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SYMPLECTIC SUPERCUSPIDAL REPRESENTATIONS OF
GL(2n) OVER p-ADIC FIELDS

DIHUA JIANG, CHUFENG NIEN AND YUJUN QIN

This is part two of the authors’ work on supercuspidal representations of
GL(2n) over p-adic fields. We consider the complete relations among the
local theta correspondence, local Langlands transfer, and the local descent
attached to a given irreducible symplectic supercuspidal representation of
p-adic GL2n. This is the natural extension of the work of Ginzburg, Rallis
and Soudry and of Jiang and Soudry on the local descents and the local
Langlands transfers. The approach undertaken in this paper is purely local.
A mixed approach with both local and global methods, which works for
more general classical groups, has been considered by Jiang and Soudry.

1. Introduction

Let F be a p-adic local field of characteristic zero. Let τ be an irreducible unitary
supercuspidal representation of GL2n(F). By the local Langlands conjecture for
GL2n(F), which is now a theorem of Harris and Taylor [2001] and of Henniart
[2000], there exists an irreducible admissible 2n-dimensional representation φ of
the local Weil group WF, that is, the local Langlands parameter

φ :WF→ GL2n(C),

corresponding to τ with a set of required conditions. We say that τ is of symplectic
type if the image φ(WF) is contained in the symplectic subgroup Sp2n(C) of the
complex dual group GL2n(C) of GL2n(F).

Because of their deep connection with Galois representations, symplectic su-
percuspidal representations (or more importantly cuspidal automorphic representa-
tions) have recently received much attention; see for instance [Ginzburg et al. 2004;
Chenevier and Clozel 2009]. The symplectic irreducible unitary supercuspidal
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representations of GL2n(F) were characterized in [Shahidi 1990; 1992; Jacquet
and Rallis 1996; Ginzburg et al. 1999; Jiang and Soudry 2003; 2004; Jiang and
Qin 2007; Jiang et al. 2008] and were discussed in detail in [Jiang et al. 2008, Sec-
tion 5]. We state these results as follows; the theorem’s notation and terminology
will explained in Section 2.

Theorem 1.1. Suppose τ is an irreducible unitary supercuspidal representation of
GL2n(F). Then the following are equivalent.

(1) τ is of symplectic type.

(2) The local exterior square L-factor L(s, τ,32) has a pole at s = 0.

(3) The local exterior square γ-factor γ(s, τ,32, ψ) has a pole at s = 1.

(4) τ has a nonzero Shalika model.

(5) The unitarily induced representation ISO4n (s, τ ) of SO4n(F) is reducible at
s = 1. In this case, ISO4n (1, τ ) has the unique Langlands quotient LSO4n (1, τ ),
which has a nonzero generalized Shalika model.

(6) τ is a local Langlands functorial transfer from SO2n+1(F).

(7) τ has a nonzero linear model, that is, a GLn(F)× GLn(F)-invariant func-
tional.

(8) The unitarily induced representation ISp4n (s, τ ) of Sp4n(F) is reducible at
s = 1/2, and ISp4n (1/2, τ ) has the unique Langlands quotient LSp4n (1/2, τ ),
which has a nonzero symplectic linear model, that is, a Sp2n(F)× Sp2n(F)-
invariant functional.

(9) τ is a local Langlands functorial ψ-transfer from S̃p2n(F).

If one of the above holds for τ , then τ is self-dual.

The local Langlands functorial ψ-transfer from an irreducible ψ-generic super-
cuspidal representation π̃ of S̃p2n(F) to the irreducible supercuspidal representa-
tion τ of GL2n(F) is given by the [Ginzburg et al. 1999, corollary of Section 1.5].
The local exterior square L-function and gamma factor are given by the Shahidi
method.

The equivalence of the characterizations in Theorem 1.1 can be explained by
Figure 1. The complex dual groups of SO2n+1(F) and the double metaplectic
cover S̃p2n(F) of Sp2n(F) are the same, namely, Sp2n(C). In Figure 1, the map
θc is the local theta correspondence for the reductive dual pairs (SO4n,Sp4n) and
(SO2n+1, S̃p2n). The map G-G is the local Gelfand–Graev coefficient that takes
representations from SO4n to SO2n+1. The map F-J is the local Fourier–Jacobi
coefficient that takes representations from Sp4n to S̃p2n . The map Lq is the com-
position of the parabolic induction from the standard parabolic subgroups with the
Levi subgroup isomorphic to GL2n in SO4n and Sp4n , and that takes the unique
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Diagram 1

Langlands quotient from the induced representations of SO4n and Sp4n , respec-
tively. It is clear that G-G ◦ Lq and F-J ◦ Lq are the local descents from GL2n to
SO2n+1 and S̃p2n , respectively, in the sense of Ginzburg, Rallis and Soudry. Finally
the map Lt is the local Langlands functorial transfer from SO2n+1 to GL2n and from
S̃p2n to GL2n .

For a given irreducible unitary symplectic supercuspidal representation τ of
GL2n(F), the maps in Figure 1 can be realized as in Figure 2, where notation
is as follows. First, σ is an irreducible generic supercuspidal representation of
SO2n+1(F), which lifts to τ by the local Langlands functorial transfer from SO2n+1

to GL2n , and π̃ is an irreducibleψ-generic supercuspidal representation of S̃p2n(F),

LSO4n (1, τ )

G-G

��

oo θc // LSp4n (1/2, τ )

F-J

��

(A)

(B) τ

Lq

cc

Lq

::

(C)

(D)

σ

Lt

;;

oo
θc

// π̃

Lt

dd

Diagram 2



276 DIHUA JIANG, CHUFENG NIEN AND YUJUN QIN

which lifts to τ by the local Langlands functorialψ-transfer from S̃p2n(F) to GL2n .
Consider the maximal parabolic subgroup P of SO4n with Levi subgroup GL2n .
Then the unitarily parabolic induction ISO4n (1, τ ) has a unique Langlands quo-
tient LSO4n (1, τ ), and similarly the unitarily parabolic induction ISp4n (1/2, τ ) has
a unique Langlands quotient LSp4n (1/2, τ ). Finally, the local Gelfand–Graev coef-
ficient takes LSO4n (1, τ ) from SO4n(F) back to SO2n+1(F) and the local Fourier–
Jacobi coefficient takes LSp4n (1/2, τ ) from Sp4n(F) back to S̃p2n(F), respectively.
Detailed discussion of these maps is found in Section 2.

Theorem 1.2. For an irreducible unitary symplectic supercuspidal representation
τ of GL2n(F), Figure 2 is commutative.

Now we explain the relation between Theorem 1.1 and Theorem 1.2, or the
commutative diagrams Figure 1 and Figure 2.

Jiang and Soudry [2003] proved that for a given irreducible unitary symplectic
supercuspidal representation τ of GL2n(F), there exists uniquely an irreducible
generic supercuspidal representation σ of SO2n+1(F) and an irreducible ψ-generic
supercuspidal representation π̃ of S̃p2n(F), such that the subdiagram (D) is com-
mutative. The local Langlands functorial transfer property for τ is equivalent to
the existence of a pole at s = 0 of the local exterior square L-factor L(s, τ,32),
or equivalently by definition a pole at s = 1 of the local exterior square γ-factor
γ(s, τ,32, ψ). One very interesting point is the characterization in terms of the
existence of a nonzero Shalika model (or functional) or of a nonzero linear model
(or functional), following the idea of relative trace formula approach to the global
Langlands functorial transfers. It was proved in [Jiang et al. 2008] that for an
irreducible unitary supercuspidal representation τ of GL2n(F), the existence of a
nonzero Shalika model for τ is equivalent to the existence of a nonzero linear model
for τ , although this result had been expected for a while. Jacquet and Rallis [1996]
proved that the existence of a nonzero Shalika model for τ implies the existence
of a nonzero linear model for τ .

For an irreducible unitary supercuspidal representation τ of GL2n(F), why does
the existence of a nonzero linear model for τ determine the local Langlands functo-
rial transfer from S̃p2n(F) to GL2n , while the existence of a nonzero Shalika model
for τ determines the local Langlands functorial transfer from SO2n+1 to GL2n? To
answer this, Ginzburg, Rallis, and Soudry [Ginzburg et al. 1999] showed that if an
irreducible unitary supercuspidal representation τ of GL2n(F) has a nonzero linear
model, that is, a nonzero GLn(F)×GLn(F)-invariant functional, then the unique
Langlands quotient LSp4n (1/2, τ ) of the unitarily parabolic induction ISp4n (1/2, τ )
(which is reducible) has a nonzero symplectic linear model, that is, a nonzero
Sp2n(F)×Sp2n(F)-invariant functional. Based on the existence of a nonzero sym-
plectic linear model for LSp4n (1/2, τ ), they show that the ψ-local descent (the
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Fourier–Jacobi ψ-functor in this case) yields π̃ back to S̃p2n(F). This proves that
the subdiagram (C) is commutative.

The local descent τ 7→ σ from GL2n(F) to SO2n+1(F) was first obtained in
[Jiang and Soudry 2003] by combining the subdiagrams (C) and (D) and by using
the local converse theorem. More recently, Jiang and Soudry (see [Soudry 2008])
obtained the local descent τ 7→σ from GL2n(F) to SO2n+1(F) via the global theory
of the automorphic descent [Ginzburg et al. 2001]. Their method works for other
classical groups as well.

In [Jiang and Qin 2007; Jiang et al. 2008], we began the task of establishing
the local descent τ 7→ σ from GL2n(F) to SO2n+1(F) by using the existence of
a nonzero Shalika model for τ of GL2n(F) and of a nonzero generalized Shalika
model for the Langlands quotient LSO4n (1, τ ) of SO4n(F). We proved by a purely
local argument in [Jiang et al. 2008, Theorem 3.1] that for an irreducible unitary
supercuspidal representation τ of GL2n(F)with a nonzero Shalika model, the local
Gelfand–Graev coefficient (a special type of twisted Jacquet functor) of the Lang-
lands quotient LSO4n (1, τ ) of SO4n(F), which is a representation of SO2r+1(F),
vanishes for all r < n. Here, again using a purely local argument, we show
that for an irreducible unitary supercuspidal representation τ of GL2n(F) with a
nonzero Shalika model, the local Gelfand–Graev coefficient of the Langlands quo-
tient LSO4n (1, τ ) of SO4n(F) to SO2n+1(F) is an irreducible generic supercuspidal
representation of SO2n+1(F); this, Theorem 2.5, is our main result. The proof idea
was suggested by the global argument as in [Ginzburg et al. 2001]. Our proof goes
similarly to the case of symplectic linear models in [Ginzburg et al. 1999], but is
essentially based on the existence and uniqueness of a generalized Shalika model
for the Langlands quotient LSO4n (1, τ ) of SO4n(F). The technical details are of
independent interest, and are found in Sections 3, 4 and 5.

One fact that needs to be shown here is that the local Gelfand–Graev coeffi-
cient on SO2n+1(F) from LSO4n (1, τ ) of SO4n(F) lifts to τ via the local Langlands
functorial transfer. In [Jiang and Soudry 2003; Soudry 2008], a global argument
is used to show that this is the case. However, one would like to prove this by
a purely local argument. One way to do this is to calculate explicitly the local
Rankin–Selberg integral for the tensor product L-functions for SO2n+1×GLr by
using the supercuspidal representation constructed explicitly by the local Gelfand–
Graev coefficient from LSO4n (1, τ ) of SO4n(F) to SO2n+1(F); however we do not
do this here. Hence, the subdiagram (B) is commutative by Theorem 2.5 and the
result in [Jiang and Soudry 2003; Soudry 2008].

