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GENERALIZED TWISTED SECTORS OF ORBIFOLDS
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For a finitely generated discrete group 0, the 0-sectors of an orbifold Q
are a disjoint union of orbifolds corresponding to homomorphisms from
0 into a groupoid presenting Q. Here, we show that the inertia orbifold
and k-multisectors are special cases of the 0-sectors, and that the 0-sectors
are orbifold covers of Leida’s fixed-point sectors. In the case of a global
quotient, we show that the 0-sectors correspond to orbifolds considered by
other authors for global quotient orbifolds, as well as their direct general-
ization to the case of an orbifold given by a quotient by a Lie group. Further-
more, we develop a model for the 0-sectors corresponding to a generalized
loop space.

1. Introduction

In [FS 2010], we introduced the 0-sectors of an orbifold in order to determine a
complete obstruction to the existence of a nonvanishing vector field. The defini-
tions of these sectors were heavily motivated by several existing constructions for
orbifolds by Kawasaki [1978; 1979; 1981], Chen and Ruan [2004; Ruan 2002],
Bryan and Fulman [1998], and Tamanoi [2001; 2003].

The goal of this paper is to show explicitly how the 0-sectors generalize these
constructions. In particular, we show that the inertia orbifold corresponds to the
Z-sectors and that the k-multisectors correspond to the Fk-sectors, where Fk is
the free group with k generators. The orbifolds whose Euler characteristics were
considered by Bryan, Fulman and Tamanoi for global quotients correspond to the
Zk-sectors and 0-sectors, respectively, in the case where Q can be expressed as a
global quotient, that is, a quotient of a manifold by a finite group. We also show
that the fixed-point sectors introduced by Leida [2005] are orbifold-covered by the
0-sectors for an appropriate choice of 0.

Lupercio and Uribe [2002] (see also [de Fernex et al. 2006]) demonstrated that
the inertia orbifold naturally appears when one considers the loop space of an
orbifold. Here, we show that the same holds for the 0-sectors; in particular, they
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appear when we consider smooth maps M0→ Q, where M0 is a smooth manifold
with fundamental group 0. This generalizes results of [Tamanoi 2003], stated for
global quotients in the context of orbifold bundles.

In the case where an orbifold Q is presented by a quotient M/G, where M is a
manifold and G is a Lie group acting locally freely, that is, properly with discrete
stabilizers, there is a very natural extension of the orbifold definitions of Bryan,
Fulman and Tamanoi; see Definition 2.1. We show that this again coincides with
the 0-sectors. Note, however, that such a presentation of the 0-sectors leads to a
different indexing of the sectors. In the case of a global quotient, the 0-sectors
are naturally indexed by G-conjugacy classes (φ)∼ of homomorphisms φ :0→G
whose images fix a nonempty subset of M ; we denote by t0M;G the set of conjugacy
classes of such homomorphisms; see Section 2A. On the other hand, if G is an
orbifold groupoid presenting Q, the sectors are indexed by elements of T 0

Q , the
set of ≈-classes of elements of Hom(0,G) or equivalently connected components
of |G n Hom(0,G)|; see [FS 2010, Subsection 2.2] or Section 2B below. The
discrepancy arises because the fixed-point set of a homomorphism φ : 0 → G
need not be connected. Hence the 0-sector corresponding to (φ)∼ ∈ t0M;G may
correspond to the disjoint union of several 0-sectors, each corresponding to one
element of T 0

Q ; see Example 3.2.
In [FS 2010], we required that our local groups act with a fixed-point set of

codimension 2; however, we noted that the construction of the 0-sectors did not
need this property, and we do not retain this requirement here. While our primary
interest is the case of orbifold groupoids, many of these constructions and results
generalize directly to the case of orbispaces [Chen 2006], as noted below.

2. Two definitions of the 0-sectors for quotient orbifolds

In [FS 2010], we constructed the 0-sectors of a general orbifold in terms of the orb-
ifold structure given by an orbifold groupoid G, that is, a proper, étale Lie groupoid.
For background on orbifolds from this perspective, see [Adem et al. 2007] and
also [Moerdijk and Mrčun 2003; Moerdijk 2002]. Section 2A primarily concerns
orbifolds presented as the quotient of a manifold by a Lie group. We construct the
0-sectors directly from such a presentation. This construction was introduced by
Tamanoi [2001; 2003] for the case where G is finite; the definitions are unchanged
for general G. Section 2B reviews the key points of the construction in [FS 2010]
and gives other interpretations. To distinguish from the construction using a general
orbifold groupoid, we use slightly different notation for the 0-sectors of a quotient
orbifold; these definitions will be compared in Section 3.

2A. 0-sectors of a quotient presentation. Let Q be an n-dimensional quotient
orbifold. By this, we mean that Q is presented by G n M , where M is a smooth
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manifold, G is a Lie group acting smoothly on M , and G n M is Morita equivalent
to an orbifold groupoid, that is, a proper étale Lie groupoid. In [Adem and Ruan
2003, page 536] and [Adem et al. 2007, page 57] (and see also [Kawasaki 1978,
page 76]), it is noted that this is the case whenever these conditions are satisfied:

(i) The isotropy group Gx for each x ∈ M is finite.

(ii) There is a smooth slice Sx at each x ∈ M .

(iii) For each x, y ∈ M with y /∈ Gx , there are slices Sx and Sy such that

GSx ∩GSy =∅.

In particular, (ii) and (iii) are automatically satisfied if G is compact. The following
special cases are worth noting; occasionally, we will restrict our attention to one
of these.
• If G is a finite group, then Q is a global quotient orbifold.

• If G is a discrete group acting properly discontinuously, then Q is a good
orbifold [Thurston 1978, Definition 13.2.3; Boileau et al. 2003, page 20].

We use M/G to denote the quotient as a topological space with quotient map
σ : M→ M/G; the orbifold (that is, the Morita equivalence class of the groupoid
G n M) will generally be denoted Q. Henriques and Metzler [2004] addressed the
question of whether every orbifold can be expressed as a quotient; this question
remains unresolved in general.

In the case of a good orbifold (including the case of a global quotient), the
groupoid G n M is an orbifold groupoid. On the other hand, if G is a Lie group of
positive dimension, then G n M is not étale, though it is Morita equivalent to an
orbifold groupoid. In general, G n M as well as any Morita equivalent groupoid
will always be a proper foliation groupoid; see [Adem et al. 2007, pages 18 and 21]
and [Crainic and Moerdijk 2001] for more details.

Let 0 be a finitely generated discrete group — although many of our construc-
tions make sense for arbitrary 0, we are only interested in this case. If φ and ψ are
homomorphisms from 0 to G, we say φ ∼ ψ if they are pointwise conjugate,
that is, if there is a g ∈ G such that gφ(γ)g−1

= ψ(γ) for each γ ∈ 0. We
let (φ) denote the conjugacy class of φ (or sometimes (φ)∼ to distinguish from
equivalence classes via other relations), and let t0M;G denote the set of conjugacy
classes of homomorphisms φ whose images have nonempty fixed-point sets in M .
We let M 〈φ〉 denote the fixed-point set of the image of φ in G, and CG(φ) the
centralizer of the image of φ in G.

Definition 2.1. Let φ : 0 → G be a homomorphism with M 〈φ〉 6= ∅. Then the
0-sector of G n M associated to (φ) is the orbifold with presentation

(M;G)(φ) := CG(φ)n M 〈φ〉.
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We let (M;G)0 denote the disjoint union of the 0-sectors:

(M;G)0 :=
∐

(φ)∈t0M;G

(M;G)(φ).

If G is finite, it is obvious that each (M;G)(φ) is an orbifold groupoid (that is, a
proper étale Lie groupoid). In Corollary 3.3, we will see this is generally the case.

If x ∈ M 〈φ〉 ⊆ M , we will sometimes use the notation (x, φ) to distinguish
between (x, φ) ∈ M 〈φ〉 and (x, 1) ∈ M 〈1〉 = M . Hence, we use CG(φ)(x, φ) to
denote the corresponding point in the orbit space of (M;G)(φ).

The following lemma, whose proof is standard, ensures that the definition of
(M;G)(φ) does not depend on the choice of the representative of the class (φ).

Lemma 2.2. Let G be a group acting on the smooth manifold M such that G n M
presents a smooth orbifold, and let 0 be a finitely generated discrete group. If
φ,ψ : 0→ G are conjugate homomorphisms with ψ = gφg−1 for g ∈ G, then the
map

Lg : M 〈φ〉→ M 〈ψ〉, (x, φ) 7→ (gx, gφg−1)= (gx, ψ)

is a CG(φ)-CG(ψ)-equivariant diffeomorphism inducing a groupoid isomorphism
between (M;G)(φ) and (M;G)(ψ). Also, σ |M 〈φ〉 = σ |M 〈ψ〉 ◦ Lg.

In particular, G acts on the set
∐
φ∈Hom(0,G)(M

〈φ〉, φ) by defining g(x, φ) =
(gx, gφg−1). The next lemma introduces a different presentation for (M;G)0.

Lemma 2.3. Suppose G n M presents a quotient orbifold, and let 0 be a finitely
generated discrete group. There is a strong equivalence

G n
∐

ψ∈Hom(0,G)

(M 〈ψ〉, ψ)→ (M;G)0.

Hence, G n
∐
ψ∈Hom(0,G)(M

〈ψ〉, ψ) and (M;G)0 are Morita equivalent.

