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We discuss some analytic properties of Dirichlet series

Y(s)=
∞∑

n=1

d(n)1(n)n−s for Re s > 5
4 ,

where d(n) is the divisor function and 1(x) is the error term in the Dirichlet
divisor problem. In particular, we study an analytic continuation and an
order of Y(s). As applications, we study an analytic continuation and orders
of several kinds of Dirichlet series related to 1(x).

1. Introduction and statement of results

Let d(n) be the divisor function, and let 1(x) be the error term in the Dirichlet
divisor problem, defined by

(1-1) 1(x)=
∑
n≤x

d(n)− x(log x + 2γ − 1),

where γ is the Euler constant. A long history of research on1(x) has not settled the
famous conjecture that 1(x)= O(x1/4+ε), where ε is an arbitrarily small positive
number. An efficient way to investigate 1(x) is to consider the Dirichlet series
whose coefficients involve 1(x) or the related integrals.

In [Furuya et al. 2010], we considered properties of the Dirichlet series D j (s)
defined by

D j (s)=
∞∑

n=1

1(n) j

ns ,

for j = 1 and 2. It is easily seen that these functions are absolutely convergent for
σ > 5/4 for j = 1 and σ > 3/2 for j = 2. Here, and in what follows, we denote the
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complex number s as s = σ + i t with real numbers σ and t . We have established
the analytic continuation and the locations of poles of these functions:

Theorem [Furuya et al. 2010, Theorems 1 and 2]. The function D1(s) can be
continued to the whole complex plane as a meromorphic function. This function
has a double pole at s = 1 and a simple pole at s = −2n with a nonnegative
integer n. In particular, the Laurent expansion of D1(s) at s = 1 is given by

D1(s)=
1

2(s− 1)2
+
γ + 1

4

s− 1
+ O(1).

The function D2(s) can be continued to the region Re s > 2/3 as a meromorphic
function. This function has a simple pole at s = 3/2 and a triple pole at s = 1.

One of the results in [Furuya et al. 2010] is the relationship between the Dirichlet
series D2(s) and Lau and Tsang’s conjecture [1995, Formula 1.3],∫ x

1
1(u)2du = c1x3/2

−
1

4π2 x log2 x + c2x log x + O(x),(1-2)

where c1 and c2 are certain constants. In particular, it was suggested that the second
and third terms on the right side of (1-2) come from the residues of D2(s) at s = 1
[Furuya et al. 2010, Section 5].

In this paper, we first consider the Dirichlet series Y (s) defined by

Y (s)=
∞∑

n=1

d(n)1(n)
ns ,

which can be regarded as a modification of D1(s) and D2(s). We can easily see
that the function Y (s) is absolutely convergent in σ >5/4, similarly to D1(s), since
d(n)= O(nε) for an arbitrarily small positive number ε and∑

n≤x

|1(n)| = O(x5/4).

As for the other analytic properties of Y (s), we obtain this:

Theorem 1. The Dirichlet series Y (s) can be continued analytically to the region
Re s >−1/3 as a meromorphic function. In the region Re s ≥ 1/2, it has a simple
pole at s = 1/2 with

Res
s=1/2

Y (s)= 1
16π2

∞∑
n=1

d(n)2

n3/2 ,

and it also has a pole of fourth order at s = 1, whose Laurent expansion at s = 1
is given by

Y (s)= 3
π2(s−1)4

+
12(π2γ − 3ζ ′(2))

π4(s− 1)3
+

a−2

(s− 1)2
+

a−1

s− 1
+ · · · ,
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with some constants a j , where ζ(s) denotes the Riemann zeta function. In the
region −1/3< Re s < 1/2, the function Y (s) has poles at s = ρ/2 if ρ satisfies the
conditions ζ(ρ)= 0 and ζ(ρ/2) 6= 0.∗

We shall give the proof of this theorem in two ways; see Sections 3 and 7.
As the first application of Theorem 1, we shall study the Dirichlet series related

to the coefficient of 1̃(n) defined by

1̃(x)=
∑
n≤x

′

d(n)− x(log x + 2γ − 1)− 1
4 ,

where
∑
′

n≤x indicates that the last term is to be halved if x is an integer. Commonly
this definition is used as the error term instead of (1-1). Many properties of 1(x)
also hold in the case 1̃(x); for example, these functions have same upper and lower
bounds as x→∞. For the mean value theorem, we can see that∫ x

