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We prove that Hilbert geometries on uniformly convex Euclidean domains
with C2-boundaries are roughly isometric to the real hyperbolic spaces of
corresponding dimension.

1. Introduction

Hilbert geometries generalize the Klein model of the real hyperbolic space from
ellipsoids in En , the n-dimensional Euclidean space, to arbitrary bounded convex
subsets of En . Karlsson and Noskov [2002] provide necessary conditions as well
as sufficient conditions on the boundary of such a convex subset in order for its
associated Hilbert geometry to be Gromov hyperbolic. Benoist [2003] even pre-
cisely determined such convex subsets, the associated Hilbert geometries of which
are Gromov hyperbolic. Namely, such a bounded convex subset yields a Gromov
hyperbolic Hilbert geometry if and only if its Euclidean boundary is locally the
graph of a “quasisymmetrically convex” function.

Benoist [2006] proved that every two-dimensional Gromov hyperbolic Hilbert
geometry is quasi-isometric to the real hyperbolic space of corresponding dimen-
sion. Here he also provides examples of Hilbert geometries in dimension≥3 which
are not quasi-isometric to real hyperbolic spaces.

For related discussions of non-Gromov hyperbolic Hilbert geometries, see also
[Bernig 2009; Bletz-Siebert and Foertsch 2007; Colbois and Verovic 2008; Colbois
et al. 2008].

Restricting their attention to so-called strictly (or, as one might prefer, uni-
formly) convex domains, Colbois and Verovic [2004] proved that the Hilbert ge-
ometries of such domains are bi-Lipschitz equivalent to the real hyperbolic space
of corresponding dimension.

The purpose of this paper is to prove that such Hilbert geometries are even
rough-isometric to the real hyperbolic spaces of corresponding dimension.
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Recall that a map f : X −→Y between metric spaces is called a rough-isometric
embedding if there exists some k ≥ 0 such that

|xx ′| − k ≤ | f (x) f (x ′)| ≤ |xx ′| + k for all x, x ′ ∈ X.

If, moreover, for all y ∈ Y there exists an x ∈ X such that |y f (x)| ≤ k, then f is
called a rough isometry.

Recall further that Gromov hyperbolicity is a rough-isometry invariant, and in
the course setting of Gromov hyperbolic spaces, what one is generally interested
in are the corresponding rough-isometry classes.

Theorem 1.1. Let D be an open, bounded convex domain in En . Suppose further
that the boundary ∂D is of class C2 and the curvature of ∂D is nonzero everywhere.
Then the Hilbert geometry (D, hD

κ ) associated with D is rough-isometric to Hn
κ .

The proof relies on the equivalence of rough-isometry classes of visual, Gromov
hyperbolic spaces and bi-Lipschitz classes of their boundaries at infinity. We recall
in Section 2 the precise definition of Hilbert geometries and summarize such facts
on Gromov hyperbolic spaces as will be needed in the proof of Theorem 1.1. In
Section 3 we give proofs of some elementary geometric lemmata, which will also
be quoted in the proof of Theorem 1.1 in Section 4.

2. Preliminaries

2.1. Hilbert geometries on uniformly convex domains with C2-boundary. Let
En = (Rn, de) = (Rn, | · |) denote the n-dimensional Euclidean space. For the
Euclidean distance of x, y ∈ En we write |xy|, and for the line segment between x
and y we write [x, y], while L(x, y) denotes the whole straight line in En through
x and y.

Given an open bounded convex domain D ⊂ En with boundary ∂D ⊂ En and
some κ < 0 the Hilbert metric hD

κ : D × D −→ R+0 is defined as follows. For
x, y ∈ D one defines

hκ(x, y) := hD
κ (x, y) :=

{ 1√−κ log
|yξx,y| |xξy,x |
|xξx,y| |yξy,x | if x 6= y,

0 if x = y,

where ξx,y ∈ L(x, y)∩ ∂D is uniquely determined by the condition |ξx,y x |< |ξx,y y|
(ξy,x ∈ L(x, y)∩ ∂D by |ξy,x x |> |ξy,x y|, respectively). The expression

|yξx,y| |xξy,x |
|xξx,y| |yξy,x |

is called the cross ratio of the four collinear ordered points ξx,y, x, y, ξy,x and is
invariant under projective transformations. For the basic properties of the distance
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hκ see [Busemann 1955; de la Harpe 1993]; for example, the topology induced by
hκ on D coincides with the subspace topology inherited from En . We shall refer
to the metric space (D, hκ) as a Hilbert geometry.

