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CLASSIFICATION RESULTS FOR EASY QUANTUM GROUPS

TEODOR BANICA, STEPHEN CURRAN AND ROLAND SPEICHER

We study the orthogonal quantum groups satisfying the “easiness” assump-
tion axiomatized in our previous paper, with the construction of some new
examples and with some partial classification results. The conjectural con-
clusion is that the easy quantum groups consist of the previously known
14 examples, plus a hypothetical multiparameter “hyperoctahedral series”,
related to the complex reflection groups H s

n = Zs o Sn. We also discuss the
general structure and the computation of asymptotic laws of characters for
the new quantum groups that we construct.

Introduction

One of the strengths of the theory of compact Lie groups is that these objects can
be classified. It is indeed extremely useful to know that the symmetry group of
a classical or a quantum mechanical system falls into an advanced classification
machinery, and applications of this method abound in mathematics and physics.

The quantum groups were introduced by Drinfel’d [1987] and Jimbo [1985],
in order to deal with quite complicated systems, basically coming from number
theory or quantum mechanics, whose symmetry groups are not “classical”. There
are now available several extensions and generalizations of the Drinfel’d–Jimbo
construction, all of them more or less motivated by the same philosophy. A brief
account of the whole story, focusing on constructions that are of interest here, is
as follows:

(1) Let G⊂Un be a compact group, and consider the algebra A=C(G). The matrix
coordinates ui j ∈ A satisfy the commutation relations ab = ba. The original idea
of Drinfel’d and Jimbo, further processed by Woronowicz [1987], was that these
commutation relations are in fact the q = 1 case of the q-commutation relations
ab = qba, where q > 0 is a parameter. The algebra A itself appears then as the
q = 1 case of an algebra Aq . While Aq is no longer commutative, we can formally
write A = C(Gq), where Gq is a quantum group.

MSC2000: primary 46L65; secondary 20F55, 46L54.
Keywords: quantum group, noncrossing partition.
Banica was supported by the ANR grants “Galoisint” and “Granma”. Speicher was supported by a
Discovery grant from NSERC.
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2 TEODOR BANICA, STEPHEN CURRAN AND ROLAND SPEICHER

(2) Wang [1995; 1998] proposed an interesting modification of this construction.
His idea was to construct a new algebra A+, by somehow “removing” the com-
mutation relations ab = ba. Once again we can formally write A+ = C(G+),
where G+ is a so-called free quantum group. This construction, while originally
coming only with a vague motivation from mathematical physics, has been studied
intensively in the last 15 years. Among the partial conclusions that we have so far
is the fact that the combinatorics of G+ is definitely interesting, and should have
something to do with physics. In other words, G+, while being by definition a
quite abstract object, is probably the symmetry group of something very concrete.

(3) Several variations of Wang’s construction appeared in recent years, notably in
connection with the construction and classification of intermediate quantum groups
G⊂G∗⊂G+. For instance in the case G=On , it was shown in our previous paper
[BS 2009] that the commutation relations ab = ba can be successfully replaced
with the so-called half-commutation relations abc= cba, in order to obtain a new
quantum group O∗n . Some other commutation-type relations, for instance of type
(ab)s = (ba)s , will be described in the present paper.

(4) As a conclusion, the general idea that tends to emerge from these considera-
tions is that a very large class of compact quantum groups should appear in the
following way: start with a compact Lie group G ⊂ Un; build a noncommutative
version of C(G) by replacing the commutation relations ab= ba by some weaker
relations; and deform this latter algebra, by using a positive parameter q > 0, or
more generally a whole family of such positive parameters.

This was the motivating story. In practice, now, while the construction (1) is
now basically understood, thanks to about 25 years of effort, (2) is just at the very
beginning of an axiomatization, (3) is still at the level of pioneering examples, and
(4) is just a dream. As for the possible applications to physics, basically nothing
is known so far, but the hope for such an application increases as more and more
interesting formulas emerge from the study of compact quantum groups.

This paper, a continuation of [BS 2009], will advance on the classification work
there, for the easy quantum groups in the orthogonal case, and will present a de-
tailed study of the new quantum groups we find.

The objects of interest will be the compact quantum groups with Sn ⊂G ⊂ O+n .
Here O+n is the free analogue of the orthogonal group, constructed by Wang [1995],
and for the compact quantum groups we use Woronowicz’s formalism [1987].

As in [BS 2009] we restrict attention to the “easy” case. The easiness assump-
tion, essential to our considerations, roughly states that the tensor category of G
should be spanned by certain partitions, coming from the tensor category of Sn .
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This might look like a quite technical condition. The point, though, is that impos-
ing this technical condition is the price to pay for restricting attention to the “truly
easy” case.

As explained in [BS 2009], our motivating belief is that “any result that holds
for Sn, On should have a suitable extension to all easy quantum groups”. This is of
course a quite vague statement, whose target is actually informed by some results
at the borderline between representation theory and probability. Here, however, we
would rather focus on the classification problem. The further development of our
“Sn, On philosophy”, leading perhaps to some interesting applications, will be left
to future papers. See Section 8 for more comments in this direction.

So, for the purposes of the present work, the easy quantum groups can be just
thought of as being a carefully chosen collection of basic objects of the theory.

There are 14 natural examples of easy quantum groups, all but one described in
[BS 2009], and the remaining one to be studied in detail in this paper. In addition,
there are at least two infinite series, once again to be introduced here. The list is
as follows:

(1) Groups: On, Sn, Hn, Bn, S′n, B ′n .

(2) Free versions: O+n , S+n , H+n , B+n , S′+n , B ′+n .

(3) Half liberations: O∗n , H∗n .