1
1(u) du = 1

4 x + O(x3/4) and
∫ x

1
1̃(u) du = O(x3/4)

for x ≥ 1, though the asymptotic behaviors, in particular the main terms of the
higher power cases from 2 to 9, are the same. However, the difference between
1(n) and 1̃(n) for natural numbers n is essential in the study of the “discrete”
mean values. Actually, these functions are connected by the relation

(1-3) 1̃(n)=1(n)− 1
2 d(n)− 1

4 ,

for a natural number n; hence we have

∑
n≤x

1̃(n)k =
∑
n≤x

1(n)k +
k−1∑
b=0

k−b∑
a=0

k!(−1)b−k2a+2b−2k

a!b!(k− a− b)!

∑
n≤x

d(n)a1(n)b,

with a fixed natural number k [Furuya 2007, Formula 5.1]. In view of this formula,
studying the discrete mean values of 1̃(n) will require that we understand the
function

∑
n≤x d(n)a1(n)b. As noted in [Furuya 2007], it is very difficult to study

this kind of sum in the case a ≥ 2.
Now we consider the Dirichlet series

D̃ j (s)=
∞∑

n=1

1̃(n) j

ns for j = 1 and 2.

It is easily seen that these functions are absolutely convergent for σ > 5/4 for j = 1
and σ > 3/2 for j = 2, similarly to the cases of D j (s). For the other properties,
we have the following corollary.

∗Needless to say, the last condition ζ(ρ/2) 6= 0 holds if the Riemann Hypothesis is true.
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Corollary 1. (1) The function D̃1(s) can be continued to the whole complex plane
as a meromorphic function with a simple pole at s = −2n for a nonnegative
integer n; in particular, this function is holomorphic at s = 1. The residue of
D̃1(s) at s =−2n is the same as that of D1(s) and is given by

Res
s=−2n

D̃1(s)=−
ζ(−2n− 1)

2n+ 1
.

(2) The function D̃2(s) can be continued analytically as a meromorphic function
to the region Re s > 2/3, where it has a simple pole at s = 3/2 and a pole of
fourth order at s = 1. The residue of D̃2(s) at s = 3/2 is given by

Res
s=3/2

D̃2(s)=
1

4π2

∞∑
n=1

d(n)2

n3/2 .

The proof of this corollary is based on the relation (1-3), Theorem 1, and the
known results concerning D j (s) and ζ(s). Actually, we have by (1-3) that

D̃1(s)= D1(s)− 1
2ζ

2(s)− 1
4ζ(s),

D̃2(s)= D2(s)− 1
2 D1(s)+ 1

4ζ
2(s)+ 1

16ζ(s)+
ζ 4(s)

4ζ(2s)
− Y (s).

The corollary follows immediately from these. (In fact, we need not use Theorem 1
to prove (1); we need only apply [Furuya et al. 2010, Theorem 1].)

Comparing this corollary with [Furuya et al. 2010, Theorems 1 and 2], we can
see that the behaviors of D̃ j (s) and D j (s) are different. We also note that the
residue of D̃2(s) at s = 3/2 is the same as that of I2(s), which is defined in the
beginning of Section 2; see also Lemma 2 below.

We further study the properties of Dirichlet series related to 1(x), especially
the orders of D2(s) and Y (s), whose analytic properties are poorly understood.
Namely, their functional equations, approximate functional equations, and mean
values are not known. It seems difficult to study the orders of these Dirichlet series
in a satisfactory way. However:

Theorem 2. Let s = σ + i t be a complex variable. For |t | ≥ 2, we have

Y (s)�
{

1 for σ > 5/4,
|t |(5−4σ)/3 log5/2

|t | for 1/2≤ σ ≤ 5/4.

