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We prove that one-sided topological Markov shifts (X4, 04) and (X, 0p)
for matrices A and B with entries in {0, 1} are continuously orbit equiva-
lent if and only if there exists an isomorphism between the Cuntz—Krieger
algebras 04 and Op keeping their commutative C*-subalgebras C (X 4) and
C(Xp). The “if” part (and hence the “only if”’ part) above is equivalent
to the condition that there exists a homeomorphism from X4 to X inter-
twining their topological full groups. We will also study structure of the
automorphisms of 04 preserving the commutative C*-algebra C (X 4).

1. Introduction

The study of orbit equivalence of ergodic finite measure preserving transformations
was initiated by H. Dye [1959; 1963], who proved that two such transformations
are orbit equivalent. W. Krieger [1976] has proved that two ergodic nonsingular
transformations are orbit equivalent if and only if the associated von Neumann
crossed products are isomorphic. In topological setting, Giordano, Putnam and
Skau [Giordano et al. 1995; 1999] (see also [Herman et al. 1992]) have proved
that two minimal homeomorphisms on Cantor sets are strong orbit equivalent if
and only if the associated C*-crossed products are isomorphic. In a more general
setting, J. Tomiyama [1996] (see [Boyle and Tomiyama 1998; Tomiyama 1998])
has proved that two topological free homeomorphisms (X, ¢) and (Y, y) on com-
pact Hausdorff spaces are continuously orbit equivalent if and only if there exists
an isomorphism between the associated C*-crossed products preserving their com-
mutative C*-subalgebras C(X) and C(Y). He also proved that it is equivalent to
the condition that there exists a homeomorphism 4 : X — Y such that i preserves
their topological full groups.

In this paper we study the relationship between the orbit structure of one-sided
topological Markov shifts and the algebraic structure of the associated Cuntz—
Krieger algebras. Let (X4, 04) be the right one-sided topological Markov shift
defined by an N x N square matrix A with entries in {0, 1}, where o4 denotes
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the shift transformation on X 4. The one-sided topological Markov shifts are no
longer homeomorphisms in general and the Cuntz—Krieger algebras cannot natu-
rally be written as a crossed product by Z. Hence Giordano, Putnam and Skau’s
and Tomiyama’s method cannot be applied to study one-sided topological Markov
shifts and Cuntz—Krieger algebras. However, in this paper, theorems similar to
theirs will be proved in our setting by using a representation of 04 on a Hilbert
space having its complete orthonormal basis consisting of all points of the shift
space X 4.

Let ® 4 be the C*-subalgebra consisting of all diagonal elements of the canonical
AF-algebra %4 inside of 04. It is naturally isomorphic to the commutative C*-
algebra C (X 4) of all complex-valued continuous functions on X 4. Let [o4]. be the
topological full group of (X 4, 64) whose elements consist of homeomorphisms 7
on X 4 such that z (x) is contained in the orbit orb,, (x) of x under o4 for all x € X 4
and such that its orbit cocycles are continuous. We say that (X 4, 04) and (X, o)
are continuously orbit equivalent if there exists a homeomorphism # : X4 — Xp
such that A (orbg, (x)) = orbs, (h(x)) for x € X4 and if their orbit cocycles are
continuous.

We will prove the next three theorems, where condition (I) is that of [Cuntz and

Krieger 1980, page 254].

Theorem 1.1. Let A and B be irreducible square matrices with entries in {0, 1}
satisfying condition (1). Then the following three assertions are equivalent:
o There exists an isomorphism ¥ : 04 — Opg such that ¥ (D) = Dp.
o (X4a,04) and (X, op) are continuously orbit equivalent.
o There exists a homeomorphism h: X 4 — X p such that ho[o ], oh~'=[og]..
To prove this theorem, we study the normalizer N (04, © 4) of D4 in 04, which

is defined as the group of all unitaries u € D 4 such that u® su™ = 4. We denote
by U(D 4) the group of all unitaries in D 4.

Theorem 1.2. Let A be a square matrix with entries in {0, 1} satisfying condi-
tion (I). Then there exists a splitting short exact sequence

1= UD4) —S N4, D4) — [64]c — 1.
Let Aut(0 4, © 4) be the group of automorphisms a of 04 such that a (D 4) =9 4.

Denote by Inn(04, ®4) the subgroup of Aut(O4,®4) of inner automorphisms
on 04. We set Out(04, D 4) to be the quotient Aut(O4, D 4)/Inn(04, D 4).
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Theorem 1.3. Let A be an irreducible square matrix with entries in {0, 1} satisfy-
ing condition (1). Then there exist short exact sequences

1> Z! @U®4) 2> Aut(O4, D) > N([oal) > 1,
1> B! (WD) > In(04, D4) 5 [o4]c = 1,
1> H! (U® 1) 2> 0ut(©4, D4) -2 N(loale)/loale — 1.
They all split. Hence Out(O4, ® 4) is a semidirect product
Out(04, D) = N([oale)/[oalc - Hy, (WD ).

where N([o4].) denotes the normalizer of [o4]. in the group Homeo(X 4) of all
homeomorphisms on X 4, and Z;A UMD 4)), B;A UMD 4)) and H(;A WD 4)) are
the group of unitary one-cocycles for o 5, the subgroup of Z_, (U(D 4)) of cobound-
aries and the cohomology group Z (17 L(U(Da))/ B;A (U(D 4)) respectively.

Similar theorems hold for the pair of the canonical AF-algebra % 4 inside of O4
and its diagonal algebra ® 4; these are studied in Section 7.

In [Matsumoto 2009], the results of this paper have been generalized.

Throughout the paper, we denote by Z. and N the set of nonnegative integers
and the set of positive integers respectively.

2. Preliminaries

Let A=[A(, j)]ft’j:1 be an N x N matrix with entries in {0, 1}, where 1 < N e N.
Throughout the paper, we always assume that A satisfies condition (I) in the sense

of Cuntz and Krieger [1980]. We denote by X 4 the shift space
Xa={(xn)nen € {1, ..., N}V | A(xy, x,41) = 1 for all n € N}

over {1,..., N} of the right one-sided topological Markov shift for A. It is a
compact Hausdorff space in natural product topology. The shift transformation
o4 on Xy is defined by o4 ((x;)nen) = (Xut1)nen and is a continuous surjective
map on X 4. The topological dynamical system (X 4, o4) is called the (right one-
sided) topological Markov shift for A. The condition (I) for A is equivalent to the
condition that X 4 is homeomorphic to a Cantor discontinuum.