Finally, we show that the subdiagram (A) is also commutative by using results of
G. Muic [2006], which show that the Langlands quotient LSO4n (1, τ ) of SO4n(F)

and the Langlands quotient LSp4n (1/2, τ ) of Sp4n(F) correspond to each other via
the local theta correspondence. By combining this with Theorem 1.1, one deduces
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that the generalized Shalika model on SO4n(F) and the symplectic linear model
of Sp4n(F) are related by the local theta correspondence. It would be interesting
to check directly, without using Theorem 1.1, that the local theta correspondence
relates the generalized Shalika model on SO4n(F) and the symplectic linear model
of Sp4n(F).

In future work, we will study the explicit relations between Diagrams 1 and 2
and refined structures of the corresponding local Arthur packets.

2. Main result

We introduce definitions of various models and of the local descent in the case
under consideration, and then state the main result for the local descent.

2.1. Shalika and generalized Shalika models. Let F be a finite extension of the
p-adic number field Qp for some rational prime p. Take the maximal parabolic
subgroup Pn,n = Mn,n Nn,n of GL2n with

Mn,n = GLn ×GLn,

Nn,n =

{
n(X)=

( In X
0 In

)
∈ GL2n

}
.

Let ψ be a nontrivial character of F. Define a character ψNn,n
(n(X))= ψ(tr(X)).

The stabilizer of ψNn,n
in Mn,n is GL1n , the diagonal embedding of GLn into Mn,n .

Denote by
Sn = GL1n oNn,n

the Shalika subgroup. Denote by ψSn
the extension of ψNn,n

from Nn,n to the
Shalika subgroup Sn such that ψSn

is trivial on GL1n . The Shalika functionals of
an irreducible admissible representation (τ, Vτ ) of GL2n(F) are nonzero elements
of the space HomSn(F)(Vτ , ψSn

). By the Frobenius reciprocity

HomSn(F)(Vτ , ψSn
)∼= HomGL2n(F)(Vτ , IndGL2n(F)

Sn(F)
(ψSn

)),

any nonzero Shalika functional `ψ in HomSn(F)(Vτ , ψSn
) gives rise to an embed-

ding
Vτ ↪→ IndGL2n(F)

Sn(F)
(ψSn

),

the image of which is called a local Shalika model of Vτ . Jacquet and Rallis [1996]
(and also Nien [2009] by different argument) proved that the local Shalika model
is unique for any irreducible admissible representation of GL2n(F).

Jiang and Qin [2007] introduced the generalized Shalika model for SO4n(F).
Let ν1 = 1 and inductively define

(2-1) νn =

(
1

νn−1

)
for n ≥ 2 and n ∈ N.
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Let SO4n be the even special orthogonal group attached to the nondegenerate 4n-
dimensional quadratic vector space over F with respect to ν4n . That is,

SO4n = {g ∈ GL4n |
tg · ν4n · g = ν4n}.

Let P2n=M2nV2n be the Siegel parabolic subgroup of SO4n , consisting of elements
of the form

(2-2) (g, X)=
(

g 0
0 g∗

)(
In X

In

)
,

where g ∈ GL2n and g∗ = ν2n
tg−1ν2n , and X satisfies tX =−ν2n Xν2n .

The generalized Shalika group H2n of SO4n is the subgroup of P consisting of
elements (g, X) with g ∈ Sp2n . Here the symplectic group is given by

Sp2n = {g ∈ GL2n |
tg · J2n · g = J2n}, where J2n =

(
νn

−νn

)
for n ∈ N.

Define a character ψH of H2n(F) (we write H = H2n when n is understood) by
letting

ψH((g, X))= ψ(tr(J2n Xν2n))

= ψ(tr((diag(−In, In))X)).

It is well defined. The generalized Shalika functional or ψH-functional of an ir-
reducible admissible representation (σ, Vσ ) of SO4n(F) is a nonzero functional in
the space

HomSO4n(F)(Vσ , IndSO4n(F)
H2n(F)

(ψH))= HomH2n(F)(Vσ , ψH).

Nien [2010] has shown the uniqueness of the generalized Shalika model. Hence
one can use a nonzero generalized Shalika functional to define a generalized Sha-
lika model for σ . To relate the Shalika model on GL2n and the generalized Shalika
model on SO4n , we consider the following parabolic induction.

For an irreducible, unitary, supercuspidal representation (τ, Vτ ) of GL2n(F),
we consider the unitary representation I(s, τ ) of SO4n(F) induced from the Siegel
parabolic subgroup P2n =M2nV2n , where the Levi part M2n is isomorphic to GL2n ,
via the bijection

a ∈ GL2n 7→ m(a) := diag(a, a∗) ∈ M2n.

More precisely, a section φτ,s in I(s, τ ) is a smooth function from SO4n(F) to Vτ
such that

φτ,s(m(a)ng)= |det a|s/2+(2n−1)/2τ(a)φτ,s(g),

where m(a) ∈ M2n with a ∈ GL2n(F) and n ∈ V2n . In other words, one has

I(s, τ )= IndSO4n(F)
P2n(F)

(|det|s/2 · τ).
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In the introduction, we used notation ISO4n (s, τ ) for I(s, τ ) as a reminder that it is
a representation of SO4n . From now on, we simply use the notation I(s, τ ).

The relation between the Shalika model on GL2n and the generalized Shalika
model on SO4n is given by the following theorem.

Theorem 2.2 [Jiang and Qin 2007, Theorem 3.1]. The induced representation
I(s, τ ) admits a nonzero generalized Shalika functional only when s = 1. In that
case, I(1, τ ) admits a nonzero generalized Shalika functional if and only if the su-
percuspidal datum τ admits a nonzero Shalika functional. The generalized Shalika
functionals of I(1, τ ) are unique up to scalar, and if nonzero, they must factor
through the unique Langlands quotient L(1, τ ).

Again from now on we simply use L(1, τ ) rather than LSO4n (1, τ ).

2.3. A family of degenerate Whittaker models. Degenerate Whittaker models for
a reductive group G can be defined for any given nilpotent orbit in the Lie algebra g

of G; see [Mœglin and Waldspurger 1987]. Here, we consider a family of nilpotent
orbits O2n,2n−k of SO4n corresponding to a family of partitions [2(2n−k)+1, 12k−1

]

for k = 1, 2, . . . , 2n. This family of degenerate Whittaker models on SO4n(F) was
considered in [Ginzburg et al. 1997] for construction of automorphic L-functions of
orthogonal groups, and in [Ginzburg et al. 1999] for construction of the Ginzburg–
Rallis–Soudry global descents. We take a family of unipotent subgroups Nk of
SO4n consisting of elements of type

(2-3) n = n(u, b, z)=

u b z
I4n−2k b′

u′

 ∈ SO4n,

where u = (ui, j ) ∈ Uk , the maximal unipotent subgroup of GLk consisting of all
upper triangular unipotent matrices in GLk , the block b= (bi, j ) is the implied size,
and b′ and u′ are determined by b and u so that n belongs to SO4n . We define a
character ψk on Nk by

(2-4) ψk(n) := ψ(u1,2+ · · ·+ uk−1,k)ψ(bk,2n−k + bk,2n−k+1).

When k = 2n − 1, the subgroup Nk coincides with the unipotent radical N of
the Borel subgroup of SO4n , and ψk is the generic character of N . Let π be an
irreducible admissible representation (π, Vπ ) of SO4n(F). Then π has a nonzero
ψk-functional if

(2-5) HomSO4n(F)(Vπ , IndSO4n(F)
Nk(F)

(ψk))∼= HomNk(F)(Vπ , ψk) 6= 0.

In this case, a nonzero element in HomNk(F)(Vπ , ψk) is called a ψk-functional
of Vπ , or more precisely, a ψk-degenerate Whittaker functional of Vπ . For each
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ψk-functional `ψk , we define

(2-6) Wψk ,v(g) := `ψk (π(g)(v)) for v ∈ Vπ ,

which yields a ψk-degenerate Whittaker model (also called an (Nk, ψk)-model)
for Vπ . In particular, when k = 2n − 1, it produces a Whittaker model for Vπ .
Note that the different choices of the representatives in the F-rational points of
the unipotent orbit O2n,k(F) produce different characters for Nk(F), and hence
different degenerate Whittaker models. However, the centralizers are all isomor-
phic, which is the F-split SO4n−2k−1(F). This is different from the case of odd
orthogonal groups considered in [Jiang and Soudry 2007].

We recall the definition of Jacquet functor and module. Fix a closed subgroup
P̃ = Ñ o M̃ of SO4n with unipotent radical Ñ and a character χ on Ñ normalized
by M̃ . Then for a representation (Vπ , π) of SO4n(F), its Jacquet module with
respect to (Ñ , χ) is defined by

J{Ñ , χ}(π)= Vσ/Span{σ(n)v−χ(n)v | n ∈ Ñ , v ∈ Vπ },

viewed as a representation of M̃ . We call J{Ñ , χ} the Jacquet functor with re-
spect to (Ñ , χ). We write J{Ñ } for J{Ñ , χ} when χ is trivial. For the family
of ψk-degenerate Whittaker models, we abbreviate the corresponding family of
ψk-twisted Jacquet modules by

(2-7) J{ψk}(Vπ ) := J{Nk, ψk}(Vπ ),

viewed as a representation of SO4n−2k−1(F).

Theorem 2.4 [Jiang et al. 2008, Theorem 3.1]. Suppose (π, Vπ ) is an irreducible
admissible representation of SO4n(F). If π has a nonzero generalized Shalika
model, then the ψk-twisted Jacquet modules J{ψk}(Vπ ) are all zero for n≤ k ≤ 2n.

For an irreducible unitary supercuspidal representation τ of GL2n(F) with a
nonzero Shalika model, we apply the family of the ψk-twisted Jacquet functors to
the Langlands quotient L(1, τ ). By Theorem 2.4, the first interesting representation
we get from L(1, τ ) is at k = n− 1, that is,

(2-8) σn−1 = σn−1(τ ) := J{ψn−1}(L(1, τ )),

which is an admissible representation of SO2n+1(F). We call σn−1 the local descent
of τ from GL2n to SO2n+1. The main result of this paper is this:

Theorem 2.5. Suppose τ is an irreducible unitary supercuspidal representation of
GL2n(F) with a nonzero Shalika model. Then its local descent σn−1 is irreducible,
generic, and a supercuspidal representation of SO2n+1(F).
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We prove Theorem 2.5 in Sections 3, 4, and 5. In Section 3, we prove that
the local descent σn−1 as defined in (2-8) is quasisupercuspidal, which means the
(nontwisted) Jacquet module J{N }(σn−1) is trivial for the unipotent radical N of
every standard proper parabolic group of SO2n+1; see Theorem 3.1 for details.
Hence we can write the local descent σn−1 as a direct sum

σn−1 = σ
1
n−1⊕ · · ·⊕ σ

r
n−1⊕ · · · ,

where the σ i
n−1 are irreducible supercuspidal representations of SO2n+1(F). We

show in Theorem 4.1(2) that the local descent σn−1 has a nonzero Whittaker func-
tional, which is unique up to a scalar. Hence among the summands σ i

n−1, one and
only one has a nonzero Whittaker functional, that is, it is generic. Finally, we prove
in Theorem 5.1(2) that every irreducible supercuspidal summand in σn−1 is generic.
This implies that the local descent σn−1 has only one irreducible summand, and
therefore, σn−1 is irreducible, generic, and supercuspidal, proving Theorem 2.5.

3. Supercuspidality of the local descent

We first prove the quasisupercuspidality of σn−1 = σn−1(τ ) = J{ψn−1}(L(1, τ )),
as defined in (2-8) for any irreducible unitary supercuspidal representation τ of
GL2n(F) with a nonzero Shalika model.