(4) Hyperoctahedral series: H (s)
n , H [s]n .

This list doesn’t cover all the easy quantum groups, but we will present here
some partial classification results, with the conjectural conclusion that the full list
should consist of (1)–(3), and of a multiparameter series unifying (4). We will also
investigate the new quantum groups that we find, by using various techniques from
[Banica et al. 2007a; 2007b; BS 2009; Banica and Vergnioux 2009a; 2009b].

As already mentioned, we expect the list above to be a useful, fundamental
starting point for a number of representation theory and probability considerations.
We also expect that the new quantum groups that we find this way will lead to some
interesting applications. We have several projects here, to be discussed at the end
of the paper.

The paper is organized as follows. In Sections 1 and 2 we recall our previous
results from [BS 2009], and we study the quantum group H∗n by using techniques
from [BS 2009; Banica and Vergnioux 2009b]. In Sections 3 and 4, we introduce
the one-parameter series, and we study their basic properties by using techniques
from [Banica et al. 2007a; Banica and Vergnioux 2009a]. In Sections 5 and 6,
we state and prove the classification results, by making heavy use of the capping
method in [BS 2009; Banica and Vergnioux 2009b]. Sections 7 and 8 contain the
computation of asymptotic laws of characters, and some concluding remarks.
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Notation

As in [BS 2009], the basic object we consider will be a compact quantum group G.
Concrete examples include the usual compact groups G and, to some extent, the
duals of discrete groups 0̂. In the general case, G is just a fictional object, which
exists only via its associated Hopf C∗-algebra of “complex continuous functions”,
denoted A = C(G).

For simplicity of notation, we would rather use the quantum group G instead
of the Hopf algebra A. For instance

∫
G ui1 j1 · · · uik jk du will denote the complex

number obtained by applying the Haar functional ϕ : A→ C to the well-defined
quantity ui1 j1 · · · uik jk ∈ A.

We will use the quantum group notation depending on the setting; in cases where
this can lead to confusion, we will switch back to the Hopf algebra notation.

1. Easy quantum groups

We briefly recall some notions and results from [BS 2009]. This material is here
mostly for fixing the formalism and the notation.

Consider first a compact group satisfying Sn ⊂ G ⊂ On . That is, G ⊂ On is
a closed subgroup containing the subgroup Sn ⊂ On formed by the permutation
matrices.

Let u, v be the fundamental representations of G, Sn . By functoriality we have
an inclusion Hom(u⊗k, u⊗l)⊂Hom(v⊗k, v⊗l) for any k and l. On the other hand,
the Hom-spaces for v are well known: they are spanned by operators Tp, with p
belonging to P(k, l), the set of partitions between k points and l points. More
precisely, if e1, . . . , en denotes the standard basis of Cn , the formula for Tp is

(1-1) Tp(ei1 ⊗ · · · ⊗ eik )=
∑
j1··· jl

δp

(i1 · · · ik

j1 · · · jl

)
e j1 ⊗ · · · ⊗ e jl

Here the δ symbol on the right is 0 or 1, depending on whether the indices “fit” or
not, that is, δ = 1 if all blocks of p contain equal indices, and δ = 0 if not.

Thus the space Hom(u⊗k, u⊗l) consists of linear combinations of operators of
type Tp with p ∈ P(k, l).

We call G easy if its tensor category is spanned by partitions.

Definition 1.1. We say a compact group Sn ⊂ G ⊂ On is easy if there exist sets
D(k, l)⊂ P(k, l) such that Hom(u⊗k, u⊗l)= span(Tp | p ∈ D(k, l)) for any k, l.

It follows from the axioms of tensor categories that the collection of sets D(k, l)
must be closed under certain categorical operations, notably vertical and horizontal
concatenation, and upside-down turning. The corresponding algebraic structure
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formed by the sets D(k, l), axiomatized in [BS 2009], will be called category of
crossing partitions.

We recall that a matrix is called monomial if it has exactly one nonzero entry
on each row and each column. The basic examples are the permutation matrices.

Definition 1.2. We consider the following groups:

(1) On , the orthogonal group;

(2) Sn , the symmetric group, formed by the permutation matrices

(3) Hn , the hyperoctahedral group, formed by monomial matrices with±1 entries;

(4) Bn , the bistochastic group, formed by orthogonal matrices with sum 1 on each
row;

(5) S′n = Z2× Sn , the group formed by the permutation matrices times ±1;

(6) B ′n = Z2× Bn , the group formed by the bistochastic matrices times ±1.

It follows from definitions that all these groups satisfy Sn ⊂ G ⊂ On . Among
all these groups, only On and Sn are “irreducible”, because we have canonical
isomorphisms Hn = Z2 o Sn and Bn ' On−1. See [BS 2009].

The partitions in P(k, l) with k+ l even are themselves called even.

Theorem 1.3 [BS 2009]. The only easy groups are the ones in Definition 1.2, and
the corresponding categories of crossing partitions are as follows:

(1) Po, all pairings;

(2) Ps , all partitions;

(3) Ph , partitions with blocks of even size;

(4) Pb, singletons and pairings;

(5) Ps′ , all partitions (even part);

(6) Pb′ , singletons and pairings (even part).

The second assertion follows from some well-known results about the groups
On , Sn and their versions, and the first can be proved by carefully manipulating
the categorical axioms.

We now discuss the free analogue of the above results. Let O+n and S+n be
respectively the free orthogonal and symmetric quantum groups corresponding to
the Hopf algebras Ao(n) and As(n) constructed by Wang [1995; 1998]. Here and
in what follows, we use Woronowicz’s Hopf algebra formalism [1987] and its
subsequent quantum group interpretation.

