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A CONSTANT RANK THEOREM FOR LEVEL SETS OF
IMMERSED HYPERSURFACES IN R*+1 WITH PRESCRIBED
MEAN CURVATURE

CHANGQING HU, XI-NAN MA AND QIANZHONG OU

We prove a constant rank theorem on the second fundamental forms of level
sets of immersed hypersurfaces in R”*! with prescribed mean curvature.

1. Introduction

Constant rank theorems have been a powerful tool in the study of convex solu-
tions to partial differential equations. Caffarelli and Friedman [1985] first proved
a constant rank theorem on solutions to a class of semilinear elliptic PDEs in two
dimensions and hence proved the strict convexity of the solutions. Singer, Wong,
Yau and Yau explored a similar idea [Singer et al. 1985]. Korevaar and Lewis
[1987] extended Caffarelli and Friedman’s results to the n-dimensional case. In
the last decade, the constant rank theorem has been extended to fully nonlinear
elliptic PDEs [Guan and Ma 2003; Caffarelli et al. 2007; Guan et al. 2006]; these
authors found important applications for it in some geometric problems. For the
convexity of level sets, Korevaar proved a constant rank theorem:

Theorem 1.1 [Korevaar 1990]. Let Q be a connected domain in R*. Letu € C 4(Q)
solve

Uil Wil
(1-1) Lu:= A(Au - |Vlujz”ij) +B(ﬁ”ij) = f(u, [Vul),

where A, B, f are C?* functions of u, and i = |Vu|. These satisfy the structure
conditions

(1) WA/B)uu=0,and
(i) (f(u, 0)/Bu?)uu <O0.
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Suppose that |Vu| # 0 and that u has convex level sets {x € Q| u(x) <c}. Then
all the level sets of u have second fundamental forms with (the same) constant rank
throughout €.

The equations in Theorem 1.1 include p-Laplacian equations and mean curva-
ture equations as special cases. In these cases we respectively take

R S S S

J+2 (T u2p?
Korevaar [1990] used this theorem to prove some interesting results on the con-

vexity of the level sets of solutions to elliptic PDEs. Recently, Xu [2008] gener-

alized Theorem 1.1 to the case where the function f in (1-1) also depends on the
coordinate variable x, and accordingly the structure condition (ii) turns into

3O, u, 1/0)
B(u, 1/u)
In this paper, we will prove an analogous result on a class of immersed hyper-
surfaces in R"*! with prescribed mean curvature.
Let M" be a smooth immersed hypersurface in R"*!, and let X : M — R"*! be
the immersion satisfying

A=uP?, B=(p—DuP™? and A=

is convex in (x, u).

(1-2) H=—f(X,N),

where H and N are respectively the mean curvature and unit normal vectors of M"
at X, and f is a smooth function in R"*! x R"*!. Let ¢ be a fixed unit vector
in R"*!. Then the height function of M" corresponding to & can be expressed as
u(X)= (X, &); here (-, - ) means the usual Euclidean inner product in R"*!. Now,
the level set of M" corresponding to ¢ with height ¢ is defined as

(1-3) .= (X eM |ulX)=c).

Suppose u has no critical point on M". Then Z. can be considered as a hyper-
surface in the hyperplane IT = {X € R | (X, &) =c}.

With the above notations, our constant rank theorem on the level sets of an
immersed hypersurface with prescribed mean curvature can be stated as follows:

Theorem 1.2. Let M" be an immersed hypersurface in R"*! whose mean curva-
ture satisfies (1-2). Assume that the height function u of M" corresponding to &
has no critical point, and that the level sets are all locally convex with respect to
the normal direction —Du, that is, their second fundamental forms are positive
semidefinite. Then the second fundamental forms of all the level sets have (the
same) constant rank, provided f(X, N) = f(X) > 0 and the matrix

o’ f Jof of
0X40Xp 0X40Xp

(1-4) 2f
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is positive semidefinite, where 1 < A, B < n + 1. In other words, when f is a
positive function, the condition (1-4) simply means that f ~'/% is a concave function
in R,

Remark 1.3. For the more general case where H = — f(X, N) as in (1-2), by
(3-28) and (3-29) in Section 3, we still can choose the structure conditions on f
to ensure the result of Theorem 1.2. For example, if f(X, N) = (&, N)# with
(¢, N) > 0 on M", then the structure conditionis f > 1or f <0.

