vπ ) ' J{Dn, ψDn }(Vπ ) of vector

spaces, where the character ψDn
of Dn is given by

ψDn
(v)= ψ(z1,2+ z2,3+ · · ·+ z2n−3,2n−2+ yn−1,2+ yn−1,3− f ).

4.3. Let ν be the permutation matrix in GL2n given by(
1 2 . . . n− 1 n n+ 1 . . . 2n− 1 2n
2 4 . . . 2(n− 1) 1 3 . . . 2n− 1 2n

)
,

and identify it with its embedding m(ν), where m : g∈GL2n 7→diag(g, g∗)∈SO4n .
Let E = νDnν

−1, and define a character ψE of E by

ψE(n) := ψDn
(ν−1nν) for n ∈ E .

Let T (n) be the subgroup of GL2n consisting of certain elements t = (ti, j ), as
follows: Let t̄ j = (t j+1, j , . . . , t2n, j )

t and ti = (ti,i+1, . . . , ti,2n) for i, j ≤ 2n− 1.

• For 1≤ i ≤ 2n, require ti,i = 1.

• For j ≤n−2, require that the (single-element) rows of t̄2 j−1 alternate between
arbitrary and zero, except for the last 4, which are all zero; require that t̄2n−3

and t̄2n−1 vanish.

• For j ≤ n, require that t̄2 j vanishes.

• For i ≤ n, require that t2i−1 = (0 ∗ 0 ∗ . . . ∗ 0 ∗ ∗).

• Require t2(n−1) = (0, ∗).

Then

E =
{

n =
(

t X
t ′

)
t ∈ T (n)

}
and the character ψE is given by

(4-5) ψE(n)= ψ(t1,3+ t2,4+ · · ·+ t2n−3,2n−1+ t2n−2,2n + x2n−2,1+ x2n−1,1).
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Example 4.4. In the case of n = 4,

T (4)=





1 0 ∗ 0 ∗ 0 ∗ ∗
∗ 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 1 0 ∗ 0 ∗ ∗
∗ 0 ∗ 1 ∗ ∗ ∗ ∗
0 0 0 0 1 0 ∗ ∗
0 0 0 0 0 1 0 ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1




⊂ GL8 .

Since ψE(n)=ψDn
(ν−1nν) for all n ∈ E , we have the vector space isomorphism

J{Dn, ψDn
}(Vπ )' J{E, ψE }(Vπ ).

Next, we will apply the General Lemma to fill the zeros of t2i−1 from right to
left, using t̄2i−1.

Let

Y i,1
= {m(I2n + yE2i,1) | y ∈ F} for i = 1, . . . , n− 2,

X1, j
= {m(I2n + x E1,2 j ) | x ∈ F} for j = 2, . . . , n− 1,

E i,1
= {n ∈ E | n j,1 = 0,∀ j > 2i} ·

∏n
j=i+2 X1, j for i ≤ n− 3,

En−2,1
= E,

C i,1
= {n ∈ E i,1

| n2i,1 = 0}, D1,i+1
= C i,1 X1,i+1, A1,i+1

= D1,i+1Y i,1.

Define a series of characters ψ i,1
= ψE |C i,1 . Extend ψ i,1 trivially to D1,i+1 as

ψ i,1
D1,i+1 and to E i,1 as ψ i,1

E i,1 . Note that

D1,i+1
= E i−1,1 and ψ i,1

D1,i+1 |C i−1,1 = ψ
i−1,1.

By the General Lemma, we have vector space isomorphisms

J{E i,1, ψ i,1
E i,1}(Vπ )' J{D1,i+1, ψ i,1

D1,i+1}(Vπ )' J{E i−1,1, ψ i−1,1
E i−1,1}(Vπ )

for i = n− 2, . . . , 2. In particular, we have

J{E, ψE }(Vπ )' J{D1,2, ψ1,1
D1,2}(Vπ ).

Note that the GL2n part of D1,2 looks like
( I2 ∗

0 T ′
)

with T ′ ∈ T (n− 1). Now let

Y r,s
= {m(I2n + yE2r,2s−1) | y ∈ F} for 1≤ r, s ≤ n− 2,

X r,s
= {m(I2n + x E2r−1,2s) | x ∈ F} for 1≤ r ≤ n− 2 and 1≤ s ≤ n− 1.
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For 1≤ j ≤ i ≤ n− 2, we define

E i, j
= Ẽ i, j

n−1∏
s=i+2

X j,s, where Ẽ i, j
=

{(
t X

t ′

)
∈ SO4n

}
,

where t`,2 j−1 = 0 for all ` > 2i and otherwise is of the form

t =


I2 ∗ ∗

. . .

I2 ∗

Z

 , with Z ∈ T (n− j + 1),

We further define

C i, j
=

{
n =

(
t X

t ′

)
∈ E i, j t2i,2 j−1 = 0

}
,

D j,i+1
= C i, j X j,i+1, A j,i+1

= D j,i+1Y i, j .

We also define ψ i, j
= ψE |C i, j . Note that D j,i+1

' Ai−1, j for i ≥ j + 1 and that
D j, j+1

' An−1, j+1. The relations among those ψ i, j and their trivial extensions
ψ

i, j
D j,i+1 and ψ i, j

Ai, j to D j,i+1 and Ai, j , respectively, are compatible in the sense of
the General Lemma. We then have vector space isomorphisms

J{E, ψ}(Vπ )' J{D1,2, ψ1,1
D1,2}(Vπ )' · · · ' J{D j, j+1, ψ

j, j
D j, j+1}(Vπ )

' · · · ' J{Dn−2,n−1, ψn−2,n−2
Dn−2,n−1 }(Vπ ).

Denote by Bn the standard Borel subgroup of GLn . The subgroup Dn−2,n−1

consists of elements of the form

(
t X

t ′

)
∈ SO4n, with t =


I2 y1 ∗ · · · ∗

I2 y2 · · · ∗

. . .

I2 yn−1

z

 ,

where y1, . . . , yn−2 ∈ Mat2, yn−1 ∈ B2 and z ∈ U2. The character ψn−2,n−1
Dn−2,n−1 is

given by

(4-6) ψn−2,n−2
Dn−2,n−1 (n)= ψ(tr(y1+ · · ·+ yn−1))ψ(x2n−2,1+ x2n−1,1).

Proposition 4.5. Let π be a smooth representation of SO4n . Then there exists a
vector space isomorphism between two twisted Jacquet modules given by

J{E1, ψE1
}(Vπ )' J{Dn−2,n−1, ψn−2,n−1

Dn−2,n−2 }(Vπ ).
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So far we have only assumed π to be a smooth representation of SO4n(F).

4.6. The next step is to eliminate the character place x2n−2,1 in (4-6). We need two
auxiliary results, Propositions 4.7 and 4.11. We assume that Vπ is an irreducible
admissible representation of SO4n(F) with a nonzero generalized Shalika model.

We define

(4-7) D =


(

T X
T ′

)
T =


t1 z1 . . . . . . ∗

t2 z2 . . . ∗

· · · · · ·

tn−1 zn−1

tn

 , ti ∈ U2, zi ∈ B2

 ,

and a character ψD(n)= ψ(tr(z1+ · · ·+ zn−1)+ x2n−2,1+ x2n−1,1) of D.

Proposition 4.7. Let π be an irreducible smooth representation of SO4n admitting
a nonzero generalized Shalika model. Then there exists a vector space isomorphism

J{Dn−2,n−1, ψn−1,n−1
Dn−2,n−1 }(Vπ )' J{D, ψD}(Vπ ).

Proof. After applying the General Lemma n − 2 times, we have the vector space
isomorphisms

J{Dn−2,n−1, ψn−1,n−1
Dn−2,n−1 }(Vπ )' J{H1, ψH1

}(Vπ ),

where

H1 =


(

T X
T ′

)
T =


I2 z1 . . . . . . ∗

t2 z2 . . . ∗

· · · · · ·

tn−1 zn−1

tn

 , ti ∈ U2, zi ∈ B2

 ,
ψH1

(n)= ψ(tr(z1+ · · ·+ zn−1)+ x2n−2,1+ x2n−1,1) for n ∈ H1.

Note that the group

m



 1 ∗ 0

1 0
I2n−2



⊂ m(GL2n)⊂ SO4n

normalizes H1 and ψH1
.

For λ ∈ F∗, define a character ψ ′D,λ of D by

ψ ′D,λ(n)= ψ(tr(z1+ · · ·+ zn−1)+ xn−2,1+ xn−1,1)ψ(λt),
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where t1 =
(

1 t
1

)
as in H1. By the conclusion of the next lemma, Lemma 4.8, the

only twisted Jacquet module that remains is the one corresponding to λ = 0. In
this case we have ψ ′D,0 =ψD , and therefore J{E1, ψE1

}(Vπ )' J{D, ψD}(Vπ ). �

Lemma 4.8. Assume that π is an irreducible representation of SO4n admitting a
nonzero generalized Shalika model. Then

J{D, ψ ′D,λ}(Vπ )= 0 for all λ ∈ F∗.

Proof. First we consider the case of λ=1. Letψ ′D :=ψ
′

D,1. Then for n =
(

T X
T ′
)
∈ D

we have

ψ ′D(n)= ψ(T1,2+ T1,3+
∑n−2

i=2 Ti,i+2)ψ(x2n−2,1+ x2n−1,1).

Let
z1 = diag(Z , I2n−3) ∈ GL2n, with Z =

(
1

1 0
1 1

)
.

Then z1 normalizes D. Let ψD,1 be the character of D defined by

(4-8) ψD,1(n)=ψ
′

D(z1nz−1
1 )=ψ(T1,2+T2,4+

∑n−2
i=2 Ti,i+2)ψ(x2n−2,1+x2n−1,1).

Clearly there exists a vector space isomorphism

(4-9) J{D, ψ ′D}(Vπ )' J{D, ψD,1}(Vπ ).

For i = 2, . . . , n−1, let zi = I2n+E2i+1,2i ∈GL2n , and let ψD,i be the character
of D defined by ψD,i (n) := ψD,i−1(zi nz−1

i ). Then we have

ψD,i (n)=


ψ(T1,2+ T2i,2i+3+

∑n−2
j=2 T j, j+2)ψ(x2n−2,1+ x2n−1,1)

if 2≤ i ≤ n− 2,
ψ(T1,2+

∑n−2
j=2 T j, j+2)ψ(x2n−1,1+ 2x2n−2,1) if i = n− 1.

It is clear that

(4-10) J{D, ψD,i }(Vπ )' J{D, ψD,i+1}(Vπ ) for i = 2, . . . , n− 2.

From (4-9) and (4-10), we have the vector space isomorphism

J{D, ψ ′D}(Vπ )' J{D, ψD,n−1}(Vπ ).

Now we assume to the contrary that

(4-11) J{D, ψD,n−1}(Vπ ) 6= 0.

Then by the Frobenius reciprocity law, there exists a nonzero functional ` on Vπ
such that

(4-12) `(π(n)v)= ψD,n−1(n)`(v) for n ∈ D and v ∈ Vπ .
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Such a functional ` on Vπ factors through J{D, ψD,n−1}(Vπ ). Hence the nonvan-
ishing of J{D, ψD,n−1}(Vπ ) is equivalent to the nonvanishing of such `.

Let µ be the permutation matrix in GL2n given by

µ(1)= 1, µ(2i − 2)= i for i = 2, . . . , n,

µ(2n)= 2n, µ(2i − 1)= n+ i − 1 for i = 2, . . . , n,

which can be identified with its embedding m(µ) in SO4n . Denote by Nik the set
of nilpotent elements in GLk . Then

F := µDµ−1
=

{(
T X

T ′

)
T =

(
α β

γ δ

)
, α, δ, γ ∈ Bn ∩Nin, β ∈ Bn,

γi,i+1 = 0 for i = 1, . . . , n− 1

}
.

Example 4.9. When n = 4, the T in F are of the form

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ 0 ∗ ∗ ∗
0 0 1 ∗ 0 0 ∗ ∗
0 0 0 1 0 0 0 ∗

0 0 ∗ ∗ 1 ∗ ∗ ∗
0 0 0 ∗ 0 1 ∗ ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1


Let ψF be the character of F defined by

ψF (n)= ψD,n−1(µ
−1nµ)= ψ(

∑2n−2
i=1,i 6=n Ti,i+1+ Tn,2n + 2Xn,1+ X2n−1,1).

Define a linear functional on Vπ by `F (v) = `(π(µ
−1)v) for v ∈ Vπ . Then `F is

a nonzero functional on Vπ satisfying `F (π(n)v)= ψF (n)`F (v) for n ∈ F . Since
`F factors through J{F, ψF }(Vπ ), the latter must be nonzero.

Again, by the General Lemma, we get J{F, ψF }(Vπ )'J{F ′, ψF ′}(Vπ ), where

F ′ =
{(

T X
T ′

)
T ∈ U2n, Tn,n+i = 0 for i = 1, . . . , n− 1

}

and the character ψF ′ is given by

(4-13) ψF ′(n)= ψ(
∑2n−2

i=1,i 6=n Ti,i+1+ Tn,2n + 2Xn,1+ X2n−1,1).
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Example 4.10. The T in F ′ are of the form

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 0 0 0 ∗

0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1


.

(Compare this form with the one in Example 4.9 to see how the General Lemma
works.)

Since J{F, ψF }(Vπ )' J{F ′, ψF ′}(Vπ ) 6= 0, there is a nonzero linear functional
`F ′ on Vπ such that `F ′(π(n) v)= ψF ′(n)`F ′(v) for n ∈ F ′.

Next, we consider the intersection F ′n := F ′ ∩ Nn . Then

(4-14) F ′n =



α β x y

In 0 x ′

In β ′

α′

 α ∈ Un, β ∈ Bn,

βn,i = 0 for i = 1, . . . , n− 1

 .
and `F ′ is a nonzero linear functional on Vπ such that

`F ′(π(n) v)= ψF ′(n)`F ′(v) for n ∈ F ′n.

Note that F ′n differs from Nn by the requirements on their elements at the β entries
of (4-14). Now we will apply the local version of Fourier expansion to “fill the
zeros of β”.

Define a series of subgroups F ′n ⊂ F ′n−1 ⊂ · · · ⊂ F ′1 = Nn as follows. Let

(4-15) F ′i =



α β x y

In 0 x ′

In β ′

α′

 ∈ Nn α ∈ Un, βn, j = 0 for j = 1, . . . , i − 1

 .
Let ψF ′i

be the character of F ′i defined by the same formula of (4-13), that is, by

ψF ′i
(n)= ψ(α1,2+ · · ·+αn−1,n +βn,2n + 2xn,1).

Now we use induction in reversed order. The case of i = n is shown in (4-14).
Assume for some 2 ≤ i ≤ n that we have a nonzero linear functional `i on Vπ
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satisfying the quasiinvariance property

(4-16) `i (π(n) v)= ψF ′i
(n)`i (v) for n ∈ F ′i .

We show that the functional `i−1 is an extension of `i such that (4-16) holds with i
replaced by i − 1.

Note that the root group of en − ei−1 normalizes the character ψF ′i . There are
two possibilities:

(i) The `i having the (F ′i , ψF ′i )-quasiinvariance property can be trivially extended
to `i−1 with the (F ′i−1, ψF ′i−1

)-quasiinvariance property, and we are done.

(ii) The `i can be nontrivially extended to a nonzero linear functional `′i−1 with
the (F ′i−1, ψF ′i−1

)-quasiinvariance property, such that

`′i−1(π(n) v)= ψ̃ F ′i−1
(n)`′i−1(v) for n ∈ F ′i−1.

Then

ψ̃ F ′i (n)= ψ(α1,2+ · · ·+αn−1,n +βn,2n + 2xn,1)ψ(c βn,i ) for some c ∈ F∗.

Let z = I2n + α En+i,2n ∈ GL2n . Then we can choose a certain α ∈ F∗ such
that z normalizes F ′i and changes ψ̃ F ′i−1

back to the character ψF ′i−1
. Hence

we get (4-16) for `i−1.

By induction, we get a nonzero linear functional `1 on Vπ that factors through
J{Nn, ψn}(Vπ ).

By assumption, Vπ has a nonzero generalized Shalika model. It follows from
Theorem 2.4 that such a Vπ has no nonzero twisted Jacquet module J{Nn, ψn}(Vπ ).
Hence `1 must be zero.

Therefore, the assumption (4-11) must be wrong and J{D, ψD,n−1}(Vπ ) must
be zero. The proves the case when λ= 1.

If λ 6= 1, conjugation by m(a) with a= diag(λ−1, 1, λ−1, 1, . . . , λ−1, 1)∈GL2n

will give a vector space isomorphism J{D, ψ ′D,λ}(Vπ ) ' J{D, ψD,λ}(Vπ ), where
ψD,λ is almost the same with the character of D defined in (4-8) except that the
coefficient of x2n−1,1 is λ−1. In the proof of the case when λ = 1, we see that the
coefficients of x2n−1,1 and x2n−2,1 play no role and a similar argument applies. �

Proposition 4.11. Let π be a smooth representation of SO4n . Then

J{D, ψD}(Vπ )' J{D, ψ̃D}(Vπ ),

where ψ̃ is the character of D defined (in the notation of (4-7)) by

ψ̃D(n)= ψ(tr(z1+ · · ·+ zn−1)+ x2n−1,1).
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Proof. The proof is almost the same as that of Lemma 4.8. We give only a sketch.
First, let Bn denote the opposite standard Borel subgroup of GLn . By the General

Lemma, we have the vector space isomorphism

J{D, ψ̃D}(Vπ )' J{D̃, ψ̃D̃}(Vπ ),

where

(4-17) D̃ =


(

T X
T ′

)
T =



1 ∗ ∗ · · · · · · ∗

t1 z1 ∗ · · · ∗

t2 z2 ∗ · · · ∗

. . .
...

tn−2 zn−2 ∗

I2 ∗

1


, ti ∈ U2, zi ∈ B2


and ψ̃D̃(n)= ψ(

∑2n−2
i1

Ti,i+2)ψ(x2n−2,1+ x2n−1,1) is the character of D̃.
Second, let

z =


I2n−3 0 0 0

0 1 0 0
0 −1 1 0
0 0 0 1

 ,
which normalizes D̃ and changes ψ̃D̃ to ψ̃ ′

D̃
, defined in the notation of (4-17) by

ψ̃ ′
D̃
(n)= ψ(

∑2n−2
i1

Ti,i+2)ψ(x2n−1,1).

Finally, use the General Lemma to transform the B2 of the first part into B2. �

4.12. We are ready to prove Theorem 4.1(1). The proof is similar to that of
[Ginzburg et al. 1999, Theorem 4.2.1], employing the local version of the Fourier
expansion of representations. Let ν be the permutation matrix in GL4n such that
νi,2i−1 = 1 and ν2n+i,2i = 1 for i = 1, . . . , 2n, and νi, j = 0 otherwise. Let
B = νDν−1, and define a character ψB of B by ψB(e) = ψ̃D(ν

−1eν) for e ∈ B.
Then we have the vector space isomorphism J{D, ψ̃D}(Vπ )'J{B, ψB}(Vπ ).Note
that

(4-18) B =
{(
α β

γ δ

)
α, δ ∈ U2n, β ∈ B2n,

γ ∈ B2n ∩Ni2n and γi,i+1 = 0 for i = 1, . . . , 2n

}
,

and the character ψB is ψB(e)=ψ(α1,2+· · ·+αn,n+1−αn+1,n+2−· · ·−α2n−1,2n).
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Example 4.13. For n = 4, elements in B are of the form

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ 0 0 0 ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗ ∗

1 ∗ ∗ 0 0 0 0 0 ∗ ∗ ∗

1 ∗ 0 0 0 0 0 0 ∗ ∗

1 0 0 0 0 0 0 0 ∗

0 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ 0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ 0 0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,

where the boxes indicate the nontrivial character positions of ψB .

Our goal is to “fatten” β in (4-18), using the entries of γ, by successive applications
of the General Lemma, until we transform J{B, ψB} into J{V2n, ψ̃}. Let

X=

{
x ∈Mat2n(F)

(
I2n x

I2n

)
∈ SO4n

}
.

For x ∈ X, write

ε(x)=
(

I2n x
I2n

)
and ε̄(x)=

(
I2n 0
x I2n

)
.

For a subspace S ⊂ X, define

ε(S)= {ε(x) | x ∈ S} and ε̄(S)= {ε̄(x) | x ∈ S}.

Put

X0 = {x ∈ X | x ∈ B2n},

Y0 = {x ∈ X | x ∈ B2n ∩Ni2n and xi,i+1 = 0 for i = 1, . . . , n− 1}.
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For 1≤ i < j − 1, define

Yi, j = {x ∈ X0 | xr,l = 0 for r, l < j − 1 and xr, j = 0 for r ≥ i},

Yi, j
= I+F(Ei, j − E2n+1− j,2n+1−i ).

Then elements in B can be written in the form

(4-19) v = ε(x)m(z)ε̄(y),

with x ∈ X0, y ∈ Y0 and z ∈ U2n . Let Y1,3 = {x ∈ X0 | x1,3 = 0}. Let C1,3 be the
subgroup of the form (4-19) such that y ∈Y1,3. Then C1,3

= ε(X0)m(U2n)ε̄(Y13).
Let Y 1,3

= ε̄(Y1,3). Denote by X2,1
= ε(X2,1), where X2,1

= F(e2,1 − e2n,2n−1).
Let ψ1,3

B = ψB |C1,3 , B1,3
= B, and D1,3

= C1,3 X2,1. Put X2,1 = X0⊕X2,1. Then
D1,3
= ε(X2,1)m(U2n)ε̄(Y1,3). By the General Lemma, we conclude that

J{B1,3, ψ1,3
B1,3}(Vπ )' J{D1,3, ψ1,3

D1,3}(Vπ ),

where ψ1,3
D1,3 is the character of D1,3, which is trivial on ε(X2,1) ·Y1,3.

Define Xr,s
= I+F(Er,s − E2n+1−s,2n+1−r ) for 1≤ s < r ≤ 2n. Let

Xr,s = X0⊕

( ⊕
q<l≤r−1

Xl,q
)
⊕

( r−1⊕
q=s

Xr,q
)

for 1≤ s < r ≤ n.

For 1≤ i < j−1 and j ≤n+1, let C i, j
= ε(X j−1,i+1)m(U2n)ε̄(Yi, j ) if i+1≤ j−1.

For 1≤ i < j ≤ n+1, we define Y i, j
= ε̄(Yi, j ) and X j,i

= ε(X j,i ), and also define

Bi, j
= C i, j Y i, j , Di, j

= C i, j X j−1,i , Ai, j
= Di, j Y i, j .

Let ψ i, j be the character of C i, j , which is trivial on ε(X j−1,i+1) · ε̄(Yi, j ). Then by
the General Lemma, we have the vector space isomorphism

J{Bi, j , ψ
i, j
Bi, j }(Vπ )' J{Di, j , ψ

i, j
Di, j }(Vπ )

for all 1≤ i < j − 1, j ≤ n+ 1.
Note that for 2≤ i < j − 1, j ≤ n+ 1, we have

Di, j
= Bi−1, j and ψ

i, j
Di, j = ψ

i−1, j
Bi−1, j ,

and for j = 3, . . . , n+ 1, we have

D1, j
= B j−1, j+1 and ψ

1, j
D1, j = ψ

j−1, j+1
B j−1, j+1 .

We conclude by the General Lemma again that

(4-20) J{B1,3, ψ1,3
B1,3}(Vπ )' J{D1,n+1, ψ1,n+1

D1,n+1}(Vπ )

as vector spaces. Note that D1,n+1
= ε(Xn,1)m(U2n)ε̄(Y1,n+1).
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So far in this proof, we have not used any particular property of Vπ . We are now
going to use the property that Vπ has a nonzero generalized Shalika model.

For n+ 1≤ r ≤ 2n− 1 and 1≤ s ≤ 2n− r , define

Xr,s = Xn,1⊕

( ⊕
n+1≤l≤r−1

1≤q≤2n−l

Xl,q

)
⊕

(2n−r⊕
q=s

Xr,q
)
.

Then Xn+1,n−1 normalizes D1,n+1 and ψ1,n+1
D1,n+1 . Considering its action on the

right side of (4-20), we claim that for any nontrivial character ξ of Xn+1,n−1,

J{Xn+1,n−1, ξ}(J{D1,n+1, ψ1,n+1
D1,n+1}(Vπ ))= 0,

and hence we must have the trivial character for this action. We assume to the
contrary that, by the Frobenius reciprocity law, there exists ` a nonzero linear
functional on Vπ such that

`(π(xn)v)= ψ1,n+1
1,n+1 (n)ξ(x)`(v) for all x ∈ Xn+1,n−1, n ∈ D1,n+1 and v ∈ Vπ .

We may assume that there is a λ ∈F∗ such that ξ(x(t))=ψ(λ t), where x(t)=
I4n+ t (En+1,3n−1−En+2,3n). Then ` is a nonzero linear functional on Vπ such that

`(π(n)v)= ψ1,n+1
D1,n+1(n)`(v) for n ∈ Xn+1,n−1 D1,n+1

∩ Nn+1.

Note that Xn+1,n−1 D1,n+1
∩ Nn+1 consists of elements of the form

(4-21)

z y w

I2n−2 y′

z′

 ∈ SO4n,

with z ∈ Un+1 and y ∈Matn+1,2n−2 such that yn+1,n+i = 0 for i = 1, . . . , n− 1.
Now the situation is similar to that of (4-14). The same argument shows that `

can be extended trivially to Nn+1 so that

`(π(n)v)= ψ1,n+1
Nn+1

(n)`(v) for n ∈ Nn+1,

where ψ1,n+1
Nn+1

is the trivial extension of restriction of ψ1,n+1
D1,n+1 to D1,n+1

∩ Nn+1.
Note that for an element n ∈ Nn+1 of the form (4-21),

ψ1,n+1
D1,n+1(n)= ψ(z1,2+ · · ·+ zn,n+1)ψ(yn+1,1+ yn+1,2n−2).

Let ν ′ be the permutation matrix in GL2n defined by

ν ′(i)=


i if i = 1, . . . , n+ 1,
2n if i = n+ 2,
i − 1 if i = n+ 3, . . . , 2n,
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which is identified with its embedding m(ν ′) in SO4n . Then ν ′ normalizes Nn+1

and transforms ψ1,n+1
Nn+1

into ψn+1. Hence we obtain a nonzero linear functional that
factors through J{ψn+1}(Vπ ). In particular, we have J{ψn+1}(Vπ ) 6= 0.

On the other hand, Vπ has a nonzero generalized Shalika model by assumption.
Following Theorem 2.4, J{ψn+1}(Vπ )must be zero. We get a contradiction. Hence
Xn+1,n−1 must act trivially on J{D1,n+1, ψ1,n+1

D1,n+1}(Vπ ).
Next we continue this process. Define

Bn−2,n+2
= D1,n+1 Xn+1,n−1,

and extend ψ1,n+1
D1,n+1 to a character ψn−2,n+2

Bn−2,n+2 on Bn−2,n+2 by making it trivial on
Xn+1,n−1. Thus we have

J{Bn−2,n+2, ψn−2,n+2
Bn−2,n+2 }(Vπ )' J{D1,n+1, ψ1,n+1

D1,n+1}(Vπ ).

Now we can repeat the argument as before, by replacing the n − 2 coordinates
of
⊕n−2

i=1 Yi,n+2 with
⊕n−2

i=1 Xn+1,i . For 1 ≤ i ≤ n − 2 and j ≥ n + 2, define
C i, j
= ε(X j−1,i+1)m(U2n)ε̄(Yi, j ) and

Bi, j
= C i, j Y i, j , Di, j

= C i, j X j−1,i , Ai, j
= Di, j Y i, j .

Let ψ i,n+2 be the character of C i,n+2, which is trivial on `(Cn+1,i+1)`(Yi,n+2). By
the General Lemma, we conclude that

(4-22) J{D1,n+1, ψ1,n+1
D1,n+1}(Vπ )' J{D1,n+2, ψ1,n+2

D1,n+2}(Vπ )

as vector spaces. Then, by using the property that Vπ has a nonzero generalized
Shalika model, we show that Xn+2,n−2 acts trivially on the right side of (4-22). As
before, we get

J{D1,n+2, ψ1,n+2
D1,n+2}(Vπ )' · · · ' J{D1,2n−1, ψ1,2n−1

D1,2n−1}(Vπ )

as vector spaces. Note that D1,2n−1
= N2n and ψ1,2n−1

1,2n−1 = ψ̃ . We conclude that

J{D1,2n−1, ψ1,2n−1
D1,2n−1}(Vπ )= J{N2n, ψ̃}(Vπ ).

This concludes the proof of part (1) of Theorem 4.1.

5. Irreducibility of the local descent

To finish the proof of Theorem 2.5, it remains to show that σn−1 is irreducible.
In Sections 3 and 4, we proved that, as a representation of SO2n+1(F), the local
descent σn−1 = J{ψn−1}(L(1, τ )), as defined in (2-8), is quasisupercuspidal and
has a unique nonzero Whittaker functional. Hence it is enough to show that any
irreducible summand of σn−1 is generic, that is, has a nonzero Whittaker functional.
This is proved in Theorem 5.1(2). Theorem 5.1, whose proof is standard, may be
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viewed as a generalization of the geometric lemma of Bernstein and Zelevinsky
[1977] for the twisted Jacquet functor J{ψn−1} applied to L(1, τ ). For a similar
discussion for the metaplectic and symplectic groups, see [Ginzburg et al. 1999]

For a given irreducible supercuspidal representation τ of GL2n(F), recall that
I(s, τ ) is the induced representation of SO4n(F) from the supercuspidal datum
(P2n, τ ) as defined in Section 2.1. The unique Langlands quotient of I(s, τ ) at
s = 1 is L(1, τ ).

Theorem 5.1. Suppose (Vσ , σ ) is an irreducible supercuspidal representation of
SO2n+1(F).

(1) If HomSO2n+1(F)(J{ψn−1}(I(s, τ )), Vσ ) is nonzero for any s ∈ C, then σ is
generic.

(2) If HomSO2n+1(F)(J{ψn−1}(L(1, τ )), Vσ ) is nonzero, then σ is generic.

Clearly part (2) follows from part (1) by the exactness of the twisted Jacquet
functors. Part (1) is proved in Section 5.7.

We start by investigating the structure of J{ψn−1}(I(s, τ )) to determine the
genericity of σ . We realize the irreducible unitary supercuspidal representation τ of
GL2n(F) by its Whittaker model W(τ, ψ), and realize the induced representation
I(s, τ ) as I(s,W(τ, ψ)). Then we consider J{ψn−1}(I(s,W(τ, ψ))).

5.2. The twisted Jacquet module J{ψn−1}(I(s,W(τ, ψ))). We consider first the
orbital structure of the closed subgroup SO2n+2 ·Nn−1 acting on the generalized flag
variety P2n \SO4n over the p-adic field F, and then consider the semisimplification
of J{ψn−1}(I(s,W(τ, ψ))) as a representation of SO2n+1(F).

For j = 1, . . . , 2n, let

Pj =


h ∗ ∗

g ∗
h∗

 h ∈ GL j , g ∈ SO4n−2 j


be the standard maximal parabolic subgroup of SO4n . Then the generalized Bruhat
decomposition P2n \ SO4n /Pn−1 has a complete set of representatives given by
{γi | i ∈ 2N, n ≤ i ≤ 2n}, where for i ∈ 2N with n ≤ i ≤ 2n,

γi =

 ν2n−i

I2i

ν2n−i


and ν j is as defined in (2-1). For k = 0, 1, . . . , n − 1, let Mk be the standard
maximal parabolic subgroup of GLn−1 corresponding to the partition (k, n−k−1)
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of n− 1 such that the Levi part is GLk ×GLn−k−1 and the unipotent radical is

Lk =

{(
Ik

A In−1−k

)
∈ GLn−1 A ∈Matn−1−k,k

}
.

Lemma 5.3. The orbits of the closed subgroup SO2n+2 ·Nn−1 acting on the gener-
alized flag variety P2n \ SO4n are represented by elements of the form γiw, where
n ≤ i ≤ 2n is even and the w are elements of W (GLn−1) given by{

w ∈ [W (GL2n−i )×W (GLi−n−1)]\W (GLn−1) if i 6= n,
w = id if i = n.

Here W (GLm) denotes the Weyl group of GLm .

Proof. Clearly, we have SO2n+2 Nn−1⊂ Pn−1. Hence we can choose γiw to be the
representative of any double cosets in P2n\SO4n /[SO2n+2 Nn−1], for some

w ∈ [γ−1
i P2nγi ∩ Pn−1]\Pn−1/[SO2n+2 Nn−1].

Since M2n−i ⊂ γ−1
i P2nγi ∩ Pn−1, we may choose a set of representatives for

[γ−1
i P2nγi∩Pn−1]\Pn−1/[SO2n+2 Nn−1] from M2n−i\GLn−1 /Nn−1. Then a com-

plete set of representatives for M2n−i\GLn−1 /Nn−1 can be chosen from

[W (GL2n−i )×W (GLi−n−1)]\W (GLn−1). �

Let α1, . . . , αn−2 denote the simple roots of GLn−1 with respect to Nn−1. Let

{xα j (t)= In−1+ t E j, j+1 | t ∈ F}

denote the one parameter unipotent subgroup of Nn−1 corresponding to the root α.
We will take w = id to be the representative of the coset W (GLk)×W (GLn−1−k)

in W (GLn−1).

Lemma 5.4 [Ginzburg et al. 1999, Lemma 4.3]. If a Weyl group elementw belongs
to [W (GLk) × W (GLn−1−k)]\W (GLn−1) and is the identity, then there exists a
simple root α j such that wxα j (t)w

−1
∈ Lk for all t ∈ F.

Next we consider the semisimplification of the module J{ψn−1}(I(s,W(τ, ψ)))

as a representation of SO2n+1(F). It is a standard process to decompose the repre-
sentation by spaces of functions on SO4n(F) according the orbital decomposition
obtained in Lemma 5.3.

