CONFORMALLY OSSERMAN MANIFOLDS

YURI NIKOLAYEVSKY

To the memory of Novica Blažić (1959–2005),
a remarkable mathematician and a wonderful person.

An algebraic curvature tensor is called Osserman if the eigenvalues of the associated Jacobi operator are constant on the unit sphere. A Riemannian manifold is called conformally Osserman if its Weyl conformal curvature tensor at every point is Osserman. We prove that a conformally Osserman manifold of dimension $n \neq 3, 4, 16$ is locally conformally equivalent either to a Euclidean space or to a rank-one symmetric space.

1. Introduction

An algebraic curvature tensor \mathcal{R} on a Euclidean space \mathbb{R}^n is a $(3, 1)$ tensor having the same symmetries as the curvature tensor of a Riemannian manifold. For $X \in \mathbb{R}^n$, the Jacobi operator $\mathcal{R}_X : \mathbb{R}^n \to \mathbb{R}^n$ is defined by $\mathcal{R}_X Y = \mathcal{R}(X, Y)X$. The Jacobi operator is symmetric, and $\mathcal{R}_X X = 0$ for all $X \in \mathbb{R}^n$.

Definition 1.1. An algebraic curvature tensor \mathcal{R} is Osserman if the eigenvalues of the Jacobi operator \mathcal{R}_X do not depend on the choice of a unit vector $X \in \mathbb{R}^n$.

One of the algebraic curvature tensors naturally associated to a Riemannian manifold (apart from the curvature tensor itself) is the Weyl conformal curvature tensor.

Definition 1.2. A Riemannian manifold is (pointwise) Osserman if its curvature tensor at every point is Osserman. It is conformally Osserman if its Weyl tensor everywhere at every point is Osserman.

It is well known (and easy to check directly) that a Riemannian space locally isometric to a Euclidean space or to a rank-one symmetric space is Osserman. The question of whether the converse is true (“every pointwise Osserman manifold is flat or locally rank-one symmetric”) is known as the Osserman conjecture [1990]. The first result on the Osserman conjecture, the affirmative answer for manifolds of

MSC2000: 53B20, 53A30.

Keywords: Osserman manifold, Weyl tensor, Jacobi operator, Clifford structure.

Supported by the FSTE grant.
dimension not divisible by 4, was published before the conjecture itself [Chi 1988].
In the following two decades, substantial progress was made in understanding
Osserman and related classes of manifolds, both in the Riemannian and pseudo-
Riemannian settings; see the books [Gilkey 2001; 2007; García-Río et al. 2002].

The Osserman conjecture is proved in the most cases, exception being when the
dimension of an Osserman manifold is 16 and one of the eigenvalues of the Jacobi
operator has multiplicity 7 or 8 [N 2003; 2004; 2005; 2006]. The main difficulty
in proving the conjecture in these remaining cases lies in the fact that the Cayley
projective plane (and its hyperbolic dual) are Osserman, with the multiplicities of
the nonzero eigenvalues of the Jacobi operator being exactly 7 and 8; moreover, the
curvature tensor of the Cayley projective plane is essentially different from that of
the other rank-one symmetric spaces, as it does not admit a Clifford structure (see
Section 2 for details). This is the only known Osserman curvature tensor without
a Clifford structure, and to prove the Osserman conjecture in full, it would be very
desirable to show that there are no other exceptions.

The study of conformally Osserman manifolds was started by Blažić and Gilkey
[2004] and was continued in [Blažić and Gilkey 2005; Blažić et al. 2005; Gilkey
2007; Blažić et al. 2008]. Every Osserman manifold is conformally Osserman
(which easily follows from the formula for the Weyl tensor and the fact that every
Osserman manifold is Einstein), since also every manifold is locally conformally
equivalent to an Osserman manifold.

Theorem 1.3 (main result). A connected C^∞ Riemannian conformally Osserman
manifold of dimension $n \neq 3, 4, 16$ is locally conformally equivalent to a Euclidean
space or to a rank-one symmetric space.

This theorem answers the conjecture made in [Blažić et al. 2005], with three ex-
ceptions. (For conformally Osserman manifolds of dimension $n > 6$, not divisible
by 4, this conjecture is proved in [Blažić and Gilkey 2004, Theorem 1.4].)

Note that the nature of the three excepted dimensions in Theorem 1.3 is dif-
fferent. In dimension three, the Weyl tensor vanishes, hence giving no information
about the manifold at all. In dimension four, even a “genuine” pointwise Osserman
manifold may not be locally symmetric (see the examples of “generalized complex
space forms” in [Gilkey et al. 1995, Corollary 2.7] and [Olszak 1989]). As proved
in [Chi 1988], the Osserman conjecture is still true in dimension four, but in a
more restrictive version: One requires the eigenvalues of the Jacobi operator to
be constant on the whole unit tangent bundle (a Riemannian manifold having this
property is called *globally Osserman*). One might wonder whether the conformal
counterpart of this result is true. Blažić and Gilkey [2005] found the elegant charac-
terization that a four-dimensional Riemannian manifold is conformally Osserman
if and only if it is either self-dual or anti-self-dual.
In dimension 16, both the conformal and the original Osserman conjecture remain open; for partial results, see [N 2005; 2006] in the Riemannian case and Theorem 3.1 in the conformal case.

As a rather particular case of Theorem 1.3, we obtain an analogue of the Weyl–Schouten theorem for rank-one symmetric spaces: A Riemannian manifold of dimension greater than four having “the same” Weyl tensor as that of one of the complex/quaternionic projective spaces or their noncompact duals is locally conformally equivalent to that space. More precisely:

Theorem 1.4. Let M^n_0 denote one of the spaces $\mathbb{CP}^{n/2}$, $\mathbb{CH}^{n/2}$, $\mathbb{HP}^{n/4}$ or $\mathbb{HH}^{n/4}$, and let W_0 be the Weyl tensor of M^n_0 at some point $x_0 \in M^n_0$. Suppose that for every point x of a Riemannian manifold M^n with $n > 4$ there exists a linear isometry $\iota: T_xM^n \to T_{x_0}M^n_0$ that maps the Weyl tensor of M^n at x on a positive multiple of W_0. Then M^n is locally conformally equivalent to M^n_0.

The claim follows from [Blazić and Gilkey 2004, Theorem 1.4] for $M^n_0 = \mathbb{CP}^{n/2}$, $\mathbb{CH}^{n/2}$ and $n > 6$. The fact that the dimension $n = 16$ is not excluded (as compared to Theorem 1.3) follows from Theorem 3.1.

We assume all the object (manifolds, metrics, vector and tensor fields) to be smooth (of class C^∞), although all the results remain valid for class C^k, with sufficiently large k.

The paper is organized as follows. In Section 2, we give some background on Osserman algebraic curvature tensors and on Clifford structures and prove some technical lemmas. The proof of Theorem 1.3 is given in Section 3. Theorem 1.3 is deduced from a more general Theorem 3.1. We first prove the local version using the second Bianchi identity, and then the global version by showing that the “algebraic type” of the Weyl tensor is the same at all points of a connected conformally Osserman Riemannian manifold (in particular, a nonzero Osserman Weyl tensor cannot degenerate to zero).

2. Algebraic curvature tensors with a Clifford structure

2.1. Clifford structure.

The requirement that an algebraic curvature tensor \mathcal{R} be Osserman is algebraically quite restrictive. In most cases, such a tensor can be obtained by the following construction, suggested in [Gilkey et al. 1995], which generalizes the curvature tensor of complex and quaternionic projective space.

Definition 2.2. A Clifford structure $\text{Cliff}(\nu; J_1, \ldots, J_\nu; \lambda_0, \eta_1, \ldots, \eta_\nu)$ on \mathbb{R}^ν is a set of $\nu \geq 0$ anticommuting almost Hermitian structures J_i and $\nu + 1$ real numbers $\lambda_0, \eta_1, \ldots, \eta_\nu$, with $\eta_i \neq 0$. An algebraic curvature tensor \mathcal{R} on \mathbb{R}^ν has a Clifford
structure $\text{Cliff}(\nu; J_1, \ldots, J_v; \lambda_0, \eta_1, \ldots, \eta_v)$ if

\begin{equation}
\mathfrak{R}(X, Y)Z = \lambda_0(X, Z)Y - (Y, Z)X + \sum_{i=1}^{v} \eta_i(2(J_i X, Y)J_i Z + (J_i Z, Y)J_i X - (J_i Z, X)J_i Y).
\end{equation}

When it does not create ambiguity, we write $\text{Cliff}(\nu; J_1, \ldots, J_v; \lambda_0, \eta_1, \ldots, \eta_v)$ simply as $\text{Cliff}(\nu)$.

Remark 2.3. Definition 2.2 implies that the operators J_i are skew-symmetric and orthogonal and satisfy the equations

$$\langle J_i X, J_j X \rangle = \delta_{ij} \|X\|^2 \quad \text{and} \quad J_i J_j + J_j J_i = -2\delta_{ij} \text{id}$$

for all $i, j = 1, \ldots, v$ and all $X \in \mathbb{R}^n$. This implies that every algebraic curvature tensor with a Clifford structure is Osserman, as by (2-1) the Jacobi operator has the form $\mathfrak{R}_X Y = \lambda_0(\|X\|^2 Y - (Y, X)X) + \sum_{i=1}^{v} 3\eta_i \langle J_i X, Y \rangle J_i X$. So for a unit vector X, the eigenvalues of \mathfrak{R}_X are λ_0 (of multiplicity $n - 1 - v$ if $v < n - 1$), 0, and $\lambda_0 + 3\eta_i$ for $i = 1, \ldots, v$.

The converse — every Osserman algebraic curvature tensor has a Clifford structure — is true in all dimensions but $n = 16$ and also in many cases when $n = 16$, as follows from [N 2005, Proposition 1 and the penultimate paragraph of the proof of Theorems 1 and 2], [N 2004, Proposition 1] and [N 2006, Proposition 2.1]. The only known counterexample is the curvature tensor $R^{O^{P^2}}$ of the Cayley projective plane (more precisely, any algebraic curvature tensor of the form $\mathfrak{R} = aR^{O^{P^2}} + bR^1$, where R^1 is the curvature tensor of the unit sphere $S^{16}(1)$ and $a \neq 0$).

A Clifford structure $\text{Cliff}(\nu)$ on Euclidean \mathbb{R}^n turns it into a Clifford module; see [Atiyah et al. 1964, Part 1], [Husemoller 1975, Chapter 11], and [Lawson and Michelsohn 1989, Chapter 1] for standard facts on Clifford algebras and Clifford modules). A Clifford algebra $\text{Cl}(\nu)$ on ν generators x_1, \ldots, x_ν is an associative unital algebra over \mathbb{R} defined by the relations $x_i x_j + x_j x_i = -2\delta_{ij}$. The homomorphism $\sigma : \text{Cl}(\nu) \to \text{End}(\mathbb{R}^n)$ of associative algebras defined on generators by $\sigma(x_i) = J_i$ and $\sigma(1) = \text{id}$ is a representation of $\text{Cl}(\nu)$ on \mathbb{R}^n. Since all the J_i are orthogonal and skew-symmetric, σ gives rise to an orthogonal multiplication defined as follows. In the Euclidean space \mathbb{R}^n, fix an orthonormal basis e_1, \ldots, e_n. For every $u = \sum_{i=1}^{\nu} u_i e_i \in \mathbb{R}^\nu$ and every $X \in \mathbb{R}^n$, define

\begin{equation}
J_0 X = \sum_{i=1}^{\nu} u_i J_i X
\end{equation}

(when $u = e_i$, we abbreviate J_{e_i} to J_i). The map $J : \mathbb{R}^\nu \times \mathbb{R}^n \to \mathbb{R}^n$ defined by (2-2) is an orthogonal multiplication: $\|J_0 X\|^2 = \|u\|^2 \|X\|^2$ (similarly, we can define an orthogonal multiplication $J : \mathbb{R}^{\nu+1} \times \mathbb{R}^n \to \mathbb{R}^n$ by $J_0 X = u_0 X + \sum_{i=1}^{\nu} u_i J_i X$ for $u = \sum_{i=1}^{\nu+1} u_i e_i$).
Let see, for instance, [Husemoller 1975, Theorem 11.8.2].

Proof. Suppose that

\[\sum_{i=0}^{\nu} u_i e_i \in \mathbb{R}^{\nu+1}, \text{ where } e_0, \ldots, e_\nu \text{ is an orthonormal basis for Euclidean } \mathbb{R}^{\nu+1}.\]

For \(X \in \mathbb{R}^n \), denote

\[\mathcal{J}X = \text{Span}(J_1 X, \ldots, J_\nu X) \text{ and } \mathcal{J}X = \text{Span}(X, J_1 X, \ldots, J_\nu X).\]

We also use the complexified versions of these subspaces, which we denote by \(\mathcal{J}_C X \) and \(\mathcal{J}_C X \) respectively for \(X \in \mathbb{C}^n \).

If \(\mathbb{R}^n \) is a Cl(\(\nu \))-module (equivalently, if there exists an algebraic curvature tensor with a Clifford structure Cl(\(\nu \)) on \(\mathbb{R}^n \)), then

\[(2-3) \quad \nu \leq 2^b + 8a - 1, \quad \text{where } n = 2^{4a+b} \quad c \text{ is odd, and } 0 \leq b \leq 3;\]

see, for instance, [Husemoller 1975, Theorem 11.8.2].

As a direct consequence of (2-3), we have the following inequalities.

Lemma 2.4. Let \(\mathcal{R} \) be an algebraic curvature tensor with a Clifford structure Cl(\(\nu \)) on \(\mathbb{R}^n \). Suppose that \(n > 4 \) and \(n \neq 8, 16 \). Then

(i) \(n \geq 3\nu + 3 \), with equality only when \(n = 6 \) and \(\nu = 1 \), or \(n = 12 \) and \(\nu = 3 \), or \(n = 24 \) and \(\nu = 7 \);

(ii) \(n > 4\nu - 2 \), except when \(n = 24 \) and \(\nu = 7 \) or \(n = 32 \) and \(\nu = 9 \);

(iii) \(\text{there exists an integer } l \text{ such that } \nu < 2^l < n. \)

Proof. Let \(\rho(n) = 2^b + 8a - 1 \), the right side of (2-3). Then \(\nu \leq \rho(n) \). First suppose that \(n = 2^m c \), with \(m = 4a + b \geq 6 \), where \(0 \leq b \leq 3 \) and \(c \) is odd. We claim that \(n > 4 \rho(n) \). Indeed, \(n \geq 2^m = 2^{4a+b} \), so it suffices to show that \(2^{4a-2} > 1 + 2^{3-b} a - 2^{-b} \). The latter inequality follows from \(2^{4a-2} > 1 + 8a \), when \(a \geq 2 \), and is also true when \(a = 1 \) and \(b = 2, 3 \). Since \(n > 4 \rho(n) \), (ii) is obvious, (i) is satisfied (since \(\rho(n) > 3 \)), and (iii) is satisfied with \(l = m - 1 \).

In each of the remaining cases (\(n = 2^m c \), with an odd \(c \) and \(m = 0, \ldots, 5 \)), \(\rho(n) \) can be computed explicitly and the claim follows by a routine check. \(\square \)

2.5. Clifford structures on \(\mathbb{R}^8 \) and the octonions. The proof of Theorem 1.3 in the generic case uses that \(\nu \) is small relative to \(n \) (with the required estimates given in Lemma 2.4). However, in the case \(n = 8 \), the number \(\nu \) can be as large as \(7 \), according to (2-3). Consider this case in more detail. In [N 2004], it is shown that every Osserman algebraic curvature tensor \(\mathcal{R} \) on \(\mathbb{R}^8 \) has a Clifford structure, and that either \(\mathcal{R} \) has a Cl(3) structure with \(J_1 J_2 = \pm J_3 \), or an existing Cl(\(\nu \)) structure can be complemented to a Cl(7) structure. More precisely:

Lemma 2.6. (1) Suppose \(\mathcal{R} \) is an algebraic curvature tensor on \(\mathbb{R}^8 \) with Clifford structure Cl(\(\nu \); \(J_1, \ldots, J_\nu \); \(\lambda_0, \eta_1, \ldots, \eta_\nu \)). Then exactly one of two possibilities may occur: either \(\mathcal{R} \) has a Clifford structure Cl(3) with \(J_1 J_2 = \pm J_3 \), or there exist \(7 - \nu \) operators \(J_{\nu+1}, \ldots, J_7 \) such that \(J_1, \ldots, J_{\nu} \) are anticommuting almost Hermitian structures with \(J_1 J_2 \ldots J_7 = \text{id}_{\mathbb{R}^8} \) and \(\mathcal{R} \) has a Clifford
structure $\text{Cliff}(7; J_1, \ldots, J_7; \lambda_0 - 3\xi, \eta_1 + \xi, \ldots, \eta_v + \xi, \xi, \ldots, \xi)$ for any $\xi \neq -\eta_i, 0$.

(2) Let \mathbb{O} be the octonion algebra with inner product defined by $\|u\|^2 = uu^*$, where * is the octonion conjugation, and let $\mathbb{O}' = 1^\perp$, the space of imaginary octonions. Then, in the second case in part (1), there exist linear isometries $i_1 : \mathbb{R}^8 \to \mathbb{O}$ and $i_2 : \mathbb{R}^7 \to \mathbb{O}'$ such that the orthogonal multiplication (2-2) is given by $J_uX = i_1(X)i_2(u)$.

Proof. (1) This claim is proved in [N 2004, Lemma 5]. The proof is based on the fact that every representation σ of $\text{Cl}(v)$ on \mathbb{R}^8, except for the representations of $\text{Cl}(3)$ with $J_1J_2 = \pm J_3$, is a restriction of a representation of $\text{Cl}(7)$ on \mathbb{R}^8 to $\text{Cl}(v) \subset \text{Cl}(7)$. It follows that the almost Hermitian structures J_1, \ldots, J_v defined by σ can be complemented by almost Hermitian structures J_{v+1}, \ldots, J_7 such that J_1, \ldots, J_7 anticommute, and so \mathcal{R} can be written in the form (2-1), with a formal summation up to 7 on the right side (but with $\eta_i = 0$ when $i = v + 1, \ldots, 7$). To obtain a $\text{Cliff}(7)$ structure for \mathcal{R}, according to Definition 2.2, we only need to make all the η_i nonzero. This can be done using the identity

$$(2-4) \quad \langle X, Z \rangle Y - \langle Y, Z \rangle X = \sum_{i=1}^{7} \frac{1}{3} (2 \langle J_iX, Y \rangle J_iZ + \langle J_iZ, Y \rangle J_iX - \langle J_iZ, X \rangle J_iY),$$

which is gotten from the polarized identity

$$\|X\|^2 Y - \langle X, Y \rangle X = \sum_{i=1}^{7} \langle J_iX, Y \rangle J_iX,$$

which is true because for $X \neq 0$ the vectors $\|X\|^{-1}X, \|X\|^{-1}J_1X, \ldots, \|X\|^{-1}J_7X$ form an orthonormal basis for \mathbb{R}^8. Then by (2-1), \mathcal{R} has a Clifford structure $\text{Cliff}(7; J_1, \ldots, J_7; \lambda_0 - 3\xi, \eta_1 + \xi, \ldots, \eta_v + \xi, \xi, \ldots, \xi)$ for any $\xi \neq -\eta_i, 0$.

(2) This claim is proved in [N 2004, the beginning of Section 5.1]. The proof is based on the following. There are two nonisomorphic representations of $\text{Cliff}(7)$ on \mathbb{R}^8. By identifying \mathbb{R}^8 with the octonion algebra \mathbb{O} via a linear isometry, these representations are given by the orthogonal multiplications $J_uX = uX$ and $J_uX = Xu$ respectively [Lawson and Michelsohn 1989, Section I.8]. Since $(uX)^* = X^*u^* = -X^*u$ for all $u, X \in \mathbb{O}$ with $u \perp 1$, the first representation is orthogonally equivalent to the second one, with the operators J_i replaced by $-J_i$. Since changing the signs of the J_i does not affect the form of the algebraic curvature tensor (2-1), we can always assume that a $\text{Cliff}(7)$ structure for an algebraic curvature tensor on \mathbb{R}^8 is given by the orthogonal multiplication $J_uX = i_1(X)i_2(u)$. □

In the proof of Theorem 1.3 for $n = 8$, we will usually identify \mathbb{R}^8 with \mathbb{O} and identify \mathbb{R}^7 with \mathbb{O}' via some fixed linear isometries i_1 and i_2, and we will simply
write the orthogonal multiplication in the form

\[(2-5) \quad J_n X = Xu,\]

where \(X \in \mathbb{R}^8 = \mathbb{O}\) and \(u \in \mathbb{O}'\). The proof of Theorem 1.3 for \(n = 8\) extensively uses computations in the octonion algebra \(\mathbb{O}\); in particular, the standard identities

\[
\begin{align*}
a^* &= 2(a,1)1 - a, \quad \langle a, b \rangle = \langle a^*, b^* \rangle = \frac{1}{2}(a^*b + b^*a), \\
a(ab) &= a^2b, \quad \langle a, bc \rangle = \langle b^*a, c \rangle = \langle ac^*, b \rangle, \\
(ab^*)c + (ac^*)b &= 2\langle b, c \rangle a, \quad \langle ab, ac \rangle = \langle ba, ca \rangle = \|a\|^2\langle b, c \rangle
\end{align*}
\]

for any \(a, b, c \in \mathbb{O}\), and the like; see for example [Harvey and Lawson 1982, Section IV]. It also uses the fact that \(\mathbb{O}\) is a division algebra; in particular, any nonzero octonion is invertible: \(a^{-1} = \|a\|^{-2}a^*\). We will also use the bioctonions \(\mathbb{O} \otimes \mathbb{C}\), the algebra over the \(\mathbb{C}\) that has same multiplication table as \(\mathbb{O}\). Since all the identities above are polynomial, they still hold for bioctonions, with the complex inner product on \(\mathbb{C}^8\), the underlying linear space of \(\mathbb{O} \otimes \mathbb{C}\). However, the bioctonion algebra is not a division algebra (and has zero-divisors: \((i1 + e_1)(i1 - e_1) = 0\)).