Aword u = uy--- ug for u; € {1, ..., N} is said to be admissible for X 4 if u
appears somewhere in some element x in X 4. The length of u is k and denoted
by |u#|. We denote by By (X4) the set of all admissible words of length k € N.
We denote by Bo(X4) the empty word @. We set B.(X4) = (Jj—, Bx(X4), the
set of admissible words of X 4. For x = (x;)xen € X4 and positive integers k, [
with k <[, we put the word xx ;] = (Xk, Xk 41, - - ., X1) € Bi_k+1(X 4) and the right
infinite sequence Xk o0) = (Xk, Xk41,-..) € Xa.
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The Cuntz—Krieger algebra 0 4 for the matrix A has been defined by the universal
C*-algebra generated by N partial isometries Sy, ..., Sy subject to the relations

N N
> 8;Sr=1 and S7S;=> A@,))S;S; fori=1,...,N
j=1 j=1

[Cuntz and Krieger 1980]. If A satisfies condition (I), the algebra Oy4 is the unique
C*-algebra subject to these relations. For a word p = uy--- ux € Bp(Xa4), we
let S, =S4, -+ Sy, By the universality of the relations above, we get an action
p: T — Aut(0,), called the gauge action, from the correspondence S; — eVt S;
fori=1,...,N and eV~ € T = {e¥~" | 1 € [0, 27]}. It is well known that the
fixed point algebra of O4 under p is the AF-algebra %4 generated by elements
S, Sy with u,v € B,(X,4) and || = |[v| [Cuntz and Krieger 1980]. Let &', be the
C*-subalgebra of ¥, generated by elements S, S}, with u,v € B,(X,). Hence
?}aAlg = Uzozl ", is a dense *-subalgebra of % 4. We denote by E : 04 — F, the
conditional expectation defined by E(a) = [} pi(a)dt for a € O4. Let D4 be the
C*-subalgebra of &4 consisting of all diagonal elements of %4. It is generated
by elements S, S for u € B.(X4) and is isomorphic to the commutative C*-
algebra C(X,4) of all complex valued continuous functions on X4 through the
correspondence S, S;‘j € D4 < xu € C(Xa), where y, denotes the characteristic
function on X 4 for the cylinder set U, = {(Xp)nen € Xa | X1 = u1, ..., Xx = pir}
for 4 = p1 -+ - pux € Br(X4). We identify C(X4) with the subalgebra ® 4 of 04.
Then the following lemma is well known and basic in our further discussions.

Lemma 2.1 [Cuntz and Krieger 1980, Remark 2.18], and see [Matsumoto 2000,
Proposition 3.3]. The algebra ® 4 is maximal abelian in O 4.

In [1996; 1998], Tomiyama has used the structure of pure state extensions of
point evaluations of the underlying space to study the orbit structure of topological
dynamical systems of homeomorphisms on compact Hausdorff spaces; see also
[Tomiyama 1992a; 1992b]. However for the Cuntz—Krieger algebras, the structure
of the pure state extensions of point evaluations of the underlying shift space is
not clear. Instead of point evaluations, we will use a representation of the Cuntz—
Krieger algebra 04 on a Hilbert space having the shift space X4 as a complete
orthonormal basis, as follows. Let $4 be the Hilbert space with complete or-
thonormal system e, for x € X 4. This Hilbert space is not separable. Consider the
partial isometries 7; fori =1, ..., N defined by

€ix if ix e X4,
Tiex = .
0 otherwise,
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where ix denotes ix = (i, x1, X2, ...) for x = (x,;)nen € Xa. It is easy to see that
these isometries satisfy the relations

N N
> T;Ti=1 and TT,= > AG, )T;T; fori=1,...,N.
Jj=1 j=1
Since A satisfies condition (I), the operator 7; is nonzero for eachi =1,..., N,

so the correspondence S; — T; yields a faithful representation of 04 on 4. We
regard the algebra O, as the C*-algebra generated by 7; fori = 1,..., N on the
Hilbert space $4 by this representation, and write 7; as S;; see [Matsumoto 2000,
Lemma 4.1].

3. Topological full groups of Markov shifts

For x = (x,)nen € X 4, the orbit orb,, (x) of x under 64 is defined by

orb,, (x) = U U GA_k(ai(x)) C X4.

k=01=0
Hence y = (yx)nen € X 4 belongs to orb,, (x) if and only if there exists an admis-
sible word 1 - - - ux € Bx(X 4) such that
Y=_(t1,.. ., li>Xi+1, X142, ...) forsomek,leZ,.
We denote by Homeo(X 4) the group of all homeomorphisms on X 4. We define
the full group [o4] and the topological full group [o4]. for (X4, 04) as follows.

Definition. Let [o4] be the set of all homeomorphism 7 € Homeo(X 4) such that
7(x) € orb,, (x) for all x € X 4. We call [04] the full group of (X4, 04). Let [04],
be the set of all 7 in [0 4] such that there exist continuous functions k,[: X4 — Z
such that

(3-1) kD) =P (x) forall x € X,.

We call [o4], the topological full group for (X4, 04). The functions k and [ above
are called orbit cocycles for 7, and are sometimes written as k, and [, respectively.
We remark that the orbit cocyles are not necessarily uniquely determined by 7.

Examples. (i) Put F =[] ]. Define r € Homeo(X r) by setting
(2,1, 1, x4, x5,...) if (x1, x2, x3) = (1, 1, 1),

t(xy,x2,...)=1(1,1,1,x4,x5,...) if (x1,x2,x3)=(2,1,1),
(x1, x2, X3, X4, X5, ...) oOtherwise.

Since or(t(x)) =op(x) for all x € X, by putting k(x) =[(x) =1 forall x € X,
we see that 7 belongs to [oF]..
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(i) More generally, suppose A is an N x N matrix with entries in {0, 1}. For
ie{l,...,N}and p € N, we put

Wp(i) ={(u1,... ,/Jp) € Bp(XA) | A(,Ltp,i) =1}

We denote by &(W,(i)) the group of all permutations on the set W,(i). Put
S,(A) = 6(Wy(1)) x --- x &(W,(N)). Then an N-family s = (s1,...,s5) €
S, (A) of permutations defines a homeomorphism 7, € Homeo(X 4) by setting

To(X1, oo Xpy Xpgl, o0 . ) = (sxpﬂ(xl,...,xp),xp+1,...) for x € X4.

For all x € X4, it is easy to see that z,(x) belongs to orb,, (x) and satisfies (3-1)
for k(x) =I1(x) = p. Hence 7, yields an element of [o4]..

Let A be an arbitrary fixed N x N matrix with entries in {0, 1} and satisfying
condition (I). The following lemma is direct.

Lemma 3.1. [04] is a subgroup of Homeo(X 4) and [0 4], is a subgroup of [o4].

Although o4 itself does not belong to [g4], the following lemma shows that o4
locally belongs to [ 4], and the group [o4]. is not trivial in any case.

Lemma 3.2. Assume that A is irreducible. For any u € By(X,), there exist
7, € [oalc and continuous functions kfﬂ, l,ﬂ : XA — Z4 such that

ke, (x) Le,, (x)
o, ! (t,(x))=0," ' (x) forx e Xa,

(3-2) tu(y) = 0oa(y) foryeU,,
ki, (y)=0, [,,(y)=1 foryeU,.

Proof. For u = (u1, it2) € B2(X 4), we have two cases.

Case 1: u; = up. Puta = u;. Since A is irreducible, there exists by € {1, ..., N}
such that by # a and A(by,a) = 1. Put {by,...,by_1} = {1,..., N}\{a}. Let
{bi,, ..., bj,} be the set of elements of {by, ..., by_;} satisfying A(a, b;,)=---=
A(a, b;,,)=1. Theset {b;,, ..., b;,, } is nonempty because A satisfies condition (I).
Define a homeomorphism 7, : X4 — X4 by setting

[4(x) € U, if x e Uy,
b]abile,oo) € Ublabil ifx= abi]x[g,oo) € Uabi, .

Tu(x) = 1 )
blab,-MxB,oo) € UblllbiM ifx= ab[MxB,oo) S UdbiM’

blaax[3,oo) € Ublaa if x = blax[3,oo) € Ubla,

| X otherwise.
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We set
[0 ifx € Uy, (1 if x € Uga,
1 ifxe Uabil 5 0 ifxe Uab[I >
ktﬂ (_x) = : lT,u (X) = 1 : )
1 ifx € Uap,, 0 ifx €U,
2 ifXEUbla, 1 ifXEUbla,
|0 otherwise, |0 otherwise,
so that

ke Iz,
JA"(X)(rﬂ(x)) =0, (x)(x) for x € X4.