It is clear that among the orbits

Oi,w = [P2n]γiw[SO2n+2 Nn−1] for i ∈ 2N with n ≤ i ≤ 2n,

the orbit O2[(n+1)/2],id is the unique open orbit. Let E be a union of orbits Oi,ω.
We denote by S(E, τs) the space of smooth functions φ on E that are compactly
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supported modulo P2n , have values in the Whittaker model W(τ, ψ) and are such
that

φ
((a ∗

a∗
)

g, r
)
= |det a|s/2+n−1/2φ(g, ra) for g ∈ SO4n and a, r ∈ GL2n .

We may arrange the orbits in a sequence

P2n SO2n+2 Nn−1 =�1, . . . , �l = O2[(n+1)/2],id

such that Fi =
⋃i

j=1� j is closed in SO4n . It is clear that �i is open in Fi and
Fi−1 is closed in Fi . We obtain the exact sequence

(5-1) 0→ S(�i+1, τs)
e
−→S(Fi+1, τs)

r
−→S(Fi , τs)→ 0,

where the map e is the natural embedding and r is the restriction to Fi . Apply
the twisted Jacquet functor J{ψn−1} to the exact sequence (5-1). Since the Jacquet
functors are exact, we obtain another exact sequence

0→ J{ψn−1}(S(�i+1, τs))→ J{ψn−1}(S(Fi+1, τs))→ J{ψn−1}(S(Fi , τs))→ 0.

We obtain the semisimplification of J{ψn−1}(I(s,W(τ, ψ))) as a representation of
SO2n+1(F) as

⊕l
i=1 J{ψn−1}(S(�i , τs)).

Next, we study the space J{ψn−1}(S(�i , τs)) for i = 1, 2, . . . , l. We assume for
the rest of this section unless stated otherwise that all inductions are unnormalized.

As SO2n+2 Nn−1 module, we have

S(Oi,w, τs)' c-IndSO2n+2 Nn−1

P
γi,w
2n

(δ
1/2
P2n
τs)

γi,w ,

where c-Ind denotes the compact induction and

Ri,w = Pγi,w
2n := (γiw)

−1 P2nγiw∩SO2n+1 Nn−1.

Lemma 5.5. With notation above, the following vanishing properties hold.

(1) For w 6= id,

J{ψn−1}(c-IndSO2n+2 Nn−1
Ri,w

(δ
1/2
P2n
τs)

γi,w)= 0 for i ≥ 2[(n+ 1)/2].

(2) For w = id,

J{ψn−1}(c-IndSO2n+2 Nn−1
Ri,id

(δ
1/2
P2n
τs)

γi,id)= 0 for i > 2[(n+ 1)/2].

Proof. When w 6= id, by Lemma 5.4, there is a simple root subgroup x(t) inside
Nn−1 such that γiwx(t)(γiw)

−1 lies in the unipotent radical of P2n . This shows
that

x(t) ∈ Ri,w ∩ Nn−1 and (δ
1/2
P2n
τs)

γi,w(x(t))= id,

while ψn−1(x(t))= ψ(t).
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When w = id and i > 2[(n + 1)/2], the root subgroup xα(t) of SO4n is for
α = en−1+ e2n invariant under the conjugation by γ′−1

i . Hence

x(t) ∈ Ri,w ∩ Nn−1 and (δ
1/2
P2n
τs)

γi,w(x(t))= id,

while ψn−1(x(t))= ψ(t). �

Therefore, we are left with J{ψn−1}(S(�l, τs)) for the Zariski open orbit �l =

O2[(n+1)/2],id. To summarize:

Proposition 5.6. We have

J{ψn−1}(I(s,W(τ, ψ)))' J{ψn−1}(S(O2[(n+1)/2],id, τs))

for all s ∈ C as representations of SO2n+1(F).

5.7. Proof of Theorem 5.1(1). Keep the previous notation. By Proposition 5.6,

HomSO2n+1(F)(J{ψn−1}(I(s, τ )), Vσ )

' HomSO2n+1(F)(J{ψn−1}(S(O2[(n+1)/2],id, τs)), Vσ ),

reducing the proof to understanding the structure of J{ψn−1}(S(O2[(n+1)/2],id, τs))

as a representation of SO2n+1(F).
It is more convenient to choose ν4n as representative of the orbit O=O2[(n+1)/2],id

than the original γ2[(n+1)/2],id. Then

S(O, τs)' c-IndSO2n+2 Nn−1

P
ν4n
2n

(δ
1/2
P2n
τs)

ν4n ,

where Pν4n
2n = ν

−1
4n P2nν4n ∩SO2n+2 Nn−1. Let Qn+1 be the maximal standard para-

bolic subgroup of SO2n+2 whose Levi component is isomorphic to GLn+1, and let
Q−n+1 be the opposite parabolic subgroup. Then we have

Pν4n
2n =

{
m
((z c

In+1

))
∈ SO4n

∣∣∣ z ∈ Un−1

}
·Qn+1

:= m(U2n,n−1) ·Q
−

n+1,

where U2n, j is the subgroup of the unipotent radical U2n of the standard Borel
subgroup of GL2n consisting of elements of type(z c

0 I2n− j

)
∈ U2n with z ∈ U j .

For

φ ∈ c-IndSO2n+2 Nn−1

P
ν4n
2n

(δ
1/2
P2n
τs)

ν4n and q =
(

a 0
∗ a∗

)
∈ Q−n+1,
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we have

(5-2) (δ
1/2
P2n
τs)

ν4n (diag(In−1, q, In−1)) (φ)(g, r)

= |det a|−(s/2+n−1/2)φ(g, r(diag In−1, a)),

and for
(z c

0 In+1

)
∈ U2n,n−1, we have

(5-3) (δ
1/2
P2n
τs)

ν4n
(

m
((z c

In+1

)))
(φ)(g, r)= φ

(
g, r

(z c
0 In+1

))
.

To understand J{ψn−1}(S(O, τs)) as a representation of SO2n+1(F), we con-
sider the double coset decomposition Pν4n

2n \ SO2n+2 ·Nn−1/SO2n+1 ·Nn−1, which
reduces the proof to the computation of the double cosets

Q−n+1 \SO2n+2 /SO2n+1 .

Next proposition shows that it has only one orbit.

Proposition 5.8. Over any field k of characteristic zero, the generalized flag variety
Q−n+1(k) \SO2n+2(k) has only one orbit under the action of SO2n+1(k).

Proof. Let X = k2n+2 be a k-vector space, written with its elements as column
vector, with a quadratic form q defined by 1

2ν2n+2. Then SO(X) ' SO2n+2 Let
e1, . . . , e2n+2 be the standard basis of X , v0 = en+1 + en+2. Let Y = (k · v0)

⊥.
Then dim Y = 2n+ 1 and SO(Y )= SO2n+1. Note that Y has a basis

(5-4) en+1− en+2, e1, e2 . . . , en, en+3, . . . , e2n+1, e2n+2.

Then a basis of X can be chosen to be

(5-5) en+1+ en+2, en+1− en+2, e1, e2, . . . , en, en+3, . . . , e2n+1, e2n+2.

Let g ∈ SO(X) such that g(v0) = v0. Then g(Y ) = Y . Assume that the matrix of
g|Y in the basis (5-4) is Ag. Then g in the basis (5-5) is diag(1, Ag). As det g = 1,
we must have det(Ag)= 1; hence g ∈ SO(Y ), so the stabilizer of v0 is SO(Y ).

Note that q(v0)= 1. Let Z = {v ∈ X | q(v)= 1}. Then SO2n+2 acts transitively
on Z . To show the proposition, we only need to show that Q−n+1 acts on Z transi-
tively. In fact, if Q−n+1 acts transitively on Z , then, letting h ∈ SO(X), there exists
t ∈ Q−n+1 such that h · v0 = t · v0. Hence (t−1h) · v0 = v0, and then t−1h ∈ SO2n+1

and h ∈ Q−n+1 SO2n+1. This means that SO2n+2 = Q−n+1 SO2n+1.
Now we show that Q−n+1 acts transitively on Z . We only need to show that any

element of Z can be moved to v0 under the action of some element in Q−n+1. Let
v = (v1, v2) ∈ X with v1, v2 ∈ kn+1. Take g ∈ Q−n+1 to be

g =
(

a 0
b a∗

)
with a ∈ GLn+1 .



308 DIHUA JIANG, CHUFENG NIEN AND YUJUN QIN

Then the action of g on v is given by g · v = (av1, bv1+ a∗v2)
t .

Assume now q(v)=1. Then v1 6=0, otherwise q(v)=0. Then there is a∈GLn+1

such that av1 = (0, . . . , 0, 1)t . For this a, there exists b ∈ Matn+1(k) such that
bv1 = (1, 0, . . . , 0)t − a∗v2, since v1 6= 0. Now

g =
(

a 0
b a∗

)
∈ Q−n+1 and g · v = v0. �

It follows that Pν4n
2n \ SO2n+2 Nn−1 = [P

ν4n
2n ∩ SO2n+1 Nn−1] \ SO2n+1 Nn−1. By

restriction to SO2n+1 Nn−1, we have

c-IndSO2n+2 Nn−1

P
ν4n
2n

((δ
1/2
P2n
τs)

ν4n )' c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n )

as representations of SO2n+1(F)n Nn−1(F). Hence

J{ψn−1}(c-IndSO2n+2 Nn−1

P
ν4n
2n

((δ
1/2
P2n
τs)

ν4n ))

' J{ψn−1}(c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n ))

as representations of SO2n+1(F).
Define ψU2n,n−1

(u(z, c)) := ψn−1|U2n,n−1(u(z, c)).

Proposition 5.9. With notation above,

J{ψn−1}(c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n ))

' c-IndSO2n+1

P−n
(J{ψU2n,n−1}(τ

′)|det|−s/2−1/2)

as representations of SO2n+1(F), where P−n := Q−n+1 ∩ SO2n+1, the representation
τ ′ is obtained by restriction to P−n (F) of the representation of Q−n+1(F) given by
(5-2) and (5-3), and J{ψU2n,n−1}(τ

′) denotes the twisted Jacquet module of τ ′ along
(U2n,n−1, ψU2n,n−1).

Proof. Let f be a section in

c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n ).

Consider the restriction of f to SO2n+1(F). It is clear that this restriction map
factors through

J{ψn−1}(c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n )),

so we still denote the restriction by f 7→ f |SO2n+1(F). By (5-2) and (5-3), the
restriction f |SO2n+1(F) belongs to the space

c-IndSO2n+1

P−n
(J{ψU2n,n−1}(τ

′)|det|−s/2−1/2).
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By using the orbital decomposition in Proposition 5.8 and (5-3), it is not hard to
check that f 7→ f |SO2n+1(F) is in fact injective. The argument is the same as in the
proof of [Ginzburg et al. 1999, formula (6.5)] and similar to that of [Kudla 1986,
Lemma 5.3]. We omit the details.

The surjectivity can be verified as follows. Assume that we have a smooth
J{ψU2n,n−1}(Vτ ′)-valued function g on SO2n+1, compactly supported modulo P−n ,
satisfying

g(qy)= J{ψU2n,n−1}(τ
′)|det|−s/2−1/2(q)g(y) for q ∈ P−n and y ∈ SO2n+1.

Since g is locally constant, we may pull back g to a smooth Vτ ′-valued function
g′ on SO2n+1, compactly supported modulo P−n , satisfying

g′(qy)= τ ′(q)|det|−(s/2+n−1/2)g′(y) for q ∈ P−n and y ∈ SO2n+1.

The unipotent subgroup Nn−1 can be written as Nn−1=m(U2n,n−1)nN ′′, where
N ′′ is the intersection of Nn−1 with the unipotent radical V2n of P2n . Then

SO2n+1 Nn−1 = SO2n+1 U′′2n,n−1,

which is in fact a homeomorphism. Indeed, let z′y′x ′ = zyx with x, x ′ ∈ SO2n+1,
z, z′ ∈ Bn−1 and y, y′ ∈ N ′′. Then y= (z−1z′)y′(x ′x−1)∈ N ′′. Hence x = x ′, z= z′

and y = y′.
Then we can pull back g to a section f in

J{ψn−1}(c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n )),

which is defined as follows. Choose a compactly supported smooth function φ
on N ′′ that has a nonzero projection under the twisted Jacquet functor with respect
to (N ′′, ψn−1|N ′′), and define f ′(uyx, r) := φ(y)g′(x, ru), for all x ∈ SO2n+1,
u ∈ U2n,n−1, y ∈ N ′′, and r ∈ GL2n . It is clear that f ′ is a nonzero section in

c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n ).

By checking the action of Nn−1 on f ′, it is clear that f ′ factors through

J{ψn−1}(c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n )),

whose image f has the restriction to SO2n+1(F) equal to g. �

The elements of P−n have the form
b
x 1 0
−x 0 1
y′ −x ′ x ′ b∗

 ∈ SO2n+2(F),
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which is identified (following the embedding we assumed as before) withb
x 1
y x ′ b∗

 ∈ SO2n+1(F).

Following the discussions above, we deduce that

HomSO2n+1(F)(J{ψn−1}(I(s, τ )), Vσ )

' HomSO2n+1(F)(c-IndSO2n+1(F)

P−n (F)
(J{ψU2n,n−1}(τ

′)|det|−s/2−1/2), Vσ ).

By the Frobenius reciprocity law, the last space is isomorphic to

HomP−n (F)
(J{ψU2n,n−1}(τ

′)|det|−s/2−1/2, Vσ ).

By the assumption of Theorem 5.1, the last space is nonzero. Since the argu-
ment below only uses the genericity of τ ′ and the supercuspidality of σ and does
not depend on the value s, we may consider, for simplicity, only the nonzero
space HomP−n (F)

(J{ψU2n,n−1}(τ
′), Vσ ). Any nonzero element ξ in it is a P−n (F)-

equivariant, linear map from J{ψU2n,n−1}(τ
′) to Vσ . In particular, for any v ∈ Vτ ′ ,

we have

(5-6) σ

a
x 1
y x ′ a∗

 (ξ(v))= ξ(J{ψU2n,n−1}(τ
′)

In−1

a
x 1

 (v)).
Take a = In and consider the action of the unipotent radical of P−n (F), which is

denoted by V−n (F) and consists of elements of the form

v−(x, y) :=

In

x 1
y x ′ In

 .
Then (5-6) implies that the center (the elements of type v−(0, y)) of V−n (F) acts on
Vσ trivially. Since Vσ is supercuspidal, there is a nonzero vector v∈J{ψU2n,n−1}(Vτ̃ )
such that the unipotent radical of V−n (F) acts on ξ(v) by a nontrivial character.
Since the GLn(F) acts on the x-part (more precisely, the quotient of V−n (F)modulo
the center) with two orbits, we may assume that

σ(v−(x, y))(ξ(v))= ψV−n
(v−(x, y))ξ(v)= ψ(xn)ξ(v) for x = (x1, · · · , xn)

where ψV−n
is a nonzero character of V−n (F). In other words, the map ξ descends

to a map from J{ψU2n,n−1
}(τ ′) to J{ψV−n

}(Vσ ).
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By (5-6), we have

ξ(J{ψn−1}(τ
′)

In−1

a
x 1

 (v))= ψ(xn)ξ(v).

Now consider the subgroup B2n,n of GL2n consisting of elements of the form

b(z, c, e, y, d) :=

z c e
0 1 y
0 0 d

 with d ∈ GLn(F) and z ∈ Un−1.

Let µ be the Weyl element of GL2n that corresponds to the elementary matrix
diag(In−1, νn+1). Then it is easy to see that

ξ(J{ψn−1}(τ
′)(b(z, c, e, y, In))(µv))= ψUn−1

(z)ψ(cn−1)ψ(y1)ξ(µv).

This means that the map ξ factors through the n-th derivative τ̃ (n) in the sense of
[Bernstein and Zelevinsky 1976]. Therefore, we can view ξ as a map from the n-th
derivative τ̃ (n) to J{ψV−n

}(Vσ ), which has the equivalence property, for a ∈GLn−1,
that

J{ψV−n
}(σ )

((
a 0
x 1

))
ξ(v)= ξ

(τ ′)(n)



In

1 x∗

0 νn−1aνn−1



 (µv),

where x∗ = (xn−1, xn−2, . . . , x1) if x = (x1, . . . , xn−1).
Now we come back to the situation of (5-6) with a ∈GLn−1. We repeat the same

process with the supercuspidality of σ and the genericity of τ . Eventually, we arrive
at the 2n-th derivative of τ ′, which is the twisted Jacquet module of Whittaker type.
The equivalence property in this last case shows that Vσ has a nonzero Whittaker
functional. Hence it is generic. This finishes the proof of Theorem 5.1(1).
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CONFORMALLY OSSERMAN MANIFOLDS

YURI NIKOLAYEVSKY

To the memory of Novica Blažić (1959–2005),
a remarkable mathematician and a wonderful person.

An algebraic curvature tensor is called Osserman if the eigenvalues of the
associated Jacobi operator are constant on the unit sphere. A Riemannian
manifold is called conformally Osserman if its Weyl conformal curvature
tensor at every point is Osserman. We prove that a conformally Osserman
manifold of dimension n 6= 3, 4, 16 is locally conformally equivalent either
to a Euclidean space or to a rank-one symmetric space.

1. Introduction

An algebraic curvature tensor R on a Euclidean space Rn is a (3, 1) tensor having
the same symmetries as the curvature tensor of a Riemannian manifold. For X ∈Rn ,
the Jacobi operator RX : R

n
→ Rn is defined by RX Y = R(X, Y )X . The Jacobi

operator is symmetric, and RX X = 0 for all X ∈ Rn .

Definition 1.1. An algebraic curvature tensor R is Osserman if the eigenvalues of
the Jacobi operator RX do not depend on the choice of a unit vector X ∈ Rn .

One of the algebraic curvature tensors naturally associated to a Riemannian
manifold (apart from the curvature tensor itself) is the Weyl conformal curvature
tensor.

Definition 1.2. A Riemannian manifold is (pointwise) Osserman if its curvature
tensor at every point is Osserman. It is conformally Osserman if its Weyl tensor
everywhere at every point is Osserman.

It is well known (and easy to check directly) that a Riemannian space locally
isometric to a Euclidean space or to a rank-one symmetric space is Osserman. The
question of whether the converse is true (“every pointwise Osserman manifold is
flat or locally rank-one symmetric”) is known as the Osserman conjecture [1990].
The first result on the Osserman conjecture, the affirmative answer for manifolds of

MSC2000: 53B20, 53A30.
Keywords: Osserman manifold, Weyl tensor, Jacobi operator, Clifford structure.
Supported by the FSTE grant.
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dimension not divisible by 4, was published before the conjecture itself [Chi 1988].
In the following two decades, substantial progress was made in understanding
Osserman and related classes of manifolds, both in the Riemannian and pseudo-
Riemannian settings; see the books [Gilkey 2001; 2007; Garcı́a-Rı́o et al. 2002].

The Osserman conjecture is proved in the most cases, exception being when the
dimension of an Osserman manifold is 16 and one of the eigenvalues of the Jacobi
operator has multiplicity 7 or 8 [N 2003; 2004; 2005; 2006]. The main difficulty
in proving the conjecture in these remaining cases lies in the fact that the Cayley
projective plane (and its hyperbolic dual) are Osserman, with the multiplicities of
the nonzero eigenvalues of the Jacobi operator being exactly 7 and 8; moreover, the
curvature tensor of the Cayley projective plane is essentially different from that of
the other rank-one symmetric spaces, as it does not admit a Clifford structure (see
Section 2 for details). This is the only known Osserman curvature tensor without
a Clifford structure, and to prove the Osserman conjecture in full, it would be very
desirable to show that there are no other exceptions.

The study of conformally Osserman manifolds was started by Blažić and Gilkey
[2004] and was continued in [Blažić and Gilkey 2005; Blažić et al. 2005; Gilkey
2007; Blažić et al. 2008]. Every Osserman manifold is conformally Osserman
(which easily follows from the formula for the Weyl tensor and the fact that every
Osserman manifold is Einstein), since also every manifold is locally conformally
equivalent to an Osserman manifold.

Theorem 1.3 (main result). A connected C∞ Riemannian conformally Osserman
manifold of dimension n 6=3, 4, 16 is locally conformally equivalent to a Euclidean
space or to a rank-one symmetric space.

This theorem answers the conjecture made in [Blažić et al. 2005], with three ex-
ceptions. (For conformally Osserman manifolds of dimension n > 6, not divisible
by 4, this conjecture is proved in [Blažić and Gilkey 2004, Theorem 1.4].)

Note that the nature of the three excepted dimensions in Theorem 1.3 is dif-
ferent. In dimension three, the Weyl tensor vanishes, hence giving no information
about the manifold at all. In dimension four, even a “genuine” pointwise Osserman
manifold may not be locally symmetric (see the examples of “generalized complex
space forms” in [Gilkey et al. 1995, Corollary 2.7] and [Olszak 1989]). As proved
in [Chi 1988], the Osserman conjecture is still true in dimension four, but in a
more restrictive version: One requires the eigenvalues of the Jacobi operator to
be constant on the whole unit tangent bundle (a Riemannian manifold having this
property is called globally Osserman). One might wonder whether the conformal
counterpart of this result is true. Blažić and Gilkey [2005] found the elegant charac-
terization that a four-dimensional Riemannian manifold is conformally Osserman
if and only if it is either self-dual or anti-self-dual.
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In dimension 16, both the conformal and the original Osserman conjecture
remain open; for partial results, see [N 2005; 2006] in the Riemannian case and
Theorem 3.1 in the conformal case.

As a rather particular case of Theorem 1.3, we obtain an analogue of the Weyl–
Schouten theorem for rank-one symmetric spaces: A Riemannian manifold of
dimension greater than four having “the same” Weyl tensor as that of one of
the complex/quaternionic projective spaces or their noncompact duals is locally
conformally equivalent to that space. More precisely:

Theorem 1.4. Let Mn
0 denote one of the spaces CPn/2, CH n/2, HPn/4 or HH n/4,

and let W0 be the Weyl tensor of Mn
0 at some point x0 ∈Mn

0 . Suppose that for every
point x of a Riemannian manifold Mn with n > 4 there exists a linear isometry
ι : Tx Mn

→ Tx0 Mn
0 that maps the Weyl tensor of Mn at x on a positive multiple

of W0. Then Mn is locally conformally equivalent to Mn
0 .

The claim follows from [Blažić and Gilkey 2004, Theorem 1.4] for Mn
0 =CPn/2,

CH n/2 and n> 6. The fact that the dimension n= 16 is not excluded (as compared
to Theorem 1.3) follows from Theorem 3.1.

We assume all the object (manifolds, metrics, vector and tensor fields) to be
smooth (of class C∞), although all the results remain valid for class Ck , with
sufficiently large k.

The paper is organized as follows. In Section 2, we give some background on
Osserman algebraic curvature tensors and on Clifford structures and prove some
technical lemmas. The proof of Theorem 1.3 is given in Section 3. Theorem 1.3
is deduced from a more general Theorem 3.1. We first prove the local version
using the second Bianchi identity, and then the global version by showing that
the “algebraic type” of the Weyl tensor is the same at all points of a connected
conformally Osserman Riemannian manifold (in particular, a nonzero Osserman
Weyl tensor cannot degenerate to zero).

2. Algebraic curvature tensors with a Clifford structure

2.1. Clifford structure. The requirement that an algebraic curvature tensor R be
Osserman is algebraically quite restrictive. In most cases, such a tensor can be
obtained by the following construction, suggested in [Gilkey et al. 1995], which
generalizes the curvature tensor of complex and quaternionic projective space.

Definition 2.2. A Clifford structure Cliff(ν; J1, . . . , Jν; λ0, η1, . . . , ην) on Rn is a
set of ν ≥ 0 anticommuting almost Hermitian structures Ji and ν+1 real numbers
λ0, η1, . . . ην , with ηi 6= 0. An algebraic curvature tensor R on Rn has a Clifford
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structure Cliff(ν; J1, . . . , Jν; λ0, η1, . . . , ην) if

(2-1) R(X, Y )Z = λ0(〈X, Z〉Y −〈Y, Z〉X)

+

ν∑
i=1

ηi (2〈Ji X, Y 〉Ji Z +〈Ji Z , Y 〉Ji X −〈Ji Z , X〉Ji Y ).

When it does not create ambiguity, we write Cliff(ν; J1, . . . , Jν; λ0, η1, . . . , ην)

simply as Cliff(ν).

Remark 2.3. Definition 2.2 implies that the operators Ji are skew-symmetric and
orthogonal and satisfy the equations

〈Ji X, J j X〉 = δi j‖X‖2 and Ji J j + J j Ji =−2δi j id

for all i, j = 1, . . . , ν and all X ∈ Rn . This implies that every algebraic curvature
tensor with a Clifford structure is Osserman, as by (2-1) the Jacobi operator has
the form RX Y = λ0(‖X‖2Y − 〈Y, X〉X)+

∑ν
i=1 3ηi 〈Ji X, Y 〉Ji X . So for a unit

vector X , the eigenvalues of RX are λ0 (of multiplicity n−1− ν if ν < n−1), 0,
and λ0+ 3ηi for i = 1, . . . , ν.

The converse — every Osserman algebraic curvature tensor has a Clifford struc-
ture — is true in all dimensions but n = 16 and also in many cases when n = 16,
as follows from [N 2005, Proposition 1 and the penultimate paragraph of the proof
of Theorems 1 and 2], [N 2004, Proposition 1] and [N 2006, Proposition 2.1]. The
only known counterexample is the curvature tensor ROP2

of the Cayley projective
plane (more precisely, any algebraic curvature tensor of the form R=a ROP2

+bR1,
where R1 is the curvature tensor of the unit sphere S16(1) and a 6= 0).

A Clifford structure Cliff(ν) on Euclidean Rn turns it into a Clifford module;
see [Atiyah et al. 1964, Part 1], [Husemoller 1975, Chapter 11], and [Lawson and
Michelsohn 1989, Chapter 1] for standard facts on Clifford algebras and Clifford
modules). A Clifford algebra Cl(ν) on ν generators x1, . . . , xν is an associative
unital algebra over R defined by the relations xi x j + x j xi = −2δi j . The homo-
morphism σ : Cl(ν)→ End(Rn) of associative algebras defined on generators by
σ(xi ) = Ji and σ(1) = id is a representation of Cl(ν) on Rn . Since all the Ji

are orthogonal and skew-symmetric, σ gives rise to an orthogonal multiplication
defined as follows. In the Euclidean space Rν , fix an orthonormal basis e1, . . . , eν .
For every u =

∑ν
i=1 ui ei ∈ Rν and every X ∈ Rn , define

(2-2) Ju X =
∑ν

i=1
ui Ji X

(when u= ei , we abbreviate Jei to Ji ). The map J :Rν×Rn
→Rn defined by (2-2)

is an orthogonal multiplication: ‖Ju X‖2 = ‖u‖2‖X‖2 (similarly, we can define an
orthogonal multiplication J :Rν+1

×Rn
→Rn by Ju X =u0 X+

∑ν
i=1 ui Ji X for u=
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i=0 ui ei ∈ Rν+1, where e0, . . . , eν is an orthonormal basis for Euclidean Rν+1).

For X ∈ Rn , denote

JX = Span(J1 X, . . . , JνX) and IX = Span(X, J1 X, . . . , JνX).

We also use the complexified versions of these subspaces, which we denote by
JC X and IC X respectively for X ∈ Cn .

If Rn is a Cl(ν)-module (equivalently, if there exists an algebraic curvature tensor
with a Clifford structure Cliff(ν) on Rn), then

(2-3) ν ≤ 2b
+ 8a− 1, where n = 24a+bc, c is odd, and 0≤ b ≤ 3;

see, for instance, [Husemoller 1975, Theorem 11.8.2].
As a direct consequence of (2-3), we have the following inequalities.

Lemma 2.4. Let R be an algebraic curvature tensor with a Clifford structure
Cliff(ν) on Rn . Suppose that n > 4 and n 6= 8, 16. Then

(i) n ≥ 3ν+3, with equality only when n = 6 and ν = 1, or n = 12 and ν = 3, or
n = 24 and ν = 7;

(ii) n > 4ν− 2, except when n = 24 and ν = 7 or n = 32 and ν = 9;

(iii) there exists an integer l such that ν < 2l < n.

Proof. Let ρ(n) = 2b
+ 8a − 1, the right side of (2-3). Then ν ≤ ρ(n). First

suppose that n = 2mc, with m = 4a + b ≥ 6, where 0 ≤ b ≤ 3 and c is odd.
We claim that n > 4ρ(n). Indeed, n ≥ 2m

= 24a+b, so it suffices to show that
24a−2 > 1+23−ba−2−b. The latter inequality follows from 24a−2 > 1+8a, when
a ≥ 2, and is also true when a = 1 and b = 2, 3. Since n > 4ρ(n), (ii) is obvious,
(i) is satisfied (since ρ(n) > 3), and (iii) is satisfied with l = m− 1.

In each of the remaining cases (n = 2mc, with an odd c and m = 0, . . . , 5),
ρ(n) can be computed explicitly and the claim follows by a routine check. �

2.5. Clifford structures on R8 and the octonions. The proof of Theorem 1.3 in
the generic case uses that ν is small relative to n (with the required estimates given
in Lemma 2.4). However, in the case n = 8, the number ν can be as large as 7,
according to (2-3). Consider this case in more detail. In [N 2004], it is shown
that every Osserman algebraic curvature tensor R on R8 has a Clifford structure,
and that either R has a Cliff(3) structure with J1 J2 =±J3, or an existing Cliff(ν)
structure can be complemented to a Cliff(7) structure. More precisely:

Lemma 2.6. (1) Suppose R is an algebraic curvature tensor on R8 with Clifford
structure Cliff(ν; J1, . . . , Jν; λ0, η1, . . . , ην). Then exactly one of two possi-
bilities may occur: either R has a Clifford structure Cliff(3)with J1 J2= J3, or
there exist 7−ν operators Jν+1, . . . , J7 such that J1, . . . , J7 are anticommut-
ing almost Hermitian structures with J1 J2 . . . J7 = idR8 and R has a Clifford
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structure Cliff(7; J1, . . . , J7; λ0 − 3ξ, η1 + ξ, . . . , ην + ξ, ξ, . . . , ξ) for any
ξ 6= −ηi , 0.

(2) Let O be the octonion algebra with inner product defined by ‖u‖2 = uu∗,
where ∗ is the octonion conjugation, and let O′ = 1⊥, the space of imaginary
octonions. Then, in the second case in part (1), there exist linear isometries
ι1 : R

8
→O and ι2 : R7

→O′ such that the orthogonal multiplication (2-2) is
given by Ju X = ι1(X)ι2(u).

Proof. (1) This claim is proved in [N 2004, Lemma 5]. The proof is based on
the fact that every representation σ of Cl(ν) on R8, except for the representations
of Cl(3) with J1 J2 = ±J3, is a restriction of a representation of Cl(7) on R8 to
Cl(ν) ⊂ Cl(7). It follows that the almost Hermitian structures J1, . . . , Jν defined
by σ can be complemented by almost Hermitian structures Jν+1, . . . , J7 such that
J1, . . . , J7 anticommute, and so R can be written in the form (2-1), with a formal
summation up to 7 on the right side (but with ηi = 0 when i = ν + 1, . . . , 7). To
obtain a Cliff(7) structure for R, according to Definition 2.2, we only need to make
all the ηi nonzero. This can be done using the identity

(2-4) 〈X, Z〉Y −〈Y, Z〉X =
7∑

i=1

1
3(2〈Ji X, Y 〉Ji Z+〈Ji Z , Y 〉Ji X−〈Ji Z , X〉Ji Y ),

which is gotten from the polarized identity

‖X‖2Y −〈X, Y 〉X =
∑7

i=1〈Ji X, Y 〉Ji X,

which is true because for X 6= 0 the vectors ‖X‖−1 X , ‖X‖−1 J1 X, . . . , ‖X‖−1 J7 X
form an orthonormal basis for R8. Then by (2-1), R has a Clifford structure
Cliff(7; J1, . . . , J7; λ0− 3ξ, η1+ ξ, . . . , ην + ξ, ξ, . . . , ξ) for any ξ 6= −ηi , 0.

(2) This claim is proved in [N 2004, the beginning of Section 5.1]. The proof is
based on the following. There are two nonisomorphic representations of Cl(7) on
R8. By identifying R8 with the octonion algebra O via a linear isometry, these rep-
resentations are given by the orthogonal multiplications Ju X = u X and Ju X = Xu
respectively [Lawson and Michelsohn 1989, Section I.8]. Since (u X)∗ = X∗u∗ =
−X∗u for all u, X ∈O with u⊥1, the first representation is orthogonally equivalent
to the second one, with the operators Ji replaced by −Ji . Since changing the signs
of the Ji does not affect the form of the algebraic curvature tensor (2-1), we can
always assume that a Cliff(7) structure for an algebraic curvature tensor on R8 is
given by the orthogonal multiplication Ju X = ι1(X)ι2(u). �

In the proof of Theorem 1.3 for n = 8, we will usually identify R8 with O and
identify R7 with O′ via some fixed linear isometries ι1 and ι2, and we will simply
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write the orthogonal multiplication in the form

(2-5) Ju X = Xu,

where X ∈ R8
= O and u ∈ O′. The proof of Theorem 1.3 for n = 8 extensively

uses computations in the octonion algebra O, in particular, the standard identities

a∗ = 2〈a, 1〉1− a, 〈a, b〉 = 〈a∗, b∗〉 = 1
2(a
∗b+ b∗a),

a(ab)= a2b, 〈a, bc〉 = 〈b∗a, c〉 = 〈ac∗, b〉,

(ab∗)c+ (ac∗)b = 2〈b, c〉a, 〈ab, ac〉 = 〈ba, ca〉 = ‖a‖2〈b, c〉

for any a, b, c ∈ O, and the like; see for example [Harvey and Lawson 1982,
Section IV]. It also uses the fact that O is a division algebra; in particular, any
nonzero octonion is invertible: a−1

= ‖a‖−2a∗. We will also use the bioctonions
O⊗C, the algebra over the C that has same multiplication table as O. Since all the
identities above are polynomial, they still hold for bioctonions, with the complex
inner product on C8, the underlying linear space of O⊗C. However, the bioctonion
algebra is not a division algebra (and has zero-divisors: (i1+ e1)(i1− e1)= 0).