The proof of Theorem 1.3 will require a technical lemma.

Lemma 2.7. (1) Let \(J_1, \ldots, J_v\) be anticommuting almost Hermitian structures on \(\mathbb{R}^n\), and let \(F : \mathbb{R}^n \to \mathbb{R}^n\) be a homogeneous polynomial map of degree \(m\) such that \(F(X) \in \mathfrak{J}X\) for all \(X \in \mathbb{R}^n\). Suppose that \(n > 4\), and also \(v \leq 3\) if \(n = 8\) and \(v \leq 7\) if \(n = 16\). Then there exist homogeneous polynomials \(c_i\) for \(i = 1, \ldots, v\) of degree \(m - 1\) such that \(F(X) = \sum_{i=1}^v c_i(X)J_iX\).

With the same assumption, but with \(\mathfrak{J}\) replaced by \(\mathfrak{J}\), an additional homogeneous degree \(m - 1\) polynomial \(c_0\) appears, and \(c_0(X)X\) is added to \(F(X)\).

(2) Let \(J_1, \ldots, J_v\) be anticommuting almost Hermitian structures on \(\mathbb{R}^n\). Suppose that \(n > 4\) and that \(v \leq 3\) if \(n = 8\). Let \(1 \leq k \leq v\) and let \(a_j\) for \(1 \leq j \leq v\) with \(j \neq k\) be \(v - 1\) vectors in \(\mathbb{R}^n\) such that

\[(2-6) \quad \sum_{j \neq k} (\langle a_j, J_kY \rangle J_jY + \langle a_j, Y \rangle J_kJ_jY) = 0 \quad \text{for all } Y \in \mathbb{R}^n.\]

Then either \(a_j = 0\) for all \(j \neq k\), or \(v = 1\), or \(v = 3\), \(J_1J_2 = eJ_3, \ e = \pm 1\), and \(a_j = J_iv\), where \(\{i, j, k\} = \{1, 2, 3\}\) and \(v \neq 0\).

(3) Let \(N^n\) be a smooth Riemannian manifold and let \(J_1, \ldots, J_v\) be anticommuting almost Hermitian structures on \(N^n\). Suppose that for every nowhere vanishing smooth vector field \(X\) on \(N^n\), the distribution \(\mathfrak{J}X = \text{Span}(J_1X, \ldots, J_vX)\) is smooth (that is, the \(v\)-form \(J_1X \wedge \cdots \wedge J_vX\) is smooth). Then for every \(x \in N^n\), there exists a neighborhood \(\mathcal{U} = \mathcal{U}(x)\) and smooth anticommuting almost Hermitian structures \(\tilde{J}_1, \ldots, \tilde{J}_v\) on \(\mathcal{U}\) such that \(\text{Span}(\tilde{J}_1X, \ldots, \tilde{J}_vX) = \text{Span}(J_1X, \ldots, J_vX)\) for any vector field \(X\) on \(\mathcal{U}\).
Proof. (1) It is sufficient to prove the assertion for the case $F(X) \in \mathcal{J} X$.

Since for every $X \neq 0$, the vectors $X, J_1 X, \ldots, J_v X$ are orthogonal and have the same length $\|X\|$, we have

$$\|X\|^2 F(X) = f_0(X)X + \sum_{i=1}^{v} f_i(X) J_i X,$$

where $f_0(X) = \langle F(X), X \rangle$ and $f_i(X) = \langle F(X), J_i X \rangle$ are homogeneous polynomials of degree $m + 1$ of X (or possibly zeros). Taking the squared lengths of the both sides we get

$$\|X\|^2 \|F(X)\|^2 = f_0^2(X) + \sum_{i=1}^{v} f_i^2(X),$$

so the sum of squares of the $v+1$ polynomials $f_0(X), f_1(X), \ldots, f_v(X)$ is divisible by $\|X\|^2$. For $X = (x_1, \ldots, x_n)$, let $\langle \|X\|^2 \rangle$ be the ideal of $\mathbb{R}[X]$ generated by $\|X\|^2 = \sum_i x_i^2$, and let \mathbb{R} be the quotient of $\mathbb{R}[X]$ by this ideal. Let π be the natural projection from $\mathbb{R}[X]$ to \mathbb{R}. We have $\sum_{i=0}^{v} \hat{f}_i^2 = 0$, where $\hat{f}_i = \pi f_i$. If at least one of the \hat{f}_i is nonzero (say the ν-th one), then $\sum_{i=0}^{\nu-1} (\hat{f}_i / \hat{f}_{\nu})^2 = -1$ in \mathbb{F}, the field of fractions of the ring \mathbb{R}. The field \mathbb{F} is isomorphic to the field $\mathbb{L}_{n-1} = \mathbb{R}(x_1, \ldots, x_{n-1}, \sqrt{-d})$, where $d = x_1^2 + \cdots + x_{n-1}^2$ (an isomorphism from \mathbb{L}_{n-1} to \mathbb{F} is induced by the map $(a + b \sqrt{-d})/c \rightarrow (a + b x_n)/c$, with $a, b, c \in \mathbb{R}[x_1, \ldots, x_{n-1}]$ and $c \neq 0$). By [Pfister 1995, Theorem 3.1.4], the level of the field \mathbb{L}_{n-1}, the minimal number of elements whose sum of squares is -1, is 2^l, where $2^l < n \leq 2^{l+1}$. It follows that we arrive at a contradiction in all the cases when $\nu < 2^l < n$. This means that $\hat{f}_i = 0$ for all $i = 0, \ldots, \nu$, so each of the f_i is divisible by $\|X\|^2$ in $\mathbb{R}[X]$, so

$$F(X) = \langle \|X\|^{-2} f_0(X) \rangle X + \sum_{i=1}^{v} \langle \|X\|^{-2} f_i(X) \rangle J_i X,$$

with all the nonzero coefficients on the right side being homogeneous polynomials of degree $m - 1$. The claim now follows from Lemma 2.4(iii).

(2) If $v = 1$, Equation (2-6) is trivially satisfied. If $v = 2$, the claim follows immediately by taking the inner product of (2-6) with $J_1 J_2 Y$. Suppose $v = 3$. Taking the inner product of (2-6) with $J_i Y$ and $i \neq k$, we obtain

$$\langle a_i, J_i Y \rangle \|Y\|^2 = \langle a_j, Y \rangle \langle J_i J_j J_k, Y \rangle,$$

where $(i, j, k) = \{1, 2, 3\}$. It follows that the polynomial $\langle J_i J_k J_j Y, Y \rangle$ is divisible by $\|Y\|^2$. Since the operator $J_i J_k J_j$ is symmetric and orthogonal, it equals $\tilde{\epsilon}$ id, with $\tilde{\epsilon} = \pm 1$; hence $J_1 J_2 = \varepsilon J_3$ with $\varepsilon = \pm 1$. Then $-J_k a_i = \tilde{\varepsilon} a_j$, so $J_i a_j = -\tilde{\varepsilon} J_i J_k a_i = -\tilde{\varepsilon} J_i a_j$. Therefore for all i, j such that $(i, j, k) = \{1, 2, 3\}$,
we have $a_j = J_j v$ and $a_i = J_j v$, and we can assume that $v \neq 0$, since otherwise $a_i = a_j = 0$.

Now suppose $v > 3$ and let $L = \text{Span}(a_j)$. It follows from (2-6) that if $Y \perp L$, then $J_k Y \perp L$, so L is J_k-invariant. Polarizing (2-6) we obtain

$$\sum_{j \neq k} (\langle a_j, J_k X \rangle J_j Y + \langle a_j, X \rangle J_k J_j Y) + \sum_{j \neq k} (\langle a_j, J_k Y \rangle J_j X + \langle a_j, Y \rangle J_k J_j X) = 0.$$

It follows that, for all $X \perp L$ and all $Y \in \mathbb{R}^n$,

$$\sum_{j \neq k} (\langle a_j, J_k Y \rangle J_j X + \langle a_j, Y \rangle J_k J_j X) = 0,$$

that is, with $u(Y) = \sum_{j \neq k} \langle a_j, J_k Y \rangle e_j$ and $v(Y) = \sum_{j \neq k} \langle a_j, Y \rangle e_j$, we have that $J_{u(Y)} X = -J_k J_{v(Y)} X$. Note that $u(Y)$ and $v(Y)$ are perpendicular to e_k. Now, fix an arbitrary $Y \in \mathbb{R}^n$ and choose a unit vector w perpendicular to $u(Y), v(Y)$ and e_k in \mathbb{R}^n (this is possible since $v > 3$). Then $J_w J_{u(Y)} X = -J_k J_{v(Y)} X$, so $\langle J_w J_k J_{v(Y)} X, X \rangle = 0$ for all $X \in L^\perp$. If $v(Y) \neq 0$, the operator $\|v(Y)\|^{-1} J_w J_k J_{v(Y)}$ is symmetric and orthogonal, so the maximal dimension of its isotropic subspace is $n/2 < n - (v - 1) = \dim L^\perp$ (the inequality follows from Lemma 2.4(ii)), which is a contradiction. Hence $v(Y) = 0$ for all $Y \in \mathbb{R}^n$, so all the a_j are zeros.

(3) We first prove the lemma assuming $2v \leq n$. In this case, the proof closely follows the arguments in the proof of [N 2003, Lemma 3.1].

Let $Y_0 \in T_x N^n$ be a unit vector. Since $2v \leq n$, there exists a unit vector $E \in T_x N^n$ that is not in the range of the map $\Phi : S^{n-1} \times S^{v-1} \to S^{n-1}$, $\Phi(u, v) \mapsto J_u J_v Y_0$. Then $\mathcal{J} E \cap \mathcal{J} Y_0 = 0$. It follows that on some neighborhood \mathcal{U}' of x, there exist smooth unit vector fields Y and E_n such that $E_n(x) = E$, $Y(x) = Y_0$ and $\mathcal{J} E_n \cap \mathcal{J} Y = 0$ at every point $y \in \mathcal{U}'$. By assumption, the v-dimensional distribution $\mathcal{J} E_n$ is smooth, so we can choose v smooth orthonormal sections E_1, \ldots, E_v of it, and then define anticommuting almost Hermitian structures \tilde{J}_a on \mathcal{U}' satisfying $\tilde{J}_a E_n = E_a$ by setting $\tilde{J}_a = \sum_{\beta=1}^v a_{a\beta} J_\beta$, where $(a_{a\beta})$ is the $v \times v$ orthogonal matrix given by $a_{a\beta} = \langle E_a, J_\beta E_n \rangle$.

Let E_{v+1}, \ldots, E_{n-1} be orthonormal vector fields on \mathcal{U}' such that E_1, \ldots, E_n is an orthonormal frame, and for a vector field X on \mathcal{U}', let $\mathcal{J} X$ denote the $n \times v$ matrix whose column vectors are $\tilde{J}_1 X, \ldots, \tilde{J}_v X$ relative to the frame E_1, \ldots, E_n. Then $(\mathcal{J} X)^t \mathcal{J} X = \|X\|^2 I_v$ and all the $v \times v$ minors of the matrix $\mathcal{J} X$ are smooth functions on \mathcal{U}'. Moreover, the entries of the matrices $\tilde{J}_i E_i$ for $i = 1, \ldots, n$ are the rearranged entries of the matrices \tilde{J}_a for $a = 1, \ldots, v$ relative to the basis $\{E_i\}$, so to prove that the \tilde{J}_a are smooth it suffices to show that all the entries of the matrices $\tilde{J}_a E_i$ are smooth (on a possibly smaller neighborhood). Write $\tilde{J}_a E_i = (\tilde{E}_{ai})$, where K_i and P_i are respectively $v \times v$ and $(n - v) \times v$ matrix-valued functions on \mathcal{U}';
note that $\tilde{J}E_n = \binom{I}{0}$. For an arbitrary $t \in \mathbb{R}$, all the $v \times v$ minors of the matrix

$$\tilde{J}(E_i + tE_n) = \begin{pmatrix} K_i + tI_v \\ P_i \end{pmatrix}$$

are smooth. For every entry $(P_i)_{k\alpha}$, where $k = v + 1, \ldots, n$ and $\alpha = 1, \ldots, v$, the coefficient of t^{v-1} in the $v \times v$ minor of $\tilde{J}(E_i + tE_n)$ consisting of $v - 1$ out of the first v rows (omitting the α-th row) and the k-th row is $\pm (P_i)_{k\alpha}$, so all the entries of all the P_i are smooth.

For the vector field Y defined above, write $\tilde{J}Y = \binom{K}{F}$. Since $P = \sum_{i=1}^n \langle Y, E_i \rangle P_i$, all the entries of P are smooth on \mathcal{U}. Moreover, since $\mathcal{Y} \cap \mathcal{J}E_n = 0$, the spans of the vector columns of the matrices $\tilde{J}Y$ and $\tilde{J}E_n = \binom{I}{0}$ have trivial intersection, so $\text{rk } P = v$ at every point $y \in \mathcal{W}$. Therefore we can choose the rows $v + 1 \leq b_1 < \cdots < b_v \leq n$ of the matrix P at the point x so that the corresponding minor $P(b) = P_{b_1 \ldots b_v}$ is nonzero. Then the same minor $P(b)$ is nonzero on a (possibly smaller) neighborhood $\mathcal{U} \subset \mathcal{W}$ of x. Taking all the $v \times v$ minors of $\tilde{J}Y$ consisting of $v - 1$ out of v rows of $P(b)$ and one row of K, we obtain that all the entries of K are smooth on \mathcal{U}. Moreover, for an arbitrary $t \in \mathbb{R}$, all the $v \times v$ minors of the matrix

$$\tilde{J}(tE_i + Y) = \begin{pmatrix} tK_i + K \\ tP_i + P \end{pmatrix}$$

are smooth. Computing the coefficient of t in all the $v \times v$ minors of $\tilde{J}(tE_i + Y)$ consisting of $v - 1$ out of v rows of $(tP_i + P)_b$ and one row of $tK_i + K$, and using the fact that all the entries of K, P and P_i are smooth on \mathcal{U}, we obtain that all the entries of K_i are also smooth on \mathcal{U}. Therefore all the entries of all the matrices $\tilde{J}E_i$ are smooth on \mathcal{U}; hence the anticommuting almost Hermitian structures \tilde{J}_a are also smooth on \mathcal{U}.

Since v and n must satisfy inequality (2.3) (and hence those of Lemma 2.4), the above proof works in all the cases except when $n = 4$ and $v = 3$ and when $n = 8$ and $v = 5, 6, 7$. The former case is easy: Taking any smooth orthonormal frame E_i on a neighborhood of x and defining $\tilde{J}_a = \sum_{\beta=1}^3 a_{a\beta} J_\beta$ with the orthogonal 3×3 matrix $(a_{a\beta})$ given by $a_{a\beta} = \langle E_a, J_\beta E_\lambda \rangle$, we see that all the entries of the \tilde{J}_a relative to the basis E_i are ± 1 and 0.

The proof in the cases that $n = 8$ and $v = 5, 6, 7$ is based on the fact that, except when $v = 3$ and $J_1 J_2 = \pm J_3$, any set of anticommuting almost Hermitian structures J_1, \ldots, J_v on \mathbb{R}^8 can be complemented by almost Hermitian structures J_{v+1}, \ldots, J_7 to a set J_1, \ldots, J_7 of anticommuting almost Hermitian structures on \mathbb{R}^8 (this is Lemma 2.6(1)).

If $n = 8$ and $v = 7$, choose an arbitrary smooth almost Hermitian structure J_7 on some neighborhood \mathcal{U} of x and complement it by anticommuting almost Hermitian
structures J_1, \ldots, J_6 at every point of \mathcal{U}. Then for every smooth nowhere vanishing vector field X on \mathcal{U}, $\text{Span}(J_1X, \ldots, J_6X) = (\text{Span}(X, J_7X))^\perp$ is a smooth distribution. This reduces the case $n = 8$ and $\nu = 7$ to the case $n = 8$ and $\nu = 6$.

Let $n = 8$ and $\nu = 6$, and let J_7 be an almost Hermitian structure complementing J_1, \ldots, J_6 at every point $x \in N^\nu$. Using the first part of the proof (or the fact that J_7X spans the one-dimensional smooth distribution $(\text{Span}(J_1X, \ldots, J_6X) \oplus \mathbb{R}X))^\perp$ for every nonvanishing smooth vector field X) we can assume that J_7 is smooth on a neighborhood \mathcal{U} of $x \in N^\nu$. Choose a smooth orthonormal frame E_1, \ldots, E_8 on (a possibly smaller neighborhood) \mathcal{U} such that the matrix of J_7 relative to E_i is \((0 \quad I_4)\) and define the almost Hermitian structure \tilde{J}_6 on \mathcal{U} by

$$\tilde{J}_6E_2 = E_1, \quad \tilde{J}_6E_4 = E_3, \quad \tilde{J}_6E_6 = -E_5, \quad \tilde{J}_6E_8 = -E_7.$$

Then J_7 and \tilde{J}_6 anticommute; hence we can complement them by almost Hermitian structures J'_1, \ldots, J'_5 on \mathcal{U} so that $J'_1, \ldots, J'_5, \tilde{J}_6, J_7$ are anticommuting almost Hermitian structures. Moreover, since both J_7 and \tilde{J}_6 are smooth on \mathcal{U}, the five-dimensional distribution $\text{Span}(J'_1X, \ldots, J'_5X) = (\text{Span}(X, J_7X, \tilde{J}_6X))^\perp$ is smooth for every smooth nowhere vanishing vector field X on \mathcal{U}. This reduces the case $n = 8$ and $\nu = 6$ to the case $n = 8$ and $\nu = 5$. Indeed, if $\tilde{J}_1, \ldots, \tilde{J}_5$ are smooth anticommuting almost Hermitian structures on \mathcal{U} such that $\text{Span}(\tilde{J}_1X, \ldots, \tilde{J}_5X) = \text{Span}(J'_1X, \ldots, J'_5X)$ for every vector field X, then $\tilde{J}_1, \ldots, \tilde{J}_5, \tilde{J}_6$ are the required almost Hermitian structures, since

$$\text{Span}(\tilde{J}_1X, \ldots, \tilde{J}_6X) = \text{Span}(J'_1X, \ldots, J'_5X, \tilde{J}_6X) = (\text{Span}(X, J_7X))^\perp = \text{Span}(J_1X, \ldots, J_6X),$$

for every vector field X on \mathcal{U}, and \tilde{J}_6 anticommutes with every \tilde{J}_a for $a = 1, \ldots, 5$, since it anticommutes with every J'_a for $a = 1, \ldots, 5$.

Let $n = 8$ and $\nu = 5$. Let J_6 and J_7 be anticommuting almost Hermitian structures complementing J_1, \ldots, J_5 at every point $x \in N^\nu$. Since $\text{Span}(J_6X, J_7X) = (\text{Span}(J_1X, \ldots, J_5X))^\perp$, we can choose such J_6 and J_7 to be smooth on a neighborhood \mathcal{U} of $x \in N^\nu$, by the first part of the proof. Choose a smooth orthonormal frame E_1, \ldots, E_8 on (a possibly smaller neighborhood) \mathcal{U} as follows. First choose an arbitrary smooth unit vector field E_1 on \mathcal{U}. The vector fields J_6E_1 and J_7E_1 are orthonormal; set $E_2 = -J_6E_1$, $E_3 = -J_7E_1$. The unit vector field $J_6J_7E_1$ is orthogonal to E_1, J_6E_1 and J_7E_1; set $E_4 = -J_6J_7E_1$. Choose an arbitrary smooth unit section E_5 of the smooth distribution $(\text{Span}(E_1, E_2, E_3, E_4))^\perp$ on \mathcal{U}. That distribution is both J_6- and J_7-invariant, so we can set, similar to above, $E_6 = J_6E_5$, $E_7 = J_7E_5$ and $E_8 = -J_6J_7E_5$. Now define the almost Hermitian structure \tilde{J}_5 on \mathcal{U} whose matrix in the frame E_i is \((0 \quad I_4)\). Then \tilde{J}_5, J_6 and J_7 are anticommuting almost Hermitian structures on \mathcal{U}, with $\tilde{J}_5J_6 \neq \pm J_7$; hence
Theorem 3.1. Let \(M \) be a connected smooth Riemannian manifold whose Weyl tensor at every point \(x \in M \) has a Clifford structure \(\text{Cliff}(v(x)) \). Suppose that \(n > 4 \), and additionally that \(v(x) \leq 4 \) if \(n = 16 \). Then there exists a space \(M^n_0 \) from the list \(\mathbb{R}^n, \mathbb{C}P^{n/2}, \mathbb{C}H^{n/2}, \mathbb{H}P^{n/4}, \mathbb{H}H^{n/4} \) (Euclidean space and the rank-one symmetric spaces with their standard metrics) such that \(M^n \) is locally conformally equivalent to \(M^n_0 \).

