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AN ORTHOGONAL APPROACH TO THE SUBFACTOR OF A
PLANAR ALGEBRA

VAUGHAN JONES, DIMITRI SHLYAKHTENKO AND KEVIN WALKER

By changing to an orthogonal basis, we give a short proof that the subfactor
of the graded algebra of a planar algebra reproduces the planar algebra.

1. Introduction

Starting from a subfactor planar algebra, Guionnet, Jones and Shlyakhtenko [2007]
constructed a tower of II1 factors whose standard invariant is precisely the given
planar algebra. The construction was entirely in terms of planar diagrams and gave
an alternate, diagrammatic proof of a result of Popa [1995]. The inspiration for the
paper was from the theory of large random matrices, where expected values of
words on random matrices give rise to a trace [Voiculescu 1985] on the algebra
of noncommutative polynomials. Since that trace is definable entirely in terms of
planar pictures, it was easy to generalize it to an arbitrary planar algebra, giving
the planar algebra a concatenation multiplication to match that of noncommutative
polynomials. Unfortunately, though the algebra structure is very straightforward,
the inner product is not always easy to work with, as words of different lengths
are not orthogonal. In this paper we use a simple diagrammatic orthogonalization
discovered by K. Walker, the third author, to prove again the II1 factor results of
[Guionnet et al. 2007] in a direct and simple way without the use of full Fock spaces
or graph C∗-algebras. One may capitalize on the advantages of orthogonalization
because the multiplication does not actually become much more complicated when
transported to the orthogonal basis. We present the results by beginning with the or-
thogonal picture and giving a complete proof of the tower result. Then we show that
this orthogonal structure is actually isomorphic to that of [Guionnet et al. 2007].
The same result was obtained simultaneously and independently by Kodiyalam and
Sunder [2009].
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2. Setup

Let P = (Pn)n=0,1,2,... be a subfactor planar algebra. Let Grk(P) be the graded
vector space

⊕
n≥0 Pn+k equipped with the pre-Hilbert space inner product 〈 · , · 〉,

which makes it an orthogonal direct sum and for which

〈a, b〉 = δ−k
b∗

a

within Pn,k . Here we write Pn,k for Pn+k when it is considered as the n-graded
part of Grk(P). We will attempt to keep the pictures as uncluttered as possible by
using several conventions and being as implicit as possible. Shadings, for instance,
will always be implicit, and we will eliminate the outside boundary disc whenever
convenient. An element a ∈ Pn,k will be represented whenever possible in a picture
as a , where the thick lines to the left and right of the box represent k lines
and the thick line at the top represents 2n lines. If the multiple lines have to be
divided into groups, the number of lines in each group will be indicated to the least
extent necessary. The distinguished first interval in a box will always be the top
left of the box. Thus the inner product above of 〈a, b〉 for elements of Pn,k will be

δ−k

a b∗

In the original works on planar algebras (for example, [Jones 1999]), each Pk is an
associative *-algebra whose product, with these conventions, views Pk as P0,k and
ab as a b . By identifying a with a , there are unital inclusions
of Pk in Pk+1. The identity element of Pk is thus represented by a single thick
horizontal line. It is also the identity element of Grk(P). The trace tr (often called
the Markov trace) on Pk is normalized so as to be compatible with the inclusions
by tr(a) = δ−k

〈a, 1〉. We extend this trace to Grk(P) by the same formula so
that the trace of an element is the Markov trace of its zero-graded piece. Each
Pn is a finite-dimensional C∗-algebra whose norms are also compatible with the
inclusions.

3. *-algebra structure on Grk(P)

Definition 3.1. If a ∈ Pm,k and b ∈ Pn,k are elements of Grk(P), we define their
product to be

a ? b =
min(2m,2n)∑

i=0 a b

i
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where the i means there are i parallel strings.1 The numbers of other parallel strings
are then implicitly defined by our conventions.

The *-structure on Pn,k is just the involution coming from the subfactor planar
algebra.

