ON THE ASYMPTOTIC BEHAVIOR OF D-SOLUTIONS OF THE PLANE STEADY-STATE NAVIER–STOKES EQUATIONS

ANTONIO RUSSO

We prove that all the derivatives of a D-solution (u, p) of the Navier–Stokes equations in a plane neighborhood of infinity $\mathbb{C}C_{R_0}$ decay more rapidly than $|x|^{\epsilon-1/2}$ for every positive ϵ. Moreover, we show that if the flux of u through the boundary of C_{R_0} is zero, the second derivatives of p are summable over the complement of C_{R_0}.

In the theory of the steady-state Navier–Stokes equations a D-solution is an analytic pair (u, p) which satisfies the equations [Galdi 1994]

1

\begin{align*}
\Delta u - u \cdot \nabla u - \nabla p &= 0, \\
\text{div } u &= 0,
\end{align*}

in a neighborhood of infinity $\mathbb{C}C_{R_0} \subset \mathbb{R}^2$ and has a finite Dirichlet integral:

\[\int_{\mathbb{C}C_{R_0}} |\nabla u|^2 < +\infty. \]

An open problem in viscous hydrodynamics concerns the behavior at infinity of these solutions. Thanks to the celebrated results of D. Gilbarg and H. W. Weinberger [1978] and G. P. Galdi [1994], we know that

2

\begin{align*}
|u|^2 &= o(\log r), \\
\nabla u &= o(r^{-3/4} \log^{9/8} r), \\
\nabla_{k-1} p(x) &= o(1), \\
\nabla_k u(x) &= o(1),
\end{align*}

for all $k \in \mathbb{N}$.

MSC2000: primary 76D05; secondary 35Q30, 76D03.

Keywords: steady-state Navier–Stokes equations, D-solutions, behavior at infinity.

1 We use a standard vector notation as in, for example, [Galdi 1994]. We set $C_R = \{ x \in \mathbb{R}^2 : r = |x| < R \}$. If f is a function defined in a neighborhood of infinity $\mathbb{C}C_{R_0}$ and $\varphi(r)$ is a positive function, $f = o(\varphi)$ and $f = O(\varphi)$ mean respectively that $\lim_{r \to +\infty} f/g = 0$ and f/g is bounded in $\mathbb{C}C_{R_0}$.

2 $D_k^{1, q}(\mathbb{C}C_{R_0}) = \{ u \in L^1_{\text{loc}}(\mathbb{C}C_{R_0}) : \| \nabla_k u \|_{L^q(\mathbb{C}C_{R_0})} < +\infty \}$, where $k \in \mathbb{N}_0$, $q \in [1, +\infty)$ and $\nabla_k u = \nabla \ldots \nabla u$ (k times), $\nabla_0 u = u$; H^1 denotes the Hardy space on \mathbb{R}^2 [Stein 1993].

$u(x)$ and $p(x)$ are the velocity field and the pressure field respectively, and $u \cdot \nabla u$ is the vector with components $u_i \partial_i u_j$. Since our results are independent of kinematical viscosity ν, we shall put $\nu = 1$.

253
The aim of this paper is to improve (2) and to establish some summability properties of the derivatives of the pressure field p. To be precise, we prove the following:

Theorem. If (u, p) is a D-solution, then

$$\nabla p = O(r^{\epsilon-1/2})$$

for every positive ϵ. Moreover, if

$$\int_{\partial C_{R_0}} u \cdot n = 0,$$

then

$$p \in D^{2,1}(\bar{C}_{R_0}).$$

To prove the theorem we need some well-known results, which we state in the form of lemmas.

Lemma 1 [Galdi 1994]. Let $v(x) = \int_{\mathbb{R}^2} \frac{1}{|x-y|^\lambda |y|^\mu} \, da_y$, with $\lambda < 2$, $\mu < 2$. If $\lambda + \mu > 2$, then

$$v(x) = cr^{2-\lambda-\mu}$$

for a suitable constant $c = c(\lambda, \mu)$.

Lemma 2 [Stein 1993]. If $f \in \mathcal{H}^1$, then the problem

$$\Delta p = f \quad \text{in } \mathbb{R}^2, \quad \lim_{x \to \infty} p(x) = 0,$$

admits the unique solution

$$p(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} f(y) \log |x-y| \, da_y \in D^{2,1}(\mathbb{R}^2) \cap D^{1,2}(\mathbb{R}^2).$$

