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We show that spacelike S-Willmore surfaces are the only spacelike Willmore
surfaces with a duality in Lorentzian space forms. We obtain a classification
of S-Willmore spheres in Lorentzian conformal space forms. Such a sphere
must be congruent to either a complete spacelike stationary ( EH = 0) surface
in Rn

1 ; a super-Willmore sphere in S2m+2; or a polar transform of a ( j − 1)-
isotropic complete spacelike stationary ( EH = 0) surface in R2 j+2

1 . We also
show that all Willmore spheres in Q4

1 are conformal to a complete spacelike
stationary surface in R4

1 .

1. Introduction

The best-known results in global study of submanifolds in space forms are about
minimal and CMC spheres, for example, the classical Hopf theorem and Chern’s
work [1970]. Later this study was extended to Willmore 2-spheres in Möbius
geometry [Bryant 1984; Ejiri 1988b; Musso 1990; Montiel 2000] and Lorentzian
conformal geometry [Alı́as and Palmer 1996; Ma and Wang 2008]. In this paper
we generalize some of these results for spacelike S-Willmore spheres in Lorentzian
space forms.

Blaschke [1929] and Thomsen [1923] began the study of Willmore surfaces,
and derived the dual property. Bryant [1984] rediscovered the duality theorem and
used it in classifying all Willmore spheres in S3. Then Ejiri [1988b] found that the
duality theorem does not hold for general Willmore surfaces in Sn and showed that
S-Willmore surfaces are the only Willmore surfaces with a dual Willmore surfaces
in Sn . He also classified all S-Willmore spheres in Sn . In the case n= 4, Willmore
spheres are automatically S-Willmore, a fact also studied in [Montiel 2000] and
[Musso 1990]. When the case n > 4, Ma [2006] showed that there exists another
category of transforms, the adjoint transforms, that generalize dual surfaces. By
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using adjoint transforms, he obtained partial results concerning the classification
of Willmore 2-sphere in Sn [Ma 2005].

In the Lorentzian case, Alı́as and Palmer [1996] showed that the duality theorem
holds for spacelike Willmore surfaces in 3-dimensional Lorentzian space forms,
and they proved that the only spacelike Willmore 2-sphere is the round sphere.
In higher-dimensional Lorentzian space forms, the duality theorem does not hold
in general either [Ma and Wang 2008]. While we can define the so-called polar
transforms for surfaces in 4-dimensional Lorentzian space forms, such transforms
keep the Willmore property. We also obtained the classification theorem:

Theorem A [Ma and Wang 2008]. Any spacelike Willmore 2-sphere in Q4
1 is either

congruent to a complete spacelike stationary surface (that is, H = 0) in R4
1 , or a

polar surface of such a surface.

Theorem B [Ejiri 1988b]. Every S-Willmore 2-sphere y : S2
→ Sn must be con-

formally equivalent to a super S-Willmore surface or a complete minimal surface
in Rn with its dual surface reducing to a point .

For the Lorentzian case, we obtain the duality theorem too. Then we generalize
the notion of polar surfaces and derive the classifications of S-Willmore spheres:

Theorem C. Suppose y : S2
→ Qn

1 is a spacelike S-Willmore 2-sphere. Then up to
conformal equivalence, it is described in one of the following:

(i) y is congruent to a complete spacelike stationary surface (that is, EH = 0)
in Rn

1 , and its dual surface reduces to a point.

(ii) y is a super S-Willmore surface in some Riemannian sphere S2m
⊂ Qn

1 .

(iii) y, together with its dual surface, is a polar surface of an (m−1)-isotropic
complete spacelike stationary surface in R2m

1 , and all are in some subspace
Q2m

1 ⊂ Qn
1 .

Here the space Qn
1 is the conformal compactification of Lorentzian space forms.

Theorem C is proved by constructing holomorphic forms on S2, which must vanish.
Then it reduces to three cases. The first two cases are the same as in Sn . The third
is that it is a full totally isotropic sphere in Q2m

1 ⊂ Qn
1 . There are two difficulties

in the proof. The first is to show that the holomorphic forms are globally defined
in S2. The second is to describe the totally isotropic sphere in Q2m

1 . Another
problem is the existence of surfaces in the case (iii). When n = 4, we prove that
it must be a round sphere. When n > 4, in R6

1 we give some examples of surfaces
belonging to case (i) and (iii). As to surfaces belonging to case (iii), we still know
little about them.

This paper is organized as follows. In Section 2, we review the notion of Qn
1 , the

general theory of spacelike surfaces, the description of Willmore and S-Willmore
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surfaces, and the duality theorem for S-Willmore surfaces. In Section 3, we con-
struct holomorphic forms on Willmore 2-spheres and reduce the problem to de-
scribing the totally isotropic sphere in Q2m

1 . In Section 4, we derive the notion of
polar surfaces, showing that a totally isotropic sphere in Q2m

1 is either congruent to
a totally isotropic minimal surface in R2m

1 or to a polar surface of (m−1)-isotropic
minimal surfaces in R2m

1 . We also exhibit an S-Willmore sphere conformal to
a totally isotropic minimal surface in R6

1 . In the last section, we show that the
spheres in the second case of Theorem A must be round spheres.

