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A CONSTANT RANK THEOREM FOR LEVEL SETS OF
IMMERSED HYPERSURFACES IN Rn+1 WITH PRESCRIBED

MEAN CURVATURE

CHANGQING HU, XI-NAN MA AND QIANZHONG OU

We prove a constant rank theorem on the second fundamental forms of level
sets of immersed hypersurfaces in Rn+1 with prescribed mean curvature.

1. Introduction

Constant rank theorems have been a powerful tool in the study of convex solu-
tions to partial differential equations. Caffarelli and Friedman [1985] first proved
a constant rank theorem on solutions to a class of semilinear elliptic PDEs in two
dimensions and hence proved the strict convexity of the solutions. Singer, Wong,
Yau and Yau explored a similar idea [Singer et al. 1985]. Korevaar and Lewis
[1987] extended Caffarelli and Friedman’s results to the n-dimensional case. In
the last decade, the constant rank theorem has been extended to fully nonlinear
elliptic PDEs [Guan and Ma 2003; Caffarelli et al. 2007; Guan et al. 2006]; these
authors found important applications for it in some geometric problems. For the
convexity of level sets, Korevaar proved a constant rank theorem:

Theorem 1.1 [Korevaar 1990]. Let� be a connected domain in Rn . Let u ∈C4(�)

solve

(1-1) Lu := A
(
1u−

ui u j

|∇u|2
ui j

)
+ B

( ui u j

|∇u|2
ui j

)
= f (u, |∇u|),

where A, B, f are C2 functions of u, and µ := |∇u|. These satisfy the structure
conditions

(i) (
√

A/B )µµ ≥ 0, and

(ii) ( f (u, µ)/Bµ2)µµ ≤ 0.
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Suppose that |∇u| 6= 0 and that u has convex level sets {x ∈� | u(x)≤ c}. Then
all the level sets of u have second fundamental forms with (the same) constant rank
throughout �.

The equations in Theorem 1.1 include p-Laplacian equations and mean curva-
ture equations as special cases. In these cases we respectively take

A = µp−2, B = (p− 1)µp−2 and A = 1√
1+µ2

, B = 1
(1+µ2)3/2

.

Korevaar [1990] used this theorem to prove some interesting results on the con-
vexity of the level sets of solutions to elliptic PDEs. Recently, Xu [2008] gener-
alized Theorem 1.1 to the case where the function f in (1-1) also depends on the
coordinate variable x , and accordingly the structure condition (ii) turns into

µ3 f (x, u, 1/µ)
B(u, 1/µ)

is convex in (x, µ).

In this paper, we will prove an analogous result on a class of immersed hyper-
surfaces in Rn+1 with prescribed mean curvature.

Let Mn be a smooth immersed hypersurface in Rn+1, and let X : M→Rn+1 be
the immersion satisfying

(1-2) H =− f (X, N ),

where H and N are respectively the mean curvature and unit normal vectors of Mn

at X , and f is a smooth function in Rn+1
× Rn+1. Let ξ be a fixed unit vector

in Rn+1. Then the height function of Mn corresponding to ξ can be expressed as
u(X)=〈X, ξ〉; here 〈 · , · 〉means the usual Euclidean inner product in Rn+1. Now,
the level set of Mn corresponding to ξ with height c is defined as

(1-3) 6c = {X ∈ Mn
| u(X)= c}.

Suppose u has no critical point on Mn . Then 6c can be considered as a hyper-
surface in the hyperplane 5= {X ∈ Rn+1

| 〈X, ξ〉 = c}.
With the above notations, our constant rank theorem on the level sets of an

immersed hypersurface with prescribed mean curvature can be stated as follows:

Theorem 1.2. Let Mn be an immersed hypersurface in Rn+1 whose mean curva-
ture satisfies (1-2). Assume that the height function u of Mn corresponding to ξ
has no critical point, and that the level sets are all locally convex with respect to
the normal direction −Du, that is, their second fundamental forms are positive
semidefinite. Then the second fundamental forms of all the level sets have (the
same) constant rank, provided f (X, N )= f (X)≥ 0 and the matrix

(1-4) 2 f
∂2 f

∂X A∂X B
− 3

∂ f
∂X A

∂ f
∂X B
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is positive semidefinite, where 1 ≤ A, B ≤ n + 1. In other words, when f is a
positive function, the condition (1-4) simply means that f −1/2 is a concave function
in Rn+1.