The proof of Theorem 1.3 will require a technical lemma.

Lemma 2.7. (1) Let J1, . . . , Jν be anticommuting almost Hermitian structures
on Rn , and let F : Rn

→ Rn be a homogeneous polynomial map of degree m
such that F(X) ∈ JX for all X ∈ Rn . Suppose that n > 4, and also ν ≤ 3 if n = 8
and ν ≤ 7 if n = 16. Then there exist homogeneous polynomials ci for i = 1, . . . , ν
of degree m− 1 such that F(X)=

∑ν
i=1 ci (X)Ji X.

With the same assumption, but with J replaced by I, an additional homogeneous
degree m− 1 polynomial c0 appears, and c0(X)X is added to F(X).

(2) Let J1, . . . , Jν be anticommuting almost Hermitian structures on Rn . Suppose
that n> 4 and that ν ≤ 3 if n= 8. Let 1≤ k ≤ ν and let a j for 1≤ j ≤ ν with j 6= k
be ν− 1 vectors in Rn such that

(2-6)
∑
j 6=k

(〈a j , JkY 〉J j Y +〈a j , Y 〉Jk J j Y )= 0 for all Y ∈ Rn .

Then either a j = 0 for all j 6= k, or ν = 1, or ν = 3, J1 J2 = εJ3, ε = ±1, and
a j = Jiv, where {i, j, k} = {1, 2, 3} and v 6= 0.

(3) Let N n be a smooth Riemannian manifold and let J1, . . . , Jν be anticommuting
almost Hermitian structures on N n . Suppose that for every nowhere vanishing
smooth vector field X on N n , the distribution JX =Span(J1 X, . . . , JνX) is smooth
(that is, the ν-form J1 X ∧· · ·∧ JνX is smooth). Then for every x ∈ N n , there exists
a neighborhood U=U(x) and smooth anticommuting almost Hermitian structures
J̃ 1, . . . , J̃ν on U such that Span( J̃ 1 X, . . . , J̃ νX) = Span(J1 X, . . . , JνX) for any
vector field X on U.
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Proof. (1) It is sufficient to prove the assertion for the case F(X) ∈ IX .
Since for every X 6= 0, the vectors X, J1 X, . . . , JνX are orthogonal and have

the same length ‖X‖, we have

‖X‖2 F(X)= f0(X)X +
ν∑

i=1

fi (X)Ji X,

where f0(X) = 〈F(X), X〉 and fi (X) = 〈F(X), Ji X〉 are homogeneous polyno-
mials of degree m+ 1 of X (or possibly zeros). Taking the squared lengths of the
both sides we get

‖X‖2‖F(X)‖2 = f 2
0 (X)+

ν∑
i=1

f 2
i (X),

so the sum of squares of the ν+1 polynomials f0(X), f1(X), . . . , fν(X) is divisible
by ‖X‖2. For X = (x1, . . . , xn), let (‖X‖2) be the ideal of R[X ] generated by
‖X‖2 =

∑
j x2

j , and let R be the quotient of R[X ] by this ideal. Let π be the
natural projection from R[X ] to R. We have

∑ν
i=0 f̂ 2

i = 0, where f̂i = π fi . If
at least one of the f̂i is nonzero (say the ν-th one), then

∑ν−1
i=0 ( f̂i/ f̂ν)2 = −1

in F, the field of fractions of the ring R. The field F is isomorphic to the field
Ln−1 = R(x1, . . . , xn−1,

√
−d), where d = x2

1 + · · ·+ x2
n−1 (an isomorphism from

Ln−1 to F is induced by the map (a + b
√
−d)/c → (a + bxn)/c, with a, b, c ∈

R[x1, . . . , xn−1] and c 6= 0). By [Pfister 1995, Theorem 3.1.4], the level of the
field Ln−1, the minimal number of elements whose sum of squares is −1, is 2l ,
where 2l < n ≤ 2l+1. It follows that we arrive at a contradiction in all the cases
when ν < 2l < n. This means that f̂i = 0 for all i = 0, . . . , ν, so each of the fi is
divisible by ‖X‖2 in R[X ], so

F(X)= (‖X‖−2 f0(X))X +
ν∑

i=1

(‖X‖−2 fi (X))Ji X,

with all the nonzero coefficients on the right side being homogeneous polynomials
of degree m− 1. The claim now follows from Lemma 2.4(iii).

(2) If ν = 1, Equation (2-6) is trivially satisfied. If ν = 2, the claim follows
immediately by taking the inner product of (2-6) with J1 J2Y . Suppose ν = 3.
Taking the inner product of (2-6) with Ji Y and i 6= k, we obtain

〈ai , JkY 〉‖Y‖2 = 〈a j , Y 〉〈Ji Jk J j , Y 〉,

where {i, j, k} = {1, 2, 3}. It follows that the polynomial 〈Ji Jk J j Y, Y 〉 is divisible
by ‖Y‖2. Since the operator Ji Jk J j is symmetric and orthogonal, it equals ε̃ id,
with ε̃ = ±1; hence J1 J2 = εJ3 with ε = ±1. Then −Jkai = ε̃a j , so Ji a j =

−ε̃Ji Jkai = −ε̃Ji Jkai = J j ai . Therefore for all i, j such that {i, j, k} = {1, 2, 3},
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we have a j = Jiv and ai = J jv, and we can assume that v 6= 0, since otherwise
ai = a j = 0.

Now suppose ν > 3 and let L = Span(a j ). It follows from (2-6) that if Y ⊥ L ,
then JkY ⊥ L , so L is Jk-invariant. Polarizing (2-6) we obtain∑

j 6=k

(〈a j , Jk X〉J j Y +〈a j , X〉Jk J j Y )+
∑
j 6=k

(〈a j , JkY 〉J j X +〈a j , Y 〉Jk J j X)= 0.

It follows that, for all X ⊥ L and all Y ∈ Rn ,∑
j 6=k

(〈a j , JkY 〉J j X +〈a j , Y 〉Jk J j X)= 0,

that is, with u(Y ) =
∑

j 6=k〈a j , JkY 〉e j and v(Y ) =
∑

j 6=k〈a j , Y 〉e j , we have that
Ju(Y )X = −Jk Jv(Y )X . Note that u(Y ) and v(Y ) are perpendicular to ek . Now,
fix an arbitrary Y ∈ Rn and choose a unit vector w perpendicular to u(Y ), v(Y )
and ek in Rν (this is possible since ν > 3). Then Jw Ju(Y )X = −Jw Jk Jv(Y )X , so
〈Jw Jk Jv(Y )X, X〉= 0 for all X ∈ L⊥. If v(Y ) 6= 0, the operator ‖v(Y )‖−1 Jw Jk Jv(Y )
is symmetric and orthogonal, so the maximal dimension of its isotropic subspace
is n/2< n− (ν−1)= dim L⊥ (the inequality follows from Lemma 2.4(ii)), which
is a contradiction. Hence v(Y )= 0 for all Y ∈ Rn , so all the a j are zeros.

(3) We first prove the lemma assuming 2ν ≤ n. In this case, the proof closely
follows the arguments in the proof of [N 2003, Lemma 3.1].

Let Y0 ∈ Tx N n be a unit vector. Since 2ν ≤ n, there exists a unit vector E ∈
Tx N n that is not in the range of the map 8 : Sν−1

× Sν−1
→ Sn−1, 8(u, v) 7→

Ju JvY0. Then JE ∩JY0 = 0. It follows that on some neighborhood U′ of x , there
exist smooth unit vector fields Y and En such that En(x) = E , Y (x) = Y0 and
JEn∩JY = 0 at every point y ∈U′. By assumption, the ν-dimensional distribution
JEn is smooth, so we can choose ν smooth orthonormal sections E1, . . . , Eν of
it, and then define anticommuting almost Hermitian structures J̃α on U′ satisfying
J̃αEn = Eα by setting J̃α =

∑ν
β=1 aαβ Jβ , where (aαβ) is the ν × ν orthogonal

matrix given by aαβ = 〈Eα, JβEn〉.
Let Eν+1, . . . , En−1 be orthonormal vector fields on U′ such that E1, . . . , En

is an orthonormal frame, and for a vector field X on U′, let J̃ X denote the n× ν
matrix whose column vectors are J̃ 1 X, . . . , J̃ νX relative to the frame E1, . . . , En .
Then ( J̃ X)t J̃ X = ‖X‖2 Iν and all the ν × ν minors of the matrix J̃ X are smooth
functions on U′. Moreover, the entries of the matrices J̃ Ei for i = 1, . . . , n are the
rearranged entries of the matrices J̃α for α= 1, . . . , ν relative to the basis {Ei }, so
to prove that the J̃α are smooth it suffices to show that all the entries of the matrices
J̃ Ei are smooth (on a possibly smaller neighborhood). Write J̃ Ei =

(Ki
Pi

)
, where

Ki and Pi are respectively ν × ν and (n − ν)× ν matrix-valued functions on U′;
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note that J̃ En =
( Iν

0

)
. For an arbitrary t ∈ R, all the ν× ν minors of the matrix

J̃ (Ei + t En)=

(
Ki + t Iν

Pi

)
are smooth. For every entry (Pi )kα, where k = ν+ 1, . . . , n and α = 1, . . . , ν, the
coefficient of tν−1 in the ν×ν minor of J̃ (Ei + t En) consisting of ν−1 out of the
first ν rows (omitting the α-th row) and the k-th row is ±(Pi )kα, so all the entries
of all the Pi are smooth.

For the vector field Y defined above, write J̃ Y =
(

K
P

)
. Since P=

∑n
i=1〈Y, Ei 〉Pi ,

all the entries of P are smooth on U′. Moreover, since IY ∩ IEn = 0, the spans
of the vector columns of the matrices J̃ Y and J̃ En =

( Iν
0

)
have trivial intersection,

so rk P = ν at every point y ∈ U′. Therefore we can choose the rows ν + 1 ≤
b1 < · · · < bν ≤ n of the matrix P at the point x so that the corresponding minor
P(b) = Pb1...bν is nonzero. Then the same minor P(b) is nonzero on a (possibly
smaller) neighborhood U⊂U′ of x . Taking all the ν× ν minors of J̃ Y consisting
of ν − 1 out of ν rows of P(b) and one row of K , we obtain that all the entries of
K are smooth on U. Moreover, for an arbitrary t ∈ R, all the ν × ν minors of the
matrix

J̃ (t Ei + Y )=
(

t Ki + K
t Pi + P

)
are smooth. Computing the coefficient of t in all the ν × ν minors of J̃ (t Ei + Y )
consisting of ν−1 out of ν rows of (t Pi+P)(b) and one row of t Ki+K , and using
the fact that all the entries of K , P and Pi are smooth on U, we obtain that all the
entries of Ki are also smooth on U. Therefore all the entries of all the matrices
J̃ Ei are smooth on U; hence the anticommuting almost Hermitian structures J̃α
are also smooth on U.

Since ν and n must satisfy inequality (2-3) (and hence those of Lemma 2.4), the
above proof works in all the cases except when n = 4 and ν = 3 and when n = 8
and ν = 5, 6, 7. The former case is easy: Taking any smooth orthonormal frame
Ei on a neighborhood of x and defining J̃α =

∑3
β=1 aαβ Jβ with the orthogonal

3×3 matrix (aαβ) given by aαβ = 〈Eα, JβE4〉, we see that all the entries of the J̃α
relative to the basis Ei are ±1 and 0.

The proof in the cases that n = 8 and ν = 5, 6, 7 is based on the fact that,
except when ν = 3 and J1 J2 = ±J3, any set of anticommuting almost Hermitian
structures J1, . . . , Jν on R8 can be complemented by almost Hermitian structures
Jν+1, . . . , J7 to a set J1, . . . , J7 of anticommuting almost Hermitian structures
on R8 (this is Lemma 2.6(1)).

If n= 8 and ν = 7, choose an arbitrary smooth almost Hermitian structure J7 on
some neighborhood U of x and complement it by anticommuting almost Hermitian
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structures J1, . . . , J6 at every point of U. Then for every smooth nowhere vanish-
ing vector field X on U, Span(J1 X, . . . , J6 X) = (Span(X, J7 X))⊥ is a smooth
distribution. This reduces the case n = 8 and ν = 7 to the case n = 8 and ν = 6.

Let n= 8 and ν= 6, and let J7 be an almost Hermitian structure complementing
J1, . . . , J6 at every point x ∈ N n . Using the first part of the proof (or the fact that
J7 X spans the one-dimensional smooth distribution (Span(J1 X, . . . , J6 X)⊕RX)⊥

for every nonvanishing smooth vector field X ) we can assume that J7 is smooth
on a neighborhood U of x ∈ N n . Choose a smooth orthonormal frame E1, . . . , E8

on (a possibly smaller neighborhood) U such that the matrix of J7 relative to Ei is( 0 I4
−I4 0

)
and define the almost Hermitian structure J̃ 6 on U by

J̃ 6 E2 = E1, J̃ 6 E4 = E3, J̃ 6 E6 =−E5, J̃6 E8 =−E7.

Then J7 and J̃ 6 anticommute; hence we can complement them by almost Hermitian
structures J ′1, . . . , J ′5 on U so that J ′1, . . . , J ′5, J̃ 6, J7 are anticommuting almost
Hermitian structures. Moreover, since both J7 and J̃ 6 are smooth on U, the five-
dimensional distribution Span(J ′1 X, . . . , J ′5 X)= (Span(X, J7 X, J̃ 6 X))⊥ is smooth
for every smooth nowhere vanishing vector field X on U. This reduces the case
n = 8 and ν = 6 to the case n = 8 and ν = 5. Indeed, if J̃ 1, . . . , J̃ 5 are smooth an-
ticommuting almost Hermitian structures on U such that Span( J̃ 1 X, . . . , J̃ 5 X)=
Span(J ′1 X, . . . , J ′5 X) for every vector field X , then J̃ 1, . . . , J̃ 5, J̃ 6 are the required
almost Hermitian structures, since

Span( J̃ 1 X, . . . , J̃ 6 X)= Span(J ′1 X, . . . , J ′5 X, J̃6 X)

= (Span(X, J7 X))⊥ = Span(J1 X, . . . , J6 X),

for every vector field X on U, and J̃6 anticommutes with every J̃α for α=1, . . . , 5,
since it anticommutes with every J ′α for α = 1, . . . , 5.

Let n = 8 and ν = 5. Let J6 and J7 be anticommuting almost Hermitian struc-
tures complementing J1, . . . , J5 at every point x ∈ N n . Since Span(J6 X, J7 X) =
(Span(J1 X, . . . , J5 X))⊥, we can choose such J6 and J7 to be smooth on a neigh-
borhood U of x ∈ N n , by the first part of the proof. Choose a smooth orthonormal
frame E1, . . . , E8 on (a possibly smaller neighborhood) U as follows. First choose
an arbitrary smooth unit vector field E1 on U. The vector fields J6 E1 and J7 E1

are orthonormal; set E2 = −J6 E1, E3 = −J7 E1. The unit vector field J6 J7 E1

is orthogonal to E1, J6 E1 and J7 E1; set E4 = −J6 J7 E1. Choose an arbitrary
smooth unit section E5 of the smooth distribution (Span(E1, E2, E3, E4))

⊥ on U.
That distribution is both J6- and J7-invariant, so we can set, similar to above,
E6 = J6 E5, E7 = J7 E5 and E8 = −J6 J7 E5. Now define the almost Hermitian
structure J̃ 5 on U whose matrix in the frame Ei is

( 0 I4
−I4 0

)
. Then J̃ 5, J6 and J7

are anticommuting almost Hermitian structures on U, with J̃ 5 J6 6= ±J7; hence
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we can complement them by almost Hermitian structures J ′1, . . . , J ′4 on U in such
a way that J ′1, . . . , J ′4, J̃ 5, J6, J7 are anticommuting almost Hermitian structures.
Moreover, since J̃ 5, J6 and J7 are smooth on U, the four-dimensional distribution
Span(J ′1 X, . . . , J ′4 X) = (Span(X, J̃ 5 X, J6 X, J7 X))⊥ is smooth for every smooth
nowhere vanishing vector field X on U. By the first part of the proof, we can
find smooth anticommuting almost Hermitian structures J̃ 1, . . . , J̃ 4 on (a possibly
smaller) neighborhood U such that Span( J̃ 1 X, . . . , J̃ 4 X) = Span(J ′1 X, . . . , J ′4 X)
for every vector field X . Then J̃ 1, . . . , J̃ 4, J̃ 5 are the required almost Hermitian
structures, since

Span( J̃ 1 X, . . . , J̃ 5 X)= Span(J ′1 X, . . . , J ′4 X, J̃5 X)

= (Span(X, J6 X, J7 X))⊥ = Span(J1 X, . . . , J5 X)

for every vector field X on U, and J̃5 anticommutes with every J̃α for α=1, 2, 3, 4,
since it anticommutes with every J ′α for α = 1, 2, 3, 4. �

3. Conformally Osserman manifolds: Proof of Theorem 1.3

Let Mn be a smooth conformally Osserman Riemannian manifold with n 6= 3, 4.
If n = 2, the manifold is locally conformally flat, so we can assume that n > 4.
Combining [N 2005, Proposition 1 and the penultimate paragraph of the proof of
Theorems 1 and 2] with [N 2004, Proposition 1] and [N 2006, Proposition 2.1],
we obtain that the Weyl tensor of Mn has a Clifford structure for all n 6= 16, and
also for n = 16 provided the Jacobi operator WX has an eigenvalue of multiplicity
at least 9 (note that the Jacobi operator of any Osserman algebraic curvature tensor
on R16 has an eigenvalue of multiplicity at least 7, for topological reasons). In the
latter case, W has a Clifford structure Cliff(ν), with ν ≤ 6, at every point on Mn .

To prove Theorem 1.3 it therefore suffices to prove the following theorem.

Theorem 3.1. Let Mn be a connected smooth Riemannian manifold whose Weyl
tensor at every point x ∈ Mn has a Clifford structure Cliff(ν(x)). Suppose that
n > 4, and additionally that ν(x)≤ 4 if n = 16. Then there exists a space Mn

0 from
the list Rn,CPn/2, CH n/2, HPn/4, HH n/4 (Euclidean space and the rank-one
symmetric spaces with their standard metrics) such that Mn is locally conformally
equivalent to Mn

0 .

Note that by Theorem 3.1, every point of Mn has a neighborhood conformally
equivalent to a domain of the same “model space”. Also note that the theorem says
something also in the case n = 16, whereas Theorem 3.1 does not.

We start with a sketch of the proof of Theorem 3.1. First, we show that the
Clifford structure for the Weyl tensor can be chosen locally smooth on an open,
dense subset M ′ ⊂ Mn (see Lemma 3.2 for the precise statement). To simplify
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the form of the curvature tensor R of Mn , we combine the λ0-part of W (from
(2-1)) with the difference R −W , so that R has the form (3-1) for some smooth
symmetric operator field ρ at every point of M ′. The technical core of the proof is
Lemmas 3.5 and 3.6, which establish various identities for the covariant derivatives
of ρ, the Ji and the ηi , using the second Bianchi identity for the curvature tensor
of the form (3-1). Lemma 3.6 treats the case (n, ν)= (8, 7) and uses the octonion
arithmetic; Lemma 3.5 treats all the other cases, and uses the fact that ν is small
compared to n — see Lemma 2.4. It follows from the identities of Lemma 3.5 and
Lemma 3.6 that, unless the Weyl tensor vanishes, the metric on M ′ can be locally
changed to a conformal one whose curvature tensor again has the form (3-1), but
with the two additional features: First, all the ηi are locally constant, and second,
ρ is a Codazzi tensor, that is, (∇Xρ)Y = (∇Yρ)X . By the result of [Derdziński and
Shen 1983], exterior products of the eigenspaces of a symmetric Codazzi tensor
are invariant under the curvature operator on the two-forms. Using that, we prove
in Lemma 3.7 that ρ must be a multiple of the identity, so, by (3-1), M ′ is locally
conformally equivalent to an Osserman manifold. The affirmative answer to the
Osserman conjecture in the cases for n and ν considered in Theorem 3.1, given by
[N 2003, Theorem 1.2], implies that M ′ is locally conformally equivalent to one of
the spaces listed in Theorem 3.1. This proves Theorem 3.1 at the generic points.
To prove Theorem 3.1 globally, we first show, using Lemma 3.9, that M splits into
a disjoint union of a closed subset M0, on which the Weyl tensor vanishes, and
nonempty open connected subsets Mα, each of which is locally conformal to one
of the rank-one symmetric spaces CPn/2, CH n/2, HPn/4, HH n/4. On every Mα,
the conformal factor f is a well-defined positive smooth function. Assuming that
there exists at least one Mα and that M0 6= ∅, we show in Lemma 3.10 that there
exists a point x0 ∈ M0 on the boundary of a geodesic ball B ⊂ Mα such that both
f (x) and ∇ f (x) tend to zero when x→ x0 for x ∈ B. Then the positive function
u = f (n−2)/4 satisfies the elliptic equation (3-31) in B, with limx→x0,x∈B u(x)= 0;
hence by the boundary point theorem, the limiting value of the inner derivative of u
at x0 must be positive. This contradiction implies that either M = M0 or M = Mα.

Proof of Theorem 3.1. For n > 4, let Mn be a connected smooth Riemannian
manifold whose Weyl tensor at every point has a Clifford structure. Define the
function N : Mn

→ N so that N (x) is the number of distinct eigenvalues of the
Jacobi operator WX associated to the Weyl tensor, where X is an arbitrary nonzero
vector from Tx Mn . Since the Weyl tensor is Osserman, N (x) is well defined.
Moreover, since the set of symmetric operators having no more than N0 distinct
eigenvalues is closed in the linear space of symmetric operators on Rn , the function
N (x) is lower semicontinuous, that is, every subset {x :N (x)≤N0} is closed in Mn .
Let M ′ be the set of points where the function N (x) is continuous. It is easy to
see that M ′ is an open and dense (but possibly disconnected) subset of Mn . The
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following lemma shows that the Clifford structure for the Weyl tensor is locally
smooth on every connected component of M ′.

Lemma 3.2. For n > 4, let Mn be a smooth Riemannian manifold whose Weyl
tensor has a Clifford structure at every point. If n = 16, we additionally require
that at every point x ∈ M16, the Weyl tensor has a Clifford structure Cliff(ν(x))
with ν(x) 6= 8.

Let M ′ be the (open, dense) subset of Mn , at the points of which the number of
distinct eigenvalues of the Jacobi operator associated to the Weyl tensor of Mn is
locally constant. Then for every x ∈ M ′, there exists a neighborhood U = U(x),
a number ν ≥ 0, smooth functions η1, . . . , ην : U→ R \ {0}, a smooth symmetric
linear operator field ρ, and smooth anticommuting almost Hermitian structures Ji

for i = 1, . . . , ν, on U such that the curvature tensor of Mn has the form

(3-1) R(X, Y )Z = 〈X, Z〉ρY +〈ρX, Z〉Y −〈Y, Z〉ρX −〈ρY, Z〉X

+

ν∑
i=1

ηi (2〈Ji X, Y 〉Ji Z +〈Ji Z , Y 〉Ji X −〈Ji Z , X〉Ji Y ),

for all y ∈ U and X, Y, Z ∈ Ty Mn . Moreover, if n = 8, then the curvature tensor
has the form (3-1) either with ν = 3 and J1 J2 =±J3, or with ν = 7 for all y ∈U.

Proof. Let X be a smooth unit vector field on Mn . Since the Weyl tensor W is
a smooth Osserman algebraic curvature tensor, the characteristic polynomial of
WX |X⊥ (of the restriction of the Jacobi operator WX to the subspace X⊥) does not
depend on X and is a well-defined smooth map p : Mn

→ Rn−1[t], y 7→ py(t),
where Rn−1[t] is the (n−1)-dimensional affine space of polynomials of degree
n − 1 with leading term (−t)n−1. Since all the roots of py(t) are real and the
number of different roots is constant on every connected component of M ′, the
eigenvalues µ0, µ1, . . . , µl of WX |X⊥ are smooth functions and their multiplicities
m0,m1, . . . ,ml are constant on every connected component of M ′ (we chose the
labeling so that m0 =max{m0,m1, . . . ,ml}.

First consider the case n 6= 8. The Weyl tensor has a Clifford structure given
by (2-1) at every point of M ′. By Lemma 2.4, for n > 4 with n 6= 8, 16, we
have n − 1− ν > ν for any Clifford structure on Rn . By (2-3), we have ν ≤ 8
for n = 16, so by assumption, the inequality n − 1− ν > ν also holds for n =
16. Then the biggest multiplicity of an eigenvalue of WX |X⊥ is n − 1 − ν; see
Remark 2.3. So ν = n − 1−m0 is constant and the function λ0 = µ0 is smooth
on every connected component of M ′. Moreover, for every smooth unit vec-
tor field X on M ′ and every i = 1, . . . , l, the µi -eigendistribution of WX |X⊥ is
Span j :λ0+3η j=µi

(J j X). Since λ0 and µi are smooth functions on every connected
component of M ′, so is η j . Moreover, on every connected component of M ′, every
distribution Span j :λ0+3η j=µi

(J j X) is smooth and has a constant dimension mi for
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any nowhere vanishing smooth vector field X . By Lemma 2.7(3), there exists a
neighborhood Ui (x) and smooth anticommuting almost Hermitian structures J̃ j

(for j such that λ0+ 3η j = µi ) on Ui (x) such that

Span j :λ0+3η j=µi
(J j X)= Span j :λ0+3η j=µi

( J̃ j X).

Let W̃ be the algebraic curvature tensor on U =
⋂l

i=1 Ui (x) with the Clifford
structure Cliff(ν; J̃ 1, . . . , J̃ ν; λ0, η1, . . . , ην). Then ν= n−1−m0 is constant and
all the J̃ i , ηi and λ0 are smooth on U. Moreover, for every unit vector field X
on U, the Jacobi operators W̃ X and WX have the same eigenvalues and the same
eigenspaces by construction; hence W̃ X =WX , which implies W̃ =W .

Now consider the case n = 8. By Lemma 2.6, at every point x ∈ M ′, the Weyl
tensor either has a Cliff(3) structure with J1 J2 = J3 or a Cliff(7) structure (but
not both). Since on every connected component Mα of M ′ the eigenvalues of the
operator WX |X⊥ with X 6= 0 have constant number and multiplicity, Remark 2.3
implies that the only case when Mα may potentially contain points of both kinds
is when one of the eigenvalues of WX |X⊥ with X 6= 0 on Mα has multiplicity 4 and
the Clifford structure at every point x ∈ Mα is either

Cliff(3; J1, J2, J3; λ0, η1, η2, η3)

with J1 J2 = J3, or

Cliff(7; J1, . . . , J7; λ0− 3ξ, η1+ ξ, η2+ ξ, η3+ ξ, ξ, ξ, ξ, ξ),

where η1, η2, η3 6= 0 (some of them can be equal) and ξ 6=−ηi , 0. The eigenvalues
of WX |X⊥ with ‖X‖ = 1 at every point x ∈ Mα are λ0, of multiplicity 4, and
λ0+3ηi . Let X be an arbitrary nowhere vanishing smooth vector field on a neigh-
borhood U⊂ Mα of a point x ∈ Mα. Then the four-dimensional eigendistribution
of WX |X⊥ corresponding to the eigenvalue of multiplicity 4 is smooth; hence its
orthogonal complement, the distribution Span(J1 X, J2 X, J3 X), is also smooth.
By Lemma 2.7(3), there are smooth anticommuting almost Hermitian structures
J̃ 1, J̃ 2, J̃ 3 such that Span( J̃ 1 X, J̃ 2 X, J̃3 X)=Span(J1 X, J2 X, J3 X) on (a possibly
smaller) neighborhood U. By Lemma 2.7(1) with F(X)= J̃ i X , every J̃ i is a linear
combination of the J j : J̃ i =

∑3
j=1 ai j J j , and moreover, the matrix (ai j ) must be

orthogonal, since the J̃ i are anticommuting almost Hermitian structures. It follows
that J̃ 1 J̃2 J̃ 3 =±J1 J2 J3. The operator on the left side is smooth on U, the one on
the right side is ± idR8 at the points where the Clifford structure is Cliff(3) with
J1 J2 = J3, and is symmetric with trace zero at the points where the Clifford struc-
ture is Cliff(7), which follows from the identity J4(J1 J2 J3)J4= J1 J2 J3. Therefore
all the points of U either have a Cliff(3) structure with J1 J2 = J3 or a Cliff(7)
structure. In both cases, the Clifford structure for W can be taken to be smooth:
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In the first, this follows from the arguments similar to those in the first part of
the proof, since ν < n − 1− ν; in the second, we apply Lemma 2.7(3) to every
eigendistribution of WX |X⊥ .

Thus for any x ∈M ′, the Weyl tensor on a neighborhood U=U(x) has the form
(2-1), with a constant ν and smooth λ0, ηi and Ji . Then the curvature tensor has
the form (3-1) with the operator ρ given by

ρ =
1

n−2
Ric+

(
λ0
2
−

scal
2(n−1)(n−2)

)
id,

where Ric is the Ricci operator and scal is the scalar curvature. Since λ0 is a smooth
function, the operator field ρ is also smooth. �

Remark 3.3. In fact, the proof shows that if an algebraic curvature tensor field R

has a Clifford structure at every point of a Riemannian manifold (and ν 6= 8 when
n = 16), then it has a Clifford structure of the same class of differentiability as R

on a neighborhood of every generic point of the manifold.

Remark 3.4. It follows from Lemma 2.6(1) (in fact, from Equation (2-4)) that, in
the case n = 8 and ν = 7 we can replace ρ by ρ− 3

2 f id and ηi by ηi + f in (3-1)
without changing R, where f is an arbitrary smooth function on U. If we want
the resulting Clifford structure to be Cliff(7), we additionally require that ηi + f
is nowhere zero.

Let x ∈M ′, and let U=U(x) be its neighborhood defined in Lemma 3.2. By the
second Bianchi identity, (∇U R)(X, Y )Y + (∇Y R)(U, X)Y + (∇X R)(Y,U )Y = 0.
Substituting R from (3-1) and using the fact that the operators Ji and their covariant
derivatives are skew-symmetric and the operator ρ and its covariant derivatives are
symmetric we get

(3-2) 〈X, Y 〉((∇Uρ)Y − (∇Yρ)U )+‖Y‖2((∇Xρ)U − (∇Uρ)X)

+〈U, Y 〉((∇Yρ)X − (∇Xρ)Y )+〈(∇Yρ)U − (∇Uρ)Y, Y 〉X

+〈(∇Xρ)Y − (∇Yρ)X, Y 〉U +〈(∇Uρ)X − (∇Xρ)U, Y 〉Y

+

∑ν

i=1
3(X (ηi )〈Ji Y,U 〉−U (ηi )〈Ji Y, X〉)Ji Y

+

∑ν

i=1
Y (ηi )(2〈JiU, X〉Ji Y +〈Ji Y, X〉JiU −〈Ji Y,U 〉Ji X)

+

∑ν

i=1
ηi
(
(3〈(∇U Ji )X, Y 〉+ 3〈(∇X Ji )Y,U 〉+ 2〈(∇Y Ji )U, X〉)Ji Y

+ 3〈Ji X, Y 〉(∇U Ji )Y + 3〈Ji Y,U 〉(∇X Ji )Y + 2〈JiU, X〉(∇Y Ji )Y

+〈(∇Y Ji )Y, X〉JiU +〈Ji Y, X〉(∇Y Ji )U

−〈(∇Y Ji )Y,U 〉Ji X −〈Ji Y,U 〉(∇Y Ji )X
)
= 0.
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Taking the inner product of (3-2) with X and assuming X , Y and U to be orthog-
onal, we obtain

(3-3) ‖X‖2〈Q(Y ),U 〉+ ‖Y‖2〈Q(X),U 〉

+

∑ν

i=1
3(X (ηi )〈Ji Y,U 〉− Y (ηi )〈Ji X,U 〉−U (ηi )〈Ji Y, X〉)〈Ji Y, X〉

+

∑ν

i=1
3ηi
(
(2〈(∇U Ji )X, Y 〉+ 〈(∇X Ji )Y,U 〉+ 〈(∇Y Ji )U, X〉)〈Ji Y, X〉

− 〈Ji Y,U 〉〈(∇X Ji )X, Y 〉− 〈Ji X,U 〉〈(∇Y Ji )Y, X〉
)
= 0,

where Q : Rn
→ Rn is the quadratic map defined by

(3-4) 〈Q(X),U 〉 = 〈(∇Xρ)U − (∇Uρ)X, X〉.

Note that 〈Q(X), X〉 = 0.

Lemma 3.5. Under the assumptions of Lemma 3.2, let x ∈ M ′ and let U be the
corresponding neighborhood of x. Suppose that if n= 8, then ν = 3 and J1 J2 = J3

on U, and if n = 16, then ν ≤ 4. For every point y ∈ U, identify Ty Mn with
Euclidean Rn via a linear isometry.