Remark 1.4. Throughout, we adapt these conventions: The hypersurface M" is
orientable. We choose the unit normal vector field N so that it represents the
orientation of M". The unit vector field normal to the level set X, is obtained by
projecting N onto the hyperplane IT = {X € R"*! | (X, &) =¢}.

When do the solutions of elliptic PDEs have convex level sets? Gabriel [1957]
proved that the level sets of the Green function on a 3-dimensional convex domain
are strictly convex. Lewis [1977] extended Gabriel’s result to p-harmonic functions
in higher dimensions. Caffarelli and Spruck [1982] generalized Lewis’s result to
a class of semilinear elliptic PDEs. For recent progress, see [Colesanti and Salani
2003] and [Cuoghi and Salani 2006]. The constant rank theorem is an important
step for the concrete convexity theorem, since one can use it to prove strict con-
vexity results, as in, for example, [Korevaar 1990]. In practice, one always runs
into difficulty at the critical points of the solution (or height functions in our case).
In some sense our constant rank theorem is only a local and intermediate result.

In Section 2, we will give a formula for the curvatures of the level sets of an
immersed hypersurface in R"*!. We prove it by the method of moving frames. We
prove our main result, Theorem 1.2, in Section 3 using a calculation similar to the
one in [Xu 2008].

2. Formulas of curvature of level sets

For a C? function u defined in a n-dimensional domain Q in R”, let xy, . .., ky_1
be the principal curvatures of the level sets of u with respect to the normal direction
— Du. Then the k-th curvature of the level sets, denoted by Ly, is the k-th elemen-
tary symmetric function of xq, . .., k,—1. Clearly, L and L,,_; are respectively the
mean curvature and Gauss curvature of the level sets. If u# has no critical point,
that is, |Vu| # 0, then Trudinger [1997] (see also [Gilbarg and Trudinger 1977])
expressed Ly as

_ 90y41(D?u)

2-1 L
(2-1) k our)

—k—2
uiu;|Vul ,

where we use summation convention for repeated indices, and where oy (D?u) is
the k-th elementary symmetric function of the eigenvalues of the Hessian (D?u).
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There is an formula analogous to (2-1) on hypersurfaces in R"*+!:

Proposition 2.1. Let M" be a smoothly immersed hypersurface in R"*1. Let u be
its height function and X one of its level sets, with respect to a fixed unit vector &,
as given in the last section. Then the k-th curvature of the level set . with respect
to —Du is

__ 00y+1(B) "

5]1,‘]'

Here B = (h;;) is the second fundamental form of M", oy (B) is the k-th elementary
symmetric function of the eigenvalues of B, and u; for 1 <i < n are the first order
covariant derivatives of u computed in any orthonormal frame field on M".

(2-2) Ly i ;| V| =€),

Huang [1992] gave the formula (2-2) for n = 2. Here we give a complete proof
by using moving frames. In this section, indices will run from 1 to n — 1 when
lower case and Greek; Latin indices will run from 1 to n when lower case and from
1 to n + 1 when upper case.

For an orthonormal frame field {X; e4} in R**!, we have

(2—3) dX:a)AeA and deAza)A’BeB,

where {w,} is the dual frame of {e4}, and {w4_ g} are connection forms. Then the
structure equations read as

(2—4) da)A = wA,B \ WB and da)A,B =wj,c NOC,B-

If we choose e, to be the unit normal vector field N of M", then w,+; =0
on M", and hence by (2-4)

(2—5) Wpy1,i \NW; = 0.
Then Cartan’s lemma implies w,41,; = h;jw; and h;; = hj;, where B = (h;;) is
the second fundamental form of M".

Proof of Proposition 2.1. First, we check that the right side of (2-2) is independent
of the choice of the frame fields {X; ¢;} on M". Then we can just prove (2-2) in a
special frame field.