Remark 1.3. For the more general case where H = − f (X, N ) as in (1-2), by
(3-28) and (3-29) in Section 3, we still can choose the structure conditions on f
to ensure the result of Theorem 1.2. For example, if f (X, N ) = 〈ξ, N 〉β with
〈ξ, N 〉> 0 on Mn , then the structure condition is β ≥ 1 or β ≤ 0.

Remark 1.4. Throughout, we adapt these conventions: The hypersurface Mn is
orientable. We choose the unit normal vector field N so that it represents the
orientation of Mn . The unit vector field normal to the level set 6c is obtained by
projecting N onto the hyperplane 5= {X ∈ Rn+1

| 〈X, ξ〉 = c}.

When do the solutions of elliptic PDEs have convex level sets? Gabriel [1957]
proved that the level sets of the Green function on a 3-dimensional convex domain
are strictly convex. Lewis [1977] extended Gabriel’s result to p-harmonic functions
in higher dimensions. Caffarelli and Spruck [1982] generalized Lewis’s result to
a class of semilinear elliptic PDEs. For recent progress, see [Colesanti and Salani
2003] and [Cuoghi and Salani 2006]. The constant rank theorem is an important
step for the concrete convexity theorem, since one can use it to prove strict con-
vexity results, as in, for example, [Korevaar 1990]. In practice, one always runs
into difficulty at the critical points of the solution (or height functions in our case).
In some sense our constant rank theorem is only a local and intermediate result.

In Section 2, we will give a formula for the curvatures of the level sets of an
immersed hypersurface in Rn+1. We prove it by the method of moving frames. We
prove our main result, Theorem 1.2, in Section 3 using a calculation similar to the
one in [Xu 2008].

2. Formulas of curvature of level sets

For a C2 function u defined in a n-dimensional domain � in Rn , let κ1, . . . , κn−1

be the principal curvatures of the level sets of u with respect to the normal direction
−Du. Then the k-th curvature of the level sets, denoted by Lk , is the k-th elemen-
tary symmetric function of κ1, . . . , κn−1. Clearly, L1 and Ln−1 are respectively the
mean curvature and Gauss curvature of the level sets. If u has no critical point,
that is, |∇u| 6= 0, then Trudinger [1997] (see also [Gilbarg and Trudinger 1977])
expressed Lk as

(2-1) Lk =
∂σk+1(D2u)

∂ui j
ui u j |∇u|−k−2,

where we use summation convention for repeated indices, and where σk(D2u) is
the k-th elementary symmetric function of the eigenvalues of the Hessian (D2u).
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There is an formula analogous to (2-1) on hypersurfaces in Rn+1:

Proposition 2.1. Let Mn be a smoothly immersed hypersurface in Rn+1. Let u be
its height function and 6c one of its level sets, with respect to a fixed unit vector ξ ,
as given in the last section. Then the k-th curvature of the level set 6c with respect
to −Du is

(2-2) Lk =
∂σk+1(B)
∂hi j

ui u j |∇u|−(k+2).

Here B= (hi j ) is the second fundamental form of Mn , σk(B) is the k-th elementary
symmetric function of the eigenvalues of B, and ui for 1≤ i ≤ n are the first order
covariant derivatives of u computed in any orthonormal frame field on Mn .

Huang [1992] gave the formula (2-2) for n = 2. Here we give a complete proof
by using moving frames. In this section, indices will run from 1 to n − 1 when
lower case and Greek; Latin indices will run from 1 to n when lower case and from
1 to n+ 1 when upper case.

For an orthonormal frame field {X; eA} in Rn+1, we have

(2-3) d X = ωAeA and deA = ωA,BeB,

where {ωA} is the dual frame of {eA}, and {ωA,B} are connection forms. Then the
structure equations read as

(2-4) dωA = ωA,B ∧ωB and dωA,B = ωA,C ∧ωC,B .

If we choose en+1 to be the unit normal vector field N of Mn , then ωn+1 = 0
on Mn , and hence by (2-4)

(2-5) ωn+1,i ∧ωi = 0.

Then Cartan’s lemma implies ωn+1,i = hi jω j and hi j = h j i , where B = (hi j ) is
the second fundamental form of Mn .

Proof of Proposition 2.1. First, we check that the right side of (2-2) is independent
of the choice of the frame fields {X; ei } on Mn . Then we can just prove (2-2) in a
special frame field.

