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VOLUME ENTROPY OF HILBERT GEOMETRIES

GAUTIER BERCK, ANDREAS BERNIG AND CONSTANTIN VERNICOS

We show that among all plane Hilbert geometries, the hyperbolic plane has
maximal volume entropy. More precisely, we show that the volume entropy
is bounded above by 2/(3 − d) ≤ 1, where d is the Minkowski dimension
of the extremal set of K , and we construct an explicit example of a plane
Hilbert geometry with noninteger volume entropy. In arbitrary dimension,
the hyperbolic space has maximal entropy among all Hilbert geometries
satisfying some additional technical hypothesis. To achieve this result, we
construct a new projective invariant of convex bodies, similar to the centro-
affine area.

1. Introduction

In his famous Fourth Problem, Hilbert asked for a characterization of metric ge-
ometries whose geodesics are straight lines. He constructed a special class of
examples, now called Hilbert geometries [Hilbert 1895; 1999], which have since
attracted much interest; see, for example, [Nasu 1961; de la Harpe 1993; Karlsson
and Noskov 2002; Socié-Méthou 2004; Foertsch and Karlsson 2005; Benoist 2006;
Colbois and Vernicos 2007], and the two complementary surveys [Benoist 2008]
and [Vernicos 2005].

A Hilbert geometry is a particularly simple metric space on the interior of a
compact convex set K (see the definition below). This metric happens to be a
complete Finsler metric whose set of geodesics contains the straight lines. Since
the definition of the Hilbert geometry only uses cross-ratios, the Hilbert metric is
a projective invariant. In the particular case where K is an ellipsoid, the Hilbert
geometry is isometric to the usual hyperbolic space.

An important part of the above mentioned works, and of older ones, is to study
how different or close to the hyperbolic geometry these geometries can be. For
instance, if K is not an ellipsoid, Kay [1967, Corollary 1] showed that the met-
ric is never Riemannian. This result is related to the fact that among all finite-
dimensional normed vector spaces, many notions of curvatures are only satisfied
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by the Euclidean spaces [Kelly and Paige 1952; Kelly and Straus 1958; 1968].
However, if ∂K is sufficiently smooth, then the flag curvature, an analog of the
sectional curvature, of the Hilbert metric is constant and equals−1; see [Shen 2001,
Example 9.2.2]. Hence one can ask whether or not these geometries behave like
negatively curved Riemannian manifolds. The example of the triangle geometry
that is isometric to a two-dimensional normed vector space shows that things are a
little more involved (see [de la Harpe 1993], and also theorems cited below). The
present work is partially inspired by the feeling that Hilbert geometries might be
thought of as geometries with Ricci curvature bounded from below, and focuses
on the volume growth of balls.

Unlike the Riemannian case, where there is only one natural choice of volume,
there are several good choices of volume on a Finsler manifold. We postpone
this issue to Section 2 and fix just one volume (like the n-dimensional Hausdorff
measure) for the moment.

Let B(o, r) be the metric ball of radius r centered at o. The volume entropy
of K is defined by the limit (provided it exists)

(1) Ent K := lim
r→∞

log Vol B(o, r)
r

.

The entropy depends neither on the particular choice of the base point o∈ int K ,
nor on the particular choice of the volume. If h = Ent K , then Vol B(o, r) behaves
roughly as ehr .

It is well known and easy to prove (see S. Gallot, D. Hulin and J. Lafontaine
[Gallot et al. 2004, Section III.H]) that the volume of a ball of radius r in the
n-dimensional hyperbolic space is given by

nωn

∫ r

0
(sinh s)n−1ds = O(e(n−1)r ),

where ωn is the volume of the Euclidean unit ball of dimension n. It follows that
the entropy of an ellipsoid equals n− 1.

In general, it is not known whether the limit above exists, although it does in
several cases: It exists if the convex set K is divisible, which means that a discrete
subgroup of the group of isometries of the Hilbert geometry acts cocompactly
[Benoist 2004]. If the convex set is sufficiently smooth (for example, C2 with
positive curvature suffices), the entropy exists and equals n−1 (see the theorem of
Colbois and Verovic below). In general, one may define lower and upper entropies
Ent and Ent by replacing the limit in the definition (1) by lim inf or lim sup.

There is a well known conjecture (whose origin seems difficult to locate) saying
that the hyperbolic space has maximal entropy among all Hilbert geometries of the
same dimension:
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Conjecture. For any n-dimensional Hilbert geometry, Ent K ≤ n− 1.

Notice that an analogous result in Riemannian geometry is a consequence of
Bishop’s volume comparison theorem for complete Riemannian manifolds of Ricci
curvature bounded by −(n− 1) [Gallot et al. 2004, Theorem 3.101(i)].

Several particular cases of the conjecture were treated in the literature. The
following one shows that the volume entropy does not characterize the hyperbolic
geometry among all Hilbert geometries.

Theorem [Colbois and Verovic 2004]. If K is C2-smooth with strictly positive
curvature, then the Hilbert metric of K is bi-Lipschitz to the hyperbolic metric and
therefore Ent K = n− 1.

The case of convex polytopes is rather well understood.

Theorem [Bernig 2009; Vernicos 2008b]. The Hilbert metric associated to a con-
vex body K is bi-Lipschitz to a normed space if and only if K is a polytope. In
particular, the entropy of a polytope is 0.

The two-dimensional case was earlier obtained by Colbois, Vernicos, and Verovic
in [Colbois et al. 2008].

Instead of taking the volume of balls, a natural choice is to study the volume
growth of the metric spheres S(o, r). One may define a (spherical) entropy by

(2) Ents K := lim
r→∞

log Vol S(o, r)
r

,

provided the limit exists. In general, one may define upper and lower spherical
entropies Ent

s
K and Ents K by replacing the limits in (2) by a lim sup or lim inf.

The next theorem is a spherical version of the theorem of Colbois and Verovic.

Theorem [Borisenko and Olin 2008]. If K is an n-dimensional convex body of
class C3 with positive Gauss curvature, then Ents = n− 1.

Our first main theorem treats the two-dimensional case. Recall that an extremal
point of a convex body K is a point that is not a convex combination of two other
points of K .

First main theorem. Let K be a two-dimensional convex body. Let d be the upper
Minkowski dimension of the set of extremal points of K . Then the entropy of K is
bounded by

(3) Ent K ≤ 2
3−d

≤ 1.