Note that if D is a ball or an ellipsoid, the associated Hilbert metric space
(D, hκ) is isometric to the real hyperbolic space of constant sectional curvature
κ of corresponding dimension.

Now let D ⊂ Rn be an open bounded convex domain with boundary of class
C2. Let further ρ : Rn −→ R be a C2-function satisfying ρ|D > 0, ρ|∂D = 0,
and ρ|Rn\D < 0 such that its gradient ∇ρ is a unit vector field normal to ∂D and
directed inside D. By Wx : Tx∂D −→ Tx∂D we denote the curvature (or Wein-
garten) operator which assigns to each v ∈ Tx∂D the directional derivative of ∇ρ
in direction v. From this curvature operator one obtains the second fundamental
form I Ix as the following bilinear form on Tx∂D:

I Ix(v,w) = 〈w,Wx(v)〉 =
n∑

i, j=1

∂2ρ

∂x i∂x j viw j for v,w ∈ Tx∂D.

We call kx(u) := I Ix(u, u) the normal curvature of ∂D at x in the direction of the
unit tangent vector u.

In the case where the curvature of ∂D is nonzero everywhere, that is, where I I
is positive definite everywhere, there exists some constant kD > 0 such that

(1) k−1
D ≤ kx

( u
‖u‖

)
≤ kD for x ∈ ∂D, u ∈ Tx∂D.

2.2. Gromov hyperbolic spaces and their boundaries at infinity. For X a metric
space, the Gromov product of two points of X with respect to a third is defined by

(x · y)o := 1
2(|xo| + |yo| − |xy|) for o, x, y ∈ X.

The space X is called Gromov hyperbolic if there exists δ ≥ 0 such that

(2) (x · y)o ≥ min{(x · z)o, (z · y)o} − δ for o, x, y, z ∈ X.

This notion of Gromov hyperbolicity is a rough-isometry invariant, and the objects
of interest in this asymptotic theory are the corresponding rough-isometry classes
rather than the spaces themselves.

To a Gromov hyperbolic metric space one associates a boundary at infinity,
endowed with a certain quasimetric. For a broad class of Gromov hyperbolic spaces
(those satisfying the visuality assumption — see below), the bi-Lipschitz class of
this quasimetric canonically corresponds to the rough isometry class of the space.

Now let X be a Gromov hyperbolic metric space. A sequence {xi } of points
xi ∈ X converges to infinity if limi, j→∞(xi · x j )o =∞. Two sequences {xi }, {x ′i }
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that converge to infinity are considered equivalent if limi (xi ·x ′i )o=∞. Using the δ-
inequality (2), one easily sees that this defines an equivalence relation for sequences
in X converging to infinity. The boundary at infinity ∂∞X of X is defined as the
set of equivalence classes of sequences converging to infinity.

For points ξ, ξ ′ ∈ ∂∞X one defines their Gromov product with respect to the
basepoint o ∈ X by

(ξ · ξ ′)o := inf lim inf
i−→∞

(xi · x ′i )o,
where the infimum is taken over all sequences {xi } ∈ ξ and {x ′i } ∈ ξ ′.

It is a well-known fact (see for instance the remark following [Bridson and
Haefliger 1999, Definition 1.19]) that in the geodesic setting the Gromov product
(ξ · ξ ′)o roughly measures the distance of o to the geodesic connecting ξ to ξ ′. As
we are going to use this fact later on, we formulate it as follows:

Lemma 2.1. Fix δ > 0. Then there exists a constant K such that if (X, d) is
a proper geodesic Gromov hyperbolic space satisfying the δ-inequality (2), then
|d(x, im{γ }− (ξ · ξ ′)x)|< k for all x ∈ X, ξ, ξ ′ ∈ ∂∞X and every geodesic line γ
in (X, d) with c(−∞)= ξ and c(∞)= ξ ′.