Suppose {X; ēi } is another frame field on Mn . Then there is an orthogonal
transformation T such that (ē1, . . . , ēn)= (e1, . . . , en)T . Then

(2-6) (u1, . . . , un)= (u1, . . . , un)T,

where ∇u = ui ei = ui ēi is the gradient of u. Also, for the dual frame field and the
connection forms we have

(ω1, . . . , ωn)= (ω1, . . . , ωn)T,

(ω1,n+1, . . . , ωn,n+1)= (ω1,n+1, . . . , ωn,n+1)T .
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Furthermore, for the second fundamental form we have

(2-7) B = T−1 BT .

Obviously σk(B) and |∇u| are invariant under the transformation T . Then the
following equalities show that the right side of (2-2) is independent of the choice
of {e1, . . . , en}:

(2-8)
∂σk(B)
∂hi j

ui u j =
∂σk(B)
∂ h̄ml

∂ h̄ml

∂hi j
ui u j =

∂σk(B)
∂ h̄ml

∂(T mph pq Tql)

∂hi j
ui u j

=
∂σk(B)
∂ h̄ml

T mi T jlui u j =
∂σk(B)
∂ h̄ml

Timui T jlu j =
∂σk(B)
∂ h̄ml

umul .

Now we adapt the frame field above so that along the level set 6c, the eα are its
tangential vectors. Furthermore, we choose another frame field ẽA in Rn+1 so that
ẽn+1 = ξ and ẽα = eα, and so that ẽn lies in the hyperplane 5 and is normal to 6c

with the same direction of the projection of en+1 = N on 5. With respect to this
frame field, the structure equations of 6c are

(2-9) dω̃i = ω̃i, j ∧ ω̃ j and dω̃i j = ω̃i,l ∧ ω̃l, j .

On 6c, we have ω̃n = 0, which implies

(2-10) ω̃n,α = h̃αβω̃β and h̃αβ = h̃βα,

where h̃αβ is the second fundamental form of 6c in 5 (with respect to the unit
normal ẽn).

Clearly en, en+1 and ẽn, ẽn+1 are in the same 2-plane perpendicular to the eα.
Let φ be the angle between en and ẽn . Then we have

(2-11) ẽn = encosφ+ en+1 sinφ and ẽn+1 =−ẽnsinφ+ en+1 cosφ.

Accordingly,

(2-12) ω̃n=ωn cosφ+ωn+1 sinφ, ω̃n+1=−ωn sinφ+ωn+1 cosφ, ω̃α=ωα.

Taking the exterior derivative of (2-12), and using (2-4) and (2-12) again, we
get

(2-13)
dω̃n = (dφ+ωn,n+1)∧ ω̃n+1+ ((cosφ)ωn,α + (sinφ)ωn+1,n)∧ωα,

dω̃n+1 = (−dφ+ωn+1,n)∧ ω̃n + ((cosφ)ωn+1,α − (sinφ)ωn,α)∧ωα.

Notice that ω̃n = ω̃n+1 = 0 on 6c. Comparing (2-13) with (2-9), we have

(2-14)
ω̃n,α = (cosφ)ωn,α + (sinφ)ωn+1,α,

ω̃n+1,α = (− sinφ)ωn,α + (cosφ)ωn+1,α.
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On the other hand, 〈ẽα, ξ〉 = 0 on 6c, and since d(〈ẽα, ξ〉) = 〈ω̃α,AẽA, ξ〉, we
have ω̃α,n+1 = 0. This together with (2-14) implies

(2-15)
ω̃n,α =

cos2 φ

sinφ
ωn+1,α + (sinφ)ωn+1,α

=
1

sinφ
ωn+1,α =

1
sinφ

(hαβωβ + hαnωn).

Combining this with (2-10) gives

(2-16) h̃αβ =
1

sinφ
hαβ and hα,n = 0.

From the definition of the height function u, we can see ui = ei (〈X, ξ〉)=〈ei , ξ〉;
in particular, un = 〈en, ξ〉. Note that ẽn+1= ξ , hence the second equation of (2-11)
implies un =− sinφ and 〈ξ, en+1〉 = cosφ. By the decomposition

ξ =

n∑
1

〈ξ, ei 〉ei +〈ξ, en+1〉en+1

we deduce that 1 = |∇u|2+ cos2 φ and therefore |∇u| = ± sinφ. With en chosen
suitably we may assume sinφ > 0. Then (2-16) becomes

(2-17) h̃αβ =
1
|∇u|

hαβ and hαn = 0.