In the sequel y : M → Qn
1 will always denote a smooth spacelike immersion

from an oriented surface M unless it is explicitly stated otherwise.

2. Spacelike surfaces in Lorentzian conformal geometry

Here we will review the conformal geometry of Qn
1 and the spacelike surface theory

in Qn
1 . For further details, see [Alı́as and Palmer 1996; Ma and Wang 2008]. Our

treatment here follows the surface theory in [Burstall et al. 2002].
Let Rn+2

2 be the space Rn+2 equipped with the quadric form

〈x, x〉 =
∑n

1 x2
i − x2

n+1− x2
n+2,

with Cn+1
1 its light cone. The projective light cone

Qn
1 = {[x] ∈ RPn+1

| x ∈ Cn+1
1 \ {0}}

is equipped with a Lorentzian metric induced from the projection Sn−1
× S1

⊂

Cn+1
1 \ {0} → Qn

1 together with a Lorentzian metric g(Sn−1)⊕ (−g(S1)), where
g(Sn−1) and g(S1) are standard metrics on Sn−1 and S1. So there is a conformal
Lorentzian metric [h] on Qn

1 . The conformal group of (Qn
1, [h]) is exactly the

orthogonal group O(n, 2)/{±1} of Rn+2
2 , acting on Qn

1 by

T ([x])= [xT ] for T ∈ O(n, 2).

The three n-dimensional Lorentzian space forms with constant sectional curvature
c = 0,+1,−1 can be conformally embedded as a proper subset of Qn

1 . For more
details about Lorentzian space forms, see [O’Neill 1983].

Now we focus on a spacelike surface y : M→ Qn
1 , with M a Riemann surface.

Let U ⊂ M be an open subset. A local lift of y is a map Y :U → Cn+1
1 \ {0} such

that π ◦Y = y. Two different local lifts differ by a scaling, so their induced metrics
are conformal. We call y a conformal spacelike surface if the induced metric is
conformal, that is, 〈Yz, Yz〉=0 and 〈Yz, Yz̄〉>0 for any local lift Y and any complex
coordinate z on M . Then there is a decomposition M ×Rn+2

2 = V ⊕ V⊥, where
V = span{Y, dY, Yzz̄} is a Lorentzian rank-4 subbundle independent of the choice
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of Y and z. V⊥ is also a Lorentzian subbundle, called the conformal normal bundle
of y in Qn

1 . Their complexifications are denoted respectively by VC and V⊥
C

.
Fix a local coordinate z. There is a local lift Y satisfying |dY |2 = |dz|2, called

the canonical lift (with respect to z). Choose a frame {Y, Yz, Yz̄, N } of VC, where
N ∈ 0(V ) is uniquely determined by

(1) 〈N , Yz〉 = 〈N , Yz̄〉 = 〈N , N 〉 = 0 and 〈N , Y 〉 = −1.

Definition 2.1 [Bryant 1984; Ejiri 1988b; Alı́as and Palmer 1996; Ma and Wang
2008]. For a conformally immersed surface y : M → Qn

1 with canonical lift Y
(with respect to a local coordinate z), we define

G := Y ∧ Yu ∧ Yv ∧ N =−2i · Y ∧ Yz ∧ Yz̄ ∧ N , where z = u+ iv.

Here N ≡ 2Yzz̄ (modY ) is the frame vector determined in (1). Note that 〈G,G〉= 1
and that G is well defined. We call G :M→G3,1(R

n+2
2 ) the conformal Gauss map

of y.

Given frames as above, and noting that Yzz is orthogonal to Y , Yz and Yz̄ , there
must be a complex function s and a section κ ∈ 0(V⊥

C
) such that

Yzz =−
1
2 sY + κ.

This defines two basic invariants κ and s depending on coordinates z, the conformal
Hopf differential and the Schwarzian of y; for discussion, see [Burstall et al. 2002;
Ma 2005]. Let D denote the normal connection and ψ ∈0(V⊥

C
) any section of the

normal bundle. Then the structure equations can be given as

(2)

Yzz =−
1
2 sY + κ,

Yzz̄ =−〈κ, κ̄〉Y + 1
2 N ,

Nz =−2〈κ, κ̄〉Yz − sYz̄ + 2Dz̄κ,

ψz = Dzψ + 2〈ψ, Dz̄κ〉Y − 2〈ψ, κ〉Yz̄.

The conformal Gauss, Codazzi and Ricci equations as integrable conditions are

(3)

sz̄ = 6〈κ, Dz κ̄〉+ 2〈Dzκ, κ̄〉,

0= Im(Dz̄ Dz̄κ +
1
2 s̄κ),

RD
z̄z = Dz̄ Dzψ − Dz Dz̄ψ = 2〈ψ, κ〉κ̄ − 2〈ψ, κ̄〉κ.