By strong equivalence, we mean an equivalence of groupoids such that the map
on objects is a surjective submersion [Adem et al. 2007, page 20]. Neither of the
groupoids in question need be orbifold groupoids; we will see in Section 3 that
they are both Morita equivalent to orbifold groupoids.

Proof. Pick φ ∈ Hom(0,G) with M 〈φ〉 6= ∅. Here, we denote points in M 〈φ〉

simply as x to distinguish from points in
∐
ψ∈(φ)(M

〈ψ〉, ψ). For each ψ ∈ (φ),
pick a gψ ∈ G such that gψψg−1

ψ = φ. We require that gφ = 1. Define the map

9
φ
0 :

∐
ψ∈(φ)

(M 〈ψ〉, ψ)→ M 〈φ〉, (x, ψ) 7→ gψ x .
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Similarly, since G acts on
∐
ψ∈(φ)(M

〈ψ〉, ψ), define

9
φ
1 :G×

∐
ψ∈(φ)

(M 〈ψ〉, ψ)→CG(φ)×M 〈φ〉, (g, (x, ψ)) 7→ (g(gψg−1)gg−1
ψ , gψ x).

It is easy to check that 9φ
0 and 9φ

1 are smooth, and that they form the maps on
objects and arrows, respectively, of a groupoid homomorphism

9φ
: G n

∐
ψ∈(φ)

(M 〈ψ〉, ψ)→ CG(φ)n M 〈φ〉.

Since 9φ
0 is a disjoint union of diffeomorphisms, 9φ

0 is a surjective submersion.
It remains to show that

G×
∐
ψ∈(φ)

(M 〈ψ〉, ψ)
9
φ
1 - CG(φ)×M 〈φ〉

∐
ψ∈(φ)

(M 〈ψ〉, ψ)×
∐
ψ∈(φ)

(M 〈ψ〉, ψ)

s× t

?
9
φ
0 ×9

φ
0 - M 〈φ〉×M 〈φ〉

s× t

?

is a fibered product of manifolds. This follows from the fact that the map

8φ : G×
∐
ψ∈(φ)

(M 〈ψ〉, ψ)→
∐
ψ∈(φ)

(M 〈ψ〉, ψ)×
∐
ψ∈(φ)

(M 〈ψ〉, ψ)× (CG(φ)×M 〈φ〉),

(h, (w,ψ)) 7→ ((w,ψ), (hw, hψh−1), (g(hψh−1)hg−1
ψ , gψw))

is a diffeomorphism onto the fibered product, which is easy to verify.
With this, we need only note that G n

∐
φ∈Hom(0,G)(M

〈φ〉, φ) admits a decom-
position into disjoint groupoids

G n
∐

φ∈Hom(0,G)

(M 〈φ〉, φ)=
∐

(φ)∈t0M;G

G n
∐
ψ∈(φ)

(M 〈ψ〉, ψ),

and each 9φ maps one of these groupoids into (M;G)(φ). Hence,

9 :=
∐

(φ)∈t0M;G

9φ
: G n

∐
φ∈Hom(0,G)

(M 〈φ〉, φ)→ (M;G)0

is clearly surjective, and therefore is a strong equivalence. �

The maps 9φ depend on the choice of the gψ ∈ G; however, it is easy to see
that the induced map on orbit spaces does not.
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Fix a homomorphism φ :0→G. Then the injection M 〈φ〉 ↪→ M induces a map

π(φ) : M 〈φ〉/CG(φ)→ M/G, CG(φ)(x, φ) 7→ Gx .

If gφg−1
=ψ and (x, φ)∈ M 〈φ〉, then the G-orbit of x in M coincides with that of

the corresponding point g(x, φ) ∈ M 〈ψ〉. Therefore, this map does not depend on
the choice of representative from the conjugacy class (φ). If (x, φ) ∈ M 〈φ〉, then
σ(x)= π(φ)(CG(φ)(x, φ)). In particular, π(φ)(M 〈φ〉)= σ(M 〈φ〉).

Finally, the map M/CG(φ)→ M/G, CG(φ)(x, φ) 7→ Gx is an orbifold cover
by definition [Adem et al. 2007, Definition 2.16]. The map π(φ) is the restriction
of this orbifold cover to M 〈φ〉/CG(φ).

2B. 0-sectors for a general presentation. We now review the construction of the
0-sectors for a general orbifold Q. We state it in general for an arbitrary orbifold
groupoid G. Throughout, we let the groupoid G have space of objects G0 and space
of arrows G1. We also let σ : G0→ |G| denote the quotient map.

If 0 and G are groupoids (with no additional hypotheses), then let S0G denote
the set of groupoid homomorphisms φ : 0 → G such that the map on objects is
constant. Then G acts on S0G by conjugation; if φ0(z)= x for each z ∈ 00, then for
each g ∈ G1 with s(g) = x , we let (g · φ) : 0→ G have constant map on objects
with value t (g) and map on arrows (g ·φ)1(γ)= gφ1(γ)g−1 for each γ ∈ 01.

If 0 is a group (treated as a groupoid with one unit), then every homomorphism
0 → G is constant on objects and corresponds to choice of x ∈ G0 and group
homomorphism φx : 0→ Gx , where Gx denotes the isotropy group of x . We also
use φx to denote the corresponding groupoid homomorphism.

If G is a topological groupoid presenting an orbispace X [Chen 2006; Henriques
and Gepner 2007], then each point x ∈ G0 is contained in an open, connected,
locally connected U ⊆ G0 such that G|U is isomorphic to GU n U , where GU

is a topological group acting continuously on U . We give S0G the weak topology
induced by the maps βG : φx 7→ x ∈ G0 and the evaluation εγ : φx 7→ φx(γ) ∈ G1

for each γ ∈ 0. It is easy to check that the G-action on S0G is continuous.

Definition 2.4. Let G be a topological groupoid representing an orbispace X , and
let 0 be a finitely generated discrete group. The 0-sector groupoid G0 of G is the
translation groupoid G n S0G .

For each φx ∈ S0G , choosing x ∈ U ⊆ S0G as above induces an isomorphism
of topological groupoids between CGU (φx) n U 〈φx 〉 and the restriction of G0 to
the connected component of β−1

0 (U ) containing φx . It follows that the 0-sector
groupoid represents an orbispace |G0|. As a set, we have

(2-1) |G0| = {(p, (φx)Gx
∼
) : p = Gx ∈ |G|, φx ∈ Hom(0,Gx)},

where (φx)Gx
∼

denotes the conjugacy class of the homomorphism φx in Gx .
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Now assume that G is an orbifold groupoid presenting the orbifold Q, and 0 is
a finitely generated discrete group. Then if φx , ψy ∈ S0G , a natural transformation
from φx to ψy is simply a choice of an arrow g ∈G1 such that s(g)= x , t (g)= y,
and ψx(γ)g = gφy(γ) for each γ ∈ 0. Moreover, if ε : K→ 0 is an equivalence,
then ε is locally invertible, and φx ◦ ε

−1 is equivalent to φx [Adem et al. 2007,
Example 2.42]. It follows that the orbits of points in S0G via the G-action correspond
exactly to groupoid morphisms from 0 to G.

For each point p ∈ Q corresponding to the orbit of x ∈ G0, there is a linear
orbifold chart {Vx ,Gx , πx} for Q at x . That is, Vx ⊆ G0 is diffeomorphic to Rn

with x corresponding to the origin, Gx acts linearly on Vx , and there is a groupoid
isomorphism between G|Vx and Gx n Vx . We let ξx : (s, t)−1(Vx × Vx) → Gx

denote the identification given by this isomorphism, and ξ y
x = (ξx)|G y : G y→ Gx

the injective homomorphism given by restriction to G y for each y ∈ Vx .
In this case, S0G is a smooth manifold (with connected components of different

dimensions) and the G-action is smooth. Thus the translation groupoid G0=GnS0G
is an orbifold groupoid, defining an orbifold structure for the 0-sectors Q̃0 of Q.
For each φx ∈ S0G , there is a diffeomorphism κφx of V 〈φx 〉

x onto a neighborhood of
φx in S0G forming a manifold chart. Identifying V 〈φx 〉

x with its image via κφx , we
see that {V 〈φx 〉

x ,CGx (φx), π
φx
x } forms a linear orbifold chart for Q̃0 at φx .

Within a linear chart {Vx ,Gx , πx} at x with y ∈ Vx , we say φx locally covers
ψy (and write φx

locyψy) if there is a g ∈Gx such that g[(ξ y
x ◦ψy)(γ)]g−1

= φx(γ).
Then by [FS 2010, Lemma 2.7], there is a ψy′ ∈ Gψy such that ξ y

x ◦ ψy = φx .
Extending this to an equivalence relation on S0G , we say that φx ≈ ψy if there
is a finite sequence of local coverings (in either direction) connecting an element
of Gφx to Gψy . We let (φ)≈ denote the ≈-class of φ and T 0

Q denote the set of
≈-classes in S0G; when there is no risk of confusion, we denote the ≈-class of φ by
(φ). The ≈-classes in S0G correspond exactly to the connected components of Q̃0,
so for each (φ) ∈ T 0

Q , we let Q̃(φ) denote the connected component consisting of
G-orbits of elements of (φ) and refer to Q̃(φ) as the 0-sector associated to (φ).

In [FS 2010, Lemma 2.5], we showed that a strong equivalence between orbifold
groupoids induces a strong equivalence between their associated groupoids of 0-
sectors. Here, we are interested in foliation groupoids that are not necessarily étale.