From this one can easily see that

(2-18)
Lk = σk(h̃αβ)=

1
|∇u|k

σk(hαβ)

=
1

|∇u|k+2

∂σk+1(B)
∂hnn

unun =
∂σk+1(B)
∂hi j

ui u j |∇u|−(k+2),

where we have used |un| = |∇u|. �

3. Proof of Theorem 1.2

We adapt the notations in Section 2, and collect these formulas for convenience:

(3-1)

X i = ei ,

X i j =−hi j en+1 (Gauss formula),

en+1,i = hi j e j (Weingarten formula),

hi jk = hik j (Codazzi equation),

Ri jkl = hikh jl − hilh jk (Gauss equation),

hi jkl = hi jlk + him Rmjkl + h jm Rmikl,
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and for the smooth function u on Mn we also have the Ricci identity

ui jk = uik j + um Rmi jk,

where Ri jkl is the Riemann curvature tensor, and as for the rest of this section,
repeated indices are summed from 1 to n, unless otherwise stated.

Proof of Theorem 1.2. Suppose the second fundamental forms of the level sets
of Mn take the minimum rank k with k ≤ n− 2 at a point P ∈ Mn . We will treat
the case k > 0 first, and then show how to modify the argument for the case k = 0.
With the assumption that the level sets are all locally convex, we find easily that

(3-2)
Lr (P)= 0 for all r > k,

Lr (P) > 0 for all r ≤ k,

and moreover

(3-3)

Z := {X ∈ Mn
| the second fundamental form

of the level sets of Mn has rank k at X}

= {X ∈ Mn
| Lk+1(X)= 0}.

Obviously Z is a closed set in Mn . If we can show that Z is also open in Mn —
that is, that there is a neighborhood UP of P in Mn such that Lk+1 ≡ 0 on UP —
then Z = Mn , which is the result in the theorem.

Now Lk+1(P) = 0 = minX∈Mn Lk+1(X), so by the strong maximum principle,
we need only to show that

(3-4) 1Lk+1(X)≤ 0 mod {Lk+1(X),∇Lk+1(X)} in UP ,

where we modify the terms of Lk+1 and its first derivatives, coefficients are locally
bounded, and 1 is the Beltrami–Laplace operator on Mn .

For the rest of this section, define

W := (hi j ) with i, j ≤ n− 1, L := Lk+1, F := σk+2(B),

and

F i j
:=

∂F
∂hi j

, F i j,rs
:=

∂2 F
∂hi j∂hrs

, F i j,rs,pq
:=

∂3 F
∂hi j∂hrs∂h pq

.

Hence, by (2-2),

(3-5) |∇u|k+3L = F i j ui u j .

Taking the covariant derivative of this, we get

(3-6)
(|∇u|k+3L)α = |∇u|k+3Lα + (|∇u|k+3)αL ,

(F i j ui u j )α = F i j,rshrsαui u j + 2F i j uiαu j .
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Taking the covariant derivative again, we get

(3-7)

(|∇u|k+3L)αα = |∇u|k+3Lαα + 2(|∇u|k+3)αLα + (|∇u|k+3)ααL ,

(F i j ui u j )αα = F i j,rs,pqh pqαhrsαui u j + F i j,rshrsααui u j

+ 4F i j,rshrsαuiαu j + 2F i j uiααu j + 2F i j uiαu jα.

For a fixed point X0 in UP , choose a frame {e1, . . . , en} such that ui through un−1

vanish, |un| = |∇u|> 0, the form W is diagonal, and h11 ≥ h22 ≥ · · · ≥ hn−1,n−1.
Then by (3-2) we see that with UP small enough

(3-8)
hrr (X0)= 0 mod {L(X0),∇L(X0)} for all r > k,

hrr (X0) > ε > 0 mod {L(X0),∇L(X0)} for all r ≤ k,

where ε is a positive sufficiently small number (maybe depending on UP ).
In the following, all the calculations will be done at X0, and the terms of L(X0)

and ∇L(X0) will be dropped, that is, all the equalities or inequalities should be
understood mod{L(X0),∇L(X0)}.

Denote G := {h11, . . . , hkk} and B := {hk+1,k+1, . . . , hn−1,n−1}. Use the same
symbols for G := {1, . . . , k} and B := {k+1, . . . , n−1} (it won’t cause confusion).