These are parallel to the theory in [Burstall et al. 2002]. The conformal Hopf dif-
ferentials play an important role in the research of Willmore surfaces. To see this,
we first give the transformation formula of κ . For another complex coordinate w,
Y1 = Y · |dw/dz| is a canonical lift with respect to w. So the corresponding Hopf
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differential κ1 with respect to (Y1, w) is

(4) κ1 = κ ·

( dz
dw

)2
·

∣∣∣∣ dz
dw

∣∣∣∣−1

.

Direct computation using (2) and (4) shows that G induces a conformal-invariant
metric

g := 1
4〈dG, dG〉 = 〈κ, κ̄〉|dz|2

on M. This metric might be positive definite, negative definite, or degenerate, de-
pending on the sign of 〈κ, κ̄〉. We define the Willmore functional and Willmore
surfaces by using this metric.

Definition 2.2. The Willmore functional of y is defined as the area of M with
respect to the metric above:

W (y) := 2i
∫

M
〈κ, κ̄〉dz ∧ dz̄.

An immersed surface y : M → Qn
1 is called a Willmore surface if it is a criti-

cal surface of the Willmore functional with respect to any variation of the map
y : M→ Qn

1 .

By (4), it is easy to see that W (y) is well defined. The following characterization
of Willmore surfaces is similar to the one in the codimension-1 case [Alı́as and
Palmer 1996] as well to the one in Möbius geometry [Bryant 1984; Burstall et al.
2002; Ejiri 1988b; Wang 1998].

Theorem 2.3. For a conformal spacelike surface y : M→ Qn
1 , the following four

conditions are equivalent:

(i) y is Willmore.

(ii) The conformal Gauss map G is a harmonic map into G3,1(R
n+2
2 ).

(iii) The conformal Hopf differential κ of y satisfies the Willmore condition

(5) Dz̄ Dz̄κ +
1
2 s̄κ = 0,

which is a stronger condition than the conformal Codazzi equation (3).

The proof of this theorem is completely the same as in Möbius geometry (we
refer readers to [Ma 2005; Wang 1998]).

Now we introduce the so-called S-Willmore surfaces, the Willmore surfaces with
dual surfaces (see the next section). See [Ejiri 1988b] and [Ma 2005] for their
counterparts in Möbius geometry.
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Definition 2.4. A conformal Willmore surface y : M→ Qn
1 is called a S-Willmore

surface if it satisfies Dz̄κ ‖ κ , that is,

(6) Dz̄κ =−
1
2µκ

for some local function µ when κ 6= 0 (that is, when κ is nonumbilical). Here the
conformal Hopf differential κ is defined in (2).

Note that a conformal surface satisfying Dz̄κ ‖ κ is not necessary Willmore; see
[Ma and Wang 2008].

Theorem 2.5. Any spacelike S-Willmore surface [Y ] : M → Qn
1 has a dual S-

Willmore surface [Ŷ ], meaning they share the same central sphere and the same
complex coordinates (and hence the same normal bundle and normal connection).
The dual surface [Ŷ ] degenerates to a point if and only if [Y ] is congruent to a
spacelike stationary (H = 0) surface in R4

1 . Conversely, a spacelike Willmore
surface in Qn

1 with a dual Willmore surface must be an S-Willmore surface.

Proof. If [Y ] is totally umbilical, the proof is trivial. If [Y ] is not totally umbilical,
by using that [Y ] is real analytic (see [Ejiri 1988b; Alı́as and Palmer 1996]), we
see that M0 = M \ {umbilical points} is an open dense subset of M .

For an S-Willmore surface y : M→ Qn
1 with canonical lift Y (with respect to a

local coordinate z), suppose that Dz̄κ =−
1
2µκ for some local function µ. Set

(7) Ŷ = N +µYz +µYz̄ +
1
2 |µ|

2Y.

We will show it is just the dual S-Willmore surface of y.
In fact, substituting Dz̄κ =−

1
2µκ into the Willmore equation (5) shows that

(8) µz −
1
2µ

2
− s = 0,

which leads to

(9) Ŷz =
1
2µŶ + ρ(Yz +

1
2µY ), where ρ = µz − 2〈κ, κ̄〉.

So

Ŷzz̄ = (
1
2µŶ + ρ(Yz +

1
2µY ))z̄ = ( · · · )Ŷ + ( · · · )Ŷz + ( · · · )Ŷz̄ + ( · · · )Y,

spanC{Y, Yz, Yz̄, Yzz̄} = spanC{Ŷ , Ŷz, Ŷz̄, Ŷzz̄}.

Since y and [Ŷ ] have common central sphere, complex coordinates, and harmonic
conformal Gauss map, [Ŷ ] is a Willmore surface by Theorem 2.3.