Lemma 2.5. Suppose G and G′ are Morita equivalent orbifold groupoids. Then
they are Morita equivalent via orbifold groupoids, that is, there is an orbifold
groupoid H and strong equivalences

G �
e

H
e′- G′.

Of course, such an H always exists, and it is always a proper foliation groupoid.
The point of this lemma is that H can taken to be étale.
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Proof. Choosing sufficiently small open covers of the spaces of objects consisting
of linear orbifold charts, the groupoids G and G′ each give an orbifold atlas for the
orbifold Q presented by G and G′. These atlases need not be effective, but since
they arose from orbifold groupoids, the kernels of the actions are appropriately
restricted. Let H be the groupoid of the union of these two atlases; then there are
clearly equivalences as required. These equivalences are strong, since the domains
of charts from G and G′ are subsets of the space of objects of H, so that the em-
beddings of these charts into the objects of G and G′ are surjective. �

We fix some notation to distinguish between the structure maps and arrows of the
groupoids we consider. We use s, t , i , u, and m to denote the source, target, inverse,
unit, and composition maps of a groupoid. Often, we suppress m and express
products multiplicatively by concatenation; that is, m(a, b)=ab. When it is helpful
to distinguish between structure maps of groupoids, we will give them subscripts of
the corresponding groupoid unless otherwise indicated. For a translation groupoid
G n M , we let sGnM and tGnM be the source and target maps, respectively, and let
(Gn M)1 be the space of arrows. Note that M is the space of objects. An arrow in
(GnM)1 is given by a g∈G1 and a z ∈M such that the anchor map sends s(g) to z.
We use (g, z) to denote this arrow, so that sGnM(g, z) = z and tGnM(g, z) = gz.
In particular, for the groupoid G0 = G n S0G , an arrow is of the form (g, φx) with
sG0 (g, φx)= φx and tG0 (g, φx)= gφx g−1, so that s(g)= x and t (g)= gx .

The following lemma will simplify many of our arguments; for the definitions,
see [Adem et al. 2007, Definitions 2.14 and 2.15]. The proof is direct and omitted.

Lemma 2.6. Let G be a groupoid, and let M1 and M2 be G-spaces with anchor
maps αi : Mi → G0. Let e0 : M1 → M2 be a map that is G-equivariant, that is,
α2 ◦ e0 = α1 and e0(hz) = he0(z) for each z ∈ M1 and h ∈ G1 with s(h) = α1(z).
Define e1 : (G n M1)1 → (G n M2)1, (g, z) 7→ (g, e0(z)). Then e0 is the map on
objects and e1 the map on arrows of a homomorphism e : G n M1 → G n M2 of
groupoids. If e0 is a bijection, then e is an isomorphism.

If G is an orbifold groupoid, the Mi are smooth G-spaces, and e0 is smooth, then
e is a homomorphism of orbifold groupoids. If e0 is a diffeomorphism, then e is an
isomorphism of orbifold groupoids.

3. Connections between definitions of sectors

Here, we compare the constructions of the 0-sectors in Section 2 with one another,
as well as with other constructions of sectors in the literature.

3A. Good orbifold. Let Q be a good orbifold given by the quotient of a smooth
manifold M by a discrete group G acting properly discontinuously. Then the trans-
lation groupoid G := G n M is an orbifold groupoid presenting Q, and Q admits
two decompositions into 0-sectors.
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As in Section 2A, we let (M;G)0 denote the space of 0-sectors of Q defined
using the global G-action on M , that is,

(M;G)0 =
∐

(φ)∈t0M;G

CG(φ)n M 〈φ〉.

As in Section 2B, we let Q̃0 denote the space of 0-sectors of Q presented by
G0 = G n S0G . We claim the following.

Theorem 3.1. Let Q be a good orbifold, so that G=GnM is an orbifold groupoid
presenting Q, and let 0 be a finitely generated discrete group. Then G0 is iso-
morphic as an orbifold groupoid to G n

∐
φ∈Hom(0,G)(M

〈φ〉, φ).

It follows that the spaces (M;G)0 and Q̃0 are diffeomorphic as orbifolds. These
spaces are not indexed in the same way; the set t0M;G is smaller than T 0

Q whenever
there is a homomorphism φ : 0→ G such that σ(M 〈φ〉) is not connected.

Example 3.2. Let Z/3Z = 〈α〉 act on S2 by rotations; the quotient orbifold Q
presented by Z/3Z n S2 is a football with two singular points, ps and pn , both of
them with Z/3Z isotropy. Let 0 = Z= 〈γ〉, and define

φ0, φ1, φ2 : Z→ Z/3Z, φ0 : γ 7→ 1, φ1 : γ 7→ α, φ2 : γ 7→ α2.

Then the ∼-classes of the φi are the only elements of t0M;G . Clearly, (M;G)(φ0)

is diffeomorphic to Q, and (M;G)(φ1) and (M;G)(φ2) are each diffeomorphic to
{ps, pn} with trivial Z/3Z-action.

Now, consider G n S0G . Let αs generate G ps and αn generate G pn for a choice
of representatives of these isotropy groups. There are five ≈-classes of homomor-
phisms from 0 into the local groups of Q with the following representatives:

ψ0 : Z→ G p, γ 7→ 1 for all p ∈ Q,
ψ1,s : Z→ G ps , γ 7→ αs, ψ2,s : Z→ G ps , γ 7→ α2

s ,

ψ1,n : Z→ G pn , γ 7→ αn, ψ2,n : Z→ G pn , γ 7→ α2
n .

Then Q̃(ψ0) is diffeomorphic to Q, while the sectors associated to each of the other
four classes are given by a point with trivial Z/3Z-action.

Clearly, these two decompositions result in diffeomorphic orbifolds, although
the individual sectors are indexed differently.

Proof of Theorem 3.1. Let G denote the translation groupoid GnM , so that G0=M
and G1 = G×M . Then G is an orbifold groupoid in the Morita equivalence class
of orbifold structures for Q. Let ζ : G1 = G×M→ G denote the projection onto
the first factor. Then for each φx ∈ S0G , we have ζ ◦φx ∈ Hom(0,G), that is,

ζ ◦φx : 0
φx- (G1)x

ζ- G.
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We define the map

Z : S0G→
∐

ψ∈Hom(0,G)

(M 〈ψ〉, ψ), φx 7→ (x, ζ ◦φx) ∈ (M 〈ζ◦φx 〉, ζ ◦φx).

Then Z is clearly injective; if Z(φx) = Z(ψy), then (x, ζ ◦ φx) = (y, ζ ◦ψy), so
that x = y and φx = ψy . To show that Z is surjective, let (x, ψ) ∈ (M 〈ψ〉, ψ) for
some ψ ∈Hom(0,G) and define ψx : 0→ G by ψx(γ)= (ψ(γ), x). Then clearly
Z(ψx) = (x, ψ), and Z is a bijection. Moreover, given a chart κφx : V

〈φx 〉
x → S0G

for S0G near φx , we have that

M 〈φx 〉 ⊇ V 〈φx 〉
x

κφx- S0G
Z- (M 〈ζ◦φx 〉, ζ ◦φx)

is simply the identity on V 〈φx 〉
x . It follows that Z is smooth with smooth inverse,

and hence a diffeomorphism.
The anchor map of the G-action on S0G is β0 : S0G → M , with β0 : φx 7→ x .

Let α :
∐
ψ∈Hom(0,G)(M

〈ψ〉, ψ)→ M be defined by α : (x, φ) 7→ x ; then α is the
anchor map of a G-action on

∐
ψ∈Hom(0,G)(M

〈ψ〉, ψ)→ M defined by

(g, x)(x, φ)= (gx, gφg−1)

that clearly coincides with the G-action. Hence, we need only note that for each
(g, (x, φ))∈G×

∐
ψ∈Hom(0,G)(M

〈ψ〉, ψ) and φx ∈S0G given by γ 7→ (φ(γ), x) (so
that Z(φx)= (x, φ)),

(g, (x, φ))Z(φx)= (g, (x, φ))(x, ζ ◦φx)= (g, (x, φ))(x, φ)

= (gx, gφg−1)= Z[(g, φx)φx ],

and then Z is G-equivariant. It follows by Lemma 2.6 that Z is the map on objects
of an isomorphism of Lie groupoids. �

By Lemma 2.3, G n
∐
φ∈Hom(0,G)(M

〈φ〉, φ) and (M;G)0 are Morita equivalent.
Hence, by virtue of [FS 2010, Lemma 2.5] and Lemma 2.5 above, we have the
following.

Corollary 3.3. Let Q be a good orbifold presented by G n M , with G discrete,
and let 0 be a finitely generated discrete group. If G is any orbifold groupoid
that presents Q, then (M;G)0 and G0 are Morita equivalent. Hence, the two
definitions of 0-sectors coincide. In particular, (M;G)0 is Morita equivalent to
an orbifold groupoid.

Finally, the proof of Theorem 3.1 generalizes readily to proper étale orbispaces.

Theorem 3.4. Let Y be a T1 G-space with G discrete such that the isotropy group
of each point is finite, let 0 be a finitely generated discrete group, and let G=GnY .
Then G0 is isomorphic as a topological groupoid to G n

∐
φ∈Hom(0,G)(M

〈φ〉, φ).
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Proof. Algebraically, the proof is identical to that of Theorem 3.1. Based on the
note after Definition 2.4, the map Z is clearly a homeomorphism. The induced
map on arrows given by Lemma 2.6 is clearly a homeomorphism as well. �

3B. Quotient orbifolds. In the case where G is not discrete, we have:

Theorem 3.5. Let G be a Lie group that acts smoothly on the smooth manifold
M satisfying conditions (i), (ii), and (iii), so that G n M presents an orbifold Q.
Let G be an orbifold groupoid representing Q, so that G n M and G are Morita
equivalent. Then G0 and (M;G)0 are Morita equivalent.