Note that by Theorem 3.1, every point of \(M^n \) has a neighborhood conformally equivalent to a domain of the same “model space”. Also note that the theorem says something also in the case \(n = 16 \), whereas Theorem 3.1 does not.

We start with a sketch of the proof of Theorem 3.1. First, we show that the Clifford structure for the Weyl tensor can be chosen locally smooth on an open, dense subset \(M' \subset M^n \) (see Lemma 3.2 for the precise statement). To simplify
the form of the curvature tensor R of M^n, we combine the λ_0-part of W (from (2-1)) with the difference $R - W$, so that R has the form (3-1) for some smooth symmetric operator field ρ at every point of M'. The technical core of the proof is Lemmas 3.5 and 3.6, which establish various identities for the covariant derivatives of ρ, the J_i and the η_i, using the second Bianchi identity for the curvature tensor of the form (3-1). Lemma 3.6 treats the case $(n, v) = (8, 7)$ and uses the octonion arithmetic; Lemma 3.5 treats all the other cases, and uses the fact that v is small compared to n — see Lemma 2.4. It follows from the identities of Lemma 3.5 and Lemma 3.6 that, unless the Weyl tensor vanishes, the metric on M' can be locally changed to a conformal one whose curvature tensor again has the form (3-1), but with the two additional features: First, all the η_i are locally constant, and second, ρ is a Codazzi tensor, that is, $(\nabla X \rho) Y = (\nabla Y \rho) X$. By the result of [Derdziński and Shen 1983], exterior products of the eigenspaces of a symmetric Codazzi tensor are invariant under the curvature operator on the two-forms. Using that, we prove in Lemma 3.7 that ρ must be a multiple of the identity, so, by (3-1), M' is locally conformally equivalent to an Osserman manifold. The affirmative answer to the Osserman conjecture in the cases for n and v considered in Theorem 3.1, given by [N 2003, Theorem 1.2], implies that M' is locally conformally equivalent to one of the spaces listed in Theorem 3.1. This proves Theorem 3.1 at the generic points. To prove Theorem 3.1 globally, we first show, using Lemma 3.9, that M splits into a disjoint union of a closed subset M_0, on which the Weyl tensor vanishes, and nonempty open connected subsets M_α, each of which is locally conformal to one of the rank-one symmetric spaces $\mathbb{C} P^{n/2}$, $\mathbb{C} H^{n/2}$, $\mathbb{H} P^{n/4}$, $\mathbb{H} H^{n/4}$. On every M_α, the conformal factor f is a well-defined positive smooth function. Assuming that there exists at least one M_α and that $M_0 \neq \emptyset$, we show in Lemma 3.10 that there exists a point $x_0 \in M_0$ on the boundary of a geodesic ball $B \subset M_\alpha$ such that both $f(x)$ and $\nabla f(x)$ tend to zero when $x \to x_0$ for $x \in B$. Then the positive function $u = f^{(n-3)/4}$ satisfies the elliptic equation (3-31) in B, with $\lim_{x \to x_0, x \in B} u(x) = 0$; hence by the boundary point theorem, the limiting value of the inner derivative of u at x_0 must be positive. This contradiction implies that either $M = M_0$ or $M = M_\alpha$.

Proof of Theorem 3.1. For $n > 4$, let M^n be a connected smooth Riemannian manifold whose Weyl tensor at every point has a Clifford structure. Define the function $N : M^n \to \mathbb{N}$ so that $N(x)$ is the number of distinct eigenvalues of the Jacobi operator W_X associated to the Weyl tensor, where X is an arbitrary nonzero vector from $T_x M^n$. Since the Weyl tensor is Osserman, $N(x)$ is well defined. Moreover, since the set of symmetric operators having no more than N_0 distinct eigenvalues is closed in the linear space of symmetric operators on \mathbb{R}^n, the function $N(x)$ is lower semicontinuous, that is, every subset $\{x : N(x) \leq N_0\}$ is closed in M^n. Let M' be the set of points where the function $N(x)$ is continuous. It is easy to see that M' is an open and dense (but possibly disconnected) subset of M^n. The
following lemma shows that the Clifford structure for the Weyl tensor is locally smooth on every connected component of M'.

Lemma 3.2. For $n > 4$, let M^n be a smooth Riemannian manifold whose Weyl tensor has a Clifford structure at every point. If $n = 16$, we additionally require that at every point $x \in M^{16}$, the Weyl tensor has a Clifford structure Cliff$(v(x))$ with $v(x) \neq 8$.

Let M' be the (open, dense) subset of M^n, at the points of which the number of distinct eigenvalues of the Jacobi operator associated to the Weyl tensor of M^n is locally constant. Then for every $x \in M'$, there exists a neighborhood $\mathcal{U} = \mathcal{U}(x)$, a number $\nu \geq 0$, smooth functions $\eta_1, \ldots, \eta_\nu : \mathcal{U} \to \mathbb{R} \setminus \{0\}$, a smooth symmetric linear operator field ρ, and smooth anticommuting almost Hermitian structures J_i for $i = 1, \ldots, \nu$, on \mathcal{U} such that the curvature tensor of M^n has the form

\[
R(X, Y)Z = \langle X, Z \rangle \rho Y + \langle \rho X, Z \rangle Y - \langle Y, Z \rangle \rho X - \langle \rho Y, Z \rangle X \\
+ \sum_{i=1}^\nu \eta_i (2(J_i X, Y) J_i Z + \langle J_i Z, Y \rangle J_i X - \langle J_i Z, X \rangle J_i Y),
\]

for all $y \in \mathcal{U}$ and $X, Y, Z \in T_xM^n$. Moreover, if $n = 8$, then the curvature tensor has the form (3-1) either with $\nu = 3$ and $J_1 J_2 = \pm J_3$, or with $\nu = 7$ for all $y \in \mathcal{U}$.

Proof. Let X be a smooth unit vector field on M^n. Since the Weyl tensor W is a smooth Osserman algebraic curvature tensor, the characteristic polynomial of $W_{X|X^\perp}$ (of the restriction of the Jacobi operator W_X to the subspace X^\perp) does not depend on X and is a well-defined smooth map $p : M^n \to \mathbb{R}_{n-1}[t]$, $y \mapsto p_y(t)$, where $\mathbb{R}_{n-1}[t]$ is the $(n-1)$-dimensional affine space of polynomials of degree $n - 1$ with leading term $(-t)^{n-1}$. Since all the roots of $p_y(t)$ are real and the number of different roots is constant on every connected component of M', the eigenvalues $\mu_0, \mu_1, \ldots, \mu_l$ of $W_{X|X^\perp}$ are smooth functions and their multiplicities m_0, m_1, \ldots, m_l are constant on every connected component of M' (we chose the labeling so that $m_0 = \text{max}\{m_0, m_1, \ldots, m_l\}$).

First consider the case $n \neq 8$. The Weyl tensor has a Clifford structure given by (2-1) at every point of M'. By Lemma 2.4, for $n > 4$ with $n \neq 8, 16$, we have $n - 1 - v > v$ for any Clifford structure on \mathbb{R}^n. By (2-3), we have $v \leq 8$ for $n = 16$, so by assumption, the inequality $n - 1 - v > v$ also holds for $n = 16$. Then the biggest multiplicity of an eigenvalue of $W_{X|X^\perp}$ is $n - 1 - v$; see Remark 2.3. So $v = n - 1 - m_0$ is constant and the function $\lambda_0 = \mu_0$ is smooth on every connected component of M'. Moreover, for every smooth unit vector field X on M' and every $i = 1, \ldots, l$, the μ_i-eigendistribution of $W_{X|X^\perp}$ is $\text{Span}_{J_i \lambda_0 + 3\eta_j = \mu_i} (J_i X)$. Since λ_0 and μ_i are smooth functions on every connected component of M', so is η_j. Moreover, on every connected component of M', every distribution $\text{Span}_{J_i \lambda_0 + 3\eta_j = \mu_i} (J_i X)$ is smooth and has a constant dimension m_i for
any nowhere vanishing smooth vector field X. By Lemma 2.7(3), there exists a neighborhood $\mathcal{U}_i(x)$ and smooth anticommuting almost Hermitian structures \tilde{J}_j (for j such that $\lambda_0 + 3\eta_j = \mu_i$) on $\mathcal{U}_i(x)$ such that

$$\text{Span}_{j;\lambda_0 + 3\eta_j = \mu_i}(J_iX) = \text{Span}_{j;\lambda_0 + 3\eta_j = \mu_i}(\tilde{J}_jX).$$

Let \tilde{W} be the algebraic curvature tensor on $\mathcal{U} = \bigcap_{i=1}^7 \mathcal{U}_i(x)$ with the Clifford structure $\text{Cliff}(\nu; \tilde{J}_1, \ldots, \tilde{J}_7; \lambda_0, \eta_1, \ldots, \eta_7)$. Then $\nu = n - 1 - m_0$ is constant and all the \tilde{J}_i, η_i and λ_0 are smooth on \mathcal{U}. Moreover, for every unit vector field X on \mathcal{U}, the Jacobi operators \tilde{W}_X and W_X have the same eigenvalues and the same eigenspaces by construction; hence $\tilde{W}_X = W_X$, which implies $\tilde{W} = W$.

Now consider the case $n = 8$. By Lemma 2.6, at every point $x \in M'$, the Weyl tensor either has a Cliff(3) structure with $J_1J_2 = J_3$ or a Cliff(7) structure (but not both). Since on every connected component M_a of M' the eigenvalues of the operator $W_{X|X^\perp}$ with $X \neq 0$ have constant number and multiplicity, Remark 2.3 implies that the only case when M_a may potentially contain points of both kinds is when one of the eigenvalues of $W_{X|X^\perp}$ with $X \neq 0$ on M_a has multiplicity 4 and the Clifford structure at every point $x \in M_a$ is either

$$\text{Cliff}(3; J_1, J_2, J_3; \lambda_0, \eta_1, \eta_2, \eta_3)$$

with $J_1J_2 = J_3$, or

$$\text{Cliff}(7; J_1, \ldots, J_7; \lambda_0 - 3\zeta, \eta_1 + \zeta, \eta_2 + \zeta, \eta_3 + \zeta, \zeta, \zeta, \zeta),$$

where $\eta_1, \eta_2, \eta_3 \neq 0$ (some of them can be equal) and $\zeta \neq -\eta_i, 0$. The eigenvalues of $W_{X|X^\perp}$ with $\|X\| = 1$ at every point $x \in M_a$ are λ_0, of multiplicity 4, and $\lambda_0 + 3\eta_i$. Let X be an arbitrary nowhere vanishing smooth vector field on a neighborhood $\mathcal{U} \subset M_a$ of a point $x \in M_a$. Then the four-dimensional eigendistribution of $W_{X|X^\perp}$ corresponding to the eigenvalue of multiplicity 4 is smooth; hence its orthogonal complement, the distribution $\text{Span}(J_1X, J_2X, J_3X)$, is also smooth. By Lemma 2.7(3), there are smooth anticommuting almost Hermitian structures $\tilde{J}_1, \tilde{J}_2, \tilde{J}_3$ such that $\text{Span}(\tilde{J}_1X, \tilde{J}_2X, \tilde{J}_3X) = \text{Span}(J_1X, J_2X, J_3X)$ on (a possibly smaller) neighborhood \mathcal{U}. By Lemma 2.7(1) with $F(X) = J_iX$, every \tilde{J}_i is a linear combination of the J_j : $\tilde{J}_i = \sum_{j=1}^3 a_{ij} J_j$, and moreover, the matrix (a_{ij}) must be orthogonal, since the \tilde{J}_i are anticommuting almost Hermitian structures. It follows that $\tilde{J}_1\tilde{J}_2\tilde{J}_3 = \pm J_1J_2J_3$. The operator on the left side is smooth on \mathcal{U}, the one on the right side is $\pm \text{id}_{\mathcal{U}}$ at the points where the Clifford structure is Cliff(3) with $J_1J_2 = J_3$, and is symmetric with trace zero at the points where the Clifford structure is Cliff(7), which follows from the identity $J_4(J_1J_2J_3)J_4 = J_1J_2J_3$. Therefore all the points of \mathcal{U} either have a Cliff(3) structure with $J_1J_2 = J_3$ or a Cliff(7) structure. In both cases, the Clifford structure for W can be taken to be smooth:
In the first, this follows from the arguments similar to those in the first part of the proof, since \(v < n - 1 - \nu \); in the second, we apply Lemma 2.7(3) to every eigendistribution of \(W_{X^\perp} \).

Thus for any \(x \in M' \), the Weyl tensor on a neighborhood \(\mathcal{U} = \mathcal{U}(x) \) has the form (2-1), with a constant \(\nu \) and smooth \(\lambda_0, \eta_i \) and \(J_i \). Then the curvature tensor has the form (3-1) with the operator \(\rho \) given by

\[
\rho = \frac{1}{n-2} \text{Ric} + \left(\frac{\lambda_0}{2} - \frac{\text{scal}}{2(n-1)(n-2)} \right) \text{id},
\]

where Ric is the Ricci operator and scal is the scalar curvature. Since \(\lambda_0 \) is a smooth function, the operator field \(\rho \) is also smooth. \(\square \)

Remark 3.3. In fact, the proof shows that if an algebraic curvature tensor field \(R \) has a Clifford structure at every point of a Riemannian manifold (and \(v \neq 8 \) when \(n = 16 \)), then it has a Clifford structure of the same class of differentiability as \(R \) on a neighborhood of every generic point of the manifold.

Remark 3.4. It follows from Lemma 2.6(1) (in fact, from Equation (2-4)) that, in the case \(n = 8 \) and \(v = 7 \) we can replace \(\rho \) by \(\rho - \frac{3}{4} f \text{id} \) and \(\eta_i \) by \(\eta_i + f \) in (3-1) without changing \(R \), where \(f \) is an arbitrary smooth function on \(\mathcal{U} \). If we want the resulting Clifford structure to be Cliff(7), we additionally require that \(\eta_i + f \) is nowhere zero.

Let \(x \in M' \), and let \(\mathcal{U} = \mathcal{U}(x) \) be its neighborhood defined in Lemma 3.2. By the second Bianchi identity, \((\nabla_U R)(X, Y)Y + (\nabla_Y R)(U, X)Y + (\nabla_X R)(Y, U)Y = 0 \). Substituting \(R \) from (3-1) and using the fact that the operators \(J_i \) and their covariant derivatives are skew-symmetric, the operator \(\rho \) and its covariant derivatives are symmetric we get

\[
(3-2) \quad \langle X, Y \rangle ((\nabla_U \rho)Y - (\nabla_Y \rho)U) + \|Y\|^2 ((\nabla_X \rho)U - (\nabla_U \rho)X)
+ \langle U, Y \rangle ((\nabla_Y \rho)X - (\nabla_X \rho)Y) + \langle (\nabla_Y \rho)U - (\nabla_U \rho)Y, Y \rangle X
+ \langle (\nabla_X \rho)Y - (\nabla_Y \rho)X, X \rangle U + \langle (\nabla_U \rho)X - (\nabla_X \rho)U, Y \rangle Y
+ \sum_{i=1}^{n-1} 3(X(\eta_i)(J_i Y, U) - U(\eta_i)(J_i Y, X))J_i Y
+ \sum_{i=1}^{n-1} Y(\eta_i)(2(J_i U, X)J_i Y + (J_i Y, X)J_i U - (J_i Y, U)J_i X)
+ \sum_{i=1}^{n-1} \eta_i (3((\nabla_U J_i)X, Y) + 3((\nabla_X J_i)Y, U) + 2((\nabla_Y J_i)U, X))J_i Y
+ 3(J_i X, Y)(\nabla_U J_i)Y + 3(J_i Y, U)(\nabla_X J_i)Y + 2(J_i U, X)(\nabla_Y J_i)Y
+ \langle (\nabla_Y J_i)Y, X \rangle J_i U + \langle J_i Y, X \rangle (\nabla_Y J_i)U
- \langle (\nabla_Y J_i)Y, U \rangle J_i X - \langle J_i Y, U \rangle (\nabla_Y J_i)X) = 0.
\]
Taking the inner product of (3-2) with X and assuming X, Y and U to be orthogonal, we obtain

\[(3-3) \quad \|X\|^2 \langle Q(Y), U \rangle + \|Y\|^2 \langle Q(X), U \rangle + \sum_{i=1}^\nu 3(X(\eta_i)(J_i Y, U) - Y(\eta_i)(J_i X, U) - U(\eta_i)(J_i Y, X))\langle J_i Y, X \rangle \]

\[+ \sum_{i=1}^\nu 3\eta_i \left(2\langle (\nabla U J_i)X, Y \rangle + \langle (\nabla_X J_i)Y, U \rangle + \langle (\nabla_Y J_i)U, X \rangle \right)\langle J_i Y, X \rangle \]

\[= \langle J_i Y, U \rangle \langle (\nabla_X J_i)X, Y \rangle - \langle J_i Y, U \rangle \langle (\nabla_Y J_i)Y, X \rangle = 0, \]

where $Q : \mathbb{R}^n \to \mathbb{R}^n$ is the quadratic map defined by

\[(3-4) \quad \langle Q(X), U \rangle = \langle (\nabla_X \rho)U - (\nabla_U \rho)X, X \rangle. \]

Note that $\langle Q(X), X \rangle = 0$.

Lemma 3.5. Under the assumptions of Lemma 3.2, let $x \in M'$ and let \mathcal{U} be the corresponding neighborhood of x. Suppose that if $n = 8$, then $\nu = 3$ and $J_1 J_2 = J_3$ on \mathcal{U}, and if $n = 16$, then $\nu \leq 4$. For every point $y \in \mathcal{U}$, identify $T_y M^n$ with Euclidean \mathbb{R}^n via a linear isometry.

(i) There exist $m_i, b_{ij} \in \mathbb{R}^n$ with $i, j = 1, \ldots, \nu$ such that for all $X, Y, U \in \mathbb{R}^n$ and all $i, j = 1, \ldots, \nu$,

\[(3-5a) \quad Q(Y) = 3 \sum_{k=1}^\nu (m_k, Y) J_k Y, \]

\[(3-5b) \quad (\nabla_X J_i)X = \eta_i^{-1}(\|X\|^2 m_i - \langle m_i, X \rangle X) + \sum_{j=1}^\nu \langle b_{ij}, X \rangle J_j X, \]

\[(3-5c) \quad b_{ij} + b_{ji} = \eta_i^{-1} J_i m_i + \eta_j^{-1} J_j m_j, \]

\[(3-5d) \quad \nabla \eta_i = 2 J_i m_i, \]

\[(3-5e) \quad \sum_{j \neq i} \langle (\eta_i b_{ij} + \eta_j b_{ji}, J_i Y) J_j Y + \langle \eta_i b_{ij} + \eta_j b_{ji}, Y \rangle J_i J_j Y \rangle = 0. \]

(ii) These equations hold:

\[(3-6a) \quad (\nabla_Y \rho)U - (\nabla_U \rho)Y = \sum_{i=1}^\nu (2\langle J_i Y, U \rangle m_i - \langle m_i, Y \rangle J_i U + \langle m_i, U \rangle J_i Y), \]

\[(3-6b) \quad b_{ij} (3 - \eta_i \eta_j^{-1}) + b_{ji} (3 - \eta_j \eta_i^{-1}) = 0 \quad \text{for } i \neq j, \]

\[(3-6c) \quad J_i m_i = \eta_i p \quad \text{for } i = 1, \ldots, \nu \text{ and some } p \in \mathbb{R}^n. \]

Proof. (i) We split the proof of these assertions into two cases: the exceptional case, when either $n = 6$ and $\nu = 1$, or $n = 12$, $\nu = 3$ and $J_1 J_2 = \pm J_3$, or $n = 8$, $\nu = 3$ and $J_1 J_2 = J_3$, and the generic case, consisting of all the other Clifford structures considered in the lemma.
Generic case. From (3-3) we obtain

\[(3-7) \quad \|X\|^{-2}(Q(X), U) + \|Y\|^{-2}(Q(Y), U) = 0\]

for all $X \perp \mathcal{J}U$, $X, Y \perp \mathcal{J}U$, and $X, Y, U \neq 0$.