The inequality is sharp if K is smooth or contains some positively curved smooth
part in the boundary. In this case the upper Minkowski dimension of ex K and
the entropy are both 1. On the other hand, for polygons the upper Minkowski
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dimension of the set of extremal points and the entropy both vanish (see the theorem
of [Colbois et al. 2008]), and the inequality is not sharp in this case.

It should be noted that the entropy behaves in a rather subtle way (see also
[Vernicos 2008a] for a technical study of the entropy, complementary to this paper).
As we have seen above, the entropy of a polygon vanishes. In contrast to this, we
will construct a convex body with piecewise affine boundary whose entropy is
between 1/4 and 3/4.

Our second main theorem applies in all dimensions. It weakens in a substantial
way the assumptions in the theorem of Colbois and Verovic and strengthens its
conclusions, for it gives not only the precise value of the entropy but also the
entropy coefficient. To state it, we introduce a projective invariant of convex bodies,
which is interesting in itself.

Let V be an n-dimensional vector space with origin o. Given a convex body K
containing o in the interior, we define a positive function a on the boundary by the
condition that for p∈ ∂K we have−a(p)p∈ ∂K . The letter a stands for antipodal.
If V is endowed with a Euclidean scalar product, we let k(p) be the Gauss curvature
and n(p) be the outer normal vector at a boundary point p (whenever they are well-
defined, which is almost everywhere the case following [Alexandroff 1939]).

Definition. The centroprojective area of K is

(4) Ap(K ) :=
∫
∂K

√
k

〈n, p〉(n−1)/2

( 2a
1+a

)(n−1)/2
d A.

It is not quite obvious (but true, as we shall see) that this definition does not
depend on the choice of the scalar product. In fact, the centroprojective area is
invariant under projective transformations fixing the origin. The reader familiar
with the theory of valuations may notice the similarity with the centroaffine surface
area, whose definition is the same except that the second factor (containing the
function a) does not appear. We refer to [Laugwitz 1965; Leichtweiß 1998] for
more information on affine and centroaffine differential geometry.

Second main theorem. If ∂K is C1,1 or if n = 2, then

(5) lim
r→∞

Vol B(o, r)

sinhn−1 r
=

1
n−1

Ap(K ).

In the first case, Ap(K ) 6= 0 and hence Ent K = n− 1.

Our next theorem, together with the previous ones, shows that it suffices to
assume K to be merely of class C1,1 in the theorem of Borisenko and Olin.

Theorem. For each convex body K ,

Ents K = Ent K and Ent
s

K = Ent K .
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Plan of the paper. In the next section, we collect some well-known facts about
convex bodies, Hilbert geometries and volumes on Finsler manifolds, and we prove
a number of easy lemmas. Using some inequalities for volumes in normed spaces,
we show that entropy and spherical entropy coincide for general convex bodies.

In Section 3, we use the lemmas to prove our main theorems. In Section 4, we
give an intrinsic definition of the centroprojective surface area and study some of
its properties. In particular, we show that it is upper semicontinuous with respect
to Hausdorff topology.

2. Preliminaries on convex bodies and Hilbert geometries

2.1. Convex bodies. Let V be a finite-dimensional real vector space. By a convex
body, we mean a compact convex set K ⊂ V with nonempty interior (note that
this last condition is sometimes not required in the literature). Most of the time,
the convex bodies will be assumed to contain the origin in their interiors. In such
a case, we will as usual call the Minkowski functional the positive, homogeneous
function of degree 1 whose level set at height 1 is the boundary ∂K . It is a con-
vex function, which by Alexandroff’s theorem admits a quadratic approximation
almost everywhere [Alexandroff 1939; Evans and Gariepy 1992, page 242]. In
the following, boundary points where Alexandroff’s theorem applies will be called
smooth. If we assume the vector space to be equipped with an inner product, the
principal curvatures of the boundary and its Gauss curvature k are well defined at
every smooth point.

We will be concerned with generalizations and variations of Blaschke’s rolling
theorem, a proof of which may be found in [Leichtweiß 1993].

Theorem 2.1 [Blaschke 1956]. Let K be a convex body in Rn whose boundary is
C2 with everywhere positive Gaussian curvature. Then there are two positive radii
R1 and R2 such that for every boundary point p, there exists a ball of radius R1

(respectively R2) containing p on its boundary and contained in K (respectively
containing K ).

We first remark that for the “inner part” of Blaschke’s result, the regularity of the
boundary may be lowered. Recall that the boundary of a convex body is C1,1

provided it is C1 and the Gauss map is Lipschitz continuous. Roughly speaking,
the second condition says that the curvature of the boundary remains bounded,
even if it is only almost everywhere defined. The following proposition then gives
a geometrical characterization of such bodies [Hörmander 2007, Proposition 2.4.3;
Bangert 1999; Hug 1999b].

Proposition 2.2. The boundary of a convex body K is C1,1 if and only if there
exists some R > 0 such that K is the union of balls with radius R.
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Without assumption on the boundary, there is still an integral version of Blaschke’s
rolling theorem.

Theorem 2.3 [Schütt and Werner 1990]. For a convex body K containing the unit
ball of a Euclidean space and p ∈ ∂K , let R(p) ∈ [0,∞) be the radius of the
biggest ball contained in K and containing p. Then for all 0< α < 1,

(6)
∫
∂K

R−αdHn−1 <∞.

We will need the following refinement of this theorem.

Proposition 2.4. In the same situation as in Theorem 2.3, for each Borel subset
B ⊂ ∂K we have

(7)
∫

B
R−αdHn−1

≤ 2(n− 1)α
( 2α

1−2α−1

)α
(Hn−1(B))1−α(Hn−1(∂K ))α.

In particular, for some constant C depending on K , we have

(8)
∫

B
R−1/2dHn−1

≤ C(Hn−1(B))1/2.

Proof. By [Schütt and Werner 1990, Lemma 4], we have for 0≤ t ≤ 1

(9) Hn−1({p ∈ ∂K | R(p)≤ t})≤ (n− 1)t Hn−1(∂K ),

from which we deduce that, for each 0< ε < 1,

(10)
∫
∂K∩{R<ε}

R−αdHn−1
=

∞∑
i=0

∫
∂K∩{ε2−i−1≤R<2−i ε}

R−αdHn−1

≤

∞∑
i=0

(ε2−i−1)−α Hn−1(∂K ∩ {ε2−i−1
≤R<2−iε})

≤

∞∑
i=0

(ε2−i−1)−α(n− 1)2−iε Hn−1(∂K )

= ε1−α(n− 1) 2α

1−2α−1 Hn−1(∂K ).