Proof. First, we construct a specific orbifold groupoid Morita equivalent to G n M .
If G acts properly on M with discrete isotropy groups, then M is foliated by

(connected components of) G-orbits [Moerdijk and Mrčun 2003, page 16]. Pick
x ∈ M ; then there is a unique Gx -space Sx and a G-diffeomorphism of G ×Gx Sx

onto an open subset of M containing x . We recall the construction of G×Gx Sx . If
(u, y)∈G×Sx and k∈Gx , then k(u, y)= (uk−1, ky) defines a Gx -action on G×Sx ,
and G×GxSx is the orbit space of this action. Then the G-action on G×Sx given by
g′(g, y)= (g′g, y) induces a G-action on G×Gx Sx [tom Dieck 1987, page 32]. In
particular, the slice Sx is a transversal for the foliation of (G×Gx Sx) by G-orbits.
We note that Sx is not a complete transversal unless G/Gx is connected; in general,
a complete transversal to the foliation of (G×Gx Sx) can be formed by picking one
translate gSx of the slice of Sx in each connected component of (G×Gx Sx).

Since M/G is paracompact, an open cover of M/G formed by picking a chart
of the form G ×Gx Sx for a choice of one point x in each G-orbit of M can be
refined to a locally finite cover by shrinking the Sx ; hence, we can form a complete
transversal S to the foliation of M by G-orbits by taking the (possibly disconnected)
union of slices Sx .

By [Crainic and Moerdijk 2001, Theorem 1 and Lemma 2], G n M is equiva-
lent to the groupoid given by the restriction (G n M)|S of G n M to a complete
transversal S (note that the essential equivalence of [Crainic and Moerdijk 2001]
corresponds to an equivalence in [Adem et al. 2007, Definition 1.42]; we use the
language of the latter for consistency). Moreover, (G n M)|S is étale. Since G n M
is proper and properness is preserved under equivalence, (G n M)|S is an orbifold
groupoid.

The next argument follows [Adem and Ruan 2003, Theorem 5.3], which treats
the case of 0 = Z.

Pick a homomorphism φ :0→G with nonempty fixed-point set in M . Since G
acts on M with discrete isotropy, CG(φ) clearly acts on M 〈φ〉 with discrete isotropy
and hence foliates M 〈φ〉 by (connected components of) CG(φ)-orbits. We construct
a complete transversal to this foliation from the complete transversal S.
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Pick a chart of the form (G ×Gx Sx) where the slice Sx is contained in S.
Then (G ×Gx Sx)

〈φ〉 is by definition the set of Gx(u, y) ∈ (G ×Gx Sx) such that
for all γ ∈ 0, there exists h ∈ Gx such that (φ(γ)u, y) = h(u, y), where again
h(u, y)= (uh−1, hy). We claim that (G×Gx Sx)

〈φ〉 is given by

(3-1)
{
Gx(u, y) ∈ (G×Gx Sx) : u−1(Imφ)u ≤ Gx , y ∈ S〈u

−1φu〉
x

}
.

Suppose u−1(Imφ)u ≤ Gx and y ∈ S〈u
−1φu〉

x . For each γ ∈ 0,

u−1φ(γ)−1u(u, y)= (u(u−1φ(γ)−1u)−1, u−1φ(γ)−1uy)

= (uu−1φ(γ)u, y)= (φ(γ)u, y).

Since u−1φ(γ)−1u ∈ Gx , it follows that the Gx -orbits Gx(φ(γ)u, y) = Gx(u, y).
This is true for each γ ∈ 0, so Gx(u, y) ∈ (Sx ×Gx G)〈φ〉.

Conversely, suppose the orbit Gx(u, y) is fixed by φ(γ) for each γ ∈ 0. Then
for each γ ∈ 0, there is an h ∈ Gx such that (φ(γ)u, y)= h(u, y)= (uh−1, hy). It
follows that φ(γ)u = uh−1, so that u−1φ(γ)u = h−1

∈ Gx . Also, y = hy so that

y ∈ S〈h〉x = S〈u
−1φ(γ)−1u〉

x .

This is true for each γ ∈ 0, so u−1(Imφ)u ≤ Gx and y ∈ S〈u
−1φu〉

x , proving the
expression in (3-1) of (G×Gx Sx)

〈φ〉.
Now, let Oφ be the collection of ψ : 0 → Gx ≤ G that are conjugate to φ

in G. Then Gx acts on
∐
ψ∈Oφ

(S〈ψ〉x , ψ) via h(y, ψ)= (hy, hψh−1). We let [y, ψ]
denote the Gx -orbit of (y, ψ). Define the map

E : (G×Gx Sx)
〈φ〉
→

( ∐
ψ∈Oφ

(S〈ψ〉x , ψ)
)/

Gx , Gx(u, y) 7→ [y, u−1φu].

This map is well defined, since for h ∈ Gx ,

E(Gx h(u, y))= E(Gx(uh−1, hy))= [hy, hu−1φuh−1
]

= h[y, u−1φu] = [y, u−1φu] = E(u, y).

Note that y ∈ S〈u
−1φu〉

x whenever Gx(u, y) ∈ (G ×Gx Sx)
〈φ〉, and note further that

the map E is clearly smooth, both observations by virtue of (3-1).
The map E is not injective. However, we claim that E(Gx(u, y))=E(Gx(v, y′))

if and only if there is a z ∈ CG(φ) such that z(Gx(u, y)) = Gx(v, y′), that is,
(zu, y)= h(v, y′)= (vh−1, hy′) for some h ∈ Gx . If this is the case, then

(u, y)= (z−1vh−1, hy′),
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so that

E(Gx(u, y))= [y, u−1φu] = [hy′, (z−1vh−1)−1φz−1vh−1
]

= [hy′, hv−1zφz−1vh−1
] = h[y′, v−1φv]

= [y′, v−1φv] = E(Gx(v, y′)).

Conversely, if E(Gx(u, y))=E(Gx(v, y′)), then [y, u−1φu] = [y′, v−1φv], so that
there is an h ∈ Gx such that (y, u−1φu) = h(y′, v−1φv) = (hy′, hv−1φvh−1). It
follows that y = hy′ and u−1φu = hv−1φvh−1, that is, that φ = vh−1u−1φuhv−1.
Hence, letting z = vh−1u−1, we have that z ∈ CG(φ) and zu = vh−1, so that
(zu, y)= (vh−1, hy′).

To see that this map is surjective, let

[y, ψ] ∈
∐
ψ∈Oφ

(S〈ψ〉x , ψ);

then there is a u ∈ G such that uψu−1
= φ. Then (u, y) ∈ (G ×Gx Sx)

〈φ〉 and
E(Gx(u, y))= [y, ψ].

With this, we see that E induces a diffeomorphism from (G ×Gx Sx)
〈φ〉/CG(φ)

onto
(∐

ψ∈Oφ
(S〈ψ〉x , ψ)

)
/Gx . Let (ψ)Gx

∼
denote the Gx -conjugacy class of ψ , to

distinguish it from the G-conjugacy class. Recall from the proof of Lemma 2.3
that the strong equivalence

Gx n
∐

ψ∈Hom(0,Gx )

(S〈ψ〉x , ψ)→
∐

(ψ)Gx
∼

∈Oφ/Gx

CGx (ψ)n S〈ψ〉x

restricts to an equivalence

Gx n
∐

ψ0∈(ψ)Gx
∼

(S〈ψ〉x , ψ)→ CGx (ψ)n S〈ψ〉x

for each
Gx
∼-class (ψ)Gx

∼
. Noting that Oφ clearly consists of entire

Gx
∼-classes, we

have that there is an equivalence

Gx n
∐
ψ∈Oφ

(S〈ψ〉x , ψ)→
∐

(ψ)Gx
∼

∈Oφ/Gx

CGx (ψ)n S〈ψ〉x ,

where the Gx -action on Oφ is by conjugation. This implies that there is a diffeo-
morphism

(3-2)
( ∐
ψ∈Oφ

(S〈ψ〉x , ψ)
)
/Gx →

∐
(ψ)Gx

∼

∈Oφ/Gx

S〈ψ〉x /CGx (ψ).
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Note that (G×Gx Sx)
〈φ〉 is empty unless φ is conjugate in G to a homomorphism

with image in Gx . Choose one representative ψ from each Gx -conjugacy class
(ψ)Gx

∼
. Recall that the map E is constant on CG(φ)-orbits. From its definition, E

maps the submanifold S〈ψ〉x of the slice Sx to the Gx -orbit of (S〈ψ〉x , ψ). Moreover,
if ψ is the chosen representative of the conjugacy class (ψ)Gx

∼
, the equivalence in

Lemma 2.3 maps (S〈ψ〉x , ψ) onto S〈ψ〉x . It follows from this diffeomorphism and
these observations that the disjoint union

Sx =
∐

(ψ)Gx
∼

∈Oφ/Gx

S〈ψ〉x

is a complete transversal to the foliation of (G ×Gx Sx)
〈φ〉 by connected compo-

nents of CG(φ)-orbits. Forming Sx for each chart for S as above, the (possibly
disconnected) union S̃ of the Sx forms a complete transversal to the foliation of
M 〈φ〉 by the CG(φ)-action.