Suppose {X; e;} is another frame field on M”. Then there is an orthogonal
transformation 7 such that (ey,...,e,) = (ef,...,e,)T. Then

(2-6) (@i, ... 0 = (U1, ..., u)T,

where Vu = u;e; = u;e; is the gradient of u. Also, for the dual frame field and the
connection forms we have

(CT)],"'DCT)H):(COID"‘,CO”)T’

(@1, 0415 -+ s Onnt1) = (@1 0415 -« o Onpg1) T
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Furthermore, for the second fundamental form we have
(2-7) B=T"'BT.

Obviously o (B) and |Vu| are invariant under the transformation 7. Then the
following equalities show that the right side of (2-2) is independent of the choice
of {er,...,ey}:

9oy (B) 001(B) Ol 001 (B) 0(T™h g Ty)
(2-8) Uikj = ——= Uikj = ——= Will
6h,-j 6hml ahij ahml ahij
dox(B) . dor(B dor(B
= Uk_( )Tmlleuiuj = L)TimuiTﬂuj = O—k_( )b_tmﬁ[.

Now we adapt the frame field above so that along the level set Z, the e, are its
tangential vectors. Furthermore, we choose another frame field &4 in R"*! so that
en+1 =¢ and e, = e,, and so that ¢, lies in the hyperplane I and is normal to X,
with the same direction of the projection of e¢,.; = N on Il. With respect to this
frame field, the structure equations of X are

(2-9) d&)l = C'Z)i’j A\ CZ)]' and dCbij = CZ),',Z A CZ)]’j.
On Z., we have @, = 0, which implies
(2-10) Ona = hopop and  hap = hg,,

where ﬁa[g is the second fundamental form of Z. in IT (with respect to the unit
normal ¢,,).

Clearly ¢, e,4+1 and e, €,4+1 are in the same 2-plane perpendicular to the e,.
Let ¢ be the angle between ¢, and ¢,,. Then we have

(2-11) en = encosp+e,y18ing and e, = —e,sing + e, cos .
Accordingly,
(2-12) W, =w, cos p+w,118inP, @Wpr1=—w, SINP+wW,11COSP, @Oy =Wy.

Taking the exterior derivative of (2-12), and using (2-4) and (2-12) again, we
get
o-13) diy, = (d¢ + 0n pt1) A Opi1 + ((OS P)wp o + (SIN P04 1,0) A Oy,
dd)n-i—l — (_d¢ + C‘)n+1,n) A Cbn + ((COS ¢)wn+1,a - (Sil’l ¢)wn,a) N Wy -

Notice that @, = @,+1; =0 on X.. Comparing (2-13) with (2-9), we have

W, = (COS P)Wy.q + (SINP)Wy+1,05

(2-14) _ )
Ont1,0 = (—sinP)wy ¢ + (oS P)wy+1,4-
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On the other hand, (e,, <) = 0 on X, and since d((e,, &) = (Wq a€4,<E), WE
have @, ,+1 = 0. This together with (2-14) implies

2

- cos )

Wp,0 = .—¢wn+l,a + (SlIl ¢)wn+l,a
(2-15) 5111"/5 1

= mwnﬂ,a = m(haﬁwﬁ + honwy).
Combining this with (2-10) gives
= 1

(2-16) hop = mhaﬁ and h,, =0.

From the definition of the height function u, we can see u; =¢; ((X, &)) = (e;, &)
in particular, u, = (e,, £). Note that ¢, =&, hence the second equation of (2-11)
implies u, = —sin¢ and (¢, e,41) = cos ¢. By the decomposition

&= (& e)ei+(E ent1)ent
1

we deduce that 1 = |Vu|? 4 cos? ¢ and therefore |Vu| = =+ sin ¢. With e, chosen
suitably we may assume sin ¢ > 0. Then (2-16) becomes

. 1
(2-17) hap = rgarhap and - han =0.