Proposition 3.2. (Grk(P), ?,
∗) is an associative *-algebra.

Proof. The property (a ?b)∗ = b∗ ?a∗ is immediate from the properties of a planar
*-algebra. For associativity, note that both a ? (b ? c) and (a ? b) ? c are given by
the sum over all epi (see Section 5) diagrams where no strand has both of its a, or
both of its b, or both of its c. Here are two typical examples:

a b c a b c �

The inner product 〈a, b〉 is clearly equal to a positive multiple of tr(ab∗) and is
positive definite by definition. We would like to perform the GNS construction,
but since there is no C∗-algebra available, we need to show by hand that left (and
hence right) multiplication by elements of Grk(P) is bounded.

Theorem 3.3. Let a ∈Grk(P). Then the map La :Grk(P)→Grk(P), ξ 7→= a ?ξ ,
is bounded for the pre-Hilbert space structure.

Proof. We may suppose a ∈ Pn,k for some n. Then La is a sum of 2n + 1 maps
L i

a from an orthogonal direct sum of finite-dimensional Hilbert spaces to another,
respecting the orthogonal decomposition, L i

a being the map defined by the i-th
term in the sum defining ?. Thus it suffices to show that the norm of the map
L i

a : Pm,k→ Pm+n−i,k is bounded independently of m, the number of i values being
at most 2n+1. Clearly we may suppose that m�n+k, which simplifies the number
of pictures to be considered. So if b ∈ Pm,k , we must estimate 〈ab, ab〉, which is
the following tangle:

δ−k

a b b∗ a∗

i i

We may suppose 0≤ i ≤ 2n, since the norm of an operator is equal to that of its
adjoint and the roles of i and 2n− i are reversed in going between L i

a and (L i
a)
∗.

Then we may isotope the picture, putting a and b in boxes with the same number

1This algebra structure was pointed out to the first author by Roland Bacher in the mid 1990s.
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(k+n and k+m respectively) of boundary points on the top and bottom, and also
possibly rotating them, to obtain the equivalent tangle

δ−k

a

b

b∗

a∗

n−i

The multiplicities of all the strings are determined by the n−i and our conventions.
Neglecting powers of δ that do not involve m, we see 〈ãb̃, ãb̃〉, where ã is a

with m− i strings to the right, and b̃ is b with n− i strings to the left. The strings
to the right do not change the norm of a (as an element of the finite-dimensional
C∗-algebra Pk+n), by the uniqueness of the C∗-norm. The L2-norm of b̃ differs
from that of b by an m-independent power of δ. Hence we are done. �

Grk(P) is thus what is sometimes called a Hilbert algebra or unitary algebra.

4. The von Neumann algebras Mk.

Definition 4.1. Let Mk be the finite von Neumann algebra on the Hilbert space
completion of Grk(P) generated by left multiplication by the La .

Since right multiplication is also bounded, the identity in P0,k is a cyclic and
separating trace vector for Mk defining the faithful trace tr as usual, and the right
multiplications generate the commutant of Mk . We shall first show that each Mk

is a factor.

Definition 4.2. The element ∪k ∈ P1,k will be , where we include the
boundary to avoid disembodiment. The subalgebra of Grk(P) generated by ∪k will
be denoted Ak , and its weak closure in Mk will be called Ak .

Definition 4.3. For x ∈ Pn,k with n ≥ 0 and p, q ≥ 0, let x p,q ∈ Pn+p+q,k be

1
(
√
δ)p+q

times
... ...

p cups q cups

x
.
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Definition 4.4. Let W0= {0} ⊂ P0,k , and for each k ≥ 1, let Wn be the span in Pn,k

of {x1,0} and {x0,1} for x ∈ Pn−1,k . For n ≥ 0, let Vn =W⊥n .

Lemma 4.5. For x ∈ Pn,k , with n ≥ 1,

x ∈ Vn if and only if x = 0= x .