We relate any standard Jacquet module of σn−1 to further descent σk of L(1, τ )
with k ≥ n in the tower of the local Gelfand–Graev models for the Langlands
quotient L(1, τ ). Because L(1, τ ) has a nonzero generalized Shalika model, all
standard Jacquet modules of σn−1 must be zero by Theorem 2.4. The same proof
can be used to show that the local descents from L(1, τ ) satisfy the local tower
property as in [Ginzburg et al. 1999], but we omit the details here.

First we have to fix notation. Consider the embedding of elements in SO2k−1

into SO2k , so that the embedding of unipotent elements are described explicitly.
Let n = n(u, b, c) be a unipotent element of SO2k−1 of type

(3-1) n = n(u, b, c)=

u b c
1 b′

u∗

 ∈ SO2k−1

where u is in Uk−1, the maximal upper triangular unipotent subgroup of GLk−1.
Then the embedding of n under the embedding from SO2k−1 into SO2k is given by

(3-2) n 7→ ι(n)=


u b −b c

1 0 −b′

1 b′

u∗

 ∈ SO2k .
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Theorem 3.1. Let τ be an irreducible supercuspidal representation of GL2n(F)

with n≥2, such that L(s, τ,32) has a pole at s=0. Then σn−1=J{ψn−1}(L(1, τ ))
is a quasisupercuspidal representation of SO2n+1(F).

Proof. For simplicity, we set σ :=L(1, τ ), which is an admissible representation of
SO2n+1(F). Denote by Un−1 be the maximal (upper triangular) unipotent subgroup
of GLn−1(F). Recall that N2n is the unipotent radical of Siegel parabolic groups
of SO4n . For x ∈F, denote by ui, j (x) the unipotent matrix in SO4n corresponding
to x(ei − e j ), the x-multiple of root ei − e j , and let Ui, j = {ui, j (x) | x ∈ F}.

There are n unipotent radicals Qk for 1 ≤ k ≤ n corresponding to standard
maximal parabolic subgroups of SO2n+1, and given by

Qk =


Ik C D

I2n−2k+1 C∗

Ik

⊂ SO2n+1 .

Denote by ι the embedding of elements of SO2n+1 into SO2n+2 as in (3-2).
Let H1 = ι(Qk)Nn−1, and denote its elements by

w(r, x, y, A, B)=


r x yIk A B

I2n−2k+2 A∗

Ik

 x ′

r∗

 for r ∈ Un−1.

Write r = (ri, j ) and x = (xi, j ) and so on. Let ψH1
be the trivial extension of ψn−1

to H1, that is,

ψH1
(w(r, x, y, A, B))= ψ(r1,2+ · · ·+ rn−2,n−1)ψ(xn−1,n+1+ xn−1,n+2).

To show that J{ψn−1}(σ ) is supercuspidal, it suffices to show that

J{ι(Qk)}(J{ψn−1}(σ ))= 0 for all 1≤ k ≤ n.

We begin by assuming to the contrary that J{ι(Qk)}(J{ψn−1}(σ )) 6= 0 for some
1≤ k ≤ n. Then there exists a nonzero functional 81 on Vσ such that

(3-3) 81(σ (g)v)= ψH1
(g)81(v)

holds for g ∈ H1 and v ∈ Vσ .
Let H2 be the complement of

∏n−1
i=1 Ui,n in H1, and define a character ψH2

on H2

by ψH2
=ψH1

|H2
. Then81(σ (g)v)=ψH2

(g)81(v) for g ∈ H2 and v ∈ Vσ . Denote
by η the permutation matrix in SO4n corresponding to the permutation product
(1, . . . , n− 1, n)(3n+ 1, . . . , 4n) of two cycles. Let H3 = ηH2η

−1 and ψH3
(g)=

ψH2
(η−1gη) for g ∈ H3. Now we have a nontrivial functional 83 on Vσ such that
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83(σ (g)v)= ψH3
(g)83(v) for g ∈ H3 and v ∈ Vσ . Note that the functional 83 is

given by 83(v)=82(ηv) for v ∈ Vσ .
Let H4 be a subgroup of H3

⋂
Nn , consisting of elements of the form of

h = (hi, j )=


In (0n×(k−1) | ∗) ∗

I2n

_
∗

0
^

In

 , with h1,2n =−h1,2n+1.

Let ψH4
= ψH3

|H4
. That is, ψH4

(h)= ψ(hn,2n + hn,2n+1).
Let H5 =U1,2n H4 and let ψH5

be the character of H5 extending ψH4
with trivial

value on U1,2n . For u1,2n(x) ∈U1,2n , the adjoint action ad(u1,2n(x)) preserves H4

and ψH4
. Therefore there exists a character χ on U1,2n and a functional 84 on Vσ

such that

(3-4) 84(σ (ug)v)= χ(u)ψH4
(g)84(v)

for u ∈U1,2n , g ∈ H4 and v ∈ Vσ .
Assume that χ(x)= ψ(ax) for some a ∈ F. Note that

ad(un,1(−a))u1,2n(x)= u1,2n(x)un,2n(−ax).

Also, ad(un,1(−a)) preserves both H4 and ψH4
. Define 85(v) = 84(un,1(−a)v).

Then

(3-5) 85(σ (g)v)= ψH5
(g)85(v)

for g ∈ H5 and v ∈ Vσ .
Let X0 = H5 and ψ (0) = ψH5

. For 1 ≤ m ≤ n, let Xm = Um,m+1 · · ·Um,n+k−1

and write its elements by

Xm(Ex)= diag(r, I2, r∗) for r = (ri, j ) ∈ U2n−1 and Ex ∈ Fn+k−m−1,

where the m-th row of r is (0m−1, 1, Ex, 0n−k+1) and ri, j = δi, j for i 6=m. Let ψ (m)

be the restriction of the character ψn of Nn to the subgroup Xm · · · X1 H5.
For each 0≤m ≤ n, we claim in general that there exists a nontrivial functional

8m on Vσ such that

(3-6) 8m(uv)= ψ (m)(u)8m(v)

for u ∈ Xm · · · X1 H5 and v ∈ Vσ .
We proceed by induction. For m = 0, the claim is true by Equation (3-5).

Assume that the claim is true for 0≤ j − 1≤ n− 2.
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Note that X j is abelian and that ad(X j (Ex)) preserves X j−1 · · · X1 H5 andψ ( j−1).
Hence there exists a character χ j on X j such that

(3-7) 8 j−1(σ (ug)v)= χ j (u)ψ ( j−1)(g)8 j−1(v)

holds for u ∈ X j , g ∈ X j−1 · · · X1 H5 and v ∈ Vσ .
Assume that

χ j (X j (t1, . . . , tn+k− j−1))= ψ(a1t1+ · · ·+ an+k− j−1tn+k− j−1) for ai ∈ F.

If ai = 0 for all 1 ≤ i ≤ n + k − j − 1, then Equation (3-7) induces a nontrivial
functional on Vτ that is invariant under τ(u),

u ∈
{(

I j ∗

I2n− j

)
∈ GL2n

}
.

This contradicts the supercuspidality of τ . Hence there exists a nonzero ai . Let

m0 =min{1≤ i ≤ n+ k− j − 1 | ai 6= 0}.

Case 1. If m0 = 1, define 8 j (v)=8 j−1(λ̃v), where λ̃= diag(λ, λ∗) ∈ SO4n and

λ=



I j

a1

a2 1
... In+k− j−3

an+k− j−1 1
In−k


∈ GL2n .

Note that

ad(λ̃)X j (t1, . . . , tn+k− j−1)

= X j (−a−1
1 t1− a−1

1 a2t2 · · · − a−1
1 an+k− j−1tn+k− j−1, t2, . . . , tn+k− j−1).

Moreover, ad(λ̃) preserves both X j−1 · · · X1 H5 and ψ ( j−1). Hence

(3-8) 8 j (σ (u)v)= ψ ( j)(u)8 j (v) for u ∈ X j · · · X1 H5.

Case 2. If m0> 1, take θ = u j+1,m0(1) and θ̃ = diag(θ, θ∗)∈SO4n , and then define
8′′j (v)=8 j−1(θ̃v). Then, for u ∈ X j , g ∈ X j−1 · · · X1 H5 and v ∈ Vσ ,

8′′j (σ (ug)v)= χ ′(u)ψ ( j−1)(g)8′′j (v)

holds for some character χ ′ on X j satisfying

χ ′(X j (x1, . . . , xn+k− j−1))= ψ(b1x1+ · · ·+ bn+k− j−1xn+k− j−1),
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with b1 6= 0. By repeating the same procedure as in the first case, we again reach
the conclusion Equation (3-8).

By induction, we have shown that

8n−1(σ (u)v)= ψ (n−1)(u)8n−1(v) for u ∈ Xn−1 · · · X1 H5.

By similar argument, we also obtain that 8′n(σ (ug)v) = χ ′′(u)ψ (n−1)(g)8′n(v),
where u ∈ Xn , g ∈ Xn−1 · · · X1 H5 and v ∈ Vσ holds for some character χ ′′ on Xn

satisfying χ ′′(Xn(x1, . . . , xk−1))= ψ(d1x1+ · · ·+ dk−1xk−1).
Finally, we take 8n(v)=8

′
n(diag(γ, γ∗)v) for v ∈ Vσ , where

γ =


In

Ik−1

 0, . . . , d1
...

0, . . . , dk−1


In−k+1

 ∈ GL2n,

and obtain that 8n(σ (u)v) = ψ (n)(u)8n(v) for u ∈ Xn · · · X1 H5 and v ∈ Vσ .
Since Nn = Xn · · · X1 H5, this gives a nontrivial ψn-functional on Vσ , contradicting
Theorem 2.4’s conclusion that generalized Shalika models and (Nn, ψn)-models
are disjoint. The initial assumption must be false, so

J{ι(Qk)}(J{ψn−1}(σ ))= 0 for all 1≤ k ≤ n

and J{ψn−1}(σ ) is quasisupercuspidal. �

4. Genericity of the local descent

By Theorem 3.1, the local descent σn−1 = σn−1(τ )=J{ψn−1}(L(1, τ )) as defined
in (2-8) is a quasisupercuspidal representation of SO2n+1(F). We may write

σn−1 = σ
1
n−1⊕ · · ·⊕ σ

r
n−1⊕ · · · ,

where the σ i
n−1 are irreducible supercuspidal representations of SO2n+1(F). Note

that τ is an irreducible unitary supercuspidal representation of GL2n(F) with a
nonzero Shalika model.

With regard to the Whittaker functional of σn−1=J{ψn−1}(L(1, τ )), recall from
(2-3) and (2-4) that

(4-1) Nn−1 =

n(z, x, y)=

z x y
I2n+2 x ′

z′

 z ∈ Un−1

⊂ SO4n

and the character ψn−1 of Nn−1 is given by

ψn−1(n(z, x, y))= ψ(z1,2+ · · ·+ zn−2,n−1)ψ(xn−1,n+1+ xn−1,n+2).
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As in (2-7), the twisted Jacquet module σn−1 = J{ψn−1}(L(1, τ )) is a represen-
tation of SO2n+1(F). Let Zk be the standard maximal unipotent subgroup of the
split special orthogonal group SOk consisting of upper-triangular matrices with 1
along the diagonals. That is,

(4-2) Z2n+1 =

z(u, b, w)=

u b w

1 b′

u′

 ∈ SO2n+1 u = (ui, j ) ∈ Un

 .
We may write b= (b1, . . . , bn)

t
∈Fn . The Whittaker character ψZ2n+1

of Z2n+1 is
defined by

(4-3) ψZ2n+1
(z(u, b, w))= ψ(u1,2+ · · ·+ un−1,n − bn).