As usual, let (G n M)|0S denote the groupoid of 0-sectors for the orbifold
groupoid (GnM)|S , constructed as in Section 2B. Note that the space of objects of
(G n M)|S is simply S, while the arrows of (G n M)|S are given by (g, x)∈G× S
such that gx ∈ S. Clearly, then, the isotropy group of a point x ∈ S is simply Gx , the
isotropy group of x as a point in M . It follows that the space of objects of (GnM)|0S
is the set of homomorphisms ψx : 0→ Gx for x ∈ S with local charts given by
V 〈ψx 〉

x . Since the action of an arrow (g, x) in (G n M)|S is given by gφx g−1,
yielding a homomorphism from 0 into Ggx , the groupoid (GnM)|0S is isomorphic
to the restriction of the groupoid CG(φ)n M 〈φ〉 to the complete transversal S̃ given
above. This is true for each (φ)∈ t0M;G , so there is an equivalence from (G n M)|0S
to G n

∐
φ∈Hom(0,G) M 〈φ〉. Hence (G n M)|0S and (M;G)0 are Morita equivalent

by Lemma 2.3.
To complete the proof, suppose G is any orbifold groupoid Morita equivalent

to G n M . Then G is Morita equivalent to (G n M)|S via étale groupoids by
Lemma 2.5, implying by [FS 2010, Lemma 2.5] that the 0-sectors of the two
groupoids are Morita equivalent. �

Corollary 3.6. Let G be a Lie group that acts smoothly on the smooth manifold M
satisfying conditions (i), (ii), and (iii), so that G n M presents an orbifold Q. Let
0 be a finitely generated discrete group. Then (M;G)0 is Morita equivalent to an
orbifold groupoid and hence presents an orbifold.

Though Example 3.2 shows the correspondence T 0
Q 3 (φx)≈ 7→ (ζ ◦φx)∼ ∈ t0M;G

is not injective, it is clearly surjective. By Theorems 3.1 and 3.5 and the fact that
≈-classes are precisely connected components of Q̃0 = |G

0
|, it is clear that each

≈-class corresponds to a connected component of a ∼-class of (M;G)0.
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With this, we note that the equivalence ≈ defined in Section 2B on objects of
G0 can be expressed naturally on either model of (M;G)0. Using the groupoid
(M;G)0 of Definition 2.1, we say (x, φ)≈ (y, φ) for (x, φ), (y, φ) ∈ M 〈φ〉 if the
orbits CG(φ)x and CG(φ)y are on the same connected component of M 〈φ〉/CG(φ).
Similarly, using the Morita equivalent groupoid representing (M;G)0 given by
Lemma 2.3, we say that (x, φ)≈ (y, φ′) for two points

(x, φ), (y, φ′) ∈
∐

ψ∈Hom(0,G)

(M 〈ψ〉, ψ)

whenever there is a g ∈ G such that gφ′g−1
= φ and such that the orbits G(x, φ)

and G(y, φ′)= G(gy, φ) are on the same connected component of( ∐
ψ∈Hom(0,G)

(M 〈ψ〉, ψ)
)/

G.

Clearly, the three definitions of≈ coincide in that they define the same equivalence
classes on the quotient space, and the ≈-classes correspond exactly to connected
components. We let (x, φ)≈ denote the ≈-class of the point (x, φ) in either case
and T 0

M;G the set of ≈-classes. Then T 0
M;G and T 0

Q obviously coincide.
In the same way, the definitions in [FS 2010, Section 3] can be reformulated

from the perspective of a presentation as a quotient. Let (x, φ)≈, (y, ψ)≈ ∈ T 0
M;G

and let (M 〈φ〉/CG(φ))x and (M 〈ψ〉/CG(ψ))y denote the connected components of
M 〈φ〉/CG(φ) and M 〈ψ〉/CG(ψ) containing the orbits of x and y, respectively. We
say that (x, φ)≈ ≤ (y, ψ)≈ if

π
(
(M 〈φ〉/CG(φ))x

)
⊆ π

(
(M 〈ψ〉/CG(φ))y

)
,

where π : (M;G)0 → M/G denotes the map CG(φ)(x, φ) 7→ Gx . Similarly, 0
covers the local groups of Q if, for every H ≤ G such that M H

6= ∅, there is a
surjective homomorphism φ : 0→ H .

3C. Connections between 0-sectors and other sectors. The definition of the 0-
sectors was motivated by that of the inertia orbifold and the k-multisectors given
in [Adem et al. 2007, pages 52–53]; see also [Chen and Ruan 2004]. Hence, the
0-sectors generalize the definition of the multisectors, as follows.

Proposition 3.7. Let Q be an orbifold presented by the orbifold groupoid G and
let Fk denote the free group on l-generators. The groupoids G n Sk

G and G n SFk
G

are isomorphic, and Q̃Fk is diffeomorphic to the space of k-multisectors Q̃k .

Proof. This follows almost immediately from the definition. Let Fk be generated
by γ1, . . . , γk , and recall from [Adem et al. 2007] that Sk

G is defined to be the set

{(g1, . . . , gk) : gi ∈ G1, s(gi )= t (g j ) for all i, j ≤ k}.
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To each (g1, . . . , gk) ∈ Sk
G with s(gi ) = t (g j ) = x , there is a unique homomor-

phism φx : Fk → Gx such that φx(γi ) = gi . It is obvious that the identification
(g1, . . . , gk) 7→ φx is a homeomorphism Sk

G→ SFk
G . With this, we need only note

that the action of G on Sk
G and SFk

G are defined identically, and hence the result
follows by an application of Lemma 2.6. �

Corollary 3.8. Let G be an orbifold groupoid. Then GZ is isomorphic as a groupoid
to the inertia groupoid 3G. In particular, the space of Z-sectors Q̃Z is diffeomor-
phic to the inertia orbifold Q̃.

Leida [2005] defines the fixed-point sectors of an orbifold groupoid G. Recall
that Leida defines S̃(G)={(x, H) | x ∈G0, H ≤Gx}, and G̃=GnS̃(G). Similarly,
for each subgroup H of G1, S̃H (G) is the subset {(x, K ) | K ∼= H}. Define the
map % : S0G → S̃(G), φx 7→ (x, Imφx). For each point (x, Imφx) = %(φx) in the
image of %, there is a neighborhood Vx of x in G0 such that the restriction G|Vx

is isomorphic to Gx n Vx . This corresponds to a neighborhood of (x, Imφx) in
S̃Imφx (G) diffeomorphic to V 〈φx 〉

x such that the restriction of G̃Imφx is isomorphic to
NGx (Imφx)nV 〈φx 〉

x [Leida 2005, Section 2.2]; NGx (Imφx) denotes the normalizer
of Imφx in Gx . Similarly, there is a neighborhood of φx in S0G such that the restric-
tion of G0 is isomorphic to CGx (φx)n V 〈φx 〉

x . When restricted to these neighbor-
hoods, the map % is simply the embedding of CGx (φx)nV 〈φx 〉

x into NGx (φx)nV 〈φx 〉
x .

If ψx is another point with %(ψx)= (x, Imφx), then Imψx = Imφx , so that

CGx (ψx)n V 〈ψx 〉
x = CGx (φx)n V 〈φx 〉

x .

If a point (x, Imφx) is in the image of %, then every point in G̃Imφx is in the
image of %. To see this, note that if (y, H) ∈ S̃Imφx (G), then since H is isomor-
phic to Imφx , there is a homomorphism ψy : 0→ G y with image H . It follows
that %(ψy) = (y, H). It need not be the case that ψy ≈ φx . However, using the
techniques of [FS 2010, Lemma 3.2], it is easy to see that the images of 0-sectors
(φ) via % are entire connected components of G̃. In particular, if (x, Imφx) and
(y, H) are in the same connected component of a fixed-point sector G̃Imφx = G̃H ,
then they are connected by a path in G̃H and hence a finite number of charts of
the form NGxi

(Hi )n V Hi
xi with each Hi isomorphic. Arrows g ∈ G1 connecting

orbits of points in V Hi
xi to those in V Hi+1

xi+1 act on homomorphisms with images in
Hi , resulting in homomorphisms with images in Hi+1. Therefore, a sequence of
homomorphisms φxi can be defined in each chart, showing that there is a φy ≈ φx

with %(φy)= (y, H).
If 0 covers the local groups of Q — that is, if for each subgroup H ≤ Gx of an

isotropy group of Q, there is a surjective homomorphism 0→ H — then it is clear
that each (x, H) is the image via % of a φx with Imφx = H . Hence, % is surjective,
and we have the following.
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Proposition 3.9. Let 0 be a finitely generated discrete group and G an orbifold
groupoid presenting the orbifold Q. Each 0-sector of Q is an orbifold cover of a
connected component of each G̃Imφx (G). If φx is chosen to have minimal isotropy
in (φ), then the 0-sector (φ) is a [NGx (φx) : CGx (φx)]-cover of the corresponding
fixed-point sector. If 0 covers the local groups of Q, then each connected compo-
nent of each G̃H is orbifold-covered by a 0-sector.

Since the homotopy groups of an orbifold groupoid G are Morita invariant, the
homotopy groups of the 0-sectors are Morita invariants for each finitely generated
discrete group 0. See [Leida 2005; Chen 2006; Henriques and Gepner 2007] for
more on homotopy theory and homotopy groups of orbifolds and orbispaces.