From the definition of ρ, using (3) and (8), we see that

(10) ρz̄ = µzz̄ − 2〈Dz̄κ, κ̄〉− 2〈κ, Dz̄ κ̄〉 = µρ.
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So either ρ must have isolated zero points or ρ ≡ 0; see [Chern 1970, Section 4].
If ρ ≡ 0, then Ŷ reduces to a point. If ρ 6≡ 0, then Ỹ = Ŷ/|ρ| is a canonical lift
with respect to z. Direct computation leads to

κ̃ = Ỹzz mod Ỹ = (ρ/|ρ|)κ.

With the same normal bundle as y it is easy to see that D̃z = Dz , where D̃z is the
normal connection of Ỹ . So D̃z̄ κ̃ ‖ κ̃ , showing that [Ŷ ] is S-Willmore.

Then Proposition 2.6 finishes the proof on M0.
Now consider the remaining points. The function µ is analytic satisfying (8)

except at the umbilical points. So for any p ∈M \{M0}, either µ extends to a finite
number on p or goes to infinity on p. For the first case, we still define Ŷ by (7);
for the second case, we define Ŷ by

[Ŷp] = lim
µ→∞

[ 1
|µ|2

(N +µYz +µYz̄ +
1
2 |µ|

2Y )
]
= [Yp].

So we extend the definition of Ŷ continuously to the umbilical points, finishing the
proof of our theorem. �

Proposition 2.6. If Ŷ reduces to a point, then y = [Y ] is congruent to a complete
spacelike stationary surface (that is, EH = 0) in Rn

1 , and its dual surface reduces to
a point.

Proof. If Ŷ reduces to a point, by applying a transformation T ∈ O(n, 2) if neces-
sary, we can set

Ŷ = (1, 0, . . . , 0, 1) and Y = (1
2(−1+〈u, u〉), u, 1

2(1+〈u, u〉)),

where u :U → Rn
1 . Let z be an arbitrary complex coordinate. Then we have

Yzz̄ = aY +〈Yz, Yz̄〉N and Ŷ = N +µYz +µYz̄ +〈Yz, Yz̄〉|µ|
2Y,

where a, µ are two functions. It is easy to see that Ŷz = −µ〈Yz, Yz̄〉Ŷ + · · · . So
µ≡ 0 and Yzz̄ = aY +〈Yz, Yz̄〉Ŷ . Replacing by u leads to

(〈uzz̄, u〉, uzz̄, 〈uzz̄, u〉)= ( 1
2(−a+ a〈u, u〉), au, 1

2(a+ a〈u, u〉)).

This implies a ≡ 0 and uzz̄ ≡ 0. So u is a stationary surface in Rn
1 , and y = [Y ]

belongs to class (i) in Theorem C. �

3. S-Willmore spheres in Qn
1

Let y : S2
→ Qn

1 be an S-Willmore sphere with (Y, z) as above and with its dual
surface Ŷ as in (7). First, we will introduce the notion of m-isotropic surfaces
and give some properties of such surfaces. Then we define holomorphic forms
for m-isotropic S-Willmore spheres by a lemma. With these vanishing forms, we
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prove the first two cases of Theorem C and leave the discussion of the last case to
Section 4.

Definition 3.1. An immersed spacelike surface y :M→Qn
1 is called an m-isotropic

surface if it satisfies

〈Y (i)z , Y ( j)
z 〉 = 0 for i + j ≤ 2m+ 1.

Here Y (i)z denotes the i-th derivative of Y with respect to z. If the equations above
hold for any i and j , we call y totally isotropic.

It is direct to verify this notion is well defined, that is, independent of the choice
of Y and z. Also this is a conformal-invariant property of surfaces. One may
compare with [Ejiri 1988b; 1988a; Kokubu 2002; Ma 2005].

We can derive that, for an m-isotropic surface y with m ≥ 2,

(11) 〈(Dz)
iκ, (Dz)

jκ〉 = 0 for i + j ≤ 2m− 3.

If y : M → Qn
1 is not contained in any 2m-dimensional spacelike Riemannian

sphere S2m of Qn
1 , we say that y is full in Qn

1 .
If y is m-isotropic and not (m+1)-isotropic, we say y is strictly m-isotropic.
Similarly to [Ejiri 1988b; Ma 2005; Ma and Wang 2008], we can define holo-

morphic forms for S-Willmore spheres:

Lemma 3.2. Let y : S2
→ Qn

1 be a strictly m-isotropic S-Willmore sphere. On the
subset M0 ⊂ S2 where y has no umbilic points, let Y be the canonical lift of y,
and let Ŷ be a local lift of its dual Willmore surface satisfying 〈Y, Ŷ 〉 = −1. Write
κ̂ = Ŷ⊥zz , that is, κ̂ ⊥ {Ŷ , Ŷz, Ŷz̄, Ŷzz̄}. Then the differential form

(12)
�mdz4m+4

:= 〈Y (m+1)
z , Y (m+1)

z 〉〈Ŷ (m+1)
z , Ŷ (m+1)

z 〉dz4m+4

= 〈D(m−1)
z κ, D(m−1)

z κ〉〈D̂(m−1)
z κ̂, D̂(m−1)

z κ̂〉dz4m+4

is a globally defined holomorphic (4m+4)-form on S2, and hence vanishes. Here
Dz and D̂z denote the normal connections of Y and Ŷ .

