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We give examples of knots distinguished by the total rank of their Khovanov
homology but sharing the same two-fold branched cover. Hence Khovanov
homology does not yield an invariant of two-fold branched covers.

Mutation provides an easy method for producing distinct knots sharing a two-
fold branched cover: The mutation in the branch set corresponds to a trivial surgery
in the cover. Due to a result of Wehrli [2007; 2009] (see also [Bloom 2009]), this
provides a range of examples of manifolds that branch cover S3 in more than one
way, but for which the distinct branch sets have identical rank in their respective
Khovanov homology groups over F2 = Z/2Z.

From this point of view this fact is not completely surprising, as Khovanov
homology is closely related to the Heegaard Floer homology of two-fold branched
covers [Ozsváth and Szabó 2005]. Indeed, this is made precise in Bloom’s proof of
mutation invariance [2009]. More generally, there is a question posed by Ozsváth:
Is Khovanov homology an invariant of the two-fold branched cover? More pre-
cisely, is the total rank of the reduced Khovanov homology (over F2) an invariant
of two-fold branched covers? This short note gives a negative answer.

Theorem. The total rank of Khovanov homology is not an invariant of two-fold
branched covers.

This theorem is proved by exhibiting manifolds that are two-fold branched cov-
ers of S3 in two different ways, and for which the pair of branch sets is distinguished
by the total rank in Khovanov homology. We work with the reduced version of
Khovanov homology, denoted K̃h, with F2 coefficients [Khovanov 2000; 2003].

Surgery on torus knots. Let S3
r/s(K ) denote the result of (r/s)-surgery on a knot

K ↪→ S3, and let Tp,q denote the positive (p, q) torus knot in S3 (with 0< p< q).
Note that, as we will only consider torus knots, p and q are relatively prime.

Proposition 1 [Moser 1971]. The manifold S3
±1/n(Tp,q) is Seifert fibered with base

orbifold S2(p, q, pqn∓ 1) for n > 0.
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Our conventions for Seifert fibered spaces follow [Boyer 2002]. Our conventions
differ from those in Moser’s work, resulting in the sign discrepancy between our
statement and Moser’s. By applying the work of Heil [1974], it is possible to give
a quick proof:

Proof. Let M = S3 r ν(Tp,q), so that M(α) = S3
r/s(Tp,q) for a given slope

α = rµ+ sλ, where µ is the knot meridian and λ is the preferred longitude. As
the complement of a regular fiber of a Seifert fibration of S3, M is Seifert fibered
with base orbifold D2(p, q). Let ϕ denote a regular fiber in ∂M ; it is well known
that ϕ = pqµ+λ. Now M(α) is Seifert fibered with base orbifold S2(p, q, |α ·ϕ|)
whenever α 6= ϕ, according to [Heil 1974]. In the present setting, α=±µ+nλ for
n > 0, so M(α)= S3

±1/n(Tp,q). As a result, M(±µ+ nλ)= S3
±1/n(Tp,q) is Seifert

fibered with base orbifold S2(p, q, pqn∓ 1) as claimed. �

Seifert involutions. For a link L ↪→ S3, let6(S3, L) denote the two-fold branched
cover of S3, branched over L .

Proposition 2 [Seifert 1933]. S3
±1/n(T2,q) ∼= 6(S3, Tq,2qn∓1) for n > 0 and odd

q > 1.

Proof. The manifold 6(S3, Tq,2qn∓1) is the Brieskorn sphere 6(2, q, 2qn∓1) and
is Seifert fibered with base orbifold S2(2, q, 2qn∓ 1) [Milnor 1975, Lemma 1.1];
see also [Seifert 1933, Zusatz zu Satz 17]. For each n> 0 and odd q > 1, there is a
unique Z-homology sphere admitting a Seifert fibered structure with base orbifold
S2(2, q, 2qn∓1); see for example [Scott 1983; Saveliev 1999, Theorem 6.7]. The
result follows. �

The Montesinos trick. A knot K is called strongly invertible if there is an involu-
tion of (S3, K ) that reverses orientation on K . Thus, the complement S3 r ν(K )
of any strongly invertible knot admits an involution with one-dimensional fixed
point set given by a pair of arcs meeting the boundary ∂(S3 r ν(K )) transversally
in the 4 endpoints. Since the quotient of a solid torus under such an involution is
a 3-ball, it follows that a fundamental domain for the action of the involution on
S3 r ν(K ) is a 3-ball as well, since S3 ∼= 6(S3, L) if and only if L is the trivial
knot [Waldhausen 1969].

