Vol. 246, No. 2, 2010

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A generalization of the Pontryagin–Hill theorems to projective modules over Prüfer domains

Jorge Macías-Díaz

Vol. 246 (2010), No. 2, 391–405
Abstract

Motivated by the Pontryagin–Hill criteria of freeness for abelian groups, we investigate conditions under which unions of ascending chains of projective modules are again projective. We prove several extensions of these criteria for modules over arbitrary rings and domains, including a genuine generalization of Hill’s theorem for projective modules over Prüfer domains with a countable number of maximal ideals. More precisely, we prove that, over such domains, modules that are unions of countable ascending chains of projective, pure submodules are likewise projective.

Keywords
Pontryagin–Hill theorems, projective modules, Prüfer domains, G(0)-families of submodules, pure submodules, relatively divisible submodules
Mathematical Subject Classification 2000
Primary: 13C05, 13C10
Secondary: 16D40, 13F05
Milestones
Received: 1 June 2009
Revised: 31 August 2009
Accepted: 13 October 2009
Published: 1 June 2010
Authors
Jorge Macías-Díaz
Departamento de Matemáticas y Física
Universidad Autónoma de Aguascalientes
Avenida Universidad 940
Ciudad Universitaria
Aguascalientes, Ags. 20100
Mexico