By the Frobenius reciprocity law, in order to show that σn−1 has a nonzero Whit-
taker functional, it suffices to show that the twisted Jacquet module

J{Z2n+1, ψZ2n+1
}(σn−1)= J{Z2n+1, ψZ2n+1

}(J{ψn−1}(L(1, τ )))

is nonzero.
To compose the two twisted Jacquet functors J{Z2n+1, ψZ2n+1} and J{ψn−1},

we set E1 = ι̃(Z2n+1)Nn−1 and let ψE1
be the character of E1 defined by

ψE1
(vn)= ψZ2n+1

(v)ψn−1(n) for v ∈ Z2n+1 and n ∈ Nn−1,

where ι̃ : SO2k+1 ↪→ SO4n is given by

g ∈ SO2k+1 7→ ι̃(g)= diag(I2n−k−1, ι(g), I2n−k−1)

for any k = 0, 1, . . . , 2n− 1, and the embedding ι is defined in (3-2). Hence

J{E1, ψE1}(Vπ )= J{Z2n+1, ψZ2n+1} ◦J{ψn−1}(Vπ )

for any irreducible admissible representation (π, Vπ ) of SO4n(F).
We put k = 2n in the maximal unipotent subgroup of SO4n defined in (2-3), so

that

(4-4) N2n =

{
n(z, y)=

(z y
z′
)

z ∈ U2n

}
.

Define a degenerate character ψ̃ of N2n by

ψ̃(n(z, y))= ψ(z1,2+ · · ·+ z2n−1,2n).

We define the twisted Jacquet module J{N2n, ψ̃}(Vπ ) for any irreducible admissi-
ble representation (π, Vπ ) of SO4n(F).

Theorem 4.1. Let π be an irreducible smooth representation of SO4n that admits
a nonzero generalized Shalika model.
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(1) There exists a vector space isomorphism between the two twisted Jacquet
modules, that is,

J{E1, ψE1
}(Vπ )' J{N2n, ψ̃}(Vπ ).

(2) The local descent σn−1 has a nonzero Whittaker functional, which is unique
up to a scalar.

Proof. The proof of (1) needs to use the local version of the Fourier expansion for
representations, in particular, the [Ginzburg et al. 1999, General Lemma]. We treat
the various cases in Sections 4.2–4.12.

We show here that (2) follows from (1). Take π to be L(1, τ ) and consider
J{N2n, ψ̃}(Vπ )=J{N2n, ψ̃}(L(1, τ )). We may write N2n =U2n nV2n , where V2n

is the unipotent radical of the Siegel parabolic subgroup P2n of SO4n as defined in
(2-2). Then we decompose the twisted Jacquet functor as

J{N2n, ψ̃} = J{U2n, ψU2n }
GL2n ◦J{V2n}

where the left part of the composition is the Whittaker functor of GL2n and the right
is the nontwisted Jacquet functor (that is, the constant term functor along V2n).

Consider first J{V2n}(L(1, τ )). By [Bernstein and Zelevinsky 1977, Geometric
Lemma], we obtain that

J{V2n}(L(1, τ ))' τ ⊗ |det|−1/2

as representations of GL2n(F). By the local uniqueness of Whittaker model of τ ,
we see that the space

J{U2n, ψU2n }
GL2n ◦J{V2n}(L(1, τ ))

is one-dimensional. Therefore, J{E1, ψE1}(L(1, τ )) is one-dimensional by (1); in
particular, the local descent σn−1 has a unique Whittaker functional. �

4.2. We start to prove (1) of Theorem 4.1 by constructing a few intermediate
twisted Jacquet modules relating J{E1, ψE1}(Vπ ) and J{N2n, ψ̃}(Vπ ). The re-
lations are explained in terms of the local versions of Fourier expansions for rep-
resentations; this is called the General Lemma in [Ginzburg et al. 1999], and also
here.

In this subsection and Section 4.3, we consider the general case when (π, Vπ )
is any smooth representation of SO4n(F).

Let

C1 = { ι̃(v)n | v ∈ Z2n+1, n = n(z, x, y) such that xn−1,1 = 0}.
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Let ψC1
= ψE1

|C1
. For i = 1, . . . , n, let

X i =


In−1 x 0

I2n+2 x ′

In−1

 ∈ Nn−1 xs,t ∈ δs,n−1δt,i ·F

 ,
where δi, j is defined by that δi,i = 1 and δi, j = 0 if i 6= j . For i = 1, . . . , n−1, set

Yi = {I4n + λEn+i−1,2n+1− λE2n,3n+2−i | λ ∈ F} ⊂ SO4n,

where Ei, j = (ek,l), ek,l = δk,iδl, j , and set

Yn =


I2n−2

h
I2n−2

 h =


1 x 0 0

1 0 0
1 −x

1


⊂ SO4n .

Note that X1 is the complement of C1 in E1, that is, E1 = C1 o X1. Let D1 =

C1 o Y1, and letψD1
be the trivial extension of ψC1

to D1. This forms a setting
which for which the General Lemma applies. Hence we have

J{E1, ψE1}(Vπ )' J{D1, ψD1}(Vπ ).

For i = 2, . . . , n, define a series of subgroups Ci of Z2n+2 Nn−1 by

Ci =

vn v =

(u t w

ι(h) t ′

u′

)
∈ Z2n+2,

u ∈ Ui−1, h ∈ Z2n+3−2i ,

n = n(z, x, y) ∈ Nn−1,

xn−1,1 = xn−1,2 = · · · = xn−1,i = 0

 ,
where Z2n+2 is identified with its embedding in the middle diagonal part of SO4n .
Let ψ i be the character of Ci defined by

ψ i (vn)= ψn−1(n)ψ(u1,2+ · · ·+ ui−2,i−1+ ti−1,1)ψZ2n+3−2i
(h).

Then X i and Yi both normalize Ci and ψ i . The trivial extensions of ψ i to Ci o X i

and Ci o Yi are still denoted by ψ i . Let Di := Ci o Yi . Then Di−1 ' Ci o X i for
i = 2, . . . n and the characters ψ i−1 and ψ i of Di−1 are equal. Again, this is the
setting of the General Lemma, and we obtain

J{Di−1, ψ
i−1
}(Vπ )' J{Di , ψ

i
}(Vπ ) for i = 2, . . . , n.

Hence we obtain a vector space isomorphism of twisted Jacquet modules:

J{E1, ψE1}(Vπ )' J{Dn, ψ
n
}(Vπ ).
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Note that

Dn =


(z y w

h y′

z′

)
h =


1 f̃ − f w

1 0 f
1 − f̃

1

 ∈ Z4,

z ∈ U2n−2 with zn−1,i = 0 for i ≥ n


⊂ Z4n.

Then we also have the isomorphism J{Dn, ψ
n
}(Vπ ) ' J{Dn, ψDn }(Vπ ) of vector

spaces, where the character ψDn
of Dn is given by

ψDn
(v)= ψ(z1,2+ z2,3+ · · ·+ z2n−3,2n−2+ yn−1,2+ yn−1,3− f ).

4.3. Let ν be the permutation matrix in GL2n given by(
1 2 . . . n− 1 n n+ 1 . . . 2n− 1 2n
2 4 . . . 2(n− 1) 1 3 . . . 2n− 1 2n

)
,

and identify it with its embedding m(ν), where m : g∈GL2n 7→diag(g, g∗)∈SO4n .
Let E = νDnν

−1, and define a character ψE of E by

ψE(n) := ψDn
(ν−1nν) for n ∈ E .

Let T (n) be the subgroup of GL2n consisting of certain elements t = (ti, j ), as
follows: Let t̄ j = (t j+1, j , . . . , t2n, j )

t and ti = (ti,i+1, . . . , ti,2n) for i, j ≤ 2n− 1.

• For 1≤ i ≤ 2n, require ti,i = 1.

• For j ≤n−2, require that the (single-element) rows of t̄2 j−1 alternate between
arbitrary and zero, except for the last 4, which are all zero; require that t̄2n−3

and t̄2n−1 vanish.

• For j ≤ n, require that t̄2 j vanishes.

• For i ≤ n, require that t2i−1 = (0 ∗ 0 ∗ . . . ∗ 0 ∗ ∗).

• Require t2(n−1) = (0, ∗).

Then

E =
{

n =
(

t X
t ′

)
t ∈ T (n)

}
and the character ψE is given by

(4-5) ψE(n)= ψ(t1,3+ t2,4+ · · ·+ t2n−3,2n−1+ t2n−2,2n + x2n−2,1+ x2n−1,1).
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Example 4.4. In the case of n = 4,

T (4)=





1 0 ∗ 0 ∗ 0 ∗ ∗
∗ 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 1 0 ∗ 0 ∗ ∗
∗ 0 ∗ 1 ∗ ∗ ∗ ∗
0 0 0 0 1 0 ∗ ∗
0 0 0 0 0 1 0 ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1




⊂ GL8 .

Since ψE(n)=ψDn
(ν−1nν) for all n ∈ E , we have the vector space isomorphism

J{Dn, ψDn
}(Vπ )' J{E, ψE }(Vπ ).

Next, we will apply the General Lemma to fill the zeros of t2i−1 from right to
left, using t̄2i−1.

Let

Y i,1
= {m(I2n + yE2i,1) | y ∈ F} for i = 1, . . . , n− 2,

X1, j
= {m(I2n + x E1,2 j ) | x ∈ F} for j = 2, . . . , n− 1,

E i,1
= {n ∈ E | n j,1 = 0,∀ j > 2i} ·

∏n
j=i+2 X1, j for i ≤ n− 3,

En−2,1
= E,

C i,1
= {n ∈ E i,1

| n2i,1 = 0}, D1,i+1
= C i,1 X1,i+1, A1,i+1

= D1,i+1Y i,1.

Define a series of characters ψ i,1
= ψE |C i,1 . Extend ψ i,1 trivially to D1,i+1 as

ψ i,1
D1,i+1 and to E i,1 as ψ i,1

E i,1 . Note that

D1,i+1
= E i−1,1 and ψ i,1

D1,i+1 |C i−1,1 = ψ
i−1,1.

By the General Lemma, we have vector space isomorphisms

J{E i,1, ψ i,1
E i,1}(Vπ )' J{D1,i+1, ψ i,1

D1,i+1}(Vπ )' J{E i−1,1, ψ i−1,1
E i−1,1}(Vπ )

for i = n− 2, . . . , 2. In particular, we have

J{E, ψE }(Vπ )' J{D1,2, ψ1,1
D1,2}(Vπ ).

Note that the GL2n part of D1,2 looks like
( I2 ∗

0 T ′
)

with T ′ ∈ T (n− 1). Now let

Y r,s
= {m(I2n + yE2r,2s−1) | y ∈ F} for 1≤ r, s ≤ n− 2,

X r,s
= {m(I2n + x E2r−1,2s) | x ∈ F} for 1≤ r ≤ n− 2 and 1≤ s ≤ n− 1.
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For 1≤ j ≤ i ≤ n− 2, we define

E i, j
= Ẽ i, j

n−1∏
s=i+2

X j,s, where Ẽ i, j
=

{(
t X

t ′

)
∈ SO4n

}
,

where t`,2 j−1 = 0 for all ` > 2i and otherwise is of the form

t =


I2 ∗ ∗

. . .

I2 ∗

Z

 , with Z ∈ T (n− j + 1),

We further define

C i, j
=

{
n =

(
t X

t ′

)
∈ E i, j t2i,2 j−1 = 0

}
,

D j,i+1
= C i, j X j,i+1, A j,i+1

= D j,i+1Y i, j .