It follows that∫
B

R−αdHn−1
=

∫
B∩{R<ε}

R−αdHn−1
+

∫
B∩{R≥ε}

R−αdHn−1

≤ ε1−α(n− 1) 2α

1−2α−1 Hn−1(∂K )+ ε−α Hn−1(B).

We get the inequality of the lemma by choosing

ε :=
1− 2α−1

2α(n− 1)
Hn−1(B)

Hn−1(∂K )
. �
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2.2. Hilbert geometries. The Hilbert distance between two distinct points x and y
in int K is defined by

d(x, y) := 1
2

∣∣log[a, b, x, y]
∣∣,

where a and b are the intersections of the line passing through x and y with the
boundary ∂K , and [a, b, x, y] denotes the cross-ratio (adopting the convention of
[Bridson and Haefliger 1999]).

This distance is invariant under projective transformations. If K is an ellipsoid,
the Hilbert geometry on int K is isometric to hyperbolic n-space.

Unbounded closed convex sets with nonempty interiors and not containing a
straight line are projectively equivalent to convex bodies. Therefore, the definition
of the distance naturally extends to the interiors of such convex sets. In particular,
the convex sets bounded by parabolas are also isometric to the hyperbolic space.

Let us assume the origin o lies inside the interior of K . We will write B(r) for
the metric ball of radius r and centered at o. Its boundary, the metric sphere, will
be denoted by S(r). Let a : ∂K→R+ be defined by the equation−a(p)p∈ ∂K , so
the letter a refers to the antipodal point. It is an easy exercise to check that metric
spheres are parameterized by the boundary ∂K as

S(r)= {φ(p, r) : p ∈ ∂K },

where

(11) φ : ∂K ×R+→ int K , (p, r) 7→ a e2r
−1

ae2r+1
p.

The Hilbert distance comes from a Finsler metric on the interior of K . Given
x ∈ int K and v ∈ Tx V , the Finsler norm of v is given by

(12) ‖v‖x =
1
2

( 1
t1
+

1
t2

)
,

where t1, t2 > 0 are such that x ± tiv ∈ ∂K . Again, we do not exclude that one of
the ti is infinite. Equivalently, if Fx is the Minkowski functional of K − x , then

‖v‖x =
1
2(Fx(v)+ Fx(−v)).

The Finsler metric makes it possible to measure the length of a differentiable
curve c : I → int K by

l(c) :=
∫

I

∥∥c′(t)
∥∥

c(t)dt.

It is less trivial to measure the area (or volume) of higher dimensional subsets
of int K . In fact, different notions of volume are being used. The most important
ones are the Busemann definition (which is equal to the Hausdorff n-dimensional
measure) and the Holmes–Thompson definition. In the following, only properties
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of volumes in Finsler spaces (as defined in [Álvarez Paiva and Thompson 2004])
will be used:

• Vol is a Borel measure on int K that is absolutely continuous with respect to
Lebesgue measure.

• If A ⊂ K ⊂ L , where K , L are compact convex sets, then the measure of A
with respect to K is larger than the measure of A with respect to L .

• If K is an ellipsoid, then Vol(A) is the hyperbolic volume of A.

We will mainly investigate the following projective invariants of convex bodies.

Definition 2.5. The upper and lower volume entropies of K are

Ent(K ) := lim sup
r→∞

log(Vol B(r))
r

and Ent(K ) := lim inf
r→∞

log(Vol B(r))
r

.

If the upper and lower volume entropies of K coincide, their common value is
called the volume entropy of K and is denoted by Ent K .

Note that these invariants are independent of the choice of the center and of the
choice of the volume definition.

2.3. Busemann’s density. For simplicity, we restrict ourselves to Busemann’s vol-
ume, although all results remain true for every other choice of volume. The reason
is that the proofs of the crucial Propositions 2.7 and 2.8 below do not use any
particular property of Busemann’s volume, but only the axioms satisfied by every
definition of volume.

The density of Busemann’s volume (with respect to some Lebesgue measure L)
is given by σ(x) = ωn/L(Bx), where Bx is the tangent unit ball of the Finsler
metric at x and ωn is the (Euclidean) volume of the unit ball in Rn . The volume of
a Borel subset A ⊂ int K is thus given by Vol(A)=

∫
A σdL.

We now state and prove some propositions concerning upper bounds and asymp-
totic behaviors of Busemann’s densities for points that are close to the boundaries
of particular convex sets. We will make use of an auxiliary inner product, call-
ing L and µ the corresponding Lebesgue measure and volume n-form. Busemann
densities are defined with this particular choice of measure.

Proposition 2.6. Let K and K ′ be closed convex sets not containing any straight
line and let σ : int K → R and σ ′ : int K ′→ R be their corresponding Busemann
densities. Let p ∈ ∂K , let E0 be a support hyperplane of K at p, and let E1 be a
hyperplane parallel to E0 intersecting K . Suppose that K and K ′ have the same
intersection with the strip between E0 and E1 (in particular p ∈ ∂K ′). Then

lim
y→p

σ(y)/σ ′(y)= 1.
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Proof. Let d be the distance between E0 and E1, and let (yi ) be a sequence of
points of int K converging to p. We may suppose that the distance di between yi

and E0 is strictly less than d. For every fixed point yi and nonzero tangent vector
v ∈ Tyi K , let t1, t2 ∈ R+ ∪ {∞} be such that yi ± t1,2v ∈ ∂K ; let t ′1 and t ′2 be the
corresponding numbers for K ′. Since at least one of yi + t1v and yi − t2v is inside
the strip, say yi + t1v, we must have t1 = t ′1.

Either t2 = t ′2 and ‖v‖i = ‖v‖′i , or t2 6= t ′2, in which case

t1
t2
,

t ′1
t ′2
≤

di

d − di
.