By keeping track of the fixed point set in the quotient, we obtain a tangle denoted
by T = (B3, τ ′), where τ ′ is a pair of arcs properly embedded in the 3-ball B3

meeting the boundary transversally in 4 points. By construction, S3 r ν(K ) is
realized as the two-fold branched cover of B3, denoted 6(B3, τ ′), branched over
the arcs τ ′. In this context tangles are considered up to homeomorphism of the pair
(B3, τ ′) that generally need not fix the boundary sphere.

Given a strongly invertible knot, the Montesinos trick [1975] amounts to the
observation that Dehn surgery in the cover may be interpreted as rational tangle
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γ1/0

γ0 τ ′( 1
0) τ ′(0)

Figure 1. The arcs γ1/0 and γ0 in the boundary of a tangle (left)
lifting to µ and mµ+ λ respectively. The “denominator” (center)
and “numerator” (right) closures are denoted by τ ′( 1

0) and τ ′(0)
respectively. Note that in this context τ ′(1

0) is the trivial knot.

attachment in the base. Recall that a tangle is rational if and only if the two-fold
branched cover is a solid torus. To identify the corresponding branch set to a given
surgery, in Figure 1 we briefly recall the notation introduced in [Watson 2008].

By construction, it is possible to identify the trivial surgery by the unknotted
branch set τ ′( 1

0) (see Figure 1, and Figure 3 for a particular example). Said another
way, the arc γ1/0 in the boundary of this representative for the tangle, identified
in Figure 1, lifts to the knot meridian µ in the cover. Thus, the link τ ′(0) gives
the branch set for some integer surgery; the arc γ0 lifts to a slope mµ + λ in
∂(S3 r ν(K )) for some m, where λ is the preferred longitude.

More generally, we may represent any integer surgery by varying the number
of half-twists as in Figure 2, since the half-twist lifts to a full Dehn twist about
the meridian; see [Rolfsen 1976], for example. As a result it is always possible
to fix a preferred representative, which we denote (B3, τ ), of the homeomorphism
class T with the property that S3

0(K )∼=6(S
3, τ (0)). In this notation, we have that

τ ′(0) ' τ(m), and the desired homeomorphism is determined by m half-twists.
Moreover, S3

n(K )∼=6(S
3, τ (n)), where τ(n) is the link shown in Figure 2.

It is possible to determine the preferred representative directly by carefully
keeping track of the image of the preferred longitude in the quotient; see for
example [Bleiler 1985]. However, in practice it is straightforward to determine
the appropriate homeomorphism after the fact by using the determinant of the link,
given that the meridian is easy to identify in this context. Recall that det L =

· · ·︸ ︷︷ ︸
n ︸︷︷︸

1
︸ ︷︷ ︸

3
︸ ︷︷ ︸

3

Figure 2. At left, the closure τ(n) of the preferred representative
giving rise to the branch sets for integer surgeries. At right, the
closure 13

10 = [1, 3, 3] corresponding to 13
10 -surgery in the cover.
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|H1(6(S3, L);Z)| whenever this group is finite, and det L = 0 otherwise. In
particular, det τ(n)= n.

More generally, we would like to define the branch set τ(r/s) for the 3-manifold
S3

r/s(K ), continuing with the notation of [Watson 2008], so that

S3
r/s(K )∼=6(S

3, τ (r/s)).

To this end, let [a1, a2, . . . , am] be a continued fraction expansion for r/s. Now
[a1, a2, . . . , am] encodes a rational tangle that lifts to the desired homeomorphism
of the boundary; see for example [Rolfsen 1976]. A specific example is shown in
Figure 2. As suggested, the desired homeomorphism is specified by an element of
the 3-strand braid group 〈σ1, σ2 | σ1σ2σ1= σ2σ1σ2〉, where the generator σ2 lifts to
a Dehn twist about µ and the inverse σ−1

1 lifts to a Dehn twist about λ. For details
on conventions, see [Rolfsen 1976, Chapter 10] and [Watson 2008].

Montesinos involutions. By a result of Schreier [1924], the knot Tp,q is strongly
invertible. As such, it is possible to realize the manifold S3

r/s(Tp,q) as a two-fold
branched cover via the Montesinos trick, as outlined above. The goal of this section
is to determine the preferred representative of the tangle for which 6(B3, τ ) ∼=

S3 r ν(Tp,q).
In the interest of being explicit, consider the torus knot K = T2,5, the knot 51 in

[Rolfsen 1976]. A strong inversion on this knot is exhibited in Figure 3, together
with an illustration of the isotopy of a fundamental domain to obtain a tangle with
the property that S3 r ν(K )∼=6(B3, τ ′).