Proof. On M0, the formula for �mdz4m+4 is meaningful. We note that the normal
connection D̂z is equal to Dz . With respect to another complex coordinate w, a
canonical lift is Y1 = Y · |dw/dz|. So Ŷ1 = Ŷ · |dz/dw| is the lift of dual surface
and κ̂1 = Ŷ⊥1zz = κ̂ · |dz/dw|−1

· (dz/dw)2. Together with (4) and (12), �mdz4m+4

is invariant when (Y, z) changes.
By using (9) and the fact that the normal connection D̂z of Ŷ is equal to Dz , we

derive
κ̂ = ρκ,

Dz κ̂ = ρDzκ + ( · · · )κ,

D(i)
z κ̂ = ρD(i)

z κ + ( · · · )D
(i−1)
z κ + · · ·+ ( · · · )κ.
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By (11), we see that �mdz4m+4
= ρ2
〈D(m−1)

z κ, D(m−1)
z κ〉2dz4m+4. To show �m is

holomorphic, with the Ricci equation (3), (11) and the S-Willmore condition, we
have

(13)

〈D(m−1)
z κ, D(m−1)

z κ〉z̄ = 2〈Dz̄ D(m−1)
z κ, D(m−1)

z κ〉

= 2〈Dz Dz̄(D(m−2)
z κ)− ( · · · )κ, D(m−1)

z κ〉 = · · ·

= 2〈D(m−1)
z Dz̄(κ)+ ( · · · )D(m−2)

z κ + · · ·+ ( · · · )κ, D(m−1)
z κ〉

= −µ〈D(m−1)
z κ, D(m−1)

z κ〉.

Together with (10), we see that �mz̄ ≡ 0.
To show �m(dz)4m+4 extends to S2 as a holomorphic form, note that by (3)

and (6),

Dz̄ D( j)
z κ = · · · = D( j)

z Dz̄κ + · · ·+ ( · · · )κ ∈ span{κ, . . . , D(m−1)
z κ}.

By Chern’s lemma on pseudoholomorphic functions [1970], the zero points of
D( j)

z κ for 1 ≤ j ≤ m − 1 are isolated. So {κ, . . . , D(m−1)
z κ} forms a holomorphic

vector bundle Fm on M ′0 = M0 \{isolated zero points of D( j)
z κ for 1≤ j ≤m−1}.

Let {ξ, . . . , ξm−1
} be a local frame consisting of Fm around an umbilical point

p ∈ S2
\M0 such that

span{κ, . . . , D(i)
z κ} = span{ξ, . . . , ξ i

} for i = 1, . . . ,m− 1.

Set g=〈ξm−1, ξm−1
〉 and D(m−1)

z κ= f ξm−1
i mod {ξ, . . . , ξm−2

}. Then comparing
with (13), we have −µ= 2 f z̄/ f . Together with (9) we have

ρ〈D(m−1)
z κ, D(m−1)

z κ〉 = −2〈κ, κ̄〉 f 2g+µz f 2g,

and

µz f 2g = (µ f 2g)z −µ(2 f fzg+ f gz)= (−2 f z̄ f g)z + 2 f z̄(2 fzg+ f gz),

showing that�m is a smooth function (depending on z). Then�m(dz)4m+4 extends
smoothly to S2

\M0 as desired. It is holomorphic both on M ′0 and in the interior of
S2
\ M0 (it vanishes in the latter case). For the same reason �m(dz)4m+4 extends

smoothly to M ′0 \M0. So it is holomorphic on all of S2. �

The method used here is suggested by Ma and it is indeed an improvement of
[Ma 2005] an [Ma and Wang 2008].

From the proof of Lemma 3.2, we know that either y satisfies ρ ≡ 0, forcing the
dual surface of y to reduce to a point, or that y is a totally isotropic surface in Qn

1 .
In the case that y is totally isotropic, if y is in some Riemannian sphere S2m

⊂ Qn
1 ,

we have this:
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Proposition 3.3 [Ejiri 1988b]. If y is totally isotropic and contained in some Rie-
mannian sphere S2m

⊂ Qn
1 , it must be a super Willmore surface in S2m .

If y is not contained in any Riemannian sphere, it must be full in some Q2m
1 .

For this case, Proposition 4.3 gives the description of such surface; see Section 4
for details. Summing up, we finish the proof of Theorem C.

4. Polar surfaces of m-isotropic S-Willmore surfaces in Q2m+2
1

Next we deal with m-isotropic S-Willmore surfaces that are full in Q2m+2
1 . Let

y : M→ Q2m+2
1 be such a surface. Then by (11), we can suppose that

(14)

κ = E1,

Dz E1 = E2+α1 E1 with E2 ⊥ (E1, E1),

...

Dz Em−1 = Em +αm−1 Em−1+ · · ·+ ( · · · )E1,

with Em ⊥ (E1, . . . , Em−1, E1, . . . , Em−1).