Proof. Taking the inner product of these two elements with an arbitrary element in
Pn−1,k , we see the inner product of elements in Wn with x . �

Corollary 4.6. Let v ∈ Vm with m ≥ 0 and v′ ∈ Vn with n ≥ 1. Then

〈vp,q , v
′

p′,q ′〉 =

{
〈v, v′〉 if p = p′ and q = q ′,
0 otherwise.

Proof. If either p 6= p′ or q 6= q ′, the left or rightmost pair of boundary points of
v or v′ will be capped off to give zero. �

Corollary 4.7. If v ∈ Vn for n > 0 is a unit vector, the vp,q are an orthonormal
basis for the Ak −Ak bimodule AkvAk .

Proof. By the previous lemma, it suffices to show that the span of the vp,q is
invariant under left and right multiplication (using ?) by ∪k . In fact, we have

∪k ? vp,q =

{√
δv1,q + v0,q if p = 0,
√
δvp+1,q + vp,q +

√
δvp−1,q otherwise;

and there is an obvious corresponding formula for right multiplication by ∪k . �

Lemma 4.8. The linear span of all the vp,q for v ∈ Vn for all n is Grk(P).

Proof. By a simple induction on n these vectors span Pn,k for all k. �

Let us summarize all we have learned using the unilateral shift S (with S∗S= 1)
on `2(N).

Theorem 4.9. Suppose δ > 1. As an Ak − Ak bimodule,

L2(Mk)= P0,k ⊗ `
2(N)⊕{H⊗ `2(N)⊗ `2(N)},

with ∪k acting on the left and right on P0,k ⊗ `
2(N) by id⊗(

√
δ(S + S∗)+ SS∗),

on the left on H⊗ `2(N)⊗ `2(N) by id⊗(
√
δ(S+ S∗)+ 1)⊗ id, and on the right

on H ⊗ `2(N) ⊗ `2(N) by id⊗ id⊗(
√
δ(S + S∗) + 1). (Here H is an auxiliary

infinite-dimensional Hilbert space.)

Proof. Obviously P0,k commutes with Ak , so the first term in the direct sum is the
result of a simple calculation. Choosing an orthonormal basis for each Vn gives
the rest by Corollary 4.7. �

Corollary 4.10. A′k ∩Mk = Ak P0,k .
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Proof. It suffices to show that no nonzero ξ ∈ `2(N)⊗ `2(N) satisfies (S+ S∗)ξ =
ξ(S+S∗). But such a ξ would be a Hilbert–Schmidt operator on `2(N) commuting
with S+ S∗, and S+ S∗ would leave invariant a finite-dimensional subspace and
hence have an eigenvalue. But S+ S∗ is Voiculescu’s semicircular element and is
known not to have an eigenvalue (this follows immediately from a direct proof). �

Corollary 4.11. Suppose δ > 1. For each k, M ′0 ∩Mk = P0,k (as an algebra).

Proof. The element α= is in M0⊂Mk , so it is enough to show that the only
elements in the Hilbert space closure of P0,k Ak that commute with it are elements
of P0,k . We define

λn =
1

(
√
δ)n

...
n cups

and ρn =
1

(
√
δ)n

...
n cups

.

We have
[α, 10,n] = (λn − ρn)+

1
√
δ
(λn−1− ρn−1).

So if an element c in the closure of P0,k Ak is written as an `2 sum
∑
∞

n=0 cn ?10,n

with cn ∈ P0,k , we find

[α, c] =
∞∑

n=1

(
cn +

1
√
δ

cn+1

)
? (λn − ρn).

The terms in the sum are orthogonal for different n, so for c to commute with α,
we would have cn+1=−δcn for n> 1, which forces cn = 0 for n≥ 1 since cn ∈ `

2.
So c ∈ P0,k . �

Corollary 4.12. If δ > 1, Mk is a type II1 factor.

Proof. If x were in the center of Mk , it would have to be in P0,k . But a trivial
diagrammatic argument shows that the only elements in P0,k that commute with

are scalar multiples of the identity. �

We now want to identify the II1 factors Mk with the tower coming from the
subfactor M0⊂M1 obtained by iterating the basic construction of [Jones 1983]. For
simplicity we will do it for the case M0,M1,M2, with the general case following
the same argument but with heavier notation.