Now, by L(P)= 0=minX∈Mn L(X) we get

(3-9) 0= (|∇u|k+3L)α = (F i j ui u j )α = F i j,rshrsαui u j + 2F i j uiαu j

= u2
n Fnn,rr hrrα + 2un F inuiα

= u2
nσk(G)

∑
r∈B hrrα + 2un Fnnunα + 2un

∑n−1
i=1 F inuiα

= u2
nσk(G)

∑
r∈B hrrα − 2unσk(G)

∑
i∈B hni uiα.

Clearly

(3-10)

ui = 〈X, ξ〉i = 〈X i , ξ〉 = 〈ei , ξ〉,

ui j = 〈X i j , ξ〉 = −〈hi j N , ξ〉 := hi jw,

where w =−〈N , ξ〉 = ±
√

1− |∇u|2.
Substituting (3-10) into (3-9), using (3-8), and noting that W is diagonal, we

deduce

(3-11)

∑
i∈B hi iα = 0 for all α < n,

un
∑

i∈B hi in = 2
∑

i∈B h2
niw.

By (3-7) we have

(|∇u|k+3L)αα = |∇u|k+3Lαα + 2(|∇u|k+3)αLα + (|∇u|k+3)ααL = (F i j ui u j )αα.
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That is,

(3-12) |∇u|k+3Lαα = F i j,rs,pqh pqαhrsαui u j + F i j,rshrsααui u j

+ 4F i j,rshrsαuiαu j + 2F i j uiααu j + 2F i j uiαu jα

= u2
n Fnn,rs,pqh pqαhrsα + u2

n Fnn,rshrsαα

+ 4un F in,rshrsαuiα + 2un F inuiαα + 2F i j uiαu jα,

which we decompose as I+ II+ III+ IV , where

(3-13)
I := u2

n Fnn,rs,pqh pqαhrsα, II := 4un F in,rshrsαuiα,

III := u2
n Fnn,rshrsαα + 2un F inuiαα, IV := 2F i j uiαu jα.

Next we will compute the above terms step by step. First

(3-14)
I := u2

n Fnn,rs,pqh pqαhrsα

= u2
n Fnn,rr,sshrrαhssα + u2

n Fnn,rs,sr hrsαhsrα=: I1+ I2,

and

(3-15)

I1 := u2
n Fnn,rr,sshrrαhssα

= 2u2
n

∑
r∈G,s∈B

Fnn,rr,sshrrαhssα + u2
n

∑
r,s∈B

Fnn,rr,sshrrαhssα

= 2u2
n

∑
r∈G,s∈B

σk−1(G |r)hrrαhssα + u2
nσk−1(G)

∑
r,s∈B,r 6=s

hrrαhssα,

where here and below we use the notation σk−1(G |r) := σk−1(G\{hrr }) and the
convention σ0 = 1. Substituting (3-11) into (3-15) yields

I1 = 2u2
n

∑
r∈G,s∈B

σk−1(G |r)hrrαhssα + u2
nσk−1(G)

∑
r∈B

hrrα

(∑
s∈B

hssα − hrrα

)

= 4wun

∑
s∈B

h2
sn

∑
r∈G

σk−1(G |r)hrrn − u2
nσk−1(G)

n∑
α=1

∑
r∈B

h2
rrα

+ 4w2σk−1(G)
(∑

s∈B

h2
sn

)2
.

For the remaining term in (3-14), we have

I2 = 2u2
n

∑
r∈G,s∈B

Fnn,rs,sr hrsαhsrα + u2
n

∑
r,s∈B

Fnn,rs,sr hrsαhsrα

=−2u2
n

n∑
α=1

∑
r∈G,s∈B

σk−1(G |r)h2
rsα − u2

nσk−1(G)
n∑
α=1

∑
r,s∈B,r 6=s

h2
rsα.
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So for the first term in (3-13) we have

(3-16) I = 4wun

∑
i∈G, j∈B

σk−1(G |i)hi inh2
jn − 2u2

n

n∑
α=1

∑
i∈G, j∈B

σk−1(G |i)h2
i jα

+ 4w2σk−1(G)
(∑

j∈B

h2
jn

)2
− u2

nσk−1(G)
n∑
α=1

∑
i, j∈B

h2
i jα.