We also define ψ i, j
= ψE |C i, j . Note that D j,i+1

' Ai−1, j for i ≥ j + 1 and that
D j, j+1

' An−1, j+1. The relations among those ψ i, j and their trivial extensions
ψ

i, j
D j,i+1 and ψ i, j

Ai, j to D j,i+1 and Ai, j , respectively, are compatible in the sense of
the General Lemma. We then have vector space isomorphisms

J{E, ψ}(Vπ )' J{D1,2, ψ1,1
D1,2}(Vπ )' · · · ' J{D j, j+1, ψ

j, j
D j, j+1}(Vπ )

' · · · ' J{Dn−2,n−1, ψn−2,n−2
Dn−2,n−1 }(Vπ ).

Denote by Bn the standard Borel subgroup of GLn . The subgroup Dn−2,n−1

consists of elements of the form

(
t X

t ′

)
∈ SO4n, with t =


I2 y1 ∗ · · · ∗

I2 y2 · · · ∗

. . .

I2 yn−1

z

 ,

where y1, . . . , yn−2 ∈ Mat2, yn−1 ∈ B2 and z ∈ U2. The character ψn−2,n−1
Dn−2,n−1 is

given by

(4-6) ψn−2,n−2
Dn−2,n−1 (n)= ψ(tr(y1+ · · ·+ yn−1))ψ(x2n−2,1+ x2n−1,1).

Proposition 4.5. Let π be a smooth representation of SO4n . Then there exists a
vector space isomorphism between two twisted Jacquet modules given by

J{E1, ψE1
}(Vπ )' J{Dn−2,n−1, ψn−2,n−1

Dn−2,n−2 }(Vπ ).
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So far we have only assumed π to be a smooth representation of SO4n(F).

4.6. The next step is to eliminate the character place x2n−2,1 in (4-6). We need two
auxiliary results, Propositions 4.7 and 4.11. We assume that Vπ is an irreducible
admissible representation of SO4n(F) with a nonzero generalized Shalika model.

We define

(4-7) D =


(

T X
T ′

)
T =


t1 z1 . . . . . . ∗

t2 z2 . . . ∗

· · · · · ·

tn−1 zn−1

tn

 , ti ∈ U2, zi ∈ B2

 ,

and a character ψD(n)= ψ(tr(z1+ · · ·+ zn−1)+ x2n−2,1+ x2n−1,1) of D.

Proposition 4.7. Let π be an irreducible smooth representation of SO4n admitting
a nonzero generalized Shalika model. Then there exists a vector space isomorphism

J{Dn−2,n−1, ψn−1,n−1
Dn−2,n−1 }(Vπ )' J{D, ψD}(Vπ ).

Proof. After applying the General Lemma n − 2 times, we have the vector space
isomorphisms

J{Dn−2,n−1, ψn−1,n−1
Dn−2,n−1 }(Vπ )' J{H1, ψH1

}(Vπ ),

where

H1 =


(

T X
T ′

)
T =


I2 z1 . . . . . . ∗

t2 z2 . . . ∗

· · · · · ·

tn−1 zn−1

tn

 , ti ∈ U2, zi ∈ B2

 ,
ψH1

(n)= ψ(tr(z1+ · · ·+ zn−1)+ x2n−2,1+ x2n−1,1) for n ∈ H1.

Note that the group

m



 1 ∗ 0

1 0
I2n−2



⊂ m(GL2n)⊂ SO4n

normalizes H1 and ψH1
.

For λ ∈ F∗, define a character ψ ′D,λ of D by

ψ ′D,λ(n)= ψ(tr(z1+ · · ·+ zn−1)+ xn−2,1+ xn−1,1)ψ(λt),
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where t1 =
(

1 t
1

)
as in H1. By the conclusion of the next lemma, Lemma 4.8, the

only twisted Jacquet module that remains is the one corresponding to λ = 0. In
this case we have ψ ′D,0 =ψD , and therefore J{E1, ψE1

}(Vπ )' J{D, ψD}(Vπ ). �

Lemma 4.8. Assume that π is an irreducible representation of SO4n admitting a
nonzero generalized Shalika model. Then

J{D, ψ ′D,λ}(Vπ )= 0 for all λ ∈ F∗.

Proof. First we consider the case of λ=1. Letψ ′D :=ψ
′

D,1. Then for n =
(

T X
T ′
)
∈ D

we have

ψ ′D(n)= ψ(T1,2+ T1,3+
∑n−2

i=2 Ti,i+2)ψ(x2n−2,1+ x2n−1,1).

Let
z1 = diag(Z , I2n−3) ∈ GL2n, with Z =

(
1

1 0
1 1

)
.

Then z1 normalizes D. Let ψD,1 be the character of D defined by

(4-8) ψD,1(n)=ψ
′

D(z1nz−1
1 )=ψ(T1,2+T2,4+

∑n−2
i=2 Ti,i+2)ψ(x2n−2,1+x2n−1,1).

Clearly there exists a vector space isomorphism

(4-9) J{D, ψ ′D}(Vπ )' J{D, ψD,1}(Vπ ).

For i = 2, . . . , n−1, let zi = I2n+E2i+1,2i ∈GL2n , and let ψD,i be the character
of D defined by ψD,i (n) := ψD,i−1(zi nz−1

i ). Then we have

ψD,i (n)=


ψ(T1,2+ T2i,2i+3+

∑n−2
j=2 T j, j+2)ψ(x2n−2,1+ x2n−1,1)

if 2≤ i ≤ n− 2,
ψ(T1,2+

∑n−2
j=2 T j, j+2)ψ(x2n−1,1+ 2x2n−2,1) if i = n− 1.

It is clear that

(4-10) J{D, ψD,i }(Vπ )' J{D, ψD,i+1}(Vπ ) for i = 2, . . . , n− 2.

From (4-9) and (4-10), we have the vector space isomorphism

J{D, ψ ′D}(Vπ )' J{D, ψD,n−1}(Vπ ).

Now we assume to the contrary that

(4-11) J{D, ψD,n−1}(Vπ ) 6= 0.

Then by the Frobenius reciprocity law, there exists a nonzero functional ` on Vπ
such that

(4-12) `(π(n)v)= ψD,n−1(n)`(v) for n ∈ D and v ∈ Vπ .
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Such a functional ` on Vπ factors through J{D, ψD,n−1}(Vπ ). Hence the nonvan-
ishing of J{D, ψD,n−1}(Vπ ) is equivalent to the nonvanishing of such `.

Let µ be the permutation matrix in GL2n given by

µ(1)= 1, µ(2i − 2)= i for i = 2, . . . , n,

µ(2n)= 2n, µ(2i − 1)= n+ i − 1 for i = 2, . . . , n,

which can be identified with its embedding m(µ) in SO4n . Denote by Nik the set
of nilpotent elements in GLk . Then

F := µDµ−1
=

{(
T X

T ′

)
T =

(
α β

γ δ

)
, α, δ, γ ∈ Bn ∩Nin, β ∈ Bn,

γi,i+1 = 0 for i = 1, . . . , n− 1

}
.

Example 4.9. When n = 4, the T in F are of the form

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ 0 ∗ ∗ ∗
0 0 1 ∗ 0 0 ∗ ∗
0 0 0 1 0 0 0 ∗

0 0 ∗ ∗ 1 ∗ ∗ ∗
0 0 0 ∗ 0 1 ∗ ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1


Let ψF be the character of F defined by

ψF (n)= ψD,n−1(µ
−1nµ)= ψ(

∑2n−2
i=1,i 6=n Ti,i+1+ Tn,2n + 2Xn,1+ X2n−1,1).

Define a linear functional on Vπ by `F (v) = `(π(µ
−1)v) for v ∈ Vπ . Then `F is

a nonzero functional on Vπ satisfying `F (π(n)v)= ψF (n)`F (v) for n ∈ F . Since
`F factors through J{F, ψF }(Vπ ), the latter must be nonzero.

Again, by the General Lemma, we get J{F, ψF }(Vπ )'J{F ′, ψF ′}(Vπ ), where

F ′ =
{(

T X
T ′

)
T ∈ U2n, Tn,n+i = 0 for i = 1, . . . , n− 1

}

and the character ψF ′ is given by

(4-13) ψF ′(n)= ψ(
∑2n−2

i=1,i 6=n Ti,i+1+ Tn,2n + 2Xn,1+ X2n−1,1).
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Example 4.10. The T in F ′ are of the form

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 0 0 0 ∗

0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1


.

(Compare this form with the one in Example 4.9 to see how the General Lemma
works.)

Since J{F, ψF }(Vπ )' J{F ′, ψF ′}(Vπ ) 6= 0, there is a nonzero linear functional
`F ′ on Vπ such that `F ′(π(n) v)= ψF ′(n)`F ′(v) for n ∈ F ′.

Next, we consider the intersection F ′n := F ′ ∩ Nn . Then

(4-14) F ′n =



α β x y

In 0 x ′

In β ′

α′

 α ∈ Un, β ∈ Bn,

βn,i = 0 for i = 1, . . . , n− 1

 .
and `F ′ is a nonzero linear functional on Vπ such that

`F ′(π(n) v)= ψF ′(n)`F ′(v) for n ∈ F ′n.

Note that F ′n differs from Nn by the requirements on their elements at the β entries
of (4-14). Now we will apply the local version of Fourier expansion to “fill the
zeros of β”.

Define a series of subgroups F ′n ⊂ F ′n−1 ⊂ · · · ⊂ F ′1 = Nn as follows. Let

(4-15) F ′i =



α β x y

In 0 x ′

In β ′

α′

 ∈ Nn α ∈ Un, βn, j = 0 for j = 1, . . . , i − 1

 .
Let ψF ′i

be the character of F ′i defined by the same formula of (4-13), that is, by

ψF ′i
(n)= ψ(α1,2+ · · ·+αn−1,n +βn,2n + 2xn,1).

Now we use induction in reversed order. The case of i = n is shown in (4-14).
Assume for some 2 ≤ i ≤ n that we have a nonzero linear functional `i on Vπ
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satisfying the quasiinvariance property

(4-16) `i (π(n) v)= ψF ′i
(n)`i (v) for n ∈ F ′i .

We show that the functional `i−1 is an extension of `i such that (4-16) holds with i
replaced by i − 1.

Note that the root group of en − ei−1 normalizes the character ψF ′i . There are
two possibilities:

(i) The `i having the (F ′i , ψF ′i )-quasiinvariance property can be trivially extended
to `i−1 with the (F ′i−1, ψF ′i−1

)-quasiinvariance property, and we are done.

(ii) The `i can be nontrivially extended to a nonzero linear functional `′i−1 with
the (F ′i−1, ψF ′i−1

)-quasiinvariance property, such that

`′i−1(π(n) v)= ψ̃ F ′i−1
(n)`′i−1(v) for n ∈ F ′i−1.

Then

ψ̃ F ′i (n)= ψ(α1,2+ · · ·+αn−1,n +βn,2n + 2xn,1)ψ(c βn,i ) for some c ∈ F∗.

Let z = I2n + α En+i,2n ∈ GL2n . Then we can choose a certain α ∈ F∗ such
that z normalizes F ′i and changes ψ̃ F ′i−1

back to the character ψF ′i−1
. Hence

we get (4-16) for `i−1.

By induction, we get a nonzero linear functional `1 on Vπ that factors through
J{Nn, ψn}(Vπ ).

By assumption, Vπ has a nonzero generalized Shalika model. It follows from
Theorem 2.4 that such a Vπ has no nonzero twisted Jacquet module J{Nn, ψn}(Vπ ).
Hence `1 must be zero.

Therefore, the assumption (4-11) must be wrong and J{D, ψD,n−1}(Vπ ) must
be zero. The proves the case when λ= 1.