Hence 7, € [0alc and 7,,(y) = 04(y), k¢, (y) =0, andl;, (y)=1fory e U, =Ug,.
Case 2: uy # po. Puta=py and b= p;. Define a homeomorphism 7, : X 4 — X4
by setting
O'A(]C) e Uy if x € Uup,
7,(x) = Jax € Upp if x € Uy,

X otherwise.
We set
0 ifxe Uab, 1 ifxe Ua},,
ki, (x)=11 ifxeU, lr,(x) =10 ifx € Up,
0 otherwise, 0 otherwise,
so that

k; I
o, (x)(rﬂ x)=0," (x)(x) for x € X4.

Hence 7, € [04]. and
T,u(y):O-A(y): krﬂ()’)ZO, lr,,(y)zl forYEUu:Ualr U
By a similar argument, this lemma holds for any word u with any length |u| > 2.

Lemma 3.3. For x = (x;)ueny € Xaand j € {1, ..., N} with jx = (j, x1,x2,...)
in X, there exists T € [04]. such that t(x) = jx.

Proof. If x = j* = (j, j,...), we may choose id as 7. If x # j°°, there exists
keNandie{l,..., N} withi # jsuchthatx, =jforl <n<k—1and x; =i.
Put

/,lz(j,...,j,i)EBk(XA) and V=(j,...,j,i)=j,uEBk+](XA),
~— ~—
k—1 k
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so that x € U,,. Define 7 : X4 — X4 by setting

(. y1.y2,...) ifyeU,,
T(¥1, Y2, Y3, - ) = 1 (2, ¥3, 4, ...) iy € Uy,
(y1, y2, ¥3,...) otherwise.
Since U, NU, = &, we see that 7 : X4 — X, yields an element of [o4].. U
Put [c4l.(x) ={t(x) € Xa |7 €[04].} for x € X 4.
Lemma 3.4. [04].(x) =orb,, (x) for x € X4.

Proof. For any t € [04], there exist continuous functions k, [ : X4 — Z such that
T(x) = (u1(x), ..oy M) (X)), X1(0)+15 Xi(x)425 - - - ) for some (u1(x), ..., pr@)(x))
in By(x)(X4). Thus 7(x) € orbg, (x) is clear, and hence [o4].(x) C orb,, (x).

Now for the other inclusion. By the previous lemmas, for x = (x,)nen € X4
and j ={1,..., N} with jx € X4, there exist 71, 7o € [64]. such that

T1(x) = (j, x1,%2,...) and 72(x) = (x2,x3,...),
so that [o4].(x) 3 (j, x1, X2, ...), (x2, x3,...). Since [o4], is a group, we see that
loale(x) 2 (i1, .oy Mks X141, Xi42,...) forallk,l e Z,, and
(s ooy i) € Be(Xa)  with (1, ..y ks X141, X142, - - . ) € Xa.

Hence [04].(x) D orb,, (x). O

4. Full groups and normalizers

In this section, we will study the topological full group [o4]. and the normalizer
N(04,D4). We denote by U(04) and U(D 4) the groups of unitaries of 04 and O 4
respectively. The normalizer N (04, ® 4) of © 4 in O4 is defined by

N4, Dp)={0 €WOy) | 0Dg0" =Dy}

We will identify the algebra C (X 4) with the subalgebra © 4 of 0 4. For v € W(0,),
we put Ad(v)(a) = vav™* fora € Oy.

Proposition 4.1. For t € [04]., there exists a unitary u; € N(O4, D ) such that

Ad(ug)(f)=for™" for f€Da,
and t € [oal. = u; € N(Og, D 4) is a group homomorphism.

Proof. Let the C*-algebra O 4 be represented on the Hilbert space §)4 with complete
orthonormal basis {e, | x € X4}. Then the generating partial isometries S; for
i=1,...,N acton Hy by Sie, =e¢;, if ix € X4, and otherwise S;e, = 0. Since
7 : X — X4 is a homeomorphism, the operator u, on §)4 defined by u, e, = e;(y)
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for x € X4 yields a unitary on 4. We will prove that u, belongs to O4. Let
l,k: X4 — Z, be continuous functions satisfying (3-1). Since both k(X 4) and
[(X 4) are finite sets of Z, there exist

k =max{k(x) | x € X4} and [=max{l{(x)|x € X,} inZ,.
Take u(x) = (u1(x), ..., frx)(x)) € Brx)(X4) such that
T(x) = (u1(x), .oy k) (X), X100 +15 XI(x)+25 XI(x)435 - - - )-

The set of words {(u1(x), ..., trx)(x)) € Brx)(Xa) | x € X4} is a finite subset of

WX = |J Bi(Xa).

The map x € X4 — (u1(x), ..., urx)(x)) € Wi (X4) is continuous, where Wi (X »)
is endowed with discrete topology. For any word v =v ---v; € Wi (X4) with j <k
and 0 <n </, the sets

E,={xeXalpupi(x)=vi,..., tsgxy(x) =v;} and F,={xe€ X |l(x)=n}

are clopen in X 4. Define the projections Q, = yg, and P, = yr, in ® 4. Since X4
is composed of disjoint unions

X4 = U E_UFn,

veWp(Xa)  n=0,..,
we have
> 0=3 A=
veW (X4) n=0,...,1

For x € X4 and v € Wy with 0 < n <[, we have x € E, N F, if and only if
er(x) = Svegx(x), so that

er(x) = Z Z( Z Si)P Q,e, forx e Xy.

,,,,, I veW; ¢eBy(Xa)

-2 >(s X s)ron

..... TveW;  ZeBu(Xa)

Therefore

which belongs to the algebra 0,4. The equality
Ad(u)(f)= for ' for feDy.

is straightforward from the definition u,e, = e;(y) for x € X4 of u,. U
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For v € N(O4,® 4), Ad(v) induces an automorphism on the algebras 04 and 2 4.
Let 7, denote the homeomorphism on X 4 induced by Ad(v) : © 4 — D 4 satisfying
Ad)(f) = for,”! for f € ®4. We will prove that 7, gives rise to an element
of [o4].. We fix v € N(Oy4, D 4) for a while.

Lemma 4.2. There exists a family v,, for m € Z of partial isometries in O4 such
that all but finitely many v,, for m € Z are zero, and with these properties:

(1) v =2",,c7 Um, where the nonzero v,,, m € Z are finite.
(2) VWD a0 CDy and v D Av, C D form e Z.
(3) v, v, and vy v}, are projections in ® 4 form € Z.
@A) vy o =vpv,, =0 form # m'.
(5) vo € Fa.
Proof. Put g(t) =v*p;(v) € 04 fort € T. For f € D4, we have

pi(©) fp:(0)* = p (0 fo*) =vf0",

so that v*p,;(v) commutes with each element of © 4. By Lemma 2.1, g(¢) belongs
to the algebra ® 4. We put

2n 2n
O =/ pi(@)e V" dr and  g(m) =/ ge V"dr form e Z.
0 0

Then v,, = vg(m). Since g(t) € D4, we have

g =p; (07 p_;(v)) =g(—t) and g(t)g(s) =" p; (V) p; (0" ps(v)) = g(t +5),

so that g¢(m) for m € Z are projections in ® 4 such that g(m)g(m’) =0 for m #m’.
Regard g(1) € ©, as a function on X 4. For x € X4, we see that |g(r)(x)|> =
(g(®)ex | g(t)ex) = 1, so that by Parseval’s identity

2 2 2
1=/ 0= 3| | s0weTma] = Siaon e

me”Z

Put E,,, = supp(g(m)) a clopen set in X 4 for m € Z. By the equality above, we have
Xa=U,yez Em and E,,NE,y = & for m # m’. By the compactness of X 4, all but
finitely many E,, are empty. Then elements v} 0, = g(m) and v, v, = vg(m)v*
are both projections in ® 4. It follows that

VD av,, =08(M)Dag(M)0* C Dy and 0D A0, = §M)* D 0g(m) C Dy,

because g(m) € © 4. Therefore parts (1), (2), (3) and (4) hold. For part (5), we
have

2r
1)0=1)§(O)=1)/ v*p;(0)dt = E(v) € Fa. O
0
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Lemma 4.3. For a fixed n € N, there exist partial isometries v,,v_, € F, for
each u € B, (X 4) satisfying the following conditions:
(1) v, = ZﬂeB (x4) S0y andv_, = ZyeB (XA) v_#S;.