So 〈E j , E j 〉 = 0 for 1 ≤ j ≤ m − 1. We note that on the points that Ei = 0, by
a similar treatment as before, Ei can be extended to the whole surface since it is
defined on a open dense subset.

To give the definition of polar surfaces, we still need more preparation. By the
S-Willlmore condition,

Dz̄ E1 =−
1
2µE1.

Together with the Ricci equation, we have

Dz̄ E2 = Dz̄ Dz E1− Dz̄(( · · · )E1)= Dz Dz̄ E1 mod (E1)

=−
1
2µE2 mod (E1).

Using Ricci equations repeatedly, we get

(15) Dz̄ Ei =−
1
2µEi mod (E1, . . . , Ei−1) for 1≤ i ≤ m.

Then we have that, for all 1≤ j ≤ m− 1,

〈E j , E j 〉z = 〈Dz E j , E j 〉+ 〈E j , Dz E j 〉 = (α j −
1
2(µ))〈E j , E j 〉,

Applying Chern’s lemma about almost holomorphic functions [1970], we see that
either 〈Ei , E i 〉 ≡ 0 on a open dense subset M0 of M , or 〈Ei , E i 〉 has only isolated
zero points. We will show that if 〈E j , E j 〉 ≡ 0 on M0, then y must be contained
in some Q2 j+2

1 .
To see this, we need two lemmas. Let Cn

1 be the complexification of Rn
1 with its

inner product. The first one is about isotropic vector in Cn
1 .
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Lemma 4.1. Let E be a nonzero vector in Cn
1 with 〈E, E〉= 0, E must either equal

to λ(e1+ie2) with e1, e2 ∈ Rn
1 , 〈e1, e2〉= 0, 〈e1, e1〉= 〈e2, e2〉= 1, and 〈E, E〉 6= 0;

or equal to λ(e1− e2) with e1, e2 ∈ Rn
1 and 〈e1, e2〉 = 0, 〈e1, e1〉 = −〈e2, e2〉 = 1,

and 〈E, E〉 = 0.

The other concerns complex functions:

Lemma 4.2. Let γ be a complex function such that γz̄ = γ̄z . There must be a real
function f = f (z, z̄) satisfying γ = fz .

Proof. Set γ = γ1+ iγ2 and z = u + iv, where γ1, γ2, u, v are real. Putting these
in the formula γz̄ = γ̄z and expanding it shows ∂γ1/∂v = −∂γ2/∂u, which is just
the integrability condition of the PDE

∂ f
∂u
= γ1 and

∂ f
∂v
=−γ2. �

Proposition 4.3. Let y : M → Q2m+2
1 be an (m+1)-isotropic S-Willmore surface

that is full in Q2m+2
1 . Then y induces two m-isotropic S-Willmore surfaces [L̂] and

[R̂] in Q2m+2
1 , called polar surfaces of y. One of these polar surfaces reduces to

a point and the other is conformal to an m-isotropic complete spacelike stationary
(H = 0) surface in R2m+2

1 . Both y and its dual surface are polar surfaces of the
nondegenerate polar surface.

Proof. Since y is (m + 1)-isotropic and full in Q2m+2
1 , it is totally isotropic and

its derivatives Y (k)z give (m + 1) independent isotropic vectors in Cm+2
2 . Using

Lemma 4.1, we can suppose that 〈E j , E j 〉≡0 for some j . Then E j =λ j (e j1−e j2)

for two orthogonal vector fields e j1, e j2∈V such that 〈e j1, e j2〉=0 and 〈e j1, e j1〉=

−〈e j2, e j2〉 = 1. Write

L j =
1
√

2
(e j1− e j2), R j =

1
√

2
(e j1+ e j2) (which implies E j =

√
2λ j L j ).

If j = 1, we have

(16)


(L1)z = α11L1+ψ11,

(R1)z =−α11 R1+ψ12−µ〈R1, E1〉Y − 2〈R1, E1〉Yz̄,

Dz̄ Dzψ − Dz Dz̄ψ = 0 for all ψ ∈ V⊥ and ψ ⊥ {L1, R1}.

Here ψ11, ψ12 ∈ V⊥
C

and ψ11, ψ12 ⊥ {L1, R1}. Since Dz̄κ ‖ κ , we have ψ11 = 0
and (L1)z = α11L1. So [L1] is a point in Q2m+2

1 . Together with the third formula
in (16), we can choose new L1 and e13, . . . , e1,2m so that α11=0 and e13, . . . , e1,2m

is a parallel orthonormal frame of V⊥ mod L1, R1. So

(R1)z =
∑

k λ1ke1k −µ〈R1, E1〉Y − 2〈R1, E1〉Yz̄.

(e1k)z =−
1
2λ1k L1 for k = 3, . . . , 2m, with λ1k functions.
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The Ricci equations lead to λ1kz̄ = λ1kz for k = 3, . . . , 2m. Using Lemma 4.2, we
see that there exist real functions f1k such that λ1k = f1kz . Set

(17) R̂1 = R1−
∑

k f1ke1k −
1
2(
∑

k f1k)L1.