We want to show that $\langle Q(X), U \rangle = 0$ for all $X \perp \mathcal{J}U$. This is immediate when $n \geq 3v + 3$. Indeed, \(\dim(\mathcal{J}U + \mathcal{J}X) > v + 1\) for any $U \neq 0$ and any unit $X \perp \mathcal{J}U$, so we can choose unit vectors $Y_1, Y_2 \perp \mathcal{J}U + \mathcal{J}X$ such that $Y_1 \perp Y_2$. Then (3-7) implies that $\langle Q(X), U \rangle = -(\langle Q(Y_1), U \rangle = \langle Q(Y_2), U \rangle = -(\langle Q(X), U \rangle)$.

Consider the case $n \leq 3v + 3$. By Lemma 2.4(i), this could only happen when $n = 12$ and $v = 3$ or $n = 24$ and $v = 7$ (for the pairs (n, v) belonging to the generic case), and in both cases, $n = 3v + 3$. Choose and fix an arbitrary $U \neq 0$ and consider the quadratic form $q(X) = \langle Q(X), U \rangle$ defined on the $(2v + 2)$-dimensional space $L = (\mathcal{J}U)^\perp$. Suppose $q \neq 0$. By (3-7), the restriction of q to the unit sphere of L is not a constant, so it attains its maximum (respectively minimum) on a great sphere S_1 (respectively S_2). The subspaces L_1 and L_2 defined by S_1 and S_2 are orthogonal. Moreover, by (3-7), we have $L_2 \supset (\mathcal{J}X)^\perp \cap L$ for any nonzero $X \in L_1$, which implies that $\dim L_2 \geq v + 1$. Similarly $\dim L_1 \geq v + 1$, so $\dim L_1 = \dim L_2 = v + 1$ since $L_1 \perp L_2$, and $L = L_1 \oplus L_2$. It follows that $q(X) = c(\|\pi_1 X\|^2 - \|\pi_2 X\|^2)$ for some $c > 0$, where $\pi_j : L \rightarrow L_j$ is the orthogonal projection. Also, $L_2 = (\mathcal{J}X)^\perp \cap L$ for all nonzero $X \in L_1$, which means that the subspace $L_1 = L_2^\perp \cap L$ (and similarly L_2) is \mathcal{J}-invariant, where $\pi : \mathbb{R}^a \rightarrow L$ is the orthogonal projection, and even furthermore $\pi \mathcal{J}X = L_a$ for every nonzero $X \in L_a$ for $a = 1, 2$, by dimension count. Let $X = X_1 + X_2$ and $Y = Y_1 + Y_2 \in L$, where $X_a = \pi_a X$ and $Y_a = \pi_a Y$. The condition $Y \perp \mathcal{J}X$ is equivalent to

$$\langle X_1, Y_1 \rangle + \langle X_2, Y_2 \rangle = \langle \pi J_i X_1, Y_1 \rangle + \langle \pi J_i X_2, Y_2 \rangle = 0 \quad \text{for all } i = 1, \ldots, v.$$

Take arbitrary orthonormal bases for L_1 and for L_2 and let $M_a(X_a)$ for $a = 1, 2$ be the $(v + 1) \times (v + 1)$ matrix whose columns relative to the chosen basis for L_a are $X_a, \pi J_1 X_a, \ldots, \pi J_v X_a$. Then $Y \perp \mathcal{J}X$ if and only if $M_1(X_1)^t Y_1 = -M_2(X_2)^t Y_2$. Since for $a = 1, 2$, and any nonzero $X_a \in L_a$, the columns of $M_a(X_a)$ span L_a, we obtain $Y_2 = -(M_2(X_2)^t)^{-1} M_1(X_1)^t Y_1$ for any $X_2 \neq 0$. Then, since

$$q(X) = c(\|X_1\|^2 - \|X_2\|^2) \quad \text{and} \quad q(Y) = c(\|Y_1\|^2 - \|Y_2\|^2),$$

Equation (3-7) implies $\|Y_1\|^2 \|X_1\|^2 - \|Y_2\|^2 \|X_2\|^2 = 0$, so

$$\|Y_1\|^2 \|X_1\|^2 - \|(M_2(X_2)^t)^{-1} M_1(X_1)^t Y_1\|^2 \|X_2\|^2 = 0$$

for any $X_1, Y_1 \in L_1$ and any nonzero $X_2 \in L_2$. It follows that

$$\|X_1\|^2 (M_1(X_1)^t M_1(X_1))^{-1} = \|X_2\|^2 (M_2(X_2)^t M_2(X_2))^{-1}$$
for any nonzero \(X_a \in L_a \). Thus for some positive definite symmetric \((v+1) \times (v+1)\) matrix \(T \), we have

\[
M_a(X_a)^TM_a(X_a) = \|X_a\|^2 T
\]

for all \(X_a \in L_a \) with \(\alpha = 1, 2 \). Then for any \(X = X_1 + X_2 \in L \) with \(X_\alpha \in L_\alpha \), and any \(i = 1, \ldots, v \),

\[
\|\pi J_i X\|^2 = \|\pi J_i X_1\|^2 + \|\pi J_i X_2\|^2 = (M_1(X_1)^TM_1(X_1) + M_2(X_2)^TM_2(X_2))_{ii}
\]

\[
= T_{ii}(\|X_1\|^2 + \|X_2\|^2) = T_{ii}\|X\|^2.
\]

On the other hand, \(\pi J_i X = J_i X - \|U\|^{-2} \sum_{j=1}^{v} \langle J_i X, J_j U \rangle J_j U \) for any \(X \in L \), so

\[
\|\pi J_i X\|^2 = \|X\|^2 - \|U\|^{-2} \sum_{j=1}^{v} \langle J_i X, J_j U \rangle^2.
\]

It follows that

\[
\|X\|^2\|U\|^2(1 - T_{ii}) = \sum_{j=1}^{v} \langle J_i X, J_j U \rangle^2 = \sum_{j=1}^{v} \langle X, J_j J_j U \rangle^2
\]

for an arbitrary \(X \in L \). Since \(\dim L = 2v + 2 > v \), we can choose a nonzero \(X \in L \) orthogonal to the \(v \) vectors \(J_i J_j U \), for \(j = 1, \ldots, v \). This implies \(T_{ii} = 1 \), and so \(X \perp J_i J_j U \), for all \(i, j = 1, \ldots, v \) and all \(X \in L = (\mathcal{J} U)^\perp \). Therefore \(J_i J_j U \in \mathcal{J} U \) for all \(i, j = 1, \ldots, v \) and all \(U \in \mathbb{R}^n \) for which the quadratic form \(q(X) = \langle Q(X), U \rangle \) defined on \((\mathcal{J} U)^\perp\) is nonzero. If this is true for at least one \(U \), then this is true for a dense subset of \(\mathbb{R}^n \), which implies that \(J_i J_j U \in \mathcal{J} U \) for all \(i, j = 1, \ldots, v \) and all \(U \in \mathbb{R}^n \). Then by Lemma 2.7(1), \(J_i J_j U = \sum_{k=1}^{v} a_{ijk} J_k U \) for \(i \neq j \) for some constants \(a_{ijk} \), which implies that \(\langle J_i J_j J_k U, U \rangle = a_{ijk} \|U\|^2 \), so for all triples of pairwise distinct \(i, j, k \), the symmetric operator \(J_i J_j J_k \) on \(\mathbb{R}^n \) is a multiple of the identity. This is impossible when \(v > 3 \) (since for \(l \neq i, j, k \), the operator \(J_i J_j J_k \) must be orthogonal and symmetric). The only remaining cases are \(n = 12 \) and \(v = 3 \), with \(J_1 J_2 J_3 = \pm \text{id} \), and \(n = 6 \) and \(v = 1 \), which are considered under the exceptional case below.

Therefore \(\langle Q(X), U \rangle = 0 \) for \(X \perp \mathcal{J} U \), so \(Q(X) \in \mathcal{J} X \) for all \(X \in \mathbb{R}^n \). By Lemma 2.7(1) (and the fact that \(Q(X), X \rangle = 0 \)), this implies (3-5a) for some vectors \(m_j \in \mathbb{R}^n \).

To prove (3-5b) and (3-5c), we first show that for an arbitrary \(X \neq 0 \), there is a dense subset of the \(Y \) in \((\mathcal{J} X)^\perp\) such that \(J \mathcal{J} X \cap \mathcal{J} Y = 0 \). This follows from the dimension count (compare to [N 2003, Lemma 3.2(1)]). For \(X \neq 0 \), define the cone \(\mathcal{C} X = \{ J_a J_a X : u, v \in \mathbb{R}^v \} \); see (2-2). Since

\[
\dim \mathcal{C} X \leq 2v - 1 < n - (v + 1) = \dim (\mathcal{J} X)^\perp,
\]

where the inequality in the middle follows from Lemma 2.4(i), the complement to \(\mathcal{C} X \) is dense in \((\mathcal{J} X)^\perp\). This complement is the required subset, since the condition \(Y \notin \mathcal{C} X \) is equivalent to \(J \mathcal{J} X \cap \mathcal{J} Y = 0 \). Substituting such \(X, Y \) into (3-3) we obtain
by (3-5a)
\[\sum_{i=1}^{\nu} (\|X\|^2 (m_i, Y) - \eta_i \langle (\nabla_X J_i)X, Y \rangle) J_i Y \]
\[+ \sum_{i=1}^{\nu} (\|Y\|^2 (m_i, X) - \eta_i \langle (\nabla_Y J_i)Y, X \rangle) J_i Y = 0. \]

Since $\mathcal{J}X \cap \mathcal{J}Y = 0$, all the coefficients vanish, so
\[\|X\|^2 (m_i, Y) - \eta_i \langle (\nabla_X J_i)X, Y \rangle = 0 \]
for all $X \in \mathbb{R}^n$, all $i = 1, \ldots, \nu$, and all Y from a dense subset of $(\mathcal{J}X)^\perp$, which implies that $(\nabla_X J_i)X - \eta_i^{-1}\|X\|^2 m_i \in \mathcal{J}X$ for all $X \in \mathbb{R}^n$. Equation (3-5b) then follows from Lemma 2.7(1). Equation (3-5c) follows from (3-5b) and the fact that
\[((\nabla_X J_i)X, J_i X) = ((\nabla_X J_i)X, J_i X) = 0. \]

To prove (3-5d) and (3-5e), substitute $X = J_k Y$ and $U \perp X, Y$ into (3-3). Since
\[\langle J_i Y, X \rangle = \|Y\|^2 \delta_{ik}, \]
the first term in the second sum equals
\[3\eta_k \langle 2((\nabla_U J_k)X, Y) + ((\nabla_X J_k)Y, U) + ((\nabla_Y J_k)U, X) \rangle \|Y\|^2. \]

Since J_k is orthogonal and skew-symmetric,
\[\langle (\nabla_U J_k)X, Y \rangle = \langle (\nabla_U J_k)J_k Y, Y \rangle = -\langle J_k (\nabla_U J_k)Y, Y \rangle = \langle (\nabla_U J_k)Y, J_k Y \rangle = 0. \]

Next,
\[\langle (\nabla_J J_k)U, X \rangle = -\langle (\nabla_J J_k)J_k Y, U \rangle = \langle J_k (\nabla_J J_k)Y, J_k Y \rangle \]
\[= \langle \eta_k^{-1}\|Y\|^2 J_k m_k + \sum_{j=1}^{\nu} (b_{kj}, J_j J_k Y, U) \rangle \]
by (3-5b). Similarly, since $Y = -J_k X$, it follows from (3-5b) that
\[\langle (\nabla_X J_k)Y, U \rangle = \langle J_k (\nabla_X J_k)X, U \rangle \]
\[= \langle J_k (\eta_k^{-1}\|X\|^2 m_k - \langle m_k, X \rangle X) + \sum_{j=1}^{\nu} (b_{kj}, J_j X) J_j X, U \rangle \]
\[= \langle \eta_k^{-1}\|Y\|^2 J_k m_k + \sum_{j \neq k} (b_{kj}, J_j Y) J_j Y - \sum_{j=1}^{\nu} (b_{kj}, J_j Y) J_k Y, U \rangle. \]

Substituting this into (3-3) and using (3-5a) and (3-5b), we obtain after simplification
\[\|Y\|^2 (2J_k m_k, U) - U(\eta_k) \]
\[+ \sum_{j=1}^{\nu} \langle \eta_k b_{kj} + \eta_j b_{jk}, (J_j Y, U) J_k Y + \langle J_k J_j Y, U \rangle Y \rangle = 0. \]

By [N 2003, Lemma 3.2(3)] for all $U \in \mathbb{R}^n$, we can find a nonzero Y such that $U \perp \mathcal{J}Y + \mathcal{J}J_k Y$. Substituting such a Y into (3-8) proves (3-5d). Then (3-8) simplifies to (3-5e).
Exceptional case. Here either \(n = 6 \) and \(v = 1 \), or \(n = 12 \), \(v = 3 \) and \(J_1 J_2 = \pm J_3 \), or \(n = 8 \) and \(v = 3 \) and \(J_1 J_2 = J_3 \).

In all these cases, the Clifford structure has the “\(J^2 \) property” that \(\mathcal{J}\mathcal{J} X = J\mathcal{J} X = \mathcal{J} X \) for every \(X \in \mathbb{R}^n \). In particular, if \(Y \perp \mathcal{J} X \), then \(\mathcal{J} Y \perp \mathcal{J} X \).

Substitute \(X = J_k U \) and \(Y \perp \mathcal{J} X = \mathcal{J} U \) into (3-2) and take the inner product of the resulting equation with \(J_k Y \). Using the \(J^2 \) property and the fact that \(\langle (\nabla Y J_k) U, J_k U \rangle = \langle (\nabla_j Y) Y, J_k Y \rangle = 0 \), we get

\[
-J_k((\nabla_j U) \rho U - (\nabla_U \rho) J_k U) + 2\|U\|^2 \nabla \eta_k + 3\eta_k ((\nabla U J_k) J_k U - (\nabla J_k U) J_k U) \in \mathcal{J} U.
\]

The expression \(F(U) \) on the left side is a quadratic map from \(\mathbb{R}^n \) to itself. By Lemma 2.7(1), \(F(U) \) is a linear combination of \(U \), \(J_1 U \), ..., \(J_v U \) whose coefficients are linear forms of \(U \). In particular, the cubic polynomial \(\langle F(U), J_k U \rangle \) must be divisible by \(\|U\|^2 \). Since \(J_k \) is orthogonal and skew-symmetric,

\[
\langle (\nabla_U J_k) J_k U - (\nabla_j J_k U) J_k U, J_k U \rangle = 0,
\]

so there exists a vector \(m_k \in \mathbb{R}^n \) such that

\[
\langle (\nabla_j U) \rho U - (\nabla_U \rho) J_k U, U \rangle = -3\|U\|^2 \langle m_k, U \rangle.
\]

It follows that the quadratic map \(Q \) defined by (3-4) satisfies

\[
\langle Q(U), J_k U \rangle = 3\|U\|^2 \langle m_k, U \rangle \quad \text{for all } U \in \mathbb{R}^n \text{ and all } k = 1, \ldots, v.
\]

Since \(\langle Q(U), U \rangle = 0 \), we can define a quadratic map \(T : \mathbb{R}^n \to \mathbb{R}^n \) such that for all \(U \in \mathbb{R}^n \),

\[
(3-9) \quad Q(U) = T(U) + 3 \sum_{k=1}^v \langle m_k, U \rangle J_k U \quad \text{and} \quad T(U) \perp \mathcal{J} U.
\]

Taking \(U = J_k X \), \(X, U \perp \mathcal{J} Y \) in (3-3) and using (3-9) we obtain

\[
-J_k T(Y) + 3\|Y\|^2 m_k - 3\eta_k (\nabla Y J_k) Y \in \mathcal{J} Y.
\]

From Lemma 2.7(1) it follows that the expression on the left side is a linear combination of \(Y, J_1 Y, \ldots, J_v Y \) whose coefficients are linear forms of \(Y \), so for some vectors \(b_{ij} \in \mathbb{R}^n \),

\[
(3-10) \quad (\nabla Y J_i) Y = \eta_i^{-1} (m_i \|Y\|^2 - \langle m_i, Y \rangle Y) - (3\eta_i)^{-1} J_i T(Y) + \sum_{j=1}^v \langle b_{ij}, Y \rangle J_j Y.
\]

Since \(\langle (\nabla Y J_i) Y, J_j Y \rangle \) is antisymmetric in \(i \) and \(j \) and \(J_i T(Y) \perp \mathcal{J} Y \) by (3-9) and the \(J^2 \) property, the \(b_{ij} \) satisfy (3-5c).

Take \(X = J_k Y \) and \(U \perp \mathcal{J} Y = \mathcal{J} X \) in (3-3). Since \(\langle (\nabla_U J_k) J_k Y, Y \rangle = 0 \),

\[
\langle (\nabla Y J_k) U, X \rangle = -\langle (\nabla Y J_k) J_k Y, U \rangle = \langle J_k (\nabla Y J_k) Y, U \rangle,
\]
and similarly \(\langle (\nabla_X J_k)Y, U \rangle = -\langle (\nabla_X J_k)J_kX, U \rangle = \langle J_k(\nabla_X J_k)X, U \rangle \), we obtain from (3-9) and (3-10) after simplification that

\[(3-11) \quad 2T(Y) + 2T(J_kY) - 3\|Y\|^2(\nabla \eta_k - 2J_km_k) \in \mathcal{Y}.\]

In case \(n = 6 \) and \(\nu = 1 \), we can prove the remaining identities (3-5a), (3-5b), (3-5d) and (3-5e) of Lemma 3.5(i) as follows. Taking in (3-3) nonzero \(X, Y, U \) such that the subspaces \(\mathcal{X}, \mathcal{Y} \) and \(\mathcal{U} \) are mutually orthogonal we obtain by (3-9)

\[
\|X\|^2 \langle T(X), U \rangle + \|Y\|^2 \langle T(Y), U \rangle = 0,
\]

which is, essentially, (3-7). Replacing \(Y \) by \(J_1Y \) and using (3-11) we get

\[
2T(X) + 3\|X\|^2(\nabla \eta_1 - 2J_1m_1) \in \mathcal{X}.
\]

The same is true with \(X \) replaced by \(J_1X \). Then by (3-11), \(\nabla \eta_1 - 2J_1m_1 \in \mathcal{X} \) for all \(X \in \mathbb{R}^6 \), so \(\nabla \eta_1 - 2J_1m_1 = 0 \), which is (3-5d). Then \(T(X) \in \mathcal{X} \); hence \(T(X) = 0 \), since \(T(X) \perp \mathcal{X} \) by (3-9). Now (3-5a) follows from (3-9), (3-5b) follows from (3-10), and (3-5e) is trivially satisfied, as \(\nu = 1 \).

In the cases \(n = 8, 12, \nu = 3 \) and \(J_1J_2 = J_3 \) (if \(J_1J_2 = -J_3 \), we replace \(J_3 \) by \(-J_3 \) without changing the curvature tensor (3-1)), we argue as follows. Adding (3-11) with \(k = 1 \) and with \(k = 2 \) and then subtracting (3-11) with \(k = 3 \) and \(Y \) replaced by \(J_1Y \) we get

\[
4T(Y) - 3\|Y\|^2(\nabla \eta_1 - 2J_1m_1) + (\nabla \eta_2 - 2J_2m_2) - (\nabla \eta_3 - 2J_3m_3) \in \mathcal{Y}.
\]

This remains true under a cyclic permutation of the indices 1, 2, 3, which implies \(\nabla \eta_i - 2J_im_i \in \mathcal{Y} \) for all \(i, k = 1, 2, 3 \) and all \(Y \in \mathbb{R}^n \). Then

\[
\nabla \eta_k - 2J_km_k = \nabla \eta_i - 2J_im_i = 4V/3 \text{ for some vector } V \in \mathbb{R}^n, \text{ and } T(Y) - \|Y\|^2V \text{ belongs to } \mathcal{Y} \text{ by the above. Since } T(Y) \perp \mathcal{Y} \text{ by (3-9), we obtain}
\]

\[
T(Y) = \|Y\|^2V - \langle Y, V \rangle Y + \sum_{i=1}^{3} \langle J_iY, V \rangle J_iY,
\]

so

\[
\nabla \eta_i = 2J_im_i + \frac{4}{3}V,
\]

(3-12)

\[
Q(Y) = \|Y\|^2V - \langle Y, V \rangle Y + \sum_{j=1}^{3} (3m_j + J_jV, Y)J_jY,
\]

\[
(\nabla_Y J_i)Y = (3\eta_i)^{-1}(\|Y\|^2(3m_i - J_iV) - (3m_i - J_iV, Y)Y
\]

\[
+ \sum_{j=1}^{3} (3\eta_i b_{ij} - J_jJ_iV, Y)J_jY),
\]

where the second equation follows from (3-9) and the third from (3-10) and the fact that \(J_1J_2 = J_3 \).