Theorem 3. Let s = σ + i t be a complex variable. For |t | ≥ 2, we have

D2(s)�


1 for σ > 3/2,
log|t | for σ = 3/2,
|t |3−2σ log4

|t | for 1< σ < 3/2.
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These are obtained by using mean value theorems of 1(x) and the Phragmén–
Lindelöf convexity theorem. The factor log4

|t | in Theorem 3 corresponds to the
error estimate of the mean square of 1(x) [Preissmann 1988]. We can improve
it slightly by using the recent result of Lau and Tsang [2009, Theorem 2], but for
simplicity we use the result of Preissmann here.

Finally, as an application of Theorem 1, we will study an analytic continuation
of a certain kind of multiple zeta function. Such functions are of current interest,
especially those of the Euler–Zagier type∑

n1<n2<···<nk

1
ns1

1 ns2
2 . . . n

sk
k
.

As a generalization, one can consider two types of multiple series,

(1-4)
∑

n1<n2<···<nk

a1(n1)a2(n2) · · · ak(nk)

ns1
1 ns2

2 · · · n
sk
k

and

(1-5)
∑

n1<n2<···<nk

a1(n1)a2(n2− n1) · · · ak(nk − nk−1)

ns1
1 ns2

2 · · · n
sk
k

,

where a j (n) are certain arithmetical functions. Under suitable assumptions on the
Dirichlet series

∑
∞

n=1 a j (n)n−s j , the analytic properties for the multiple series of
type (1-5) can be easily derived. Compared with (1-5), the series of type (1-4) is
rather difficult, and it seems that [Akiyama and Ishikawa 2002] is the only character
mod q j is treated in the case a j (n)= χ j (n); that paper made use of the periodicity
of χ j to reduce the problem to the multiple Hurwitz zeta function∑

n1<n2<···<nk

1
(n1+α1)s1(n2+α2)s2 . . . (nk+αk)sk

.

The multiple series that we consider here is of the form

(1-6) D(s1, s2)=
∑
m<n

d(m)d(n)
ms1ns2

.

For Re s2 > 1 and Re(s1 + s2) > 2, the series in (1-6) is absolutely convergent
and represents a holomorphic function in s1 and s2. Since the divisor function d(n)
is not periodic, we should adopt a different approach than Akiyama and Ishikawa.

In the case s1= s2= s, it is easy to see that D(s, s) has an analytic continuation
to the whole plane C, since trivially

D(s, s)= 1
2ζ(s)

4
−
ζ(2s)4

2ζ(4s)
.
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For general s j , the analytic continuation of (1-6) is as follows:

Theorem 4. The multiple zeta function D(s1, s2) can be continued analytically to
a function meromorphic in the region in C2 given by

Re s1+Re s2 >
1
2 .

To prove Theorem 4, we employ previous results about the Dirichlet series
D j (s), Y (s), and I j (s) and their derivatives. More precisely, we will express
D(s1, s2) in terms of these functions and then use their analytic continuations. We
can determine the singularities of D(s1, s2) in the region Re s1 + Re s2 > 1/2 by
using the explicit formula (6-3) for D(s1, s2). However, we shall omit the details of
these properties since we would like to state the properties of D(s1, s2) as simply
as possible.

2. Preliminaries

Here we prepare some lemmas. The first concerns the analytic properties of the
integrals

I j (s)=
∫
∞

1
u−s1(u) j du for j = 1 and 2.

We easily see that these integrals are absolutely convergent in the region σ > 5/4
for j = 1 and σ > 3/2 for j = 2.

Lemma 1 [Sitaramachandra Rao 1987]. The function I1(s) can be continued to the
whole complex plane as a function holomorphic except for a simple pole at s = 1,†

and is expressed explicitly by

(2-1) I1(s)=
ζ 2(s− 1)

s− 1
−

2γ − 1
s− 2

−
1

(s− 2)2
.

Lemma 2 [Furuya et al. 2010, Lemma 4]. The function I2(s) can be continued
analytically to the right half-plane σ > 2/3. It has a simple pole at s = 3/2 with
residues

Res
s=3/2

I2(s)=
1

4π2

∞∑
n=1

d(n)2

n3/2 ,

while it has a triple pole at s = 1.