* *
2) v v, SﬂvﬂvﬂSﬂ, Sﬂv_ﬂ —uSpandv_, _ﬂ are projections in ® 4 such that

_ * X
o, E 0,0, 0,0, = E S v#vﬂSﬂ,
* *
v, 0_, = E S v_ﬂ _#Sﬂ, v_,0°, = E v_ﬂv_ﬂ,

where the sums are over all u € B, (Xp).
(3) vy =vE,0_, =0 for u,v € By(Xa) with u #v.
4 v, @AD s DNQADW v_ﬂ’DAv_ﬂ andv_ﬂQAv_ﬂ are contained in ® 4.
Proof. For y € B,(Xa), putv, = E(S;v) and v_, = E(vS,). They belong to F4

and satisty S, S 0, =v, and v ﬂS/’jSﬂ =v_,. Then we have

2z
S50, :/o SZpt(v)e_ﬁ”’dt = E(S,v) =vy,

2r
V_nSy =/0 p,(v)eﬂ"tSﬂdt:E(vSﬂ):v_#.

Hence we have v, = S,v, and v_, = v_,S*. Thus (1)
HEB,(Xa) VKV M HEB(Xa) "—H 1
holds. We then have
* * A * * A
0,0, =0,8,8,0, =gn)*s, S vg(n),

Suvuvy, Sy =8,8,0,0,8,8, =S,8,08MmP*S, S,

#PnPn® S o

* k %k * * *

S0 0 St =15 Sﬂ F S, St =S, S58(=n)S, S5,
v_, vt =0v_,8,S, =0g(=n)S,S;8(~n)o*.

Since g(n) and g(—n) are projections in ® 4, and vD 40* =2 4, the elements above
are projections in ® 4, so that (2) and (3) hold. Since

v, =80, =S,v8@mn) and v_, =v_,S, =0vg(-n)S,
the assertion (4) is immediate. O
Let u € 04 be a partial isometry satisfying
uDsu* C Dy and u*Dau CDy.

Define the projections p, =u*u and g, = uu™ € O 4 and clopen sets X, = supp(p,)
and Y, = supp(q,) C X4. Then Ad(u) : Dapu — Daq, yields an isomorphism
and induces a homeomorphism #,, : X,, — Y, such that

Ad(u)(g) =g Ohu_l €Daqu(=C(Yy)) forgeDap,(=C(Xy)).
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Lemma 4.4. Keep the notation above. For x € X,,, put y = h,(x) € Y,,. Then we
have

||S;f[l’n]qu“!nJ|| =1 forallneN.
Proof. Since S_;k[l,n]qu[l,n] is a partial isometry, we see that ||y, uSy, | =1 for

alln € N or [|S5,., =0 forall n > Ny for some Ny. It suffices to show that
S5 #0 for all n € N. One then sees that

ln] X[1,n]

(S;‘“ nl x“ nl -;k[l,nju*SY[l,n]eO'An(y) | eaA”(y)) = (Ad(u)()()ey | ey)a

where x denotes the characteristic function on X4 for the cylinder set Uy, ,, of the
word x[1,,]. Since
AdW)(x)ey = (x o hyH(Mey = x ()ey =y,
we obtain
(S5 1 San Syum€onn () | €oan() = (ey [ ey) =1,
so that S5, ,, uSx,,, # 0. O

The followmg is key:
Lemma 4.5. Keep the situation above. Assume that u € % 4. Then there exists
k € N such that for all x = (x;)nen € X,, we have y, = x,, for all n > k, where
Y = (Yn)nen = hy(x).
Proof. Suppose that for any k e N there exist x € X, and N > k such that yy # xy.

Now u € F,4, and take u’ € F for some ko such that ||u —u'|| < 5. Take x € X,
and Ny > ko such that y, 7 x,, . Since u’ belongs to F A° ! , it can be written as

No—1
u'= z cgnSeSy € F,’  for somecg , € C.
&.neBNy-1(Xa)

Hence we have

* / _ * *
SY[I,NO—I]M Sx[l,No—l] - Cy[l,No—l]ax[l,NO—I]Sy[l’NO,I]Sy[l,NO—I]SX[l’NO,I]Sx[l,NO—I]
so that
* / * * * _
SY[I,NOJM SX[I,NO Cyn JNog—11X[1,Ny—1] SyNO Sy[LNO—uS)’[I.NofI]SxU,NO_uSx[l.NofI]SxNo =0
because yn, 7 xn,. Hence we have S;‘“ ol an,n] =0 for n > Ny. For n > Ny, it
then follows that
* / 1
”SY[l,n] X[1,n] ” — ”Sy 1 n]( —u )SX[LnJ || < 2
This contradicts the preceding lemma. (]

Thus we have this:
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Lemma 4.6. For a partial isometry u € F 4 satisfying
uDu* C O and uDsu C Dy,

there exists k, € N such that the homeomorphism h, : supp(u*u) — supp(uu™)
defined by Ad(u)(g) = goh;! for g € D gu*u satisfies the condition
of\“ (h,(x)) = 0'1];“ (x) forx € supp(u*u).

Proposition 4.7. For any v € N(O4, ® 4), the homeomorphism t, on X 4 induced
by the automorphism of D 4 defined by the restriction of Ad(v) to D 4 gives rise to
an element of the topological full group [o4]..

Proof. For v € N(O4x,®4), let v,,,m € Z be the partial isometries in O4 as in

Lemma 4.2. Take K € N such that v,, = 0 for all m € Z with [m| > K, and hence
K

0= __xUm. Wehave

K K
Ad@)(f) =D vafor+vofof+ D vnfo*, for feDy.
n=1 n=1

Since v;,v,, and v,,v;, are projections in © 4, we may put clopen sets

Xgm) = supp(v}v,) and YX") = supp(vpvy) form € Z with |m| < K

in X 4 such that X 4 is made of disjoint unions: X4 = U\m|§K XX") = U\m|§K Yf(‘m).
Since vg € F 4, by Lemma 4.6, there exists ko € N such that

(4-1) of(ro(x)) = (x) forx e X,

where 79 : X g)) — Ylgo) is the homeomorphism satisfying Ad(vo)(f) = for, ! for
f €D avivo. Forv,,v_, and 1 <n < K, by Lemma 4.3, we have, for f € D4

op fo; = Z Suvu foy, S, and o_, fol,= Z 0y S, [ S0 .
UEBL(X4) HEB, (X 4)
Put
XX“”) = supp(v},0,) Xg_"’”) = supp(S,vZ,0—4S,),

Y = supp(S,05SE), YA = supp(o_* ).