Therefore,
d − di

d
≤
‖v‖i

‖v‖′i
=

1+ (t1/t2)
1+ (t ′1/t ′2)

≤
d

d − di
,

which shows that, as functions on RPn−1, the ‖ ·‖i/‖ ·‖′i uniformly converge to 1.
Hence, for every ε and every i large enough, (1−ε)Byi ⊂ B ′yi

⊂ (1+ε)Byi , which
implies the convergence of σ/σ ′ to 1. �

Proposition 2.7. Let V = Rn with its usual scalar product. Let P be the convex
set bounded by the parabola y =

∑n−1
i=1 (ci/2)x2

i , with c1, . . . , cn−1 > 0. Then

(13) σ(0, . . . , 0, 1− λ)=
√

c
(2(1− λ))(n+1)/2 , where c =

n−1∏
i=1

ci .

Proof. By the invariance of the Hilbert metric under projective transformations,
the tangent unit sphere at any point of int P is an ellipse. At the point (0, . . . , 0,
1− λ), the symmetry implies that the principal axes of this ellipse are parallel to
the coordinate axes. Hence σ = 1/

∏n
i=1 li , where the li for i = 1, . . . , n are the

Euclidean lengths of the principal half-axes.
Now li =

√
2(1− λ)/ci for i = 1, . . . , n− 1 and ln = 2(1− λ). �

Proposition 2.8. Assume the origin o is inside int K . For a smooth point p of ∂K ,
let n(p) be the outward normal vector and let k(p) be the Gauss curvature of ∂K
at p. Then

(14) lim
λ→1

σ(λp)(1− λ)(n+1)/2
=

√
k(p)

(2〈p, n(p)〉)(n+1)/2 .

Proof. Let us choose a frame (p; v1, . . . , vn−1, vn), where v1, . . . , vn−1∈Tp∂K are
unit vectors tangent to the principal curvature directions of ∂K at p and vn =−p.
In these coordinates, the boundary of K is locally the graph of a function

y =
n−1∑
i=1

(ci/2)x2
i + R(|x |),
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with R(|x |) = o(|x |2) and c1, . . . , cn−1 ≥ 0. We set c :=
∏n−1

i=1 ci . Then a short
computation shows that dx1∧ · · · ∧ dxn−1∧ dy = µ/m, where µ is the Euclidean
n-form and m := µ(v1, . . . , vn) = 〈p, n(p)〉. Also, the Gauss curvature at p is
given by k(p)= cmn−1.

Let us fix ε > 0. Locally, the parabola defined by y =
∑n−1

i=1
1
2(ci + ε)x2

i lies
inside K . Cutting it with some horizontal hyperplane, we obtain a convex body K ′

inside K . In particular, the metric of K ′ is greater than or equal to the metric of K ;
hence, σ ′(λp)≥ σ(λp) for λ near 1.

Then by Propositions 2.6 and 2.7,

(15) lim sup
λ→1

σ(λp)(1−λ)(n+1)/2
≤ lim
λ→1

σ ′(λp)(1−λ)(n+1)/2
=

√∏n−1
i=1 (ci + ε)

2(n+1)/2m
.

Since σ > 0, this already settles the case k = c = 0, since ε was arbitrarily small.
If c > 0 and 0< ε <min{c1, . . . , cn−1}, the parabola P defined by

y =
n−1∑
i=1

ci − ε

2
x2

i

locally contains K . Cutting it with some horizontal hyperplane, we obtain a convex
body K ′ inside P . Again by Propositions 2.6 and 2.7,

(16) lim inf
λ→1

σ(λp)(1−λ)(n+1)/2
≥ lim inf

λ→1
σ ′(λp)(1−λ)(n+1)/2

=

√∏n−1
i=1 (ci − ε)

2(n+1)/2m
.

From (15) and (16) (with ε→ 0) we get

lim
λ→1

σ(λp)(1− λ)(n+1)/2
=

√
c

2(n+1)/2m
. �

Section 3 will start with the proof of a slight and somewhat technical refinement
of our second main theorem. To state it precisely, we need to introduce the pseudo-
Gauss curvature of the boundary of a convex set K in Rn .

For a smooth point p∈ ∂K , let n(p) be the outward normal of ∂K at p. For each
unit vector e ∈ Tp∂K , let He(p) be the affine plane containing p and directed by
the vectors e and n(p). We define Re as the radius of the biggest disc containing p
inside Ke := K ∩ He(p).

Definition 2.9. The pseudo-Gauss curvature k̄(p) of ∂K at p is the minimum of
the numbers

∏n−1
i=1 Rei (p)

−1, where e1, . . . , en−1 ranges over all orthonormal bases
of Tp∂K .
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Proposition 2.10. Let V be a Euclidean vector space of dimension n. Let K be a
convex body containing the unit ball B. Then for 1

2 ≤ λ < 1 and p ∈ ∂K ,

(17) σ(λp)≤
ωnn!

2n(1− λ)(n+1)/2 k̄(p)1/2.

Proof. We use the same notation as in the definition of k̄. We may suppose that
Ri := Rei (p)>0 for all i ; otherwise the statement is trivial. By the definition of Ri ,
there is a 2-disc Bi (p) of radius Ri inside Kei containing p. Let us denote by B(ei )

the intersection of B with the affine plane p+ Hei . Since B(ei ) and Bi (p)⊂ K ,

Ĉi := conv(B(ei )×{0} ∪ Bi (p)×{1})⊂ Kei ×[0, 1].

Note that Ĉi is a truncated cone. Let Ei be the plane containing the line that is
parallel to Tp∂Kei and that passes through the points o× {0} and p × {1}. With
π : V × [0, 1] → V the projection on the first component, Ci := π(Ei ∩ Ĉi ) ⊂ K
is bounded by a truncated conic.

In the nonorthogonal frame (o; p, ei ), Ci is given by

(2Ri − 1)x2
+ 2(1− Ri )x + y2

1 ≤ 1 for 0≤ x ≤ 1.

Now let C be the convex hull of the union of the Ci . Then the polytope P with
vertices(

λ, 0, . . . ,±
√
(1− λ)(2λRi − λ+ 1), 0, . . . , 0

)
, (1, E0), (2λ− 1, E0)

lies inside C , with all but the last vertex being on the boundaries of the Ci .
Its volume is given by

(18) L(P)=
2n
〈p, n(p)〉

n!
(1− λ)(n+1)/2

n−1∏
i=1

(2λRi − λ+ 1)1/2

≥
2n

n!
(1−λ)(n+1)/2(R1 · R2 · · · Rn−1)

1/2
=

2n

n!
(1−λ)(n+1)/2k̄−1/2(p).