From this one can easily see that

~ 1
Ly = O'k(haﬂ) = —O'k(haﬂ)

(2-18) |Vul®
_ 1 dor+1(B) _ aUk-i——l(B)uu (V| kD
\Vuls+2 ohy,, " oh; 7 ’
where we have used |u, | = |Vu]|. U

3. Proof of Theorem 1.2

We adapt the notations in Section 2, and collect these formulas for convenience:

Xi=ei,
Xij = —hijen+1 (Gauss formula),
3-1) ent1,i = hije; (Weingarten formula),
hijk = hikj (Codazzi equation),
Riji = hixhji — hithji (Gauss equation),

hijki = hijik +him Rinji + 0 jm Rmiki s
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and for the smooth function # on M" we also have the Ricci identity
Wijk = Wikj + Um Rijic,

where R;j; is the Riemann curvature tensor, and as for the rest of this section,
repeated indices are summed from 1 to n, unless otherwise stated.

Proof of Theorem 1.2. Suppose the second fundamental forms of the level sets
of M" take the minimum rank k with k <n —2 at a point P € M". We will treat
the case k > O first, and then show how to modify the argument for the case k = 0.
With the assumption that the level sets are all locally convex, we find easily that

L.(P)=0 forallr>k,
(3-2)
L,(P)>0 forallr <k,
and moreover
Z :={X € M" | the second fundamental form
(3-3) of the level sets of M" has rank k at X}
— (X € M" | Li+1(X) =0).

Obviously Z is a closed set in M". If we can show that Z is also open in M" —
that is, that there is a neighborhood Up of P in M" such that Ly =0on Up —
then Z = M", which is the result in the theorem.

Now Li4+1(P) =0 =minycpy» Ly+1(X), so by the strong maximum principle,
we need only to show that

(3-4) ALp1(X) <0 mod {Li41(X), VL1 (X)) in Up,

where we modify the terms of L and its first derivatives, coefficients are locally
bounded, and A is the Beltrami—Laplace operator on M".
For the rest of this section, define

W= (hl/) with l’.] =n-— 11 L:= Lk-‘rla F .= O-k+2(B)5

and
Fij = i Fij,rs = aZ—F Fij,rs,pq = 83F ‘
ahij ’ ahija/’lrs ’ 6h,-jah,sahpq
Hence, by (2-2),
(3-5) |Vu|k+3L=Fijuiuj.

Taking the covariant derivative of this, we get
(IVul" L)y = |Vul" Lo + (IVul )L,

(3-6) y y y
(FYujuj)g = F"" hygquiuj +2F ujqu;.
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Taking the covariant derivative again, we get

(Vul* P LYgg = [Vul" Lo +2(Vul* Yo Lo + (Vul)ga L,
(3-7) (Fijuiuj)aa = Fij’rs’pthqahrmuiuj + Fij’rshrmauiuj
+ 4Fij’rshrmuiauj + 2Fijuiaauj + 2Fijuiauja .

For a fixed point Xy in Up, choose a frame {ey, . . ., e,} such that u; through u,,_;
vanish, |u,| = |Vu| > 0, the form W is diagonal, and hy; > hyp >--- > h,_1 4.
Then by (3-2) we see that with Up small enough

hy(X9) =0 mod {L(Xy), VL(Xp)} forall r >k,

(3-8)
hyr(Xo) > € >0 mod {L(Xp), VL(Xo)} forallr <k,

where € is a positive sufficiently small number (maybe depending on Up).

In the following, all the calculations will be done at X, and the terms of L(Xj)
and VL(X) will be dropped, that is, all the equalities or inequalities should be
understood mod{L(Xg), VL(Xy)}.

Denote G := {h11, ..., hik} and B := {hk41 k415 .- - » Bn—1,n—1}. Use the same
symbols for G:={1, ..., k}and B:={k+1, ..., n—1} (it won’t cause confusion).

Now, by L(P) =0 =minyepn L(X) we get
(3-9) 0=(Vul" LYy = (FVuju;)y = F7" hysquiuj+2F ujqu

= u,21 F™ o+ 2u, F gy
= ”30'k(G) ZreB hrra + 20, F™" tpg + 2uy Z;:ll Fin”ioc
= M%O-k(G) ZreB Nrra — 2’/tnO-k(G) ZieB Rpittig.

Clearly

up =(X,<&)i = (X, &) = (e, €),
(3-10) ujj =(Xij, &) =—(hijN, &) := hjjw,

where w = —(N, &) = £/1 — |Vul|%
Substituting (3-10) into (3-9), using (3-8), and noting that W is diagonal, we
deduce

>icphiia=0 foralla <n,

(3-11) )
Un Diep hiin =22 ;cp hyiw.