Substitute \(X = J_kY \) into (3-3) again, with an arbitrary \(U \perp X, Y \). Using (3-12) and that the \(J_i \) are skew-symmetric, orthogonal and anticommute, we obtain after
simplification that
\[\sum_{i=1}^{3} (3a_{ik} - 2J_i J_k V, J_k Y) J_i Y + \sum_{i=1}^{3} (3a_{ik} - 2J_i J_k V, Y) J_k J_i Y \in \text{Span}(Y, J_k Y), \]
where \(a_{ik} = \eta_k b_{ki} + \eta_i b_{ik} \). Taking \(k = 1 \) and using that \(J_1 J_2 = J_3 \), we get from the coefficient of \(J_2 Y \) that \(3J_1 a_{12} - 4J_2 V + 3a_{13} = 0 \), so \(4V = -3J_2 a_{13} + 3J_3 a_{12} \).
Cyclically permuting the indices 1, 2, 3 and using that \(a_{ik} = a_{ki} \), we get \(V = 0 \), which implies (3-5e). Since \(V = 0 \), equations (3-5a), (3-5d) and (3-5b) follow from (3-12).

(ii) By (3-4) and (3-5a),
\[\langle (\nabla_X \rho) U - (\nabla_U \rho) X, X \rangle = 3 \sum_{i=1}^{v} \langle m_i, X \rangle \langle J_i X, U \rangle \quad \text{for all } X, U \in \mathbb{R}^p. \]
Polarizing this equation and using the fact that the covariant derivative of \(\rho \) is symmetric, we obtain
\[\langle (\nabla_X \rho) U, Y \rangle + \langle (\nabla_Y \rho) U, X \rangle - 2\langle (\nabla_U \rho) Y, X \rangle = 3 \sum_{i=1}^{v} \langle m_i, Y \rangle \langle J_i X, U \rangle + \langle m_i, X \rangle \langle J_i Y, U \rangle). \]
Subtracting the same equation with \(Y \) and \(U \) interchanged, we get
\[\langle (\nabla_Y \rho) U - (\nabla_U \rho) Y, X \rangle = \sum_{i=1}^{v} (2\langle m_i, X \rangle \langle J_i Y, U \rangle + \langle m_i, Y \rangle \langle J_i X, U \rangle - \langle m_i, U \rangle \langle J_i X, Y \rangle), \]
which proves (3-6a).

To establish (3-6b), substitute \(X \perp \mathcal{J} Y, U = J_k Y \) into (3-2). Using the equations of part (i) and (3-6a) we obtain after simplification that
\[3(\nabla_X J_k) Y - (\nabla_Y J_k) X \]
\[= -3\eta_k^{-1} \langle m_k, Y \rangle X + \sum_{i=1}^{v} \eta_k^{-1} (\langle \eta_i b_{ki} + 2\delta_{ik} J_k m_k, Y \rangle J_i X \mod (\mathcal{J} Y). \]
Subtracting thrice polarized Equation (3-5b) (with \(i = k \)) and solving for \((\nabla_Y J_k) X \), we get, for all \(X \perp \mathcal{J} Y \),
\[(3-13) \quad (\nabla_Y J_k) X = \sum_{i=1}^{v} \frac{1}{4} \eta_k^{-1} (3\eta_k b_{ki} - \eta_i b_{ik} - 2\delta_{ik} J_k m_k, Y) J_i X \mod (\mathcal{J} Y). \]
Choose \(s \neq k \) and define the subset \(S_{ks} \subset \mathbb{R}^n \oplus \mathbb{R}^n \) by
\[S_{ks} = \{ (X, Y) : X, Y \neq 0 \text{ and } X, J_k X, J_s X \perp \mathcal{J} Y \}. \]
It is easy to see that \((X, Y) \in S_{kS}\) if and only if \((Y, X) \in S_{kS}\) and that replacing \(\mathcal{J} Y\) by \(\mathcal{J} Y\) in the definition of \(S_{kS}\) gives the same set \(S_{kS}\). Moreover, \(\{X : (X, Y) \in S_{kS}\}\) (and hence \(\{Y : (X, Y) \in S_{kS}\}\)) spans \(\mathbb{R}^n\). If \(n = 8\), \(v = 3\) and \(J_1 J_2 = J_3\), this follows from the \(J^2\)-property; in all other cases, it follows from [N 2003, Lemma 3.2(4)]. For \((X, Y) \in S_{kS}\), take the inner product of (3-13) with \(J_\nu X, J_\nu X\) is antisymmetric in \(k\) and \(s\), we get \(\langle (3 - \eta_k \eta_s^{-1}) b_{ks} + (3 - \eta_s \eta_k^{-1}) b_{sk}, Y \rangle = 0\) for a set of \(Y\) spanning \(\mathbb{R}^n\). This proves (3-6b).

To prove (3-6c), we apply of Lemma 2.7(2) to (3-5e). If \(v = 1\), there is nothing to prove; in fact, if \(v = 1\) and \(n \geq 8\), Theorem 3.1 follows from [Blažič and Gilkey 2004, Theorem 1.1]. If \(\eta_i b_{ij} + \eta_j b_{ji} = 0\) for all \(i \neq j\), then by (3-6b), \(b_{ij} + b_{ji} = 0\) for all \(i \neq j\), so \(\eta_i^{-1} J_i m_i = -\eta_j^{-1} J_j m_j\) by (3-5c). Acting by \(J_1 J_2\) we obtain that the vector \(\eta_i^{-1} J_i m_i\) is the same for all \(i = 1, \ldots, v\).

The only remaining possibility is \(v = 3\). \(J_1 J_2 = J_3\) (if \(J_1 J_2 = -J_3\) we can replace \(J_3\) by \(-J_3\) without changing the curvature tensor (3-1)), and \(\eta_i b_{ki} + \eta_j b_{kj} = J_j v\) for all the triples \(\{i, j, k\} = \{1, 2, 3\}\), where \(v \neq 0\). We will show that this leads to a contradiction. Note that by (2-3), the existence of a Cliff(3) structure implies that \(n\) is divisible by 4, so \(n \geq 8\) by the assumption of the lemma.

If \(\eta_i = \eta_k\) for some \(i \neq k\), then from (3-6b) and \(\eta_k b_{ki} + \eta_i b_{ik} = J_j v\) it follows that \(v = 0\), a contradiction. Otherwise, if the \(\eta_i\) are pairwise distinct, we get

\[
b_{ik} = (3 \eta_i - \eta_k)(4 \eta_i (\eta_i - \eta_k))^{-1} J_j v \quad \text{for } \{i, j, k\} = \{1, 2, 3\}.
\]

Substituting this into (3-5c) and acting by \(J_j\) on both sides, we get

\[
\eta_i^{-1} J_i m_i - \eta_k^{-1} J_k m_k = \frac{1}{4} \epsilon_{ik} (\eta_i^{-1} + \eta_k^{-1}) v \quad \text{for } \{i, j, k\} = \{1, 2, 3\},
\]

where for \(i \neq k\) we define \(\epsilon_{ik} = \pm 1\) by \(J_i J_k = \epsilon_{ik} J_j\). It is easy to see that \(\epsilon_{jk} = -\epsilon_{kj}\) and \(\epsilon_{jk} = \epsilon_{ij}\), where \(\{i, j, k\} = \{1, 2, 3\}\). Then

\[
\sum_{i=1}^{3} \eta_i^{-1} = 0 \quad \text{and} \quad \eta_i^{-1} J_i m_i = \frac{1}{12} \epsilon_{jk} (\eta_j^{-1} - \eta_k^{-1}) v + w \quad \text{for some } w \in \mathbb{R}^n.
\]

It then follows from (3-5d) that \(\nabla \eta_i = (1/6) \epsilon_{jk} \eta_i (\eta_j^{-1} - \eta_k^{-1}) v + 2 \eta_i w\), which implies

\[
\nabla \ln |\eta_1 \eta_2 \eta_3| = 6w \quad \text{and} \quad \nabla \ln |\eta_j \eta_j^{-1}| = -\frac{1}{2} \epsilon_{ij} \eta_j^{-1} v.
\]

Let \(\mathcal{U} \subset \mathcal{U}'\) be a neighborhood of \(x\) on which \(\nabla \ln |\eta_1 \eta_2^{-1}| \neq 0\). Then \(v\) is a nowhere vanishing smooth vector field on \(\mathcal{U}'\). Multiplying the metric on \(\mathcal{U}\) by a function \(e^{-f}\) changes neither the Weil tensor nor the \(J_i\), and multiplies every \(\eta_i\) by \(e^{-f}\) and \(\nabla\) acting on functions by \(\nabla e^{-f}\). Taking \(f = (1/3) \ln |\eta_1 \eta_2 \eta_3|\) we can assume that \(w = 0\) on \(\mathcal{U}'\), so that \(C = \eta_1 \eta_2 \eta_3\) is a constant. Then, since \(\sum_{i=1}^{3} \eta_i^{-1} = 0\), we get

\[
\nabla \eta_i = \pm \frac{1}{6} \sqrt{1 - 4C^{-1} \eta_i^3}.
\]
It follows that \(v = \nabla t \) for some smooth function \(t : \mathcal{U} \to \mathbb{R} \) such that \(\eta_i = -36C \phi (t + c_i) \), where \(\phi \) is the Weierstrass function satisfying
\[
\left(\frac{d}{dt} \phi (t) \right)^2 = 4 \phi (t)^3 + 6^{-6} C^{-2}
\]
and \(c_i \in \mathbb{R} \). Summarizing these identities, we have pointwise pairwise nonequal functions \(\eta_i : \mathcal{U} \to \mathbb{R} \setminus \{0\} \) satisfying
\[
0 = \sum_{i=1}^{3} \eta_i^{-1}, \quad C = \text{const} = \prod_{i=1}^{3} \eta_i,
\]
\[
\begin{align*}
m_i &= -\frac{1}{12} \varepsilon_{jk} \eta_i (\eta_j^{-1} - \eta_k^{-1}) J_i v, \\
b_{ii} &= \frac{1}{12} \varepsilon_{jk} (\eta_j^{-1} - \eta_k^{-1}) J_i v,
\end{align*}
\]
for \(\{i, j, k\} = \{1, 2, 3\} \), where we used (3-5c) to compute \(b_{ii} \). Then Equation (3-13) simplifies to
\[
(\nabla_j J_k) X = \sum_{i \neq k} \frac{1}{2} (\eta_k - \eta_i)^{-1} (J_j v, Y) J_i X \mod (\mathcal{J} Y) \quad \text{for all } X \perp \mathcal{J} Y.
\]
By the \(J^2 \)-property, \(\mathcal{J} Y \perp \mathcal{J} X \), so to find the “mod(\(\mathcal{J} Y \))” part, we have to compute the inner products of \((\nabla_j J_k) X \) with \(Y, J_1 Y, J_2 Y \) and \(J_3 Y \). Since
\[
\begin{align*}
(\nabla_j J_k) X &= -(\nabla_j J_k) X, \\
(\nabla_j J_k) X, J_k Y &= -(\nabla_j J_k) J_k Y = (J_k (\nabla_j J_k) Y, X), \\
(\nabla_j J_k) X, J_j Y &= -(\nabla_j J_k) J_j Y = -(\varepsilon_{kj} (\nabla_j J_k) - J_k (\nabla_j J_k)) Y, X)
\end{align*}
\]
(from \(J_k J_i = \varepsilon_{ki} J_j \)), these products can be found using (3-5b). Simplifying by (3-14) we get
\[
\begin{align*}
(\nabla_j J_k) X &= \frac{1}{12} \varepsilon_{ij} (\eta_i^{-1} - \eta_j^{-1}) (J_k v, X) Y + (v, X) J_k Y \\
&\quad + \frac{1}{4} \eta_k^{-1} \sum_{i \neq k} (J_j v, X) J_i Y + \sum_{i \neq k} \frac{1}{2} (\eta_k - \eta_i)^{-1} (J_j v, Y) J_i X,
\end{align*}
\]
for all \(X \perp \mathcal{J} Y \), where \(\{i, j, k\} = \{1, 2, 3\} \). To compute \((\nabla_j J_k) X \) when \(X \in \mathcal{J} Y \), we again use (3-5b) and the fact that, for \(\{i, j, k\} = \{1, 2, 3\} \),
\[
(\nabla_j J_k) J_i = \varepsilon_{ki} (\nabla_j J_k) - J_k (\nabla_j J_i).
\]
Simplifying by (3-14) and using the above equation we get after some calculation
\[
\begin{align*}
(\nabla_j J_k) X &= \frac{1}{12} \varepsilon_{ij} (\eta_i^{-1} - \eta_j^{-1}) (J_k v, X) Y + (v, X) J_k Y - (X, Y) J_k v - (X, J_k Y) v \\
&\quad + \frac{1}{4} \eta_k^{-1} \sum_{i \neq k} (J_j v, X) J_i Y - (J_i Y, X) J_j v + \sum_{i \neq k} \frac{1}{2} (\eta_k - \eta_i)^{-1} (J_j v, Y) J_i X,
\end{align*}
\]
for all $X, Y \in \mathbb{R}^n$, where \{i, j, k\} = \{1, 2, 3\}. For $a, b \in \mathbb{R}^n$, let $a \wedge b$ be the skew-symmetric operator defined by $(a \wedge b)X = \langle a, X \rangle b - \langle b, X \rangle a$. Then the above equation can be written in the form

$$\nabla_Y J_k = \frac{1}{12} \varepsilon_{ij} (\eta_i^{-1} - \eta_j^{-1}) (J_i v \wedge Y + v \wedge J_i Y)$$

$$+ \frac{1}{4} \eta_k^{-1} \sum_{i \neq k} J_i v \wedge J_i Y + \sum_{i \neq k} \frac{1}{2} (\eta_k - \eta_i)^{-1} (J_i v, Y) J_i,$$

that is, for \{i, j, k\} = \{1, 2, 3\},

$$\nabla_X J_k = [J_k, AY], \quad AY = \sum_{i=1}^{3} \left(\frac{1}{2} \lambda_i J_i Y \wedge J_i v + \omega_i (J_i v, Y) J_i \right),$$

$$\lambda_i = \frac{1}{3} \varepsilon_{jk} (\eta_i^{-1} - \eta_k^{-1}), \quad \omega_i = \frac{1}{3} \varepsilon_{jk} (\eta_k - \eta_j)^{-1}$$

where we used that, for \{i, j, k\} = \{1, 2, 3\},

$$[J_k, a \wedge b] = J_k a \wedge b + a \wedge J_k b \quad \text{and} \quad [J_k, J_l] = 2 \varepsilon_{kl} J_l.$$

By the Ricci formula, $\nabla_{\pi Y} J_k - \nabla_{\pi Z} J_k = [J_k, R(Y, Z)]$, where the tensor field $\nabla^2_{\pi} J_k$ is defined by

$$\nabla_{\pi Y} J_k = \nabla_{\pi} (\nabla_{\pi} J_k) - \nabla_{\pi Z} J_k$$

for vector fields Y, Z on π'. Since $\nabla_{\pi Y} J_k = [J_k, AY]$ by (3-15), this is equivalent to the fact that the operator $F(Y, Z) = (\nabla_Z A)Y - (\nabla_Y A)Z - [AY, AZ] - R(Y, Z)$ commutes with all the J_s for all $Y, Z \in \mathbb{R}^n$ and all $s = 1, 2, 3$. By (3-1), we have

$$R(Y, Z) = Y \wedge \rho Z + \rho Y \wedge Z + \sum_{i=1}^{3} \eta_i (J_i Y \wedge J_i Z + 2 \langle J_i Y, Z \rangle J_i),$$

so using (3-15) and the identities

$$[a \wedge b, c \wedge d] = \langle a, d \rangle c \wedge b - \langle a, c \rangle d \wedge b - \langle b, d \rangle c \wedge a + \langle b, c \rangle d \wedge a,$$

$$[J_s, a \wedge b] = J_s a \wedge b + a \wedge J_s b,$$

we obtain

$$F(Y, Z) = V(Y, Z) + \sum_{i=1}^{3} (K_i Y, Z) J_i + S(Y, Z),$$

where

$$S(Y, Z) \in (\mathcal{J} Y + \mathcal{J} Z) \wedge \mathbb{R}^n,$$

$$V(Y, Z) = -\frac{1}{2} \sum_{i=1}^{3} \langle J_i Z, Y \rangle (\lambda_i^2 v \wedge J_i v + \varepsilon_{jk} (\lambda_j \lambda_k - \lambda_i \lambda_k - \lambda_j \lambda_i) J_j v \wedge J_k v)$$

$$\in \mathcal{J} v \wedge \mathcal{J} v,$$
and for subspaces $L_1, L_2 \subset \mathbb{R}^n$, we denote by $L_1 \wedge L_2$ the subspace of the space $\mathfrak{o}(n)$ of skew-symmetric operators on \mathbb{R}^n defined by

$$L_1 \wedge L_2 = \text{Span}(a \wedge b : a \in L_1, \ b \in L_2).$$

Note that if L_1 and L_2 are \mathcal{J}-invariant (that is, $\mathcal{J}L_a \subset L_a$), then $L_1 \wedge L_2$ is \mathcal{J}-invariant, that is, $[J_L, L_1 \wedge L_2] \subset L_1 \wedge L_2$.

From (3-15) and the facts that

$$\omega_t \lambda_i = (24C)^{-1} \eta_i, \quad \frac{d}{d \tau} \omega_t = 4 \omega_t^2 + (12C)^{-1} \eta_i, \quad \sum_i \omega_i^{-1} = 0,$$

which follow from (3-14) and (3-15), we obtain

$$(3-17) \quad K_i = -\omega_t ((4 \omega_t + \lambda_i) v \wedge J_t v + 4 \epsilon_{jk} (\omega_j + \omega_k) J_k v \wedge J_j v + \lambda_i (48C + \|v\|^2) J_i + (J_i H + H J_i)), $$

where $\{i, j, k\} = \{1, 2, 3\}$ and H is the symmetric operator associated to the Hessian of t, that is, $\langle H Y, Z \rangle = Y(Zt) - (\nabla_Y Z)t$ for vector fields Y and Z on \mathcal{W}.

Since $\{F(Y, Z), J_s\} = 0$ and the subspace $\mathcal{J}Y + \mathcal{J}Z$ is \mathcal{J}-invariant (and hence $(\mathcal{J}Y + \mathcal{J}Z) \wedge \mathbb{R}^n$ is ad-\mathcal{J}-invariant), it follows from (3-16) that for all $Y, Z \in \mathbb{R}^n$ and all $s = 1, 2, 3$,

$$(3-18) \quad [V(Y, Z), J_s] + \sum_{i=1}^3 (K_i Y, Z) [J_i, J_s] \in (\mathcal{J}Y + \mathcal{J}Z) \wedge \mathbb{R}^n.$$

Take $Y, Z \in \mathcal{J}v$ in (3-18). Then $(\mathcal{J}Y + \mathcal{J}Z) = \mathcal{J}v$ and $[V(Y, Z), J_s] \in \mathcal{J}v \wedge \mathcal{J}v$ by the J^2 property, so (3-18) simplifies to $\sum_{i \neq s} c_{is} \langle K_i Y, Z \rangle J_s \in \mathcal{J}v \wedge \mathbb{R}^n$, where $\{i, j, s\} = \{1, 2, 3\}$. Project this onto the subspace $(\mathcal{J}v)^\perp \wedge (\mathcal{J}v)^\perp \subset \mathfrak{o}(n)$ by the standard inner product on $\mathfrak{o}(n)$, and use that $(\mathcal{J}v)^\perp$ is \mathcal{J}-invariant and $n \geq 8$. Then we get $\langle K_i Y, Z \rangle = 0$ for all $i = 1, 2, 3$ and all $Y, Z \in \mathcal{J}v$. Introduce the operators

$$\hat{J}_i = \pi_{\mathcal{J}v} J_i \pi_{\mathcal{J}v} \quad \text{and} \quad \hat{H} = \pi_{\mathcal{J}v} H \pi_{\mathcal{J}v} \quad \text{on } \mathcal{J}v.$$

Since $\mathcal{J}v$ is \mathcal{J}-invariant, the \hat{J}_i are anticommuting almost Hermitian structures on $\mathcal{J}v$. Then the condition $\langle K_i Y, Z \rangle = 0$ for $Y, Z \in \mathcal{J}v$ and (3-17) imply

$$(4 \omega_t + \lambda_i) v \wedge \hat{J}_t v + 4 \epsilon_{jk} (\omega_j + \omega_k) \hat{J}_j v \wedge \hat{J}_k v + \lambda_i (48C + \|v\|^2) \hat{J}_i + \hat{J}_i \hat{H} + \hat{H} \hat{J}_i = 0.$$

Multiplying by \hat{J}_i and taking the trace we obtain for $\{i, j, k\} = \{1, 2, 3\}$

$$4 \|v\|^2 (\omega_i + \omega_j + \omega_k) + \lambda_i (96C + 3 \|v\|^2) + \text{Tr } \hat{H} = 0,$$

so $\lambda_i (96C + 3 \|v\|^2)$ does not depend on $i = 1, 2, 3$. Since the λ_i are pairwise distinct (otherwise the condition $\sum_{i=1}^3 \eta_i^{-1} = 0$ from (3-14) is violated), we get $\|v\|^2 = -32C$.