By Lemma 43’ Xgm) = U,uEBIm\(XA) X1(4m,‘u) and ngm) = U#EB\mI(XA) Yz‘(\m’#) for
|m| < K. There exists a homeomorphism

T(m, ) - Xi‘m’m — Yf‘m’”) form € Z with [m| < K
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such that
Ad(S,0,)(f) = fot,, for feDaviv,,
Ad(v_”SZ)(g):gor(__ln,#) forge@ASﬂvfﬂv_ﬂSZ

forn e Nwith 1 <n < K. Asv,,v_, € Fu, there exist k¢, ), k(—n,,) € N such
that
ai("”’) (T, ) (X)) = az("”‘)ﬂ (x) forxe Xl(f’”),
o-j("”‘ﬁ" (T, (X)) = aj(”’“) (x) for x € Xf;"’”).

Since we have

T, (X) for x € XXW),
T, (x) = § 70(x) for x € X1(40)’
T(—",u)(x) for x € Xg—n,ﬂ)

and X 4 is made of disjoint unions as

_ x© (m)_ y(0) (m,10)
Xa=xu (J U x=rPu U r",
1S|m|SK ﬂEB\m|(XA) 1S|m|SK ,uEBlm\(XA)

where Xgo), Xﬁlm’”) and Yf(‘o), Yf(‘m’”) for 1 <|m| < K and p € By, (X 4) are clopen
sets, we conclude that 7, € [o4],. O

There is a natural embedding id of the unitaries U(D 4) into N(O4, D 4). For
v € N(Oy4, ®,), the induced homeomorphism 7, on X4 gives rise to an element
of [o4]. by the above proposition.

Theorem 4.8. The sequence 1 — U(D 4) i) N4, D) LI [cale — 1 is exact
and splits.

Proof. By Proposition 4.7, the map 7 : v € N(O4,04) — 7, € [04], defines a
homomorphism. It is surjective by Proposition 4.1. Suppose that 7, = id on X4
for some v € N(O4,® 4). This means that Ad(v) =id on D 4. Hence » commutes
with all of elements of ©,4. By Lemma 2.1, v belongs to ®,4. Therefore the
sequence is exact. As in Proposition 4.1, for 7 € [o4]., the unitary u, defined by
setting u e, = e (x) for x € X4 gives rise to a section of the exact sequence. Hence
the sequence splits. ([

5. Orbit equivalence

Definition. Two topological Markov shifts (X4, 04) and (Xp, op) are said to be
topologically orbit equivalent if there exists a homeomorphism % : X4 — X such
that i (orb,, (x)) =orb,, (h(x)) for x € X 4. In this case, h(c4(x)) € orb,, (h(x)) for
x € X4, so that h(aa(x)) € U2y U2y 05 0k (h(x)). Hence there exist functions

ki,li: Xa— Zy such that 65! (h(o4(x))) = o4 (h(x)),
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and similarly there exists functions
ky,ly: Xp — 7, suchthat 6% (h " (55(y))) = 62 (A~ (y)).

We say that (X4, 04) and (Xp, op) are continuously orbit equivalent if there
exists a homeomorphism % : X4 — X p and continuous functions k1,1 : X4 — Z
and ky, I, : Xp — Z4 such that, for x € X4 and y € X,

5-1) ol P ha@) =iV 0(x), 20 6s()) =2V (7 ().

Example. Let Ap; = [} 1] and F = [1]]. The subshift X is the set of all
sequences (x,)nen Of 1, 2 such that the word (2, 2) is forbidden. Define a homeo-
morphism % : X — X4, by substituting the word 2 for the word (2, 1) from the
leftmost in order; for example

h(1,2,1,1,2,1,2,1,1,1,1,2,1,2,1,2,1,1,1,1,1,2, 1,1, 1, ...)
=(1,2,1,2,2,1,1,1,2,2,2, 1,1, 1, 1,2, 1, 1, ...) € Xap,.
Fori =1,2, put
Ur,i = {x = (Xxn)neN € Xay, | X1 =1},
Unpi ={y = (Vn)nen € Xap | y1=1i}.
By setting

{kl(x) =0, li(x)=1 forxeUfry, {kz(y) =0, Lh(y)=1 forye€ Uapy.,
ki(x)=1, 1(x)=1 forxeUrp, ko(y) =0, Lb(y)=2 fory € Uspo,

we see that (Xr, oF) and (X4, 04p,) are continuously orbit equivalent.
The following lemma is straightforward.

Lemma 5.1. If h : X4 — Xp is a homeomorphism satisfying Gg(x) (h(oca(x))) =
aé(x)(h(x))for x € X4 for some functions k,l : XA — Z, then by putting

n—1 n—1

K1) =D koj(0) and I"(x) =2 1(c}(x),
i=0 i=0
we have

oy (@i =05V (h(x) forx € Xaandn e N.

Lemma 5.2. If h : X4 — Xp is a homeomorphism, and ky,l; : X4 — Z+ and
ko, Iy : Xp — Z4 are continuous functions satisfying

oV (hea() =0y V() and o2V 0s(3)) =7 ()
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forx € Xpandy € Xp, then
h(orbs, (x)) = orb,, (h(x)) forx e Xj4.

Hence if (Xa,04) and (X, o) are continuously orbit equivalent, then they are
topologically orbit equivalent.

Proof. By Lemma 5.1, we have
—k (x) l (x)

h(c}(x)) Cog (h(x)) forxe XspandneN
so that (6} (x))) C orb,, (h(x)). For z = (u1, ..., tm, X1,X2,...) €0, (x), we
have again by Lemma 5.1
o K m S
o5 Dt 132, D)) =0 O (0} @) =0 (h(x)).

Hence A(i1, ... fim, X1, %2, ... ) Cog Doyl O (R(x)) C orby, (h(x)). Thus we

have h(orb,, (x)) C orb,, (h(x)). For the other inclusion relation, we similarly have
h=(orb,, (y)) C orb,, (h~'(y)) for y € Xp. This implies that orb,, (h(x))) C
h(orb,, (x)), so that h(orb,, (x)) = orb,, (h(x)). 0o

Proposition 5.3. Ifho[os].0h™ ' =[op] ¢ for some homeomorphism h: X 4 — Xp,
then (X4, 04) and (X g, o) are continuously orbit equivalent.

Proof. Assume that h o [o4], oh~ ' =[og].. For any y € Xp, put x = h_l(y), SO
that 1([oal.(x)) = [op].(h(x)). By Lemma 3.3, we have [g4].(x) = orb,, (x) and
[051c(h(x)) = orbg, (2(x)). 50 h(01b,, (x)) = orby, (h(x)).

We will next show that there exist continuous cocycle functions for 4. By
Lemma 3.2, For any u € B2(X4), there exist 7, € [oalc and k¢, 17, : X4 — Z4
satisfying (3-2). Put 7, =hot,o0h™ leholoal,oh™ =[op].. For x € Uy, we
have h(o4(x)) = 7, (h(x)). Since 7, € [65]., one may find k%, , 1, : Xp — Z such

that

K (v 1
oy h())(rh () = oy ()

Fory e h(U,), put x = h~1(y) so that

).

%mu» 14 (h(x)

(hooa(x)) =0y

Let {,u(l), e, ,u(M)} be the set By(X 4) of all admissible words of length 2. Define
k{’, l{’ : X4 — Z by setting

(h(x)) forxeU,.

ki) =k (h(x)) and  100x) = 12" (h(x)) forx € Uyo.
They are continuous and satisfy

k() 1} (x)

(hooa(x))=0p "(h(x)) forxe Xjy.
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Similarly there exist continuous functions ké’, lé’ : Xp — Z4 such that

Kb _ 0y, -
o oop() =0 (7 () fory € Xp.
Hence (X4, 04) and (X, op) are continuously orbit equivalent. (I
We also have the converse:

Proposition 5.4. If (X 4, 04) and (X, op) are continuously orbit equivalent, then
there exists a homeomorphism h : X 4 — Xp such that ho[o4]. o h'=[og]..