4. A model of the 0-sectors using generalized loop spaces

In [LU 2002], it is shown that the inertia orbifold of an orbifold Q occurs in the
context of the loop space of Q. It appears as the subset of constant loops or equiv-
alently the set of loops fixed by the natural S1-action on the loop space. In this
section, we show how this construction can be generalized to demonstrate that
the 0-sectors of an orbifold arise in the same way when considering maps from a
closed manifold M0 with fundamental group 0. See [Tamanoi 2003] for similar
results for global quotients from a different perspective.

Many of the results in this section can be proved by direct generalizations of
arguments in [LU 2002] once the appropriate definitions are given. Hence, we
will thoroughly describe the definitions and refer the reader to [LU 2002], noting
any nontrivial changes. Throughout this section, we let Q be an arbitrary smooth
orbifold represented by the orbifold groupoid G.

4A. The M0-multiloop space of an orbifold. In this subsection, we develop a
groupoid structure for a manifold M0 with fundamental group 0. This construction
generalizes that of [LU 2002, Sections 3.1–3.2] for the case of 0=Z and M0= S1.

Let 0 be a finitely generated discrete group, let M0 be a smooth manifold with
fundamental group 0, and let M be the universal cover of M0, so that M/0=M0.
We let π0 : M → M0 denote the covering projection. Fix a metric on M0 and
consider a cover U = {Un}n∈N of M0 that is (1/n)-admissible; that is, each Un is
evenly covered and has diameter≤1/n. Note that if M0 is compact, we can assume
that U is finite. Let W be the cover of M formed by the connected components
of the sets π−1

0 (Ui ) for each Ui ∈ U. In other words, for each n ∈ N, choose one
connected component W 1

n of π−1
0 (Un) and let W γ

n =γW 1
n . Then W={W γ

n }n∈N,γ∈0.
Set Wn = π

−1
0 (Un) =

∐
γ∈0W γ

n , and define the groupoid MW to be the groupoid
associated to the covering W of M . That is, for MW the set (MW)0 of units and
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the set (MW)1 of arrows are respectively given by

(MW)0 =
∐

n∈N,γ∈0

W γ
n and (MW)1 =

∐
n,m∈N;γ,δ∈0

W γ
n ∩W δ

m .

We let (x,W γ
n ) denote the object associated to x ∈W γ

n ⊆ M to distinguish it from
(x,W δ

m) in the case where x ∈W γ
n ∩W δ

m . When the specific translate of W 1
n does not

concern us, we simply use (x,Wn). This introduces no ambiguity; 0 is the group
of deck translations of the manifold cover M → M0, so that x can be contained
in only one translate W γ

n of W 1
n . Similarly, we use W γ,δ

n,m to denote the connected
component W γ

n ∩W δ
m of (MW)1 and let Wn,m =

∐
γ,δ∈0 W γ,δ

n,m . Then (x,W γ,δ
n,m) or

simply (x,Wn,m) (again, with no ambiguity) denotes the arrow corresponding to
the point x ∈W γ,δ

n,m . The structure maps are defined by

sMW(x,W γ,δ
n,m)= (x,W γ

n ), iMW(x,W γ,δ
n,m)= (x,W δ,γ

m,n),

tMW(x,W γ,δ
n,m)= (x,W δ

m), uMW(x,W γ
n )= (x,W γ,γ

n,n );

a composable pair of arrows is of the form ((x,W ν,γ
t,n ), (x,W γ,δ

n,m)). We define the
composition by mMW((x,W ν,γ

t,n ), (x,W γ,δ
n,m))= (x,W ν,δ

t,m).

Define a left 0-action on MW by

0× (MW)0→ (MW)0, (γ′, (x,W γ
n )) 7→ (γ′x,W γ′γ

n ),

0× (MW)1→ (MW)1, (γ′, (x,W γ,δ
n,m )) 7→ (γ′x,W γ′γ,γ′δ

n,m ).

The following proposition is straightforward.

Proposition 4.1. The above is an action of the group 0 on the Lie groupoid MW.

Definition 4.2. Let MW
0 =0n MW be the groupoid crossed product of 0 with the

groupoid MW with respect to the above action of 0. In particular, we have

sMW
0
(γ, (x,Wn,m))= (x,Wn), iMW

0
(γ, (x,Wn,m))= (γ

−1, (γx,Wm,n)),

tMW
0
(γ, (x,Wn,m))= (γx,Wm), uMW

0
(x,Wn)= (1, (x,Wn,n));

a composable pair is of the form (γ, (x,Wl,n)), (δ, (γx,Wn,m)), with composition
given by

mMW
0

[
(γ, (x,Wl,n)), (δ, (γx,Wn,m))

]
= (γδ, (x,Wl,m)).

Proposition 4.3. The groupoid MW
0 is Morita equivalent to M0 with its trivial

groupoid structure.

Proof. In fact, there is a strong equivalence from MW
0 to M0 defined on objects

by (γ, (x,Wn)) 7→ π0(x), and on arrows by mapping (γ, (x,Wn,m)) to the unit
over π0(x). That this map is a strong equivalence is easy to check. �

The next proposition is proved in the same way.
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Proposition 4.4. If W̃ is a refinement of W, then the natural groupoid morphism
ρW̃

W : M
W̃
0 → MW

0 is a strong equivalence.

Proposition 4.3 implies that the Morita class of the groupoid MW̃
0 is independent

of the metric used to define it. Specifically, we may use Proposition 4.4 to see that
if given two metrics on M0 with corresponding covers U1 and U2 (inducing covers
W1 and W2 of M), one can define a strictly smaller metric and corresponding cover
U3 that refines both U1 and U2.

Definition 4.5. Let Q be a smooth orbifold presented by the orbifold groupoid G,
and let W be a cover of M constructed from an admissible cover of M0 as above.
The M0-multiloop groupoid of G corresponding to W is defined to be the groupoid
ML(W;G)M0

, where

(ML(W;G)M0
)0 = Hom(MW

0 ,G)

is the set of Lie groupoid homomorphisms from MW
0 to G. We define the arrows

in ML(W;G)M0
as follows. For any two elements8,9 ∈Hom(MW

0 ,G), an arrow
from 9 to 8 is a map 3 : (MW

0 )1→ (G)1 such that the diagram

(MW
0 )1

3 - G1

(MW
0 )0× (M

W
0 )0

sMW
0
× tMW

0

?
90×80 - G0×G0

s× t

?

commutes and such that for every (γ, (x,Wn)) ∈ (MW
0 )1, we have

(4-1) 3(γ, (x,Wn))=91(γ, (x,Wn))3[uMW
0
◦ sMW

0
(γ, (x,Wn))]

=3[uMW
0
◦ tMW

0
(γ, (x,Wn))]81(γ, (x,Wn)),

where as usual 81 and 91 denote the maps on arrows given by 8 and 9, respec-
tively. The product above is taken in G1, so that the target of the right element is
equal to the source of the left.

If 3 :9→8 and � :8→4, then the composition � ◦3 is defined by

� ◦3[uMW
0
◦ tMW

0
(γ, (x,Wn))]

=3[uMW
0
◦ tMW

0
(γ, (x,Wn))]�[uMW

0
◦ tMW

0
(γ, (x,Wn))],

� ◦3(γ, (x,Wn))=� ◦3[uMW
0
◦ tMW

0
(γ, (x,Wn))]41(γ, (x,Wn)).

Under the compact-open topology, ML(W;G)M0
is a topological groupoid. For

each arrow in 3 ∈ML(W;G)M0
from 8 to 9, 3 ◦ uMW

M0
is a natural transforma-

tion from 8 to 9 [Adem et al. 2007, Definition 1.40].
Compare the following to [LU 2002, Definition 3.2.2].
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Definition 4.6. Let Q be a smooth orbifold presented by the orbifold groupoid G.
The M0-multiloop groupoid ML(G)M0 of G is the colimit of the ML(W;G)M0

over all admissible covers of M0 partially ordered by inclusion of cover charts.

Lemma 4.7. Let ML(G)M0 be the M0-multiloop groupoid of an orbifold Q pre-
sented by the orbifold groupoid G. Then any arrow 3 : 9 → 8 is completely
determined by 9 and by 3 ◦ uMW

0
(x,Wn) for any (x,Wn) ∈ (MW

0 )0.

Proof. It is straightforward from the definitions [LU 2002, Lemma 3.2.4]. On any
given Wn , 3 is determined by 9, by a single value 3◦uMW

0
(x,Wn), and by (4-1).

This determines3 on each chart Wm such that Wn∩Wm 6=∅, and hence recursively
on every chart. �

Proposition 4.8. Let ML(G)M0 be the M0-multiloop groupoid of an orbifold Q
presented by the orbifold groupoid G. Then ML(G)M0 is étale.

Proof. The proof is straightforward from the definitions. An arrow 3 :9→8 is
determined by 9 and a single value 3◦uMW

0
(x,Wn). The result then follows from

the fact that the isotropy groups of G are finite. �

Proposition 4.9. Let ML(Gi )M0 be the M0-multiloop groupoid of orbifolds Qi

presented by the orbifold groupoids Gi for i = 1, 2. A groupoid homomorphism
e : G1→ G2 induces a homomorphism

eML :ML(G1)M0 →ML(G2)M0

of M0-multiloop groupoids. If e is a strong equivalence, then eML is a strong
equivalence.

Proof. See the proof of [LU 2002, Definition 3.4.1 and Lemma 3.4.2]. �

4B. The M0-multiloops when 0 is a subgroup of a contractible abelian group.
In this section, we assume that 0 is a subgroup of a contractible abelian Lie
group T ; in the notation of Section 4A, T = M and T/0 = M0. Following
[LU 2002, Section 3.6], we recover the 0-sectors of Q from the fixed points of
the T/0-multiloop groupoid. First, we define a T -action on the T/0-multiloop
groupoid ML(G)T/0.