Now take \(Y, Z \perp \mathcal{J} \mathfrak{v} \) in (3-18). Projecting to \(\mathcal{J} \mathfrak{v} \wedge \mathfrak{v} \) and using the fact that \(\mathcal{J} \mathfrak{v} \wedge \mathfrak{v} \) is \(\text{ad}_J \)-invariant we obtain that the operator \(V(Y, Z) + \sum_{i=1}^{3}(K_i Y, Z) \hat{J}_i \) on \(\mathfrak{v} \) commutes with every \(\hat{J}_i \). The centralizer of the set \(\{J_1, J_2, J_3\} \) in the Lie algebra \(\mathfrak{o}(4) = \mathfrak{o}(\mathfrak{v}) \) is the three-dimensional subalgebra spanned by

\[
\mathfrak{v} \perp \hat{J}_1 \mathfrak{v} - e_{jk} \hat{J}_j \mathfrak{v} \perp \hat{J}_k \mathfrak{v} \quad \text{for} \quad \{i, j, k\} = \{1, 2, 3\}
\]

(right multiplication by the imaginary quaternions). Substituting \(V(Y, Z) \) from (3-16) and using that

\[
\hat{J}_i = \|v\|^2 (v \perp \hat{J}_i v + e_{jk} \hat{J}_j v \perp \hat{J}_k v),
\]

we obtain that the operator \(V(Y, Z) + \sum_{i=1}^{3}(K_i Y, Z) \hat{J}_i \) commutes with all the \(\hat{J}_i \) for \(Y, Z \perp \mathfrak{v} \) if and only if

\[
-\frac{1}{2} \langle J_i Z, Y \rangle (\lambda_i^2 + \lambda_i \lambda_k - \lambda_i \lambda_k - \lambda_j \lambda_i) + 2\|v\|^2 \langle K_i Y, Z \rangle = 0 \quad \text{for all} \quad i = 1, 2, 3.
\]

Substituting the \(\lambda_i \) from (3-15) and \(\langle K_i Y, Z \rangle \) from (3-17) and taking into account that \(\|v\|^2 = -32C \), which is shown above, we obtain

\[
\langle (J_i H + H J_i - 32C \lambda_i J_i) Y, Z \rangle = 0 \quad \text{for all} \quad Y, Z \perp \mathfrak{v} \quad \text{and all} \quad i = 1, 2, 3.
\]

Then

\[
\pi (J_i H + H J_i) \pi = 32C \lambda_i \pi J_i \pi,
\]

where \(\pi = \pi(\mathfrak{v})^{-1} \). Multiplying both sides by \(\pi J_i \pi \) from the right and using that \([\pi, J_i] = 0 \) (as \(\mathfrak{v} = \mathfrak{J} \)-invariant), we get \(\pi (J_i H J_i - H) \pi = -32C \lambda_i \pi \). Taking the traces of both sides we obtain

\[
-2 \text{Tr}(\pi H \pi) = -32C \lambda_i (n - 4),
\]

which is a contradiction since \(n > 4 \) and the \(\lambda_i \) are pairwise distinct, which follows from the equation \(\sum_{i=1}^{3} \eta_i^{-1} \) is not zero. \(\square \)

The next lemma shows that the relations similar to (3-5) and (3-6) of Lemma 3.5 also hold in all the remaining cases when \(n = 8 \), that is, when \(v \neq 3 \) and when \(v = 3 \) and \(J_1 J_2 \neq \pm J_3 \). As shown in Lemma 3.2, in all these cases the Weyl tensor has a smooth Cliff(7) structure in a neighborhood \(\mathcal{U} \) of every point \(x \in M' \). Moreover, Lemma 2.6(2), that Cliff(7) structure is an almost Hermitian octonion structure, in the following sense. For every \(y \in \mathcal{U} \), we can identify \(\mathbb{R}^8 = T_y M^8 \) with \(\mathcal{O} \) and of \(\mathbb{R}^7 \) with \(\mathcal{O}' = 1 \perp \) via linear isometries \(t_1 \) and \(t_2 \) respectively so that the orthogonal multiplication (2-2) defined by Cliff(7) has the form (2-5): \(J_0 X = Xu \) for every \(X \in \mathbb{R}^8 = \mathcal{O} \) and \(u \in \mathcal{O}' \).

Lemma 3.6. Let \(x \in M' \subset M^8 \), and let \(\mathcal{U} \) be the neighborhood of \(x \) defined in Lemma 3.2. For every point \(y \in \mathcal{U} \), identify \(\mathbb{R}^8 = T_y M^8 \) with \(\mathcal{O} \) via a linear isometry so that the Clifford structure Cliff(7) on \(\mathbb{R}^8 \) is given by (2-5). Then there
exist \(m, t, b_{ij} \in \mathbb{R}^8 \) with \(i, j = 1, \ldots, 7\) such that for all \(X, U \in \mathbb{R}^8 \),

\[
(\nabla_U J_i)X = \sum_{j=1}^{7} \langle b_{ij}, U \rangle X e_j + (X(U^* m) - \langle m, U \rangle X)e_i + \langle m, U e_i \rangle X,
\]

(3-19a)

\[
b_{ij} + b_{ji} = 0,
\]

(3-19b)

\[
(\nabla_X \rho)U - (\nabla_U \rho)X = 2 \sum_{i=1}^{7} \eta_i ((me_i, U)X e_i - \langle me_i, X \rangle U e_i + 2 \langle X e_i, U \rangle me_i)
\]

+ \(\frac{3}{4} (X \wedge U) t,
\]

(3-19c)

\[
\nabla \eta_i = -4 \eta_i m - \frac{1}{2} t.
\]

(3-19d)

Proof. In the proof we use standard identities of the octonion arithmetic (some of them are given in Section 2.5).

By [N 2004, Lemma 7], for the Clifford structure \(\text{Cliff}(7)\) given by (2-5), there exist \(b_{ij} \in \mathbb{R}^8\), with \(i, j = 1, \ldots, 7\), satisfying (3-19b) and an \((\mathbb{R}-)\)linear operator \(A: \mathbb{O} \rightarrow \mathbb{O}'\) such that for all \(X, U \in \mathbb{R}^8 = \mathbb{O}\),

\[
(\nabla_U J_i)X = \sum_{j=1}^{7} \langle b_{ij}, U \rangle X e_j + (X \cdot AU) e_i + \langle AU, e_i \rangle X.
\]

(3-20)

Equation (3-2) is a polynomial equation in 24 real variables, the coordinates of the vectors \(X, Y, U \in \mathbb{R}^8\). It still holds if we allow \(X, Y, U\) to be complex and extend the tensors \(J_i, \nabla J_i\) and \((\cdot, \cdot)\) to \(\mathbb{C}^8\) by complex linearity. The complexified inner product \((\cdot, \cdot)\) takes values in \(\mathbb{C}\) and is a nonsingular quadratic form on \(\mathbb{C}^8\).

Moreover, Equation (2-5) is still true if we identify \(\mathbb{C}^8\) with the bioctonion algebra \(\mathbb{O} \otimes \mathbb{C}\), and \(\mathbb{C}^7\) with \(1^\perp = \mathbb{O}' \otimes \mathbb{C}\), the orthogonal complement to 1 in \(\mathbb{O} \otimes \mathbb{C}\).

Let \(Y \in \mathbb{O} \otimes \mathbb{C}\) be a nonzero isotropic vector (that is, \(Y^* Y = 0\)) and let

\[
\mathcal{J}_C Y = \text{Span}_C (J_1 Y, \ldots, J_7 Y).
\]

Then \(Y \in \mathcal{J}_C Y\) and the space \(\mathcal{J}_C Y\) is isotropic: The inner product of any two vectors from \(\mathcal{J}_C Y\) vanishes. Choose \(X, U \in \mathcal{J}_C Y\) and take the inner product of the complexified (3-2) with \(X\). Since \(X, Y\) and \(U\) are mutually orthogonal, we get (3-3), which further simplifies to

\[
\sum_{i=1}^{7} \eta_i \langle J_i X, U \rangle ((\nabla Y J_i) Y, X) = 0,
\]

since

\[
\|X\|^2 = \|Y\|^2 = \langle J_i Y, X \rangle = \langle J_i Y, U \rangle = 0.
\]
Using (3-20) we obtain
\[\sum_{i=1}^{7} \eta_i \langle J_i X, U \rangle \langle (Y \cdot AY)e_i, X \rangle = 0 \]
for all isotropic vectors Y and for all $X, U \in \mathcal{F}_C Y$. It follows that $Y \cdot AY$ is perpendicular to $\sum_{i=1}^{7} \eta_i \langle J_i X, U \rangle Xe_i$ for all $X, U \in \mathcal{F}_C Y$. Since $Y \cdot AY = J_{AY} Y \in \mathcal{F}_C Y$ and $\mathcal{F}_C Y$ is isotropic, we get $Y \cdot AY \perp \mathcal{F}_C Y$, so $Y \cdot AY$ is perpendicular to $\mathcal{F}_C Y + \text{Span}_C(\{ \sum_{i=1}^{7} \eta_i \langle J_i X, U \rangle J_i X \mid X, U \in \mathcal{F}_C Y \})$.

Following the arguments in the proof of [N 2004, Lemma 8] starting with formula (29), we obtain that $AU = U^* m - \langle U, m \rangle 1$ for some $m \in \mathbb{O}$. Then (3-19a) follows from (3-20).

To prove (3-19c) and (3-19d), introduce the vectors $f_{ij} \in \mathbb{R}^8$ for $i, j = 1, \ldots, 8$ and the quadratic map $T : \mathbb{R}^8 \to \mathbb{R}^8$ (similar to the map Q of (3-4)) by
\[
(3-21) \quad f_{ij} = (\eta_i - \eta_j)b_{ij} + \delta_{ij}(\nabla \eta_i - 2\eta_i m),
\]
and
\[
(3-22) \quad \langle T(X), U \rangle = \frac{1}{2} (\langle \nabla_X \rho \rangle U - \langle \nabla_U \rho \rangle X, X) - \sum_{i=1}^{7} \eta_i \langle me_i, X \rangle \langle Xe_i, U \rangle.
\]
Note that $f_{ij} = f_{ji}$ and $\langle T(X), X \rangle = 0$. Take X, Y, U to be mutually orthogonal vectors in \mathbb{R}^8. By (3-19a) and (3-19b),
\[
\langle (\nabla_U J_i) X, Y \rangle = \sum_{j=1}^{7} \langle b_{ij}, U \rangle \langle Xe_j, Y \rangle - \langle m, U \rangle \langle Xe_i, Y \rangle + \langle (X(U^* m)) e_i, Y \rangle
\]
\[
= \sum_{j=1}^{7} \langle b_{ij} - \delta_{ij} m, U \rangle \langle Xe_j, Y \rangle + \langle m((e_i Y^*) X), U \rangle,
\]
so every term on the left side of (3-3) can be written as the inner product of U with a vector depending on X and Y. Since U is arbitrary other than being perpendicular to X and Y, we find after substituting (2-5) and (3-19a) into (3-3) and rearranging the terms that
\[
\|X\|^2 T(Y) + \|Y\|^2 T(X)
\]
\[
+ \sum_{i=1}^{7} (2\eta_i \langle Ye_i, X \rangle (m((e_i Y^*) X) + (Y(X^* m)) e_i)
\]
\[
+ \langle Ye_j, X \rangle ((f_{ij}, X)Ye_i - (f_{ij}, Y)Xe_i) - \langle Ye_i, X \rangle \langle Ye_j, X \rangle f_{ij})
\]
\[\in \text{Span}(X, Y),\]
for all $X \perp Y$, where we used the fact that $(X(Y^* m)) e_i = -(Y(X^* m)) e_i$, since $X \perp Y$. Taking the inner products with X and with Y, we obtain that the left side
of the above (before the “∈”) is equal to \((T(Y), X)X + (T(X), Y)Y \) for all \(X \perp Y \).

Taking \(X = Yu \) with \(u = \sum_{i=1}^{7} u_i e_i \in \mathcal{O}' \) and regrouping the terms, we obtain

\[
(3-23) \quad \|u\|^2 T(Y) + T(Yu) \\
+ 2 \sum_{i=1}^{7} \eta_i u_i (2\langle Y, me_i \rangle Yu - 2\langle Yu, me_i \rangle Y + 2\|Y\|^2 (mu)e_i) \\
+ \sum_{i,j=1}^{7} u_j (\langle fi_j + 8\delta_{ij}\eta_i m, Yu \rangle Ye_i - \langle fi_j + 8\delta_{ij}\eta_i m, Y \rangle (Yu)e_i) \\
- \sum_{i,j=1}^{7} \|Y\|^2 u_i u_j fi_j = \|Y\|^2 \langle T(Y), Yu \rangle Yu + \|Y\|^2 \langle T(Yu), Y \rangle Y,
\]

where we used

\[
m((e_iY^*)X) + (Y(X^*)m)e_i \\
= 2\langle Y, me_i \rangle Yu - 2\langle Yu, me_i \rangle Y + 4\langle Yu, m \rangle Ye_i - 4\langle Y, m \rangle (Yu)e_i + 2\|Y\|^2 (mu)e_i,
\]

which follows from

\[
m((e_iY^*)X) = (Y(X^*)m)e_i - 2\langle m, Ye_i \rangle X - 2\langle X, me_i \rangle Y
\]

for all \(X, Y, \) and

\[
(Y(X^*)m)e_i = -2\langle Y, m \rangle (Yu)e_i - 2\langle Y, mu \rangle Ye_i + \|Y\|^2 (mu)e_i
\]

for \(X = Yu \) and \(u \perp 1 \). By Lemma 2.7(1) (with \(v = 1 \) and \(\mathfrak{T} Y = \text{Span}(Y, Yu) \)) we obtain that both coefficients on the right side of (3-23), \(\|Y\|^2 \langle T(Y), Yu \rangle \) and \(\|Y\|^2 \langle T(Yu), Y \rangle \), are linear forms of \(Y \in \mathbb{R}^8 \) for every \(u \in \mathcal{O}' \). Since \(\langle T(Y), Y \rangle \) is zero, this implies that there exists an \(\mathbb{R} \)-linear operator \(C : \mathcal{O} \rightarrow \mathcal{O}' \) such that \(\|Y\|^2 Y^* T(Y) = CY \), so \(T(Y) = Y \cdot CY \) for all \(Y \in \mathcal{O} \). Substituting this to (3-23) and rearranging the terms, we obtain

\[
(3-24) \quad (Yu) \left(C(Yu) - \sum_{i,j=1}^{7} u_j (\langle fi_j + 8\delta_{ij}\eta_i m, Y \rangle e_i) \right) \\
+ Y \left(\|u\|^2 CY + \sum_{i=1}^{7} (4\eta_i u_i ((Y, me_i)u - \langle Yu, me_i \rangle Y + Y^*((mu)e_i)) \\
+ u_j (\langle fi_j + 8\delta_{ij}\eta_i m, Yu \rangle e_i \\
- u_i u_j Y^* fi_j - \langle CY, u \rangle u + \langle C(Yu), u \rangle 1) \right) = 0,
\]

The left side of (3-24) has the form \((Yu)L(Y, u) + YF(Y, u) \), where \(L(Y, u) \) and \(F(Y, u) \) are \(\mathbb{R} \)-linear operators on \(\mathcal{O} \) for every \(u \in \mathcal{O}' \). By [N2004, Lemma 6], for every unit octonion \(u \in \mathcal{O}' \), \(L(Y, u) = (a(u), Y)1 + \langle t(u), Y \rangle u + Y^* p(u) \) for
some functions \(a, t, p : S^6 \subset \Omega' \to \Omega\). Extending \(a, t, p\) by homogeneity (of degree 1, 0, 1 respectively) to \(\Omega'\) we obtain

\[
C(Yu) - \sum_{i,j=1}^{7} u_j \langle f_{ij} + 8\delta_{ij} \eta_i m, Y \rangle e_i = \langle a(u), Y \rangle 1 + \langle t(u), Y \rangle u + Y^* p(u)
\]

for all \(u \in \Omega'\). Moreover, \(p(u) = -a(u)\), since \(C(Y) \perp 1\). By the linearity of the left side in \(u\), we get

\[
\langle a(u_1 + u_2) - a(u_1) - a(u_2), Y \rangle 1 + \langle t(u_1 + u_2) - t(u_1), Y \rangle u_1
\]

\[
+ \langle t(u_1 + u_2) - t(u_2), Y \rangle u_2 + Y^* (a(u_1 + u_2) - a(u_1) - a(u_2)) = 0
\]

for all \(u_1, u_2 \in \Omega'\). Then \(Y^* (a(u_1 + u_2) - a(u_1) - a(u_2)) \in \text{Span}(1, u_1, u_2)\) for all \(Y \in \Omega\), which is only possible when \(a(u)\) is linear, that is, \(a(u) = Bu\) for some \((\mathbb{R}\text{-})linear\) operator \(B : \Omega' \to \Omega\). It follows that \(t(u_1 + u_2) = t(u_1) = t(u_2)\), that is, \(t \in \Omega\) is a constant. So

\[
C(Yu) = \sum_{i,j=1}^{7} u_j \langle f_{ij} + 8\delta_{ij} \eta_i m, Y \rangle e_i + \langle Bu, Y \rangle 1 + \langle t, Y \rangle u - Y^* Bu.
\]

Taking the inner product of the both sides with \(v \in \Omega'\) and subtracting from the resulting equation the same equation with \(u\) and \(v\) interchanged, we obtain \(\langle C(Yu), v \rangle - \langle C(Yv), u \rangle = \langle Bu, Yv \rangle - \langle Bu, Yv \rangle\), since \(f_{ij} = f_{ji}\) by (3-21). It follows that \(\langle C'v - Bu, Yu \rangle = \langle C'u - Bu, Yv \rangle\), where \(C'\) is the operator adjoint to \(C\). Now taking \(u \perp v\) and \(Y = uv\), we get

\[
\|u\|^2 \langle C'v - Bu, v \rangle = -\|v\|^2 \langle C'u - Bu, u \rangle,
\]

which implies \(C = B'\). Then from the above,

\[
\langle C(Yu), e_i \rangle = \sum_{j=1}^{7} u_j \langle f_{ij} + 8\delta_{ij} \eta_i m, Y \rangle + \langle t, Y \rangle u_i - \langle Bu, Ye_i \rangle = \langle Be_i, Yu \rangle,
\]

so \(\sum_{j=1}^{7} u_j (f_{ij} + \delta_{ij} (8\eta_i m + t)) + (Bu)e_i + (Be_i)u = 0\). Therefore

\[
(3-25) \quad T(Y) = Y \cdot CY = Y \cdot B'Y \quad \text{and} \quad f_{ij} = -\delta_{ij} (8\eta_i m + t) - (Be_i)e_j - (Be_j)e_i.
\]

Substituting (3-25) to (3-24) and simplifying, we obtain

\[
-\langle Lu \cdot u, Y \rangle Y - \langle Lu, Y \rangle Yu + \|Y\|^2 Lu \cdot u = 0,
\]

where \(Lu = 4Bu - t u - 4 \sum_{i=1}^{7} \eta_i u_i m e_i\). Taking \(Y \perp Lu, Lu \cdot u\) we get \(Lu = 0\), so

\[
(3-26) \quad Bu = \frac{1}{4} tu + \sum_{i=1}^{7} \eta_i u_i m e_i.
\]
Substituting (3-26) into the first equation of (3-25) and then into (3-22) and simplifying, we obtain that for arbitrary \(X, U \in \mathcal{O}, \)

\[
\langle (\nabla_X \rho) U - (\nabla_U \rho) X, X \rangle = \frac{3}{4} \langle (t, X) (X, U) - \|X\|^2 (t, U) \rangle + 6 \sum_{i=1}^{7} \eta_i \langle X e_i, U \rangle \langle m e_i, X \rangle.
\]

Polarizing this equation we get

\[
\langle (\nabla_Y \rho) U - (\nabla_U \rho) Y, X \rangle + \langle (\nabla_X \rho) U - (\nabla_U \rho) X, Y \rangle = \frac{3}{4} \langle (t, X) (Y, U) + (t, Y) (X, U) - 2 (X, Y) (t, U) \rangle
\]

\[+ 6 \sum_{i=1}^{7} \eta_i \langle (X e_i, U) \langle m e_i, Y \rangle + (Y e_i, U) \langle m e_i, X \rangle \rangle.
\]

Subtracting the same equation with \(X \) and \(U \) interchanged and using the fact that \(\rho \) is symmetric, we get (3-19c). The second equation of (3-25) and (3-26) give

\[f_{ii} = -6 \eta_i m - t/2,\]

which by (3-21) implies (3-19d).

\[\square\]

Lemma 3.7. In the assumptions of Theorem 3.1, let \(x \in M', \) where \(M' \subset M^n \) is defined in Lemma 3.2. Then there exists a neighborhood \(\mathcal{U} = \mathcal{U}(x) \) and a smooth metric on \(\mathcal{U} \) conformally equivalent to the original metric whose curvature tensor has the form (3-1), with \(\rho \) a multiple of the identity.