Proof. Suppose there exists a homeomorphism /4 : X4 — Xp, h(orb,, (x)) =
orb,, (h(x)) for x € X4 and there exist continuous functions ki, /; : X4 — Z4
and ky, [ : Xp — Z, satisfying (5-1). For n € N, let kY, : X, — Z, and
k5,15 : Xp — Z be continuous functions as in Lemma 5.1 such that

5-2) o5 Vi) =0y V), o0 @) =0 )

for x € X4 and y € Xp. For any 7 € [04]., there exist continuous functions
ke, l; : X4 — Z4 such that

(5-3) aﬁ’(x)(r x) = J[I{(X)(x) x € Xa.
For y € Xp, put x = h~'(y). We set m = k. (x) € N. By (5-2) and (5-3), we have
(@ k' (z( k' (z(x)) .
op V@) =05 V0@ @) =05 P @),
We set n =1, (x) € N. By applying og? ) to the equality above, we have by (5-2)
Ugy(x)ﬂqn(r(x))(h(r (x))) = agi’l(r(x))agl”(x)(h (@"(x)))
= DI 0y L G )

and hence

kT (7 (x)) -+ (x)

Gg?(x)"‘lin(l'(x))(h ot oh—l(y)) =0, (y)

By putting

K () = K2 () + 1 (2 () = KO OV (1 () + 10T O 2 (1 (),
B =K @)+ =k " O o+ 0 (),

we have
hy h
ggf(})(horoh_l(y))2020)()’) forall y € Xp,

so that hotoh™! €[op]. and ho[oa]l.oh ™! C[o].. Similarly 2~ o[op].0h C[o 4],
and we conclude that ho[oal.0h~! = [o5].. O
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Proposition 5.5. If there is an isomorphism ¥ : Oy — Op such that ¥ (D 4) = D3,
then there is a homeomorphism h : X 4 — Xp such that ho[o4]. o ' =[og]..

Proof. By Theorem 4.8, there exists a group isomorphism ¥ [64]c = [oB]: such
that the following diagram is commutative:

1 — m(@A) —1d> N(@A,QA) T—> [O'A]c — 1

L

1— OIL(@B) —1d> N(@B,C‘DB) T—> [O'B]c — 1

For any v € N(O4, D 4), put Ad(v)(f) =vfo* for f € D 4. Let 7, € Homeo(X4)
be the homeomorphism on X 4 satisfying Ad(v)(f) = f oz, Ufor f € Dy. Let
h: X 4 — Xp be the homeomorphism satisfying ¥ (f) = foh ™! for f € ® 4. Since
Y:N(@Oy,D4)— N(Op,Dp)isanisomorphismand {7, |0 e N(O4, D 4)}=[04]c,
the identity ¥ o Ad(v) o ¥~! = Ad(¥ (v)) implies that ho[oal.oh™! =[op].. O

Proposition 5.6. If (X 4, 04) and (X, o) are continuously orbit equivalent, then
there exists an isomorphism ¥ : 04 — Op such that ¥ (D 4) = Dp.

Proof. Although the proof is essentially same as that of Proposition 4.1, we give
a complete proof for completeness. Let & : X4 — Xp be a homeomorphism giv-
ing rise to continuous orbit equivalence between (X4, 04) and (Xp, op). Take
continuous functions ki, /] : X4 — Z+ and kp, [l : Xp — Z satisfying (5-1).
Represent O4 on $4 and Op on Hp as usual. We will prove that there exists a
unitary uy : H4 — $Hp such that

Ad(uy)(04) =05 and Ad(uy)(f)= foh™" for feD,4.

We respectively denote by e2 for x € X4 and ef for y € Xp the complete ortho-
normal systems on $4 and Hp coming from the shift spaces. Define the unitary
up : H4 — $Hp by setting uheA = eh( ) for x € X4. We will first prove that
Ad(u,)(04) = Op. Denote by SA and SB the canonical generating partial iso-
metries for S; in O4 and in Op respectlvely. For y € Xp, we have

ifih~'(y) € X4,

A h(ih=1(y))
uhS uy .
ne y {O otherwise.

Set X' = {y € X5 | ih"'(y) € Xa}. Put z = ih"'(y) € X4. By the equality
h(oa (z)) =y with (5-1), we have h(z) € o ll(z)(ogl(z)(y)) Thus

h(z) = (u1(@), -5 1) (@) Yk @) 415 Yia(@)+1s - - )

for some u1(z2) - - u1,(2)(2) € By, (;)(Xp). Since both the maps ki, : X4 — Z4
and the map y — z = ih~!(y) are continuous, there exist finite numbers

ko =max{ki(z) |y € X¥) and I} = max{l;(z) | y € XV}
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The set {(u1(2), ..., t1,)(2)) € Byy)(Xp) | y € Xg)} of words is a finite subset
of Wy (Xp) =U ;. _j, Bj(Xp). The map

yeXy = (ui@,.... 16 (@) € Wi, (Xp)

is continuous, where Wj (Xp) is endowed with discrete topology. For a word
V=uvg- vJeW (XB)and0<n<k1,thesets

EP={yeXy | m@=v1,.... ue@=v;} and FO={yeXy ki(z)=n}
are clopen in X g), where z = ih~!(y). We define projections in Dp:
Q,(f) =XgW> Pn(l) = XgD> PY = XXg>.

Since we have disjoint unions

X0= |J 9= |J B9,

veW,l(XB) n=0,....k;
we have
PO= 3 o= 3 B
veW[I(XB) n=0,....k;

For y € Xg) andv e Wl~1 (Xp)with0<n < 121, we have y € E,gi) N Fn(i) if and only
if h(ih~'(y)) =vo 5 (), and the latter condition is equivalent to the condition that

B BB
Chiin-1(y) = v Col(y)-
Since y e E'NEY 1fandon1y1fP(’)Q(’) P=ef,ande? o) = =D ceB,(Xp) Y4 ef

we have

B B*\ p(i) n(i) B ®
1) T Z > ( 2. S )Pn(l)Qg)ey fory € Xp .

ki vEW (XB) ¢eBy(Xp)
Hence
upSiupey = Z Z (Sf Z Sg*) POV forye x40,
n=0,...%y vEW;, (Xp)  E€B,(Xp)
Therefore we have

upSiul = Z z (f z Ség*)Pn(i)Q‘()i)P(i)‘

n=0,....k; VEW; (Xp) ¢eBy(Xp)

Since P,fi), Q(’) and P® are projections in ® g, we have Ad(uh)(SA) € Op, so that
Ad(u,)(04) C Op. Since uj, = uj-1, we symmetrically have Ad(u})(0Op) C Oy, so
that Ad(u;)(04) =0
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It is direct to see that Ad(u;)(f) = f oh™! for f € D, from the definition
uped = ef(x) for x € X4, so we have Ad(u,)(D4) = Dp. O

Therefore we have also proved Theorem 1.1.

6. Normalizers of the full groups and automorphisms of 0 4
In this section, we will study the normalizer subgroup
N(loal) = {p € Homeo(X4) [potop™ " €loal. forall 7 € [oal}
of [o4]. in Homeo(X 4), which is related to the automorphism group Aut(0O4, 0 4).
We set
N[oa] = {h € Homeo(X ) | h(orbg, (x)) = orb,, (h(x)) for x € X4},
N¢[oa] ={h € Homeo(X 4) | there exist continuous functions
k1,11, ko, I : X4 — Z4 such that, for x € X4,

ajl“”(h(aA(x>>>-—-ol“X’(h(x))
o (1 0a(0)) = 037 ()

Lemma 6.1. N [o4] is a subgroup of N[o].