Differentiating (17), we obtain

(R̂1)z =−µ〈R1, E1〉Y − 2〈R1, E1〉Yz̄.

Thus Y is located in a 6-dimensional subspace R6
2 ⊂ R2m+4

2 . By the condition that
y is full, we have j = m = 1.

From [Ma and Wang 2008], we see that R̂1 is conformal to a stationary surface
in R4

1, and that [Y ] and its dual surface [Ŷ ] are just polar transforms of R̂1. In fact,
we see directly that L1 is in the central sphere of R̂1 and dual surface of R̂1. So R̂1

is a Willmore surface with dual surface reducing to a point and thus is S-Willmore.
If j > 1, by (15) and (14), we have (L j )z = α j1L j for some function α j1. This

means that [L j ] is a point in Q2m+2
1 and we can choose new L j and R j such that

(L j )z = 0. Differentiating 〈R j , Ei 〉 = 0, we have

0= 〈(R j )z, Ei 〉+ 〈R j , (Ei )z〉 = 〈(R j )z, Ei 〉−
√

2λ j, j−1δi, j−1,

where λ j, j−1 is some function. So we can assume that

(R j )z = λ j, j−1 E j−1+ψ j+1,2,

where ψ j+1,2 ∈ V⊥
C

with ψ j+1,2 ⊥ {Ei , E i , L j , R j , 1 ≤ i < j}. In summary, we
have

(Ei )z = αi Ei + Ei+1 for 1≤ i < j,

(E1)z =−
1
2µE1− 2µ〈E1, E1〉Y − 2〈E1, E1〉Yz̄,

(E i )z =−
1
2µE i −〈Ei , E i 〉/〈Ei−1, E i−1〉E i−1 for 1< i < j,

(L j )z = 0,

(R j )z = λ j, j−1 E j−1+ψ j+1,2,

ψz = Dzψ for all ψ ∈ V⊥ with ψ ⊥ {Re(Ei ), Im(Ei ), L j , R j , 1≤ i < j}.

That Dz̄ Dzψ = Dz Dz̄ψ shows that we can choose {e j,2 j+1, . . . , e j,2m} as a parallel
orthonormal frame of V⊥ mod {Re(Ei ), Im(Ei ), L j , R j , 1≤ i < j}. So

(R j )z = λ j, j−1 E j−1+6kλ jke j,2 j+k,

where λ jkz̄ = λ jkz . Using Lemma 4.2, we see that there exist real functions f jk

such that f jkz = λ jk . Setting

R̂ j = R j −
∑

k f jke j,2 j+k − (
∑

k f jk)L j .
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shows that (R̂ j )z = λ j, j−1 E j−1.
So Y is located in a (2 j+4)-dimensional subspace R

2 j+4
2 ⊂ R2m+4

2 . By the
condition that y is full, j = m.

From (R̂m)zz̄ = ( · · · )Lm mod {R̂, R̂z, R̂z̄}, we see that Lm is in the central
sphere of R̂m and dual surface of R̂1. The methods of [Ma and Wang 2008] show
that R̂m is conformal to a stationary surface in R2m+2

1 . So R̂m is a S-Willmore
surface with dual surface reducing to a point.

Following [Ma and Wang 2008], we call [R̂m], [Lm] : S2
→ Q2m+2

1 polar sur-
faces of y = [Y ] : S2

→ Q2m+2
1 for all m ≥ 1.

To see that R̂m is m-isotropic and y together with its dual surface [Ŷ ] are just
its polar surfaces, let us calculate R̂zz, . . . , R̂(m+2)

mz :

(R̂m)zz = ( · · · )Em−2 mod {R̂, R̂z},

...

(R̂(m−1)
m )z = ( · · · )E1 mod {R̂, R̂z, Em−1, . . . , E2},

(R̂(m)m )z = ( · · · )(Yz̄ +
1
2µY ) mod {R̂, R̂z, Em−1, . . . , E1},

(R̂(m+1)
m )z = ( · · · )(ρY + Ŷ ) mod {R̂, R̂z, Em−1, . . . , E1, Yz̄ +

1
2µY }.

So R̂m is m-isotropic. [Y ] and [Ŷ ] = [Ŷ = N + µYz + µYz̄ +
1
2 |µ|

2Y ] are polar
surfaces of R̂m . �

From the proof of Proposition 4.3, we see that to define the polar surfaces we
just need y to be m-isotropic and full in Q2m+2

1 . Let y :M→ Q2m+2
1 be such an S-

Willmore surface. On an open dense subset we have 〈E j , E j 〉 6=0 for 1≤ j ≤m−1.
So the complement of span{Re E j , Im E j } in V⊥ is a Lorentzian 2-bundle. Let
{L , R} be a null basis of it, that is, 〈L , L〉 = 〈R, R〉 = 0 and 〈L , R〉 = −1, with
orientation restrictions [L], [R] : M̃→ Q2m+2

1 well defined.