Proof. Let \(x \in M' \) and let \(\mathcal{U} \) be the neighborhood of \(x \) on which the Weyl tensor has the smooth Clifford structure defined in Lemma 3.2. We can assume that \(\nu > 0, \) since in the case of a Cliff(0) structure, the curvature tensor given by (3-1) has the form

\[R(X, Y) Z = \langle X, Z \rangle \rho Y + \langle \rho X, Z \rangle Y - \langle Y, Z \rangle \rho X - \langle \rho Y, Z \rangle X,\]

so the Weyl tensor vanishes. Then the metric on \(\mathcal{U} \) is locally conformally flat, that is, is conformally equivalent to a one with \(\rho = 0.\)

If \(n = 8 \) and \(\nu = 7, \) and all the \(\eta_i \) at \(x \) are equal, then they are equal at some neighborhood of \(x \) (by the definition of \(M' \)). By Remark 3.4, we can replace \(\rho \) by \(\rho + 3 \eta_1 / 2 \text{id} \) and \(\eta_i \) by \(0 = \eta_i - \eta_1 \) in (3-1), thus arriving at the case \(\nu = 0 \) considered above.

For the remaining part of the proof, we will assume that in the case \(n = 8 \) and \(\nu = 7, \) at least two of the \(\eta_i \) at \(x \) are different; up to relabeling, let \(\eta_1 \neq \eta_2 \) at \(x \) and also on a neighborhood of \(x \) (replace \(\mathcal{U} \) by a smaller neighborhood if necessary). Let \(f \) be a smooth function on \(\mathcal{U} \) and let \(\langle \cdot, \cdot \rangle' = e^f \langle \cdot, \cdot \rangle. \) Then \(W' = W, \) \(J'_i = J_i, \) \(\eta_i' = e^{-f} \eta_i \) and on functions, \(\nabla' = e^{-f} \nabla, \) where we use the prime for objects associated to the metric \(\langle \cdot, \cdot \rangle'. \) Moreover, the curvature tensor \(R' \) still has the form (3-1), and all the identities of Lemmas 3.5 and 3.6 remain valid.

In the cases considered in Lemma 3.5, the ratios \(\eta_i / \eta_1 \) are constant, which follows from (3-5d) and (3-6c). In particular, taking \(f = \ln|\eta_1| \) we obtain that \(\eta_i' \) is a constant, so all the \(\eta_i' \) are constant; \(m_i' = 0 \) by (3-5d), so \((\nabla'_Y \rho') U - (\nabla'_U \rho') Y = 0 \)
by (3-6a). In the case \(n = 8 \) and \(\nu = 7 \) (Lemma 3.6), take \(f = \ln|\eta_1 - \eta_2| \). Then by (3-19d), we have \(\nabla f = -4m \) and \(\nabla' \eta'_i = -(1/2)e^{-2f}t \), which imply \(m' = -(1/4)\nabla' \ln|\eta'_1 - \eta'_2| = 0 \) and \(t' = e^{-2f} \), again by (3-19d) for the metric \(\langle \cdot, \cdot \rangle' \). Then by (3-19c), we have \((\nabla' \rho')U - (\nabla' \rho')X = (3/4)(X \wedge U)t' \). By Remark 3.4, we can replace \(\rho' \) by \(\tilde{\rho} = \rho' + (3/2)(\eta'_1 + C) \) id and \(\eta'_i \) by \(\tilde{\eta}_i = \eta'_i - (\eta'_1 + C) \) without changing the curvature tensor \(R' \) given by (3-1). (Here \(C \) is a constant chosen in such a way that \(\tilde{\eta}_i \neq 0 \) anywhere on \(\mathcal{U} \).) Then by (3-19c) and (3-19d), \((\nabla' \tilde{\rho})U - (\nabla' \tilde{\rho})X = 0 \) for the metric \(\langle \cdot, \cdot \rangle' \).

Dropping the primes and the tildes, we obtain that, up to a conformal smooth change of the metric on \(\mathcal{U} \), the curvature tensor has the form (3-1), with \(\rho \) satisfying the identity

\[(\nabla_Y \rho)X = (\nabla_X \rho)Y \quad \text{for all } X, Y,\]

that is, with \(\rho \) being a symmetric Codazzi tensor.

Then by [Derdzinski and Shen 1983, Theorem 1], at every point of \(\mathcal{U} \) for any three eigenspaces \(E_\beta, E_\gamma, E_\alpha \) of \(\rho \) with \(\alpha \neq \beta, \gamma \), the curvature tensor satisfies \(R(X, Y)Z = 0 \) for all \(X \in E_\beta, Y \in E_\gamma \) and \(Z \in E_\alpha \). It then follows from (3-1) that

\[(3-27) \sum_{i=1}^\nu \eta_i (2\langle J_i X, Y \rangle J_i Z + \langle J_i Z, Y \rangle J_i X - \langle J_i Z, X \rangle J_i Y) = 0 \]

for all \(X \in E_\beta, Y \in E_\gamma, Z \in E_\alpha \), with \(\alpha \neq \beta, \gamma \).

Suppose \(\rho \) is not a multiple of the identity. Let \(E_1, \ldots, E_p \) for \(p \geq 2 \) be the eigenspaces of \(\rho \). If \(p > 2 \), write \(E'_1 = E_1 \) and \(E'_2 = E_2 \oplus \cdots \oplus E_p \). Then by linearity, (3-27) holds for any \(X, Y \in E'_1 \) and \(Z \in E'_\beta \) such that \(\{\alpha, \beta\} = \{1, 2\} \).

Hence to prove the lemma it suffices to show that (3-27) leads to a contradiction in the assumption \(p = 2 \). For the rest of the proof, suppose that \(p = 2 \). Let \(d_\alpha = \dim E_\alpha \) with \(d_1 \leq d_2 \).

Choose \(Z \in E_\alpha, X, Y \in E_\beta, \alpha \neq \beta \), and take the inner product of (3-27) with \(X \). We get \(\sum_{i=1}^\nu \eta_i \langle J_i X, Y \rangle \langle J_i X, Z \rangle = 0 \). It follows that for every \(X \in E_\alpha \), the subspaces \(E_1 \) and \(E_2 \) are invariant subspaces of the symmetric operator \(\hat{R}_X \in \text{End}(\mathbb{R}^n) \) defined by \(\hat{R}_X Y = \sum_{i=1}^\nu \eta_i \langle J_i X, Y \rangle J_i X \). So \(\hat{R}_X \) commutes with the orthogonal projections \(\pi_\beta : \mathbb{R}^n \to E_\beta \) for \(\beta = 1, 2 \). Then for all \(\alpha, \beta = 1, 2 \) (\(\alpha \) and \(\beta \) can be equal), all \(X \in E_\alpha \) and all \(Y \in \mathbb{R}^n \), we have

\[\sum_{i=1}^\nu \eta_i \langle J_i X, \pi_\beta Y \rangle J_i X = \sum_{i=1}^\nu \eta_i \langle J_i X, Y \rangle \pi_\beta J_i X. \]

Taking \(Y = J_i X \) we get that \(\pi_\beta J_i X \subset \mathcal{J}X \); that is, \(\pi_\beta \mathcal{J}X \subset \mathcal{J}X \) for all \(X \in E_\alpha \) with \(\alpha, \beta = 1, 2 \). Since \(\pi_1 + \pi_2 = \text{id} \), we obtain \(\mathcal{J}X \subset \pi_1 \mathcal{J}X \oplus \pi_2 \mathcal{J}X \subset \mathcal{J}X \); hence \(\mathcal{J}X = \pi_1 \mathcal{J}X \oplus \pi_2 \mathcal{J}X \). Since every function \(f_{\alpha\beta} : E_\alpha \to \mathbb{Z}, X \mapsto \dim \pi_\beta \mathcal{J}X \) with \(\alpha, \beta = 1, 2 \) is lower semicontinuous, and \(f_{\alpha1}(X) + f_{\alpha2}(X) = \nu \) for all nonzero
\(X \in E_a \), there exist constants \(c_{\alpha \beta} \) with \(c_{\alpha 1} + c_{\alpha 2} = \nu \) such that \(\dim \pi_{\beta} \mathcal{J} X = c_{\alpha \beta} \) for all \(\alpha, \beta = 1, 2 \) and all nonzero \(X \in E_a \).

Let \(X, Y \in E_a, Z \in E_\beta \) and \(\beta \neq \alpha \). Taking the inner product of (3-27) with \(J_j Z \) for \(j = 1, \ldots, \nu \), we get

\[
2 \eta_j \langle J_j X, Y \rangle \|Z\|^2 = \sum_{i \neq j} \eta_i \left(\langle J_i Z, X \rangle \langle J_j Y \rangle - \langle J_i Z, Y \rangle \langle J_j X \rangle \right).
\]

Since \(\langle J_i Z, X \rangle = \langle J_i \pi_\beta Z, X \rangle = -\langle Z, \pi_\beta J_i X \rangle \) (and similarly for \(\langle J_i Z, Y \rangle \)), the right side, viewed as a quadratic form of \(Z \in E_\beta \), vanishes for all \(Z \) in the intersection of \(\pi_\beta \mathcal{J} X \perp \) and \((\pi_\beta \mathcal{J} Y) \perp \), that is, on a subspace of dimension at least \(d_\beta - 2c_{\alpha \beta} \). So for \(\alpha \neq \beta \), either \(2c_{\alpha \beta} \geq d_\beta \), or \(\mathcal{J} E_a \perp E_\beta \), that is, \(\pi_\beta \mathcal{J} X = \mathcal{J} X \) for all \(X \in E_a \), so \(c_{\alpha \beta} = \nu \).

Similarly, if \(Z \in E_a, X, Y \in E_\beta \) and \(\beta \neq \alpha \), the inner product of (3-27) with \(J_j X \) for \(j = 1, \ldots, \nu \) gives

\[
\eta_j \langle J_j Z, Y \rangle \|X\|^2 = \sum_{i=1}^\nu \eta_i \left(-2 \langle J_i X, Y \rangle \langle J_j Z \rangle + \langle J_i Z, X \rangle \langle J_j Y \rangle \right).
\]

Because

\[
\langle J_i X, Y \rangle = -\langle X, \pi_\beta J_i Y \rangle \quad \text{and} \quad \langle J_i Z, X \rangle = -\langle X, \pi_\beta J_i Z \rangle,
\]

the right side, viewed as a quadratic form of \(X \in E_\beta \), vanishes on the intersection of \((\pi_\beta \mathcal{J} Y) \perp \) and \((\pi_\beta \mathcal{J} X) \perp \), whose dimension is at least \(d_\beta - c_{\alpha \beta} - c_{\beta \beta} \). We obtain that for \(\alpha \neq \beta \), either \(c_{\alpha \beta} + c_{\beta \beta} \geq d_\beta \), or \(\mathcal{J} E_a \perp E_\beta \), that is, \(\pi_\beta \mathcal{J} Z = 0 \) for all \(Z \in E_a \), so \(c_{\alpha \beta} = c_{\beta \beta} = 0 \). Since \(c_{\alpha \beta} = 0 \) contradicts both \(2c_{\alpha \beta} \geq d_\beta \) and \(c_{\alpha \beta} = \nu \) (since \(\nu > 0 \)), we must have \(c_{\alpha \beta} + c_{\beta \beta} \geq d_\beta \). Then \(2\nu = \sum_{i=1}^\nu c_{\alpha \beta} \geq d_1 + d_2 = n \).

This proves the lemma in all the cases when \(2\nu < n \), that is, in all the cases except for \(n = 8 \) and \(\nu \geq 4 \) (which follows from Lemma 2.4).

Consider the case \(n = 8 \). We identify \(\mathbb{R}^8 \) with \(\mathcal{O} \) and assume that the \(J_i \) act as in (2-5). Let \(D : \mathcal{O} \to \mathcal{O} \) be the symmetric operator defined by \(D1 = 0 \) and \(De_i = \eta_i e_i \). By (2-4), condition (3-27) still holds if we replace \(D \) by \(D + c \operatorname{Im} \), where \(\operatorname{Im} \) is the operator of taking the imaginary part of an octonion. So we can assume that the eigenvalue of the maximal multiplicity of \(D|_{\mathcal{O}'} \) is zero (one of them, if there are more than one). Then in (3-27), \(\nu = \operatorname{rk} D \). By construction, we have \(\nu \leq 6 \), and we only need to consider the cases when \(\nu \geq 4 \), as shown above.

By (2-5),

\[
\langle J_i X, Y \rangle J_i Z = \langle X e_i, Y \rangle Z e_i = \langle e_i, X^* Y \rangle Z e_i,
\]

so

\[
\sum_{i=1}^\nu \eta_i \langle J_i X, Y \rangle J_i Z = \sum_{i=1}^\nu \eta_i \langle e_i, X^* Y \rangle Z e_i = \sum_{i=1}^7 \langle D e_i, X^* Y \rangle Z e_i = ZD(X^* Y),
\]
since D is symmetric and $D1 = 0$. Then (3-27) can be rewritten as

\[(3-28) \quad 2ZD(X^*Y) + XD(Z^*Y) - YD(Z^*X) = 0\]

for all $X, Y \in E_\beta, Z \in E_\alpha$ an $\alpha \neq \beta$.

Taking the inner product of (3-28) with X (and using the fact that D is symmetric, $D1 = 0$ and $Y^*X = 2(X, Y)1 - X^*Y$), we obtain $(D(X^*Y), X^*Z) = 0$. It follows that for every $X \in E_\beta$, the subspaces E_1 and E_2 are invariant subspaces of the symmetric operator $L_XDL_X^2$, where $L_X : \mathcal{O} \to \mathcal{O}$ is the left multiplication by X (note that $L_X^2 = L_X^4$ and that $L_XDL_X^2$ coincides with the operator \hat{R}_X introduced above). So $L_XDL_X^2$ commutes with both orthogonal projections $\pi_a : \mathbb{R}^8 \to E_\alpha$ for $\alpha = 1, 2$. It follows that for every α, β (not necessarily distinct) and every $X \in E_\beta$, the operator D commutes with $L_X^j \pi_a L_X = \|X\|^2 \pi_{X^a E_\alpha}$, that is,

\[(3-29) \quad X^*E_\alpha \text{ is an invariant subspace of } D \text{ for all } \alpha, \beta, \text{ and all } X \in E_\beta.\]

Consider all the possible cases for the dimensions d_a of the subspaces E_a.

Let $(d_1, d_2) = (1, 7)$, and let u be a nonzero vector in E_1. Then by (3-29), every line spanned by $X^u u$ with $X \perp u$ (that is, every line in \mathcal{O}') is an invariant subspace of D. It follows that $D|_{\mathcal{O}'}$ is a multiple of the identity, which is a contradiction since $\text{rk } D = v$ for $4 \leq v \leq 6$.

Let $(d_1, d_2) = (2, 6)$, and let $E_1 = \text{Span}(u, ue)$ for $e \in \mathcal{O}'$, and let $\|e\| = \|u\| = 1$. Then $E_2 = uL$, where $L = \text{Span}(1, e^\perp)$. Let U be any element of L. By (3-29) with $E_a = E_1$ and $X = uU^* = -uU \in E_2$, every two-plane $\text{Span}(U, (Uu^*)(ue))$ is an invariant subspace of D. Note that $(Uu^*)(ue) \in L$, and that the operator J defined by $JU = (Uu^*)(ue)$ is an almost Hermitian structure on L. Then L is an invariant subspace of D since it is the sum of invariant subspaces $\text{Span}(U, JU)$ and $JD|_{L}U \in \text{Span}(U, JU)$ (since $\text{Span}(U, JU)$ is both J- and $D|_{L}$-invariant). From Lemma 2.7(1), it follows that the operator $JD|_{L}$ is a linear combination of $\text{id}|_{L}$ and J. Since D is symmetric and its eigenvalue of maximal multiplicity is zero, we have $D|_{L} = 0$. Then $v = \text{rk } D \leq 1$, which is a contradiction.

For the cases $(d_1, d_2) = (3, 5), (4, 4)$, we use the notion of Cayley plane. A four-dimensional subspace $\mathcal{C} \subset \mathcal{O}$ is called a Cayley plane if $X(Y^*Z) \in \mathcal{C}$ for orthonormal octonions $X, Y, Z \in \mathcal{C}$. This definition coincides with [Harvey and Lawson 1982, Definition IV.1.23], if we disregard the orientation. We will need the following properties of the Cayley plane (they can be found in [ibid., Section IV] or proved directly):

(i) A Cayley plane is well defined; moreover, if $X(Y^*Z) \in \mathcal{C}$ for some triple X, Y, Z of orthonormal octonions in \mathcal{C}, then the same is true for any (possibly nonorthonormal) triple $X, Y, Z \in \mathcal{C}$.
(ii) If \mathcal{C} is a Cayley plane, then the subspace $X^*\mathcal{C}$ is the same for all nonzero
$X \in \mathcal{C}$; we call this subspace $\mathcal{C}^*\mathcal{C}$.

(iii) If \mathcal{C} is a Cayley plane, then \mathcal{C}^\perp is also a Cayley plane and $\mathcal{C}^{\perp *\mathcal{C}} = \mathcal{C}^*\mathcal{C}$.
Moreover, for all nonzero $X \in \mathcal{C}^\perp$, the subspace $X^*\mathcal{C}$ is the same and is equal
to $(\mathcal{C}^*\mathcal{C})^\perp$.

(iv) For every nonzero $e \in \mathcal{O}$ and every pair of orthonormal imaginary octonions
u, v, the subspace $\mathcal{C} = \operatorname{Span}(e, eu, ev, (eu)v)$ is a Cayley plane; every Cayley
plane can be obtained in this way.

Let $(d_1, d_2) = (3, 5)$. Then E_1 is contained in a Cayley plane \mathcal{C} (spanned by
E_1 and $X(Y^*Z)$ for some orthonormal vectors $X, Y, Z \in E_1$), so $\mathcal{C}^\perp \subset E_2$. Let U
be a unit vector in the orthogonal complement to \mathcal{C}^\perp in E_2. Then $X^*E_2 = \mathcal{C}^*\mathcal{C} \oplus
\mathbb{R}(X^*U)$ for every nonzero $X \in \mathcal{C}^\perp$ by properties (ii) and (iii). Since for any two
invariant subspaces of a symmetric operator, their intersection and the orthogonal
complement to it in each of them are also invariant, it follows from (3-29) that both
$\mathcal{C}^*\mathcal{C}$ and every line $\mathbb{R}(X^*U)$ with $X \in \mathcal{C}^\perp$ are invariant subspaces of D. Then D
restricts to a multiple of the identity on the four-dimensional space $(\mathcal{C}^\perp)^*U$. Since
the eigenvalue of maximal multiplicity of D is zero, $\mathbb{R}1 \oplus (\mathcal{C}^\perp)^*U \subset \ker D$. Then
$v = \operatorname{rk} D \leq 3$, which is again a contradiction.

Let now $d_1 = d_2 = 4$. First suppose E_1 is not a Cayley plane. Let X_1 and X_2
be orthonormal vectors in E_1. Then $X_1^*E_1 \cap X_2^*E_1$ contains $\operatorname{Span}(1, X_1^*X_2)$, since
$X_2^*X_1 = -X_1^*X_2$. Also, for any unit vector $Y \in X_1^*E_1 \cap X_2^*E_1$ orthogonal to
$\operatorname{Span}(1, X_1^*X_2)$, we have $Y = X_1^*X_2 = X_2^*X_4$ for some $X_3, X_4 \in E_1$ such that
$X_3, X_4 \perp X_1, X_2$, which implies $X_2(X_1^*X_2) = X_4 \in E_1$, so E_1 is a Cayley plane
by property (i). It follows that $X_1^*E_1 \cap X_2^*E_1 = \operatorname{Span}(1, X_1^*X_2)$. Since by (3-29)
both subspaces on the left side are invariant under D and since $\mathbb{R}1$ is an invariant
subspace of D, we obtain that every line $\mathbb{R}(X_1^*X_2)$ for $X_1, X_2 \in E_1$ is an invariant
subspace of D (that is, $X_1^*X_2$ is an eigenvector of D). Then the space
$L = \operatorname{Span}(E_1^*E_1)$ lies in an eigenspace of D, so $D|_L$ is a multiple of $\text{id}|_L$. If
$X_1, X_2, X_3 \in E_1$ are orthonormal, then $X_2^*X_3 \notin X_1^*E_1$, since E_1 is not a Cayley
plane. So $\dim L \geq 5$. Since the eigenvalue of maximal multiplicity of D is zero,
v = \operatorname{rk} D \leq 3$, a contradiction.