We have Sn⊂ S+n , so by functoriality the Hom-spaces for S+n appear as subspaces
of the corresponding Hom-spaces for Sn . The Hom-spaces for S+n have in fact a
very simple description. They are spanned by the operators Tp with P ∈NC(k, l),
the set of noncrossing partitions between k upper points and l lower points.
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Definition 1.1. has a free analogue.

Definition 1.4. A compact quantum group S+n ⊂ G ⊂ O+n is called free if there
exist sets D(k, l) ⊂ NC(k, l) such that Hom(u⊗k, u⊗l) = span(Tp | p ∈ D(k, l))
for any k, l.

In this definition, the word “free” has a quite subtle meaning, to be fully justified
later on. Forn now, let us note that the passage from Definition 1.1 to Definition 1.4
is basically done by restricting attention to the noncrossing partitions, which, ac-
cording to [Speicher 1994], should indeed lead to freeness.

As in the classical case, the sets of partitions D(k, l)must be stable under certain
categorical operations, coming this time from the axioms in [Woronowicz 1988].
The corresponding algebraic structure, axiomatized in [BS 2009], is called the
category of noncrossing partitions.

We denote by H+n the hyperoctahedral quantum group constructed in [Banica
et al. 2007b], and by B+n , S′+n and B ′+n the free analogues of the groups Bn , S′n
and B ′n constructed in [BS 2009].

Definition 1.5. We consider the following quantum groups, all given with the
defining relations between the basic coordinates ui j ∈ C(G):

(1) O+n , orthogonality (ui j = u∗i j and ut
= u−1);

(2) S+n , magic condition (all rows and columns of u are partitions of unity);

(3) H+n , cubic condition (orthogonality and ui j uik = u j i uki = 0 for j 6= k);

(4) B+n , bistochastic condition (orthogonality and on each row the sum is 1);

(5) S′+n , cubic condition, with the same sum on rows and columns;

(6) B ′+n , orthogonality, with the same sum on rows and columns;

Perhaps the very first observation is that for any of the groups G appearing in
Definition 1.2 we have C(G) = C(G+)/I , where I ⊂ C(G+) is the commutator
ideal. In other words, G+ is indeed a noncommutative version of G. We refer to
[BS 2009] and to its predecessors [Banica et al. 2007b; Wang 1995; 1998] for the
whole story, and for a careful treatment of all this material.

The free analogue of Theorem 1.3 is this:

Theorem 1.6 [BS 2009]. Definition 1.5 lists the only free quantum groups. The
corresponding categories of noncrossing partitions are as follows:

(1) NCo, all noncrossing pairings;

(2) NCs , all noncrossing partitions;

(3) NCh , noncrossing partitions with blocks of even size;

(4) NCb, singletons and noncrossing pairings;
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(5) NCs′ , all noncrossing partitions (even part);

(6) NCb′ , singletons and noncrossing pairings (even part).

The proof of this theorem follows that of Theorem 1.3. The symmetry between
Theorems 1.3 and 1.6 corresponds to the liberation operation for orthogonal Lie
groups, further investigated in [BS 2009].

2. Half-liberation

We consider now the general situation where we have a compact quantum group
satisfying Sn ⊂ G ⊂ O+n . Once again, we can ask for the tensor category of G to
be spanned by certain partitions, coming from the tensor category of Sn .

Definition 2.1. A compact quantum group Sn ⊂ G ⊂ O+n is called easy if there
exist sets D(k, l)⊂ P(k, l) such that Hom(u⊗k, u⊗l)= span(Tp | p ∈ D(k, l)) for
any k, l.

This definition generalizes at the same time Definitions 1.1 and 1.4. Indeed, the
easy quantum groups Sn ⊂ G ⊂ O+n satisfying the extra assumption G ⊂ On are
the easy groups, and those satisfying the extra assumption S+n ⊂ G are the free
quantum groups. This follows from definitions; see [BS 2009].

Once again, the sets of partitions D(k, l)must be stable under certain categorical
operations coming from the axioms in [Woronowicz 1988]. The corresponding
algebraic structure, axiomatized in [BS 2009], will be called simply “category of
partitions”.

We already know that the easy quantum groups include the 6 easy groups and
the 6 free quantum groups. In general, the world of easy quantum groups is quite
rigid, but we can produce some more examples in the following way.

Definition 2.2. The half-liberated version of an easy group G is the quantum
group G∗ given by C(G∗) = C(G+)/I , where I is the ideal generated by the
half-commutation relations abc = cba, imposed on the basic matrix coordinates
ui j ∈ C(G+).

In other words, instead of removing the commutativity relations of type ab= ba
from the standard presentation of C(G), which would produce the algebra C(G+),
we replace these commutativity relations by the weaker relations abc = cba.

To study the half-liberated versions, we need a categorical interpretation of the
relations abc = cba. Let us agree that the upper points of a partition p ∈ P(k, l)
are labeled 1, 2, . . . , k, and the lower points are labeled 1′, 2′, . . . , l ′.

Lemma 2.3 [BS 2009]. For a compact quantum group G ⊂ O+n , the following are
equivalent:

(1) The basic coordinates ui j satisfy abc = cba.
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(2) Tp belongs to End(u⊗3), where p = (13′)(22′)(3′1).

Proof. By the definition (1-1) of Tp, we have Tp(ea ⊗ eb⊗ ec)= ec⊗eb⊗ea . This
gives the formulas

Tpu⊗3(ea ⊗ eb⊗ ec)=
∑
i jk

ek ⊗ e j ⊗ ei ⊗ uiau jbukc

u⊗3Tp(ea ⊗ eb⊗ ec)=
∑
i jk

ei ⊗ e j ⊗ ek ⊗ uicu jbuka

The identification of the right terms gives the equivalence in the statement. �

We now go back to the quantum groups G∗. Observe first that we have inclu-
sions G ⊂ G∗ ⊂ G+. As pointed out in [BS 2009], the cases G = Sn, Bn, S′n, B ′n
are not interesting, because here we have G = G∗. This can be checked by a
direct computation with generators and relations, or with the partition p appearing
in Lemma 2.3, and will follow as well from the general classification results in
Sections 5 and 6.