Definition 4.13. The element e ∈ M2 will be (1/δ) .

Proposition 4.14. This e is a projection, and exe = EM0(x)e for x ∈ M1, and
EM1(e)= δ

−2 id, with EMi the trace-preserving conditional expectation onto Mi .

Proof. An easy computation with diagrams. �
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Lemma 4.15. The von Neumann algebra {M1, e}′′ is a II1 factor.

Proof. If x is in the center of {M1, e}′′, then it commutes with M0, so by 4.11 we
know that x ∈ P0,2. But x also has to commute with , which forces x to be of
the form

y for y ∈ P1.

But for this to commute with e, it must be a scalar multiple of the identity. �

Corollary 4.16. For z ∈ {M1, e}′′, we have ze = δ2 EM1(ze)e.

Proof. By algebra, M and MeM span a ∗-subalgebra of {M1, e}′′, which is thus
weakly dense. The assertion is trivial for z ∈ M and a simple calculation for
z ∈ M1eM1. Also EM1 is continuous. �

Corollary 4.17. The map x 7→ δxe from M1 to {M1, e}′′e is a surjective isometry
intertwining EM0 on L2(M1) and left multiplication by e.

Proof. Surjectivity follows from the previous lemma. The intertwining property is
a calculation. �

Corollary 4.18. [M1 : M0] = δ
2. The basic construction for M0 ⊂ M1 is {M1, e}′′.

Proof. The basic construction is the von Neumann algebra on L2(M1) generated
by EM0 and M1. By Lemma 4.15, {M1, e}′′ as a subalgebra of M2 is the same, as
it is acting on {M1, e}′′e by left multiplication. Also this is the basic construction
by the previous corollary. The index is then just a matter of evaluating the trace
of e, by uniqueness of the trace on a factor. �

Corollary 4.19. {M1, e}′′ = M2.

Proof. The same argument as above applied to M1⊂M2 shows that [M2 :M1]= δ
2.

But then [M2 : {M1, e}′′] = 1. �

Summing up the above arguments applied to the whole tower, we have:

Theorem 4.20. Let Mn be the II1 factor obtained by the basic construction from
Mn−2 ⊂Mn−1 with M0 = M0 and M1 = M1, and suppose en is the projection
of the basic construction generating Mn+1 from Mn . Then there is a (unique)
isomorphism of towers from Mn to Mn that is the identity on M1 and sends ei to

1
δ

n−i−1

i−1

.

Theorem 4.21. Given a subfactor planar algebra P = (Pn) with δ > 1, the sub-
factor M0 constructed above has planar algebra invariant equal to P.
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Proof. It is well known [Jones 1999] that the planar algebra structure is determined
by knowledge of the ei , the multiplication, and the embeddings Pn ⊂ Pn+1 corre-
sponding to the inclusions M ′1 ∩Mn+1 ⊂ M ′0 ∩Mn+1 and M ′0 ∩Mn ⊂ M ′0 ∩Mn+1.
The conditional expectations onto these are just given by the appropriate diagrams.

�

5. Change of basis

In this section we show that the pre-Hilbert space Grk(P) defined above is isometric
and isomorphic as a ∗-algebra to the pre-Hilbert space also called Grk(P) defined
in [Guionnet et al. 2007]. To distinguish between them, we will call the latter
pre-Hilbert space Hrk(P).

Recall that Hrk(P) is defined on the same underlying vector space
⊕

n≥0 Pn+k ,
but with a simpler multiplication and more complicated inner product. The multi-
plication is the simple juxtaposition

a • b = a b

while the inner product 〈〈a, b〉〉 of a ∈ Pm,k and b ∈ Pn,k is

a b∗
6TL

,

where 6TL is the sum of all loopless Temperley–Lieb diagrams with 2(m + n)
strands on the boundary. Note that while the multiplication respects the grading,
the inner product does not.