Let again $d_1 = d_2 = 4$, and let E_1 be a Cayley plane. Then $E_2 = (E_1)^\perp$ is also a
Cayley plane by property (iii). Also, by the same property, $E_1^*E_1 = E_2^*E_2 = V_1$ and
$E_1^*E_2 = E_1^*E_2 = V_2$, where V_1 and V_2 are mutually orthogonal four-dimensional
subspaces of \mathcal{O}, and $1 \in V_1$. From (3-29), both V_1 and V_2 are invariant under D. Let
$X, Y \in E_1$ and $Z, W \in E_2$, with $X, Z \neq 0$, and let $u = X^{-1}Y$ and $v = Z^{-1}W$. Since
$X^{-1} = \|X\|^{-2}X^*$, we have $L_{X^{-1}E_1} = V_1$ by property (ii). Similarly, $L_{Z^{-1}E_2} = V_1$.
Taking the inner product of (3-28) with W we obtain

$$2\|Z\|^2\|X\|^2(Du, v) - (D(Z^*(Xu)), Z^*(Xv)) = -(D(Z^*X), Z^*((Xu)v))$$
for all \(X \in E_1, \ Z \in E_2 \) and \(u, v \in V_1 \). The left side is symmetric in \(u, v \). Since \((Xu)v = -(Xv)u \) for any \(u \perp v \) with \(u, v \perp 1 \), we obtain \(\langle D(Z^*X), Z^*(Xu)v \rangle = 0 \) for all \(u, v \in V_1 \) with \(u \perp v \) and \(u, v \perp 1 \), and all \(X \in E_1 \) and \(Z \in E_2 \). Given any nonzero orthogonal \(X, X' \in E_1 \), we can find \(u, v \in V_1 \) with \(u \perp v \) and \(u, v \perp 1 \) such that \(X' = (Xu)v \). To see this, note that \(Xu \in E_1 \) for every \(u \in V_1 = E_1^\perp E_1 \) by property (i). Since \(L_X \) is nonsingular, \(L_X(V_1 \cap 1^\perp) \) is a three-dimensional subspace of \(E_1 \). The same is true with \(X \) replaced by \(X' \). Therefore \(Xu = X'v \) for some \(u, v \in V_1 \cap 1^\perp \); hence \(X' = -\|v\|^{-2}(Xu)v \). Since \(X' \perp X \), we get \(\langle X, (Xu)v \rangle = 0 \), so \(u \perp v \). Thus \(\langle D(Z^*X), Z^*X' \rangle = 0 \) for any \(Z \in E_2 \) and any orthogonal \(X, X' \in E_1 \). Since \(Z^*E_1 = V_2 \) for any nonzero \(Z \in E_2 \) by properties (ii) and (ii), and since the operator \(L_{Z^*} \) is orthogonal when \(\|Z\| = 1 \), we get \(\langle Dv_1, v_2 \rangle = 0 \) for any two orthogonal vectors \(v_1, v_2 \in V_2 \). It follows that the restriction of \(D \) to its invariant subspace \(V_2 \) is a multiple of the identity. Since \(V_2 \subset \mathcal{O}' \) and the eigenvalue of \(D|_{\mathcal{O}'} \) of maximal multiplicity is zero, we obtain \(\mathbb{R}1 \oplus V_2 \subset \text{Ker} \ D \). Then \(\nu = \text{rk} \ D \leq 3 \), which is a contradiction. \(\square \)

Remark 3.8. It follows from the proof of Lemma 3.7 that the algebraic statement “a symmetric operator satisfying (3-27) is a multiple of the identity” is valid when \(2\nu < n \). In particular, when \(n = 16 \), it remains true if we relax the restrictions \(\nu \leq 4 \) of Theorem 3.1 to \(\nu \neq 8 \) (as for \(n = 16 \) and \(\nu \leq 8 \) by (2-3)).

Lemma 3.7 implies Theorem 3.1 at the generic points. Indeed, by Lemma 3.7, every \(x \in M' \) has a neighborhood \(\mathcal{U} \) that is either conformally flat or is conformally equivalent to a Riemannian manifold whose curvature tensor has the form (3-1), with \(\rho \) being a multiple of the identity, that is, whose curvature tensor has a Clifford structure. It follows from [N 2003, Theorem 1.2] and [N 2004, Proposition 2] that \(\mathcal{U} \) is conformally equivalent to an open subset of one of five model spaces: the rank-one symmetric spaces \(\mathbb{C} P^{n/2}, \mathbb{C} H^{n/2}, \mathbb{H} P^{n/4} \) or \(\mathbb{H} H^{n/4} \), or Euclidean space.

To prove Theorem 3.1 in full, we show that the same is true for any \(x \in M^n \), and second that the model space, to a domain of which \(\mathcal{U} \) is conformally equivalent, is the same for all \(x \in M^n \).

We normalize the standard metric \(\tilde{g} \) on each of the spaces \(\mathbb{C} P^{n/2}, \mathbb{C} H^{n/2}, \mathbb{H} P^{n/4} \) and \(\mathbb{H} H^{n/4} \) so that the sectional curvature \(K_x \) satisfies \(|K_x| \in [1, 4] \). Then the curvature tensor of each has a Clifford structure \(\text{Cliff}(\nu; J_1, \ldots, J_{\nu}; \varepsilon, \varepsilon, \ldots, \varepsilon) \). Here \(\nu = 1, 3 \) and \(\varepsilon = \pm 1 \). The \(J_i \) are smooth anticommuting almost Hermitian structures with \(J_1 J_2 = \pm J_3 \) when \(\nu = 3 \), and satisfy

\[
\tilde{\nabla}_Z J_i = \sum_{j=1}^{m} \omega_j^i(Z) J_j,
\]

where \(\omega_j^i \) are smooth 1-forms with \(\omega_j^i + \omega_j^i = 0 \) and \(\tilde{\nabla} \) is the Levi-Civita connection for \(\tilde{g} \). Denote the corresponding spaces by \(M_{\nu, \varepsilon} \) and their Weyl tensors by \(W_{\nu, \varepsilon} \).
so that
\[M_{1,1} = (\mathbb{C}P^{n/2}, \tilde{g}), \quad M_{1,-1} = (\mathbb{C}H^{n/2}, \tilde{g}), \]
\[M_{3,1} = (\mathbb{H}P^{n/4}, \tilde{g}), \quad M_{3,-1} = (\mathbb{H}H^{n/4}, \tilde{g}). \]

We start with a technical lemma:

Lemma 3.9. Let \((N^n, \langle \cdot, \cdot \rangle)\) be a smooth Riemannian space locally conformally equivalent to one of the \(M_{\nu, \varepsilon}\), so that \(\tilde{g} = f(\cdot, \cdot)\) for a positive smooth function \(f = e^{2\phi} : N^n \to \mathbb{R}\). Then the curvature tensor \(R\) and the Weyl tensor \(W\) of \((N^n, \langle \cdot, \cdot \rangle)\) satisfy
\[
R(X, Y) = (X \wedge KY + KX \wedge Y) + \varepsilon f (X \wedge Y + T(X, Y)), \quad \text{where}
T(X, Y) = \sum_{i=1}^{\nu} (J_i X \wedge J_i Y + 2 \langle J_i X, Y \rangle J_i),
K = H(\phi) - \nabla \phi \otimes \nabla \phi + \frac{\|\nabla \phi\|^2}{2} \text{id},
\]
\[
W(X, Y) = W_{\nu, \varepsilon}(X, Y) = \varepsilon f \left(-\frac{3\nu}{n-1} X \wedge Y + T(X, Y)\right),
\]
\[
\|W\|^2 = C_{\nu n} f^2, \quad \text{where } C_{\nu n} = 6\nu n(n+2)(n-1)(n-1)^{-1},
\]
\[
(\nabla Z W)(X, Y) = \varepsilon Z f \left(-\frac{3\nu}{n-1} X \wedge Y + T(X, Y)\right)
+ \frac{1}{2} \varepsilon \left(\left[T(X, Y), \nabla f \wedge Z\right] + T\left(\left(\nabla f \wedge Z\right)X, Y\right)\right)
+ T(X, (\nabla f \wedge Z)Y),
\]

where \(X \wedge Y\) is the linear operator defined by \((X \wedge Y)Z = \langle X, Z \rangle Y - \langle Y, Z \rangle X\), \(H(\phi)\) is the symmetric operator associated to the Hessian of \(\phi\), and both \(\nabla\) and the norm are computed with respect to \(\langle \cdot, \cdot \rangle\).

Proof. The curvature tensor of \(M_{\nu, \varepsilon}\) has the form
\[
\tilde{R}(X, Y) = \varepsilon (X \tilde{\wedge} Y + \sum_{i=1}^{\nu} (J_i X \tilde{\wedge} J_i Y + 2\tilde{g}(J_i X, Y) J_i)),
\]
where \((X \tilde{\wedge} Y)Z = \tilde{g}(X, Z) Y - \tilde{g}(Y, Z) X\). Under the conformal change of metric, the curvature tensor transforms as \(\tilde{R}(X, Y) = R(X, Y) - (X \wedge KY + KX \wedge Y)\). Since \(\tilde{g}(X, Y) = f(X, Y)\) and \(X \tilde{\wedge} Y = f(X \wedge Y)\) and because the \(J_i\) remain anti-commuting almost Hermitian structures for \(\langle \cdot, \cdot \rangle\), Equation (3-30a) follows.

The fact that the Weyl tensor has the form (3-30b) follows from the definition of \(W\); the norm of \(W\) can be computed directly using that the \(J_i\) are orthogonal and that \(J_1 J_2 = \pm J_3\) when \(\nu = 3\).

From
\[
\tilde{\nabla}_Z J_i = \sum_{j=1}^{\nu} \omega_j^i (Z) J_j \quad \text{and} \quad \tilde{\nabla}_Z X = \nabla_Z X + Z \phi X + X \phi Z - \langle X, Z \rangle \nabla \phi,
\]
where \(\tilde{\nabla}\) is the Levi-Civita connection for \(\tilde{g}\), we get
\[
\nabla_Z J_i = \sum_{j=1}^{\nu} \omega_j^i (Z) J_j + [J_i, \nabla \phi \wedge Z]
\]
(where we used the fact that \([J_1, X \wedge Y] = J_1 X \wedge Y + X \wedge J_1 Y\). Then

\[
(\nabla_Z T)(X, Y) = (T(X, Y), \nabla\phi \wedge Z) + T((\nabla\phi \wedge Z)X, Y) + T(X, (\nabla\phi \wedge Z)Y),
\]

which, together with (3-30d), proves (3-30d).

For every point \(x \in M'\), there exists a neighborhood \(U\) of \(x\) and a positive smooth function \(f : U \to \mathbb{R}\) such that the Riemannian space \((U(x), f(\cdot, \cdot))\) is isometric to an open subset of one of the five model spaces \((M_{v,e}, \mathbb{R}^n)\), so at every point \(x \in M'\), the Weyl tensor \(W\) of \(M^n\) either vanishes or has the form given in (3-30b). The Jacobi operators associated to the different Weyl tensors \(W_{v,e}\) in (3-30b) differ by their multiplicities and the signs of their eigenvalues, so every point \(x \in M'\) has a neighborhood conformally equivalent to a domain of exactly one of the model spaces. Moreover, the function \(f > 0\) is well defined at all the points where \(W \neq 0\), since \(\|W\|^2 = C_{vn} f^2\) by (3-30c).

By continuity, the Weyl tensor \(W\) of \(M^n\) either has the form \(W_{v,e}\) or vanishes at every point \(x \in M^n\) (since \(M'\) is open and dense in \(M^n\) — see Lemma 3.2). Moreover, every point \(x \in M^n\) at which the Weyl tensor has the form \(W_{v,e}\) has a neighborhood in which the Weyl tensor has the same form. Hence \(M^n = M_0 \bigcup \bigcup_a M_a\), where \(M_0 = \{x : W(x) = 0\}\) is closed, and every \(M_a\) is a nonempty open connected subset with \(\partial M_a \subset M_0\) such that the Weyl tensor has the same form as \(W_{v,e} = W_{v(a),e(a)}\) at every point \(x \in M_a\). In particular, since \(M_a \subset M'\), each \(M_a\) is locally conformal to one of the model spaces \(M_{v,e}\).

If \(M = M_0\) or if \(M_0 = \emptyset\), the theorem is proved. Otherwise, suppose that \(M_0 \neq \emptyset\) and that there exists at least one component \(M_a\). Let \(y \in \partial M_a \subset M_0\) and let \(B_\delta(y)\) be a small geodesic ball of \(M\) centered at \(y\) that is strictly geodesically convex (any two points from \(B(y)\) can be connected by a unique geodesic segment lying in \(B_\delta(y)\), and that segment realizes the distance between them). Let \(x \in B_{\delta/3}(y) \cap M_a\) and let \(r = \text{dist}(x, M_0)\). Then the geodesic ball \(B = B_r(x)\) lies in \(M_a\) and is strictly convex. Moreover, \(\partial B\) contains a point \(x_0 \in M_0\). Replacing \(x\) by the midpoint of the segment \([xx_0]\) and \(r\) by \(r/2\), if necessary, we can assume that all the points of \(\partial B\), except for \(x_0\), lie in \(M_a\).

The function \(f\) is positive and smooth on \(\overline{B} \setminus \{x_0\}\) (that is, on an open subset containing \(\overline{B} \setminus \{x_0\}\), but not containing \(x_0\)). We are interested in the behavior of \(f(x)\) when \(x \in B\) approaches \(x_0\).

Lemma 3.10. When \(x \to x_0\) while staying in \(B\), both \(f\) and \(\nabla f\) have a finite limit. Moreover, \(\lim_{x \to x_0, x \in B} f(x) = 0\).

Proof. The fact that \(\lim_{x \to x_0, x \in B} f(x) = 0\) follows from (3-30c) and the fact that \(W_{x_0} = 0\) (since \(x_0 \in M_0\)).
Since the Riemannian space \((B, f(\cdot, \cdot))\) is locally isometric to a rank-one symmetric space \(M_{v,\varepsilon}\) and is also simply connected, there exists a smooth isometric immersion \(i : (B, f(\cdot, \cdot)) \to M_{v,\varepsilon}\). Since \(f\) is smooth on \(\overline{B} \setminus \{x_0\}\) and \(\lim_{x \to x_0, x \in B} f(x) = 0\), the range of \(i\) is a bounded domain in \(M_{v,\varepsilon}\). Moreover, since \(\lim_{x \to x_0, x \in B} f(x) = 0\), every sequence of points in \(B\) converging to \(x_0\) in the metric \((\cdot, \cdot)\) is a Cauchy sequence for the metric \(f(\cdot, \cdot)\). It follows that there exists a limit \(\lim_{x \to x_0, x \in B} i(x) \in M_{v,\varepsilon}\). Defining for every \(x \in B\) the point \(\mathcal{J}_x = \text{Span}(J_1, \ldots, J_n)\) in the Grassmanian \(G(v, \wedge^2 T_x M^n)\), we find that there exists a limit \(\lim_{x \to x_0, x \in B} \mathcal{J}_x =: \mathcal{J}_{x_0} \in G(v, \wedge^2 T_{x_0} M^n)\).

In particular, if \(Z\) is a continuous vector field on \(\overline{B}\), then there exists a unit continuous vector field \(Y\) on \(\overline{B}\) such that \(Y \perp Z, \mathcal{J} Z\) on \(B\). For such two vector fields, the function

\[
\theta(Y, Z) = \langle \sum_{j=1}^n (\nabla E_j) W(E_j, Y) Y, Z \rangle
\]

(where \(E_j\) is an orthonormal frame on \(\overline{B}\)) is well defined and continuous on \(\overline{B}\). Using (3-30d), we obtain by a direct computation that at the points of \(B\),

\[
\theta(Y, Z) = \frac{e(n-3)}{2(n-1)} (3v \nabla f \wedge Y - (n-1) T(\nabla f, Y)) Y, Z = \frac{-3e v (n-3)}{2(n-1)} (\nabla f, Z)
\]

(where we used that \(\|Y\| = 1\) and \(Y \perp Z, \mathcal{J} Z\)). Since \(\theta(Y, Z)\) is continuous on \(\overline{B}\), there exists a limit \(\lim_{x \to x_0, x \in B} \nabla f x. Since \(Z\) is an arbitrary continuous vector field on \(\overline{B}\), \(\nabla f\) has a finite limit when \(x \to x_0\) while staying in \(B\). \(\square\)

Since \(\lim_{x \to x_0, x \in B} f(x) = 0\) and the \(J_i\) are orthogonal, the second term on the right side of (3-30a) tends to 0 when \(x \to x_0\) in \(B\). Therefore the (3,1) tensor field defined by \((X, Y) \to (X \wedge KY + K X \wedge Y)\) has a finite limit (namely \(R|_{x_0}\)) when \(x \to x_0\) in \(B\). It follows that the symmetric operator \(K\) has a finite limit at \(x_0\).

Computing the trace of \(K\) and using the fact that \(\phi = \frac{1}{2} \ln f\), we get

\[
(3-31) \quad \Delta u = F u \text{ on } B, \quad \text{where } u = f^{(n-2)/4} \text{ and } F = \frac{1}{2} (n-2) \text{Tr } K.
\]

Both functions \(F\) and \(u\) are smooth on \(\overline{B} \setminus \{x_0\}\) and have a finite limit at \(x_0\). Moreover, \(\lim_{x \to x_0, x \in B} u(x) = 0\) by Lemma 3.10 and \(u(x) > 0\) for \(x \in \overline{B} \setminus \{x_0\}\). The domain \(B\) is a small geodesic ball, so it satisfies the inner sphere condition (the radii of curvature of the sphere \(\partial B\) are uniformly bounded). By the boundary point theorem [Fraenkel 2000, Section 2.3], the inner directional derivative of \(u\) at \(x_0\) (which exists by Lemma 3.10 if we define \(u(x_0) = 0\) by continuity) is positive.

Since \(\nabla u = (1/4)(n-2) f^{(n-6)/4} \nabla f\) in \(B\), we arrive at a contradiction with Lemma 3.10 in all cases except for \(n = 6\). To finish the proof in that case, we show that the limit \(\lim_{x \to x_0, x \in B} \nabla f(x)\), which exists by Lemma 3.10, is zero. When \(n = 6\), we have \(v = 1\) by (2-3), so \(T(X, Y) = J X \wedge J Y + 2(J X, Y) J\), where
$J = J(x)$ is smooth on $B \setminus \{x_0\}$ and has a limit when $x \to x_0$ while in B (see the proof of Lemma 3.10). Using the covariant derivative of T computed in Lemma 3.9 and (3-30d), we obtain that on B,

$$(\nabla_U \nabla_Z W)(X, Y)$$

$$= \varepsilon (H(f) U, Z)(-\frac{3}{2} X \wedge Y + T(X, Y)) + \frac{1}{2} \varepsilon (T(X, Y), H(f) U \wedge Z) + T((H(f) U \wedge Z), Y) + T(\nabla f \wedge U) + T(\nabla f \wedge U)$$

$$+ \frac{1}{2} \varepsilon f^{-1} Z f (\nabla f \wedge Y) + T((\nabla f \wedge U) Y) + T(\nabla f \wedge U)$$

$$+ T(X, (\nabla f \wedge U) Y), (\nabla f \wedge Z)$$

$$+ \frac{1}{4} \varepsilon f^{-1} (T((\nabla f \wedge Z) X, Y), (\nabla f \wedge U) Y) + T((\nabla f \wedge U)((\nabla f \wedge Z) Y)$$

$$+ T(X, (\nabla f \wedge U)((\nabla f \wedge Z) Y), Y),$$

where $H(f)$ is the symmetric operator associated to the Hessian of f. Taking $U = Z = E_j$, where (E_j) is an orthonormal basis, and summing up by j we find after some computation

$$\sum_{j=1}^{6} (\nabla_{E_j} \nabla_{E_j} W)(X, Y)$$

$$= \varepsilon \Delta f (-\frac{3}{2} X \wedge Y + T(X, Y)) - \varepsilon f^{-1} \|\nabla f\|^2 T(X, Y)$$

$$+ \varepsilon f^{-1} (T(X, Y) \nabla f \wedge \nabla f + T((\nabla f \wedge X) \nabla f, \nabla f)$$

$$+ \frac{1}{2} \varepsilon f^{-1} (\nabla f \wedge (X \wedge Y) \nabla f + J \nabla f \wedge (X \wedge Y) J \nabla f).$$

Since both ∇f and J are smooth on $B \setminus \{x_0\}$ and have limits when $x \to x_0$ while in B, there exist unit vector fields X and Y that are continuous on B and satisfy $\delta X, \delta Y \perp \nabla f$ and $\delta X \perp \delta Y$. For such X and Y,

$$\sum_{j=1}^{6} (\nabla_{E_j} \nabla_{E_j} W)(X, Y)$$

$$= \varepsilon \Delta f (-\frac{3}{2} X \wedge Y + J X \wedge J Y) - \varepsilon f^{-1} \|\nabla f\|^2 J X \wedge J Y.$$

Since the left side is continuous on B and $\lim_{x \to x_0, x \in B} \Delta f = 0$ by (3-31) and Lemma 3.10, we obtain that the field $f^{-1} \|\nabla f\|^2 J X \wedge J Y$ of skew-symmetric operators has a limit at x_0. Taking the trace of its square, we find that there exists a limit $\lim_{x \to x_0, x \in B} f^{-2} \|\nabla f\|^4$, which implies $\lim_{x \to x_0, x \in B} \Delta f = 0$ by Lemma 3.10. We again arrive at a contradiction with the boundary point theorem for the function $u = f$ satisfying (3-31). \qed
References

Received January 31, 2009.

YURI NIKOLAYEVSKY

DEPARTMENT OF MATHEMATICS AND STATISTICS
LA TROBE UNIVERSITY
MELBOURNE, VICTORIA 3086
AUSTRALIA

y.nikolayevsky@latrobe.edu.au