Definition 4.10. Suppose 0 is a subgroup of a contractible abelian Lie group T .
Let ML(W;G)T/0 be the T/0-multiloop groupoid associated to the cover W of
T given by Definition 4.5. For each Wn =

∐
γ∈0 W γ

n and t ∈ T , let W t
n denote the

translate tWn = {t x : x ∈ Wn}, and let Wt denote the translated cover {W t
n}n∈N.

This introduces no ambiguity; W t
n has the same meaning as in Section 4A when

t ∈0≤ T . Then T acts on
∐

t∈T Wt via (s, (x,W t
n)) 7→ (sx,W st

n ) for s ∈ T . Since
T is abelian, this action descends to a T -action on the cover

∐
n∈N,t0∈T/0 U t0

n of
T/0-translates of U in the same way.



GENERALIZED TWISTED SECTORS OF ORBIFOLDS 69

Now define an action of T on
∐

t∈T ML(Wt
;G)T/0 by

T ×
(∐

t∈T

ML(Wt
;G)T/0

)
0
→

(∐
t∈T

ML(Wt
;G)T/0

)
0
, (t, 9) 7→9 t ,

where 9 t is defined by

9 t
0(x,W t

n)=9(t
−1x,Wn) and 9 t

1(γ, (x,W t
n,m))=91(γ, (t−1x,Wn,m)).

Taking the colimit, we obtain an action of T on ML(G)T/0.

Now consider the subgroupoid ML(G)TT/0 of ML(G)T/0 consisting of elements
fixed by the action of T . In Theorem 4.13, we will show that ML(G)TT/0 is Morita
equivalent to G0, the groupoid presenting the 0-sectors of Q. This coincides with
[LU 2002, Theorem 3.6.4 and Proposition 3.6.6] when 0 = Z; see also [de Fernex
et al. 2006]. The next two lemmas can be proved in the same way as in [LU 2002,
Lemmas 3.6.2 and 3.6.3]. We give the proof of Lemma 4.12 explicitly, as it is
important for the proof of Theorem 4.13.

Lemma 4.11. For any object 9 of ML(G)TT/0, 90 and 91 are locally constant.

Lemma 4.12. For any object 9 of ML(G)TT/0, there exists another object 8 of
ML(G)TT/0 defined over the trivial cover of T by one chart such that there is an
arrow 3 connecting 9 and 8.

Proof. Given a point (x,W )∈ (T W)0, if (y,W ′)∈ (T W)0 is another point in (T W)0,
then there exists a finite collection W 1, . . . ,W r of sets in the cover W such that
W 1
=W , W r

=W ′, and W i
∩W i+1

6=∅ in T for i = 1, 2, . . . , r − 1.
For each (zi ,W i ) such that zi ∈W i

∩W i+1, we have that91(1, (zi ,W i
∩W i+1))

is an arrow from 90(zi ,W i ) to 90(zi ,W i+1). Define the arrow Ai+1
i (zi ) ∈ (T W)1

from 90(zi ,W i ) to 90(zi ,W i+1) by Ai+1
i (zi )=91(1, (zi ,W i

∩W i+1)), and note
that since 90 and 91 are locally constant by Lemma 4.11, Ai+1

i does not depend
on zi . Choosing one zi ∈W i

∩W i+1 for each i , we set

AW ′
W =91(1, (zr−1,W r−1

∩W r ))91(1, (zr−2,W r−2
∩W r−1))

· · ·91(1, (z1,W 1
∩W 2)).

The definition of AW ′
W depends only on the sets W and W ′, and that (AW ′

W )−1
= AW

W ′ .
Define a morphism 8 : T W

0 → G by

80(z,Wn)=90(x,W ) and 81(γ, (z,Wn,m))= AWm
Wn
91(γ, (z,Wm,n))A

Wm
Wn
.

Because 91 is locally constant, we have for each z ∈Wn,m that

81(1, (z,Wn,m))=91(1, (z,Wn,m)),

81(γ, (z,Wn,m))=91(γ, (z,Wn,m)).
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Hence we can define 8 on the trivial cover of T consisting of points (z, T ) by

80(z, T )=80(x,W ) and 81(γ, (z, T ))=81(γ, (z,Wn,m)),

whenever z ∈Wn ∩Wm . Lastly, we define an arrow 3 :9→8 by

3(1, (z,Wn,m))= AWm
Wn
. �

Theorem 4.13. There is a strong equivalence from ML(G)TT/0 to the groupoid G0

of 0-sectors of Q.

Proof. See the proof of [LU 2002, Theorem 3.6.4]. Given9 ∈ML(G)TT/0, let8 be
as in the proof of Lemma 4.12. Since 80 is locally constant, 80(y, T )=80(1, T )
for each y ∈ T . We have

s ◦81(γ, (y, T ))=80(y, T )=80(γy, T )= t ◦81(γ, (y, T )),

so that each 81(γ, (y, T )) is an element of the isotropy group G80(y) = G80(1).
Hence, we can define a homomorphism φ : 0→ G80(1) by φ(γ)=81(γ, (1, T )).
Clearly, the correspondence 9 7→ φ is surjective, since given any φx : 0→ Gx ,
one can define a 9 ∈ ML(G)TT/0 with 90(y, T ) = x and 91(γ, (y, T )) = φx(γ).
That this correspondence is a strong equivalence of groupoids is straightforward
to demonstrate. �

It follows that ML(G)TT/0 is Morita equivalent to G0.
Chen [2006, Proposition 3.5.3] proved that in the case of a proper étale topo-

logical groupoid G representing an orbispace such that the space of objects is a T1

space, there is an identification similar to that given by Theorem 4.13 on the level
of orbispaces for the case 0=Z. Using exactly the same proof with the definitions
given above and Equation (2-1), we have the following.

Proposition 4.14. Let X be an étale proper orbispace, that is, an orbispace rep-
resented by the étale proper groupoid G, such that G0 is a T1 space. Let 0 be
a discrete subgroup of a contractible abelian Lie group T . Then the orbit space
|ML(G)TT/0| of the groupoid ML(G)TT/0 is homeomorphic to |G0|.

4C. The M0-multiloop and the 0-sectors in the general case. In the general case
of M0 an arbitrary manifold with fundamental group 0 and universal cover 0, we
have a correspondence similar to Theorem 4.13. In this case, we use the groupoid
of constants, a subgroupoid of ML(G)M0 .

Definition 4.15. Let Q be an orbifold presented by the orbifold groupoid G. The
groupoid of constants C(G)M0 of ML(G)M0 is defined to be the subgroupoid of
ML(G)M0 consisting of the 8 such that σ ◦8 is constant. Recall that σ : G→ |G|
denotes the quotient map onto the orbit space of G.
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Theorem 4.16. There is a strong equivalence between the groupoid of constants
C(G)M0 and the groupoid G0 of 0-sectors of Q.

The proof is identical to that of Theorem 4.13.

4D. The M0-multiloops of a quotient orbifold. In this section, we specialize to
the case where M0 is compact and Q is presented as the quotient of a smooth
connected manifold X by a compact Lie group G acting locally freely (that is,
properly with discrete stabilizers). In the case of G finite, a very explicit charac-
terization of the loop space is given in [LU 2002, Section 4.1], where it was shown
that it is enough to consider only the homomorphisms defined on the trivial cover.
Here, we briefly explain how this characterization extends readily to the case of
G compact and the M0-multiloops. Throughout this section, we let G denote an
orbifold groupoid Morita equivalent to G n X . In particular, we can take G to be
given by a collection of slices for the G-action as in Theorem 3.5.

The proof of the following is similar to that of Lemma 4.12 and, given the
modifications outlined in Definitions 4.2, 4.5, and 4.15 and the local structure of
quotient orbifolds demonstrated by Theorem 3.5, identical to that of [LU 2002,
Lemma 4.1.1].

Proposition 4.17. Let Q be a quotient orbifold presented by G n X with G a
compact Lie group acting locally freely on the smooth manifold X. Let ML(G)M0

be the M0-multiloops for M0 compact. Then for any morphism9 :MW
0 →G, there

is a morphism 8 : M {M}0 → G subordinate to the trivial cover of M0 by M and an
arrow connecting 9 to 8.

Similarly, a morphism 9 subordinated to the trivial cover of M0 is determined
by the image of

∐s
i=1{γi }×M under 91 where {γ1, . . . , γs} is a set of generators

of 0; compare [LU 2002, Section 3.3].

Lemma 4.18. Let Q be a quotient orbifold presented by G n X with G a compact
Lie group acting locally freely on the smooth manifold X. Every morphism in
9 ∈ML(G)M0 subordinated to the trivial cover of M0 is determined by the image
of
∐s

i=1{γi }×M under 91, where {γ1, . . . , γs} is a set of generators of 0.

Proof. Pick a set of generators {γ1, . . . , γs} of 0 and let (γ, x) ∈ 0×M . Then if
γ = γ

β1
α1 . . . γ

βn
αn is an expression of γ in terms of these generators, we have

(γ, x)= (γα1, γ
β1−1
α1
· · · γβn

αn
x) · · · (γαn , γαn x)(γαn , x).