The factor 〈p, n(p)〉 in the first line appears because our coordinate system is not
orthonormal. Since the unit ball is contained in K , this factor is at least 1.

From P ⊂ C ⊂ K and the fact that P is centered at λp, we deduce that

σ(λp)≤
ωn

L(P)
≤
ωnn!
2n (1− λ)−(n+1)/2 k̄1/2(p). �

The next proposition will be needed in the construction of a convex body with
entropy between 0 and 1.

Proposition 2.11. Let K = oab be a triangle with 1 ≤ oa and ob ≤ 2, such that
the distance from o to the line passing through a and b is at least 1. Let p be a
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point in the interior of the side ab and suppose that min{ap, bp} ≥ ε > 0. Then for
λ≥ 1/2, Busemann’s density of K at λp is bounded above by

σ(λp)≤ 32π max
{ 1
ε(1−λ)

,
1
ε2

}
.

Proof. The hypothesis on the triangle implies that sin(abo), sin(bao)≥ 1/2.
Let a′ be the intersection with ob of the line passing through a and z := λp, and

define b′ similarly.
The unit tangent ball at z is a hexagon centered at z. The length of one of its

half-diagonals is the harmonic mean of za and za′; the length of the second half-
diagonal is the harmonic mean of zb and zb′; and the third half-diagonal has length

2op
1
λ
+

1
1−λ

≥ 1− λ.

An easy geometric argument shows that

za′, zb ≥ 1
2 pb sin(abo)≥ 1

4ε and za, zb′ ≥ 1
2 pa sin(bao)≥ 1

4ε.

The area A of the hexagon is at least half of the minimal product of two of its
half-diagonals; hence, A ≥min{ 18ε(1− λ),

1
32ε

2
}. �

2.4. Volume entropy of spheres. By definition, the entropy controls the volume
growth of metric balls in Hilbert geometries. We show in this section that it
coincides with the growth of areas of metric spheres. Again, there are several
definitions of area of hypersurfaces in Finsler geometry. For simplicity, we con-
sider Busemann’s definition, which gives the Hausdorff (n−1)-measure of these
hypersurfaces.

Lemma 2.12 (rough monotonicity of area). There exist a monotone function f and
a constant C1 > 1 such that for all r > 0,

(19) C−1
1 f (r)≤ Area(S(r))≤ C1 f (r).

Proof. Let f (r) be the Holmes–Thompson area of S(r). Since all area definitions
agree up to some universal constant, inequality (19) is trivial. It remains to show
that f is monotone.

If ∂K is C2 with everywhere positive Gaussian curvature, then the tangent unit
spheres of the Finsler metric are quadratically convex. According to [Álvarez Paiva
and Fernandes 1998, Theorem 1.1 and Remark 2], there exists a Crofton formula
for the Holmes–Thompson area, from which the monotonicity of f easily follows.

Such smooth convex bodies are dense in the set of all convex bodies for the
Hausdorff topology; see for example [Hörmander 2007, Lemma 2.3.2]. By ap-
proximation, it follows that f is monotone for arbitrary K . �
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Lemma 2.13 (coarea inequalities). There exists a constant C2 > 1 such that

C−1
2 Area(S(r))≤ ∂

∂r
Vol(B(r))≤ C2 Area(S(r)) for all r > 0.

Proof. Let µ := σdx1∧· · ·∧dxn be the volume form, and let α be the (n−1)-form
on S(r) whose integral equals the area.

Since
Vol(B(r))=

∫ r

0

∫
S(s)

i∂rµ ds,

where ∂r at λp ∈ S(s) is the tangent vector multiple of Eop with unit Finsler norm,
we have to compare i∂rµ and α.

We will assume that S(r) is differentiable at λp. The section of the unit tangent
ball by the tangent space Tλp S(r) will be called γ . By the definition of Busemann
area, the area of γ measured with the form α is the constant α(γ )= ωn−1.

In the same way, calling 0 the half unit ball containing ∂r and bounded by γ ,
one has µ(0)= 1

2ωn .
Since 0 is convex, it contains the cone with base γ and vertex ∂r . Therefore,

(20) 1
n i∂rµ(γ )≤

1
2ωn.

By Brunn’s theorem (see for example [Koldobsky 2005, Theorem 2.3]), the
sections of the tangent unit ball with hyperplanes parallel to γ have an area less than
or equal to the area of γ . Also the tangent unit ball has a supporting hyperplane at ∂r

which is parallel to γ . Therefore, by Fubini’s theorem, the cylinder γ ×([0, 1] ·∂r )

has a volume greater than or equal to the volume of 0 (even if it generally does
not contain 0). Hence,

(21) 1
2ωn ≤ i∂rµ(γ ).

Inequalities (20) and (21) give

1
2
ωn
ωn−1

α(γ )≤ i∂rµ(γ )≤
n
2
ωn
ωn−1

α(γ ),

from which the result easily follows. �

Theorem 2.14. The spherical entropy coincides with the entropy. More precisely,

lim sup
r→∞

log Area(S(r))
r

= Ent K and lim inf
r→∞

log Area(S(r))
r

= Ent K .

Proof. For convenience, let V (r) := Vol B(r) and A(r) := Area S(r).
Using the previous two lemmas, one has, for all r > 0,

V (r)=
∫ r

0
V ′(s) ds ≤ C2

∫ r

0
A(s) ds ≤ C1C2

∫ r

0
f (s) ds

≤ C1C2 f (r)r ≤ C2
1C2 A(r)r.
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It follows that

Ent K = lim sup
r→∞

log V (r)
r

≤ lim sup
r→∞

log C2
1C2 A(r)r

r
= lim sup

r→∞

log Area(S(r))
r

.

Similarly, for each ε > 0,

V (r(1+ ε))=
∫ r(1+ε)

0
V ′(s) ds ≥ C−1

1 C−1
2

∫ r(1+ε)

0
f (s) ds

≥ C−1
1 C−1

2

∫ r(1+ε)

r
f (s) ds ≥ C−1

1 C−1
2 f (r)rε ≥ C−2

1 C−1
2 A(r)rε,

and hence

(1+ ε)Ent K = (1+ ε) lim sup
r→∞

log V (r(1+ ε))
r(1+ ε)

≥ lim sup
r→∞

log C−1
2 C−2

1 A(r)rε
r

= lim sup
r→∞

log Area(S(r))
r

.