From the inequality (2) it immediately follows that ρo : ∂∞X × ∂∞X −→ R+0 ,
given by ρo(ξ, ξ

′) := e−(ξ ·ξ ′)o , is a eδ-quasimetric, that is,

ρo(ξ, ξ
′) ≤ eδ max{ρo(ξ

′, ξ ′′), ρo(ξ
′′, ξ ′)} for ξ, ξ ′, ξ ′′ ∈ ∂∞X.

It is directly clear from the definition of the boundary quasimetrics that Gromov
hyperbolic spaces X and X ′ which are rough-isometric to each other,

X
rough∼= X ′,

give rise to boundary quasimetric spaces (∂∞X, ρo) and (∂∞X ′, ρo′) which are
bi-Lipschitz equivalent,

(∂∞X, ρo)
bi-Lip∼= (∂∞X ′, ρo′).

For the converse statement to be true, it is clear that one has to ask the boundary
somehow to represent the entire space. More precisely, recall that a metric space is
called roughly geodesic if there exists some k ≥ 0 such that any two points in the
space can be joined by a k-rough geodesic, that is, a k-rough isometric embedding
of a closed interval. A Gromov hyperbolic space X is called visual if for some
o ∈ X and some k ≥ 0 every point x ∈ X lies on a k-rough geodesic ray initiating
in o. In particular, a visual Gromov hyperbolic space is roughly geodesic.

Bonk and Schramm [2000] described the morphism classes of the spaces on the
one hand, and those of their boundaries, on the other hand, which correspond to
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each other under the assumption of visuality. The statement we will refer to can
also be deduced as a corollary of [Buyalo and Schroeder 2007, Theorem 7.1.2].

Theorem 2.2 [Bonk and Schramm 2000; Buyalo and Schroeder 2007, Theorem
7.1.2]. Let X and X ′ be visual Gromov hyperbolic spaces, and let o ∈ X as well as
o′ ∈ X ′. Then

X
rough∼= X ′ ⇐⇒ (∂∞X, ρo)

bi-Lip∼= (∂∞X ′, ρo′).

Note that in the case where the Gromov hyperbolic metric space is a CAT(−1)-
space, the quasimetric ρo indeed satisfies the triangle inequality and hence is a
metric. This was shown by Bourdon [1995]. In particular, consider the real hy-
perbolic space Hn in the Poincaré ball model. Then the Bourdon metric ρo with
respect to the center of the ball o is precisely given by half the Euclidean metric
on ∂∞Hn = Sn−1 ⊂ En [Buyalo and Schroeder 2007, p. 21].

Finally note that for a Gromov hyperbolic Hilbert geometry (D, hD), the Gro-
mov boundary can naturally be identified with ∂D, which follows from [Karlsson
and Noskov 2002, Theorem 5.2] and [Foertsch and Karlsson 2005, Proposition 2].

Moreover, Hilbert geometries are visual. In fact, for any basepoint o ∈ D, every
x ∈ D lies on a geodesic ray initiating in o.

3. Four elementary geometric lemmata

This section contains the proofs of four elementary geometric lemmata, which will
be referred to in the proof of Theorem 1.1 in Section 4. The complete section may
be skipped at a first reading. The statements are not surprising, but we provide the
proofs for the convenience of the reader.

Lemma 3.1. Let γ : [0, a] −→ E2 be an arc-length parameterized straight line
segment of length 0 < a ≤ 2ρ in a ball B(r, ρ) around the origin o ∈ E2 with
γ (0), γ (a) ∈ ∂B(o, ρ), and denote by l = l(ρ, a) > 0 the distance of γ (a/2) to the
two-point set L(o, γ (a/2))∩ ∂B(o, ρ), for a < 2ρ, and l = ρ otherwise. Then

1
3(ρ)

√
l(ρ, a) ≤ a ≤ 3(ρ)

√
l(ρ, a) for a ∈ [0, 2ρ],

with 3(ρ) :=max{2√2ρ, 1/(2
√
ρ)}.