In the cases G = On, Hn , however, we obtain new quantum groups. Label the
legs of each partition by 1, 2, 3, . . . , clockwise starting from top left.

Theorem 2.4. The half-liberated versions of On and Hn are easy quantum groups,
and the corresponding categories of partitions are

(1) Eo, pairings with each string connecting an odd number to an even number;

(2) Eh , partitions with each block having the same number of odd and even legs.

Proof. Our claim is that Eo and Eh are categories of partitions, corresponding
respectively to the quantum groups O∗n and H∗n .

(1) Here Eo is nothing but the set of pairings with each string having an even
number of crossings, and the result was proved in [BS 2009]. The idea is that Eo

is generated in the categorical sense by the partition p appearing in Lemma 2.3.

(2) The fact that Eh is indeed a category of partitions follows from definitions.
Thinking of each block as being “balanced” with respect to the odd and even labels,
we see that the categorical operations preserve the balancing. For instance when
checking the stability under composition, which is the crucial axiom, we see that
given a connected union of blocks of the two partitions that are composed, the
“balancing in the middle” is subject to canceling.

The fact that Eh corresponds to the above quantum group H∗n can be checked
in several ways. Consider for instance the diagram

O∗n ⊂ O+n
∪ ∪

H∗n ⊂ H+n .
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We know from definitions that H∗n is obtained by putting together the relations for
O∗n and for Hn , so we have the quantum group equality H∗n = O∗n ∩ H+n . Now by
the general properties of Tannakian duality, it follows that the category of partitions
of H∗n is generated by the category of partitions for H+n , namely the noncrossing
partitions having even blocks, and by the half-liberation partition p in Lemma 2.3.

This category is by definition included into Eh , and the reverse inclusion can be
checked as well by a straightforward computation. �

The quantum group O∗n , appearing first in [BS 2009], was further investigated
in [Banica and Vergnioux 2009b]. To get some insight into the structure of H∗n , we
will use similar methods.

Definition 2.5. The projective version of a quantum group G⊂U+n is the quantum
group PG⊂U+n2 , having as basic coordinates the elements vi j,kl = uiku∗jl .

In other words, C(PG)⊂C(G) is the algebra generated by the elements vi j,kl =

uiku∗jl . In the case where G is a classical group we recover the well-known formula
PG = G/(G ∩ T ), where T ⊂ Un are the unitary diagonal matrices. We refer to
[Banica and Vergnioux 2009b] for a full discussion and a list of concrete examples.

Consider now the compact group Kn = T o Sn consisting of monomial (that is,
permutation-like) matrices, with elements on the unit circle T as nonzero entries.

The next result, whose first claim is from [Banica and Vergnioux 2009b], will
play a key role in the study of H∗n and the other quantum groups introduced here.

Theorem 2.6. The projective versions of half-liberations are as

(1) PO∗n = PUn , and

(2) PH∗n = PKn .

Proof. The first claim is proved using that the partitions for PO∗n and PUn are the
same. For the second, we use a similar method. Observe first that from H∗n ⊂ O∗n ,
we get PH∗n ⊂ PO∗n = PUn , so PH∗n is indeed a classical group.

To compute this group, consider the diagram

Kn ⊂ U+n
∪ ∪

Hn ⊂ H∗n .

We fix k, l ≥ 0 and consider the formal words α = (u⊗ u)⊗k and β = (u⊗ u)⊗l .
Our claim is that the corresponding spaces Hom(α, β) for our 4 quantum groups
appear as span of the operators Tp, with p belonging to the following 4 sets of
partitions:

Eh(2k, 2l) ⊃ Eo(2k, 2l)
∪ ∪

Ph(2k, 2l) ⊃ Eh(2k, 2l).
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Indeed, the bottom left set is a good one, by Theorem 1.3. The bottom right set is
also a good one, by Theorem 2.4. For the top right set, this follows from the equality
PO∗n = PUn and from Theorem 2.4, and for full details see [Banica and Vergnioux
2009b]. As for the top left set, this follows for instance from the various results in
[Banica et al. 2007a; Banica 2008; Banica and Vergnioux 2009a] regarding K+n ,
after “adding a crossing”. A direct proof can be obtained as well, by working out
the categorical interpretation of the various relations defining Kn .

In summary, we have computed the relevant diagrams for the projective versions
of our four algebras. So, let us look now at these projective versions:

PKn ⊂ PU+n
∪ ∪

PHn ⊂ PH∗n .

The quantum groups PH∗n and PKn appear as subgroups of the same quantum
group, namely PU+n , and the discussion above tells us that these subgroups have
the same diagrams. The same argument of [Banica and Vergnioux 2009b] tells us
that PH∗n = PKn . �

3. The hyperoctahedral series

We now introduce a new series of quantum groups, H (s)
n with s ∈ {2, 3, . . . ,∞}.

These will intermediate between H (2)
n = Hn and H (∞)

n = H∗n .
The quantum group H (s)

n is obtained from H∗n by imposing the s-commutation
condition abab · · · = baba · · · (words of length s) on the basic coordinates ui j .

