Vol. 246, No. 2, 2010

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Geometric structures associated to a contact metric (κ,μ)-space

Beniamino Cappelletti Montano and Luigia Di Terlizzi

Vol. 246 (2010), No. 2, 257–292
Abstract

We prove that any contact metric (κ,μ)-space (M,φ,ξ,η,g) admits a canonical paracontact metric structure that is compatible with the contact form η. We study this canonical paracontact structure, proving that it satisfies a nullity condition and induces on the underlying contact manifold (M,η) a sequence of compatible contact and paracontact metric structures satisfying nullity conditions. We then study the behavior of that sequence, which is related to the Boeckx invariant IM and to the bi-Legendrian structure of (M,φ,ξ,η,g). Finally we are able to define a canonical Sasakian structure on any contact metric (κ,μ)-space whose Boeckx invariant satisfies |IM| > 1.

Keywords
contact metric manifold, (κ,μ)-nullity condition, Sasakian, paracontact, para-Sasakian, bi-Legendrian, foliation, antihypercomplex, 3-web
Mathematical Subject Classification 2000
Primary: 53C12, 53C15, 53C25, 53C26
Secondary: 57R30
Milestones
Received: 4 April 2009
Accepted: 2 March 2010
Published: 1 June 2010
Authors
Beniamino Cappelletti Montano
Dipartimento di Matematica
Università degli Studi di Bari “A. Moro”
Via E. Orabona 4
70125 Bari
Italy
http://www.dm.uniba.it/~bcappelletti/
Luigia Di Terlizzi
Dipartimento di Matematica
Università degli Studi di Bari “A. Moro”
Via E. Orabona 4
70125 Bari
Italy