Proof. This immediately follows from a = 2
√

2ρ− l(ρ, a)
√

l(ρ, a) and 0 ≤
l(ρ, a)≤ ρ. �

Now let R > r > 0 and let S be a straight line segment in E2 of length x , the
endpoints of which lie on ∂B(o, R). B(o, R) \ S consists of two connected com-
ponents B̃ and B̂. For x < r , let B̃(S) be the component disjoint from B(o, R−r).
Given p ∈ B(o, R− r) and q ∈ S, define

w = w(p, q) := L(p, q) ∩ B̃(S) ∩ ∂B(o, R)
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t=0
t=ρ2−

t=ρ2

p

q

q

q ′

q ′

α(p,q)

w(pq)

T

R R−r

u=R−
√

R2−(x/2)2

Figure 1. Notation in Lemma 3.2.

and set
m = m(x, R, r) := max

p∈B(o,R−r)
q∈S

|qw(p, q)|.

Lemma 3.2. Fix R > r > 0. Then

m(x, R, r) ≤ 3̃
(

R−
√

R2− (x/2)2
)

for 3̃= 3̃(r, R) := sin−1(arctan r/(4R)).

Proof. For p ∈ B(o, R−r) and q ∈ S, let α= α(p, q) denote the angle α(p, q) :=
6 q(L(p, q), S) ∈ (0, π/2]. Further, let T denote the tangential line to ∂ B̃(S) \ S
parallel to S, and set q ′ := T ∩ L(p, q) and v := |qq ′|. Then

|qw(p, q)| < v = u
sinα(p, q)

with u := R−
√

R2− (x/2)2.

Therefore it remains to prove that there exists α0 > 0 such that α(p, q) ≥ α0 for
all p ∈ B(o, R− r) and q ∈ S.

Since x < r , we deduce u < r/2 and therefore dist(S, ∂B(o, R − r)) > r/2. It
follows that we can choose

α0 := arctan
r/2
2R
= arctan

r
4R
. �

Let ρ2 > ρ1 > 0 be fixed and Cρ2,Cρ1 be circles in E2 of radius ρ2 and ρ1,
respectively, such that #(Cρ1 ∩Cρ2)= 1 with the center oρ1 of Cρ1 in the bounded
component of R2 \C2. Let q := Cρ1 ∩Cρ2 , and denote by oρ2 the center of Cρ2 .
Further, let L0 be the straight line through oρ2 orthogonal to L(q, oρ2). By H we
denote the half-space in E2 defined by L0 such that H contains the center oρ1 of
Cρ1 . Now let L t ⊂ H be the parallel to L0 in distance t of oρ2 for all t ∈ [0, ρ2)
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oρ1
oρ2

ηη′ χχ ′
L t

t=0
t=ρ2−ρ1

t=ρ2

Cρ1

Cρ2

Figure 2. Illustration of the situation considered in Lemma 3.3.

and define χt , χ
′
t , ηt , η

′
t ∈ E2 via {χt , χ

′
t } = L t ∩Cρ2 and {ηt , η

′
t } = L t ∩Cρ1 for all

t ∈ [ρ2− ρ1, ρ2).

Lemma 3.3. Let ρ2 >ρ1 > 0. Then |χtχ
′
t | ≤ 3̂ |ηtη

′
t | for all t ∈ [ρ2−ρ1, ρ2), with

3̂= 3̂(ρ1, ρ2) := √(2ρ2−ρ1)/ρ1.

Proof. Consider the function f : [ρ2−ρ1, ρ2)−→ R+ given by

f (t) := |χt χ̄t |2
|ηt η̄t |2 =

ρ2
2− t2

ρ12− (t − (ρ2− ρ1))2
for all t ∈ [ρ2− ρ1, ρ2).

With f ′(t) 6= 0 for all t ∈ (ρ2− ρ1, ρ2), as well as

lim
t→ρ2

f (t)= ρ2/ρ1 ≤ (2ρ2− ρ1)/ρ1 = f (ρ2− ρ1),

the claim follows. �

Lemma 3.4. Let D be a bounded, convex domain in En+1 with C1-boundary ∂D.
Then (∂D, de|∂D×∂D) is bi-Lipschitz equivalent to (Sn, de|Sn).