We will need several results about sums of 1(n).

Lemma 3. Let 1(x) be the error term defined by (1-1). Then∑
n≤x

1(n)2 = c1x3/2
+ F(x),

†The function I1(s) is holomorphic at s = 2, since the integral of I1(s) converges absolutely for
s = 2. (This can also be checked using the Laurent expansion around s = 2 of the right side of (2-1).)
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with F(x)= O(x log4 x), where c1 is the constant defined in (1-2).

Proof. This formula can be proved directly by using [Furuya 2005, Theorem 1]
and the asymptotic formula

(2-2)
∫ x

1
1(u)2du = c1x3/2

+ O(x log4 x)

due to Preissmann [1988]. �

Lemma 4.∑
n≤x

d(n)1(n)= 1
2

∑
n≤x

d(n)2+ 1
21(x)

2
−

1
2(2γ − 1)2+

∫ x

1
(log u+ 2γ )1(u) du.

We can write this sum explicitly as an asymptotic formula∑
n≤x

d(n)1(n)= 1
2π2 x log3 x + c3x log2 x + c4x log x + c5x + O(x3/4 log x),

with suitable constants c3, c4 and c5.

Proof. The first formula is derived from [Furuya 2007, Theorem 1] by putting
f (n) = d(n), which implies g(x) = x(log x + 2γ − 1) and E(x) = 1(x). The
second formula is [Furuya 2007, Corollary 1]. �

3. The function Y(s)

Let N be a sufficiently large positive number and let

(3-1) YN (s)=
∑
n≤N

d(n)1(n) n−s

for σ > 5/4. Also put g(x) = x(log x + 2γ − 1). Then by partial summation and
the first formula of Lemma 4, we have

YN (s) = N−s
∑
n≤N

d(n)1(n)+ s
∫ N

1
u−s−1

∑
n≤u

d(n)1(n) du

= s
∫ N

1
u−s−1

(
1
2

∑
n≤u

d(n)2+ 1
21(u)

2
−

1
2(2γ−1)2+

∫ u

1
g′(v)1(v) dv

)
du

+ O(N 1−σ log3 N ).

For the double integral on the right side, we have∫ N

1
u−s−1

∫ u

1
g′(v)1(v) dv du =

∫ N

1
g′(v)1(v)

∫ N

v

u−s−1 du dv

=
1
s

∫ N

1
u−s g′(u)1(u) du+ O(N 1−σ log N ).
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Furthermore, we have∑
n≤x

d(n)2n−s
= x−s

∑
n≤x

d(n)2+ s
∫ x

1
u−s−1

∑
n≤u

d(n)2du

by partial summation; hence,

s
∫ N

1
u−s−1

∑
n≤u

d(n)2du =
∑
n≤N

d(n)2n−s
+ O(N 1−σ log3 N ).

Therefore

YN (s)= 1
2

∑
n≤N

d(n)2n−s
+

1
2 s
∫ N

1
u−s−11(u)2du−

(2γ − 1)2

2

+

∫ N

1
u−s g′(u)1(u)du+ O(N 1−σ log3 N ).

In the above formula, we let N →∞ and get

(3-2) Y (s)=
ζ(s)4

2ζ(2s)
+

s I2(s+ 1)
2

−
(2γ − 1)2

2
+ 2γ I1(s)− I ′1(s).

This expression holds for σ > 5/4. But we can easily see, by (3-2) and the analytic
properties of ζ(s), I j (s) (for j = 1, 2) and I ′1(s), that Y (s) is continued analytically
from σ > 5/4 to the region σ >−1/3.

Furthermore, we see that Y (s) has poles at s = 1/2 and s = 1 in the region
σ ≥ 1/2. For −1/3< σ < 1/2, the assertion in the theorem is easily derived from
the right side of (3-2). The residue at s = 1/2 is derived easily from Lemma 2, and
the Laurent expansion of Y (s) at s = 1 is derived also by the right side of (3-2).
This completes the proof of Theorem 1. �

4. The order of Y(s)

In this section, we prove Theorem 2. Specifically, we determine the order of Y (s)
on the vertical lines σ = 1/2 and σ = 5/4 and apply the Phragmén–Lindelöf
convexity theorem for 1/2≤ σ ≤ 5/4.