By (3-7) we have

(IVul* 3 LYo = IVul* Log +2(Vul" ) Lo + (Vul* ) 0o L = (FYuiu ) gq.
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That is,
(3-12)  |Vul*P Ly = FI P4 b hpsquinj + FI 5 hygquiu
+4F S Ry qtigu; +2F  uigqu; +2F uiqu iy
= U2 F" P B+ 12 F By
+ 41y F™ S hypsgttio + 200 F ™ i + 2F g1 g,
which we decompose as I + 11 + Il + 1V, where
513 L=t F "™ P90 by, | = 4u,,.1.’7""’”hrmul-a,
= w2 F"™ Ry + 2un F g, 1V := 2F g1 g
Next we will compute the above terms step by step. First
2 pnngrs,
=u, F"""  hypghggq +uy, F' 7 hygghgrg=111 + 1o,
and
I o= W2 F™ " Ry b
=2y D P hyahssa iy D F T by s
(3-15) reG,s€B rseB
=2} D 01 (G| hrrahssa FUupok-1(G) D hrrahissas

reG,seB r,S€B,r#s

263

where here and below we use the notation o4_1(G |r) := o,_1(G\{h,,}) and the

convention og = 1. Substituting (3-11) into (3-15) yields

L = 2“% Z ox-1(G| hyrohsse + Mﬁo-k—l (G) Z hrra (Z Ngsa — hrra)

reG,seB reB sEB

=4dwu, Z h%n Z o—1(G|r)hyrn — ”iak—l (G) Z Z h;%ra

sEB reG a=1reB

+4wla1(6) (D hfn)z.

seB
For the remaining term in (3-14), we have

L= 2“% Z an’rs’srhrmhsra +u5 Z an’rs’srhrsahsra

reG,seB r,seB

=—2M§Zn: > ak_l(G|r)hfm—uﬁak_1(G)i > kL,

a=1reG,seB o=1r,seB,r#s
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So for the first term in (3-13) we have

(3-16) I=d4wu, > 0x1(G|Dhiinh%, —2u} D> > oe1(Gli)h7,

ieG,jeB a=1ieG,jeB

+4w2ak_1(G)(Zh§n)2—uﬁak_l(G)Z 2 hija:

jeB a=1i,jeB
To compute the second term in (3-13), first we have by using (3-10)

(3-17) I = 4wu, F"" hypghig
n—1
=4wu, F"" hysqhpg +4wuy, z F'"" hyighiq

i=1
n—1 n—1

Hdwiy D F " hjighig +4wuy D F" herghia.

i,j=1 i=1

We decompose the last four terms as 11| + Il + I3 + I14. By (3-11), the first can
be treated as

I = 4wu, F""" hypghpg = 4wu, 0y (G) Z hrrahna

reB

= 4wu, o1 (G) Z hyrnhpn = 8w20'k(G)hnn Z hzn

reB reB

For the second and the third terms, straightforward calculations show that

(3-18) Iy = —4wu,0(G) D hnighia = —4witn04(G) D hunihin,
ieB ieB

and

(3-19) I3 =4wu, . F™'hjighiq
i,jeB
+4wu, Z F"I hjighiq + 4w, Z F" 0 hjighig
ieG,jeB jeG,ieB
= 4winok1(G) D hjnhijuhin +4wity D 0k 1(G )hjh jighia
i,jeB.ij i€G,jeB

+4wu, Z 0k—1(G D) hpihijnhjn.
ieG,jeB
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Again by (3-11), the fourth term can be treated as

11, = 4wu, Z Finrrp, hig +dwu, Z Fimrrp hig

i,reB ieG,reB

+4wu, Z Fin’rrhrrahia
reG,ieB
=—4U)Mn0'k_1(G) Z hinhrrahio —4wuy, z O'k—l(G|i)hnihrrahia
i,reB,i#r ieG,reB
—4wu, Z O'k—l(G|r)hnihrr(xhia
reG,ieB
= —dwi,011(G) D hihern —dwity D 0k-1(G|Dhuihyrihii
i,reB,i#r ieG,reB