To compute the second term in (3-13), first we have by using (3-10)

(3-17) II = 4wun F in,rshrsαhiα

= 4wun Fnn,rshrsαhnα + 4wun

n−1∑
i=1

F in,ni hniαhiα

+ 4wun

n−1∑
i, j=1

F in, j i h j iαhiα + 4wun

n−1∑
i=1

F in,rr hrrαhiα.

We decompose the last four terms as II1+ II2+ II3+ II4. By (3-11), the first can
be treated as

II1 = 4wun Fnn,rr hrrαhnα = 4wunσk(G)
∑
r∈B

hrrαhnα

= 4wunσk(G)
∑
r∈B

hrrnhnn = 8w2σk(G)hnn

∑
r∈B

h2
rn.

For the second and the third terms, straightforward calculations show that

(3-18) II2 =−4wunσk(G)
∑
i∈B

hniαhiα =−4wunσk(G)
∑
i∈B

hnni hin,

and

(3-19) II3 = 4wun

∑
i, j∈B

F in, j i h j iαhiα

+ 4wun

∑
i∈G, j∈B

F in, j i h j iαhiα + 4wun

∑
j∈G,i∈B

F in, j i h j iαhiα

= 4wunσk−1(G)
∑

i, j∈B,i 6= j

h jnhi jnhin + 4wun

∑
i∈G, j∈B

σk−1(G |i)hnj h j iαhiα

+ 4wun

∑
i∈G, j∈B

σk−1(G |i)hni hi jnh jn.
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Again by (3-11), the fourth term can be treated as

II4 = 4wun

∑
i,r∈B

F in,rr hrrαhiα + 4wun

∑
i∈G,r∈B

F in,rr hrrαhiα

+ 4wun

∑
r∈G,i∈B

F in,rr hrrαhiα

=−4wunσk−1(G)
∑

i,r∈B,i 6=r

hinhrrαhiα − 4wun

∑
i∈G,r∈B

σk−1(G |i)hni hrrαhiα

− 4wun

∑
r∈G,i∈B

σk−1(G |r)hni hrrαhiα

=−4wunσk−1(G)
∑

i,r∈B,i 6=r

h2
inhrrn − 4wun

∑
i∈G,r∈B

σk−1(G |i)hni hrri hi i

− 4wun

∑
i∈G,r∈B

σk−1(G |i)h2
ni hrrn − 4wun

∑
r∈G,i∈B

σk−1(G |r)h2
ni hrrn

=−4wunσk−1(G)
∑
i∈B

h2
in

(∑
r∈B

hrrn − hi in

)
− 4wun

∑
i∈G

σk−1(G |i)hi i hni

∑
r∈B

hrri − 4wun

∑
i∈G

σk−1(G |i)h2
ni

∑
r∈B

hrrn

− 4wun

∑
r∈G,i∈B

σk−1(G |r)h2
ni hrrn

= 4wunσk−1(G)
∑
i∈B

h2
inhi in − 8w2σk−1(G)

(∑
i∈B

h2
in

)2

− 8w2
∑

i∈G,r∈B

σk−1(G |i)h2
inh2

rn − 4wun

∑
i∈B

h2
ni

∑
r∈G

σk−1(G |r)hrrn.

It follows that

(3-20) II = 8w2σk(G)hnn

∑
j∈B

h2
nj − 4wunσk(G)

∑
j∈B

hnnj hnj

− 8w2
∑

i∈G, j∈B

σk−1(G |i)h2
inh2

jn − 4wun

∑
i∈G, j∈B

σk−1(G |i)h2
nj hi in

+ 4wun

∑
i∈G, j∈B

σk−1(G |i)hiαh jnhi jα + 4wun

∑
i∈G, j∈B

σk−1(G |i)hni hnj hi jn

+ 4wunσk−1(G)
∑

i, j∈B,i 6= j

hni hnj hi jn + 4wunσk−1(G)
∑
j∈B

h2
nj h j jn

− 8w2σk−1(G)
(∑

j∈B

h2
nj

)2
.
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Now we deal with the third term in (3-13):

(3-21)

III := u2
n Fnn,rshrsαα + 2un F inuiαα

= u2
n Fnn,rr hrrαα + 2un Fnnunαα + 2un

n−1∑
i=1

F inuiαα.