Proof. Let x ∈ D and let r > 0 be such that Br (x) ⊂ D. Consider the map
ϕ : (∂D, de|∂D×∂D)−→ (∂Br (x), de|∂Br (x)×∂Br (x)), given by

ξ 7→ η ∈ L(x, ξ)∩ ∂Br (x) with |ηξ | = dist(ξ, L(x, ξ)∩ ∂Br (x)).

Obviously, |ξξ ′| ≤ |ϕ(ξ)ϕ(ξ ′)| for all ξ, ξ ′ ∈ ∂D. Moreover, for all α > 0 there
exists µ(α) such that

|ξξ ′| ≥ µ(α) |ϕ(ξ)ϕ(ξ ′)| for ξ, ξ ′ ∈ ∂D, with 6 x(ξ, ξ
′)≥ α.

Therefore we only have to consider angles approaching zero.
Let Rξ,x := |ξ x | and let Rx := {max Rξ x | ξ ∈ ∂D}. Let further Tξ denote the

tangent to ∂D at ξ ∈ ∂D and set γxξ := 6 ξ (Tξ , L(x, ξ)) ∈ (0, π2 ). Then, since D is
C1 and convex and ∂D is compact, there exists γ0 > 0 such that

inf{γxξ | ξ ∈ ∂D} = min{γxξ | ξ ∈ ∂D} ≥ γ0.
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Figure 3. Notation used in the proof of Lemma 3.4.

Now consider ξ, ξ ′ ∈ ∂D with 6 x(ξ, ξ
′) = α. Let Cx,ξ,ξ ′(Rξ,x) be the circle in

span{x, ξ, ξ ′} of radius Rξ,x and center x , and let ξ ′′ := L(x, ξ ′) ∩ Cx,ξ,ξ ′(Rξ,x)
with

∣∣|ξ ′′x | − |ξ ′x |∣∣= |ξ ′ξ ′′|. Since 6 ξ (x, ξ ′′)= 1
2(π −α)= 6 ξ ′′(x, ξ), we find

Lξα
sin 1

2(π −α)
= lξα

sin γ̃α
,

where Lξα := |ξ ′ξ |, lξα := |ξ ′′ξ | and γ̃α := 6 ξ ′(ξ ′′, ξ).
Now, since sin γ̃α → sin γx,ξ ≥ sin γ0 as α→ 0, it follows that for all ξ ∈ ∂D

there exists α0(ξ) such that

Lξα ≤
sin 1

2(π −α)
sin 1

2γ0
lξα

for all α ≤ α0(ξ). Thus, since ∂D is compact, there also exist α0 > 0 as well as
µ > 0 such that Lξα ≤ µlξα for all α < α0, from which the claim follows. �

4. Proof of Theorem 1.1

We prove that (D, h−1)
rough∼= Hn

−1. The rest of the claim follows as usual by merely
rescaling the metric.

From [Karlsson and Noskov 2002, Theorem 5.2] and [Foertsch and Karlsson
2005, Proposition 2] it follows that the Gromov boundary at infinity of (D, h−1)

can naturally be identified with ∂D ⊂Dn . The main goal of this proof is to verify
that for x ∈ D the visual quasimetric ρx on ∂D is bi-Lipschitz equivalent to the
restriction of the Euclidean metric de = | · | to ∂D.

Let kD be as in (1) and set ρ1 :=
√

k−1
D and ρ2 :=

√
kD . Fix x ∈ D and let

Rx > rx > 0 be such that B(x, rx)⊂ D ⊂ B(x, Rx). We want to show that
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ρx

bi-Lip∼= de|∂D =: | · | |∂D.

(i) In the first step we establish that

there exists λ > 0 such that e−(ξ ·ξ
′)x ≥ 1

λ
|ξξ ′|, for all ξ, ξ ′ ∈ ∂D.

Let therefore ξ, ξ ′ ∈ ∂D and y ∈ [ξ, ξ ′] satisfying d(x, y) = dist(x, [ξ, ξ ′]). Note
that for x ∈ [ξ, ξ ′]we have e−(ξ ·ξ ′)x = 1 and e−(ξ ·ξ ′)x ≥ 1

λ |ξξ ′| holds for λ≥ diam D.
Therefore we can assume in the following without loss of generality that x /∈[ξ, ξ ′].