Letting ε→ 0 gives the first equality. The second one follows in a similar way. �

3. Entropy bounds

3.1. Upper entropy bound in arbitrary dimension. Our second main theorem will
follow from the next result.

Theorem 3.1. Let K be an n-dimensional convex body and o ∈ int K . For a point
p ∈ ∂K , we denote by k̄(p) its pseudo-Gauss curvature as in Definition 2.9. If

(22)
∫
∂K

k̄1/2(p)dp <∞,

then

(23) lim
r→∞

Vol B(o, r)

sinhn−1 r
=

1
n−1

Ap(K ).

In particular, Ent K ≤ n− 1, and if Ap(K ) 6= 0, then Ent K = n− 1.

Proof. Using the parameterization (11), the volume of metric balls is given by

Vol(B(r))=
∫ r

0

∫
∂K

F(p, r) dHn−1,

where F(p, r) := σ(φ(p, r)) Jacφ(p, r).
The Jacobian may be explicitly computed:

Jacφ(p, r)=
(e2r
− 1)n−1e2r

(ae2r + 1)n+1 2an(1+ a)〈p, n(p)〉.
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In particular,

(24) lim
r→∞

e2r Jacφ(p, r)= 2(1+ a)〈p, n(p)〉/a.

On the other hand, for each smooth boundary point p we have, by Proposition 2.8,

(25) lim
r→∞

σ(φ(p, r))
e(n+1)r =

√
k(p)

(2〈p, n(p)〉)(n+1)/2
a(n+1)/2

(1+a)(n+1)/2 .

Then, by Proposition 2.10 and the hypothesis (22),

(26) lim
r→∞

1
e(n−1)r

∫
∂K

F(p, r) dHn−1
=

∫
∂K

lim
r→∞

F(p, r)
e(n−1)r dHn−1

=

∫
∂K

lim
r→∞

σ(φ(p, r))
e(n+1)r lim

r→∞
e2r Jacφ(p, r) dHn−1

=

∫
∂K

√
k(p)

(2〈p, n(p)〉)(n−1)/2

( a
1+a

)n−1/2
dHn−1

=
1

2n−1 Ap(K ).

By L’Hôpital’s rule, we get

lim
r→∞

Vol(B(r))
e(n−1)r = lim

r→∞

∫ r
0

∫
∂K F(p, s)dHn−1ds

(n− 1)
∫ r

0 e(n−1)sds
=

1
2n−1(n−1)

Ap(K ). �

Remark. The metric balls B(r) are projective invariants of K . There is an affine
version of the previous theorem using the affine balls Ba(r) := tanh(r)K (where
multiplication is with respect to the center o). Under the same assumptions as in
Theorem 3.1, we obtain that

lim
r→∞

Vol Ba(r)
e(n−1)r =

1
2n−1(n−1)

Aa(K ),

where Aa(K ) is the centroaffine area (see Section 4). The proof goes as the one
above by replacing the function a by 1.

Corollary 3.2. Suppose K is an n-dimensional convex body of class C1,1. Then

Ent K = n− 1.

Proof. For any p ∈ ∂K , R(p) is the biggest radius of a ball in K containing p. By
Proposition 2.2, there exists a constant R > 0 such that R(p)≥ R for all p ∈ ∂K .
It follows that the hypothesis (22) is satisfied and therefore Ent K ≤ n− 1.

The Gauss map G :∂K→ Sn−1 is well defined and continuous. As a consequence
of [Hug 1999a, Theorem 2.3] and [Hug 1998, Equation 2.7], the standard measure
on the unit sphere is the push-forward of k · dHn−1, that is,

G∗(k · dHn−1
|∂K )= dHn−1

|Sn−1,
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and hence the curvature has a positive integral. Therefore, Ap(K ) > 0, and (23)
implies that Ent K = n− 1. �

Corollary 3.3. If K is an arbitrary n-dimensional convex body with Ap(K ) 6= 0,
then Ent K ≥ n− 1.

Proof. Arguing as in the proof of Theorem 3.1 and using Fatou’s lemma instead of
the dominated convergence theorem gives the result. �

3.2. The plane case. Let us now assume that n= 2. By Theorem 2.3, the hypoth-
esis (22) is satisfied for each convex body K . Therefore

(27) Ent K ≤ 1

and

lim
r→∞

Vol B(o, r)
sinh r

=Ap(K ).

Next, we are going to prove a better bound for Ent K . To state our main result,
we need to recall some basic notions of measure theory in a Euclidean space and
refer to [Mattila 1995] for details. For a nonempty bounded set A, let N (A, ε)
be the minimal number of ε-balls needed to cover A. Then the upper Minkowski
dimension of A is defined as

dim A := inf
{
s : lim supε→0 N (A, ε)εs

= 0
}
.

One should note that this dimension is invariant under bi-Lipschitz maps. In
particular, it does not depend on a particular choice of inner product, and it is
invariant under projective maps provided the considered subsets are bounded.

Recall that a point p ∈ K is called extremal if it is not a convex combination of
other points of K . The set of extremal points is a subset of ∂K , which we denote
by ex K .

First main theorem. Let K be a plane convex body, and let d be the upper
Minkowski dimension of ex K . Then the entropy of K is bounded by

Ent K ≤ 2
3−d

≤ 1.

Proof. Since the entropy is independent of the choice of the center, we may suppose
that the Euclidean unit ball around o is the maximum volume ellipsoid inside K .
Then K is contained in the ball of radius 2 [Barvinok 2002].

Set ε := e−αr , where α ≤ 1 will be fixed later. Divide the boundary of K into
two parts:

∂K =B∪G,

where B (the bad part) is the closed ε-neighborhood around the set of extremal
points of K and G (the good part) is its complement.
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Using Proposition 2.4 and equalities (24) and (25), we get an upper bound for
large values of r :

(28)
∫ r

r/2

∫
B
σ(φ(p, s)) Jacφ(p, s) dH1ds ≤ O

(
er
√

H1(B)
)
.

Next, let p ∈ G. The endpoints of the maximal segment in ∂K containing p are
extremal points of K and hence of distance at least ε from p. Therefore K contains
a triangle as in Proposition 2.11, and if s ≥ r/2, and r is sufficiently large,

σ(φ(p, s))= σ(λ · p)≤ 32 max
{ 1
ε(1−λ)

,
1
ε2

}
=

32
ε(1−λ)

.