Definition 3.1. C(H (s)
n ) is the universal C∗-algebra generated by n2 self-adjoint

variables ui j , subject to the relations

(1) (orthogonality) uut
= ut u = 1, where u = (ui j ) and ut

= (u j i );

(2) (cubic relations) ui j uik = u j i uki = 0 for any i and any j 6= k;

(3) (half-commutation) abc = cba for any a, b, c ∈ {ui j };

(4) (s-mixing relation) abab · · · = baba · · · (length s words) for any a, b ∈ {ui j }.

That H (s)
n is a quantum group follows from the elementary fact that the cubic

relations are of Hopf type, that is, they allow the construction of the Hopf algebra
maps 1, ε, S. This can be checked by a routine computation.

At s = 2, the s-mixing is the usual commutation ab = ba. Since this relation is
stronger than the half-commutation abc= cba, we are led to the algebra generated
by n2 commuting self-adjoint variables satisfying (1) and (2), which is C(Hn).

In the case s =∞, the s-mixing relation disappears by definition. Thus we are
led to the algebra defined by the relations (1)–(3), which is C(H∗n ).
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Summarizing, we have H (2)
n = Hn and H (∞)

n = H∗n , as previously claimed. In
what follows we present a detailed study of H (s)

n .

Lemma 3.2. For a compact quantum group G ⊂ H∗n , the following are equivalent:

(1) The basic coordinates ui j satisfy abab · · · = baba · · · (length s words).

(2) Tp belongs to End(u⊗s), where p = (135 · · · 2′4′6′ · · ·)(246 · · · 1′3′5′ · · ·).

Proof. According to the definition of Tp given in (1-1), the operator associated to
the partition in the statement is given by the formula

Tp(ea1 ⊗ eb1 ⊗ ea2 ⊗ eb2 ⊗ · · · )= δ(a)δ(b)eb⊗ ea ⊗ eb⊗ ea ⊗ · · · .

Here we use the convention δ(a) = 1 if all the indices ai are equal and δ(a) = 0
if not, along with a similar convention for δ(b). The indices a and b appearing on
the right are the common values of the a indices and b indices, respectively, in the
case δ(a)= δ(b)= 1, and are irrelevant quantities in the remaining cases.

This gives the formulas

Tpu⊗s(ea1⊗eb1⊗ea2⊗ · · · )=
∑

i j

ei⊗e j⊗ei⊗ · · · ⊗uia1u jb1uia2 · · · ,

u⊗s Tp(ea1⊗eb1⊗ea2⊗ · · · )= δ(a)δ(b)
∑

i j

ei1⊗e j1⊗ei2⊗ · · · ⊗ui1bu j1aui2b · · · .

Here the upper sum is over all indices i and j , and the lower sum is over all
multiindices i = (i1, . . . , is) and j = ( j1, . . . , js). The identification of the terms
on the right, after a suitable relabeling of indices, gives the equivalence in the
statement. �

We now work out the s-analogue of Theorem 2.4.

Theorem 3.3. H (s)
n is an easy quantum group, and its associated category E s

h is
that of the s-balanced partitions, that is, partitions satisfying the conditions that

(1) the total number of legs is even, and

(2) in each block, the number of odd and even legs are equal, modulo s.

Proof. At s = 2 the first condition implies the second one, so here we simply get
the partitions having an even number of legs, corresponding to Hn . At s =∞ we
get the partitions that are balanced, in the sense of the proof of Theorem 2.4, which
are known from there to correspond to the quantum group H∗n .

We first claim that E s
h is a category. This follows simply by adapting the s =∞

argument in the proof of Theorem 2.4, just by adding “modulo s” everywhere.
It remains to prove that this category corresponds to H (s)

n . This follows from
the fact that the partition p of Lemma 3.2 generates the category of s-balanced
partitions, as one can check by a routine computation. �
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Consider now the complex reflection group H s
n =Zs oSn , consisting of monomial

matrices having the s-roots of unity as nonzero entries. Observe that we have
PH(s)

n = H s
n/T.

We have the following s-analogue of Theorem 2.6.

Theorem 3.4. PH(s)
n = PHs

n .

Proof. This statement holds at s = 2, because here we have H (2)
n = H 2

n = Hn; it
holds at s =∞ due to Theorem 2.6.

In the general case, it follows by adapting the proof of Theorem 2.6. Observe
first that from H (s)

n ⊂ H∗n we get PH(s)
n ⊂PH∗n =PKn , so PH(s)

n is a classical group.
To compute this group, consider the diagram

H s
n ⊂ U+n
∪ ∪

Sn ⊂ H (s)
n .

The corresponding sets of partitions, as in the proof of Theorem 2.6, are

E s
h(2k, 2l) ⊃ Eo(2k, 2l)
∪ ∪

P(2k, 2l) ⊃ E s
h(2k, 2l).

The bottom left set is a good one, by Theorem 1.3, as is bottom right one, by
Theorem 3.3. For the top right set, this was already discussed in the proof of
Theorem 2.6. For the top left set, this follows either from the results in [Banica
et al. 2007a; Banica and Vergnioux 2009a] regarding the free version H s+

n , after
adding a crossing, or from the s =∞ computation in the proof of Theorem 2.6. A
direct proof can be obtained as well.

We now look at the projective versions of the above quantum groups:

PHs
n ⊂ PU+n
∪ ∪

PHn ⊂ PH(s)
n .

As in the proof of Theorem 2.6, we have two quantum subgroups having the same
diagrams, and we conclude that PH(s)

n = PHs
n . �

4. The higher hyperoctahedral series

We introduce a second one-parameter series of quantum groups, H [s]n with s in
{2, 3, . . . ,∞}, having as main particular case the group H [2]n = Hn .