First we consider the order of Y (s) on the line σ = 1/2. From (3-2), we have

Y (1
2+i t)=

ζ(1
2 + i t)4

2ζ(1+ 2i t)
+

1
2 + i t

2
I2(

3
2+i t)−

(2γ − 1)2

2
+2γ I1(

1
2+i t)− I ′1(

1
2+i t).

It is easily seen that

ζ( 1
2 + i t)4

ζ(1+ 2i t)
� |t |2/3 log7

|t | � |t |.
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We also have I1(
1
2 + i t)� |t |−1

|ζ(− 1
2 + i t)|2� |t | from Lemma 1, and

I ′1(
1
2 + i t)� |t |−1

|ζ(− 1
2 + i t)ζ ′(− 1

2 + i t)| � |t | log|t |

similarly. So it remains to consider I2(
3
2 + i t):

Lemma 5. I2(
3
2 + i t)� log|t | as |t | →∞.

Proof. Assume σ > 3/2, and let X be a large parameter. Splitting the integral at X ,
we have

I2(s)=
∫ X

1
u−s1(u)2du+

∫
∞

X
u−s1(u)2du =: J (1)X (s)+ J (2)X (s).

Using the mean value estimate (2-2) and integration by parts, we have

J (2)X (s)=
[
u−s(c1u3/2

+O(u log4 u))
]∞

X
+ s

∫
∞

X
u−s−1(c1u3/2

+ O(u log4 u)) du

=
3c1

2s− 3
X−s+3/2

+ O(X1−σ log4 X)+ O
(
|t |
∫
∞

X
u−σ log4 u du

)
.

The integral in the last term converges absolutely in the region σ > 1 and is esti-
mated as O(|t |X1−σ log4 X). Hence we have

J (2)X ( 3
2 + i t)� |t |−1

+ X−1/2 log4 X + |t |X−1/2 log4 X.

Meanwhile,

J (1)X ( 3
2 + i t)�

∫ X

1
u−3/212(u) du� log X.

By taking, for example, X = |t |3, we obtain the lemma. �

From these estimates, we obtain

(4-1) Y ( 1
2 + i t)� |t | log|t |.

Next we consider the order on the line σ = 5/4. Assuming first that σ > 5/4 as
usual, we define

EN (s)= Y (s)− YN (s)=
∑
n>N

d(n)1(n)
ns ,

where YN (s) is the function defined by (3-1).
Using partial summation and the second formula in Lemma 4, we have

EN (s)=−N−s
( 1

2π2 N log3 N + c3 N log2 N + c4 N log N + c5 N
)

+ s
∫
∞

N
u−s−1

( 1
2π2 u log3 u+ c3u log2 u+ c4u log u+ c5u

)
du

+ O(|t |N 3/4−σ log N )
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=
1

2π2(s−1)
N 1−s log3 N +

(
3s

2π2(s−1)2
+

c3

s− 1

)
N 1−s log2 N

+

(
6s

2π2(s−2)3
+

2c3s
(s− 1)2

+
c4

s− 1

)
N 1−s log N

+

(
6s

2π2(s−1)4
+

2c3s
(s− 1)3

+
c4s

(s− 1)2
+

c5

s− 1

)
N 1−s

+ O
(
|t |N 3/4−σ log N

)
.

Hence, we get the estimate

(4-2) EN (s)�
N 1−σ log3 N
|t |

+ |t |N 3/4−σ log N

for σ > 5/4. Note that (4-2) holds true for σ > 3/4.
On the other hand, the first part of this division can be estimated as

YN (
5
4 + i t)�

(∑
n≤N

d(n)2

n

)1/2(∑
n≤N

1(n)2

n3/2

)1/2

� log5/2 N .

Taking N = |t |2, we then get

(4-3) Y ( 5
4 + i t)� log5/2

|t |.