—4wu, Z ok-1(G| i)h;zu'hrrn —4wu, Z 0k-1(G | r)hiihrrn
ieG,reB reG,ieB

= —4wun0'k,1(G) Z hlzn (Z hrrn - hiin)

ieB reB

—dwity D 0k-1(G|Dhiihni D heri —4wit D~ ok-1(GliYh3; D hyrn

ieG reB ieG reB
2
—4wu, E O'kfl(G|r)hnihrrn

reG,ieB
2
= 4wu01-1(G) D hiin — 8001 (G) (D02, )
ieB ieB

—8w® D" o 1(Gli)h}h}, — 4wy D hh D> 0k 1 (G .

ieG,reB ieB reG

It follows that

(3-20) I = 8’01 (Ghn D — 4wuty01(G) D Bl
jeB JjeB
—8w” D o ((GlDh,hY, — 4w, D or 1(G i)y hiin
ieG,jeB ieG,jeB
+4wu, z 0k—1(G )highjphije +4wu, Z 0k—1(G ) hnihnjhijn
ieG,jeB ieG,jeB
+4wuyor—1(G) Z hpihpjhijn +4wun0'k—l(G)thjhjj"
i,jeB.i#] jeB

- 8w20k_1(G)(Z hﬁj)z.

jeB
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Now we deal with the third term in (3-13):

I =12 F"™ Ry + 2 F "

(3_21) 2 pnn,rr nn - in
=u, F™ hrraa + 2un F" Upge + 21y Z F uigq.

i=1

We decompose the last three terms as 1111+ 111, 4-1113. Using the exchange formula
in (3-1), we can calculate

I, = uiak (G) Z hrraa

reB
= uiak (G) Z(hraar +hem Rnara + hom Rirra)
reB
= u301(G) D haarr
reB
2
+ u, o1 (G) Z(hrm (hmrhoa — hmahar) +ham (hmrhye — himahrr))
reB
= uﬁak (G) Z H,., + u%ak (G) Z(Hhrmhmr —hrrhmaham)
reB reB
= uiak(G) Z H;; + MiHO'k(G) Z h?n,
JjEB jEeB

and IIIy = 2u,, 0441 (W)tpeq = 0. For the third term, we have

I3 = —2u,04(G) D hinltiaa

ieB
= _zunak(G) Z hin(Ugqi + Um Ramai)
ieB
= _2un0'k(G) Z hin(Hw)i —2un0p (G) Z hinttm (haahmi - haihma)
ieB ieB
= —2u,0%(G) Z hin(Hiw — Hh;ju )
ieB
—2u304(G) D h}, H +2u30(G) D~ by
ieB ieB
= —2wit,04(G) D hinH; + 2301 (G)hpn D 13,
jeB jeB

‘We have used in the calculations above that

w; = —(N,&)i = —=(N;, &) = —(hije;, &) = —hiju;.
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Substituting our results for /11y, I1l,, and IIl3 into (3-21) yields

(3-22) Ml =up01(G) D Hj;+ujor(G)H D h3,

jeB jeB
— 20,0 (G) D hjnHj + 2u;0(Ghan D13,
JEB jeB

We decompose the final term in (3-13) as IV + 1V, +1V3 +1V4 by

IV :=2F"u;uu ,

n—1 n—1 n—1
:2F”"umuna+4ZF’"u,-auna+2 E F'lujuuiq +2 E Fujqujq,

i=1 i=1 ij=1

i#]

It follows that IV = 2 F" u,qung = 20511 (W)ygtty, = 0, and

n—1
(3-23) IVy=—4>" ot(W |i)hinttitng = —404(G) D hinttiaiing
i=1 ieB
= —4w’0(G) D hun.

ieB

For the last two terms, we have

IV3 = ZZ Fiiuiauia +22 Fiiuiauia

ieG ieB
=-2 Z O'k—l(G“)h?nuiauia +20-k(G)Zhnnuia”ia
ieG,jeB ieB
-2 > O uiguia =2 D ok 1(Gl ), igtia
i,jEBi#£] jeG,ieB
=20 > o1 (Glh3,h =20 D" o 1(GliYh},h,
ieG,jeB ieG,jeB
+20%0k(G) D hunh}, =200, 1(G) D kL,
ieB i,jE€B,i#]
—2w” D" o1 (Gl j)h5, 0},
j€G,ieB
=20 > o (G|, —4w® D o 1(Glih}h,
ieG,jeB ieG,jeB