(i) There exist mi , bi j ∈ Rn with i, j = 1, . . . , ν such that for all X, Y,U ∈ Rn

and all i, j = 1, . . . , ν,

Q(Y )= 3
∑ν

k=1〈mk, Y 〉JkY,(3-5a)

(∇X Ji )X = η−1
i (‖X‖2mi −〈mi , X〉X)+

∑ν
j=1〈bi j , X〉J j X,(3-5b)

bi j + b j i = η
−1
i J j mi + η

−1
j Ji m j ,(3-5c)

∇ηi = 2Ji mi ,(3-5d) ∑
j 6=i

(〈ηi bi j + η j b j i , Ji Y 〉J j Y +〈ηi bi j + η j b j i , Y 〉Ji J j Y )= 0.(3-5e)

(ii) These equations hold:

(∇Yρ)U − (∇Uρ)Y =
ν∑

i=1

(2〈Ji Y,U 〉mi −〈mi , Y 〉JiU +〈mi ,U 〉Ji Y ),(3-6a)

bi j (3− ηiη
−1
j )+ b j i (3− η jη

−1
i )= 0 for i 6= j,(3-6b)

Ji mi = ηi p for i = 1, . . . , ν and some p ∈ Rn.(3-6c)

Proof. (i) We split the proof of these assertions into two cases: the exceptional
case, when either n = 6 and ν = 1, or n = 12, ν = 3 and J1 J2 = ±J3, or n = 8,
ν = 3 and J1 J2 = J3, and the generic case, consisting of all the other Clifford
structures considered in the lemma.
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Generic case. From (3-3) we obtain

(3-7) ‖X‖−2
〈Q(X),U 〉+ ‖Y‖−2

〈Q(Y ),U 〉 = 0

for all X ⊥ IY , X, Y ⊥ IU , and X, Y,U 6= 0.

We want to show that 〈Q(X),U 〉 = 0 for all X ⊥ IU . This is immediate when
n> 3ν+3. Indeed, codim(IU+IX)> ν+1 for any U 6= 0 and any unit X ⊥IU ,
so we can choose unit vectors Y1, Y2 ⊥ IU +IX such that Y1 ⊥ IY2. Then (3-7)
implies that 〈Q(X),U 〉 = −〈Q(Y1),U 〉 = 〈Q(Y2),U 〉 = −〈Q(X),U 〉.

Consider the case n ≤ 3ν + 3. By Lemma 2.4(i), this could only happen when
n= 12 and ν = 3 or n= 24 and ν = 7 (for the pairs (n, ν) belonging to the generic
case), and in both cases, n=3ν+3. Choose and fix an arbitrary U 6=0 and consider
the quadratic form q(X)= 〈Q(X),U 〉 defined on the (2ν+ 2)-dimensional space
L = (IU )⊥. Suppose q 6= 0. By (3-7), the restriction of q to the unit sphere of L is
not a constant, so it attains its maximum (respectively minimum) on a great sphere
S1 (respectively S2). The subspaces L1 and L2 defined by S1 and S2 are orthogonal.
Moreover by (3-7), we have L2⊃ (IX)⊥∩L for any nonzero X ∈ L1, which implies
that dim L2 ≥ ν+ 1. Similarly dim L1 ≥ ν+ 1, so dim L1 = dim L2 = ν+ 1 since
L1 ⊥ L2, and L = L1⊕ L2. It follows that q(X)= c(‖π1 X‖2−‖π2 X‖2) for some
c > 0, where πi : L→ L i is the orthogonal projection. Also, L2 = (IX)⊥ ∩ L for
all nonzero X ∈ L1, which means that the subspace L1 = L⊥2 ∩ L (and similarly
L2) is πI-invariant, where π : Rn

→ L is the orthogonal projection, and even
furthermore πIX = Lα for every nonzero X ∈ Lα for α = 1, 2, by dimension
count. Let X = X1+ X2 and Y = Y1+ Y2 ∈ L , where Xα = παX and Yα = παY .
The condition Y ⊥ IX is equivalent to

〈X1, Y1〉+ 〈X2, Y2〉 = 〈π Ji X1, Y1〉+ 〈π Ji X2, Y2〉 = 0 for all i = 1, . . . ν.

Take arbitrary orthonormal bases for L1 and for L2 and let Mα(Xα) for α= 1, 2 be
the (ν+1)× (ν+1) matrix whose columns relative to the chosen basis for Lα are
Xα, π J1 Xα, . . . , π JνXα. Then Y ⊥IX if and only if M1(X1)

t Y1=−M2(X2)
t Y2.

Since for α = 1, 2, and any nonzero Xα ∈ Lα, the columns of Mα(Xα) span Lα,
we obtain Y2 =−(M2(X2)

t)−1 M1(X1)
t Y1 for any X2 6= 0. Then, since

q(X)= c(‖X1‖
2
−‖X2‖

2) and q(Y )= c(‖Y1‖
2
−‖Y2‖

2),

Equation (3-7) implies ‖Y1‖
2
‖X1‖

2
−‖Y2‖

2
‖X2‖

2
= 0, so

‖Y1‖
2
‖X1‖

2
−‖(M2(X2)

t)−1 M1(X1)
t Y1‖

2
‖X2‖

2
= 0

for any X1, Y1 ∈ L1 and any nonzero X2 ∈ L2. It follows that

‖X1‖
2(M1(X1)

t M1(X1))
−1
= ‖X2‖

2(M2(X2)
t M2(X2))

−1
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for any nonzero Xα ∈ Lα. Thus for some positive definite symmetric (ν+1)×(ν+1)
matrix T , we have

Mα(Xα)t Mα(Xα)= ‖Xα‖2T

for all Xα ∈ Lα with α = 1, 2. Then for any X = X1+ X2 ∈ L with Xα ∈ Lα, and
any i = 1, . . . , ν,

‖π Ji X‖2 = ‖π Ji X1‖
2
+‖π Ji X2‖

2
= (M1(X1)

t M1(X1)+M2(X2)
t M2(X2))i i

= Ti i (‖X1‖
2
+‖X2‖

2)= Ti i‖X‖2.

On the other hand, π Ji X = Ji X−‖U‖−2∑ν
j=1〈Ji X, J jU 〉J jU for any X ∈ L , so

‖π Ji X‖2 = ‖X‖2−‖U‖−2∑ν
j=1〈Ji X, J jU 〉2. It follows that

‖X‖2‖U‖2(1− Ti i )=

ν∑
j=1

〈Ji X, J jU 〉2 =
ν∑

j=1

〈X, Ji J jU 〉2

for an arbitrary X ∈ L . Since dim L = 2ν + 2 > ν, we can choose a nonzero
X ∈ L orthogonal to the ν vectors Ji J jU , for j = 1, . . . , ν. This implies Ti i = 1,
and so X ⊥ Ji J jU , for all i, j = 1, . . . , ν and all X ∈ L = (IU )⊥. Therefore
Ji J jU ∈ IU for all i, j = 1, . . . , ν and all U ∈ Rn for which the quadratic form
q(X)= 〈Q(X),U 〉 defined on (IU )⊥ is nonzero. If this is true for at least one U ,
then this is true for a dense subset of Rn , which implies that Ji J jU ∈ IU for all
i, j = 1, . . . , ν and all U ∈ Rn . Then by Lemma 2.7(1), Ji J jU =

∑ν
k=1 ai jk JkU

for i 6= j for some constants ai jk , which implies that 〈Jk Ji J jU,U 〉 = ai jk‖U‖2,
so for all triples of pairwise distinct i, j, k, the symmetric operator Jk Ji J j on Rn

is a multiple of the identity. This is impossible when ν > 3 (since for l 6= i, j, k,
the operator Jl Jk Ji J j must be orthogonal and symmetric). The only remaining
cases are n = 12 and ν = 3, with J1 J2 J3 = ± id, and n = 6 and ν = 1, which are
considered under the exceptional case below.

Therefore 〈Q(X),U 〉 = 0 for X ⊥ IU , so Q(X) ∈ IX for all X ∈ Rn . By
Lemma 2.7(1) (and the fact that 〈Q(X), X〉 = 0), this implies (3-5a) for some
vectors mi ∈ Rn .

To prove (3-5b) and (3-5c), we first show that for an arbitrary X 6= 0, there is
a dense subset of the Y in (IX)⊥ such that JX ∩JY = 0. This follows from the
dimension count (compare to [N 2003, Lemma 3.2(1)]). For X 6= 0, define the
cone CX = {Ju JvX : u, v ∈ Rν}; see (2-2). Since

dim CX ≤ 2ν− 1< n− (ν+ 1)= dim(IX)⊥,

where the inequality in the middle follows from Lemma 2.4(i), the complement to
CX is dense in (IX)⊥. This complement is the required subset, since the condition
Y /∈CX is equivalent to JX ∩JY = 0. Substituting such X, Y into (3-3) we obtain
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by (3-5a)
ν∑

i=1

(‖X‖2〈mi , Y 〉− ηi 〈(∇X Ji )X, Y 〉)Ji Y

+

ν∑
i=1

(‖Y‖2〈mi , X〉− ηi 〈(∇Y Ji )Y, X〉)Ji X = 0.

Since JX ∩JY = 0, all the coefficients vanish, so

‖X‖2〈mi , Y 〉− ηi 〈(∇X Ji )X, Y 〉 = 0

for all X ∈ Rn , all i = 1, . . . , ν, and all Y from a dense subset of (IX)⊥, which
implies that (∇X Ji )X − η−1

i ‖X‖
2mi ∈ IX for all X ∈ Rn . Equation (3-5b) then

follows from Lemma 2.7(1). Equation (3-5c) follows from (3-5b) and the fact that
〈(∇X Ji )X, J j X〉+ 〈(∇X J j )X, Ji X〉 = 0.

To prove (3-5d) and (3-5e), substitute X = JkY and U ⊥ X, Y into (3-3). Since
〈Ji Y, X〉 = ‖Y‖2δik , the first term in the second sum equals

3ηk(2〈(∇U Jk)X, Y 〉+ 〈(∇X Jk)Y,U 〉+ 〈(∇Y Jk)U, X〉)‖Y‖2.

Since Jk is orthogonal and skew-symmetric,

〈(∇U Jk)X, Y 〉 = 〈(∇U Jk)JkY, Y 〉 = −〈Jk(∇U Jk)Y, Y 〉 = 〈(∇U Jk)Y, JkY 〉 = 0.

Next,

〈(∇Y Jk)U, X〉 = −〈(∇Y Jk)JkY,U 〉 = 〈Jk(∇Y Jk)Y,U 〉

= 〈(η−1
k ‖Y‖

2 Jkmk +
∑ν

j=1〈bk j , Y 〉Jk J j Y,U 〉

by (3-5b). Similarly, since Y =−Jk X , it follows from (3-5b) that

〈(∇X Jk)Y,U 〉 = 〈Jk(∇X Jk)X,U 〉

= 〈Jk(η
−1
k (‖X‖2mk −〈mk, X〉X)+

∑ν
j=1〈bk j , X〉J j X),U 〉

= 〈η−1
k ‖Y‖

2 Jkmk +
∑

j 6=k〈bk j , JkY 〉J j Y −〈bkk, JkY 〉JkY,U 〉.

Substituting this into (3-3) and using (3-5a) and (3-5b), we obtain after simplifica-
tion

(3-8) ‖Y‖2(〈2Jkmk,U 〉−U (ηk))

+

ν∑
j=1

〈ηkbk j + η j b jk, 〈J j Y,U 〉JkY +〈Jk J j Y,U 〉Y 〉 = 0.

By [N 2003, Lemma 3.2(3)] for all U ∈ Rn , we can find a nonzero Y such that
U ⊥ JY + JJkY . Substituting such a Y into (3-8) proves (3-5d). Then (3-8)
simplifies to (3-5e).
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Exceptional case. Here either n = 6 and ν = 1, or n = 12, ν = 3 and J1 J2 =±J3,
or n = 8 and ν = 3 and J1 J2 = J3.

In all these cases, the Clifford structure has the “J 2 property” that IIX =
JIX = IX for every X ∈ Rn . In particular, if Y ⊥ IX , then IY ⊥ IX .

Substitute X = JkU and Y ⊥ IX = IU into (3-2) and take the inner prod-
uct of the resulting equation with JkY . Using the J 2 property and the fact that
〈(∇Y Jk)U, JkU 〉 = 〈(∇Y Jk)Y, JkY 〉 = 0, we get

−Jk((∇JkUρ)U−(∇Uρ)JkU )+2‖U‖2∇ηk+3ηk((∇U Jk)JkU−(∇JkU Jk)U )∈IU.

The expression F(U ) on the left side is a quadratic map from Rn to itself. By
Lemma 2.7(1), F(U ) is a linear combination of U, J1U, . . . , JνU whose coeffi-
cients are linear forms of U . In particular, the cubic polynomial 〈F(U ), JkU 〉must
be divisible by ‖U‖2. Since Jk is orthogonal and skew-symmetric,

〈(∇U Jk)JkU − (∇JkU Jk)U, JkU 〉 = 0,

so there exists a vector mk ∈ Rn such that

〈(∇JkUρ)U − (∇Uρ)JkU,U 〉 = −3‖U‖2〈mk,U 〉.

It follows that the quadratic map Q defined by (3-4) satisfies

〈Q(U ), JkU 〉 = 3‖U‖2〈mk,U 〉 for all U ∈ Rn and all k = 1, . . . , ν.

Since 〈Q(U ),U 〉 = 0, we can define a quadratic map T : Rn
→ Rn such that for

all U ∈ Rn ,

(3-9) Q(U )= T (U )+ 3
∑ν

k=1〈mk,U 〉JkU and T (U )⊥ IU.

Taking U = Jk X, X,U ⊥ IY in (3-3) and using (3-9) we obtain

−Jk T (Y )+ 3‖Y‖2mk − 3ηk(∇Y Jk)Y ∈ IY.

From Lemma 2.7(1) it follows that the expression on the left side is a linear com-
bination of Y, J1Y, . . . , JνY whose coefficients are linear forms of Y , so for some
vectors bi j ∈ Rn ,

(3-10) (∇Y Ji )Y = η−1
i (mi‖Y‖2−〈mi , Y 〉Y )− (3ηi )

−1 Ji T (Y )+
ν∑

j=1

〈bi j , Y 〉J j Y.

Since 〈(∇Y Ji )Y, J j Y 〉 is antisymmetric in i and j and Ji T (Y )⊥ IY by (3-9) and
the J 2 property, the bi j satisfy (3-5c).

Take X = JkY and U ⊥ IY = IX in (3-3). Since 〈(∇U Jk)JkY, Y 〉 = 0,

〈(∇Y Jk)U, X〉 = −〈(∇Y Jk)JkY,U 〉 = 〈Jk(∇Y Jk)Y,U 〉,
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and similarly 〈(∇X Jk)Y,U 〉 = −〈(∇X Jk)Jk X,U 〉 = 〈Jk(∇X Jk)X,U 〉, we obtain
from (3-9) and (3-10) after simplification that

(3-11) 2T (Y )+ 2T (JkY )− 3‖Y‖2(∇ηk − 2Jkmk) ∈ IY.

In case n=6 and ν=1, we can prove the remaining identities (3-5a), (3-5b), (3-5d)
and (3-5e) of Lemma 3.5(i) as follows. Taking in (3-3) nonzero X, Y,U such that
the subspaces IX,IY and IU are mutually orthogonal we obtain by (3-9)

‖X‖−2
〈T (X),U 〉+ ‖Y‖−2

〈T (Y ),U 〉 = 0,

which is, essentially, (3-7). Replacing Y by J1Y and using (3-11) we get

2T (X)+ 3‖X‖2(∇η1− 2J1m1) ∈ IX.

The same is true with X replaced by J1 X . Then by (3-11), ∇η1 − 2J1m1 ∈ IX
for all X ∈ R6, so ∇η1 − 2J1m1 = 0, which is (3-5d). Then T (X) ∈ IX ; hence
T (X) = 0, since T (X) ⊥ IX by (3-9). Now (3-5a) follows from (3-9), (3-5b)
follows from (3-10), and (3-5e) is trivially satisfied, as ν = 1.

In the cases n = 8, 12, ν = 3 and J1 J2 = J3 (if J1 J2 = −J3, we replace J3

by −J3 without changing the curvature tensor (3-1)), we argue as follows. Adding
(3-11) with k = 1 and with k = 2 and then subtracting (3-11) with k = 3 and Y
replaced by J1Y we get

4T (Y )− 3‖Y‖2((∇η1− 2J1m1)+ (∇η2− 2J2m2)− (∇η3− 2J3m3)) ∈ IY.

This remains true under a cyclic permutation of the indices 1, 2, 3, which implies
(∇ηk − 2Jkmk)− (∇ηi − 2Ji mi ) ∈ IY for all i, k = 1, 2, 3 and all Y ∈ Rn . Then
∇ηk−2Jkmk =∇ηi−2Ji mi = 4V/3 for some vector V ∈Rn , and T (Y )−‖Y‖2V
belongs to IY by the above. Since T (Y )⊥ IY by (3-9), we obtain

T (Y )= ‖Y‖2V −〈Y, V 〉Y −
∑3

i=1〈Ji Y, V 〉Ji Y,

so

(3-12)

∇ηi = 2Ji mi +
4
3 V,

Q(Y )= ‖Y‖2V −〈Y, V 〉Y +
∑3

j=1〈3m j + J j V, Y 〉J j Y,

(∇Y Ji )Y = (3ηi )
−1(
‖Y‖2(3mi − Ji V )−〈3mi − Ji V, Y 〉Y

+
∑3

j=1〈3ηi bi j − J j Ji V, Y 〉J j Y
)
,

where the second equation follows from (3-9) and the third from (3-10) and the
fact that J1 J2 = J3.

Substitute X = JkY into (3-3) again, with an arbitrary U ⊥ X, Y . Using (3-12)
and that the Ji are skew-symmetric, orthogonal and anticommute, we obtain after
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simplification that

3∑
i=1

〈3aik − 2Ji Jk V, JkY 〉Ji Y +
3∑

i=1

〈3aik − 2Ji Jk V, Y 〉Jk Ji Y ∈ Span(Y, JkY ),

where aik = ηkbki + ηi bik . Taking k = 1 and using that J1 J2 = J3, we get from
the coefficient of J2Y that 3J1a12−4J2V +3a13 = 0, so 4V =−3J2a13+3J3a12.
Cyclically permuting the indices 1, 2, 3 and using that aik = aki , we get V = 0,
which implies (3-5e). Since V = 0, equations (3-5a), (3-5d) and (3-5b) follow
from (3-12).

(ii) By (3-4) and (3-5a),

〈(∇Xρ)U − (∇Uρ)X, X〉 = 3
ν∑

i=1

〈mi , X〉〈Ji X,U 〉 for all X,U ∈ Rn .

Polarizing this equation and using the fact that the covariant derivative of ρ is
symmetric, we obtain

〈(∇Xρ)U, Y 〉+ 〈(∇Yρ)U, X〉− 2〈(∇Uρ)Y, X〉

= 3
ν∑

i=1

(〈mi , Y 〉〈Ji X,U 〉+ 〈mi , X〉〈Ji Y,U 〉).

Subtracting the same equation with Y and U interchanged, we get

〈(∇Yρ)U − (∇Uρ)Y, X〉 =
ν∑

i=1

(2〈mi , X〉〈Ji Y,U 〉

+ 〈mi , Y 〉〈Ji X,U 〉− 〈mi ,U 〉〈Ji X, Y 〉),

which proves (3-6a).
To establish (3-6b), substitute X ⊥IY, U = JkY into (3-2). Using the equations

of part (i) and (3-6a) we obtain after simplification that

3(∇X Jk)Y − (∇Y Jk)X

=−3η−1
k 〈mk, Y 〉X +

ν∑
i=1

η−1
k 〈ηi bik + 2δik Jkmk, Y 〉Ji X mod (IY ).

Subtracting thrice polarized Equation (3-5b) (with i = k) and solving for (∇Y Jk)X ,
we get, for all X ⊥ IY ,

(3-13) (∇Y Jk)X =
ν∑

i=1

1
4η
−1
k 〈3ηkbki − ηi bik − 2δik Jkmk, Y 〉Ji X mod (IY ).

Choose s 6= k and define the subset Sks ⊂ Rn
⊕Rn by

Sks = {(X, Y ) : X, Y 6= 0 and X, Jk X, Js X ⊥ JY }.
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It is easy to see that (X, Y ) ∈ Sks if and only if (Y, X) ∈ Sks and that replacing JY
by IY in the definition of Sks gives the same set Sks . Moreover, {X : (X, Y ) ∈ Sks}

(and hence {Y : (X, Y )∈ Sks}) spans Rn . If n= 8, ν= 3 and J1 J2= J3, this follows
from the J 2-property; in all other cases, it follows from [N 2003, Lemma 3.2(4)].
For (X, Y )∈ Sks , take the inner product of (3-13) with Js X . Since 〈(∇Y Jk)X, Js X〉
is antisymmetric in k and s, we get 〈(3− ηkη

−1
s )bks + (3− ηsη

−1
k )bsk, Y 〉 = 0 for

a set of Y spanning Rn . This proves (3-6b).
To prove (3-6c), we apply of Lemma 2.7(2) to (3-5e). If ν = 1, there is nothing

to prove; in fact, if ν = 1 and n ≥ 8, Theorem 3.1 follows from [Blažić and Gilkey
2004, Theorem 1.1]. If ηi bi j+η j b j i = 0 for all i 6= j , then by (3-6b), bi j+b j i = 0
for all i 6= j , so η−1

i J j mi = −η
−1
j Ji m j by (3-5c). Acting by Ji J j we obtain that

the vector η−1
i Ji mi is the same for all i = 1, . . . , ν.

The only remaining possibility is ν=3, J1 J2= J3 (if J1 J2=−J3 we can replace
J3 by −J3 without changing the curvature tensor (3-1)), and ηkbki + ηi bik = J jv

for all the triples {i, j, k} = {1, 2, 3}, where v 6= 0. We will show that this leads
to a contradiction. Note that by (2-3), the existence of a Cliff(3) structure implies
that n is divisible by 4, so n ≥ 8 by the assumption of the lemma.

If ηi = ηk for some i 6= k, then from (3-6b) and ηkbki + ηi bik = J jv it follows
that v = 0, a contradiction. Otherwise, if the ηi are pairwise distinct, we get

bik = (3ηi − ηk)(4ηi (ηi − ηk))
−1 J jv for {i, j, k} = {1, 2, 3}.

Substituting this into (3-5c) and acting by J j on both sides, we get

η−1
i Ji mi − η

−1
k Jkmk =

1
4εik(η

−1
i + η

−1
k )v for {i, j, k} = {1, 2, 3},

where for i 6= k we define εik =±1 by Ji Jk = εik J j . It is easy to see that ε jk =−ε jk

and ε jk = εi j , where {i, j, k} = {1, 2, 3}. Then∑3
i=1 η

−1
i = 0 and η−1

i Ji mi =
1

12ε jk(η
−1
j − η

−1
k )v+w for some w ∈ Rn .

It then follows from (3-5d) that ∇ηi = (1/6)ε jkηi (η
−1
j − η

−1
k )v + 2ηiw, which

implies
∇ ln|η1η2η3| = 6w and ∇ ln|ηiη

−1
j | = −

1
2εi jη

−1
k v.

Let U′⊂U be a neighborhood of x on which∇ ln |η1η
−1
2 | 6=0. Then v is a nowhere

vanishing smooth vector field on U′. Multiplying the metric on U by a function
e f changes neither the Weil tensor nor the Ji , and multiplies every ηi by e− f and
∇ acting on functions by e− f . Taking f = (1/3) ln|η1η2η3| we can assume that
w = 0 on U′, so that C = η1η2η3 is a constant. Then, since

∑3
i=1 η

−1
i = 0, we get

∇ηi =±
1
6v

√
1− 4C−1η3

i .
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It follows that v = ∇t for some smooth function t : U′ → R such that ηi =

−36C℘(t + ci ), where ℘ is the Weierstrass function satisfying

( d
dt℘(t))

2
= 4℘(t)3+ 6−6C−2

and ci ∈ R. Summarizing these identities, we have pointwise pairwise nonequal
functions ηi :U

′
→ R \ {0} satisfying

(3-14)

v =∇t 6= 0, ∇ηi =
1
6ε jkηi (η

−1
j − η

−1
k )v,

0=
∑3

i=1 η
−1
i , C = const=

∏3
i=1 ηi ,

mi =−
1

12ε jkηi (η
−1
j − η

−1
k )Jiv, bi i =

1
12ε jk(η

−1
j − η

−1
k )v,

bi j = (3ηi − η j )(4ηi (ηi − η j ))
−1 Jkv,

for {i, j, k}= {1, 2, 3}, where we used (3-5c) to compute bi i . Then Equation (3-13)
simplifies to

(∇Y Jk)X =
∑
i 6=k

1
2(ηk − ηi )

−1
〈J jv, Y 〉Ji X mod (IY ) for all X ⊥ IY .

By the J 2-property, IY ⊥IX , so to find the “mod(IY )” part, we have to compute
the inner products of (∇Y Jk)X with Y , J1Y , J2Y and J3Y . Since

〈(∇Y Jk)X, Y 〉 = −〈(∇Y Jk)Y, X〉,

〈(∇Y Jk)X, JkY 〉 = −〈(∇Y Jk)JkY, X〉 = 〈Jk(∇Y Jk)Y, X〉,

〈(∇Y Jk)X, Ji Y 〉 = −〈(∇Y Jk)Ji Y, X〉 = −〈(εki (∇Y J j )− Jk(∇Y Ji ))Y, X〉

(from Jk Ji = εki J j ), these products can be found using (3-5b). Simplifying by
(3-14) we get

(∇Y Jk)X = 1
12εi j (η

−1
i − η

−1
j )(〈Jkv, X〉Y +〈v, X〉JkY )

+
1
4η
−1
k

∑
i 6=k

〈J jv, X〉Ji Y +
∑
i 6=k

1
2(ηk − ηi )

−1
〈J jv, Y 〉Ji X,

for all X ⊥ IY , where {i, j, k} = {1, 2, 3}. To compute (∇Y Jk)X when X ∈ IY ,
we again use (3-5b) and the fact that, for {i, j, k} = {1, 2, 3},

(∇Y Jk)Jk =−Jk(∇Y Jk) and (∇Y Jk)Ji = εki (∇Y J j )− Jk(∇Y Ji ).

Simplifying by (3-14) and using the above equation we get after some calculation

(∇Y Jk)X = 1
12εi j (η

−1
i − η

−1
j )(〈Jkv, X〉Y +〈v, X〉JkY −〈X, Y 〉Jkv−〈X, JkY 〉v)

+
1
4η
−1
k

∑
i 6=k

(〈J jv, X〉Ji Y −〈Ji Y, X〉J jv)+
∑
i 6=k

1
2(ηk − ηi )

−1
〈J jv, Y 〉Ji X,
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for all X, Y ∈ Rn , where {i, j, k} = {1, 2, 3}. For a, b ∈ Rn , let a ∧ b be the skew-
symmetric operator defined by (a ∧ b)X = 〈a, X〉b − 〈b, X〉a. Then the above
equation can be written in the form

∇Y Jk =
1

12εi j (η
−1
i − η

−1
j )(Jkv∧ Y + v∧ JkY )

+
1
4η
−1
k

∑
i 6=k

J jv∧ Ji Y +
∑
i 6=k

1
2(ηk − ηi )

−1
〈J jv, Y 〉Ji ,

that is, for {i, j, k} = {1, 2, 3},

(3-15)
∇Y Jk = [Jk, AY ], AY =

3∑
i=1

( 1
2λi Ji Y ∧ Jiv+ωi 〈Jiv, Y 〉Ji ),

λi =
1
6ε jk(η

−1
j − η

−1
k ), ωi =

1
4ε jk(ηk − η j )

−1

where we used that, for {i, j, k} = {1, 2, 3},

[Jk, a ∧ b] = Jka ∧ b+ a ∧ Jkb and [Jk, Ji ] = 2εki J j .

By the Ricci formula, ∇2
Z ,Y Jk − ∇

2
Y,Z Jk = [Jk, R(Y, Z)], where the tensor field

∇
2 Jk is defined by

∇
2
Z ,Y Jk =∇Z (∇Y Jk)−∇∇Z Y Jk for vector fields Y, Z on U′.

Since ∇Y Jk = [Jk, AY ] by (3-15), this is equivalent to the fact that the operator
F(Y, Z) = (∇Z A)Y − (∇Y A)Z − [AY, AZ ] − R(Y, Z) commutes with all the Js

for all Y, Z ∈ Rn and all s = 1, 2, 3. By (3-1), we have

R(Y, Z)= Y ∧ ρZ + ρY ∧ Z +
3∑

i=1

ηi (Ji Y ∧ Ji Z + 2〈Ji Y, Z〉Ji ),

so using (3-15) and the identities

[a ∧ b, c∧ d] = 〈a, d〉c∧ b−〈a, c〉d ∧ b−〈b, d〉c∧ a+〈b, c〉d ∧ a,

[Js, a ∧ b] = Jsa ∧ b+ a ∧ Jsb,

we obtain

(3-16) F(Y, Z)= V (Y, Z)+
3∑

i=1

〈Ki Y, Z〉Ji + S(Y, Z),

where

S(Y, Z) ∈ (IY +IZ)∧Rn,

V (Y, Z)=− 1
2

∑3

i=1
〈Ji Z , Y 〉(λ2

i v∧ Jiv+ ε jk(λ jλk − λiλk − λ jλi )J jv∧ Jkv)

∈ Iv∧Iv,



CONFORMALLY OSSERMAN MANIFOLDS 341

and for subspaces L1, L2 ⊂ Rn , we denote by L1 ∧ L2 the subspace of the space
o(n) of skew-symmetric operators on Rn defined by

L1 ∧ L2 = Span(a ∧ b : a ∈ L1, b ∈ L2).

Note that if L1 and L2 are J-invariant (that is, JLα ⊂ Lα), then L1 ∧ L2 is adJ-
invariant, that is, [Js, L1 ∧ L2] ⊂ L1 ∧ L2.

From (3-15) and the facts that

ωiλi = (24C)−1ηi ,
d
dtωi = 4ω2

i + (12C)−1ηi ,
∑

i ω
−1
i = 0,

which follow from (3-14) and (3-15), we obtain

(3-17) Ki =−ωi ((4ωi + λi )v∧ Jiv+ 4ε jk(ω j +ωk)J jv∧ Jkv

+ λi (48C +‖v‖2)Ji + (Ji H + H Ji )),

where {i, j, k}={1, 2, 3} and H is the symmetric operator associated to the Hessian
of t , that is, 〈HY, Z〉 = Y (Zt)− (∇Y Z)t for vector fields Y and Z on U′.

Since [F(Y, Z), Js] = 0 and the subspace IY + IZ is J-invariant (and hence
(IY +IZ)∧Rn is adJ-invariant), it follows from (3-16) that for all Y, Z ∈Rn and
all s = 1, 2, 3,

(3-18) [V (Y, Z), Js] +

3∑
i=1

〈Ki Y, Z〉[Ji , Js] ∈ (IY +IZ)∧Rn.

Take Y, Z ∈ Iv in (3-18). Then IY + IZ = Iv and [V (Y, Z), Js] ∈ Iv ∧ Iv

by the J 2 property, so (3-18) simplifies to
∑

i 6=s εis〈Ki Y, Z〉J j ∈ Iv ∧Rn , where
{i, j, s} = {1, 2, 3}. Project this onto the subspace (Iv)⊥ ∧ (Iv)⊥ ⊂ o(n) by the
standard inner product on o(n), and use that (Iv)⊥ is J-invariant and n ≥ 8. Then
we get 〈Ki Y, Z〉 = 0 for all i = 1, 2, 3 and all Y, Z ∈ Iv. Introduce the operators

Ĵi = πIv JiπIv and Ĥ = πIvHπIv on Iv.

Since Iv is J-invariant, the Ĵi are anticommuting almost Hermitian structures
on Iv. Then the condition 〈Ki Y, Z〉 = 0 for Y, Z ∈ Iv and (3-17) imply

(4ωi+λi )v∧ Ĵiv+4ε jk(ω j+ωk) Ĵ jv∧ Ĵkv+λi (48C+‖v‖2) Ĵi+ Ĵi Ĥ+ Ĥ Ĵi = 0.

Multiplying by Ĵi and taking the trace we obtain for {i, j, k} = {1, 2, 3}

4‖v‖2(ωi +ω j +ωk)+ λi (96C + 3‖v‖2)+Tr Ĥ = 0,

so λi (96C + 3‖v‖2) does not depend on i = 1, 2, 3. Since the λi are pairwise
distinct (otherwise the condition

∑3
i=1 η

−1
i = 0 from (3-14) is violated), we get

‖v‖2 =−32C .
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Now take Y, Z ⊥ Iv in (3-18). Projecting to Iv ∧ Iv and using the fact that
Iv ∧ Iv is adJ-invariant we obtain that the operator V (Y, Z)+

∑3
i=1〈Ki Y, Z〉 Ĵi

on Iv commutes with every Ĵs . The centralizer of the set { Ĵ1, Ĵ2, Ĵ3} in the Lie
algebra o(4)= o(Iv) is the three-dimensional subalgebra spanned by

v∧ Ĵiv− ε jk Ĵ jv∧ Ĵkv for {i, j, k} = {1, 2, 3}

(right multiplication by the imaginary quaternions). Substituting V (Y, Z) from
(3-16) and using that

Ĵi = ‖v‖
−2(v∧ Ĵiv+ ε jk Ĵ jv∧ Ĵkv),

we obtain that the operator V (Y, Z)+
∑3

i=1〈Ki Y, Z〉 Ĵi commutes with all the Ĵs

for Y, Z ⊥ Iv if and only if

−
1
2〈Ji Z , Y 〉(λ2

i +λ jλk −λiλk −λ jλi )+2‖v‖−2
〈Ki Y, Z〉 = 0 for all i = 1, 2, 3.

Substituting the λi from (3-15) and 〈Ki Y, Z〉 from (3-17) and taking into account
that ‖v‖2 =−32C , which is shown above, we obtain

〈(Ji H + H Ji − 32Cλi Ji )Y, Z〉 = 0 for all Y, Z ⊥ Iv and all i = 1, 2, 3.