By (4-1), (4-3) and the Phragmén–Lindelöf principle, we obtain

Y (σ + i t)� |t |(5−4σ)/3 log5/2
|t | for 1/2≤ σ ≤ 5/4,

which completes the proof of Theorem 3. �

5. The order of D2(s)

Let σ > 3/2. We divide the infinite series as
∞∑

n=1

1(n)2

ns =

(∑
n≤N

+

∑
n>N

)
1(n)2

ns = D(1)
2,N (s)+ D(2)

2,N (s).

By using partial summation and Lemma 2, we have

(5-1)

D(2)
2,N (s)=

3
2 c1

s− 3
2

N−s+3/2
− N−s F(N )+ s

∫
∞

N
u−s−1 F(u) du

=

3
2 c1

s− 3
2

N−s+3/2
+ O

(
|s|N 1−σ log4 N

)
.

This estimate actually holds for σ > 1, and thus this formula gives the analytic
continuation of D(2)

2,N (s) from σ > 3/2 into σ > 1.
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We treat the case s = 3
2 + i t . By (5-1), we have

D(2)
2,N (

3
2 + i t)� |t |−1

+ |t |N−1/2 log4 N .

We have, by partial summation and Lemma 2 again,

D(1)
2,N (

3
2 + i t)�

∑
n≤N

1(n)2

n3/2 � log N .

Hence, by taking N = |t |3, we have D2(
3
2 + i t)� log|t |. This estimate gives the

second assertion of Theorem 3.
To prove the third, we first consider the case s = 1+ ε+ i t , where ε is a fixed

positive small number. By (5-1), we get

D(2)
2,N (1+ ε+ i t)� |t |−1 N 1/2−ε

+ |t |N−ε log4 N ,

and
D(1)

2,N (1+ ε+ i t)� N 1/2−ε.

Hence, by taking N = |t |2, we get D2(1+ ε+ i t)� |t |1−2ε log4
|t |.

Applying the Phragmén–Lindelöf convexity principle, we obtain

D2(σ + i t)� |t |3−2σ log4
|t |

for 1< σ < 3/2. This completes the proof of Theorem 3. �

6. Proof of Theorem 4

Let

S(s1, s2)=
∑
m≤n

d(m)d(n)
ms1ns2

.

To prove Theorem 4, it is enough to consider the series S(s1, s2), since

(6-1) D(s1, s2)= S(s1, s2)−
ζ 4(s1+ s2)

ζ(2(s1+ s2))
.

Let s j = σ j + i t j be complex variables. First assume that σ1 > 1 and σ2 > 1.
For a large positive number N , we consider the finite sum

SN (s1, s2) :=
∑

m≤n≤N

d(m)d(n)
ms1ns2

.

By partial summation and (1-1), we have

SN (s1, s2)=
∑
n≤N

d(n)
ns2

∑
m≤n

d(m)
ms1
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=

∑
n≤N

d(n)
ns2

(
1

ns1

∑
m≤n

d(m)+ s1

∫ n

1
u−s1−1

(∑
m≤u

d(m)
)

du
)

=

∑
n≤N

d(n)(g(n)+1(n))
ns1+s2

+ s1
∑
n≤N

d(n)
ns2

∫ n

1
u−s1−1g(u) du

+ s1
∑
n≤N

d(n)
ns2

∫ n

1
u−s1−11(u) du,

where g(u)= u(log u+2γ −1) as before. In the last term above, split the integral
as
∫ n

1 =
∫ N

1 −
∫ N

n . Then interchange the order of integral and summation and use
partial summation and (1-1) again. We get eight terms:

SN (s1, s2)=
∑
n≤N

d(n)g(n)
ns1+s2

+

∑
n≤N

d(n)1(n)
ns1+s2

+ s1
∑
n≤N

d(n)
ns2

∫ n

1
u−s1−1g(u) du

+ s1

(∑
n≤N

d(n)
ns2

) ∫ N

1
u−s1−11(u) du

− s1

∫ N

1
u−s1−s2−11(u)g(u) du− s1

∫ N

1
u−s1−s2−11(u)2du

− s1s2

∫ N

1
u−s1−11(u)

∫ u

1
v−s2−1g(v) dvdu

− s1s2

∫ N

1
u−s1−11(u)

∫ u

1
v−s2−11(v) dvdu,

which we define as
∑8

j=1 I j,N (s1, s2). We consider each I j (s1, s2) as N →∞. It
is easy to see that

lim
N→∞

I1,N (s1, s2)=−(ζ
2)′(s1+ s2− 1)+ (2γ − 1)ζ 2(s1+ s2− 1).