We will define an upper-triangular change of basis in
⊕

n≥0 Pn+k , which induces
an isomorphism between Grk(P) and Hrk(P).

Recall that an epi TL diagram is one in which each point on the top/outgoing
side of the rectangle is connected to the bottom/incoming side of the rectangle. A
monic diagram is defined similarly, but with the roles of the sides reversed; see
Figure 1.

Note that each TL diagram factors uniquely as epi followed by monic.
We will think of a TL diagram with 2i strands on the bottom of the rectangle

and 2 j strands on the top of the rectangle as a linear map from Pi,k to Pj,k (here k
is arbitrary and fixed).

We define

X :
⊕
n≥0

Pn+k→
⊕
n≥0

Pn+k
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Figure 1. From upper left, clockwise: epi, monic, both epi and
monic, neither epi nor monic.

to be the sum of all epi TL diagrams. Thus the j, i block of X is the (finite) sum
of all epi TL diagrams from 2i strands to 2 j strands, which is the identity if i = j
and zero if i < j .

We define a nonnested epi TL diagram to be one where each “turn-back” or
“cap” on the bottom of the rectangle encloses no other turn-backs. We define

Y :
⊕
n≥0

Pn+k→
⊕
n≥0

Pn+k

to be the sum of all nonnested epi TL diagrams, with the coefficient in the i, j
block equal to (−1)i− j .

Remark 5.0.1. In the special case of a vertex model planar algebra [Jones 1999],
the graded vector space is the (even degree) noncommutative polynomials. In
[Voiculescu 1985], a map was defined from these polynomials to full Fock space,
the vacuum component of which is the trace on what we have called Hrk(P). In
this case the map X gives Voiculescu’s map in its entirety and Y is its inverse. We
presume that these formulas are known perhaps in some slightly different form,
but have been unable to find them explicitly in the literature.

Lemma 5.1. XY = 1= Y X.

Proof. X jmYmi is equal to the sum of all products of a nonnested TL diagram from
i to m (with i −m turn-backs) followed by a general epi TL diagram from m to j ,
with sign (−1)i−m . The number of times a given diagram D appears in this sum is
equal to the number of subsets of size i −m taken from the innermost turn-backs
of D. It follows that the total coefficient of D in

∑
m X jmYmi is

∑
p(−1)p

( t
p

)
= 0
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(assuming p> 0), where t is the total number of innermost turn-backs of D. Thus
the off-diagonal blocks of XY are zero, and it is easy to see that the diagonal blocks
of XY are all the identity.

The proof that Y X = 1 is similar, with outermost turn-backs playing the role
previously played by innermost turn-backs. �

Lemma 5.2. X (a • b)= X (a) ? X (b).

Proof. Let a ∈ Pm,k and b ∈ Pn,k . Each epi diagram from 2(m+n) to 2 j appearing
in the definition of X (a•b) factors uniquely as T ·(L |R), where L is an epi diagram
from 2m to 2m′, R is an epi diagram from 2n to 2n′, L |R denotes L and R placed
side by side, and T is an epi diagram from 2(m′+ n′) to 2 j where each turn-back
has one end in the m′ side and the other end in the n′ side. L corresponds to a
diagram used in the definition of X (a), R corresponds to a diagram used in the
definition of X (b), and T corresponds to a diagram used in the definition of ? in
X (a) ? X (b). �

Lemma 5.3. 〈〈a, b〉〉 = 〈X (a), X (b)〉.

Proof. Let a ∈ Pm,k and b ∈ Pn,k . Let D be a TL diagram in 6TL used in the
definition of 〈〈a, b〉〉. We can think of D as a TL diagram from 2m strands to 2n
strands, and from this point of view it has a unique factorization E ·M , where E is
an epi diagram starting at 2m and M is a monic diagram ending at 2n. E is an epi
diagram figuring in the definition of X (a), and M∗ is an epi diagram figuring in the
definition of X (b). The way in which E and M∗ are glued together corresponds
to the definition of 〈〈 · , · 〉〉. �
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