If λ 6= 1, conjugation by m(a) with a= diag(λ−1, 1, λ−1, 1, . . . , λ−1, 1)∈GL2n

will give a vector space isomorphism J{D, ψ ′D,λ}(Vπ ) ' J{D, ψD,λ}(Vπ ), where
ψD,λ is almost the same with the character of D defined in (4-8) except that the
coefficient of x2n−1,1 is λ−1. In the proof of the case when λ = 1, we see that the
coefficients of x2n−1,1 and x2n−2,1 play no role and a similar argument applies. �

Proposition 4.11. Let π be a smooth representation of SO4n . Then

J{D, ψD}(Vπ )' J{D, ψ̃D}(Vπ ),

where ψ̃ is the character of D defined (in the notation of (4-7)) by

ψ̃D(n)= ψ(tr(z1+ · · ·+ zn−1)+ x2n−1,1).
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Proof. The proof is almost the same as that of Lemma 4.8. We give only a sketch.
First, let Bn denote the opposite standard Borel subgroup of GLn . By the General

Lemma, we have the vector space isomorphism

J{D, ψ̃D}(Vπ )' J{D̃, ψ̃D̃}(Vπ ),

where

(4-17) D̃ =


(

T X
T ′

)
T =



1 ∗ ∗ · · · · · · ∗

t1 z1 ∗ · · · ∗

t2 z2 ∗ · · · ∗

. . .
...

tn−2 zn−2 ∗

I2 ∗

1


, ti ∈ U2, zi ∈ B2


and ψ̃D̃(n)= ψ(

∑2n−2
i1

Ti,i+2)ψ(x2n−2,1+ x2n−1,1) is the character of D̃.
Second, let

z =


I2n−3 0 0 0

0 1 0 0
0 −1 1 0
0 0 0 1

 ,
which normalizes D̃ and changes ψ̃D̃ to ψ̃ ′

D̃
, defined in the notation of (4-17) by

ψ̃ ′
D̃
(n)= ψ(

∑2n−2
i1

Ti,i+2)ψ(x2n−1,1).

Finally, use the General Lemma to transform the B2 of the first part into B2. �

4.12. We are ready to prove Theorem 4.1(1). The proof is similar to that of
[Ginzburg et al. 1999, Theorem 4.2.1], employing the local version of the Fourier
expansion of representations. Let ν be the permutation matrix in GL4n such that
νi,2i−1 = 1 and ν2n+i,2i = 1 for i = 1, . . . , 2n, and νi, j = 0 otherwise. Let
B = νDν−1, and define a character ψB of B by ψB(e) = ψ̃D(ν

−1eν) for e ∈ B.
Then we have the vector space isomorphism J{D, ψ̃D}(Vπ )'J{B, ψB}(Vπ ).Note
that

(4-18) B =
{(
α β

γ δ

)
α, δ ∈ U2n, β ∈ B2n,

γ ∈ B2n ∩Ni2n and γi,i+1 = 0 for i = 1, . . . , 2n

}
,

and the character ψB is ψB(e)=ψ(α1,2+· · ·+αn,n+1−αn+1,n+2−· · ·−α2n−1,2n).
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Example 4.13. For n = 4, elements in B are of the form

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ 0 0 0 ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗ ∗

1 ∗ ∗ 0 0 0 0 0 ∗ ∗ ∗

1 ∗ 0 0 0 0 0 0 ∗ ∗

1 0 0 0 0 0 0 0 ∗

0 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ 0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ 0 0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,

where the boxes indicate the nontrivial character positions of ψB .

Our goal is to “fatten” β in (4-18), using the entries of γ, by successive applications
of the General Lemma, until we transform J{B, ψB} into J{V2n, ψ̃}. Let

X=

{
x ∈Mat2n(F)

(
I2n x

I2n

)
∈ SO4n

}
.

For x ∈ X, write

ε(x)=
(

I2n x
I2n

)
and ε̄(x)=

(
I2n 0
x I2n

)
.

For a subspace S ⊂ X, define

ε(S)= {ε(x) | x ∈ S} and ε̄(S)= {ε̄(x) | x ∈ S}.

Put

X0 = {x ∈ X | x ∈ B2n},

Y0 = {x ∈ X | x ∈ B2n ∩Ni2n and xi,i+1 = 0 for i = 1, . . . , n− 1}.
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For 1≤ i < j − 1, define

Yi, j = {x ∈ X0 | xr,l = 0 for r, l < j − 1 and xr, j = 0 for r ≥ i},

Yi, j
= I+F(Ei, j − E2n+1− j,2n+1−i ).

Then elements in B can be written in the form

(4-19) v = ε(x)m(z)ε̄(y),

with x ∈ X0, y ∈ Y0 and z ∈ U2n . Let Y1,3 = {x ∈ X0 | x1,3 = 0}. Let C1,3 be the
subgroup of the form (4-19) such that y ∈Y1,3. Then C1,3

= ε(X0)m(U2n)ε̄(Y13).
Let Y 1,3

= ε̄(Y1,3). Denote by X2,1
= ε(X2,1), where X2,1

= F(e2,1 − e2n,2n−1).
Let ψ1,3

B = ψB |C1,3 , B1,3
= B, and D1,3

= C1,3 X2,1. Put X2,1 = X0⊕X2,1. Then
D1,3
= ε(X2,1)m(U2n)ε̄(Y1,3). By the General Lemma, we conclude that

J{B1,3, ψ1,3
B1,3}(Vπ )' J{D1,3, ψ1,3

D1,3}(Vπ ),

where ψ1,3
D1,3 is the character of D1,3, which is trivial on ε(X2,1) ·Y1,3.

Define Xr,s
= I+F(Er,s − E2n+1−s,2n+1−r ) for 1≤ s < r ≤ 2n. Let

Xr,s = X0⊕

( ⊕
q<l≤r−1

Xl,q
)
⊕

( r−1⊕
q=s

Xr,q
)

for 1≤ s < r ≤ n.

For 1≤ i < j−1 and j ≤n+1, let C i, j
= ε(X j−1,i+1)m(U2n)ε̄(Yi, j ) if i+1≤ j−1.

For 1≤ i < j ≤ n+1, we define Y i, j
= ε̄(Yi, j ) and X j,i

= ε(X j,i ), and also define

Bi, j
= C i, j Y i, j , Di, j

= C i, j X j−1,i , Ai, j
= Di, j Y i, j .

Let ψ i, j be the character of C i, j , which is trivial on ε(X j−1,i+1) · ε̄(Yi, j ). Then by
the General Lemma, we have the vector space isomorphism

J{Bi, j , ψ
i, j
Bi, j }(Vπ )' J{Di, j , ψ

i, j
Di, j }(Vπ )

for all 1≤ i < j − 1, j ≤ n+ 1.
Note that for 2≤ i < j − 1, j ≤ n+ 1, we have

Di, j
= Bi−1, j and ψ

i, j
Di, j = ψ

i−1, j
Bi−1, j ,

and for j = 3, . . . , n+ 1, we have

D1, j
= B j−1, j+1 and ψ

1, j
D1, j = ψ

j−1, j+1
B j−1, j+1 .

We conclude by the General Lemma again that

(4-20) J{B1,3, ψ1,3
B1,3}(Vπ )' J{D1,n+1, ψ1,n+1

D1,n+1}(Vπ )

as vector spaces. Note that D1,n+1
= ε(Xn,1)m(U2n)ε̄(Y1,n+1).
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So far in this proof, we have not used any particular property of Vπ . We are now
going to use the property that Vπ has a nonzero generalized Shalika model.

For n+ 1≤ r ≤ 2n− 1 and 1≤ s ≤ 2n− r , define

Xr,s = Xn,1⊕

( ⊕
n+1≤l≤r−1

1≤q≤2n−l

Xl,q

)
⊕

(2n−r⊕
q=s

Xr,q
)
.

Then Xn+1,n−1 normalizes D1,n+1 and ψ1,n+1
D1,n+1 . Considering its action on the

right side of (4-20), we claim that for any nontrivial character ξ of Xn+1,n−1,

J{Xn+1,n−1, ξ}(J{D1,n+1, ψ1,n+1
D1,n+1}(Vπ ))= 0,

and hence we must have the trivial character for this action. We assume to the
contrary that, by the Frobenius reciprocity law, there exists ` a nonzero linear
functional on Vπ such that

`(π(xn)v)= ψ1,n+1
1,n+1 (n)ξ(x)`(v) for all x ∈ Xn+1,n−1, n ∈ D1,n+1 and v ∈ Vπ .

We may assume that there is a λ ∈F∗ such that ξ(x(t))=ψ(λ t), where x(t)=
I4n+ t (En+1,3n−1−En+2,3n). Then ` is a nonzero linear functional on Vπ such that

`(π(n)v)= ψ1,n+1
D1,n+1(n)`(v) for n ∈ Xn+1,n−1 D1,n+1

∩ Nn+1.

Note that Xn+1,n−1 D1,n+1
∩ Nn+1 consists of elements of the form

(4-21)

z y w

I2n−2 y′

z′

 ∈ SO4n,

with z ∈ Un+1 and y ∈Matn+1,2n−2 such that yn+1,n+i = 0 for i = 1, . . . , n− 1.
Now the situation is similar to that of (4-14). The same argument shows that `

can be extended trivially to Nn+1 so that

`(π(n)v)= ψ1,n+1
Nn+1

(n)`(v) for n ∈ Nn+1,

where ψ1,n+1
Nn+1

is the trivial extension of restriction of ψ1,n+1
D1,n+1 to D1,n+1

∩ Nn+1.
Note that for an element n ∈ Nn+1 of the form (4-21),

ψ1,n+1
D1,n+1(n)= ψ(z1,2+ · · ·+ zn,n+1)ψ(yn+1,1+ yn+1,2n−2).

Let ν ′ be the permutation matrix in GL2n defined by

ν ′(i)=


i if i = 1, . . . , n+ 1,
2n if i = n+ 2,
i − 1 if i = n+ 3, . . . , 2n,



302 DIHUA JIANG, CHUFENG NIEN AND YUJUN QIN

which is identified with its embedding m(ν ′) in SO4n . Then ν ′ normalizes Nn+1

and transforms ψ1,n+1
Nn+1

into ψn+1. Hence we obtain a nonzero linear functional that
factors through J{ψn+1}(Vπ ). In particular, we have J{ψn+1}(Vπ ) 6= 0.

On the other hand, Vπ has a nonzero generalized Shalika model by assumption.
Following Theorem 2.4, J{ψn+1}(Vπ )must be zero. We get a contradiction. Hence
Xn+1,n−1 must act trivially on J{D1,n+1, ψ1,n+1

D1,n+1}(Vπ ).
Next we continue this process. Define

Bn−2,n+2
= D1,n+1 Xn+1,n−1,

and extend ψ1,n+1
D1,n+1 to a character ψn−2,n+2

Bn−2,n+2 on Bn−2,n+2 by making it trivial on
Xn+1,n−1. Thus we have

J{Bn−2,n+2, ψn−2,n+2
Bn−2,n+2 }(Vπ )' J{D1,n+1, ψ1,n+1

D1,n+1}(Vπ ).

Now we can repeat the argument as before, by replacing the n − 2 coordinates
of
⊕n−2

i=1 Yi,n+2 with
⊕n−2

i=1 Xn+1,i . For 1 ≤ i ≤ n − 2 and j ≥ n + 2, define
C i, j
= ε(X j−1,i+1)m(U2n)ε̄(Yi, j ) and

Bi, j
= C i, j Y i, j , Di, j

= C i, j X j−1,i , Ai, j
= Di, j Y i, j .