By elementary calculations, we have

lim
N→∞

I3,N (s1, s2)=
s1

s1− 1
(ζ 2)′(s1+ s2− 1)

− s1

(
1

(s1−1)2
+

2γ − 1
s1− 1

)(
ζ 2(s1+ s2− 1)− ζ 2(s2)

)
.

The terms I j,N (s1, s2) for j=2, 4, 5, 6, 7 can be written in terms of the functions
Y (s), I1(s), I ′1(s) and I2(s). In fact, we have

lim
N→∞

I2,N (s1, s2)= Y (s1+ s2),

lim
N→∞

I4,N (s1, s2)= s1ζ
2(s2)I1(s1+ 1),
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lim
N→∞

I5,N (s1, s2)=−s1
(
−I ′1(s1+ s2)+ (2γ − 1)I1(s1+ s2)

)
,

lim
N→∞

I6,N (s1, s2)=−s1 I2(s1+ s2+ 1),

and

lim
N→∞

I7,N (s1, s2)=−
s1s2

s2− 1
I ′1(s1+ s2)

+ s1s2

(
1

(s2−1)2
+

2γ − 1
s2− 1

)(
I1(s1+ s2)− I1(s1+ 1)

)
.

By Theorem 1 and Lemmas 1 and 2, the terms limN→∞ I j,N (s1, s2) for j=1, . . . , 7
can be continued meromorphically to the region σ1+ σ2 >−1/3.

We treat the term I8,N (s1, s2) with the following lemma.

Lemma 6. Let

I (N )(s1, s2)=

∫ N

1
u−s1−11(u)

∫ N

u
v−s2−11(v) dv du,

and
I (s1, s2)= lim

N→∞
I (N )(s1, s2).

Then I (s1, s2) defines a holomorphic function in the region σ2>
1
4 and σ1+σ2>

1
2 .

Proof. In the region σ2 >
1
4 and σ1+ σ2 >

1
2 ,

I (N )(s1, s2)�

∫ N

1
u−σ1−1

|1(u)|u−σ2+1/4du� 1,

since ∫ b

a
uβ |1(u)| du� aβ+5/4

for a ≤ b and β <−5/4. The lemma follows immediately. �

Now we consider the double integral

JN (s1, s2)=

∫ N

1
u−s1−11(u)

∫ u

1
v−s2−11(v) dv du.

Splitting the innermost integral in JN (s1, s2) as
∫ u

1 =
∫ N

1 −
∫ N

u , we have

JN (s1, s2)=

∫ N

1
u−s1−11(u) du

∫ N

1
u−s2−11(u) du− I (N )(s1, s2).

In σ2 >
1
4 and σ1+ σ2 >

1
2 , we have

J (s1, s2) := lim
N→∞

JN (s1, s2)= I1(s1+ 1)I1(s2+ 1)− I (s1, s2).

Hence, J (s1, s2) is a meromorphic function there by Lemmas 1 and 6.
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On the other hand, by the symmetric property

JN (s1, s2)+ JN (s2, s1)=

∫ N

1
u−s1−11(u)du

∫ N

1
u−s2−11(u) du,

we obtain

(6-2) J (s1, s2)= I1(s1+ 1)I1(s2+ 1)− J (s2, s1).