Then
π(Ji H + H Ji )π = 32Cλiπ Jiπ,

where π = π(Iv)⊥ . Multiplying both sides by π Jiπ from the right and using that
[π, Ji ] = 0 (as (Iv)⊥ is J-invariant), we get π(Ji H Ji−H)π =−32Cλiπ . Taking
the traces of the both sides we obtain −2 Tr(πHπ)=−32Cλi (n− 4), which is a
contradiction since n > 4 and the λi are pairwise distinct, which follows from the
equation

∑3
i=1 η

−1
i = 0 of (3-14). �

The next lemma shows that the relations similar to (3-5) and (3-6) of Lemma 3.5
also hold in all the remaining cases when n= 8, that is, when ν 6= 3 and when ν= 3
and J1 J2 6= ±J3. As shown in Lemma 3.2, in all these cases the Weyl tensor has a
smooth Cliff(7) structure in a neighborhood U of every point x ∈ M ′. Moreover,
Lemma 2.6(2), that Cliff(7) structure is an almost Hermitian octonion structure, in
the following sense. For every y ∈ U, we can identify R8

= Ty M8 with O and of
R7 with O′ = 1⊥ via linear isometries ι1 and ι2 respectively so that the orthogonal
multiplication (2-2) defined by Cliff(7) has the form (2-5): Ju X = Xu for every
X ∈ R8

=O and u ∈O′.

Lemma 3.6. Let x ∈ M ′ ⊂ M8, and let U be the neighborhood of x defined in
Lemma 3.2. For every point y ∈ U, identify R8

= Ty M8 with O via a linear
isometry so that the Clifford structure Cliff(7) on R8 is given by (2-5). Then there
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exist m, t, bi j ∈ R8
=O with i, j = 1, . . . , 7 such that for all X,U ∈ R8

=O,

(∇U Ji )X =
7∑

j=1

〈bi j ,U 〉Xe j(3-19a)

+ (X (U∗m)−〈m,U 〉X)ei +〈m,Uei 〉X,

bi j + b j i = 0,(3-19b)

(∇Xρ)U − (∇Uρ)X = 2
7∑

i=1

ηi (〈mei ,U 〉Xei(3-19c)

−〈mei , X〉Uei + 2〈Xei ,U 〉mei )

+
3
4(X ∧U )t,

∇ηi =−4ηi m− 1
2 t.(3-19d)

Proof. In the proof we use standard identities of the octonion arithmetic (some of
them are given in Section 2.5).

By [N 2004, Lemma 7], for the Clifford structure Cliff(7) given by (2-5), there
exist bi j ∈ R8, with i, j = 1, . . . , 7, satisfying (3-19b) and an (R-)linear operator
A :O→O′ such that for all X,U ∈ R8

=O,

(3-20) (∇U Ji )X =
7∑

j=1

〈bi j ,U 〉Xe j + (X · AU )ei +〈AU, ei 〉X.

Equation (3-2) is a polynomial equation in 24 real variables, the coordinates of
the vectors X, Y,U ∈ R8. It still holds if we allow X, Y,U to be complex and
extend the tensors Ji ,∇ Ji and 〈 · , · 〉 to C8 by complex linearity. The complexified
inner product 〈 · , · 〉 takes values in C and is a nonsingular quadratic form on C8.
Moreover, Equation (2-5) is still true if we identify C8 with the bioctonion algebra
O⊗C, and C7 with 1⊥ =O′⊗C, the orthogonal complement to 1 in O⊗C.

Let Y ∈O⊗C be a nonzero isotropic vector (that is, Y ∗Y = 0) and let

JCY = SpanC(J1Y, . . . , J7Y ).

Then Y ∈ JCY and the space JCY is isotropic: The inner product of any two
vectors from JCY vanishes. Choose X,U ∈ JCY and take the inner product of
the complexified (3-2) with X . Since X, Y and U are mutually orthogonal, we get
(3-3), which further simplifies to

7∑
i=1

ηi 〈Ji X,U 〉〈(∇Y Ji )Y, X〉 = 0,

since
‖X‖2 = ‖Y‖2 = 〈Ji Y, X〉 = 〈Ji Y,U 〉 = 0.
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Using (3-20) we obtain

7∑
i=1

ηi 〈Ji X,U 〉〈(Y · AY )ei , X〉 = 0

for all isotropic vectors Y and for all X,U ∈JCY . It follows that Y · AY is perpen-
dicular to

∑7
i=1 ηi 〈Ji X,U 〉Xei for all X,U ∈ JCY . Since Y · AY = JAY Y ∈ JCY

and JCY is isotropic, we get Y · AY ⊥ JCY , so Y · AY is perpendicular to

JCY +SpanC({
∑7

i=1 ηi 〈Ji X,U 〉Ji X | X,U ∈ JCY }).

Following the arguments in the proof of [N 2004, Lemma 8] starting with for-
mula (29), we obtain that AU = U∗m − 〈U,m〉1 for some m ∈ O. Then (3-19a)
follows from (3-20).

To prove (3-19c) and (3-19d), introduce the vectors fi j ∈ R8 for i, j = 1, . . . , 8
and the quadratic map T : R8

→ R8 (similar to the map Q of (3-4)) by

fi j = (ηi − η j )bi j + δi j (∇ηi − 2ηi m),(3-21)

〈T (X),U 〉 = 1
3〈(∇Xρ)U − (∇Uρ)X, X〉−

∑7
i=1 ηi 〈mei , X〉〈Xei ,U 〉.(3-22)

Note that fi j = f j i and 〈T (X), X〉 = 0. Take X, Y,U to be mutually orthogonal
vectors in R8. By (3-19a) and (3-19b),

〈(∇U Ji )X, Y 〉 =
7∑

j=1

〈bi j ,U 〉〈Xe j , Y 〉− 〈m,U 〉〈Xei , Y 〉+ 〈(X (U∗m))ei , Y 〉

=

7∑
j=1

〈bi j − δi j m,U 〉〈Xe j , Y 〉+ 〈m((ei Y ∗)X),U 〉,

so every term on the left side of (3-3) can be written as the inner product of U with
a vector depending on X and Y . Since U is arbitrary other than being perpendicular
to X and Y , we find after substituting (2-5) and (3-19a) into (3-3) and rearranging
the terms that

‖X‖2T (Y )+‖Y‖2T (X)

+

7∑
i=1

(
2ηi 〈Y ei , X〉(m((ei Y ∗)X)+ (Y (X∗m))ei )

+〈Y e j , X〉(〈 fi j , X〉Y ei −〈 fi j , Y 〉Xei )−〈Y ei , X〉〈Y e j , X〉 fi j
)

∈ Span(X, Y ),

for all X ⊥ Y , where we used the fact that (X (Y ∗m))ei = −(Y (X∗m))ei , since
X ⊥ Y . Taking the inner products with X and with Y , we obtain that the left side
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of the above (before the “∈”) is equal to 〈T (Y ), X〉X+〈T (X), Y 〉Y for all X ⊥ Y .
Taking X = Y u with u =

∑7
i=1 ui ei ∈O′ and regrouping the terms, we obtain

(3-23) ‖u‖2T (Y )+ T (Y u)

+ 2
7∑

i=1

ηi ui (2〈Y,mei 〉Y u− 2〈Y u,mei 〉Y + 2‖Y‖2(mu)ei )

+

7∑
i, j=1

u j (〈 fi j + 8δi jηi m, Y u〉Y ei −〈 fi j + 8δi jηi m, Y 〉(Y u)ei )

−

7∑
i, j=1

‖Y‖2ui u j fi j = ‖Y‖−2
〈T (Y ), Y u〉Y u+‖Y‖−2

〈T (Y u), Y 〉Y,

where we used

m((ei Y ∗)X)+ (Y (X∗m))ei

= 2〈Y,mei 〉Y u− 2〈Y u,mei 〉Y + 4〈Y u,m〉Y ei − 4〈Y,m〉(Y u)ei + 2‖Y‖2(mu)ei ,

which follows from

m((ei Y ∗)X)= (Y (X∗m))ei − 2〈m, Y ei 〉X − 2〈X,mei 〉Y

for all X, Y , and

(Y (X∗m))ei =−2〈Y,m〉(Y u)ei − 2〈Y,mu〉Y ei +‖Y‖2(mu)ei

for X = Y u and u ⊥ 1. By Lemma 2.7(1) (with ν = 1 and IY = Span(Y, Y u))
we obtain that both coefficients on the right side of (3-23), ‖Y‖−2

〈T (Y ), Y u〉 and
‖Y‖−2

〈T (Y u), Y 〉, are linear forms of Y ∈ R8 for every u ∈ O′. Since 〈T (Y ), Y 〉
is zero, this implies that there exists an (R-)linear operator C : O→ O′ such that
‖Y‖−2Y ∗T (Y )= CY , so T (Y )= Y ·CY for all Y ∈O. Substituting this to (3-23)
and rearranging the terms, we obtain

(3-24) (Y u)
(

C(Y u)−
7∑

i, j=1

u j 〈 fi j + 8δi jηi m, Y 〉ei

)
+ Y

(
‖u‖2CY +

7∑
i=1

(
4ηi ui (〈Y,mei 〉u−〈Y u,mei 〉1+ Y ∗((mu)ei ))

+u j 〈 fi j + 8δi jηi m, Y u〉ei

− ui u j Y ∗ fi j −〈CY, u〉u+〈C(Y u), u〉1
))
= 0,

The left side of (3-24) has the form (Y u)L(Y, u)+ Y F(Y, u), where L(Y, u) and
F(Y, u) are (R-) linear operators on O for every u ∈ O′. By [N 2004, Lemma 6],
for every unit octonion u ∈ O′, L(Y, u) = 〈a(u), Y 〉1+ 〈t (u), Y 〉u + Y ∗ p(u) for
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some functions a, t, p : S6
⊂O′→O. Extending a, t, p by homogeneity (of degree

1, 0, 1 respectively) to O′ we obtain

C(Y u)−
7∑

i, j=1

u j 〈 fi j + 8δi jηi m, Y 〉ei = 〈a(u), Y 〉1+〈t (u), Y 〉u+ Y ∗ p(u)

for all u ∈ O′. Moreover, p(u) = −a(u), since C(Y ) ⊥ 1. By the linearity of the
left side in u, we get

〈a(u1+ u2)− a(u1)− a(u2), Y 〉1+〈t (u1+ u2)− t (u1), Y 〉u1

+〈t (u1+ u2)− t (u2), Y 〉u2+ Y ∗(a(u1+ u2)− a(u1)− a(u2))= 0

for all u1, u2 ∈O′. Then Y ∗(a(u1+ u2)−a(u1)−a(u2)) ∈ Span(1, u1, u2) for all
Y ∈ O, which is only possible when a(u) is linear, that is, a(u) = Bu for some
(R-)linear operator B :O′→O. It follows that t (u1+u2)= t (u1)= t (u2), that is,
t ∈O is a constant. So

C(Y u)=
7∑

i, j=1

u j 〈 fi j + 8δi jηi m, Y 〉ei +〈Bu, Y 〉1+〈t, Y 〉u− Y ∗Bu.

Taking the inner product of the both sides with v ∈ O′ and subtracting from
the resulting equation the same equation with u and v interchanged, we obtain
〈C(Y u), v〉 − 〈C(Yv), u〉 = 〈Bv, Y u〉 − 〈Bu, Yv〉, since fi j = f j i by (3-21). It
follows that 〈C tv− Bv, Y u〉 = 〈C t u − Bu, Yv〉, where C t is the operator adjoint
to C . Now taking u ⊥ v and Y = uv, we get

‖u‖2〈C tv− Bv, v〉 = −‖v‖2〈C t u− Bu, u〉,

which implies C = B t . Then from the above,

〈C(Y u), ei 〉 =

7∑
j=1

u j 〈 fi j + 8δi jηi m, Y 〉+ 〈t, Y 〉ui −〈Bu, Y ei 〉 = 〈Bei , Y u〉,

so
∑7

j=1 u j ( fi j + δi j (8ηi m+ t))+ (Bu)ei + (Bei )u = 0. Therefore

(3-25) T (Y )=Y ·CY =Y ·B t Y and fi j =−δi j (8ηi m+t)−(Bei )e j−(Be j )ei .

Substituting (3-25) to (3-24) and simplifying, we obtain

−〈Lu · u, Y 〉Y −〈Lu, Y 〉Y u+‖Y‖2Lu · u = 0,

where Lu = 4Bu− tu− 4
∑7

i=1 ηi ui mei . Taking Y ⊥ Lu, Lu · u we get Lu = 0,
so

(3-26) Bu = 1
4 tu+

∑7
i=1 ηi ui mei .



CONFORMALLY OSSERMAN MANIFOLDS 347

Substituting (3-26) into the first equation of (3-25) and then into (3-22) and sim-
plifying, we obtain that for arbitrary X,U ∈O,

〈(∇Xρ)U − (∇Uρ)X, X〉

=
3
4(〈t, X〉〈X,U 〉− ‖X‖2〈t,U 〉)+ 6

∑7
i=1 ηi 〈Xei ,U 〉〈mei , X〉.

Polarizing this equation we get

〈(∇Yρ)U − (∇Uρ)Y, X〉+ 〈(∇Xρ)U − (∇Uρ)X, Y 〉

=
3
4(〈t, X〉〈Y,U 〉+ 〈t, Y 〉〈X,U 〉− 2〈X, Y 〉〈t,U 〉)

+ 6
7∑

i=1

ηi (〈Xei ,U 〉〈mei , Y 〉+ 〈Y ei ,U 〉〈mei , X〉).

Subtracting the same equation with X and U interchanged and using the fact that
ρ is symmetric, we get (3-19c). The second equation of (3-25) and (3-26) give
fi i =−6ηi m− t/2, which by (3-21) implies (3-19d). �

Lemma 3.7. In the assumptions of Theorem 3.1, let x ∈ M ′, where M ′ ⊂ Mn is
defined in Lemma 3.2. Then there exists a neighborhood U = U(x) and a smooth
metric on U conformally equivalent to the original metric whose curvature tensor
has the form (3-1), with ρ a multiple of the identity.

Proof. Let x ∈ M ′ and let U be the neighborhood of x on which the Weyl tensor
has the smooth Clifford structure defined in Lemma 3.2. We can assume that
ν > 0, since in the case of a Cliff(0) structure, the curvature tensor given by (3-1)
has the form R(X, Y )Z = 〈X, Z〉ρY +〈ρX, Z〉Y −〈Y, Z〉ρX −〈ρY, Z〉X , so the
Weyl tensor vanishes. Then the metric on U is locally conformally flat, that is, is
conformally equivalent to a one with ρ = 0.

If n = 8 and ν = 7, and all the ηi at x are equal, then they are equal at some
neighborhood of x (by the definition of M ′). By Remark 3.4, we can replace ρ
by ρ + 3η1/2 id and ηi by 0 = ηi − η1 in (3-1), thus arriving at the case ν = 0
considered above.

For the remaining part of the proof, we will assume that in the case n = 8 and
ν = 7, at least two of the ηi at x are different; up to relabeling, let η1 6= η2 at x and
also on a neighborhood of x (replace U by a smaller neighborhood if necessary).
Let f be a smooth function on U and let 〈 · , ·〉′= e f

〈 · , ·〉. Then W ′=W , J ′i = Ji ,
η′i = e− f ηi and on functions, ∇ ′ = e− f

∇, where we use the prime for objects
associated to the metric 〈 · , · 〉′. Moreover, the curvature tensor R′ still has the
form (3-1), and all the identities of Lemmas 3.5 and 3.6 remain valid.

In the cases considered in Lemma 3.5, the ratios ηi/η1 are constant, which fol-
lows from (3-5d) and (3-6c). In particular, taking f = ln|η1| we obtain that η′1 is a
constant, so all the η′i are constant; m′i = 0 by (3-5d), so (∇ ′Yρ

′)U − (∇ ′Uρ
′)Y = 0
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by (3-6a). In the case n = 8 and ν = 7 (Lemma 3.6), take f = ln|η1 − η2|.
Then by (3-19d), we have ∇ f = −4m and ∇ ′η′i = −(1/2)e

−2 f t , which imply
m′ = −(1/4)∇ ′ ln|η′1 − η

′

2| = 0 and t ′ = e−2 f t , again by (3-19d) for the metric
〈 · , · 〉′. Then by (3-19c), we have (∇ ′Xρ

′)U−(∇ ′Uρ
′)X = (3/4)(X∧′U )t ′. By Re-

mark 3.4, we can replace ρ ′ by ρ̃=ρ ′+(3/2)(η′1+C) id and η′i by η̃i =η
′

i−(η
′

1+C)
without changing the curvature tensor R′ given by (3-1). (Here C is a constant
chosen in such a way that η̃i 6= 0 anywhere on U.) Then by (3-19c) and (3-19d),
(∇ ′X ρ̃)U − (∇

′

U ρ̃)X = 0 for the metric 〈 · , · 〉′.
Dropping the primes and the tildes, we obtain that, up to a conformal smooth

change of the metric on U, the curvature tensor has the form (3-1), with ρ satisfying
the identity

(∇Yρ)X = (∇Xρ)Y for all X, Y ,

that is, with ρ being a symmetric Codazzi tensor.
Then by [Derdziński and Shen 1983, Theorem 1], at every point of U for any

three eigenspaces Eβ, Eγ , Eα of ρ with α /∈ {β, γ }, the curvature tensor satisfies
R(X, Y )Z = 0 for all X ∈ Eβ , Y ∈ Eγ and Z ∈ Eα. It then follows from (3-1) that

(3-27)
ν∑

i=1

ηi (2〈Ji X, Y 〉Ji Z +〈Ji Z , Y 〉Ji X −〈Ji Z , X〉Ji Y )= 0

for all X ∈ Eβ, Y ∈ Eγ , Z ∈ Eα, with α /∈ {β, γ }.

Suppose ρ is not a multiple of the identity. Let E1, . . . , E p for p ≥ 2 be the
eigenspaces of ρ. If p > 2, write E ′1 = E1 and E ′2 = E2 ⊕ · · · ⊕ E p. Then by
linearity, (3-27) holds for any X, Y ∈ E ′α and Z ∈ E ′β such that {α, β} = {1, 2}.
Hence to prove the lemma it suffices to show that (3-27) leads to a contradiction in
the assumption p=2. For the rest of the proof, suppose that p=2. Let dα=dim Eα
with d1 ≤ d2.

Choose Z ∈ Eα, X, Y ∈ Eβ , α 6= β, and take the inner product of (3-27)
with X . We get

∑ν
i=1 ηi 〈Ji X, Y 〉〈Ji X, Z〉 = 0. It follows that for every X ∈

Eα, the subspaces E1 and E2 are invariant subspaces of the symmetric operator
R̂X ∈ End(Rn) defined by R̂X Y =

∑ν
i=1 ηi 〈Ji X, Y 〉Ji X . So R̂X commutes with

the orthogonal projections πβ : Rn
→ Eβ for β = 1, 2. Then for all α, β = 1, 2

(α and β can be equal), all X ∈ Eα and all Y ∈ Rn , we have

ν∑
i=1

ηi 〈Ji X, πβY 〉Ji X =
ν∑

i=1

ηi 〈Ji X, Y 〉πβ Ji X.

Taking Y = J j X we get that πβ J j X ⊂ JX ; that is, πβJX ⊂ JX for all X ∈ Eα
with α, β = 1, 2. Since π1+π2= id, we obtain JX ⊂ π1JX⊕π2JX ⊂JX ; hence
JX = π1JX ⊕ π2JX . Since every function fαβ : Eα→ Z, X 7→ dimπβJX with
α, β = 1, 2 is lower semicontinuous, and fα1(X) + fα2(X) = ν for all nonzero
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X ∈ Eα, there exist constants cαβ with cα1 + cα2 = ν such that dimπβJX = cαβ
for all α, β = 1, 2 and all nonzero X ∈ Eα.

Let X, Y ∈ Eα, Z ∈ Eβ and β 6= α. Taking the inner product of (3-27) with
J j Z for j = 1, . . . , ν, we get

2η j 〈J j X, Y 〉‖Z‖2 =
∑
i 6= j

ηi (〈Ji Z , X〉〈Ji Y, J j Z〉− 〈Ji Z , Y 〉〈Ji X, J j Z〉).

Since 〈Ji Z , X〉 = 〈Jiπβ Z , X〉 = −〈Z , πβ Ji X〉 (and similarly for 〈Ji Z , Y 〉), the
right side, viewed as a quadratic form of Z ∈ Eβ , vanishes for all Z in the inter-
section of πβJX)⊥ and (πβJY )⊥, that is, on a subspace of dimension at least
dβ − 2cαβ . So for α 6= β, either 2cαβ ≥ dβ , or JEα ⊥ Eα, that is, πβJX = JX for
all X ∈ Eα, so cαβ = ν.

Similarly, if Z ∈ Eα, X, Y ∈ Eβ and β 6= α, the inner product of (3-27) with
J j X for j = 1, . . . , ν gives

η j 〈J j Z , Y 〉‖X‖2 =
ν∑

i=1

ηi (−2〈Ji X, Y 〉〈Ji Z , J j X〉+ 〈Ji Z , X〉〈Ji Y, J j X〉).

Because

〈Ji X, Y 〉 = −〈X, πβ Ji Y 〉 and 〈Ji Z , X〉 = −〈X, πβ Ji Z〉,

the right side, viewed as a quadratic form of X ∈ Eβ , vanishes on the intersection
of (πβJY )⊥ and (πβJZ)⊥, whose dimension is at least dβ− cαβ− cββ . We obtain
that for α 6= β, either cαβ + cββ ≥ dβ , or JEα ⊥ Eβ , that is, πβJZ = 0 for all
Z ∈ Eα, so cαβ = 0. Since cαβ = 0 contradicts both 2cαβ ≥ dβ and cαβ = ν (since
ν > 0), we must have cαβ + cββ ≥ dβ . Then 2ν =

∑
αβ cαβ ≥ d1+ d2 = n.

This proves the lemma in all the cases when 2ν < n, that is, in all the cases
except for n = 8 and ν ≥ 4 (which follows from Lemma 2.4).

Consider the case n = 8. We identify R8 with O and assume that the Ji act
as in (2-5). Let D : O→ O be the symmetric operator defined by D1 = 0 and
Dei = ηi ei . By (2-4), condition (3-27) still holds if we replace D by D + cIm,
where Im is the operator of taking the imaginary part of an octonion. So we can
assume that the eigenvalue of the maximal multiplicity of D|O′ is zero (one of
them, if there are more than one). Then in (3-27), ν = rk D. By construction, we
have ν ≤ 6, and we only need to consider the cases when ν ≥ 4, as shown above.

By (2-5),
〈Ji X, Y 〉Ji Z = 〈Xei , Y 〉Zei = 〈ei , X∗Y 〉Zei ,

so
ν∑

i=1

ηi 〈Ji X, Y 〉Ji Z =
ν∑

i=1

ηi 〈ei , X∗Y 〉Zei =

7∑
i=1

〈Dei , X∗Y 〉Zei = Z D(X∗Y ),
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since D is symmetric and D1= 0. Then (3-27) can be rewritten as

(3-28) 2Z D(X∗Y )+ X D(Z∗Y )− Y D(Z∗X)= 0

for all X, Y ∈ Eβ , Z ∈ Eα an α 6= β.

Taking the inner product of (3-28) with X (and using the fact that D is symmetric,
D1= 0 and Y ∗X = 2〈X, Y 〉1− X∗Y ), we obtain 〈D(X∗Y ), X∗Z〉 = 0. It follows
that for every X ∈ Eβ , the subspaces E1 and E2 are invariant subspaces of the
symmetric operator L X DL t

X , where L X : O→ O is the left multiplication by X
(note that L X∗ = L t

X and that L X DL t
X coincides with the operator R̂X introduced

above). So L X DL t
X commutes with both orthogonal projections πα :R8

→ Eα for
α= 1, 2. It follows that for every α, β (not necessarily distinct) and every X ∈ Eβ ,
the operator D commutes with L t

XπαL X = ‖X‖2πX∗Eα , that is,

(3-29) X∗Eα is an invariant subspace of D for all α, β, and all X ∈ Eβ .

Consider all the possible cases for the dimensions dα of the subspaces Eα.
Let (d1, d2)= (1, 7), and let u be a nonzero vector in E1. Then by (3-29), every

line spanned by X∗u with X ⊥ u (that is, every line in O′) is an invariant subspace
of D. It follows that D|O′ is a multiple of the identity, which is a contradiction
since rk D = ν for 4≤ ν ≤ 6.

Let (d1, d2)= (2, 6), and let E1=Span(u, ue) for e∈O′, and let ‖e‖=‖u‖= 1.
Then E2 = uL , where L = Span(1, e)⊥. Let U be any element of L . By (3-29)
with Eα = E1 and X = uU∗ = −uU ∈ E2, every two-plane Span(U, (Uu∗)(ue))
is an invariant subspace of D. Note that (Uu∗)(ue) ∈ L , and that the operator J
defined by JU = (Uu∗)(ue) is an almost Hermitian structure on L . Then L is an
invariant subspace of D since it is as the sum of invariant subspaces Span(U, JU )
and J D|LU ∈ Span(U, JU ) (since Span(U, JU ) is both J - and D|L -invariant).
From Lemma 2.7(1), it follows that the operator J D|L is a linear combination of
id|L and J . Since D is symmetric and its eigenvalue of maximal multiplicity is
zero, we have D|L = 0. Then ν = rk D ≤ 1, which is a contradiction.

For the cases (d1, d2) = (3, 5), (4, 4), we use the notion of Cayley plane. A
four-dimensional subspace C ⊂ O is called a Cayley plane if X (Y ∗Z) ∈ C for
orthonormal octonions X, Y, Z ∈ C. This definition coincides with [Harvey and
Lawson 1982, Definition IV.1.23], if we disregard the orientation. We will need the
following properties of the Cayley plane (they can be found in [ibid., Section IV]
or proved directly):

(i) A Cayley plane is well defined; moreover, if X (Y ∗Z) ∈ C for some triple
X, Y, Z of orthonormal octonions in C, then the same is true for any (possibly
nonorthonormal) triple X, Y, Z ∈ C.
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(ii) If C is a Cayley plane, then the subspace X∗C is the same for all nonzero
X ∈ C; we call this subspace C∗C.

(iii) If C is a Cayley plane, then C⊥ is also a Cayley plane and C⊥∗C⊥ = C∗C.
Moreover, for all nonzero X ∈C⊥, the subspace X∗C is the same and is equal
to (C∗C)⊥.

(iv) For every nonzero e ∈ O and every pair of orthonormal imaginary octonions
u, v, the subspace C= Span(e, eu, ev, (eu)v) is a Cayley plane; every Cayley
plane can be obtained in this way.

Let (d1, d2) = (3, 5). Then E1 is contained in a Cayley plane C (spanned by
E1 and X (Y ∗Z) for some orthonormal vectors X, Y, Z ∈ E1), so C⊥ ⊂ E2. Let U
be a unit vector in the orthogonal complement to C⊥ in E2. Then X∗E2 = C∗C⊕

R(X∗U ) for every nonzero X ∈ C⊥ by properties (ii) and (iii). Since for any two
invariant subspaces of a symmetric operator, their intersection and the orthogonal
complement to it in each of them are also invariant, it follows from (3-29) that both
C∗C and every line R(X∗U ) with X ∈ C⊥ are invariant subspaces of D. Then D
restricts to a multiple of the identity on the four-dimensional space (C⊥)∗U . Since
the eigenvalue of maximal multiplicity of D is zero, R1⊕ (C⊥)∗U ⊂Ker D. Then
ν = rk D ≤ 3, which is again a contradiction.

Let now d1 = d2 = 4. First suppose E1 is not a Cayley plane. Let X1 and X2

be orthonormal vectors in E1. Then X∗1 E1∩ X∗2 E1 contains Span(1, X∗1 X2), since
X∗2 X1 = −X∗1 X2. Also, for any unit vector Y ∈ X∗1 E1 ∩ X∗2 E1 orthogonal to
Span(1, X∗1 X2), we have Y = X∗1 X3 = X∗2 X4 for some X3, X4 ∈ E1 such that
X3, X4 ⊥ X1, X2, which implies X2(X∗1 X3) = X4 ∈ E1, so E1 is a Cayley plane
by property (i). It follows that X∗1 E1 ∩ X∗2 E1 = Span(1, X∗1 X2). Since by (3-29)
both subspaces on the left side are invariant under D and since R1 is an invari-
ant subspace of D, we obtain that every line R(X∗1 X2) for X1, X2 ∈ E1 is an
invariant subspace of D (that is, X∗1 X2 is an eigenvector of D). Then the space
L = Span(E∗1 E1) lies in an eigenspace of D, so D|L is a multiple of id|L . If
X1, X2, X3 ∈ E1 are orthonormal, then X∗2 X3 /∈ X∗1 E1, since E1 is not a Cayley
plane. So dim L ≥ 5. Since the eigenvalue of maximal multiplicity of D is zero,
ν = rk D ≤ 3, a contradiction.

Let again d1 = d2 = 4, and let E1 be a Cayley plane. Then E2 = (E1)
⊥ is also a

Cayley plane by property (iii). Also, by the same property, E∗1 E1= E∗2 E2=V1 and
E∗1 E2 = E∗1 E2 = V2, where V1 and V2 are mutually orthogonal four-dimensional
subspaces of O, and 1∈V1. From (3-29), both V1 and V2 are invariant under D. Let
X, Y ∈ E1 and Z ,W ∈ E2, with X, Z 6= 0, and let u= X−1Y and v= Z−1W . Since
X−1
=‖X‖−2 X∗, we have L X−1 E1= V1 by property (ii). Similarly, L Z−1 E2= V1.

Taking the inner product of (3-28) with W we obtain

2‖Z‖2‖X‖2〈Du, v〉− 〈D(Z∗(Xu)), Z∗(Xv)〉 = −〈D(Z∗X), Z∗((Xu)v)〉
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for all X ∈ E1, Z ∈ E2 and u, v ∈ V1. The left side is symmetric in u, v. Since
(Xu)v=−(Xv)u for any u⊥v with u, v⊥1, we obtain 〈D(Z∗X), Z∗((Xu)v)〉=0
for all u, v ∈ V1 with u ⊥ v and u, v ⊥ 1, and all X ∈ E1 and Z ∈ E2. Given any
nonzero orthogonal X, X ′ ∈ E1, we can find u, v ∈ V1 with u ⊥ v and u, v ⊥ 1
such that X ′ = (Xu)v. To see this, note that Xu ∈ E1 for every u ∈ V1 = E∗1 E1 by
property (i). Since L X is nonsingular, L X (V1∩1⊥) is a three-dimensional subspace
of E1. The same is true with X replaced by X ′. Therefore Xu = X ′v for some
u, v ∈ V1∩1⊥; hence X ′ =−‖v‖−2(Xu)v. Since X ′ ⊥ X , we get 〈X, (Xu)v〉 = 0,
so u⊥v. Thus 〈D(Z∗X), Z∗X ′〉=0 for any Z ∈ E2 and any orthogonal X, X ′∈ E1.
Since Z∗E1 = V2 for any nonzero Z ∈ E2 by properties (ii) and (ii), and since the
operator L Z∗ is orthogonal when ‖Z‖ = 1, we get 〈Dv1, v2〉 = 0 for any two
orthogonal vectors v1, v2 ∈ V2. It follows that the restriction of D to its invariant
subspace V2 is a multiple of the identity. Since V2⊂O′ and the eigenvalue of D|O′
of maximal multiplicity is zero, we obtain R1⊕ V2 ⊂ Ker D. Then ν = rk D ≤ 3,
which is a contradiction. �

Remark 3.8. It follows from the proof of Lemma 3.7 that the algebraic statement
“a symmetric operator satisfying (3-27) is a multiple of the identity” is valid when
2ν < n. In particular, when n= 16, it remains true if we relax the restrictions ν ≤ 4
of Theorem 3.1 to ν 6= 8 (as for n = 16 and ν ≤ 8 by (2-3)).

Lemma 3.7 implies Theorem 3.1 at the generic points. Indeed, by Lemma 3.7,
every x ∈M ′ has a neighborhood U that is either conformally flat or is conformally
equivalent to a Riemannian manifold whose curvature tensor has the form (3-1),
with ρ being a multiple of the identity, that is, whose curvature tensor has a Clifford
structure. It follows from [N 2003, Theorem 1.2] and [N 2004, Proposition 2] that
U is conformally equivalent to an open subset of one of five model spaces: the
rank-one symmetric spaces CPn/2, CH n/2, HPn/4 or HH n/4, or Euclidean space.

To prove Theorem 3.1 in full, we show first that the same is true for any x ∈Mn ,
and second that the model space, to a domain of which U is conformally equivalent,
is the same for all x ∈ Mn .

We normalize the standard metric g̃ on each of the spaces CPn/2, CH n/2, HPn/4

and HH n/4 so that the sectional curvature Kσ satisfies |Kσ | ∈ [1, 4]. Then the
curvature tensor of each has a Clifford structure Cliff(ν; J1, . . . , Jν; ε, ε, . . . , ε).
Here ν = 1, 3 and ε = ±1. The Ji are smooth anticommuting almost Hermitian
structures with J1 J2 =±J3 when ν = 3, and satisfy

∇̃Z Ji =

m∑
j=1

ω
j
i (Z)J j ,

where ω j
i are smooth 1-forms with ω j

i +ω
i
j =0 and ∇̃ is the Levi-Civita connection

for g̃. Denote the corresponding spaces by Mν,ε and their Weyl tensors by Wν,ε,



CONFORMALLY OSSERMAN MANIFOLDS 353

so that
M1,1 = (CPn/2, g̃), M1,−1 = (CH n/2, g̃),

M3,1 = (HPn/4, g̃), M3,−1 = (HH n/4, g̃).

We start with a technical lemma:

Lemma 3.9. Let (N n, 〈 · , · 〉) be a smooth Riemannian space locally conformally
equivalent to one of the Mν,ε, so that g̃ = f 〈 · , · 〉 for a positive smooth func-
tion f = e2φ

: N n
→ R. Then the curvature tensor R and the Weyl tensor W of

(N n, 〈 · , · 〉) satisfy

R(X, Y )= (X ∧ K Y + K X ∧ Y )+ ε f (X ∧ Y + T (X, Y )), where(3-30a)

T (X, Y )=
∑ν

i=1(Ji X ∧ Ji Y + 2〈Ji X, Y 〉Ji ),

K = H(φ)−∇φ⊗∇φ+ 1
2‖∇φ‖

2 id,

W (X, Y )=Wν,ε(X, Y )= ε f (− 3ν
n−1 X ∧ Y + T (X, Y )),(3-30b)

‖W‖2 = Cνn f 2, where Cνn = 6νn(n+ 2)(n− ν− 1)(n− 1)−1,(3-30c)

(∇Z W )(X, Y )= εZ f (− 3ν
n−1 X ∧ Y + T (X, Y ))(3-30d)

+
1
2ε([T (X, Y ),∇ f ∧ Z ] + T ((∇ f ∧ Z)X, Y )

+ T (X, (∇ f ∧ Z)Y )),

where X ∧ Y is the linear operator defined by (X ∧ Y )Z = 〈X, Z〉Y − 〈Y, Z〉X ,
H(φ) is the symmetric operator associated to the Hessian of φ, and both ∇ and
the norm are computed with respect to 〈 · , · 〉.