Now let y′ ∈ [ξ, ξ ′] ∩ D be arbitrary and A, B ∈ L(x, y′) ∩ ∂D be defined
via |Ax | < |Ay| and |By| < |Bx |. Then, due to Lemma 2.1 and the inequalities
rx ≤|x A|, |y′A|, |x B|≤2Rx , we deduce the existence of λ̃1, λ̃2>0 only depending
on (D, h−1), rx and Rx such that

e−(ξ ·ξ)x ≥ 1

λ̃1
e−h1(x,y) ≥ 1

λ̃1
e−h1(x,y′) = 1

λ̃1

√
|x A| |y′B|
|x B| |y′A| ≥

1

λ̃2

√|y′B|.
Thus it remains to show that there exists λ̃3 > 0 only depending on (D, h−1), rx

and Rx such that for all ξ, ξ ′ ∈ ∂D there exists y′ as above satisfying

(3)
√|y′B| ≥ 1

λ̃3
|ξξ ′|.

To prove this, consider the two-dimensional plane 6 spanned by x, ξ, ξ ′. The
set (6 ∩ D) \ [ξ, ξ ′] consists of two connected components. Denote by 6̃ the
connected component of this set not containing x . Since ∂D is C2, there exists
B ∈ ∂6̃ \ [ξ, ξ ′] ⊂ ∂D such that the tangent T (B) of ∂6̃ at B is parallel to [ξ, ξ ′].

Let T (B)⊥ ⊂ 6 denote the straight line through B orthogonal to T (B). Let
further Cρ2 be the circle of radius ρ2 in 6 through B, tangent to T (B), which

A

B
xr

ξ

ξ ′

Cρ2

η

η′

L(ξ,ξ ′)

y ′
ỹ

D ∩ 6

T (B)

Figure 4. Situation in step (i) of the proof.
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lies on the same side of T (B) in 6 as D does. Now set y′ := [x, B] ∩ [ξ, ξ ′],
ỹ := T (B)⊥ ∩ [ξ, ξ ′] as well as η, η′ ∈ L(ξ, ξ ′) ∩Cρ2 such that |ηξ | < |ηξ ′| and
|η′ξ ′|< |η′ξ |.

Now we consider two cases:

• If dist([ξ, ξ ′], T (B)) ≥ ρ2, then (3) holds trivially for |y′B| as above once
λ3 ≥ diam(D)/

√
ρ2.

• If dist([ξ, ξ ′], T (B)) < ρ2 we find with Lemma 3.1:

|ξξ ′| ≤ |ηη′| ≤ 3(ρ2)
√

l(ρ2, |ηη′|) = 3(ρ2)
√
|ỹ B| ≤ 3(ρ2)

√|y′B|.
(ii) In the second step we establish that

there exists λ > 0 such that e−(ξ ·ξ
′)x ≤ λ|ξξ ′|, for all ξ, ξ ′ ∈ ∂D.

To do this, we choose x to be particularly nice: Let E ∈ ∂D, take the ball Bρ1 of
radius ρ1 tangent to the tangent hyperplane H(E) of ∂D at E such that Bρ1

◦ ⊂ D,
and let x be the center of Bρ1 . With x defined like this we have |xξ | ≥ ρ1 for all
ξ ∈ ∂D.

Now, for ξ, ξ ′ ∈ ∂D, ξ 6= ξ ′, arbitrarily choose y as above and let x̄ = ξx,y, ȳ =
ξy,x ∈ ∂D be as in the definition of the Hilbert distance between x and y. Once
again we can assume without loss of generality that x /∈ [ξ, ξ ′]. Due to Lemma
2.1 and rx ≤ |x x̄ |, |yx̄ |, |x ȳ| ≤ 2Rx we deduce the existence of λ̃4, λ̃5 > 0 only
depending on (D, h−1), rx and Rx such that

e−(ξ ·ξ
′)x ≤ λ̃4e−h1(x,y) = λ̃4

√
|x x̄ | · |y ȳ|
|x ȳ| · |yx̄ | ≤ λ̃5

√|y ȳ|.