Definition 4.1. C(H [s]n ) is the universal C∗-algebra generated by n2 self-adjoint
variables ui j , subject to the relations
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(1) (orthogonality) uut
= ut u = 1, where u = (ui j ) and ut

= (u j i ).

(2) (ultracubic relations) acb= 0 for any a 6= b on the same row or column of u.

(3) (s-mixing relation) abab · · · = baba · · · (length s words) for any a, b ∈ {ui j }.

That H [s]n is a quantum group follows from the elementary fact that the ultracubic
relations are of “Hopf type”, that is, that they allow the construction of the Hopf
algebra maps 1, ε and S. This can be checked by a routine computation.

We first compare the defining relations for H [s]n with those for H (s)
n . To deal

at the same time with the cubic and ultracubic relations, it is convenient to use a
statement about a unifying notion, k-cubic relations.

Lemma 4.2. For a compact quantum group G⊂O+n , the following are equivalent:

(1) The basic coordinates ui j satisfy the k-cubic relations ac1 · · · ckb = 0 for any
a 6= b on the same row or column of u, and for any c1, . . . , ck .

(2) Tp ∈ End(u⊗k+2), where p=(1, 1′, k+2, k+2′)(2, 2′)· · ·(k+1, k+1′).

Proof. According to (1-1), the operator associated to the partition in the statement
is given by

Tp(ea ⊗ ec1 ⊗ · · · ⊗ eck ⊗ eb)= δabea ⊗ ec1 ⊗ · · · ⊗ eck ⊗ ea.

This gives the formulas

Tpu⊗k+2(ea ⊗ ec1 ⊗ · · · ⊗ eck ⊗ eb)

=

∑
i j

ei ⊗ e j1 ⊗ · · · ⊗ e jk ⊗ ei ⊗ uiau j1c1 · · · u jkck uib,

u⊗k+2Tp(ea ⊗ ec1 ⊗ · · · ⊗ eck ⊗ eb

= δab

∑
i jl

ei ⊗ e j1 ⊗ · · · ⊗ e jk ⊗ el ⊗ uiau j1c1 · · · u jkck ula,

Here the sums are over all indices i and l, and over all multiindices j= ( j1, . . . , jk).
The identification of the terms on the right gives the desired equivalence. �

We can now establish the precise relationship between H [s]n and H (s)
n and also

show that no further series can appear in this way.

Proposition 4.3. For k ≥ 1, the k-cubic relations are all equivalent to the ultra-
cubic relations, and they imply the cubic relations.

Proof. This follows from two observations.
First, the k-cubic relations imply the 2k-cubic relations. Indeed, one can connect

two copies of the partition p in Lemma 4.2, by gluing them with two semicircles
in the middle, and the resulting partition is the one implementing the 2k-cubic
relations.
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Second, the k-cubic relations imply the (k−1)-cubic relations. By capping the
partition p in Lemma 4.2 with a semicircle at bottom right, we get a partition
p′ ∈ P(k + 2, k), and by rotating the upper right leg of this partition we get the
partition p′′ ∈ P(k+ 1, k+ 1) implementing the (k−1)-cubic relations. �

Proposition 4.3 shows that replacing in Definition 4.1 the ultracubic condition
by any of the k-cubic conditions with k ≥ 2 won’t change the resulting quantum
group. The other consequences of Proposition 4.3 are summarized as follows.

Proposition 4.4. The quantum groups H [s]n have the properties that

(1) H (s)
n ⊂ H [s]n ⊂ H+n ;

(2) H [2]n = H (s)
n = Hn at s = 2;

(3) H (s)
n 6= H [s]n at s ≥ 3.

Proof. All the assertions basically follow from Lemma 4.2:

(1) For the first inclusion, we need to show half-commutation plus cubic implies
ultracubic; this can be done by placing the half-commutation partition next to
the cubic partition, then using 2 semicircle cappings in the middle. The second
inclusion follows from Proposition 4.3, because the ultracubic relations (1-cubic
relations) imply the cubic relations (0-cubic relations).

(2) At s = 2 the s-commutation is the usual commutation ab = ba. Thus we are
led here to the algebra generated by n2 commuting self-adjoint variables satisfying
the cubic condition, which is C(Hn).

(3) Finally, H (s)
n 6= H [s]n will be a consequence of Theorem 4.5 below, because at

s≥3 the half-commutation partition p= (14)(25)(36) is s-balanced but not locally
s-balanced. �

Theorem 4.5. H [s]n is an easy quantum group, and its associated category is that
of the locally s-balanced partitions, that is, partitions having the property that each
of their subpartitions (that is, partitions obtained by removing certain blocks) are
s-balanced.

Proof. At s= 2 the locally s-balancing condition is automatic for a partition having
blocks of even size, so we get indeed the category corresponding to Hn .

In the general case, we first claim that the locally s-balanced partitions form a
category. This follows simply by adapting the proof of Theorem 3.3, just by adding
“locally” everywhere.

It remains to prove that this category corresponds to H [s]n . This follows from
Lemma 3.2 and from the fact that the partition generating the category of locally
balanced partitions, namely, p = (1346)(25), is nothing but the one implementing
the ultracubic relations, as one can check by a routine computation. �
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5. Classification: General strategy

In this section and the next we advance the classification work started in [BS 2009].
We will prove that the easy quantum groups constructed so far are the only ones,
modulo a hypothetical multiparameter “hyperoctahedral series”, unifying the series
constructed in the previous sections, and still waiting to be constructed.

Let G be an easy quantum group with category of partitions denoted Pg. It
follows from definitions that Pg∩NC is a category of noncrossing partitions; by the
results in Section 1, this latter category must come from a free quantum group K+.
Since NCk = Pg ∩NC is included into Pg, we have G ⊂ K+.