Let ψ i,n+2 be the character of C i,n+2, which is trivial on `(Cn+1,i+1)`(Yi,n+2). By
the General Lemma, we conclude that

(4-22) J{D1,n+1, ψ1,n+1
D1,n+1}(Vπ )' J{D1,n+2, ψ1,n+2

D1,n+2}(Vπ )

as vector spaces. Then, by using the property that Vπ has a nonzero generalized
Shalika model, we show that Xn+2,n−2 acts trivially on the right side of (4-22). As
before, we get

J{D1,n+2, ψ1,n+2
D1,n+2}(Vπ )' · · · ' J{D1,2n−1, ψ1,2n−1

D1,2n−1}(Vπ )

as vector spaces. Note that D1,2n−1
= N2n and ψ1,2n−1

1,2n−1 = ψ̃ . We conclude that

J{D1,2n−1, ψ1,2n−1
D1,2n−1}(Vπ )= J{N2n, ψ̃}(Vπ ).

This concludes the proof of part (1) of Theorem 4.1.

5. Irreducibility of the local descent

To finish the proof of Theorem 2.5, it remains to show that σn−1 is irreducible.
In Sections 3 and 4, we proved that, as a representation of SO2n+1(F), the local
descent σn−1 = J{ψn−1}(L(1, τ )), as defined in (2-8), is quasisupercuspidal and
has a unique nonzero Whittaker functional. Hence it is enough to show that any
irreducible summand of σn−1 is generic, that is, has a nonzero Whittaker functional.
This is proved in Theorem 5.1(2). Theorem 5.1, whose proof is standard, may be
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viewed as a generalization of the geometric lemma of Bernstein and Zelevinsky
[1977] for the twisted Jacquet functor J{ψn−1} applied to L(1, τ ). For a similar
discussion for the metaplectic and symplectic groups, see [Ginzburg et al. 1999]

For a given irreducible supercuspidal representation τ of GL2n(F), recall that
I(s, τ ) is the induced representation of SO4n(F) from the supercuspidal datum
(P2n, τ ) as defined in Section 2.1. The unique Langlands quotient of I(s, τ ) at
s = 1 is L(1, τ ).

Theorem 5.1. Suppose (Vσ , σ ) is an irreducible supercuspidal representation of
SO2n+1(F).

(1) If HomSO2n+1(F)(J{ψn−1}(I(s, τ )), Vσ ) is nonzero for any s ∈ C, then σ is
generic.

(2) If HomSO2n+1(F)(J{ψn−1}(L(1, τ )), Vσ ) is nonzero, then σ is generic.

Clearly part (2) follows from part (1) by the exactness of the twisted Jacquet
functors. Part (1) is proved in Section 5.7.

We start by investigating the structure of J{ψn−1}(I(s, τ )) to determine the
genericity of σ . We realize the irreducible unitary supercuspidal representation τ of
GL2n(F) by its Whittaker model W(τ, ψ), and realize the induced representation
I(s, τ ) as I(s,W(τ, ψ)). Then we consider J{ψn−1}(I(s,W(τ, ψ))).

5.2. The twisted Jacquet module J{ψn−1}(I(s,W(τ, ψ))). We consider first the
orbital structure of the closed subgroup SO2n+2 ·Nn−1 acting on the generalized flag
variety P2n \SO4n over the p-adic field F, and then consider the semisimplification
of J{ψn−1}(I(s,W(τ, ψ))) as a representation of SO2n+1(F).

For j = 1, . . . , 2n, let

Pj =


h ∗ ∗

g ∗
h∗

 h ∈ GL j , g ∈ SO4n−2 j


be the standard maximal parabolic subgroup of SO4n . Then the generalized Bruhat
decomposition P2n \ SO4n /Pn−1 has a complete set of representatives given by
{γi | i ∈ 2N, n ≤ i ≤ 2n}, where for i ∈ 2N with n ≤ i ≤ 2n,

γi =

 ν2n−i

I2i

ν2n−i


and ν j is as defined in (2-1). For k = 0, 1, . . . , n − 1, let Mk be the standard
maximal parabolic subgroup of GLn−1 corresponding to the partition (k, n−k−1)
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of n− 1 such that the Levi part is GLk ×GLn−k−1 and the unipotent radical is

Lk =

{(
Ik

A In−1−k

)
∈ GLn−1 A ∈Matn−1−k,k

}
.

Lemma 5.3. The orbits of the closed subgroup SO2n+2 ·Nn−1 acting on the gener-
alized flag variety P2n \ SO4n are represented by elements of the form γiw, where
n ≤ i ≤ 2n is even and the w are elements of W (GLn−1) given by{

w ∈ [W (GL2n−i )×W (GLi−n−1)]\W (GLn−1) if i 6= n,
w = id if i = n.

Here W (GLm) denotes the Weyl group of GLm .

Proof. Clearly, we have SO2n+2 Nn−1⊂ Pn−1. Hence we can choose γiw to be the
representative of any double cosets in P2n\SO4n /[SO2n+2 Nn−1], for some

w ∈ [γ−1
i P2nγi ∩ Pn−1]\Pn−1/[SO2n+2 Nn−1].

Since M2n−i ⊂ γ−1
i P2nγi ∩ Pn−1, we may choose a set of representatives for

[γ−1
i P2nγi∩Pn−1]\Pn−1/[SO2n+2 Nn−1] from M2n−i\GLn−1 /Nn−1. Then a com-

plete set of representatives for M2n−i\GLn−1 /Nn−1 can be chosen from

[W (GL2n−i )×W (GLi−n−1)]\W (GLn−1). �

Let α1, . . . , αn−2 denote the simple roots of GLn−1 with respect to Nn−1. Let

{xα j (t)= In−1+ t E j, j+1 | t ∈ F}

denote the one parameter unipotent subgroup of Nn−1 corresponding to the root α.
We will take w = id to be the representative of the coset W (GLk)×W (GLn−1−k)

in W (GLn−1).

Lemma 5.4 [Ginzburg et al. 1999, Lemma 4.3]. If a Weyl group elementw belongs
to [W (GLk) × W (GLn−1−k)]\W (GLn−1) and is the identity, then there exists a
simple root α j such that wxα j (t)w

−1
∈ Lk for all t ∈ F.

Next we consider the semisimplification of the module J{ψn−1}(I(s,W(τ, ψ)))

as a representation of SO2n+1(F). It is a standard process to decompose the repre-
sentation by spaces of functions on SO4n(F) according the orbital decomposition
obtained in Lemma 5.3.

It is clear that among the orbits

Oi,w = [P2n]γiw[SO2n+2 Nn−1] for i ∈ 2N with n ≤ i ≤ 2n,

the orbit O2[(n+1)/2],id is the unique open orbit. Let E be a union of orbits Oi,ω.
We denote by S(E, τs) the space of smooth functions φ on E that are compactly
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supported modulo P2n , have values in the Whittaker model W(τ, ψ) and are such
that

φ
((a ∗

a∗
)

g, r
)
= |det a|s/2+n−1/2φ(g, ra) for g ∈ SO4n and a, r ∈ GL2n .

We may arrange the orbits in a sequence

P2n SO2n+2 Nn−1 =�1, . . . , �l = O2[(n+1)/2],id

such that Fi =
⋃i

j=1� j is closed in SO4n . It is clear that �i is open in Fi and
Fi−1 is closed in Fi . We obtain the exact sequence

(5-1) 0→ S(�i+1, τs)
e
−→S(Fi+1, τs)

r
−→S(Fi , τs)→ 0,

where the map e is the natural embedding and r is the restriction to Fi . Apply
the twisted Jacquet functor J{ψn−1} to the exact sequence (5-1). Since the Jacquet
functors are exact, we obtain another exact sequence

0→ J{ψn−1}(S(�i+1, τs))→ J{ψn−1}(S(Fi+1, τs))→ J{ψn−1}(S(Fi , τs))→ 0.

We obtain the semisimplification of J{ψn−1}(I(s,W(τ, ψ))) as a representation of
SO2n+1(F) as

⊕l
i=1 J{ψn−1}(S(�i , τs)).

Next, we study the space J{ψn−1}(S(�i , τs)) for i = 1, 2, . . . , l. We assume for
the rest of this section unless stated otherwise that all inductions are unnormalized.

As SO2n+2 Nn−1 module, we have

S(Oi,w, τs)' c-IndSO2n+2 Nn−1

P
γi,w
2n

(δ
1/2
P2n
τs)

γi,w ,

where c-Ind denotes the compact induction and

Ri,w = Pγi,w
2n := (γiw)

−1 P2nγiw∩SO2n+1 Nn−1.

Lemma 5.5. With notation above, the following vanishing properties hold.

(1) For w 6= id,

J{ψn−1}(c-IndSO2n+2 Nn−1
Ri,w

(δ
1/2
P2n
τs)

γi,w)= 0 for i ≥ 2[(n+ 1)/2].

(2) For w = id,

J{ψn−1}(c-IndSO2n+2 Nn−1
Ri,id

(δ
1/2
P2n
τs)

γi,id)= 0 for i > 2[(n+ 1)/2].

Proof. When w 6= id, by Lemma 5.4, there is a simple root subgroup x(t) inside
Nn−1 such that γiwx(t)(γiw)

−1 lies in the unipotent radical of P2n . This shows
that

x(t) ∈ Ri,w ∩ Nn−1 and (δ
1/2
P2n
τs)

γi,w(x(t))= id,

while ψn−1(x(t))= ψ(t).
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When w = id and i > 2[(n + 1)/2], the root subgroup xα(t) of SO4n is for
α = en−1+ e2n invariant under the conjugation by γ′−1

i . Hence

x(t) ∈ Ri,w ∩ Nn−1 and (δ
1/2
P2n
τs)

γi,w(x(t))= id,

while ψn−1(x(t))= ψ(t). �

Therefore, we are left with J{ψn−1}(S(�l, τs)) for the Zariski open orbit �l =

O2[(n+1)/2],id. To summarize:

Proposition 5.6. We have

J{ψn−1}(I(s,W(τ, ψ)))' J{ψn−1}(S(O2[(n+1)/2],id, τs))

for all s ∈ C as representations of SO2n+1(F).

5.7. Proof of Theorem 5.1(1). Keep the previous notation. By Proposition 5.6,

HomSO2n+1(F)(J{ψn−1}(I(s, τ )), Vσ )

' HomSO2n+1(F)(J{ψn−1}(S(O2[(n+1)/2],id, τs)), Vσ ),

reducing the proof to understanding the structure of J{ψn−1}(S(O2[(n+1)/2],id, τs))

as a representation of SO2n+1(F).
It is more convenient to choose ν4n as representative of the orbit O=O2[(n+1)/2],id

than the original γ2[(n+1)/2],id. Then

S(O, τs)' c-IndSO2n+2 Nn−1

P
ν4n
2n

(δ
1/2
P2n
τs)

ν4n ,

where Pν4n
2n = ν

−1
4n P2nν4n ∩SO2n+2 Nn−1. Let Qn+1 be the maximal standard para-

bolic subgroup of SO2n+2 whose Levi component is isomorphic to GLn+1, and let
Q−n+1 be the opposite parabolic subgroup. Then we have

Pν4n
2n =

{
m
((z c

In+1

))
∈ SO4n

∣∣∣ z ∈ Un−1

}
·Qn+1

:= m(U2n,n−1) ·Q
−

n+1,

where U2n, j is the subgroup of the unipotent radical U2n of the standard Borel
subgroup of GL2n consisting of elements of type(z c

0 I2n− j

)
∈ U2n with z ∈ U j .