By applying the above argument on I (s2, s1), we see that J (s1, s2) is also defined
in the region σ1 >

1
4 and σ1+ σ2 >

1
2 . Therefore we conclude that

lim
N→∞

I8,N (s1, s2)=−s1s2 J (s1, s2)

is meromorphic in σ1+ σ2 >
1
2 . This completes the proof of Theorem 4. �

More concretely, the explicit form of the analytic continuation of S(s1, s2) is
given by

(6-3) S(s1, s2)= Y (s1+ s2)− s1 I2(s1+ s2+ 1)− s1s2 I1(s1+ 1)I1(s2+ 1)

−
s1

s2− 1
I ′1(s1+ s2)+ s1

( s2

(s2− 1)2
+

2γ − 1
s2− 1

)
I1(s1+ s2)

+ s1ζ
2(s2)I1(s1+ 1)− s1s2

( 1
(s2− 1)2

+
2γ − 1
s2− 1

)
I1(s1+ 1)

+
1

s1−1
(ζ 2)′(s1+ s2− 1)−

( s1

(s1− 1)2
+

2γ − 1
s1− 1

)
ζ 2(s1+ s2− 1)

+ s1

(
1

(s1−1)2
+

2γ − 1
s1− 1

)
ζ 2(s2)+ s1s2 I (s1, s2).

From this formula, we can determine the locations of singularities of S(s1, s2), and
thus D(s1, s2) by (6-1), but we omit the details of this topic here.

7. An alternative approach to Theorem 1

We now give a proof of Theorem 1 by approaching (3-2) differently. In fact, we
will not use the first result in Lemma 4, which is an identity for

∑
n≤x d(n)1(n).

Let YN (s) and g(x) be defined as above. By (1-1), we have

YN (s)=
∑
n≤N

d(n)
ns

(∑
m≤n

d(m)− g(n)
)

=

(∑
n≤N

d(n)
)(∑

n≤N

d(n)
ns

)
−

∑
m≤N

(
d(m)

∑
n≤m

d(n)
ns

)
+

∑
n≤N

d(n)2

ns −
∑
n≤N

d(n)
ns g(n).
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Further, since∑
m≤N

d(m)
∑
n≤m

d(n)
ns =

∑
m≤N

d(m)
ms (g(m)+1(m))

+ s
∑
m≤N

d(m)
∫ m

1
u−s−1(g(u)+1(u))du

by partial summation, we have, for σ > 5/4,

2YN (s)−
ζ 4(s)
ζ(2s)

=

(∑
n≤N

d(n)
)(∑

n≤N

d(n)
ns

)
− 2

∑
n≤N

d(n)
ns g(n)

− s
∑
m≤N

d(m)
∫ m

1
u−s−1(g(u)+1(u))du+ O(N 1−σ log3 N ).

We now consider the transformation of
∫ N

1 u−s12(u) du. We have by (1-1)∫ N

1
u−s12(u) du =

∫ N

1
u−s1(u)

(∑
n≤u

d(n)− g(u)
)

du

=

∑
n≤N

d(n)
∫ N

n
u−s1(u)du−

∫ N

1
u−s1(u)g(u) du

=

(∫ N

1
u−s1(u) du

)∑
n≤N

d(n)−
∑
n≤N

d(n)
∫ n

1
u−s1(u) du

−

∫ N

1
u−s1(u)g(u) du.

We obtain by this formula, and by applying partial summation to
∑

n≤N d(n)n−s ,∑
n≤N d(n)g(n)n−s , and

∑
n≤N d(n)

∫ n
1 u−s−1g(u) du, that

2YN (s)−
ζ 4(s)
ζ(2s)

− s I2(s+ 1)+ 2I ′1(s)− 4γ I1(s)

=

(
N−s

∑
n≤N

d(n)− 2N−s g(N )
)∑

n≤N

d(n)+ s
∫ N

1
u−s−1g(u)2du

+ 2
∫ N

1
g(u)

(
u−s g′(u)− su−s−1g(u)

)
du+ O(N 5/4−σ log N )

for σ > 5/4. Furthermore, by applying the estimate 1(x) = O(x1/3) and the
formula

2
∫ N

1
u−s g(u)g′(u) du = N−s g(N )2− (2γ − 1)2+ s

∫ N

1
u−s−1g(u)2 du,
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which has been proved by integration by parts, we obtain

2YN (s)−
ζ 4(s)
ζ(2s)

−s I2(s+1)+2I ′1(s)−4γ I1(s)=−(2γ −1)2+O(N 5/4−σ log N )

for σ > 5/4. Thus, as N tends toward infinity, we obtain again (3-2). �
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