Definition 5.1. Associated to an easy quantum group G is the easy group K given
by the equality of categories Pg ∩NC= NCk .

According to the easy group classification in Theorem 1.3, there are six cases
to be studied; five of these will be studied in Section 6, and the remaining case,
K = Hn , will be left open.

The reason these cases are separated comes from the question, Do we have
K ⊂ G? In the reminder of this section we will try to answer this question.

We begin with the technical lemma, valid in the general case. Let 3g,3k ⊂ N

be the set of the possible sizes of blocks of elements of Pg,NCk .

Lemma 5.2. Let G and K be as above.

(1) 3k ⊂3g ⊂3k ∪ (3k − 1).

(2) 1 ∈3g implies 1 ∈3k .

(3) If NCk is even, so is Pg.

Proof. We will heavily use the various abstract notions and results in [BS 2009].

(1) The first inclusion follows from NCk ⊂ Pg. The second is equivalent to the
statement, “If b is a block of a partition p ∈ Pg, then there exists a certain block b′

of a certain partition p′ ∈ Pg ∩NC, having size #b or #b− 1.” This then follows
by using the capping method in [BS 2009]. We can cap p with semicircles, so that
b remains unchanged, and we end up with a partition p′ consisting of b and some
extra points, at most one point between any two legs of b, which may or may not
be connected. Since the semicircle capping is a categorical operation, this partition
p′ remains in Pg.

Now by further capping p′ with semicircles, so as to get rid of the extra points,
the size of b can only increase, and we end up with a one-block partition having
size at least that of b. This one-block partition is obviously noncrossing, and by
capping it again with semicircles we can reduce the number of legs up to #b or
#b− 1, and we are done.
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(2) The condition 1 ∈ 3g means that there exists p ∈ Pg having a singleton. By
capping p with semicircles outside this singleton, we can obtain a singleton or a
double singleton. Since both these partitions are noncrossing and have a singleton,
we are done.

(3) Assume that Pg is not even, and consider a partition p ∈ Pg having an odd
number of legs. By capping p with enough semicircles we ensure ending up with
a singleton, and since this singleton is by definition in Pg ∩NC, we are done. �

We are now in position of splitting the classification.

Proposition 5.3. Let G, K be as above.

(1) If K 6= Hn , then K ⊂ G ⊂ K+.

(2) If K = Hn , then S′n ⊂ G ⊂ H+n .

Proof. Recall that the inclusion G ⊂ K+ follows from definitions. For the other
inclusion, we have 6 cases, depending on the exact value of the easy group K :

(1a) K = On . Here 3k = {2}, so by Lemma 5.2(1) we get {2} ⊂ 3g ⊂ {1, 2}.
Moreover, from Lemma 5.2(2), we get 3g = {2}. Thus Pg ⊂ Po, which gives
On ⊂ G.

(1b) K = Sn . Here there is nothing to prove, since Sn ⊂ G by definition.

(1c) K = Bn . Here 3k = {1, 2}, so by Lemma 5.2(1) we get 3g = {1, 2}. Thus we
have Pg ⊂ Pb, which gives Bn ⊂ G.

(1d) K = S′n . Here Pg ⊂ Ps by definition, and by using Lemma 5.2(3) we deduce
that Pg ⊂ Ps′ , which gives S′n ⊂ G.

(1e) K = B ′n . Here 3= {1, 2}, so by Lemma 5.2(1) we get 3g = {1, 2}. This gives
Pg ⊂ Pb, and by Lemma 5.2(3), we get Pg ⊂ Pb′ , which gives B ′n ⊂ G.

(2) K = Hn . Here Pg ⊂ Ps by definition, and by using Lemma 5.2(3) we deduce
that Pg ⊂ Ps′ , which gives S′n ⊂ G. �

With a little more care, one can prove that the easy group K in statement (1) is
nothing but the classical version of G, obtained as dual object to the commutative
Hopf algebra C(G)/I , where I ⊂ C(G) is the commutator ideal.

Statement (2) cannot be improved. The reason is that for the quantum group
H (s)

n with s odd, we have K = Hn , and K 6⊂ G.

6. The nonhyperoctahedral case

We classify the easy quantum groups, under the nonhyperoctahedral assumption
K 6= Hn . Here K is as usual the easy group from Definition 5.1.

We know from Proposition 5.3 that our easy quantum group G appears as an
intermediate quantum group, K ⊂G⊂K+. To classify these intermediate quantum
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groups, we use the method in [Banica and Vergnioux 2009b], where the problem
was solved in the case G = On . For uniformity, we will also include this case.

Definition 6.1. Let p ∈ P(k, l) be a partition, with the points counted modulo k+l
counterclockwise starting from bottom left.

(1) We call semicircle capping of p any partition obtained from p by connecting
with a semicircle a pair of consecutive neighbors.

(2) We call singleton capping of p any partition obtained from p by capping one
of its legs with a singleton.

(3) We call doubleton capping of p any partition obtained from p by capping two
of its legs with singletons.

The semicircle, singleton and doubleton cappings are elementary operations on
partitions that lower the total number of legs by 2, 1 and 2 respectively. There are
k+l possibilities for placing the semicircle or the singleton, and (k+l)(k+l−1)/2
possibilities for placing the double singleton. In the case of semicircle cappings at
left or at right, the semicircle in question is in fact a vertical bar, but we will still
call it semicircle.

The various cappings of p will be generically denoted p′.
Consider now the 5+ 5+ 1 = 11 categories of partitions Px , NCx , Ex , with

x = o, s, b, s ′, b′ described in Sections 1 and 2.

Lemma 6.2. Let p be a partition having j legs.