Proof. The curvature tensor of Mν,ε has the form

R̃(X, Y )= ε(X∧̃Y +
∑ν

i=1(Ji X∧̃Ji Y + 2g̃(Ji X, Y )Ji )),

where (X∧̃Y )Z = g̃(X, Z)Y − g̃(Y, Z)X . Under the conformal change of metric,
the curvature tensor transforms as R̃(X, Y ) = R(X, Y )− (X ∧ K Y + K X ∧ Y ).
Since g̃(X, Y ) = f 〈X, Y 〉 and X∧̃Y = f (X ∧ Y ) and because the Ji remain anti-
commuting almost Hermitian structures for 〈 · , · 〉, Equation (3-30a) follows.

The fact that the Weyl tensor has the form (3-30b) follows from the definition
of W ; the norm of W can be computed directly using that the Ji are orthogonal
and that J1 J2 =±J3 when ν = 3.

From

∇̃Z Ji =
∑ν

j=1 ω
j
i (Z)J j and ∇̃Z X =∇Z X + ZφX + XφZ −〈X, Z〉∇φ,

where ∇̃ is the Levi-Civita connection for g̃, we get

∇Z Ji =
∑ν

j=1 ω
j
i (Z)J j + [Ji ,∇φ ∧ Z ]
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(where we used the fact that [Ji , X ∧ Y ] = Ji X ∧ Y + X ∧ Ji Y ). Then

(∇Z T )(X, Y )= [T (X, Y ),∇φ ∧ Z ] + T ((∇φ ∧ Z)X, Y )+ T (X, (∇φ ∧ Z)Y ),

which, together with (3-30b), proves (3-30d). �

For every point x ∈M ′, there exists a neighborhood U of x and a positive smooth
function f : U→ R such that the Riemannian space (U(x), f 〈 · , · 〉) is isometric
to an open subset of one of the five model spaces (Mν,ε or Rn), so at every point
x ∈M ′, the Weyl tensor W of Mn either vanishes or has the form given in (3-30b).
The Jacobi operators associated to the different Weyl tensors Wν,ε in (3-30b) differ
by their multiplicities and the signs of their eigenvalues, so every point x ∈ M ′ has
a neighborhood conformally equivalent to a domain of exactly one of the model
spaces. Moreover, the function f > 0 is well defined at all the points where W 6= 0,
since ‖W‖2 = Cνn f 2 by (3-30c).

By continuity, the Weyl tensor W of Mn either has the form Wν,ε or vanishes at
every point x ∈ Mn (since M ′ is open and dense in Mn — see Lemma 3.2). More-
over, every point x ∈Mn at which the Weyl tensor has the form Wν,ε has a neighbor-
hood in which the Weyl tensor has the same form. Hence Mn

=M0∪
⋃
α Mα, where

M0={x :W (x)= 0} is closed, and every Mα is a nonempty open connected subset
with ∂Mα ⊂ M0 such that the Weyl tensor has the same form Wν,ε =Wν(α),ε(α) at
every point x ∈ Mα. In particular, since Mα ⊂ M ′, each Mα is locally conformal
to one of the model spaces Mν,ε.

If M=M0 or if M0=∅, the theorem is proved. Otherwise, suppose that M0 6=∅
and that there exists at least one component Mα. Let y ∈ ∂Mα ⊂ M0 and let Bδ(y)
be a small geodesic ball of M centered at y that is strictly geodesically convex
(any two points from B(y) can be connected by a unique geodesic segment lying in
Bδ(y), and that segment realizes the distance between them). Let x ∈ Bδ/3(y)∩Mα

and let r = dist(x,M0). Then the geodesic ball B= Br (x) lies in Mα and is strictly
convex. Moreover, ∂B contains a point x0 ∈ M0. Replacing x by the midpoint of
the segment [xx0] and r by r/2, if necessary, we can assume that all the points
of ∂B, except for x0, lie in Mα.

The function f is positive and smooth on B \ {x0} (that is, on an open subset
containing B \ {x0}, but not containing x0). We are interested in the behavior of
f (x) when x ∈ B approaches x0.

Lemma 3.10. When x→ x0 while staying in B, both f and ∇ f have a finite limit.
Moreover, limx→x0,x∈B f (x)= 0.

Proof. The fact that limx→x0,x∈B f (x) = 0 follows from (3-30c) and the fact that
W |x0 = 0 (since x0 ∈ M0).
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Since the Riemannian space (B, f 〈 · , · 〉) is locally isometric to a rank-one
symmetric space Mν,ε and is also simply connected, there exists a smooth iso-
metric immersion ι : (B, f 〈 · , · 〉) → Mν,ε. Since f is smooth on B \ {x0} and
limx→x0,x∈B f (x)=0, the range of ι is a bounded domain in Mν,ε. Moreover, since
limx→x0,x∈B f (x)= 0, every sequence of points in B converging to x0 in the metric
〈 · , · 〉 is a Cauchy sequence for the metric f 〈 · , · 〉. It follows that there exists a limit
limx→x0,x∈B ι(x)∈Mν,ε. Defining for every x ∈ B the point J|x=Span(J1, . . . , Jν)
in the Grassmanian G(ν,

∧2Tx Mn), we find that there exists a limit

lim
x→x0,x∈B

J|x =: J|x0 ∈ G(ν,
∧2 Tx0 Mn).

In particular, if Z is a continuous vector field on B, then there exists a unit contin-
uous vector field Y on B such that Y ⊥ Z ,JZ on B. For such two vector fields,
the function

θ(Y, Z)= 〈
∑n

j=1(∇E j W )(E j , Y )Y, Z〉

(where E j is an orthonormal frame on B) is well defined and continuous on B.
Using (3-30d), we obtain by a direct computation that at the points of B,

θ(Y, Z)=
ε(n− 3)
2(n− 1)

〈(3ν∇ f ∧Y −(n−1)T (∇ f, Y ))Y, Z〉 =
−3εν(n− 3)

2(n− 1)
〈∇ f, Z〉

(where we used that ‖Y‖ = 1 and Y ⊥ Z ,JZ ). Since θ(Y, Z) is continuous on B,
there exists a limit limx→x0,x∈B Z f . Since Z is an arbitrary continuous vector field
on B, ∇ f has a finite limit when x→ x0 while staying in B. �

Since limx→x0,x∈B f (x) = 0 and the Ji are orthogonal, the second term on the
right side of (3-30a) tends to 0 when x→ x0 in B. Therefore the (3,1) tensor field
defined by (X, Y )→ (X ∧ K Y + K X ∧ Y ) has a finite limit (namely R|x0) when
x → x0 in B. It follows that the symmetric operator K has a finite limit at x0.
Computing the trace of K and using the fact that φ = 1

2 ln f , we get

(3-31) 4u = Fu on B, where u = f (n−2)/4 and F = 1
2(n− 2)Tr K .

Both functions F and u are smooth on B \{x0} and have a finite limit at x0. More-
over, limx→x0,x∈B u(x) = 0 by Lemma 3.10 and u(x) > 0 for x ∈ B \ {x0}. The
domain B is a small geodesic ball, so it satisfies the inner sphere condition (the
radii of curvature of the sphere ∂B are uniformly bounded). By the boundary
point theorem [Fraenkel 2000, Section 2.3], the inner directional derivative of u
at x0 (which exists by Lemma 3.10 if we define u(x0)=0 by continuity) is positive.

Since ∇u = (1/4)(n − 2) f (n−6)/4
∇ f in B, we arrive at a contradiction with

Lemma 3.10 in all cases except for n= 6. To finish the proof in that case, we show
that the limit limx→x0,x∈B ∇ f (x), which exists by Lemma 3.10, is zero. When
n = 6, we have ν = 1 by (2-3), so T (X, Y ) = J X ∧ JY + 2〈J X, Y 〉J , where
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J = J (x) is smooth on B \ {x0} and has a limit when x→ x0 while in B (see the
proof of Lemma 3.10). Using the covariant derivative of T computed in Lemma 3.9
and (3-30d), we obtain that on B,

(∇U∇Z W )(X, Y )

= ε〈H( f )U, Z〉(− 3
5 X ∧ Y + T (X, Y ))

+
1
2ε([T (X, Y ), H( f )U∧Z ]+T ((H( f )U∧Z)X, Y )+T (X, (H( f )U∧Z)Y ))

+
1
2ε f −1 Z f ([T (X, Y ),∇ f ∧U ] + T ((∇ f ∧U )X, Y )+ T (X, (∇ f ∧U )Y ))

+
1
4ε f −1

[[T (X, Y ),∇ f ∧U ] + T ((∇ f ∧U )X, Y )

+ T (X, (∇ f ∧U )Y ),∇ f ∧ Z ]

+
1
4ε f −1([T ((∇ f ∧ Z)X, Y ),∇ f ∧U ] + T ((∇ f ∧U )(∇ f ∧ Z)X, Y )

+ T ((∇ f ∧ Z)X, (∇ f ∧U )Y ))

+
1
4ε f −1([T (X, (∇ f ∧ Z)Y ),∇ f ∧U ] + T ((∇ f ∧U )X, (∇ f ∧ Z)Y )

+ T (X, (∇ f ∧U )(∇ f ∧ Z)Y )),

where H( f ) is the symmetric operator associated to the Hessian of f . Taking
U = Z = E j , where {E j } is an orthonormal basis, and summing up by j we find
after some computation

6∑
j=1

(∇E j∇E j W )(X, Y )

= ε4 f (−3
5 X ∧ Y + T (X, Y ))− ε f −1

‖∇ f ‖2T (X, Y )

+ ε f −1(T (X, Y )∇ f ∧∇ f + T ((X ∧ Y )∇ f,∇ f ))

+
3
2ε f −1(∇ f ∧ (X ∧ Y )∇ f + J∇ f ∧ (X ∧ Y )J∇ f ).

Since both ∇ f and J are smooth on B \ {x0} and have limits when x→ x0 while
in B, there exist unit vector fields X and Y that are continuous on B and satisfy
IX,IY ⊥∇ f and IX ⊥ IY . For such X and Y ,

6∑
j=1

(∇E j∇E j W )(X, Y )= ε4 f (−3
5 X ∧ Y + J X ∧ JY )− ε f −1

‖∇ f ‖2 J X ∧ JY.

Since the left side is continuous on B and limx→x0,x∈B 4 f = 0 by (3-31) and
Lemma 3.10, we obtain that the field f −1

‖∇ f ‖2 J X ∧ JY of skew-symmetric
operators has a limit at x0. Taking the trace of its square, we find that there exists
a limit limx→x0,x∈B f −2

‖∇ f ‖4, which implies limx→x0,x∈B ∇ f = 0 by Lemma
3.10. We again arrive at a contradiction with the boundary point theorem for the
function u = f satisfying (3-31). �
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UNFAITHFUL COMPLEX HYPERBOLIC TRIANGLE GROUPS,
III: ARITHMETICITY AND COMMENSURABILITY

JULIEN PAUPERT

We prove that the so-called sporadic complex reflection triangle groups in
SU(2, 1) are all nonarithmetic but one, and that they are not commensu-
rable to Mostow or Picard lattices (with a small list of exceptions). This
provides an infinite list of potential new nonarithmetic lattices in SU(2, 1).

1. Introduction

Parker and Paupert [2009] considered symmetric triangle groups 1 in SU(2, 1)
generated by three complex reflections through angle 2π/p for p > 3; the case of
order 2 was studied in [Parker 2008b]. By “symmetric”, we mean that the group in
question is generated by three complex reflections R1, R2 and R3 with the property
that there exists an isometry J of order 3 such that R j+1 = J R j J−1, where j is
taken mod 3. We study the group 0 generated by R1 and J , which contains1 with
index 1 or 3.

This type of group was first studied by Mostow [1980] for p= 3, 4, 5, where an
additional condition was imposed on the R j , namely the braid relation Ri R j Ri =

R j Ri R j ; these provided the first examples of nonarithmetic lattices in SU(2, 1).
Further nonarithmetic lattices in SU(n, 1) for n 6 9 were constructed in [Deligne
and Mostow 1986] and [Mostow 1986] as monodromy groups of certain hyper-
geometric functions (the lattices from the former, in dimension 2, were known to
Picard, who did not consider their arithmetic nature). These lattices are (commen-
surable with) groups generated by complex reflections R j with other values of p
[Mostow 1986; Sauter 1990]. Subsequently no new nonarithmetic lattices have
been constructed.

In [Parker and Paupert 2009], we showed that symmetric complex reflection
triangle groups 1= 〈R1, R2, R3〉, if they are discrete and if R1 R2 and R1 R2 R3 are
elliptic, come in three flavors: Mostow’s lattices, subgroups thereof, and a third
class, which we called sporadic groups (see Section 2 for a precise definition).
Our main motivation is that these new groups are candidates for nonarithmetic
lattices in SU(2, 1). In this paper we analyze the adjoint trace fields Q[Tr Ad0]

MSC2000: 20H10, 22E40, 51M10.
Keywords: nonarithmetic lattices, complex reflection groups, complex hyperbolic geometry.
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of the sporadic groups 0, and use this to determine which sporadic groups are
arithmetic, and which ones are commensurable to Mostow or Picard lattices. The
main results are Theorems 4.1 and 5.2, which say in essence that all sporadic groups
are nonarithmetic, except one that was studied in [Parker and Paupert 2009], and
moreover that they are not commensurable to any of the Mostow or Picard lattices,
with an explicit list of possible exceptions.

The only required notions of complex hyperbolic geometry are the definitions
of elliptic and regular elliptic isometries, as well as complex reflections. These are
standard and can be found for instance in the book [Goldman 1999].

2. Sporadic groups

We recall the setup and main results from [Parker and Paupert 2009]. Our starting
point was that groups 0 = 〈R1, J 〉 as defined above can be parametrized up to
conjugacy by τ = Tr(R1 J ); we denoted by 0(ψ, τ) the group generated by a
complex reflection R1 through angle ψ and a regular elliptic isometry J of order
3 such that τ = Tr(R1 J ). The generators for this group were given in the form

J =

0 0 1
1 0 0
0 1 0

 ,(2-1)

R1 =

e2iψ/3 τ −eiψ/3 τ

0 e−iψ/3 0
0 0 e−iψ/3

 .(2-2)

These preserve the Hermitian form 〈z,w〉 = w∗Hτ z where

(2-3) Hτ =

2 sin(ψ/2) −ie−iψ/6τ ieiψ/6τ

ieiψ/6τ 2 sin(ψ/2) −ie−iψ/6τ

−ie−iψ/6τ ieiψ/6τ 2 sin(ψ/2)

 .
This always produces a subgroup0 of GL(3,C), but the signature of Hτ depends

on the values of ψ and τ . We determined the corresponding parameter space for τ
for any fixed value of ψ [Parker and Paupert 2009, Sections 2.4 and 2.6]. When 0
preserves a Hermitian form of signature (2, 1), we will say that 0 is hyperbolic.

We found necessary conditions for these groups to be discrete, and these condi-
tions produced, along with the groups previously studied by Mostow [1980], a list
of possibly discrete such groups:

Theorem 2.1. Let R1 be a complex reflection of order p and J a regular elliptic
isometry of order 3 in PU(2, 1). Suppose that R1 J and R1 R2 = R1 J R1 J−1 are
elliptic. If the group 0 = 〈R1, J 〉 is discrete then one of the following is true:
• 0 is one of Mostow’s lattices.
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• 0 is a subgroup of one of Mostow’s lattices.

• 0 is one of the sporadic groups listed below.

Mostow’s lattices correspond to τ = eiφ for some angle φ, while subgroups of
Mostow’s lattices correspond to τ = e2iφ

+ e−iφ for some angle φ, and sporadic
groups (this can be taken as a definition) are those for which τ takes one of the 18
values {σ1, σ1, . . . , σ9, σ9} where the σi are given in the following list:

σ1 := eiπ/3
+ e−iπ/6 2 cos(π/4), σ4 := e2π i/7

+ e4π i/7
+ e8π i/7,

σ2 := eiπ/3
+ e−iπ/6 2 cos(π/5), σ5 := e2π i/9

+ e−iπ/9 2 cos(2π/5),

σ3 := eiπ/3
+ e−iπ/6 2 cos(2π/5), σ6 := e2π i/9

+ e−π i/9 2 cos(4π/5),

σ7 := e2π i/9
+ e−iπ/9 2 cos(2π/7),

σ8 := e2π i/9
+ e−iπ/9 2 cos(4π/7),

σ9 := e2π i/9
+ e−iπ/9 2 cos(6π/7).

Therefore, for each value of p > 3, we have a finite number of new groups to
study, the 0(2π/p, σi ) and 0(2π/p, σi ), which are hyperbolic. We determined
which sporadic groups are hyperbolic and listed them in the table in [Parker and
Paupert 2009, Section 3.3]. Notably such groups exist for all values of p, and more
precisely:

Proposition 2.1. For p > 4 and τ = σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8 or σ9, the groups
0(2π/p, τ ) are hyperbolic.

When we study the question of arithmeticity of these groups, we will use the
list of all hyperbolic sporadic groups, as well as the following normalization of the
entries of our matrices:

Proposition 2.2 [Parker and Paupert 2009, Proposition 2.8]. The maps R1, R2

and R3 may be conjugated within SU(2, 1) and scaled so that their matrix entries
lie in the ring Z[τ, τ, e±iψ

].

Explicitly, we conjugate the previous matrices by C =diag(e−iψ/3, 1, eiψ/3) and
rescale by e−iψ/3. Conjugating by C and rescaling by 2 sin(ψ/2) also brings Hτ
to a Hermitian matrix with entries in the same ring R = Z[τ, τ, e±iψ

]. Therefore,
a hyperbolic 0(ψ, τ) can be realized as a subgroup of SU(H, R) where H is an
R-defined Hermitian form of signature (2, 1).

Finally, we showed that some of the hyperbolic sporadic groups are nondiscrete
[Parker and Paupert 2009, Corollary 4.2, Proposition 4.5 and Corollary 6.4]:

Proposition 2.3. For p>3 and (τ or τ =σ3, σ8 or σ9), 0(2π/p, τ ) is not discrete.
Also, for p > 3 with p 6= 5 and (τ or τ = σ6), 0(2π/p, τ ) is not discrete.
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3. Trace fields

The trace field Q[Tr0] is a classical invariant for a finitely generated subgroup 0
of a linear group G. It is invariant under conjugacy, but not commensurability.
(We will say that two subgroups 01 and 02 of G are commensurable if there exists
g ∈ G such that 01∩ g02g−1 has finite index in both 01 and g02g−1). To obtain a
commensurability invariant for such 0, one can consider the trace field Q[Tr0(n)]
(where 0(n) is the subgroup of 0 generated by n-th powers for 0 ⊂ GL(n,C)),
as in [Maclachlan and Reid 2003] for SL(2,C) or as in [McReynolds 2006] for
SU(2, 1). Another possibility is the adjoint trace field Q[Tr Ad0], given by the
adjoint representation Ad : G→ GL(g), as in [Mostow 1980; 1986; Deligne and
Mostow 1986] for SU(n, 1). The following result can be found for instance as
[Deligne and Mostow 1986, Proposition 12.2.1]:

Proposition 3.1. Q[Tr Ad0] is a commensurability invariant.

This is the field that we will use here, as it is more convenient for our purposes.
Indeed, this invariant trace field has been computed for all known nonarithmetic
lattices in SU(2, 1). See the lists on [Mostow 1980, page 251] and [Deligne and
Mostow 1986, page 86]. Moreover it is easy to compute (or at least estimate) by
the following result:

Proposition 3.2. Tr Ad(γ)= |Tr(γ)|2 for γ ∈ SU(2, 1),

This result is used several times in [Mostow 1980], where it is referred to as
Lemma 4.2, but unfortunately its statement is missing from final edition.

Proof. If U is a unitary group (of any signature), the adjoint representation of U is
isomorphic to the representation U ⊗U . �

We use this to find the following bounds for Q[Tr Ad0(ψ, τ)]:

Proposition 3.3.

Q[cosψ, |τ |2,Re τ 3,Re(e−iψτ 3)] ⊂Q[Tr Ad0(ψ, τ)] ⊂Q[τ, τ, eiψ
] ∩R.

Proof. The second inclusion follows from Propositions 2.2 and 3.2. For the first
inclusion, we use Proposition 3.2 and compute |Tr(γ)|2 for various words γ, using
the table of traces from [Parker and Paupert 2009, Section 4.1]; see also formulae
in [Pratoussevitch 2005]. We have

|Tr R1|
2
= 5+ 4 cosψ,

|Tr R1 J |2 = |τ |2 (by the definition of τ ),

|Tr(R1 J )2|2 = |τ |4+ 4|τ |2− 4 Re τ 3,

|Tr(J−1 R1)
2
|
2
= |τ |4+ 4|τ |2− 4 Re(e−iψτ 3). �
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We list the corresponding elements of Q[Tr Ad0(2π/p, σi )] in the table below.
Numbers in the last three columns are not the values of |τ |2, Re τ 3 or Re(e−iψτ 3),
but rather new algebraic numbers added to Q[Tr Ad0(2π/p, σi )] by these values.
For example, the first four zeros in the fourth column indicate that the correspond-
ing Re τ 3 is already in Q[cosψ, |τ |2].

cosψ |τ |2 Re τ 3 Re(e−iψτ 3)

σ1 cos 2π/p 0 0
√

2 sin 2π/p
σ2 cos 2π/p cosπ/5 0 sin 2π/p
σ3 cos 2π/p cos 3π/5 0 sin 2π/p
σ4 cos 2π/p 0 0

√
7 sin 2π/p

σ5 cos 2π/p 0 cos 2π/5
√

3 sin 2π/p
σ6 cos 2π/p 0 cos 4π/5

√
3 sin 2π/p

σ7 cos 2π/p cosπ/7 0
√

3 sin 2π/p

4. Arithmeticity

In [Parker and Paupert 2009, Propositions 6.5 and 6.6], we proved that only one of
the sporadic groups with p= 3, namely 0(2π/3, σ4), is contained in an arithmetic
lattice in SU(2, 1). (It was shown in [Parker 2008b] that all the corresponding
groups with p = 2 are arithmetic.) In this section we extend this to higher values
of p, and show that in fact this group is the only such example among all higher-
order sporadic groups:

Theorem 4.1. For p > 3 and τ ∈ {σ1, σ1, . . . , σ9, σ9}, the group 0(2π/p, τ ) is
contained in an arithmetic lattice in SU(2, 1) if and only if p = 3 and τ = σ4.

We will use the following criterion for arithmeticity:

Proposition 4.1. Let E be a purely imaginary quadratic extension of a totally real
field F , and let H be an E-defined Hermitian form of signature (2, 1) such that a
sporadic group 0 is contained in SU(H ;OE). Then 0 is contained in an arithmetic
lattice in SU(2, 1) if and only if for all ϕ ∈ Gal(F) not inducing the identity on
Q[Tr Ad0], the form ϕH is definite.

This follows from [Mostow 1980, Lemma 4.1]. Hypotheses (1) and (3) of that
lemma — that Q[Tr Ad0] is a totally real field, and that Tr Ad γ is an algebraic
integer for all γ ∈ 0— are verified by Propositions 2.2 and 3.2, using the special
values of τ for sporadic groups.

We will prove Theorem 4.1 in several parts using this criterion. The first result
follows the same lines as the corresponding one in [Parker and Paupert 2009]:

Proposition 4.2. The sporadic group 0(2π/p, τ ) is not contained in an arithmetic
lattice in SU(2, 1), with the following possible exceptions:
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• τ = σ1 and p = 4 or p > 8;

• τ = σ2 and 3 or 4 or 5 divides p;

• τ = σ2 and p = 8, 9, 10, 12, 14, 15, 16, 18;

• τ = σ4 and p = 3 or p > 7;

• τ = σ5 and 5 divides p;

• τ = σ7 and 7 divides p.

Proof. We conjugate the generators and Hermitian form as in Proposition 2.2 so
that their entries lie in the ring Z[τ, τ, e±iψ

], and are therefore algebraic integers
in the field Q[τ, τ, eiψ

]. (Recall that ψ = 2π/p in our cases.) We then find in each
case a number field E as in Proposition 4.1 containing Q[τ, τ, eiψ

], and a Galois
conjugation of E that acts nontrivially on Q[Tr Ad0] and sends the Hermitian form
to another indefinite form. For the values of τ and p that are not excluded above,
we can use the same argument as in [Parker and Paupert 2009], namely, that one of
the Galois conjugations of E sends the parameter τ to another value for which we
know that the Hermitian form is indefinite (from our description of the parameter
space). This requires using a Galois conjugation fixing e2iπ/p. The details:

• For τ = σ1 or σ1, let E =Q[eiπ/6, eiπ/4, e2iπ/p
]. If p is not divisible by 3 or 4,

σ1 is sent to σ1 by the Galois conjugation that sends eiπ/6 to e−iπ/6, sends eiπ/4

to e−iπ/4, and fixes e2iπ/p. The corresponding Hermitian form is indefinite for
p = 3, 4, 5, 6, 7. This works for p = 5 or 7, but for p = 3, 4 or 6 we need to find
another Galois conjugation. For p = 3 or 6, sending eiπ/6 to e7iπ/6 (and for com-
patibility eiπ/4 to e−iπ/4) fixes e2iπ/3 (respectively e2iπ/6) and sends σ1 to e4iπ/3σ1,
which is equivalent to σ1. These various Galois conjugations act nontrivially on
Re(e−iψτ 3)= 5 cosψ + 5

√
2 sinψ , which is in Q[Tr Ad0].

• For τ ∈ {σ2, σ2, σ3, σ3}, let E = Q[eiπ/6, eiπ/5, e2iπ/p
]. If p is not divisible by

3 or 4 or 5, the Galois conjugation that sends eiπ/5 to e3iπ/5, sends eiπ/6 to e7iπ/6

and fixes e2iπ/p is one that swaps σ2 and σ3, as well as σ2 and σ3. The Hermitian
form corresponding to σ2 and σ3 is indefinite for all p > 3; for σ2 it is indefinite
for 3 6 p 6 19, and for σ3 it is indefinite for 3 6 p 6 6. This Galois conjugation
acts nontrivially on |τ |2 = 2+2 cos(π/5) (respectively 2+2 cos(3π/5)), which is
in Q[Tr Ad0].

If p is not divisible by 2 or 3, the Galois conjugation sending eiπ/6 to e−iπ/6

and fixing the 2 other generators of E sends σ2 to σ2. This works unless p =
8, 9, 10, 12, 14, 15, 16, 18.

• For τ = σ4 or σ4, let E = Q[e2iπ/7, e2iπ/p
], which contains i

√
7 = σ4 − σ4.

If p is not divisible by 7, the Galois conjugation sending e2iπ/7 to e−2iπ/7 and
fixing the other generator of E sends σ4 to σ4. The corresponding Hermitian
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form is indefinite for p = 4, 5, 6. This Galois conjugation acts nontrivially on
8 Re(e−iψτ 3)= 20 cosψ + 4

√
7 sinψ , which is in Q[Tr Ad0].

• For τ ∈{σ5, σ5, σ6, σ6}, let E=Q[eiπ/9, e2iπ/5, e2iπ/p
]. If p is not divisible by 5,

the Galois conjugation sending e2iπ/5 to e4iπ/5 and fixing the 2 other generators
of E sends σ5 to σ6, and σ5 to σ6. The Hermitian form corresponding to σ5 and
σ6 is indefinite for all p > 3; for σ5 it is indefinite for p = 2, 4, and for σ6 it is
indefinite for 4 6 p 6 29. This Galois conjugation acts nontrivially on Re τ 3

=

11/2+ 11 cos(2π/5) (respectively 11/2+ 11 cos(4π/5)), which is in Q[Tr Ad0].
If p is not divisible by 3, the Galois conjugation sending eiπ/9 to e−iπ/9 and

fixing the 2 other generators of E sends σ6 to σ6. This works for p = 5 (the only
case where Proposition 2.3 doesn’t tell us that 0(2π/p, σ6) and 0(2π/p, σ6) are
nondiscrete).

• For τ ∈ {σ7, σ7, σ8, σ8, σ9, σ9}, let E = Q[eiπ/9, e2iπ/7, e2iπ/p
]. If p is not

divisible by 7, the Galois conjugation sending e2iπ/7 to e6iπ/7 and fixing the 2
other generators of E sends σ7 to σ9 and σ9 to σ8, and σ7 to σ9 and σ9 to σ8.
The Hermitian form corresponding to σ7, σ8 and σ9 is indefinite for all p > 4
(even 3 for σ7, σ9); for σ7 it is indefinite for p = 2, for σ8 it is indefinite for
46 p 6 41, and for σ9 it is indefinite for 46 p 6 8. This Galois conjugation acts
nontrivially on |τ |4+|τ |2−2 Re τ 3

=3+2 cos(2π/7) (respectively 3+2 cos(4π/7)
and 3+ 2 cos(6π/7)), which is in Q[Tr Ad0].

Finally, we know from Proposition 2.3 that, for τ ∈ {σ3, σ3, σ8, σ8, σ9, σ9},
0(2π/p, τ ) is nondiscrete for all p and in particular is not contained in an arith-
metic lattice in SU(2, 1). �

We then examine the remaining cases, where we must now take into account
the effect of our various Galois conjugations on ψ = e2iπ/p. In what follows, the
number field E is a cyclotomic field Q[e2iπ/r

]; the Galois group of E consists
of the automorphisms ϕn sending e2iπ/r to e2inπ/r for (n, r) = 1. The following
criterion [Parker and Paupert 2009, Corollary 2.7] expresses the determinant κ of
the Hermitian matrix Hτ in a convenient way:

Lemma 4.1. When τ = eiα
+ eiβ

+ e−iα−iβ and sin(ψ/2) > 0, the matrix Hτ has
signature (2, 1) if and only if

κ = 8 sin(3α/2+ψ/2) sin(3β/2+ψ/2) sin
(
−3(α+β)/2+ψ/2

)
< 0.

Proposition 4.3. 0(2π/p, τ ) is not contained in an arithmetic lattice in SU(2, 1)
if

• τ = σ1 and p = 4 or p > 8;

• τ = σ2 and 3 or 4 or 5 divides p;

• τ = σ4 and p > 7;
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• τ = σ5 and 5 divides p; or

• τ = σ7 and 7 divides p.

Proof. In each case, find a Galois conjugation ϕ acting nontrivially on Q[Tr Ad0]
such that two of ϕ(e3iα/2), ϕ(e3iβ/2), and ϕ(e−3i(α+β)/2) lie in the open upper half
of the unit circle, and the third in the open lower half (or, in the case of τ = σ4,
all three in the lower half). Then this property is stable, that is, if ϕ(ψ) is small
enough, adding ϕ(ψ)/2 to each of the three angles will not change it, where we
think of ϕ as acting on angles. The details:

• As before, for τ =σ1 let E =Q[eiπ/6, eiπ/5, e2iπ/p
]; we will use ϕ ∈Gal(E) fix-

ing σ1 up to a cube root of unity (mod× e±2π i/3). In the notation of Lemma 4.1, the
corresponding triple (3α/2, 3β/2,−3(α+β)/2) is (π/2, π/8,−5π/8). We can get
ϕn(σ1)=σ1 mod× e±2π i/3 by sending eiπ/4 to e±iπ/4 and fixing eiπ/6 mod× e±2π i/3,
or by sending eiπ/4 to e±3iπ/4 and eiπ/6 to e7iπ/6

= −eiπ/6 mod× e±2π i/3. This
means that n is congruent to (1 or −1 mod 8) and (1 or 5 or 9 mod 12) in the
first case, and to (3 or −3 mod 8) and (3 or 7 or 11 mod 12) in the second. We
win if we can find such an n, coprime with p and such that nπ/p < π/2, that
is, n 6 2p + 1 (this is the largest angle by which one can rotate the 3 points on
the unit circle without any of them changing sides). The first few solutions to
the above congruencies are n = (1), 3, 9, 11, 17, 19, 25, 27, 33, 35, 41. Start with
n= 3; this works as long as 3 doesn’t divide p and p> 7. We check that ϕ5(κ)< 0
(and ϕ5(

√
2) 6=
√

2) for p = 4. Assume then that 3 divides p, and use n = 11; this
works as long as 11 doesn’t divide p and p> 23. This leaves p= 9, 12, 15, 18, 21;
we check that n = 5 works for p = 9, 18, 21, that n = 7 works for p = 12, and
n = 11 for p = 15. Assume then that 33 divides p, and use n = 17; this works
as long as 17 doesn’t divide p and p > 34. This leaves p = 33, where we check
that ϕ5(κ) < 0. We then go on in this fashion (skipping solutions like 27 and 33,
which are divisible by 3), assuming that 3× 11× 17 divides p and using n = 19
and so on. In this fashion p increases multiplicatively, whereas solutions to the
above congruences increase additively; therefore such n exist by a wider and wider
margin. We conclude inductively that such an n exists for p large enough (and we
have checked the few exceptions for small p).