Proof. By Lemma 5.2 for X4 = Xp, we see that N.[o4] is a subset of N[o4]. It
remains to show that for ¢, y € N.[o4], the composition y o ¢ belongs to N.[c4].
For n € N, take continuous functions k7 , 7 k¥ 1% X4 — Z4 such that

o> "> “ly> "1y *
1) k““@wﬂm»=oW”wa»
6-2) o @) = o (p ().

As in Lemma 5.1, we write k’qu l’f(p, k{’ o l’f y a8 kz lg, k;’/, [ respectively. By

applying (6-2) for ¢ (o4 (x)) as x, we have

ak" (@(@a())) l" (@(04))

(w(o4(p(0a(x))))) = (v (9(04(x)))).

Put n = k(o(x) and m = l(p(x). By (6-1) for n = 1, we have o (p(c4(x))) =
o' (p(x)) so that

k w (@(0a(x))) l vy @(0a(0)))

(y (o) (p(x))) = (y(p(oa(x)))),
and hence
Uj” ((P(UA(X)))O_km((P(x))(l//( o (p(x)))) = k’”((p(X))H" (w(oA(X)))(l//w (04 ().

By (6-2) we have

ky (p(oa (X))) l”’((D(X)) ky, (0 )+, (9 (04 ()

oy (w(px)) =0, (v (p(aa(x)))).
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We put

kyo(x) =k, (p(x)) +1,(p(0a(x))) and l,,(x) =1} (p(x)) +k, (p(0a(x))),

where n =k, (x) and m =1, (x). The functions k,,,, L/, : X4 — Z. are continuous
and satisfy

o (o (ea)) = 0" (wo(x).

Similarly, we may find continuous functions k,-1,,-1, l,-1,,-1: X4 — Z satisfying
k 1 —1(x) _ _ I —1,-1(x) _ _
A e e (Y 69)) ey G (7 €9))
so that w op € N [o4]. ]

Lemma 6.2. N.[c4] = N([o4l.).

-1

Proof. For ¢ € N.[oa] and 7 € [04]., we will first prove that pot o™ € [04]c.

For n € N, take continuous functions kY, [, k5, [ : X4 — Z satisfying

k() 1(X)

(6-3) (ploj(x) =0, "(p(x)),
(0 @l =0V (1))

forall x € X4. For t € [oa]., letk; : X4 — Z be a continuous function satisfying
(3-1). By (6-3) we have

(6-4) k (X)

oA i e =of T Pioe ().

Put y = ¢~ '(x), n =k,(y) and m =1,(y). By (3-1), we have oy (t(y) =04 (y)

so that

I'(z(y)) K (x(»))
O4

(p(z()) =04 (@} ().

ko) to the equality above, we have by (6-3)

By applying o A

k (y)+l”(t(y))( () =0ck k”(r(y)) k' (y)((o( s () =ch ki (z(y) l’”(y)( ).

Put

kpep=1(x) =ki' () + 1 (x(y)) and  Lyrp-1(x) = k7 (z (1) + 17 (),

where y =9~ '(x), n=k,(y), m =1I,(y). The functions Kprp=1>lprp—1:Xa—> 2y
are continuous and satisfy

Do @) = ).

Hence p o7 o (/)_1 € [oalc, so that o € N([oalc)-
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We will next prove the other inclusion N.[o4] D N([o4].). For g € N([o4].) we
have po[olcop ' (y) =[oalc(y) forall y € X 4. Putx =¢~'(y). By Lemma 3.4,
we see that

¢ (orbg, (x)) = [galc(p(x)) = orbg, (¢ (x)).

Let {uM, ..., u®™} be the set By(X4). For each word 4, Lemma 3.2 shows
that there exist 7; € [04]. and continuous functions k), [?) : X 4 — Z__ such that
7;(y) =0a(y) foryeU,»n and O'A (Z)(Tl( ) = O'A (Z)(z) forz e Xa.

Put 7 =gort;0p !, so that

pooa(y)=17(p(y)) foryeU,w.

Since 7 € [o4]., we may find continuous functions k;,[; : X4 — Z, such that
azf(z)(f(z)) = aif(z)(z) forz € X 4.

Hence we have

kf 7
a5 (pooa(»)) =5 (p(y) forye Uo.
Define k{, 1] : X4 — Z by setting

k{(y)=k:(y) and [{(y)=1;(y) foryeU,o.

Since U @ 1s clopen and X 4 is a disjoint union U i1 U @, the functions kq’ lw are
both contlnuous and satisfy

Py
O_kl ())(

KO oaa() =01 (p(y)) fory e Xa.

Similarly we may find continuous functions k5, [5 : X4 — Z. that satisfy

2 S 1 ()

(¢ ooax) =0, (9~ (x)) forxe Xy,

so that ¢ € N.[o4]. Therefore N.[c4] D N([o4].) and hence N.[c4] = N([o4].).
O

Proposition 6.3. For a homeomorphism h € N.([o4]) there is an automorphism
an € Aut(O4, D 4) such that ap(f) = foh™! for f € D4. The correspondence
h e N.([oa]) > ay € Aut(04, D 4) is a homomorphism.

Proof. Since a homomorphism /& € N.([o4]) gives rise to a continuous orbit equiv-
alence on (X 4, 64), the claim follows from Proposition 5.6 and its proof. O

Conversely, for any automorphism o € Aut(04, D 4), we denote by ¢, the homeo-
morphism on X 4 induced by the restriction of a to D 4 such that a(f) = fo ¢, !
for f € Dy.

Proposition 6.4. ¢, belongs to N ([o4].).
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Proof. For © € [04]., define u, € N(O4,®4) to be the unitary constructed in
Proposition 4.1 such that Ad(u;)(f) = f ot~ ! for f € D4. Since Ad(a(u;)) =
o o Ad(u;) oa~! on Oy, the condition a(D ) =D 4 implies a(u;) € N0y, D4).
We see that

Ad(a(u))(f) =aoAd(u,) oa ™ (f) = fo(paot  og;h).

Since the homeomorphism 7,,,) defined by a(u.) € N(O4, D 4) belongs to [g4].
and satisfies Ad(a(u;))(f) = fo ra_(llh), we conclude that

oy =@aot og, )V =ga0t08, ",
which belongs to [o4].. O
We denote by ¢4 : D4 — D 4 the homomorphism defined by

N
pala) = Z SiaS’ forae®y.
i=1
In identifying © 4 with C(X 1) as usual, we see p4(f) = fooa for f € C(X4). A
unitary one-cocycle for ¢ 4 is a W(D 4)-valued function U : Z 1 — U(D 4) satisfying

Uk+1)= U(k)(pﬂU(l)) fork,l € Z+ (see [Matsumoto 2000]).

Let Z ;A (U(D 4)) be the set of all unitary one-cocycles for ¢4; it is an abelian
group in natural way. As in [Matsumoto 2000] (see also [Cuntz 1980; Katayama
and Takehana 1998]), for U € Z, (U(D 1)), put

A(UY(S,) =UK)S, for u € Be(X ).

Then A(U) gives rise to an automorphism of 04 such that A(U)|p, = id. We note
that the correspondence U € Z! L(UWD,4)) - U(1) € W(D,) yields an isomor-
phism of abelian groups, and hence we may identify Z ;A (U(D 4)) with WU(D4).
By [Matsumoto 2000, Lemma 4.8], 4 : Zzer UMD 4)) = Aut(04, D 4) is an injective
homomorphism of groups.