Integrating this from r/2 to r yields

(29)
∫ r

r/2

∫
G
σ(φ(p, s)) Jacφ(p, s) dH1ds = O(eαr ).

Let d be the upper Minkowski dimension of the set of extremal points of K .
Then, for each η > 0, N (ex K , ε) = o(ε−d−η) as ε→ 0. By the definition of N ,
there is a covering of ex K by N (ex K , ε) balls of radius ε. Hence there is a
covering of B by N (ex K , ε) balls with radius 2ε. The intersection of a 2ε-ball
with ∂K has length less than 4πε. It follows that H1(B)= o(ε−d−η+1). Since the
volume of B(r/2) is bounded by O(er/2) (see (27)), the volume of B(r) is bounded
by

Vol B(r)= Vol B(r/2) +
∫ r

r/2

∫
B
σ(φ(p, s)) Jacφ(p, s)dH1ds

+

∫ r

r/2

∫
G
σ(φ(p, s)) Jacφ(p, s)dH1ds

= O(er/2)+ O(er(1−(α(1−d−η))/2))+ O(eαr ).

We fix α such that 1− α(1− d − η)/2 = α, that is, α := 2/(3− d − η) > 2/3.
Then Vol B(r)= O(eαr ), which implies that the (upper) entropy of K is bounded
by α. Since η > 0 was arbitrary, the result follows. �

3.3. An example of noninteger entropy. We will construct a plane convex body
with piecewise affine boundary whose entropy is strictly between 0 and 1.

Let us choose a real number s > 2 and set αi := Cs/i s , where Cs > 0 is
sufficiently small, such that 3

∑
∞

i=1 αi < π . We consider a centrally symmetric
sequence E of points on S1 such that the angles between consecutive points are
α1, α1, α1, α2, α2, α2, . . . (each angle appearing three times).

Theorem 3.4. The entropy of K = conv(E) is bounded by

0< 1
s
≤ Ent K ≤ Ent K ≤ 2s−2

3s−4
< 1.
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Proof for lower bound. The unit sphere of radius r in the Hilbert geometry K is
tanh r K and consists of an infinite number of segments.

An easy geometric computation shows that the middle segment Si (r) corre-
sponding to α := αi has for each r ≥ 0 length bounded from below by

l(Si (r))≥ log
( 2 tanh r

1−tanh r
tan(α/2) sin(α)+ 1

)
.

Set i0(r) := b(2Cs)
1/ser/s

c. Then, for sufficiently large r ,

2 tanh r
1− tanh r

tan(αi/2) sin(αi )≤ 1 for all i ≥ i0(r).

By the concavity of the log-function, we have log(1+ x) ≥ x log 2 ≥ x/2 for
0≤ x ≤ 1. Therefore

l(S(r))≥
∞∑

i=i0

tanh r
1−tanh r

tan(αi/2) sin(αi ).

For sufficiently large r , the first factor is bounded from below by e2r/4, while the
second is bounded from below by α2

i . We thus get

l(S(r))≥ e2r

4

∞∑
i=i0

α2
i = C2

s
e2r

4

∞∑
i=i0

1
i2s ≥ C2

s
e2r

4

∫
∞

i0

1
x2s dx = C2

s
e2r

4(2s−1)i2s−1
0

.

Replacing our explicit value for i0 gives l(S(r))≥ Cer/s for sufficiently large r
and some constant C (again depending on s). Hence Ent K ≥ 1/s.

Proof for upper bound. For the upper bound in the statement, we apply our first
main theorem. For this, we have to find an upper bound on the Minkowski dimen-
sion of ex K = E .

Since the Minkowski dimension is invariant under bi-Lipschitz maps, we may
replace distances on the unit circle by angular distances.

E has two accumulation points ±x0. For ε > 0, let N (ε) be the number of
ε-balls needed to cover E . We take one such ball around ±x0 and one further ball
for each point in E not covered by these two balls.

The three points corresponding to the angle αi are certainly in the ε-neighbor-
hood of ±x0, provided that 3

∑
∞

j=i α j ≤ ε.
Now we compute

∞∑
j=i

α j = Cs

∞∑
j=i

1
j s ≤ Cs

∫
∞

i−1

1
x s dx =

Cs

s− 1
1

(i−1)s−1 .

It follows that all i satisfying i ≥ i0 := (3Cs/(s− 1))1/(s−1) ε1/(1−s)
+ 1 also

satisfy the inequality above, and hence N (ex K , ε)≤ 6i0+ 2≤ Cε−1/(s−1).
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It follows that the upper Minkowski dimension is not larger than 1/(s−1). The
upper bound of First main theorem gives

Ent K ≤ 2s−2
3s−4

. �

4. Centroprojective and centroaffine areas

In this section, we will take a closer look at the centroprojective area, which was
introduced (in a nonintrinsic way) in the definition on page 204.

4.1. Basic definitions and properties. Geometrically speaking, both centroaffine
and centroprojective areas are Riemannian volumes of the boundary ∂K .

We first give intrinsic definitions of the centroaffine metric and area. Let K be
a convex body with a distinguished interior point, which we may suppose to be
the origin o of V . The Minkowski functional of K is the unique positive function
F that is homogeneous of degree 1 and whose level set at height 1 is the bound-
ary ∂K . This function is convex and, according to Alexandroff’s theorem, has
almost everywhere a quadratic approximation.

Definition 4.1. Let v be a tangent vector to ∂K at a smooth point p. Then the
centroaffine seminorm of v is ‖v‖a :=

√
Hessp F(v, v).

The square of the centroaffine seminorm is a quadratic function on the tangent,
and hence we may define as usual a volume form, say ωa (which vanishes if ‖ · ‖a
is not definite).

Definition 4.2. The centroaffine area of K is Aa(K ) :=
∫
∂K |ωa|.

It easily follows from the definitions that the centroaffine area is indeed an affine
invariant of pointed convex bodies. Moreover, it is finite and vanishes on polytopes.
The next proposition relates our definitions with the classical ones; its proof is a
straightforward computation.

Proposition 4.3. If the space is equipped with a Euclidean inner product, then the
centroaffine area is given by

Aa(K )=
∫
∂K

√
k

〈n, p〉(n−1)/2 d A,

with k the Gaussian curvature of ∂K at p, where n is the unit vector normal to
Tp∂K , and where d A is the Euclidean area.