+20%0(G) D hunhi, — 200, _1(G) D k%5,
ieB i,jEB,i#]
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and
WVa=2 > Fluguje+4 D Fluguje+2 D Fluguj,
i,jeG,i#j i€G,jeB i,jeB.i#j
=0+4 Z 0k—1(G D hinh jnutiq jo +201-1(G) z hinh jnttiqtt o
i€G,jeB i,jEB,i#]
=4w® D o (GlDh}h, + 2w ((G) D hi k.
ieG,jeB i,jeB,i#]j

Our final result for IV is then

(3-24) IV =200, (G)hun D h3, =20 D or 1(Gli)hh3,.
JjeB ieG,jeB

Combining (3-16), (3-20), (3-22) and (3-24) with (3-12) we have

(3-25) IVul**Lyy =1+ + I +1V:=A+ B+C,

where

Ci= a1 1(G) (4wt D huihajhin + 4wy > hho

i,jeB jEB
i#]
2 2 2 2 < 2
—aw? () a2 3 ha)
jeB a=11i,jeB
n
=—0c1(G) D D (tnhijo — 2whajhia),
a=l1i,jeB

and

A= ak(G)(uﬁ > Hjj—2wuy D hjnHj —4wity D hunjha

JjEB JjEB jeB
FupH Y 1, 2tk D 15, + 610 hay > hij)
JjeB jeB jeB
= ak(G)(u,zZ Z Hjj — 6wu, ZhjnHj + GBuZ + 6w H Zh?n)
JjeB JjEB JjEB

+ o () (6w +2ud) D highd, Fdwun D higjhy).
ieG,jeB ieG,jeB
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The summand B is grouped in terms of o;_;(G |i). We decompose the last two
terms as A; + A,. It follows that

n
(3-26) B+Ay=>_ > o1 1(Gli)(=8w?hi, 15, + 8wunhighjnhija
a=1ieG,jeB 21212
— 2uphy — 2uphiih’,)

=-2>" > ok 1(Gli)Unhija —2whigh )’

a=1ieG,jeB
— 201 (G)a1 (G) D_h3,.
jeB
Combining (3-25) with (3-26), we finally get
(2T VUl Loy = ox (G) (42 D Hjj = 6wty > hjuH
JjeB jeB

+Gul +6wHH D hﬁn)

n jeB
—2>" > o1 (Gl unhijo

a=1ieG,jeB
—2whighn)* = 2u300(G)1(G) D I3,
" jeB
—0k-1(G) D D (unhija — 2whyjhia)”.
a=11i,jeB
Then, for H = — f(X, N), the structure conditions on f is
(3-28) —u fij + 6winhyj fj — (6 —3up) fh,; <0 for each j € B,

where we have used w? + u,zl = 1. Now we can use the following formulas to get
the structure condition on f. Following Guan, Lin, and Ma [Guan et al. 2006], we
have foreachi € {1,2, ..., n}

n+1
fi = Z fXAeiA + fe,H] (en-‘rl)ia
A=1
(3_29) n+1 n+1 n+1
fi= D fraxcelel + D XE+2D ) fraeniel (nsr)i
A,C=1 A=1 A=1

+ fenirsenir @i 1)i(€ns1)i + fery (€ns1)ii-
For example, if f(X, N) = f(X), then f satisfies

(3-30) 3(1—up) f7 <Q@—up) ffji
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and f > 0. Since 0 < u2 < 1, we reduce the structure conditions on f to
(3-31) f>0 and 3fj2§2ffjj for all j € B.
So the structure conditions is f > 0 and the matrix

02 of @
2f i 3 f of
0XA0Xp ~0X40Xp

is positive semidefinite, where 1 < A, B <n-+1. Clearly (3-27) implies (3-4) under
these conditions, which proves the case in which k > 0.

In case k =0, only A; appears in (3-25), so this obviously finishes the proof of
Theorem 1.2. U
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