We decompose the last three terms as III1+III2+III3. Using the exchange formula
in (3-1), we can calculate

III1 = u2
nσk(G)

∑
r∈B

hrrαα

= u2
nσk(G)

∑
r∈B

(hrααr + hrm Rmαrα + hαm Rmrrα)

= u2
nσk(G)

∑
r∈B

hααrr

+ u2
nσk(G)

∑
r∈B

(hrm(hmr hαα − hmαhαr )+ hαm(hmr hrα − hmαhrr ))

= u2
nσk(G)

∑
r∈B

Hrr + u2
nσk(G)

∑
r∈B

(Hhrmhmr − hrr hmαhαm)

= u2
nσk(G)

∑
j∈B

H j j + u2
n Hσk(G)

∑
j∈B

h2
jn,

and III2 = 2unσk+1(W )unαα = 0. For the third term, we have

III3 =−2unσk(G)
∑
i∈B

hinuiαα

=−2unσk(G)
∑
i∈B

hin(uααi + um Rαmαi )

=−2unσk(G)
∑
i∈B

hin(Hw)i − 2unσk(G)
∑
i∈B

hinum(hααhmi − hαi hmα)

=−2unσk(G)
∑
i∈B

hin(Hiw− Hhi j u j )

− 2u2
nσk(G)

∑
i∈B

h2
in H + 2u2

nσk(G)
∑
i∈B

h2
inhnn

=−2wunσk(G)
∑
j∈B

hin H j + 2u2
nσk(G)hnn

∑
j∈B

h2
jn.

We have used in the calculations above that

wi =−〈N , ξ〉i =−〈Ni , ξ〉 = −〈hi j e j , ξ〉 = −hi j u j .
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Substituting our results for III1, III2, and III3 into (3-21) yields

(3-22) III = u2
nσk(G)

∑
j∈B

H j j + u2
nσk(G)H

∑
j∈B

h2
jn

− 2wunσk(G)
∑
j∈B

h jn H j + 2u2
nσk(G)hnn

∑
j∈B

h2
jn.

We decompose the final term in (3-13) as IV1+ IV2+ IV3+ IV4 by

IV := 2F i j uiαu jα

= 2Fnnunαunα + 4
n−1∑
i=1

F inuiαunα + 2
n−1∑
i=1

F i i uiαuiα + 2
n−1∑

i, j=1
i 6= j

F i j uiαu jα

It follows that IV1 = 2Fnnunαunα = 2σk+1(W )unαunα = 0, and

(3-23) IV2 =−4
n−1∑
i=1

σk(W |i)hinuiαunα =−4σk(G)
∑
i∈B

hinuiαunα

=−4w2σk(G)
∑
i∈B

h2
inhnn.

For the last two terms, we have

IV3 = 2
∑
i∈G

F i i uiαuiα + 2
∑
i∈B

F i i uiαuiα

=−2
∑

i∈G, j∈B

σk−1(G |i)h2
jnuiαuiα + 2σk(G)

∑
i∈B

hnnuiαuiα

− 2
∑

i, j∈B,i 6= j

σk(G)h2
jnuiαuiα − 2

∑
j∈G,i∈B

σk−1(G | j)h2
jnuiαuiα

=−2w2
∑

i∈G, j∈B

σk−1(G |i)h2
jnh2

i i − 2w2
∑

i∈G, j∈B

σk−1(G |i)h2
jnh2

in

+ 2w2σk(G)
∑
i∈B

hnnh2
in − 2w2σk−1(G)

∑
i, j∈B,i 6= j

h2
inh2

jn

− 2w2
∑

j∈G,i∈B

σk−1(G | j)h2
jnh2

in

=−2w2
∑

i∈G, j∈B

σk−1(G |i)h2
i i h

2
jn − 4w2

∑
i∈G, j∈B

σk−1(G |i)h2
inh2

jn

+ 2w2σk(G)
∑
i∈B

hnnh2
in − 2w2σk−1(G)

∑
i, j∈B,i 6= j

h2
inh2

jn,
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and

IV4 = 2
∑

i, j∈G,i 6= j

F i j uiαu jα + 4
∑

i∈G, j∈B

F i j uiαu jα + 2
∑

i, j∈B,i 6= j

F i j uiαu jα

= 0+ 4
∑

i∈G, j∈B

σk−1(G |i)hinh jnuiαu jα + 2σk−1(G)
∑

i, j∈B,i 6= j

hinh jnuiαu jα

= 4w2
∑

i∈G, j∈B

σk−1(G |i)h2
inh2

jn + 2w2σk−1(G)
∑

i, j∈B,i 6= j

h2
inh2

jn.