B

ξ

ξ ′

L(ξ,ξ ′) T (B)

Bξ
ρ2

Bξ ′
ρ2

Bρ1 (x)

Ŵ1

Ŵ2

Figure 5. Notation in the proof of step (ii), with i0 = 1.
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Thus it remains to show that there exists λ̃6 > 0 only depending on (D, h1), rx and
Rx such that for all ξ, ξ ′ ∈ ∂D, the inequality

√|y ȳ| ≤ λ̃6|ξξ ′| holds.
Since |y ȳ| ≤ diam(D), it suffices to restrict our attention to those ξ, ξ ′ ∈ ∂D

satisfying |ξξ ′|< 1/n for arbitrary but fixed n ∈ N. We choose n as follows.
Let ξ, ξ ′ ∈ ∂D and 6 := span{x, ξ, ξ ′} as above. Let further Bξρ2 and Bξ

′
ρ2 denote

the balls of radius ρ2 through ξ and ξ ′ in 6 tangential to the tangents of ∂D ∩6
in ξ and ξ ′, respectively, such that D ⊂ Bξρ2 ∩ Bξρ2 =: σ .

Then ∂σ \{ξ, ξ ′} consists of two arcs γ1 and γ2 of length l(γ1) and l(γ2), respec-
tively. Since ρ1 and ρ2 are fixed, it is immediate that there exists an n0= n0(ρ1, ρ2)

such that from |ξξ ′|< 1
n0

, it follows that min{l(γ1), l(γ2)}<ρ1. Let us now assume
without loss of generality (see above) that |ξξ ′|< 1

n0
.

We take i0 ∈ {1, 2} such that l(γi0) = min{l(γ1), l(γ2)} < ρ1 and denote the
connected components of σ \ {ξ, ξ ′} by 01 and 02 such that ∂0i = [ξ, ξ ′] ∪ γi ,
i = 1, 2.

Since for each point z ∈ 0i0 we have dist{z, ∂D} < ρ1, we deduce x /∈ 0i0 and
thus ȳ∈0i0 for ȳ= ξy,x , as in the definition of the Hilbert distance between x and y.

Now let B ∈0i0 and T (B) be as in (i), and denote by Bρ1 and Bρ2 the balls in 6
of radii ρ1 and ρ2 through B, tangent to T (B), which lie on the same side of T (B)
in 6 as D does. We denote the center of Bρ1 by oρ1 and write Tρ1 for the straight
line through oρ1 parallel to T (B). Further, let S be the strip bounded by T (B) and
Tρ1 . Since B ∈0i0 and thus |ξ B|, |ξ ′B|<ρ1, it follows that ξ, ξ ′ ∈ (S∩ Bρ2)\ B◦ρ1

.
Thus we are exactly in the situation to apply Lemmata 3.1, 3.2 and 3.3. Let

therefore y′ := T (B)⊥ ∩ [ξ, ξ ′]. Then we get√|y ȳ| ≤3̃(ρ1, ρ2) ·
√|y′B| (by Lemma 3.2)

≤3̃(ρ1, ρ2) ·3(ρ2) · |χχ ′| (by Lemma 3.1)

≤3̃(ρ1, ρ2) ·3(ρ2) · 3̂(ρ1, ρ2) · |ηη′| (by Lemma 3.3)

≤3̃(ρ1, ρ2) ·3(ρ2) · 3̂(ρ1, ρ2) · |ξξ ′| =: λ̃6 · |ξξ ′|,
where {χ, χ ′} := L(ξ, ξ ′) ∩ Cρ2 and {η, η′} := L(ξ, ξ ′) ∩ Cρ1 and Cρi := ∂Bρi ,
i = 1, 2. Thus, applying Lemma 3.4, we have indeed established that the visual
metric ρx on the boundary at infinity of (D, h−1) is bi-Lipschitz equivalent to the
angular boundary metric on ∂Hn

−1. The claim therefore follows from Theorem 2.2
together with the obvious fact that (D, h−1) is visual. �
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