• As previously, for τ = σ2 or σ3 let E = Q[eiπ/6, eiπ/5, e2iπ/p
] and consider

ϕ ∈ Gal(E) sending eiπ/5 to e3iπ/5 and eiπ/6 to e7iπ/6
=−eiπ/6. Then ϕ swaps σ2

and σ3. With the notation of Lemma 4.1, the corresponding triples

(3α/2, 3β/2,−3(α+β)/2)

are
(π/2, π/20,−11π/20) when τ = σ2,

(π/2, 7π/20,−17π/20) when τ = σ3.
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Now when 3 or 4 or 5 divide p, ϕ also acts on e2iπ/p.
If 4 divides p, writing p=4k, (e2iπ/p)k = i = (eiπ/6)3 is sent to−i , so ϕ(e2iπ/p)

must be a k-th root of −i ; in other words, ωk .e−iπ/2k for a k-th root of unity ωk .
In fact, if 3 or 5 don’t divide p, one can send e2iπ/p to any ωk .e−iπ/2k , say with
ωk = e2iπ/k (this gives a better bound on p than 1). Then ψ/2 is sent to 3ψ/2
(because −π/2k + 2π/k = 3π/2k), and the argument works for 3π/p < 11π/20
(p > 6) when τ = σ3, and 3π/p < 17π/20 (p > 4) when τ = σ2. There remain
the cases where 5 divides p, as well as τ = σ3 and p = 4. In the latter case one
can check that ϕ13(κ) < 0, with ϕ13(cos 3π/5) 6= cos 3π/5.

Now suppose that 5 divides p but 3 or 4 do not, and write p = 5k. As above,
one can send e2iπ/p to e6iπ/p, and the same argument tells us that ϕ(κ) < 0 for
p > 4 when τ = σ2 and p > 6 when τ = σ3. When p = 5 and τ = σ3, one can
again check that ϕ13(κ) < 0 (with ϕ13(cos 3π/5) 6= cos 3π/5).

If 3 divides p, we find ϕ ∈ Gal(E) as above; specifically, we require that
ϕ(eiπ/5) = e3iπ/5 or e−3iπ/5 and ϕ(eiπ/6) = e7iπ/6 up to a cube root of unity, so
that ϕ swaps σ2 and σ3 (up to a cube root of unity). Such a ϕ is realized as a ϕn

if (and only if) n is congruent to (3 or −3 mod 10) and (3 or 7 or 11 mod 12).
The values of such n are 3, 7, 23, 27, 43, 47, . . . . Moreover, with the angle triples
as above, ϕn(κ) < 0 for nπ/p < 17π/20 (when τ = σ2) or nπ/p < π/2 (when
τ = σ3). We may use n = 7 as long as 7 doesn’t divide p, which works for p > 9
when τ = σ2, and p> 15 when τ = σ3. We then check the cases p= 6 and τ = σ2,
as well as p = 6, 9, 12 and τ = σ3. It turns out that n = 7 works for all of these
(renormalizing 7× 2π/6 when p = 6 as 2π/6). Now if 7 also divides p, we use
the next solution n = 23, which works for p > 47 when τ = σ2, and p > 28 when
τ = σ3, as long as 23 doesn’t divide p. We check that n = 11 works for p= 21 for
τ = σ2, σ3 and p = 42 for τ = σ2. One can then assume that 21× 23 divides p,
and so on. We conclude inductively as above.

• For τ = σ4, E is as before Q[e2iπ/7, e2iπ/p
], and (3α/2, 3β/2,−3(α+β)/2)=

(−3π/7,−6π/7, 9π/7). If 7 doesn’t divide p, consider ϕ ∈ Gal(E) fixing e2iπ/7

and sending e2iπ/p to e2inπ/p with (n, p) = 1 and 1 < n 6 3p/7 (this is possible
as p > 7). Then nπ/p 6 3π/7 as required.

If 7 divides p, say p= 7k, one can again fix e2iπ/7 and send e2iπ/p to a k-th root
of itself; when k > 3, letting ϕ(e2iπ/p) = e2iπ(1/k+1/p) works (that is, ϕ(κ) < 0),
because π/k + π/p < 3π/7. There remain only the cases p = 7, where one can
check that ϕ2(κ) < 0 with ϕ2(cos 2π/7) 6= cos 2π/7, and p = 14, where one can
check that ϕ9(κ) < 0 with ϕ9(cosπ/7) 6= cosπ/7.

• As previously, for τ = σ5 or σ6 let E =Q[eiπ/9, e2iπ/5, e2iπ/p
] and consider ϕ ∈

Gal(E) sending e2iπ/5 to e4iπ/5 and fixing eiπ/9. Then ϕ swaps σ5 and σ6. With the
notation of Lemma 4.1, the corresponding triples (3α/2, 3β/2,−3(α+ β)/2) are
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(π/3, 13π/30,−23π/30) when ϕ(τ) = σ5, and (π/3, 31π/30,−41π/30) when
ϕ(τ)= σ6.

If 5 divides p, say p = 5k, ϕ must send e2iπ/p to a k-th root of e4iπ/5, and one
can choose any of these if 3 does not divide p, such as e4iπ/5k . When τ = σ5, this
works for 2π/p 6 17π/30 (and p > 4), and when τ = σ6 for 2π/p 6 11π/30
(and p > 6). When p = 5 and τ = σ6, one can check that ϕ4(κ) < 0 (with
ϕ4(
√

3 sin(2π/5)) 6=
√

3 sin(2π/5)).
Now if 3 also divides p, we must look more closely at how ϕ is defined above.

Namely, such a ϕ is a ϕn if and only if n is congruent to 2 mod 5 and 1 mod 18.
The smallest such n is 37. However one can relax slightly the definition of ϕ to
allow ϕ(eiπ/9) = ω3eiπ/9 for any cubic root of unity ω3, as this does not affect τ .
The conditions are then that n should be congruent to (2 mod 5) and (1 or 7 or 13
mod 18). We can then use n = 7, unless 7 divides p. In that case ϕ7 would work
for 7π/p 6 17π/30 (with p > 13) when τ = σ6, and for 7π/p 6 11π/30 (with
p > 20) when τ = σ5. Since at this point 15 divides p, there remains only the
case where p = 15 and τ = σ6, in which case one can check that ϕ11(κ) < 0 with
ϕ11(cos(2π/15)) 6= cos(2π/15).

Finally, if 7 also divides p (at this point p is divisible by 105), we can do the
same thing. That is, we claim that there exists n congruent to (2 mod 5) and (1 or 7
or 13 mod 18), coprime with p and such that nπ/p611π/30 (that is, n611p/30).
For p= 105k, n= 37 satisfies these conditions for 16 k6 36. After that, suppose
that 37 divides p and so on; we conclude inductively as above.

• As before, for τ = σ7 let E =Q[eiπ/9, e2iπ/7, e2iπ/p
] and consider ϕn ∈Gal(E)

sending e2iπ/7 to e6iπ/7 (respectively e−2iπ/7) and fixing eiπ/9 (up to a cube root of
unity). This means that n should be congruent to (3 respectively −1 mod 7) and
(1 or 7 or 13 mod 18). Then ϕn(σ7)= σ9 (respectively σ7), and the corresponding
triple (3α/2, 3β/2,−3(α+β)/2) is

(π/3, 47π/42,−61π/42) (respectively (π/3, 11π/42,−25π/42)).

With these values, ϕn(κ)<0 when nπ/p619π/42 (respectively nπ/p625π/42).
The smallest such n is 13, which works for p> 22 (as long as 13 doesn’t divide p).
It remains to check p = 7, 14 or 21 (here 7 is assumed to divide p): n = 5 works
when p = 7 or 21, and n = 11 works when p = 14. If 13 divides p, use the next
solution n = 31, and so on. We conclude inductively as above. �

Lemma 4.2. For τ = σ2 and p = 8, 9, 10, 12, 14, 15, 16, 18, 0(2π/p, τ ) is not
contained in an arithmetic lattice in SU(2, 1).

Proof. For each of these values we find a Galois conjugation ϕn of E such that
ϕn(κ) < 0, where κ = det Hτ , and acting nontrivially on Q[Tr Ad0]. For this
last condition, it suffices to check that ϕn(cos 2π/p) 6= cos 2π/p (this is true for
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all cases below, except n = 7 and p = 8, in which case ϕ7(cosπ/5) 6= cosπ/5).
The condition ϕn(κ) < 0 can easily be checked, for instance numerically. We
claim that the following ϕn satisfy these conditions when τ = σ2: ϕ7 works for
p = 8, 9, 10, 12, and ϕ11 works for p = 14, 15, 16, 18. �

5. Commensurability

In this section we compare the adjoint trace fields of our sporadic groups with those
of the previously known lattices in SU(2, 1), namely the Picard and Mostow lat-
tices (see [Deligne and Mostow 1986; Mostow 1980; 1986; Sauter 1990; Thurston
1998; Parker 2008a] for an overview). From the lists on [Mostow 1980, p. 251;
Deligne and Mostow 1986, p. 86; Thurston 1998, pp. 548–549], we see that for
these lattices 0, Q[Tr Ad0] is always of the form Q[cos 2π/d], where

• d = 3, 4, 5, 6, 8, 9, 10, 12, 18 for the arithmetic Picard lattices;

• d = 12, 15, 20, 24 for the nonarithmetic Picard lattices;

• d = 1, 8, 10, 12, 15, 18 for the arithmetic Mostow lattices;

• d = 12, 15, 18, 20, 24, 30, 42 for the nonarithmetic Mostow lattices.

Moreover, only two nonarithmetic noncocompact lattices are known in SU(2, 1),
both with d = 12.

Remark 5.1. The nonarithmetic Picard and Mostow lattices in SU(2, 1) fall into
at least 7 and at most 9 distinct commensurability classes.

Indeed there are 6 distinct adjoint trace fields (d = 15 and 30 give the same field),
and for d = 12 there are two classes, one cocompact and the other noncocompact.
Also, there are a priori 15 examples, but Mostow [1986] and Sauter [1990] find
commensurabilities among some of them. See [Parker 2008a] for more details.

Now we use the values from Proposition 3.3 to distinguish commensurability
classes of sporadic groups, from each other and from the Picard and Mostow lat-
tices. We will also use the fact that arithmeticity and cocompactness are commen-
surability invariants. We summarize the results from this section:

Theorem 5.2. For p>2 and τ ∈{σ1, σ1, . . . , σ9, σ9}, sporadic groups 0(2π/p, τ )
are not commensurable to any Picard or Mostow lattice, except possibly when

• p = 2 or 4 or 6 and τ is any sporadic value;

• p = 3 and τ = σ7;

• p = 5 and τ or τ = σ1, σ2;

• p = 7 and τ = σ4;

• p = 8 and τ = σ1;

• p = 10 and τ = σ1, σ2, σ2;
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• p = 12 and τ = σ1, σ7;

• p = 20 and τ = σ1, σ2;

• p = 24 and τ = σ1.

The first observation follows simply from the order of the complex reflections
in the group; that is, from the fact that Q[Tr Ad0(2π/p, τ )] contains cos 2π/p.
The values of p > 3 that we rule out are the divisors of 12, 15, 18, 20, 24, 30, 42.

Lemma 5.1. For p 6=2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 30, 42, the
sporadic groups 0(2π/p, τ ) are not commensurable to any Picard or Mostow lat-
tice. Moreover, they fall into infinitely many distinct commensurability classes.

We then examine the remaining values of p, where we can rule out most cases
except when p = 3, 4 or 6:

Lemma 5.2. For values p ∈ {5, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 30, 42}, the
sporadic groups 0(2π/p, τ ) are not commensurable to any Picard or Mostow lat-
tice, except possibly when

• p = 5 and τ or τ = σ1, σ2;

• p = 7 and τ = σ4;

• p = 8 and τ = σ1;

• p = 10 and τ = σ1, σ2, σ2;

• p = 12 and τ = σ1, σ7;

• p = 20 and τ = σ1, σ2; or

• p = 24 and τ = σ1.

Proof. We use the values found for Q[Tr Ad0] in Section 3, listed in the table at
the end of that section, as well as the following criterion.

Let p>3, p 6=6 and d ∈N. Then sin 2π/p= cos(p−4)π/2p is in Q[cos 2π/d]
if and only if

• p divides d (if 4 divides p);

• 2p divides d (if p is even but not divisible by 4); and

• 4p divides d (if p is odd).

This allows us to rule out the cases

• p = 7, 9, 14, 15, 18, 21, 30, 42 when τ or τ = σ1;

• p = 7, 8, 9, 12, 14, 15, 18, 21, 24, 30, 42 when τ or τ = σ2 or σ3;

• p = 5, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 30 when τ or τ = σ4;

• p = 5, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 30, 42 when τ or τ = σ5 or σ6;

• p = 5, 7, 8, 9, 10, 14, 15, 18, 20, 21, 24, 30, 42 when τ or τ = σ7. �
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Lemma 5.3. 0(2π/3, σ4) is not commensurable to any Picard or Mostow lattice.

Proof. Recall that this is the only arithmetic sporadic group. Q[Tr Ad0(2π/3, σ4)]

contains
√

21, which is not in Q[cos 2π/d] for d=1, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18.
�

Lemma 5.4. The groups 0(2π/3, σ1), 0(2π/3, σ1), 0(2π/3, σ5), 0(2π/5, σ3)

and 0(2π/5, σ3) are not commensurable to any Picard or Mostow lattice.

Proof. In the groups 0(2π/3, σ1), 0(2π/3, σ1), 0(2π/5, σ3) and 0(2π/5, σ3),
R1 R2 is parabolic [Parker and Paupert 2009], whereas R2(R1 J )5 is parabolic in
0(2π/3, σ5) (details to appear in a forthcoming paper). It follows from Godement’s
compactness criterion that such a group cannot be commensurable to a cocompact
lattice. Therefore it suffices to check that these groups are not commensurable to
the noncocompact Picard and Mostow lattices, which both have adjoint trace field
equal to Q[cos 2π/12]. Now for τ = σ1 or σ1, Q[Tr Ad0(2π/3, τ )] contains
√

2 sin 2π/p =
√

6/2, which is not in Q[cos 2π/12], and in the three other cases
Q[Tr Ad0] contains cos 2π/5, which is not in Q[cos 2π/12] either. �

Lemma 5.5. 0(2π/3, σ1), 0(2π/3, σ2) and 0(2π/3, σ2) are not discrete, and
therefore not commensurable to any Picard or Mostow lattice.

Proof. In the first of these groups R1(R1 J )4 is elliptic of infinite order, and in the
two others R1(R1 J )5 is elliptic of infinite order (details to appear). �
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A REMARK ON KHOVANOV HOMOLOGY
AND TWO-FOLD BRANCHED COVERS

LIAM WATSON

We give examples of knots distinguished by the total rank of their Khovanov
homology but sharing the same two-fold branched cover. Hence Khovanov
homology does not yield an invariant of two-fold branched covers.

Mutation provides an easy method for producing distinct knots sharing a two-
fold branched cover: The mutation in the branch set corresponds to a trivial surgery
in the cover. Due to a result of Wehrli [2007; 2009] (see also [Bloom 2009]), this
provides a range of examples of manifolds that branch cover S3 in more than one
way, but for which the distinct branch sets have identical rank in their respective
Khovanov homology groups over F2 = Z/2Z.

From this point of view this fact is not completely surprising, as Khovanov
homology is closely related to the Heegaard Floer homology of two-fold branched
covers [Ozsváth and Szabó 2005]. Indeed, this is made precise in Bloom’s proof of
mutation invariance [2009]. More generally, there is a question posed by Ozsváth:
Is Khovanov homology an invariant of the two-fold branched cover? More pre-
cisely, is the total rank of the reduced Khovanov homology (over F2) an invariant
of two-fold branched covers? This short note gives a negative answer.

Theorem. The total rank of Khovanov homology is not an invariant of two-fold
branched covers.

This theorem is proved by exhibiting manifolds that are two-fold branched cov-
ers of S3 in two different ways, and for which the pair of branch sets is distinguished
by the total rank in Khovanov homology. We work with the reduced version of
Khovanov homology, denoted K̃h, with F2 coefficients [Khovanov 2000; 2003].

Surgery on torus knots. Let S3
r/s(K ) denote the result of (r/s)-surgery on a knot

K ↪→ S3, and let Tp,q denote the positive (p, q) torus knot in S3 (with 0< p< q).
Note that, as we will only consider torus knots, p and q are relatively prime.

Proposition 1 [Moser 1971]. The manifold S3
±1/n(Tp,q) is Seifert fibered with base

orbifold S2(p, q, pqn∓ 1) for n > 0.

MSC2000: 57M12, 57M27.
Keywords: Khovanov homology, two-fold branched cover, Heegaard Floer homology.
Supported by a Canada Graduate Scholarship (NSERC).
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Our conventions for Seifert fibered spaces follow [Boyer 2002]. Our conventions
differ from those in Moser’s work, resulting in the sign discrepancy between our
statement and Moser’s. By applying the work of Heil [1974], it is possible to give
a quick proof:

Proof. Let M = S3 r ν(Tp,q), so that M(α) = S3
r/s(Tp,q) for a given slope

α = rµ+ sλ, where µ is the knot meridian and λ is the preferred longitude. As
the complement of a regular fiber of a Seifert fibration of S3, M is Seifert fibered
with base orbifold D2(p, q). Let ϕ denote a regular fiber in ∂M ; it is well known
that ϕ = pqµ+λ. Now M(α) is Seifert fibered with base orbifold S2(p, q, |α ·ϕ|)
whenever α 6= ϕ, according to [Heil 1974]. In the present setting, α=±µ+nλ for
n > 0, so M(α)= S3

±1/n(Tp,q). As a result, M(±µ+ nλ)= S3
±1/n(Tp,q) is Seifert

fibered with base orbifold S2(p, q, pqn∓ 1) as claimed. �

Seifert involutions. For a link L ↪→ S3, let6(S3, L) denote the two-fold branched
cover of S3, branched over L .

Proposition 2 [Seifert 1933]. S3
±1/n(T2,q) ∼= 6(S3, Tq,2qn∓1) for n > 0 and odd

q > 1.

Proof. The manifold 6(S3, Tq,2qn∓1) is the Brieskorn sphere 6(2, q, 2qn∓1) and
is Seifert fibered with base orbifold S2(2, q, 2qn∓ 1) [Milnor 1975, Lemma 1.1];
see also [Seifert 1933, Zusatz zu Satz 17]. For each n> 0 and odd q > 1, there is a
unique Z-homology sphere admitting a Seifert fibered structure with base orbifold
S2(2, q, 2qn∓1); see for example [Scott 1983; Saveliev 1999, Theorem 6.7]. The
result follows. �

The Montesinos trick. A knot K is called strongly invertible if there is an involu-
tion of (S3, K ) that reverses orientation on K . Thus, the complement S3 r ν(K )
of any strongly invertible knot admits an involution with one-dimensional fixed
point set given by a pair of arcs meeting the boundary ∂(S3 r ν(K )) transversally
in the 4 endpoints. Since the quotient of a solid torus under such an involution is
a 3-ball, it follows that a fundamental domain for the action of the involution on
S3 r ν(K ) is a 3-ball as well, since S3 ∼= 6(S3, L) if and only if L is the trivial
knot [Waldhausen 1969].

By keeping track of the fixed point set in the quotient, we obtain a tangle denoted
by T = (B3, τ ′), where τ ′ is a pair of arcs properly embedded in the 3-ball B3

meeting the boundary transversally in 4 points. By construction, S3 r ν(K ) is
realized as the two-fold branched cover of B3, denoted 6(B3, τ ′), branched over
the arcs τ ′. In this context tangles are considered up to homeomorphism of the pair
(B3, τ ′) that generally need not fix the boundary sphere.

Given a strongly invertible knot, the Montesinos trick [1975] amounts to the
observation that Dehn surgery in the cover may be interpreted as rational tangle
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γ1/0

γ0 τ ′( 1
0) τ ′(0)

Figure 1. The arcs γ1/0 and γ0 in the boundary of a tangle (left)
lifting to µ and mµ+ λ respectively. The “denominator” (center)
and “numerator” (right) closures are denoted by τ ′( 1

0) and τ ′(0)
respectively. Note that in this context τ ′(1

0) is the trivial knot.

attachment in the base. Recall that a tangle is rational if and only if the two-fold
branched cover is a solid torus. To identify the corresponding branch set to a given
surgery, in Figure 1 we briefly recall the notation introduced in [Watson 2008].

By construction, it is possible to identify the trivial surgery by the unknotted
branch set τ ′( 1

0) (see Figure 1, and Figure 3 for a particular example). Said another
way, the arc γ1/0 in the boundary of this representative for the tangle, identified
in Figure 1, lifts to the knot meridian µ in the cover. Thus, the link τ ′(0) gives
the branch set for some integer surgery; the arc γ0 lifts to a slope mµ + λ in
∂(S3 r ν(K )) for some m, where λ is the preferred longitude.

More generally, we may represent any integer surgery by varying the number
of half-twists as in Figure 2, since the half-twist lifts to a full Dehn twist about
the meridian; see [Rolfsen 1976], for example. As a result it is always possible
to fix a preferred representative, which we denote (B3, τ ), of the homeomorphism
class T with the property that S3

0(K )∼=6(S
3, τ (0)). In this notation, we have that

τ ′(0) ' τ(m), and the desired homeomorphism is determined by m half-twists.
Moreover, S3

n(K )∼=6(S
3, τ (n)), where τ(n) is the link shown in Figure 2.

It is possible to determine the preferred representative directly by carefully
keeping track of the image of the preferred longitude in the quotient; see for
example [Bleiler 1985]. However, in practice it is straightforward to determine
the appropriate homeomorphism after the fact by using the determinant of the link,
given that the meridian is easy to identify in this context. Recall that det L =

· · ·︸ ︷︷ ︸
n ︸︷︷︸

1
︸ ︷︷ ︸

3
︸ ︷︷ ︸

3

Figure 2. At left, the closure τ(n) of the preferred representative
giving rise to the branch sets for integer surgeries. At right, the
closure 13

10 = [1, 3, 3] corresponding to 13
10 -surgery in the cover.
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|H1(6(S3, L);Z)| whenever this group is finite, and det L = 0 otherwise. In
particular, det τ(n)= n.

More generally, we would like to define the branch set τ(r/s) for the 3-manifold
S3

r/s(K ), continuing with the notation of [Watson 2008], so that

S3
r/s(K )∼=6(S

3, τ (r/s)).

To this end, let [a1, a2, . . . , am] be a continued fraction expansion for r/s. Now
[a1, a2, . . . , am] encodes a rational tangle that lifts to the desired homeomorphism
of the boundary; see for example [Rolfsen 1976]. A specific example is shown in
Figure 2. As suggested, the desired homeomorphism is specified by an element of
the 3-strand braid group 〈σ1, σ2 | σ1σ2σ1= σ2σ1σ2〉, where the generator σ2 lifts to
a Dehn twist about µ and the inverse σ−1

1 lifts to a Dehn twist about λ. For details
on conventions, see [Rolfsen 1976, Chapter 10] and [Watson 2008].

Montesinos involutions. By a result of Schreier [1924], the knot Tp,q is strongly
invertible. As such, it is possible to realize the manifold S3

r/s(Tp,q) as a two-fold
branched cover via the Montesinos trick, as outlined above. The goal of this section
is to determine the preferred representative of the tangle for which 6(B3, τ ) ∼=

S3 r ν(Tp,q).
In the interest of being explicit, consider the torus knot K = T2,5, the knot 51 in

[Rolfsen 1976]. A strong inversion on this knot is exhibited in Figure 3, together
with an illustration of the isotopy of a fundamental domain to obtain a tangle with
the property that S3 r ν(K )∼=6(B3, τ ′).

We may fix the preferred representative (B3, τ ) for T , as in the previous section,
with the properties that

(1) the denominator closure of the tangle, τ(1
0), is unknotted and corresponds to

a branch set for the trivial surgery, and

(2) the numerator closure, τ(0), gives a branch set for the zero surgery:

S3
0(K )∼=6(S

3, τ (0)).

This representative is shown in Figure 4, and it suffices to verify that det τ(0)= 0
(or that det τ(±1) = 1) to see that this is the preferred representative as claimed.
The fact that τ ′(0) is a connect sum of 2-bridge links indicates that 6(S3, τ ′(0))
is a connect sum of lens spaces, and hence 6(S3, τ ′(0)) ∼= S3

10(K ). This results
from the fact that ϕ= 10µ+λ for the complement of K = T2,5 (compare the proof
of Proposition 1), and explains the appearance of 10 (negative) half-twists in the
preferred representative (B3, τ ) so that τ(10)' τ ′(0).

See [Montesinos 1976] for a detailed discussion on Seifert fibered spaces as two-
fold branched covers of S3 in general, noting that the Montesinos links shown here
encode the Seifert fiber structure in the corresponding two-fold branched cover.
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∼=

Figure 3. A strong inversion on the torus knot T2,5 (left); isotopy
of a fundamental domain (center); and two representatives of the
associated quotient tangle (right). The Seifert fiber structure on
the knot complement is reflected as a sum of rational tangles in
the quotient, and the numerator closure in both cases is the trivial
knot, identifying the image of the meridian in the quotient.

Proof of the Theorem. Continuing with K =T2,5, by the observations above about
the Seifert and Montesinos involutions, we have

S3
±1/n(K )∼=6(S

3, T5,10n∓1)∼=6(S3, τ (±1/n)) for n > 0.

When n= 1, using the program JavaKh [Bar-Natan and Green 2005], we calculate

rk K̃h(T5,10∓1)= 65∓ 8 6= 16∓ 1= rk K̃h(τ (±1)).

Similarly, when n = 2 we calculate

rk K̃h(T5,20∓1)= 257∓ 16 6= 32∓ 1= rk K̃h(τ (±1
2)).

Each of these four pairs of examples illustrates a given manifold as a two-fold
branched cover of S3 in two different ways, with branch sets distinguished by the
total rank of the reduced Khovanov homology. This proves the claim: rk K̃h is not
an invariant of two-fold branched covers.

Further remarks. We continue with the notation above for the preferred represen-
tative of the tangle associated to T2,5.

Proposition 3. rk K̃h(τ (±1/n))≤ 16n∓ 1 for n > 0.
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τ(1
2)

τ (1)

τ (−1)

τ (− 1
2)

Figure 4. At left, the preferred representative of the associated
quotient tangle for the torus knot T2,5. At right, the branch
sets τ(−1

2), τ(−1), τ(1) and τ(1
2) associated to {−1

2 ,−1, 1, 1
2}-

surgery, respectively.

Sketch of proof. We note first that rk K̃h(τ (±1)) = 16 ∓ 1, and calculate that
rk K̃h(τ (0)) = 16. The result follows by induction on n: Applying the long exact
sequence for Khovanov homology, we have

rk K̃h(τ (1/n)≤ rk K̃h(τ (1/(n− 1)))+ rk K̃h(τ (0))

= rk K̃h(τ (1/(n− 1)))+ 16

and
rk K̃h(τ (−1/n))≤ rk K̃h(τ (−1/(n− 1)))+ rk K̃h(τ (0))

= rk K̃h(τ (−1/(n− 1)))+ 16. �
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On the other hand, calculations of Khovanov homology for large torus knots
are difficult to obtain. Indeed, the calculations given here were not accessible
prior to the development of JavaKh. However, existing calculations suggest that
rk K̃h(Tp,q) grows at least linearly in q . In particular, it seems reasonable to guess
that surgery on T2,5 provides an infinite family of examples proving the Theorem.

It would be interesting to understand the behaviour of the Khovanov homology
for branch sets associated to (1/n)-surgery on the torus knots T2,q for q ≥ 5.
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L p RICCI CURVATURE PINCHING THEOREMS
FOR CONFORMALLY FLAT RIEMANNIAN MANIFOLDS

HONG-WEI XU AND EN-TAO ZHAO

Dedicated to Professor Katsuhiro Shiohama on the occasion of his 70th birthday.

Let M be an n-dimensional complete locally conformally flat Riemannian
manifold with constant scalar curvature R and n ≥ 3. We first prove that
if R = 0 and the Ln/2 norm of the Ricci curvature tensor of M is pinched
in [0, C1(n)), then M is isometric to a complete flat Riemannian manifold,
which improves Pigola, Rigoli, and Setti’s pinching theorem. Next, we prove
that if n ≥ 6, R 6= 0, and the Ln/2 norm of the trace-free Ricci curva-
ture tensor of M is pinched in [0, C2(n)), then M is isometric to a space
form. Finally, we prove an Ln trace-free Ricci curvature pinching theorem
for complete locally conformally flat Riemannian manifolds with constant
nonzero scalar curvature. Here C1(n) and C2(n) are explicit positive con-
stants depending only on n.

1. Introduction

The curvature pinching phenomenon plays an important role in global differential
geometry. Motivated by the famous pinching theorem for minimal submanifolds in
a sphere due to J. Simons [1968], C. L. Shen [1989] proved an L p pinching theorem
for embedded compact minimal hypersurfaces in Sn+1(1). Many authors have
extended this result [Wang 1988; Lin and Xia 1989; Xu 1990; 1994; Bérard 1991;
Shiohama and Xu 1994; Ni 2001; Xu and Gu 2007a; 2007b], but by producing
extrinsic rigidity theorems for submanifolds. We are interested in intrinsic L p

pinching problems for Riemannian manifolds.
A conformally flat structure on a Riemannian manifold is a natural generaliza-

tion of a conformal structure of a Riemannian surface. A Riemannian manifold
(M, g) is locally conformally flat with a locally conformally flat structure on M
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Keywords: conformally flat manifold, rigidity, Ricci curvature tensor, L p pinching problem, space

form.
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if and only if there exists a coordinate chart {(Uα, ϕα)}α∈3 covering M such that
(ϕ−1
α )∗g=ραdx2 for every α ∈3, where dx2 is the Euclidean metric on Rn and ρα

is a positive function on Rn . It is well known that a Riemannian surface is always
locally conformally flat. In higher dimensions, however, not every manifold admits
a locally conformally flat structure, and it is difficult to give a good classification
of locally conformally flat manifolds. Throughout this paper, we always assume
that M is an n-dimensional complete Riemannian manifold with n ≥ 3. According
to the decomposition of the Riemannian curvature tensor, a locally conformally
flat manifold has constant sectional curvature if and only if it is Einstein, that is,
the trace-free Ricci tensor, defined by R̃ic= Ric− (R/n)g, is identically equal to
zero, where Ric is the Ricci curvature tensor and R is the scalar curvature. As a
consequence, by the Hopf classification theorem, space forms are the only locally
conformally flat Einstein manifolds.

In [1967], M. Tani showed that the universal cover of a compact oriented locally
conformally flat manifold with positive Ricci curvature and constant scalar curva-
ture is isometrically a sphere. This result has been generalized by other mathemati-
cians to the case where M satisfies some pointwise pinching condition. Recently,
S. Pigola, M. Rigoli and A. G. Setti characterized a simply connected space form
with a pointwise Ricci curvature pinching condition:

Theorem A [Pigola et al. 2007]. For n ≥ 3, let (M, g) be a complete simply con-
nected and locally conformally flat Riemannian n-manifold with constant scalar
curvature R > 0. If |Ric|2 ≤ R2/(n − 1) on M and the strict inequality holds at
some point, then M is isometric to a sphere.

Q. M. Cheng, S. Ishikawa and K. Shiohama [1999] completely classified three-
dimensional complete and locally conformally flat Riemannian manifolds whose
scalar curvature and norm of the Ricci curvature tensor are positive constants. Can
the pointwise pinching conditions be replaced by global pinching ones? In [2007],
Pigola, Rigoli and Setti got a global pinching result that can be considered as an
extension of the theorem above:

Theorem B [Pigola et al. 2007]. For n ≥ 3, let (M, g) be a complete simply
connected and locally conformally flat Riemannian n-manifold with zero scalar
curvature and n ≥ 3. If ‖Ric‖n/2 < C(n), then M is isometric to Euclidean space.
Here ‖ · ‖k denotes the Lk norm and C(n) = 2n−5/2(n − 1)1/2(n − 2)3w2/n

n , with
wn the volume of the unit sphere Sn ,

Suppose that M is locally conformally flat with constant scalar curvature R.
In Section 3, we will first prove that if R = 0 and the Ln/2 norm of the Ricci
curvature tensor of M is pinched in [0,C1(n)) for some explicit positive constant
C1(n) depending only on n, then M is isometric to a complete flat Riemannian
manifold, which improves Pigola, Rigoli, and Setti’s pinching theorem. Secondly,
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we prove that if n ≥ 6, R 6= 0, and the Ln/2 norm of the trace-free Ricci curvature
tensor of M is pinched in [0,C2(n)) for some explicit positive constant C2(n)
depending only on n, then M is isometric to a space form. Finally, we prove an Ln

trace-free Ricci curvature pinching theorem for complete locally conformally flat
Riemannian manifolds with nonzero constant scalar curvature.

2. Preliminaries

Let (M, g) be a Riemannian manifold of dimension n ≥ 3, and let {e1, e2, . . . , en}

be a local orthonormal basis of the tangent space of M . We define the Kulkarni–
Nomizu product � for symmetric 2-tensors α and β in local coordinates by

(α�β)i jkl = αikβ jl +α jlβik −αilβ jk −α jkβil .

The Riemannian curvature tensor can be decomposed as

(2-1) Rm= R
2(n−1)(n−2)

g� g− 1
n−2

Ric� g+W,

where Rm, W , Ric, and R are respectively the Riemannian curvature tensor, the
Weyl curvature tensor, the Ricci curvature tensor and the scalar curvature of M . It
was shown in [Eisenhart 1997] that if n ≥ 4, then M is locally conformally flat if
and only if the Weyl tensor vanishes, and if n = 3, then M is locally conformally
flat if and only if ∇Ric is totally symmetric. If M is locally conformally flat, we
see from (2-1) that the Riemannian curvature tensor can be expressed in terms of
the Ricci curvature tensor by

(2-2) Ri jkl =
R

(n−1)(n−2)
(δikδ jl − δilδ jk)

−
1

n−2
(Rikδ jl − Rilδ jk + R jlδik − R jkδil),

where Ri jkl and Ri j are components of Rm and Ric in local orthonormal frame
fields. We define the trace-free Ricci curvature tensor by R̃ic =

∑
i, j R̃i jωi ⊗ω j ,

where {ω1, ω2, . . . , ωn} is the frame dual to {e1, e2, . . . , en}, and

(2-3) R̃i j = Ri j − (R/n)δi j .