Lemma 3 [Coifman et al. 1993]. If $u \in D^{1,2}(\mathbb{R}^2)$ is divergence-free, then

$$\nabla u \cdot \nabla u^T \in \mathcal{H}^1.$$

Proof of (3). Taking the divergence in $(1)_1$ and taking into account $(1)_2$, we see that p satisfies the Poisson equation

$$\Delta p + \nabla u \cdot \nabla u^T = 0 \quad \text{in } \bar{C}_{R_0}.$$

Writing the classical Stokes formula in the shell $T = C_R \setminus C_{R_0}$ ($R \gg R_0$), we have

$$2\pi p(x) = \int_{\partial T} \partial_n p(\xi) \log |x-\xi| \, ds_\xi$$

$$- \int_{\partial T} \frac{p(\xi)(x-\xi) \cdot n(\xi)}{|x-\xi|^2} \, ds_\xi - \int_T (\nabla u \cdot \nabla u^T)(y) \log |x-y| \, da_y,$$
where \(\mathbf{n} \) denotes the outward unit normal to \(\partial T \). Hence, taking the gradient shows that

\[
2\pi \nabla p(x) = \int_{\partial T} \frac{(x - \xi) \mathbf{n} p(\xi)}{|x - \xi|^2} \, ds_\xi - \nabla \int_{\partial C_{R_0}} \frac{p(\xi)(x - \xi) \cdot \mathbf{n}(\xi)}{|x - \xi|^2} \, ds_\xi
\]

\[
- \int_{\partial C_{R_0}} \frac{\nabla \mathbf{u} \cdot \nabla \mathbf{u}^T(y)(x - y)}{|x - y|^2} \, da_y.
\]

By virtue of (2), we are allowed to let \(R \to +\infty \) in (7) to have

\[
2\pi \nabla p(x) = \int_{\partial C_{R_0}} \frac{(x - \xi) \mathbf{n} p(\xi)}{|x - \xi|^2} \, ds_\xi - \nabla \int_{\partial C_{R_0}} \frac{p(\xi)(x - \xi) \cdot \mathbf{n}(\xi)}{|x - \xi|^2} \, ds_\xi
\]

\[
- \int_{\partial C_{R_0}} \frac{\nabla \mathbf{u} \cdot \nabla \mathbf{u}^T(y)(x - y)}{|x - y|^2} \, da_y - \int_{\partial T} \frac{(\nabla \mathbf{u} \cdot \nabla \mathbf{u}^T)(y)(x - y)}{|x - y|^2} \, da_y + O(r^{-1}).
\]

Therefore, taking into account (2) and Lemma 1, (8) implies (3). \(\square \)

Proof of (5). Let \(g \) be a regular cut-off function in \(\mathbb{R}^2 \), vanishing in \(C_{\bar{R}} \) and equal to 1 outside \(C_{2\bar{R}} \), with \(\bar{R} \gg R_0 \). By (4), the problem

\[
\text{div} \mathbf{h} + \text{div}(g \mathbf{u}) = 0 \quad \text{in} \quad C_{2\bar{R}} \setminus C_{\bar{R}}
\]

has a solution \(\mathbf{h} \in C_0^\infty(C_{2\bar{R}} \setminus C_{\bar{R}}) \) [Galdi 1994]. From (6) it follows that the function \(Q = g^2 p \) is a solution of the equation

\[
\Delta Q + \text{div} \mathbf{f} + \varphi = 0 \quad \text{in} \quad \mathbb{R}^2,
\]

where \(\varphi \in C_0^\infty(C_{2\bar{R}} \setminus C_{\bar{R}}) \) and

\[
\mathbf{f} = (g \mathbf{u} + \mathbf{h}) \cdot \nabla(g \mathbf{u} + \mathbf{h}).
\]

By virtue of Lemma 2, \(Q \) is expressed by

\[
2\pi Q(x) = - \int_{\mathbb{R}^2} \log |x - y| \, \text{div} \mathbf{f}(y) \, da_y - \int_{\mathbb{R}^2} \varphi(y) \log |x - y| \, da_y
\]

\[
= Q_1 + Q_2.
\]

By Lemma 3 \(\text{div} \mathbf{f} \in \mathcal{H}^1 \) so that Lemma 2 implies that \(Q_1 \in D^{2,1}(\mathbb{R}^2) \cap D^{1,2}(\mathbb{R}^2) \). Since \(Q \) tends to zero at infinity, we must have

\[
\int_{\mathbb{R}^2} \varphi = 0,
\]

otherwise \(Q = O(\log r) \). It follows that \(\nabla_k Q_2 = O(r^{-1-k}) \), and (5) is proved. \(\square \)
Remark. The higher gradients of u and p can be estimated in the same way. Precisely, it holds
\[\nabla_k p(x), \nabla_k u(x) = O(r^{\epsilon-1/2}), \]
for all positive ϵ and for all $k \in \mathbb{N}$.

Remark. By the embedding theorem and (2)_{3}, (5) implies that $p \in D^{1,2}(\mathbb{C}C_{R_0})$. Since by the basic calculus
\[\int_0^{2\pi} |\nabla p|(R, \theta) \, d\theta = \int_0^{2\pi} \left| \int_{\mathbb{C}C_R} \partial_r \nabla p(r, \theta) \, d\theta \right| \leq \frac{1}{R} \int_{\mathbb{C}C_R} |\nabla \nabla p|, \]
we see that if (4) holds, then
\[\int_0^{2\pi} |\nabla p|(R, \theta) = o(R^{-1}). \]

References

Received September 22, 2009.

ANTONIO RUSSO

DIPARTIMENTO DI MATEMATICA

SECONDA UNIVERSITÀ DEGLI STUDI DI NAPOLI

VIA VIVALDI, 43

81100 CASERTA

ITALY

a.russo@unina2.it