To introduce the centroprojective area, we will consider a compact convex subset
of the (real) n-dimensional projective space. Here the word “convex” means that
each intersection with a projective line is connected.
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The definitions of the centroprojective seminorm and area are merely the same
as the centroaffine ones, but one has to replace the Minkowski functional by a
projectively invariant function.

Definition 4.4. Let K ⊂Pn be a convex body and o ∈ int K . The projective gauge
function is

G K : P
n
\ {o} → R∪ {∞}, x 7→ 2[q1, o, x, q2],

where q1 and q2 are the two intersections of ∂K with the line going through o
and x .

Since the order of q1 and q2 is not fixed, this function is multivalued (in fact
double-valued). Identifying R∪ {∞} with P1, this function is continuous.

If p belongs to the boundary of K , then the two values of G K (p) are different,
one of them being 2, the other being ∞. Hence there is some neighborhood U
of p such that the restriction of G K to U is the union of two continuous (in fact
smooth) functions G+K and G−K on U , where G+K (p)= 2 and G−K (p)=∞.

Let v be a tangent vector to ∂K at a smooth point p. Since the restriction
of G+K to ∂K ∩U is constant, the derivative of G+K in the direction of v vanishes.
Therefore, the Hessian of the restriction of G+K to the tangent line is well defined.

Definition 4.5. The centroprojective seminorm of v is

‖v‖p :=
√

HesspG+K (v, v).

If we let ωp be the induced volume form on ∂K , the centroprojective area of K
is Ap(K ) :=

∫
∂K |ωp|.

Proposition 4.6. In a Euclidean space,

Ap(K )=
∫
∂K

√
k

〈n, p〉(n−1)/2

( 2a
1+a

)(n−1)/2
d A.

In particular, the intrinsic definition of Ap agrees with the definition given in the
introduction.

Proof. An easy computation shows that

[q1, o, x, q2] =
1+ a(q2)

F(x)+ a(q2)
F(x).

Then, if p is a smooth point of ∂K and v ∈ Tp∂K ,

HesspG K (v, v)=
2a(p)

1+ a(p)
Hessp F(v, v). �
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4.2. Properties of the centroprojective area. Both centroaffine and centroprojec-
tive areas vanish on polytopes, and hence they are not continuous with respect to
the Hausdorff topology on (pointed) bounded convex bodies. Nevertheless, the
centroaffine area is upper-semicontinuous [Lutwak 1996]. The same holds true for
the centroprojective area as shown in the next theorem.

Theorem 4.7. The centroprojective area is finite, invariant under projective trans-
formations, and upper-semicontinuous.

Proof. From the above intrinsic definition, it follows that Ap is invariant under
projective transformations. Also, since the function a on the boundary is bounded
and positive, and since the centroaffine area is finite, it follows from Proposition 4.6
that the centroprojective area is also finite. It remains to show that it is upper-
semicontinuous. Our proof is based on the fact that the centroaffine surface area
Aa is semicontinuous [Lutwak 1996].

Let K be a bounded convex body containing the origin in its interior, and let
(Ki ) be a sequence of convex bodies with the same properties converging to K .
Set

τ(p) :=
( 2a(p)

1+ a(p)

)(n−1)/2
for p ∈ ∂K ,

which is a continuous function on ∂K .
For each i , if ai is the function corresponding to Ki and pi is the radial projection

of p on ∂Ki , define τi ∈ C(∂K ) by

τi (p) :=
( 2ai (pi )

1+ ai (pi )

)(n−1)/2
.

Since Ki→ K , τi converges uniformly to τ . Therefore ‖τi−τ‖∞< ε for fixed
ε > 0 and all sufficiently large i .

Take a triangulation of the sphere and let ∂K =
⋃m

j=11 j be its radial projection.
Define ∂Ki =

⋃m
j=11i j similarly.

Choosing this triangulation sufficiently thin, there exist t1, . . . , tm ∈ R+ such
that |τ(p)− t j |< ε on 1 j . By the triangle inequality, |τi (p)− t j |< 2ε on 1i j .

We define

Ap(Ki ,1i j ) :=

∫
1i j

√
k(x)

〈n(x), x〉(n−1)/2 τi dHn−1(x).

Clearly, Ap(Ki ) =
∑m

j=1 Ap(Ki ,1i j ). We define Ap(K ,1 j ), Aa(Ki ,1i j ) and
Aa(K ,1 j ) similarly.

Fix p j in the interior of 1 j and consider the convex hulls 1̂i of 1 j ∪ {−p j }

and 1̂i j of 1i j ∪−p j . The boundary of 1̂i j is the union of 1i j and flat simplices;



222 GAUTIER BERCK, ANDREAS BERNIG AND CONSTANTIN VERNICOS

hence Aa(Ki ,1i j )=Aa(1̂i j ). By the semicontinuity of Aa , we obtain

lim sup
i→∞

Aa(Ki ,1i j )= lim sup
i→∞

Aa(1̂i j )≤Aa(1̂ j )=Aa(K ,1 j ).

It follows that

lim sup
i→∞

Ap(Ki )= lim sup
i→∞

m∑
j=1

Ap(Ki ,1i j )

≤ lim sup
i→∞

m∑
j=1

Aa(Ki ,1i j )(t j + 2ε)≤
m∑

j=1

Aa(K ,1 j )(t j + 2ε).

On the other hand,

Ap(K )=
m∑

j=1

Ap(K ,1 j )≥

m∑
j=1

Aa(K ,1 j )(t j − ε),

from which we deduce that lim supi→∞Ap(Ki )≤Ap(K )+ 3εAa(K ). �

The centroaffine surface area has the following important properties:

• Aa is a valuation on the space of compact convex subsets of V containing o
in the interior. This means that whenever K , L , K ∪ L are such bodies, then

Aa(K ∪ L)=Aa(K )+Aa(L)−Aa(K ∩ L).

• Aa is upper semicontinuous with respect to the Hausdorff topology.

• Aa is invariant under GL(V ).

A recent theorem by M. Ludwig and M. Reitzner [2007] states that the vector
space of functionals with these three properties is generated by the constant valu-
ation and Aa . The centroprojective surface area satisfies the last two conditions,
but is not a valuation.
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