Our final result for IV is then

(3-24) IV =−2w2σk(G)hnn

∑
j∈B

h2
jn − 2w2

∑
i∈G, j∈B

σk−1(G |i)h2
i i h

2
jn.

Combining (3-16), (3-20), (3-22) and (3-24) with (3-12) we have

(3-25) |∇u|k+3Lαα := I+ II+ III+ IV := A+ B+C,

where

C := σk−1(G)
(

4wun

∑
i, j∈B
i 6= j

hni hnj hi jn + 4wun

∑
j∈B

h2
nj h j jn

− 4w2
(∑

j∈B

h2
nj

)2
− u2

n

n∑
α=1

∑
i, j∈B

h2
i jα

)

=−σk−1(G)
n∑
α=1

∑
i, j∈B

(unhi jα − 2whnj hiα)
2,

and

A := σk(G)
(

u2
n

∑
j∈B

H j j − 2wun

∑
j∈B

h jn H j − 4wun

∑
j∈B

hnnj hnj

+ u2
n H

∑
j∈B

h2
jn + 2u2

nhnn

∑
j∈B

h2
jn + 6w2hnn

∑
j∈B

h2
nj

)

= σk(G)
(

u2
n

∑
j∈B

H j j − 6wun

∑
j∈B

h jn H j + (3u2
n + 6w2)H

∑
j∈B

h2
jn

)
+ σk(G)

(
−(6w2

+ 2u2
n)

∑
i∈G, j∈B

hi i h2
jn + 4wun

∑
i∈G, j∈B

hi i j hnj

)
.
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The summand B is grouped in terms of σk−1(G |i). We decompose the last two
terms as A1+ A2. It follows that

(3-26) B+ A2 =

n∑
α=1

∑
i∈G, j∈B

σk−1(G |i)(−8w2h2
iαh2

jn + 8wunhiαh jnhi jα

− 2u2
nh2

i jα − 2u2
nh2

i i h
2
jn)

=−2
n∑
α=1

∑
i∈G, j∈B

σk−1(G |i)(unhi jα − 2whiαh jn)
2

− 2u2
nσk(G)σ1(G)

∑
j∈B

h2
jn.

Combining (3-25) with (3-26), we finally get

(3-27) |∇u|k+3Lαα = σk(G)
(

u2
n

∑
j∈B

H j j − 6wun

∑
j∈B

h jn H j

+ (3u2
n + 6w2)H

∑
j∈B

h2
jn

)
− 2

n∑
α=1

∑
i∈G, j∈B

σk−1(G |i)(unhi jα

− 2whiαh jn)
2
− 2u2

nσk(G)σ1(G)
∑
j∈B

h2
jn

− σk−1(G)
n∑
α=1

∑
i, j∈B

(unhi jα − 2whnj hiα)
2.

Then, for H =− f (X, N ), the structure conditions on f is

(3-28) −u2
n f j j + 6wunhnj f j − (6− 3u2

n) f h2
nj ≤ 0 for each j ∈ B,

where we have used w2
+ u2

n = 1. Now we can use the following formulas to get
the structure condition on f . Following Guan, Lin, and Ma [Guan et al. 2006], we
have for each i ∈ {1, 2, . . . , n}

(3-29)

fi =

n+1∑
A=1

fX A eA
i + fen+1(en+1)i ,

fi i =

n+1∑
A,C=1

fX A XC eA
i eC

i +

n+1∑
A=1

fX A X A
ii + 2

n+1∑
A=1

fX Aen+1eA
i (en+1)i

+ fen+1,en+1(en+1)i (en+1)i + fen+1(en+1)i i .

For example, if f (X, N )= f (X), then f satisfies

(3-30) 3(1− u2
n) f 2

j ≤ (2− u2
n) f f j j



270 CHANGQING HU, XI-NAN MA AND QIANZHONG OU

and f ≥ 0. Since 0< u2
n ≤ 1, we reduce the structure conditions on f to

(3-31) f ≥ 0 and 3 f 2
j ≤ 2 f f j j for all j ∈ B.

So the structure conditions is f ≥ 0 and the matrix

2 f
∂2 f

∂X A∂X B
− 3

∂ f
∂X A

∂ f
∂X B

is positive semidefinite, where 1≤ A, B≤n+1. Clearly (3-27) implies (3-4) under
these conditions, which proves the case in which k > 0.

In case k = 0, only A1 appears in (3-25), so this obviously finishes the proof of
Theorem 1.2. �
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