Vol. 246, No. 2, 2010

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Elliptic pseudodifferential equations and Sobolev spaces over p-adic fields

J. J. Rodríguez-Vega and W. A. Zúñiga-Galindo

Vol. 246 (2010), No. 2, 407–420
Abstract

We study the solutions of equations of type f(D,α)u = v, where f(D,α) is a p-adic pseudodifferential operator. If v is a Bruhat–Schwartz function, there exists a distribution Eα, a fundamental solution, such that u = Eα v is a solution. However, it is unknown to which function space Eα v belongs. We show that if f(D,α) is an elliptic operator, then u = Eα v belongs to a certain Sobolev space, and we give conditions for the continuity and uniqueness of u. By modifying the Sobolev norm, we establish that f(D,α) gives an isomorphism between certain Sobolev spaces.

Keywords
p-adic fields, p-adic pseudodifferential operators, fundamental solutions, p-adic Sobolev spaces
Mathematical Subject Classification 2000
Primary: 46S10, 47S10
Secondary: 35S05, 11S80
Milestones
Received: 13 March 2009
Revised: 27 July 2009
Accepted: 30 July 2009
Published: 1 June 2010
Authors
J. J. Rodríguez-Vega
Departamento de Matemáticas
Universidad Nacional de Colombia
Ciudad Universitaria
Bogotá, D.C.
Colombia
W. A. Zúñiga-Galindo
Centro de Investigación y de Estudios Avanzados del I.P.N.
Departamento de Matemáticas
Av. Instituto Politécnico Nacional 2508
Col. San Pedro Zacatenco
07360 México, D.F.
México