Let V:Z;y — U(D4) be a U(D 4)-valued function on Z satisfying

V (k) = vk (v*) forkeZ,
for some unitary v € U(D 4). Then V is called a coboundary for ¢ 4. Since
V)pa (V1) = vgi 09k 09y (0*) =V (k+1),

a coboundary V for g4 is a unitary one-cocycle for p4. Let By (U(D4)) be the
set of all coboundaries for g 4. It is easy to see that B} L (U(D 4)) is a subgroup of
Z! (UW(Dy4)). We remark that if U € Z} (U(D,)) satisfies U(1) = vpa(v*) for
some v € U(D 4), then U (k) = v¢ﬁ(v*) for k € N, and hence U € B;A U(D4)).
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Define H(}A (U(D 4)) by the quotient group Z ;A UMD 4))/ B;A (U(D 4)), called
the cohomology group for ¢ 4.

Theorem 6.5. There exist short exact sequences

(D) 1 Z! (WD) <> Aut(©4, D4) 5 N(loalo) = 1,

@) 1 - BL (U®D,)) <> Inn(04, D4) 2> [0l — 1,

(3) 1 H} (WD 1)) —> Out(04,D4) 2> N([oal)/[0ale — 1.

They all split. Hence Out(04, D 4) is a semidirect product

Out(04, D) = N([gal)/[oalc - H,, (WD 4)).

Proof. (1) Since N ([o4].) = N.[o4] by Lemma 6.2, Propositions 6.3 and 6.4 imply
that the homomorphism ¢ : Aut(04, D 4) — N([oal.) is defined and is surjective.
By [Matsumoto 2000, Lemma 4.8], the map 4 : Z;A UMD 4)) = Aut(04,D,) is
injective. Let o € Aut(04, ® 4) be such that ¢, = id and hence a|p, = id. By
[Matsumoto 2000, Corollary 4.7], a|p, = id if and only if a = A(U) for some
U € Z} (WD ,)). Hence we have Ker(¢) = Z, (U(D4)). By Proposition 6.3,
for ¢ € Nc[o4], there exists an automorphism a, € Aut(04, D 4), which is of the
form a, = Ad(u,), where u, : $4 — $4 is a unitary as defined in the proof of
Proposition 5.6. It is clear to see that ¢,, = ¢. Hence the sequence splits.

(2) Theorem 4.8 implies the homomorphism ¢ : Inn(04, D 4) — [04]. is defined
and surjective. For a € Inn(04, ® 4), take v € U(04) such that = Ad(v). Hence
v belongs to N(O4, D). Suppose that paqp) = id in [oa].. By (1), there ex-
ists a cocycle U € Z! L (U(D 4)) such that Ad(v) = A(U). By [Matsumoto 2000,
Lemma 5.14], we see that v € U(D 4) and U (1) = vp4(v*). Hence U belongs to
B;A (U(D 4)). Since the sequence (1) splits, the section in (1) yields a section in
(2). Hence (2) splits.

(3) The exact sequence follows from (1) and (2), and splits. O

7. Orbit equivalence and AF-algebras

In this section, we will show that the discussions in the previous sections can be
applied to the pair (¥4, D 4) of the AF-algebra %4 and its diagonal algebra D 4,
instead of the pair (04, 4) that we have studied. For x = (x,),en € X4, the
uniform orbit orb, , [x] of x under o4 is defined by

orbg, [x] = | J o (ck(x)) C X4.
k=0
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Hence y = (yu)nen € X 4 belongs to orb,, [x] if and only if there exist k € Z and
an admissible word puj - - - ux € Br(X4) such that
y = (,ul: ceey ﬂk, Yk+1: yk+29 .. )

Let [[o 4]l be the set of all T € Homeo(X 4) such that 7 (x) € orb,, [x] for all x € X 4.
Let [o4]aF be the set of all 7 in [[o 4] such that there exists a continuous function
k: X4 — Z; such that

(7-1) D) =6t (x) forallx € X,.

We call [o4]ar the AF-full group for (X4, o4). Since X4 is compact, a homeo-
morphism 7 € Homeo(X 4) belongs to [o4]ar if and only if there exists a con-
stant k € Z, such that aﬁ(r(x)) = aﬁ(x) for all x € X4. We set, for x € X4y,
[calap(x) = {z(x) | 7 € [0alaF}. It is immediate that [64]ap(x) = orb,,[x]. Let
N(F4,D4) be the normalizer of D 4 in %4, which is defined as the group of all
unitaries u € %4 such that u® 4u* =9 4. The algebra ® 4 is also maximal abelian
in % 4. By an argument similar to the proof of Proposition 4.1, we have this:

Lemma 7.1. For any t € [0 4]AF, there exists a unitary u; € N(Fa, D a) such that

Ad@u)(f)=fot™! for f €Dy,
and the correspondence t € [oa]ap — U; € N(Fa, D 4) is a group homomorphism.
By Lemma 4.5 we have the following:

Lemma 7.2. For u € N(F4,94), let h, € Homeo(X 4) be the homeomorphism
on X 5 induced by the restriction of Ad(u) to D 4 such that Ad(u)(f) = foh,!
for f € © 4. Then there exists a number k € N such that Jﬁ(hu(x)) = aﬁ (x) for
Xx € X 4. Namely h, € [04]AF-

Therefore by a proof similar to that of Theorem 4.8, we have this:

Proposition 7.3. There exists a short exact sequence
1= AUD4) = N(Fs, D) —> [oalar — |

that splits.

We say that (X 4, 04) and (X g, o) are uniformly orbit equivalent if there exists
a homeomorphism 4 : X4 — X such that i(orb,,[x]) = orb,,[h(x)] for x € X4
and for 71 € [o4]ar and 7, € [0 ]AF there exist constants k;, k; € Z such that

oy (h(t1(x)) =05 (h(x)) and o2 (W (2(y)) = a5 (7 (1))

for x € X4 and y € Xp. The next theorem then follows from an argument similar
to those in the proofs of Propositions 5.3, 5.4, 5.5 and 5.6 and Theorem 1.1.
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Theorem 7.4. The following three assertions are equivalent:
o There exists an isomorphism ¥ : F o — Fp such that ¥ (D) = Dp.
o (X4,04) and (Xp, op) are uniformly orbit equivalent.
o There is a homeomorphism h : X 4 — Xp such that ho[o4]ar oh™ ' =[og]AR.

Let Aut(F4, D 4) be the group of all & € Aut(F4) such that a(D4) = D4.
Denote by Inn(%4, ©4) the subgroup of Aut(%4,D4) of inner automorphisms
on %4. We set Out(%F 4, ® 4) to be the quotient group Aut(F 4, 0 4)/Inn(F4, D 4).
We may argue as in Section 6, to obtain this:

Theorem 7.5. There exist short exact sequences
e 1o Z) UD) > Aut(F s, D) > N(loalar) > 1.
o 1= Bl (WD) —> In(F g, D) > [oalar > 1.

e 1 H! (U®D 1)) —2> Out(Fa, D4) -5 Noalar)/loalar — 1.

They all split. Hence Out(¥ 4, D 4) is a semidirect product

Out(Fa, D4) = N([oalar)/[oalar - H,, (WD),

where N ([0 4]aF) is the normalizer subgroup of [c4]ar in [[oa]l.

Concluding remarks. After the December 2007 submission of this paper, related
results have appeared in [Matui 2009; Matsumoto 2009; 2007; 2010]. The last
paper shows that if the sizes of the matrices A, B are less than or equal to three,
then the topological Markov shifts (X4, 04) and (Xp, op) are continuously orbit
equivalent if and only if the Cuntz—Krieger algebras O4 and Op are isomorphic.
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