We may fix the preferred representative (B3, τ ) for T , as in the previous section,
with the properties that

(1) the denominator closure of the tangle, τ(1
0), is unknotted and corresponds to

a branch set for the trivial surgery, and

(2) the numerator closure, τ(0), gives a branch set for the zero surgery:

S3
0(K )∼=6(S

3, τ (0)).

This representative is shown in Figure 4, and it suffices to verify that det τ(0)= 0
(or that det τ(±1) = 1) to see that this is the preferred representative as claimed.
The fact that τ ′(0) is a connect sum of 2-bridge links indicates that 6(S3, τ ′(0))
is a connect sum of lens spaces, and hence 6(S3, τ ′(0)) ∼= S3

10(K ). This results
from the fact that ϕ= 10µ+λ for the complement of K = T2,5 (compare the proof
of Proposition 1), and explains the appearance of 10 (negative) half-twists in the
preferred representative (B3, τ ) so that τ(10)' τ ′(0).

See [Montesinos 1976] for a detailed discussion on Seifert fibered spaces as two-
fold branched covers of S3 in general, noting that the Montesinos links shown here
encode the Seifert fiber structure in the corresponding two-fold branched cover.



KHOVANOV HOMOLOGY AND TWO-FOLD BRANCHED COVERS 377

∼=

Figure 3. A strong inversion on the torus knot T2,5 (left); isotopy
of a fundamental domain (center); and two representatives of the
associated quotient tangle (right). The Seifert fiber structure on
the knot complement is reflected as a sum of rational tangles in
the quotient, and the numerator closure in both cases is the trivial
knot, identifying the image of the meridian in the quotient.

Proof of the Theorem. Continuing with K =T2,5, by the observations above about
the Seifert and Montesinos involutions, we have

S3
±1/n(K )∼=6(S

3, T5,10n∓1)∼=6(S3, τ (±1/n)) for n > 0.

When n= 1, using the program JavaKh [Bar-Natan and Green 2005], we calculate

rk K̃h(T5,10∓1)= 65∓ 8 6= 16∓ 1= rk K̃h(τ (±1)).

Similarly, when n = 2 we calculate

rk K̃h(T5,20∓1)= 257∓ 16 6= 32∓ 1= rk K̃h(τ (±1
2)).

Each of these four pairs of examples illustrates a given manifold as a two-fold
branched cover of S3 in two different ways, with branch sets distinguished by the
total rank of the reduced Khovanov homology. This proves the claim: rk K̃h is not
an invariant of two-fold branched covers.

Further remarks. We continue with the notation above for the preferred represen-
tative of the tangle associated to T2,5.

Proposition 3. rk K̃h(τ (±1/n))≤ 16n∓ 1 for n > 0.
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τ(1
2)

τ (1)

τ (−1)

τ (− 1
2)

Figure 4. At left, the preferred representative of the associated
quotient tangle for the torus knot T2,5. At right, the branch
sets τ(−1

2), τ(−1), τ(1) and τ(1
2) associated to {−1

2 ,−1, 1, 1
2}-

surgery, respectively.

Sketch of proof. We note first that rk K̃h(τ (±1)) = 16 ∓ 1, and calculate that
rk K̃h(τ (0)) = 16. The result follows by induction on n: Applying the long exact
sequence for Khovanov homology, we have

rk K̃h(τ (1/n)≤ rk K̃h(τ (1/(n− 1)))+ rk K̃h(τ (0))

= rk K̃h(τ (1/(n− 1)))+ 16

and
rk K̃h(τ (−1/n))≤ rk K̃h(τ (−1/(n− 1)))+ rk K̃h(τ (0))

= rk K̃h(τ (−1/(n− 1)))+ 16. �



KHOVANOV HOMOLOGY AND TWO-FOLD BRANCHED COVERS 379

On the other hand, calculations of Khovanov homology for large torus knots
are difficult to obtain. Indeed, the calculations given here were not accessible
prior to the development of JavaKh. However, existing calculations suggest that
rk K̃h(Tp,q) grows at least linearly in q . In particular, it seems reasonable to guess
that surgery on T2,5 provides an infinite family of examples proving the Theorem.

It would be interesting to understand the behaviour of the Khovanov homology
for branch sets associated to (1/n)-surgery on the torus knots T2,q for q ≥ 5.