For

φ ∈ c-IndSO2n+2 Nn−1

P
ν4n
2n

(δ
1/2
P2n
τs)

ν4n and q =
(

a 0
∗ a∗

)
∈ Q−n+1,
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we have

(5-2) (δ
1/2
P2n
τs)

ν4n (diag(In−1, q, In−1)) (φ)(g, r)

= |det a|−(s/2+n−1/2)φ(g, r(diag In−1, a)),

and for
(z c

0 In+1

)
∈ U2n,n−1, we have

(5-3) (δ
1/2
P2n
τs)

ν4n
(

m
((z c

In+1

)))
(φ)(g, r)= φ

(
g, r

(z c
0 In+1

))
.

To understand J{ψn−1}(S(O, τs)) as a representation of SO2n+1(F), we con-
sider the double coset decomposition Pν4n

2n \ SO2n+2 ·Nn−1/SO2n+1 ·Nn−1, which
reduces the proof to the computation of the double cosets

Q−n+1 \SO2n+2 /SO2n+1 .

Next proposition shows that it has only one orbit.

Proposition 5.8. Over any field k of characteristic zero, the generalized flag variety
Q−n+1(k) \SO2n+2(k) has only one orbit under the action of SO2n+1(k).

Proof. Let X = k2n+2 be a k-vector space, written with its elements as column
vector, with a quadratic form q defined by 1

2ν2n+2. Then SO(X) ' SO2n+2 Let
e1, . . . , e2n+2 be the standard basis of X , v0 = en+1 + en+2. Let Y = (k · v0)

⊥.
Then dim Y = 2n+ 1 and SO(Y )= SO2n+1. Note that Y has a basis

(5-4) en+1− en+2, e1, e2 . . . , en, en+3, . . . , e2n+1, e2n+2.

Then a basis of X can be chosen to be

(5-5) en+1+ en+2, en+1− en+2, e1, e2, . . . , en, en+3, . . . , e2n+1, e2n+2.

Let g ∈ SO(X) such that g(v0) = v0. Then g(Y ) = Y . Assume that the matrix of
g|Y in the basis (5-4) is Ag. Then g in the basis (5-5) is diag(1, Ag). As det g = 1,
we must have det(Ag)= 1; hence g ∈ SO(Y ), so the stabilizer of v0 is SO(Y ).

Note that q(v0)= 1. Let Z = {v ∈ X | q(v)= 1}. Then SO2n+2 acts transitively
on Z . To show the proposition, we only need to show that Q−n+1 acts on Z transi-
tively. In fact, if Q−n+1 acts transitively on Z , then, letting h ∈ SO(X), there exists
t ∈ Q−n+1 such that h · v0 = t · v0. Hence (t−1h) · v0 = v0, and then t−1h ∈ SO2n+1

and h ∈ Q−n+1 SO2n+1. This means that SO2n+2 = Q−n+1 SO2n+1.
Now we show that Q−n+1 acts transitively on Z . We only need to show that any

element of Z can be moved to v0 under the action of some element in Q−n+1. Let
v = (v1, v2) ∈ X with v1, v2 ∈ kn+1. Take g ∈ Q−n+1 to be

g =
(

a 0
b a∗

)
with a ∈ GLn+1 .
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Then the action of g on v is given by g · v = (av1, bv1+ a∗v2)
t .

Assume now q(v)=1. Then v1 6=0, otherwise q(v)=0. Then there is a∈GLn+1

such that av1 = (0, . . . , 0, 1)t . For this a, there exists b ∈ Matn+1(k) such that
bv1 = (1, 0, . . . , 0)t − a∗v2, since v1 6= 0. Now

g =
(

a 0
b a∗

)
∈ Q−n+1 and g · v = v0. �

It follows that Pν4n
2n \ SO2n+2 Nn−1 = [P

ν4n
2n ∩ SO2n+1 Nn−1] \ SO2n+1 Nn−1. By

restriction to SO2n+1 Nn−1, we have

c-IndSO2n+2 Nn−1

P
ν4n
2n

((δ
1/2
P2n
τs)

ν4n )' c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n )

as representations of SO2n+1(F)n Nn−1(F). Hence

J{ψn−1}(c-IndSO2n+2 Nn−1

P
ν4n
2n

((δ
1/2
P2n
τs)

ν4n ))

' J{ψn−1}(c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n ))

as representations of SO2n+1(F).
Define ψU2n,n−1

(u(z, c)) := ψn−1|U2n,n−1(u(z, c)).

Proposition 5.9. With notation above,

J{ψn−1}(c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n ))

' c-IndSO2n+1

P−n
(J{ψU2n,n−1}(τ

′)|det|−s/2−1/2)

as representations of SO2n+1(F), where P−n := Q−n+1 ∩ SO2n+1, the representation
τ ′ is obtained by restriction to P−n (F) of the representation of Q−n+1(F) given by
(5-2) and (5-3), and J{ψU2n,n−1}(τ

′) denotes the twisted Jacquet module of τ ′ along
(U2n,n−1, ψU2n,n−1).

Proof. Let f be a section in

c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n ).

Consider the restriction of f to SO2n+1(F). It is clear that this restriction map
factors through

J{ψn−1}(c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n )),

so we still denote the restriction by f 7→ f |SO2n+1(F). By (5-2) and (5-3), the
restriction f |SO2n+1(F) belongs to the space

c-IndSO2n+1

P−n
(J{ψU2n,n−1}(τ

′)|det|−s/2−1/2).
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By using the orbital decomposition in Proposition 5.8 and (5-3), it is not hard to
check that f 7→ f |SO2n+1(F) is in fact injective. The argument is the same as in the
proof of [Ginzburg et al. 1999, formula (6.5)] and similar to that of [Kudla 1986,
Lemma 5.3]. We omit the details.

The surjectivity can be verified as follows. Assume that we have a smooth
J{ψU2n,n−1}(Vτ ′)-valued function g on SO2n+1, compactly supported modulo P−n ,
satisfying

g(qy)= J{ψU2n,n−1}(τ
′)|det|−s/2−1/2(q)g(y) for q ∈ P−n and y ∈ SO2n+1.

Since g is locally constant, we may pull back g to a smooth Vτ ′-valued function
g′ on SO2n+1, compactly supported modulo P−n , satisfying

g′(qy)= τ ′(q)|det|−(s/2+n−1/2)g′(y) for q ∈ P−n and y ∈ SO2n+1.

The unipotent subgroup Nn−1 can be written as Nn−1=m(U2n,n−1)nN ′′, where
N ′′ is the intersection of Nn−1 with the unipotent radical V2n of P2n . Then

SO2n+1 Nn−1 = SO2n+1 U′′2n,n−1,

which is in fact a homeomorphism. Indeed, let z′y′x ′ = zyx with x, x ′ ∈ SO2n+1,
z, z′ ∈ Bn−1 and y, y′ ∈ N ′′. Then y= (z−1z′)y′(x ′x−1)∈ N ′′. Hence x = x ′, z= z′

and y = y′.
Then we can pull back g to a section f in

J{ψn−1}(c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n )),

which is defined as follows. Choose a compactly supported smooth function φ
on N ′′ that has a nonzero projection under the twisted Jacquet functor with respect
to (N ′′, ψn−1|N ′′), and define f ′(uyx, r) := φ(y)g′(x, ru), for all x ∈ SO2n+1,
u ∈ U2n,n−1, y ∈ N ′′, and r ∈ GL2n . It is clear that f ′ is a nonzero section in

c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n ).

By checking the action of Nn−1 on f ′, it is clear that f ′ factors through

J{ψn−1}(c-IndSO2n+1 Nn−1

P
ν4n
2n ∩SO2n+1 Nn−1

((δ
1/2
P2n
τs)

ν4n )),

whose image f has the restriction to SO2n+1(F) equal to g. �

The elements of P−n have the form
b
x 1 0
−x 0 1
y′ −x ′ x ′ b∗

 ∈ SO2n+2(F),
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which is identified (following the embedding we assumed as before) withb
x 1
y x ′ b∗

 ∈ SO2n+1(F).

Following the discussions above, we deduce that

HomSO2n+1(F)(J{ψn−1}(I(s, τ )), Vσ )

' HomSO2n+1(F)(c-IndSO2n+1(F)

P−n (F)
(J{ψU2n,n−1}(τ

′)|det|−s/2−1/2), Vσ ).

By the Frobenius reciprocity law, the last space is isomorphic to

HomP−n (F)
(J{ψU2n,n−1}(τ

′)|det|−s/2−1/2, Vσ ).

By the assumption of Theorem 5.1, the last space is nonzero. Since the argu-
ment below only uses the genericity of τ ′ and the supercuspidality of σ and does
not depend on the value s, we may consider, for simplicity, only the nonzero
space HomP−n (F)

(J{ψU2n,n−1}(τ
′), Vσ ). Any nonzero element ξ in it is a P−n (F)-

equivariant, linear map from J{ψU2n,n−1}(τ
′) to Vσ . In particular, for any v ∈ Vτ ′ ,

we have

(5-6) σ

a
x 1
y x ′ a∗

 (ξ(v))= ξ(J{ψU2n,n−1}(τ
′)

In−1

a
x 1

 (v)).
Take a = In and consider the action of the unipotent radical of P−n (F), which is

denoted by V−n (F) and consists of elements of the form

v−(x, y) :=

In

x 1
y x ′ In

 .
Then (5-6) implies that the center (the elements of type v−(0, y)) of V−n (F) acts on
Vσ trivially. Since Vσ is supercuspidal, there is a nonzero vector v∈J{ψU2n,n−1}(Vτ̃ )
such that the unipotent radical of V−n (F) acts on ξ(v) by a nontrivial character.
Since the GLn(F) acts on the x-part (more precisely, the quotient of V−n (F)modulo
the center) with two orbits, we may assume that

σ(v−(x, y))(ξ(v))= ψV−n
(v−(x, y))ξ(v)= ψ(xn)ξ(v) for x = (x1, · · · , xn)

where ψV−n
is a nonzero character of V−n (F). In other words, the map ξ descends

to a map from J{ψU2n,n−1
}(τ ′) to J{ψV−n

}(Vσ ).
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By (5-6), we have

ξ(J{ψn−1}(τ
′)

In−1

a
x 1

 (v))= ψ(xn)ξ(v).

Now consider the subgroup B2n,n of GL2n consisting of elements of the form

b(z, c, e, y, d) :=

z c e
0 1 y
0 0 d

 with d ∈ GLn(F) and z ∈ Un−1.

Let µ be the Weyl element of GL2n that corresponds to the elementary matrix
diag(In−1, νn+1). Then it is easy to see that

ξ(J{ψn−1}(τ
′)(b(z, c, e, y, In))(µv))= ψUn−1

(z)ψ(cn−1)ψ(y1)ξ(µv).

This means that the map ξ factors through the n-th derivative τ̃ (n) in the sense of
[Bernstein and Zelevinsky 1976]. Therefore, we can view ξ as a map from the n-th
derivative τ̃ (n) to J{ψV−n

}(Vσ ), which has the equivalence property, for a ∈GLn−1,
that

J{ψV−n
}(σ )

((
a 0
x 1

))
ξ(v)= ξ

(τ ′)(n)



In

1 x∗

0 νn−1aνn−1



 (µv),

where x∗ = (xn−1, xn−2, . . . , x1) if x = (x1, . . . , xn−1).
Now we come back to the situation of (5-6) with a ∈GLn−1. We repeat the same

process with the supercuspidality of σ and the genericity of τ . Eventually, we arrive
at the 2n-th derivative of τ ′, which is the twisted Jacquet module of Whittaker type.
The equivalence property in this last case shows that Vσ has a nonzero Whittaker
functional. Hence it is generic. This finishes the proof of Theorem 5.1(1).
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