Proposition 4.4. Let y : M → Q2m+2
1 be an m-isotropic S-Willmore surface that

is full in Q2m+2
1 . Then y induces two m-isotropic S-Willmore surfaces [L] and [R]

in Q2m+2
1 , called the polar surfaces of y (they may degenerate). Also y and its dual

surface are polar surfaces of the nondegenerate polar surface.

Remark 4.5. In the case m = 1, the normal bundle V⊥ is just a Lorentzian 2-
bundle with two canonical lightlike directions, which enables us to define polar
surfaces naturally. See [Ma and Wang 2008] for details.

Corollary 4.6. Let y be a surface belonging to both case (i) and case (iii) in The-
orem C. Then y is conformal to a totally isotropic complete spacelike stationary
surface in R2m

1 .
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Remark 4.7. It is natural to ask that whether there are nontrivial S-Willmore
spheres belonging to case (iii). For the case m = 1, the answer is negative; see
the next section. For the case in R6

1 we can give examples of spheres both of
case (i) and case (iii). See the example below.

Example 4.8. Define

f : M = C \ {0, 1} → C6
1, z 7→ zv0+

v1

z
+

v2

z− 1

with v1= (1, i, 0, 0, 0, 0), v2= (0, 0, 1, i, 0, 0) and v0= v1+v2+(0, 0, 0, 0, 1, 1).
Then y = 2 Re f is just a totally isotropic complete spacelike stationary surface,
and its compactification is a Willmore sphere with W (y)= 8π . Its polar surface l
corresponds to a Willmore sphere with W (y)= 8π and can be written as

l = 2 Re(l̃), l̃ = 1
3

((1
z
+

1
z−1

)
ṽ0+

(
z+ 1+ 1

z−1

)
ṽ1−

(
z− 2+ 1

z

)
ṽ2

)
=

1
3

(
z(ṽ1− ṽ2)+

1
z
(ṽ0− ṽ2)+

1
z−1

(ṽ0+ ṽ1)+ (ṽ1+ 2ṽ2)
)
,

with ṽ0 = (−1, 0, 0, 0, 0, 1), ṽ1 = (0, 1,−i, 0, 0, 0) and ṽ2 = (0, 0, 0, 1,−i, 0).
So they are both spacelike stationary surfaces of the type

x = Re
( v1

z− λ1
+

v1

z− λ2
+

v1

z− λ3

)
,

where the v j are orthogonal isotropic vectors and the λ j are distinct complex num-
bers such that the surfaces are complete.

Remark 4.9. It is desirable to have examples that fall under case (iii) and but not
case (i). One way to find these follows Bryant’s methods [1984] and is used in
Example 4.8. Alternatively, see [Ejiri 1993] and [Kokubu 2002] for two itera-
tive constructions of m-isotropic minimal surfaces. Both methods require detailed
technical computations, and so far we have not succeeded in using them.

5. Null-umbilic S-Willmore spheres in Q4
1

Let y : S2
→ Q4

1 be a null-umbilic S-Willmore spheres in Q4
1. Recall that y is

called null-umbilic if κ is a complexified lightlike section, that is, 〈κ, κ〉 = 0. Then
the structure equations simplify to

Yzz =−
1
2 sY + λ1L , Nz =−sYz̄ + 2λ1z̄ L , L z = 0,

Yzz̄ =
1
2 N , Rz = λ1z̄Y + 2λ1Yz̄

for some local function λ1 and normal frame L , R. The Gauss equation shows
that sz̄ = 0. Let the complex coordinate z transform projectively. Then s(dz)2

is a globally defined holomorphic 2-form on S2, and s ≡ 0. The only nontrivial
invariant left is λ1, and the only remaining integrability condition to be satisfied is
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(λ1)z̄ z̄ ≡ 0 on the whole S2
= CP1. It is easy to see that on C the general solution

to this equation takes the form λ1(z, z̄)= A(z) · z̄+ B(z), where A(z) and B(z) are
holomorphic functions. With respect to the new coordinate w = 1/z, we find that

λ1 =

(
A
( 1
w

) 1
w̄
+ B

( 1
w

))
·
w̄
w3 .

The poles will show up unless A(z)= B(z)≡ 0 and λ1 ≡ 0 identically. Hence we
have proved this:

Proposition 5.1. Let y : M → Q4
1 be an immersed spacelike Willmore 2-sphere

that is also null-umbilic. Then y(M) is congruent to a round 2-sphere.

Remark 5.2. Leitner [2000] showed that compact null-umbilic surfaces in R4
1 ,

S4
1 or H 4

1 must be topological 2-spheres and be certain deformations of round
2-spheres.

Our conclusion does not mean that there are no nontrivial compact twistorial
surfaces in Q4

1. It should be understood that there exist many them, but all have
branch points. Note that there are many stationary surfaces in R4

1 with planar ends,
and polar transforms of surfaces provide null-umbilic Willmore surfaces (which
may have branch points).
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