It follows that

91(γ, x)=91(γα1, γ
β1−1
α1
· · · γβn

αn
x) · · ·91(γαn , γαn x)91(γαn , x). �

Fixing a generating set {γ1, . . . , γs} of 0, it follows that there is a bijective
correspondence between the morphisms 9 subordinated to the trivial cover of M0
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in ML(G)0 and the set of pairs ( f,2), where 2 = {g1, . . . , gs} is an s-tuple of
elements of G satisfying the same relations as the γi , and f : M→ X is a smooth
map such that gi f (x)= f (γi x) for each i = 1, . . . s. Let P2 denote the set of all
such pairs. Similarly, let 3 be an arrow between homomorphisms 9 = ( f,2) and
8= ( f ′, ϒ) with2={g1, . . . , gs} and ϒ ={k1, . . . , ks}. Because X is connected,
there is an h ∈ G such that ki = hgi h−1 and h f (x) = f ′(x) for each i = 1, . . . s
and x ∈ M . Then the following is a consequence of Lemma 4.7.

Proposition 4.19. Let G act on P2 via

[h, ( f,2)] 7→ (h f, h2h−1),

where h2h−1 indicates pointwise conjugation of the s-tuple 2. The crossed prod-
uct groupoid G n P2 is Morita equivalent to the orbifold M0-multiloop groupoid
ML(G)M0 of Q.

For each s-tuple 2= (g1, . . . , gs), let CG(2) denote the centralizer of the sub-
group generated by the gi . Techniques identical to those in Lemma 2.3 demonstrate
that the crossed-product groupoid G n P2 is Morita equivalent to∐

(2)

(CG(2)n P2),

where the sum is over the G-conjugacy classes (2) of the s-tuples 2. Therefore:

Corollary 4.20. The groupoid
∐
(2)(CG(2) n P2) is Morita equivalent to the

orbifold M0-multiloop groupoid ML(G)M0 of Q.

In [Tamanoi 2003, Equation 2-12, page 808], the multiloop 0-sectors for global
quotients are given by

LM0 (X;G)=
∐
(φ)

Mapφ(M; X)/CG(φ),

where the space Mapφ is defined as

Mapφ(M; X)= { f : M→ X | f (γx)= φ(γ) f (x) for all x ∈ M, γ ∈ 0}

(with notation modified to our case, and the 0-action on M expressed as a left
action). Hence LM0 coincides with the groupoid in Corollary 4.20 in the case of G
finite.

Restricting to the groupoid of constant maps ( f,2) in ML(G)M0
as we did in

Definition 4.15, we have that if 2= (g1, . . . , gs), then

gi f (x)= f (γi x)= f (x) for each x ∈ X and i = 1, . . . , s.

Hence the image of f is fixed by each gi .
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Corollary 4.21. The subgroupoid of constants CL(G)M0
of ML(G)0 is given by∐

(2)

(CG(2)n X 〈2〉),

where the sum is over the G-conjugacy classes (2) of the s-tuples2, and is Morita
equivalent to the groupoid G0 presenting the 0-sectors Q̃0.

Acknowledgment

Farsi thanks the Mathematical Sciences Research Institute for its hospitality during
the preparation of this paper.

References

[Adem and Ruan 2003] A. Adem and Y. Ruan, “Twisted orbifold K -theory”, Comm. Math. Phys.
237:3 (2003), 533–556. MR 2004e:19004 Zbl 1051.57022

[Adem et al. 2007] A. Adem, J. Leida, and Y. Ruan, Orbifolds and stringy topology, Cambridge
Tracts in Mathematics 171, Cambridge University Press, 2007. MR 2009a:57044 Zbl 1157.57001

[Boileau et al. 2003] M. Boileau, S. Maillot, and J. Porti, Three-dimensional orbifolds and their
geometric structures, Panoramas et Synthèses 15, Société Mathématique de France, Paris, 2003.
MR 2005b:57030 Zbl 1058.57009

[Bryan and Fulman 1998] J. Bryan and J. Fulman, “Orbifold Euler characteristics and the number
of commuting m-tuples in the symmetric groups”, Ann. Comb. 2:1 (1998), 1–6. MR 2000f:20002
Zbl 0921.55003

[Chen 2006] W. Chen, “On a notion of maps between orbifolds, II: Homotopy and CW-complex”,
Commun. Contemp. Math. 8:6 (2006), 763–821. MR 2007g:57045 Zbl 1108.22002

[Chen and Ruan 2004] W. Chen and Y. Ruan, “A new cohomology theory of orbifold”, Comm. Math.
Phys. 248:1 (2004), 1–31. MR 2005j:57036 Zbl 1063.53091

[Crainic and Moerdijk 2001] M. Crainic and I. Moerdijk, “Foliation groupoids and their cyclic ho-
mology”, Adv. Math. 157:2 (2001), 177–197. MR 2002a:22004 Zbl 0989.22010

[tom Dieck 1987] T. tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8, de
Gruyter, Berlin, 1987. MR 89c:57048 Zbl 0611.57002

[de Fernex et al. 2006] T. de Fernex, E. Lupercio, T. Nevins, and B. Uribe, “A localization principle
for orbifold theories”, pp. 113–133 in Recent developments in algebraic topology, edited by A.
Adem et al., Contemp. Math. 407, Amer. Math. Soc., Providence, RI, 2006. MR 2007e:58030
Zbl 1126.58012

[FS 2010] C. Farsi and C. Seaton, “Nonvanishing vector fields on orbifolds”, Trans. Amer. Math.
Soc. 362:1 (2010), 509–535. MR 2550162

[Henriques and Gepner 2007] A. Henriques and D. Gepner, “Homotopy theory of orbispaces”,
preprint, 2007. arXiv math/0701916

[Henriques and Metzler 2004] A. Henriques and D. S. Metzler, “Presentations of noneffective orb-
ifolds”, Trans. Amer. Math. Soc. 356:6 (2004), 2481–2499. MR 2005a:58027 Zbl 1060.58013

[Kawasaki 1978] T. Kawasaki, “The signature theorem for V -manifolds”, Topology 17:1 (1978),
75–83. MR 57 #14072 Zbl 0392.58009

http://www.ams.org/mathscinet-getitem?mr=2004e:19004
http://www.emis.de/cgi-bin/MATH-item?1051.57022
http://www.ams.org/mathscinet-getitem?mr=2009a:57044
http://www.emis.de/cgi-bin/MATH-item?1157.57001
http://www.ams.org/mathscinet-getitem?mr=2005b:57030
http://www.emis.de/cgi-bin/MATH-item?1058.57009
http://dx.doi.org/10.1007/BF01626025
http://dx.doi.org/10.1007/BF01626025
http://www.ams.org/mathscinet-getitem?mr=2000f:20002
http://www.emis.de/cgi-bin/MATH-item?0921.55003
http://dx.doi.org/10.1142/S0219199706002283
http://www.ams.org/mathscinet-getitem?mr=2007g:57045
http://www.emis.de/cgi-bin/MATH-item?1108.22002
http://dx.doi.org/10.1007/s00220-004-1089-4
http://www.ams.org/mathscinet-getitem?mr=2005j:57036
http://www.emis.de/cgi-bin/MATH-item?1063.53091
http://dx.doi.org/10.1006/aima.2000.1944
http://dx.doi.org/10.1006/aima.2000.1944
http://www.ams.org/mathscinet-getitem?mr=2002a:22004
http://www.emis.de/cgi-bin/MATH-item?0989.22010
http://www.ams.org/mathscinet-getitem?mr=89c:57048
http://www.emis.de/cgi-bin/MATH-item?0611.57002
http://www.ams.org/mathscinet-getitem?mr=2007e:58030
http://www.emis.de/cgi-bin/MATH-item?1126.58012
http://dx.doi.org/10.1090/S0002-9947-09-04938-1
http://www.ams.org/mathscinet-getitem?mr=2550162
http://arxiv.org/abs/math/0701916
http://dx.doi.org/10.1090/S0002-9947-04-03379-3
http://dx.doi.org/10.1090/S0002-9947-04-03379-3
http://www.ams.org/mathscinet-getitem?mr=2005a:58027
http://www.emis.de/cgi-bin/MATH-item?1060.58013
http://dx.doi.org/10.1016/0040-9383(78)90013-7
http://www.ams.org/mathscinet-getitem?mr=57:14072
http://www.emis.de/cgi-bin/MATH-item?0392.58009


74 CARLA FARSI AND CHRISTOPHER SEATON

[Kawasaki 1979] T. Kawasaki, “The Riemann–Roch theorem for complex V -manifolds”, Osaka J.
Math. 16:1 (1979), 151–159. MR 80f:58042 Zbl 0405.32010

[Kawasaki 1981] T. Kawasaki, “The index of elliptic operators over V -manifolds”, Nagoya Math.
J. 84 (1981), 135–157. MR 83i:58095 Zbl 0437.58020

[Leida 2005] J. Leida, “Orbifolds and stable homotopy groups”, preprint, 2005. arXiv math/0505431

[LU 2002] E. Lupercio and B. Uribe, “Loop groupoids, gerbes, and twisted sectors on orbifolds”, pp.
163–184 in Orbifolds in mathematics and physics (Madison, WI, 2001), edited by A. Adem et al.,
Contemp. Math. 310, Amer. Math. Soc., Providence, RI, 2002. MR 2004c:58043 Zbl 1041.58008

[Moerdijk 2002] I. Moerdijk, “Orbifolds as groupoids: An introduction”, pp. 205–222 in Orbifolds
in mathematics and physics (Madison, WI, 2001), edited by A. Adem et al., Contemp. Math. 310,
Amer. Math. Soc., Providence, RI, 2002. MR 2004c:22003 Zbl 1041.58009
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