Putting S = |Ric|2 and S̃ = |R̃ic|2, we have S̃ = S − R2/n from (2-3). If R
is constant, then Ri j and R̃i j are Codazzi tensors, that is, ∇ j Rik = ∇k Ri j and
∇ j R̃ik =∇k R̃i j for 1≤ i, j, k ≤ n.

Lemma 2.1. Let (M, g) be a locally conformally flat Riemannian n-manifold with
constant scalar curvature. Set fτ = (S̃+ nτ 2)1/2, where τ ∈ R+. Then

(2-4) |∇R̃ic|2 ≥ n+2
n
|∇ fτ |2.
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Proof. Putting xi j = R̃i j + τδi j , we have ∇k xi j =∇k R̃i j and hence∑
i, j,k

(∇k xi j )
2
=

∑
i, j,k

(∇k R̃i j )
2.(2-5)

Let {e1, e2, . . . , en} be an orthonormal frame such that R̃i j = λiδi j for 1≤ i, j ≤ n.
Since fτ = (S̃+ nτ 2)1/2, we get xi j = (λi + τ)δi j and

∑
i, j x2

i j = f 2
τ . Then

(2-6)

(2 fτ |∇ fτ |)2 = |∇ f 2
τ |

2
= 4

∑
k

(∑
i

xi i∇k xi i

)2

≤ 4
(∑

i

x2
i i

)(∑
i,k

(∇k xi i )
2
)
= 4 f 2

τ

(∑
i,k

(∇k xi i )
2
)
.

On the other hand, we have

(2-7)
∑
i, j,k

(∇k xi j )
2
≥ 2

∑
i 6=k

(∇k xi i )
2
+

∑
i,k

(∇k xi i )
2.

For each fixed k, we have

(2-8)

∑
i

(∇k xi i )
2
=

∑
i 6=k

(∇k xi i )
2
+

(∑
i

∇k xi i −
∑
i 6=k

∇k xi i

)2

=

∑
i 6=k

(∇k xi i )
2
+

(∑
i 6=k

∇k xi i

)2

≤

∑
i 6=k

(∇k xi i )
2
+ (n− 1)

∑
i 6=k

(∇k xi i )
2.

Combining (2-5), (2-6), (2-7) and (2-8), we obtain∑
i, j,k

(∇k R̃i j )
2
≥

n+2
n

∑
i,k

(∇k xi i )
2
≥

n+2
n
|∇ fτ |2.

So |∇R̃ic|2 ≥ ((n+ 2)/n)|∇ fτ |2. �

We see that tr(R̃ic3
) =

∑
i, j,k R̃i j R̃ jk R̃ki . Following [Pigola et al. 2007], we

have

(2-9) 1
24S̃ = |∇R̃ic|2+ n

n−2
tr(R̃ic3

)+
R

n−1
S̃.

By using the Lagrange multiplier method, we have the inequality

(2-10) tr(R̃ic3
)≥−

n−2
√

n(n−1)
S̃3/2.
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Putting fτ = (S̃+ nτ 2)1/2 = (|R̃ic|2+ nτ 2)1/2, f = (S̃)1/2, from (2-4), (2-9) and
(2-10) we have

(2-11) 1
24 f 2

≥
n+2

n
|∇ fτ |2−

√
n

n−1
f 3
+

R
n−1

f 2.

Lemma 2.2 [Hebey 1999]. For n ≥ 3, let (M, g) be a smooth complete locally
conformally flat Riemannian n-manifold. Then for any smooth function f with
compact support,

(2-12)
(∫

M
| f |2n/(n−2)d M

)(n−2)/n

≤
4

n(n−2)w2/n
n

(∫
M
|∇ f |2d M + n−2

4(n−1)

∫
M

R f 2d M
)
.

3. L p Ricci curvature pinching theorems

Theorem 3.1. Let (M, g) be a complete locally conformally flat Riemannian n-
manifold with constant scalar curvature R. Put

C1(n)= 2n−5/2(n− 1)1/2(n− 2)(n2
− 2n+ 4)w2/n,

C2(n)=
√

n(n− 1)w2/n
n .

(i) If n ≥ 3, R = 0, and ‖Ric‖n/2 < C1(n), then M is isometric to a complete
flat Riemannian manifold. In particular, if M is simply connected, then M is
isometric to the Euclidean space Rn .

(ii) If n ≥ 6, R = n(n − 1)c 6= 0, and ‖R̃ic‖n/2 < C2(n), then M is isometric
to a space form. In particular, if M is simply connected, then M is isometric
to either the sphere Sn(1/

√
c) with radius 1/

√
c if c > 0, or the hyperbolic

space Hn(c) with constant curvature c if c < 0.

Proof. Since 4 f 2
=4 f 2

τ , from (2-11) we have

(3-1) 0≥− fτ4 fτ −
√

n
n−1

f 3
+

2
n
|∇ fτ |2+

R
n−1

f 2.

We choose a cut-off function φr ∈ C∞(M) such that

(3-2)


φr (x)= 1 if x ∈ Br (q),
φr (x)= 0 if x ∈ M \ B2r (q),
φr (x) ∈ [0, 1] and |∇φr | ≤ 1/r if x ∈ B2r (q) \ Br (q),

where Br (q) is the geodesic ball in M with radius r centered at q ∈M . In particular,
if M is compact, and if r ≥ d , where d is the diameter of M , then φr ≡ 1 on M .
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Multiplying both sides of (3-1) by φ2
r f n/2−2
τ and integrating by parts we get

(3-3) 0≥ 2
∫
φr f n/2−1

τ 〈∇φr ,∇ fτ 〉d M + 8(n−2)
n2

∫
φ2

r |∇ f n/4
τ |

2d M

−

√
n

n−1

∫
φ2

r f n/2−2
τ f 3d M + R

n−1

∫
φ2

r f n/2−2
τ f 2d M

+
32
n3

∫
φ2

r |∇ f n/4
τ |

2d M

=
8(n2
− 2n+ 4)

n3

∫
φ2

r |∇ f n/4
τ |

2d M + (σ + 2)
∫
φr f n/2−1

τ 〈∇φr ,∇ fτ 〉d M

− σ

∫
φr f n/2−1

τ 〈∇φr ,∇ fτ 〉d M −
√

n/n− 1
∫
φ2

r f n/2−2
τ f 3d M

+
R

n−1

∫
φ2

r f n/2−2
τ f 2d M

≥
8(n2
− 2n+ 4)

n3

∫
φ2

r |∇ f n/4
τ |

2d M + (σ + 2)
∫
φr f n/2−1

τ 〈∇φr ,∇ fτ 〉d M

−
8σρ
n2

∫
φ2

r |∇ f n/4
τ |

2d M − σ
2ρ

∫
f n/2
τ |∇φr |

2d M

−

√
n

n−1

∫
φ2

r f n/2−2
τ f 3d M + R

n−1

∫
φ2

r f n/2−2
τ f 2d M

=

(8(n2
− 2n+ 4)

n3 −
8σρ
n2

) ∫
φ2

r |∇ f n/4
τ |

2d M

+
2(σ + 2)

n

∫
n
2
φr f n/2−1

τ 〈∇φr ,∇ fτ 〉d M

−
σ
2ρ

∫
f n/2
τ |∇φr |

2d M −
√

n
n−1

∫
φ2

r f n/2−2
τ f 3d M

+
R

n− 1

∫
φ2

r f n/2−2
τ f 2d M,

for arbitrary positive constants σ and ρ, where here and below the measure d M
implies integration over M .

By a direct computation, we have

(3-4) |∇(φr f n/4
τ )|2 = f n/2

τ |∇φr |
2
+

n
2
φr f n/2−1

τ 〈∇φr ,∇ fτ 〉+φ2
r |∇ f n/4

τ |
2.

Choose ρ > 0 such that

8(n2
− 2n+ 4)

n3 −
8σρ
n2 =

2(σ + 2)
n

,
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so that ρ= ((2−σ)n2
−8n+16)/(4nσ). Since ρ>0, we have σ <2(n2

−4n+8)/n2.
By (3-3) and (3-4) we obtain

0≥
2(σ + 2)

n

∫ (n
2
φr f n/2−1

τ 〈∇φr ,∇ fτ 〉+φ2
r |∇ f n/4

τ |
2
)

d M

−
σ
2ρ

∫
f n/2
τ |∇φr |

2d M −
√

n
n−1

∫
φ2

r f n/2−2
τ f 3d M

+
R

n−1

∫
φ2

r f n/2−2
τ f 2d M

=
2(σ + 2)

n

∫
(|∇(φr f n/4

τ )|2− f n/2
τ |∇φr |

2)d M − σ
2ρ

∫
f n/2
τ |∇φr |

2d M

−

√
n

n−1

∫
φ2

r f n/2−2
τ f 3d M + R

n−1

∫
φ2

r f n/2−2
τ f 2d M

=
2(σ + 2)

n

∫
|∇(φr f n/4

τ )|2d M −
√

n
n−1

∫
φ2

r f n/2−2
τ f 3d M

+
R

n− 1

∫
φ2

r f n/2−2
τ f 2d M −

(2(σ + 2)
n

+
σ
2ρ

) ∫
f n/2
τ |∇φr |

2d M.

This together with the Sobolev inequality in Lemma 2.2 implies

0≥
2(σ + 2)

n

(n(n− 2)w2/n
n

4
‖φ2

r f n/2
τ ‖n/(n−2)−

(n− 2)R
4(n− 1)

‖φr f n/4
τ ‖

2
2

)
−

√
n

n−1

∫
φ2

r f n/2−2
τ f 3d M +

R
n− 1

∫
φ2

r f n/2−2
τ f 2d M

−

(2(σ + 2)
n

+
σ
2ρ

) ∫
f n/2
τ |∇φr |

2d M

=
(σ + 2)(n− 2)w2/n

n

2
‖φ2

r f n/2
τ ‖n/(n−2)−

(σ + 2)(n− 2)R
2n(n− 1)

‖φ2
r f n/2
τ ‖1

−

√
n

n−1

∫
φ2

r f n/2−2
τ f 3d M + R

n−1

∫
φ2

r f n/2−2
τ f 2d M

−

(2(σ + 2)
n

+
σ
2ρ

) ∫
f n/2
τ |∇φr |

2d M.

As τ → 0, this inequality becomes

(3-5) 0≥
(σ + 2)(n− 2)w2/n

n

2
‖φ2

r f n/2
‖n/(n−2)

+

(
R

n−1
−
(σ + 2)(n− 2)R

2n(n− 1)

)
‖φ2

r f n/2
‖1

−

√
n

n−1

∫
φ2

r f n/2+1d M −
(2(σ + 2)

n
+
σ
2ρ

) ∫
f n/2
|∇φr |

2d M.
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(i) When R = 0, (3-5) implies

0≥
(σ + 2)(n− 2)w2/n

n

2
‖φ2

r f n/2
‖n/(n−2)−

√
n

n−1

∫
φ2

r f n/2+1d M

−

(2(σ + 2)
n

+
σ
2ρ

) ∫
f n/2
|∇φr |

2d M

≥
(σ + 2)(n− 2)w2/n

n

2
‖φ2

r f n/2
‖n/(n−2)−

√
n

n−1
‖φ2

r f n/2
‖n/(n−2)‖ f ‖n/2

−
1
r2

(2(σ + 2)
n

+
σ
2ρ

) ∫
f n/2d M

≥

(
(σ + 2)(n− 2)w2/n

n

2
−

√
n

n−1
‖ f ‖n/2

)
‖φ2

r f n/2
‖n/(n−2)

−
1
r2

(2(σ + 2)
n

+
σ
2ρ

) ∫
f n/2d M.

Put σ = 2(n2
− 4n+ 8)/n2

− ε, where ε is a positive constant. It follows from the
assumption

∫
f n/2d M <∞ that

lim
r→+∞

1
r2

(2(σ + 2)
n

+
σ
2ρ

) ∫
f n/2d M = 0.

Combining the last two results, we get

0≥
(
(4(n2

− 2n+ 4)− n2ε)(n− 2)w2/n
n

2n2 −

√
n

n−1
‖ f ‖n/2

)
lim

r→+∞
‖φ2

r f n/2
‖n/(n−2)

for any ε > 0. As ε→ 0, we have

0≥
(4(n2

− 2n+ 4)(n− 2)w2/n
n

2n2 −

√
n

n−1
‖ f ‖n/2

)
lim

r→+∞
‖φ2

r f n/2
‖n/(n−2),

which implies

0≥ (C1(n)−‖ f ‖n/2) lim
r→+∞

‖φ2
r f n/2

‖n/(n−2).

Hence limr→+∞‖φ
2
r f n/2

‖n/(n−2) = 0, that is, f ≡ 0. This means that M is an
Einstein manifold and is therefore a flat Riemannian manifold. In particular, if M
is simply connected, then M is isometric to the Euclidean space Rn .

(ii) When R 6= 0, set

1
n−1

=
(σ + 2)(n− 2)

2n(n− 1)
,
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so that σ = 4/(n− 2). Since n ≥ 6, we have σ < 2(n2
− 4n+ 8)/n2. Then (3-5)

becomes

0≥
(σ + 2)(n− 2)w2/n

n

2
‖φ2

r f n/2
‖n/(n−2)−

√
n

n−1

∫
φ2

r f n/2+1d M

−

(2(σ + 2)
n

+
σ
2ρ

) ∫
f n/2
|∇φr |

2d M

≥
(σ + 2)(n− 2)w2/n

n

2
‖φ2

r f n/2
‖n/(n−2)−

√
n

n−1
‖φ2

r f n/2
‖n/(n−2)‖ f ‖n/2

−

(2(σ + 2)
n

+
σ
2ρ

) ∫
f n/2
|∇φr |

2d M

=

(
(σ + 2)(n− 2)w2/n

n

2
−

√
n

n−1
‖ f ‖n/2

)
‖φ2

r f n/2
‖n/(n−2)

−

(2(σ + 2)
n

+
σ
2ρ

) ∫
f n/2
|∇φr |

2d M.

Since |∇φr | ≤ 1/r for any r > 0, this can be rewritten as

(3-6) 0≥
(

nw2/n
n −

√
n

n−1
‖ f ‖n/2

)
‖φ2

r f n/2
‖n/(n−2)

−
1
r2

(2(σ + 2)
n

+
σ
2ρ

) ∫
M

f n/2d M.

Since ρ and σ are constants depending only on n, so is 2(σ+2)/n+σ/(2ρ). From
the assumption that f has finite Ln/2 norm, we get

(3-7) lim
r→+∞

1
r2

(2(σ + 2)
n

+
σ
2ρ

) ∫
M

f n/2d M = 0.

We see from (3-6) and (3-7)

0≥ (C2(n)−‖ f ‖n/2) lim
r→+∞

‖φ2
r f n/2

‖n/(n−2),

which implies limr→+∞‖φ
2
r f n/2

‖n/(n−2)=0, that is, f =0. Hence M is an Einstein
manifold and a space form. In particular, if M is simply connected, it is isometric
to the sphere Sn(1/

√
c) if c > 0 or the hyperbolic space Hn(c) if c < 0. �

Remark 3.2. When R=0, the pinching constant C1(n) is better than Pigola, Rigoli
and Setti’s constant.

Corollary 3.3. For n ≥ 6, suppose (M, g) is a complete locally conformally flat
Riemannian n-manifold with constant scalar curvature, and let C2(n) be as in
Theorem 3.1. If ‖Ric‖n/2 < C2(n), then M is isometric to a complete flat Rie-
mannian manifold. In particular, if M is simply connected, then M is isometric to
Euclidean Rn .
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Lemma 3.4. For n≥ 3, let (M, g) be a complete locally conformally flat Riemann-
ian n-manifold with constant scalar curvature. If

∫
M(S − R2/n)n/2 < +∞, then

for any ε > 0, there is a compact set �ε such that S̃ < ε in M \�ε.

Proof. By (2-9) and (2-10), we have in the sense of distribution the inequality

−4 f ≤
√

n
n−1

f 2
−

R
n−1

f ≤
√

nε

2
√

n− 1
f 3
+

( √
n

2ε
√

n− 1
−

R
n−1

)
f.

Putting ε =
√

n− 1/(2
√

n), we have −4 f ≤ a f 3
+ b f , where a = 1/4 and b =

(n− R)/(n− 1). On the other hand, we have the inequality(∫
| f |2n/(n−2)d M

)(n−2)/n
≤

4
n(n−2)w2/n

n

(∫
|∇ f |2d M + n−2

4(n−1)

∫
R f 2d M

)
.

By the proof of [Bérard et al. 1998, Theorem 4.1], we conclude that, for any ε > 0,
there is a compact set �ε such that S̃ < ε in M \�ε. �

Lemma 3.5. For n≥ 3, let (M, g) be a complete locally conformally flat Riemann-
ian n-manifold with positive constant scalar curvature. If ‖R̃ic‖n < +∞, then M
must be compact.

Proof. Take a local orthonormal frame {ei } such that Ri j = λiδi j . From (2-2) we
have

Ri j i j =
λ̃i + λ̃ j

n− 2
+

R
n(n−1)

,

where λ̃i = λi − R/n for i = 1, 2, . . . , n are eigenvalues of R̃ic. Note that R
is positive. We see from Lemma 3.4 that there is a positive constant δ such that
KM > δ in M \� for some compact set �.

Since M is complete, it suffices to show that M is bounded. Otherwise, there is a
point p1 ∈ M such that d(p1, �)= infq∈� d(p1, q) > π/

√
δ. Since � is compact,

there is a point p2 ∈ M such that d(p1, p2) = d(p1, �). Let γ : [0, s1] → M
be a minimizing geodesic parameterized by arclength such that γ (0) = p1 and
γ (s1)= p2, where s1= d(p1, p2). Then γ (t)∈M\� for t < s1. Pick p3 ∈ γ so that
π/
√
δ < d(p1, p3)= s2 < s1. Then γ : [0, s2]→ M is also a minimizing geodesic

with γ (s2)= p3. Let E(s) for s ∈ [0, s2] be a parallel field along γ : [0, s2] → M
such that E(0)⊥ γ ′(0) and |E(0)| = 1. According to [Wu et al. 1989], there exists
a piecewise smooth function ψ : [0,

√
δs2] → R satisfying∫ √δs2

0
(ψ ′)2dt <

∫ √δs2

0
ψ2dt,
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where
√
δs2 > π . Setting X (t)= ψ(

√
δt)E(t), we have

I (X, X)=
∫ s2

0
(〈X ′(t), X ′(t)〉− 〈R(γ ′(t), X (t))X (t), γ ′(t)〉)dt

=

∫ s2

0

(
δψ ′(
√
δt)2− K (γ ′(t), E(t))ψ2(

√
δt)
)
dt,

where K (γ ′(t), E(t)) is the sectional curvature of the tangent plane spanned by
γ ′(t) and E(t). Since KM > δ in M \� , we have

I (X, X)≤
∫ s2

0
δ((ψ ′(

√
δt))2−ψ2(

√
δt))dt

=
√
δ

∫ √δs2

0
((ψ ′)2−ψ2)dt < 0.

On the other hand, since γ : [0, s2] → M is a minimizing geodesic, we have
I (X, X)≥ 0, which is a contradiction. Hence M is bounded and compact. �

Corollary 3.6 (of Lemma 3.5). For n ≥ 3, let (M, g) be a complete noncompact
locally conformally flat Riemannian n-manifold with nonnegative constant scalar
curvature. If ‖R̃ic‖n <+∞, then M must be scalar flat.

Theorem 3.7. Let (M, g) be a complete locally conformally flat Riemannian n-
manifold with constant scalar curvature R. Put

C3(n)= 2n−5/2(n− 1)1/2(n− 2)1/2(n2
− n+ 4)1/2(3n2

− 4n+ 4)1/2w1/n
n ,

C4(n)= 2
√

2n−5/2(n− 1)1/2(n− 2)1/2(n2
− 2n+ 4)1/2

· (n3
− 8n2

+ 16n− 16)1/2w1/n
n .

(i) If n≥3, R=n(n−1), and ‖R̃ic‖n <C3(n), then M is isometric to a spherical
space form. In particular, if M is simply connected, then M is isometric to Sn .

(ii) If n ≥ 6, R = −n(n − 1), ‖R̃ic‖n < C4(n) and ‖R̃ic‖n/2 < +∞, then M is
isometric to a hyperbolic space form. In particular, if M is simply connected,
then M is isometric to Hn .

Proof. (i) When R = n(n− 1), we see from Lemma 3.5 that M is compact. Since
4 f 2
=4 f 2

τ , we have from (2-11)

(3-8) 1
24 f 2

τ ≥
n+2

n
|∇ fτ |2−

√
n

n−1
f 3
+

R
n−1

f 2.
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Multiplying both sides of (3-8) by f n−2
τ and integrating by parts we get

(3-9)

0≥ 1
2

∫
〈∇ f n−2

τ ,∇ f 2
τ 〉d M +

4(n+ 2)
n3

∫
|∇ f n/2

τ |
2d M

−

√
n

n−1

∫
f n−2
τ f 3d M + R

n−1

∫
f n−2
τ f 2d M

=
4(n− 2)

n2

∫
|∇ f n/2

τ |
2d M +

4(n+ 2)
n3

∫
|∇ f n/2

τ |
2d M

−
1
2ε

√
n

n−1

∫
f n−2
τ f 4d M + R

n−1

∫
f n−2
τ f 2d M

−
ε
2

√
n

n−1

∫
f n−2
τ f 2d M

≥
4(n2
− n+ 2)
n3

∫
|∇ f n/2

τ |
2d M − 1

2ε

√
n

n−1
‖ f 2
‖n/2‖ f n−2

τ f 2
‖n/(n−2)

+
R

n−1

∫
f n−2
τ f 2d M − ε

2

√
n

n−1

∫
f n−2
τ f 2d M,

for any ε > 0. By applying (2-12) to f n/2
τ , we get

∫
M
|∇ f n/2

τ |
2d M ≥

n(n− 2)w2/n
n

4
‖ f n

τ ‖n/(n−2)−
(n− 2)R
4(n− 1)

‖ f n
τ ‖1.(3-10)

Substituting (3-10) into (3-9) and letting τ → 0, we have

(3-11) 0≥
(
(n− 2)(n2

− n+ 4)w2/n
n

n2 −
1
2ε

√
n

n−1
‖ f 2
‖n/2

)
‖ f n
‖n/(n−2)

+

(
(3n2
− 4n+ 4)R

n3(n− 1)
−
ε
2

√
n

n−1

)
‖ f n
‖1.

Set ε = 2n−5/2(n− 2)1/2(3n2
− 4n+ 4). Since R = n(n− 1), from (3-11) we get

0≥ (C3(n)2−‖ f 2
‖n/2)‖ f n

‖n/(n−2),

which implies ‖ f n
‖n/(n−2) = 0, that is, f ≡ 0. Hence M is an Einstein manifold,

which implies that M is isometric to a spherical space form. In particular, if M is
simply connected, then M is isometric to Sn .
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(ii) When R =−n(n−1), we choose a cut-off function φr ∈C∞(M) satisfying
the conditions of (3-2). Following the proof of Theorem 3.1, we have

0≥
(σ+2)(n−2)w2/n

n

2
‖φ2

r f n/2
‖n/(n−2)+

( R
n−1
−
(σ+2)(n−2)R

2n(n−1)

)
‖φ2

r f n/2
‖1

−

√
n

n−1

∫
φ2

r f n/2+1d M−
(2(σ+2)

n
+
σ
2ρ

) ∫
f n/2
|∇φr |

2d M

≥
(σ+2)(n−2)w2/n

n

2
‖φ2

r f n/2
‖n/(n−2)+

( R
n−1
−
(σ+2)(n−2)R

2n(n−1)

)
‖φ2

r f n/2
‖1

−
1
2ε

√
n

n−1

∫
φ2

r f n/2d M− ε
2

√
n

n−1

∫
φ2

r f n/2+2d M

−

(2(σ+2)
n
+
σ
2ρ

) ∫
f n/2
|∇φ2

r |
2d M

≥
(σ+2)(n−2)w2/n

n

2
‖φ2

r f n/2
‖n/(n−2)+

( R
n−1
−
(σ+2)(n−2)R

2n(n−1)

)
‖φ2

r f n/2
‖1

−
1
2ε

√
n

n−1

∫
φ2

r f n/2d M− ε
2

√
n

n−1
‖ f 2
‖n/2‖φ

2
r f n/2

‖n/(n−2)

−

(2(σ+2)
n
+
σ
2ρ

) ∫
f n/2
|∇φ2

r |
2d M

≥

(
(σ+2)(n−2)w2/n

n

2
−
ε
2

√
n

n−1
‖ f 2
‖n/2

)
‖φ2

r f n/2
‖n/(n−2)

+

(
(4−(n−2)σ )R

2n(n−1)
−

1
2ε

√
n

n−1

)
‖φ2

r f n/2
‖1

−
1
r2

(2(σ+2)
n
+
σ
2ρ

) ∫
f n/2d M.

Put

σ =
2(n2
− 4n+ 8)

n2 − η and ε =
1
2

√
n

n−1
×

2n(n− 1)
(4− (n− 2)σ )R

,

where η is a positive constant. We see that if n ≥ 6, then ε > 0 for sufficiently
small η. When n ≥ 6 and η is sufficiently small, the second term of the right side
of the last calculation vanishes. Since f has finite Ln/2 norm, we have

lim
r→+∞

1
r2

(2(σ + 2)
n

+
σ
2ρ

) ∫
M

f n/2d M = 0.

By combining this with the previous calculation, we obtain

0≥
(
(σ+2)(n−2)w2/n

n
2

−
ε

2

√
n

n−1
‖ f 2
‖n/2

)
lim

r→+∞
‖φ2

r f n/2
‖n/(n−2).
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Noting that R =−n(n− 1) and letting η→ 0, this becomes

0≥ (C4(n)2−‖ f 2
‖n/2) lim

r→+∞
‖φ2

r f n/2
‖n/(n−2),

which implies that limr→+∞‖φ
2
r f n/2

‖n/(n−2) = 0, that is, f = 0. Hence M is an
Einstein manifold and is isometric to a hyperbolic space form. In particular, if M
is simply connected, then M is isometric to Hn . �

Corollary 3.8 (of Theorem 3.7). For n ≥ 3, let (M, g) be a complete simply con-
nected and locally conformally flat Riemannian n-manifold with constant scalar
curvature n(n−1). Then there exists an explicit constant C3(n) depending only
on n such that if ‖|Ric|2−|RicSn |

2
‖n/2<C3(n), where RicSn is the Ricci curvature

tensor of Sn , then M is isometric to Sn .

4. Questions

Theorems 3.1 and 3.7 can be considered as isolation phenomena for the Ricci cur-
vature norm of conformally flat manifolds with constant scalar curvature. With our
results in mind, we review the related Ln/2 pinching theorem obtained by Shiohama
and Xu [1997]. For a compact Riemannian manifold (M, g), they defined a new
curvature tensor and its Ln/2 norm by

R̃m=
∑

i, j,k,l

R̃i jklωi ⊗ω j ⊗ωk ⊗ωl and R̃(M)=
∫

M
|R̃m|n/2d M,

where R̃i jkl = Ri jkl − R(δikδ jl − δilδ jk)/(n(n− 1)).

Theorem C [Shiohama and Xu 1997]. For n≥ 3, let M be a closed Riemannian n-
manifold that can be isometrically immersed in Euclidean Rn+1. If R̃(M)<C5(n),
where C5(n) is an explicit positive constant depending only on n, then M is homeo-
morphic to the sphere.

Motivated by the result above and the striking differentiable pinching theorem
due to Brendle and Schoen [2009], we propose the following question.

Question 4.1. For n ≥ 3, let M be a compact Riemannian n-manifold. Denote by
d and V the diameter and volume of M . Does there exist a positive constant ε1

depending on n, d and V such that if R̃(M) < ε1, then M is diffeomorphic to a
compact space form?

When M is locally conformally flat, we see from (2-2) that Riemannian curva-
ture tensor can be expressed in terms of the Ricci curvature tensor. By a direct
computation we have |R̃m|2 = (4/(n−2))|R̃ic|2. Another question then arises out
of our L p pinching theorems for conformally flat manifolds:
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Question 4.2. For n ≥ 3, let (M, g) be a complete locally conformally flat Rie-
mannian n-manifold. Does there exists a positive constant ε2 depending only on n
such that if ‖R̃ic‖n/2 < ε2, then M is diffeomorphic to a complete space form? In
particular, if M is simply connected, is M diffeomorphic to either Rn , Sn or Hn?

References

[Bérard 1991] P. Bérard, “Remarques sur l’équation de J. Simons”, pp. 47–57 in Differential geome-
try, edited by B. Lawson and K. Tenenblat, Pitman Monogr. Surveys Pure Appl. Math. 52, Longman
Sci. Tech., Harlow, 1991. MR 93g:53082 Zbl 0731.53054

[Bérard et al. 1998] P. Bérard, M. do Carmo, and W. Santos, “Complete hypersurfaces with con-
stant mean curvature and finite total curvature”, Ann. Global Anal. Geom. 16:3 (1998), 273–290.
MR 2000d:53093 Zbl 0921.53027

[Brendle and Schoen 2009] S. Brendle and R. Schoen, “Manifolds with 1/4-pinched curvature are
space forms”, J. Amer. Math. Soc. 22:1 (2009), 287–307. MR 2010a:53045

[Cheng et al. 1999] Q.-M. Cheng, S. Ishikawa, and K. Shiohama, “Conformally flat 3-manifolds
with constant scalar curvature”, J. Math. Soc. Japan 51:1 (1999), 209–226. MR 2000b:53038
Zbl 0949.53023

[Eisenhart 1997] L. P. Eisenhart, Riemannian geometry, Princeton University Press, Princeton, NJ,
1997. MR 98h:53001 Zbl 0174.53303

[Hebey 1999] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant
Lecture Notes in Mathematics 5, New York University Courant Institute of Mathematical Sciences,
1999. MR 2000e:58011 Zbl 0981.58006

[Lin and Xia 1989] J. M. Lin and C. Y. Xia, “Global pinching theorems for even-dimensional
minimal submanifolds in the unit spheres”, Math. Z. 201:3 (1989), 381–389. MR 90i:53048
Zbl 0651.53044

[Ni 2001] L. Ni, “Gap theorems for minimal submanifolds in Rn+1”, Comm. Anal. Geom. 9:3
(2001), 641–656. MR 2002m:53097 Zbl 1020.53041

[Pigola et al. 2007] S. Pigola, M. Rigoli, and A. G. Setti, “Some characterizations of space-forms”,
Trans. Amer. Math. Soc. 359:4 (2007), 1817–1828. MR 2008a:53036 Zbl 1123.53020

[Shen 1989] C. L. Shen, “A global pinching theorem of minimal hypersurfaces in the sphere”, Proc.
Amer. Math. Soc. 105:1 (1989), 192–198. MR 90c:53162 Zbl 0679.53049

[Shiohama and Xu 1994] K. Shiohama and H. W. Xu, “Rigidity and sphere theorems for submani-
folds”, Kyushu J. Math. 48:2 (1994), 291–306. MR 95f:53101 Zbl 0826.53045

[Shiohama and Xu 1997] K. Shiohama and H. W. Xu, “Lower bound for Ln/2 curvature norm and
its application”, J. Geom. Anal. 7:3 (1997), 377–386. MR 2000d:53057 Zbl 0960.53022

[Simons 1968] J. Simons, “Minimal varieties in riemannian manifolds”, Ann. of Math. (2) 88 (1968),
62–105. MR 38 #1617 Zbl 0181.49702

[Tani 1967] M. Tani, “On a conformally flat Riemannian space with positive Ricci curvature”,
Tôhoku Math. J. (2) 19 (1967), 227–231. MR 36 #3279 Zbl 0166.17405

[Wang 1988] H. Wang, “Some global pinching theorems for submanifolds of a sphere”, Acta Math.
Sinica 31:4 (1988), 503–509. MR 90e:53060 Zbl 0679.53050

[Wu et al. 1989] H. Wu, C. L. Shen, and Y. L. Yu, An Introduction to Riemannian Geometry, Beijing
University Press, 1989.



396 HONG-WEI XU AND EN-TAO ZHAO

[Xu 1990] H. W. Xu, Pinching theorems, global pinching theorems and eigenvalues for Riemannian
submanifolds, thesis, Fudan University, 1990.

[Xu 1994] H. W. Xu, “Ln/2-pinching theorems for submanifolds with parallel mean curvature in a
sphere”, J. Math. Soc. Japan 46:3 (1994), 503–515. MR 95d:53070 Zbl 0824.53048

[Xu and Gu 2007a] H. W. Xu and J. R. Gu, “A general gap theorem for submanifolds with par-
allel mean curvature in Rn+p”, Comm. Anal. Geom. 15:1 (2007), 175–193. MR 2008g:53070
Zbl 1122.53033

[Xu and Gu 2007b] H. W. Xu and J. R. Gu, “L2-isolation phenomenon for complete surfaces
arising from Yang–Mills theory”, Lett. Math. Phys. 80:2 (2007), 115–126. MR 2008g:53076
Zbl 1129.53037

Received December 18, 2008.

HONG-WEI XU

CENTER OF MATHEMATICAL SCIENCES

ZHEJIANG UNIVERSITY

HANGZHOU 310027
CHINA

xuhw@cms.zju.edu.cn

EN-TAO ZHAO

CENTER OF MATHEMATICAL SCIENCES

ZHEJIANG UNIVERSITY

HANGZHOU 310027
CHINA

zhaoet@cms.zju.edu.cn



PACIFIC JOURNAL OF MATHEMATICS
Vol. 245, No. 2, 2010

ACKNOWLEDGEMENT

The editors gratefully acknowledge the valuable advice of the referees who
helped them select and better the papers appearing in 2009 in the Pacific Journal of
Mathematics (reports dated November 26, 2008 through December 31, 2009).

Marco Abate, Christopher Allday, Jianbei An, Michael Anshelevich, Benjamin
Audoux, John Baez, Dubravka Ban, Thierry Barbot, Refik İnanç Baykur, Julia
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