References

[Bar-Natan and Green 2005] D. Bar-Natan and J. Green, “Khovanov homology: JavaKh”, 2005,
Available at http://katlas.math.toronto.edu/wiki/Khovanov Homology.

[Bleiler 1985] S. A. Bleiler, “Prime tangles and composite knots”, pp. 1–13 in Knot theory and
manifolds (Vancouver, 1983), edited by D. Rolfsen, Lecture Notes in Math. 1144, Springer, Berlin,
1985. MR 87e:57006 Zbl 0596.57003

[Bloom 2009] J. Bloom, “Odd Khovanov homology is mutation invariant”, preprint, version 2, 2009.
arXiv 0903.3746v2

[Boyer 2002] S. Boyer, “Dehn surgery on knots”, pp. 165–218 in Handbook of geometric topology,
edited by R. J. Daverman and R. B. Sher, North-Holland, Amsterdam, 2002. MR 2003f:57030
Zbl 1058.57004

[Heil 1974] W. Heil, “Elementary surgery on Seifert fiber spaces”, Yokohama Math. J. 22 (1974),
135–139. MR 51 #11515 Zbl 0297.57006

[Khovanov 2000] M. Khovanov, “A categorification of the Jones polynomial”, Duke Math. J. 101:3
(2000), 359–426. MR 2002j:57025 Zbl 0960.57005

[Khovanov 2003] M. Khovanov, “Patterns in knot cohomology, I”, Experiment. Math. 12:3 (2003),
365–374. MR 2004m:57022 Zbl 1073.57007

[Milnor 1975] J. Milnor, “On the 3-dimensional Brieskorn manifolds M(p, q, r)”, pp. 175–225 in
Knots, groups, and 3-manifolds, edited by L. P. Neuwirth, Ann. of Math. Studies 84, Princeton
Univ. Press, 1975. MR 54 #6169 Zbl 0305.57003

[Montesinos 1975] J. M. Montesinos, “Surgery on links and double branched covers of S3”, pp.
227–259 in Knots, groups, and 3-manifolds, edited by L. P. Neuwirth, Ann. of Math. Studies 84,
Princeton Univ. Press, 1975. MR 52 #1699 Zbl 0325.55004

[Montesinos 1976] J. M. Montesinos, “Revêtements ramifiés de nœuds, espaces fibrés de Seifert et
scindements de Heegaard”, lecture notes, Orsay, 1976.

[Moser 1971] L. Moser, “Elementary surgery along a torus knot”, Pacific J. Math. 38 (1971), 737–
745. MR 52 #4287 Zbl 0202.54701

[Ozsváth and Szabó 2005] P. Ozsváth and Z. Szabó, “On the Heegaard Floer homology of branched
double-covers”, Adv. Math. 194:1 (2005), 1–33. MR 2006e:57041 Zbl 1076.57013

[Rolfsen 1976] D. Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Berke-
ley, CA, 1976. MR 58 #24236 Zbl 0339.55004

[Saveliev 1999] N. Saveliev, Lectures on the topology of 3-manifolds, de Gruyter, Berlin, 1999.
MR 2001h:57024 Zbl 0932.57001

[Schreier 1924] O. Schreier, “Über die Gruppen Aa Bb
= 1”, Hamb. Math. Abh. 3 (1924), 167–169.

JFM 50.0070.01



380 LIAM WATSON

[Scott 1983] P. Scott, “The geometries of 3-manifolds”, Bull. London Math. Soc. 15:5 (1983), 401–
487. MR 84m:57009 Zbl 0561.57001

[Seifert 1933] H. Seifert, “Topologie Dreidimensionaler Gefaserter Räume”, Acta Math. 60:1 (1933),
147–238. MR 1555366 Zbl 0006.08304

[Waldhausen 1969] F. Waldhausen, “Über Involutionen der 3-Sphäre”, Topology 8 (1969), 81–91.
MR 38 #5209 Zbl 0185.27603

[Watson 2008] L. Watson, “Surgery obstructions from Khovanov homology”, preprint, version 3,
2008. arXiv 0807.1341v3

[Wehrli 2007] S. Wehrli, “Mutation invariance of Khovanov homology over Z2”, lecture notes, Ky-
oto, 2007.

[Wehrli 2009] S. Wehrli, “Mutation invariance of Khovanov homology over F2”, preprint, 2009.
arXiv 0904.3401

Received September 9, 2009. Revised October 20, 2009.

LIAM WATSON

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA

520 PORTOLA PLAZA

LOS ANGELES, CA 90095
UNITED STATES

lwatson@math.ucla.edu
http://www.math.ucla.edu/~lwatson