(1) If p ∈ Po− Eo and j > 4, there exists a semicircle capping p′ ∈ Po− Eo.

(2) If p ∈ Eo−NCo and j > 6, there exists a semicircle capping p′ ∈ Eo−NCo.

(3) If p ∈ Ps −NCs and j > 4, there exists a singleton capping p′ ∈ Ps −NCs .

(4) If p ∈ Pb−NCb and j > 4, there exists a singleton capping p′ ∈ Pb−NCb.

(5) If p ∈ Ps′−NCs′ and j > 4, there exists a doubleton capping p′ ∈ Ps′−NCs′ .

(6) If p ∈ Pb′−NCb′ and j > 4, there exists a doubleton capping p′ ∈ Pb′−NCb′ .

Proof. We write p ∈ P(k, l), so that the number of legs is j = k + l. In the cases
where our partition is a pairing, we use as well the number of strings, s = j/2.

Let us agree that all partitions are drawn to have a minimal number of crossings.
We use the same idea for all the proofs, namely to isolate a block of p having

a crossing, or an odd number of crossings, then to cap p as in the statement, so
this block remains crossing, or with an odd number of crossings. Here we use the
observation that the balancing condition that defines the categories Eo and Eh can
be interpreted as saying that each block has an even number of crossings when the
picture of the partition is drawn so that this number of crossings is minimal.
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(1) The assumption p /∈ Eo means that p has strings having an odd number of
crossings. We fix such a string, and we try to cap p so that this string remains odd
in the resulting partition p′. An examination of all possible pictures shows that this
is possible, provided that our partition has s > 2 strings.

(2) The assumption p /∈ NCo means that p has crossing strings. We fix such a
pair of strings, and we try to cap p so these strings remain crossing in p′. Once
again, looking at all possible pictures shows that this is possible, provided that our
partition has s > 3 strings.

(3) Since p is crossing, we can choose two of its blocks that are intersecting. If
there are some other blocks left, we can cap one of their legs with a singleton, and
we are done. If not, this means that our two blocks have a total of j ′ ≥ j > 4 legs,
so at least one of them has j ′′ > 2 legs. One of these j ′′ legs can always be capped
with a singleton, so the capped partition remains crossing, and we are done.

(4) Here we can simply cap with a singleton, as in (3).

(5)–(6) Here we can cap with a doubleton, by proceeding twice as in (3). �

For a collection of subsets X (k, l)⊂ P(k, l) we denote by 〈X〉⊂ P the category
of partitions generated by X . In other words, the elements of 〈X〉 come from those
of X via the categorical operations for the categories of partitions, which are the
vertical and horizontal concatenation and the upside-down turning. See [BS 2009].

Lemma 6.3. Let p be a partition.

(1) If p ∈ Po− Eo, then 〈p,NCo〉 = Po.

(2) If p ∈ Eo−NCo, then 〈p,NCo〉 = Eo.

(3) If p ∈ Ps −NCs , then 〈p,NCs〉 = Ps .

(4) If p ∈ Pb−NCb, then 〈p,NCb〉 = Pb.

(5) If p ∈ Ps′ −NCs′ , then 〈p,NCs′〉 = Ps′ .

(6) If p ∈ Pb′ −NCb′ , then 〈p,NCb′〉 = Pb′ .

Proof. We use Lemma 6.2 and the observation that the “capping partition” appear-
ing there is always in the good category.

That is, we use that the semicircle is in NCo,NCs′ , the singleton is in NCs,NCb,
and the doubleton is in NCb′ . This observation tells us that, in each of the cases
under consideration, the category to be computed can only decrease when replacing
p by one of its cappings p′. For the singleton and doubleton cappings this is
clear from definitions; for the semicircle capping this is also clear from definitions,
except in the case where the capping semicircle is actually a bar added at left or at
right, where we can use a categorical rotation operation as in [BS 2009].
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(1)–(2) These claims can be proved by recurrence on the number s = (k+ l)/2 of
strings. Indeed, by using Lemma 6.2(1)–(2), for s> 3 we have a descent procedure
s→ s−1, and this leads to the situation s ∈ {1, 2, 3}, where the statement is clear.

(3) We can proceed by recurrence on the number of legs of p. If the number of legs
is j = 4, then p is a basic crossing, and we have 〈p〉 = Ps . If the number of legs
is j > 4 we can apply Lemma 6.2(3), and the result follows from 〈p〉 ⊃ 〈p′〉 = Ps .

(4)–(6) This is similar to the proof of (1)–(2), by using Lemma 6.2(4)–(6). �

Lemma 6.4. Let p be a partition.

(1) If p ∈ Po, then 〈p,NCo〉 ∈ {Po, Eo,NCo}.

(2) If p ∈ Ps , then 〈p,NCs〉 ∈ {Ps,NCs}.

(3) If p ∈ Pb, then 〈p,NCb〉 ∈ {Pb,NCb}.

(4) If p ∈ Ps′ , then 〈p,NCs′〉 ∈ {Ps′,NCs′}.

(5) If p ∈ Pb′ , then 〈p,NCb′〉 ∈ {Pb′,NCb′}.

Proof. This follows by rearranging the results in Lemma 6.3. �

We may now state our main result. We call nonhyperoctahedral any easy quan-
tum group G such that K 6= Hn .

Theorem 6.5. There are exactly 11 nonhyperoctahedral easy quantum groups:

(1) On , O∗n and O+n , the orthogonal quantum groups;

(2) Sn and S+n , the symmetric quantum groups;

(3) Bn and B+n , the bistochastic quantum groups;

(4) S′n and S′+n , the modified symmetric quantum groups;

(5) B ′n and B ′+n , the modified bistochastic quantum groups.

Proof. By Proposition 5.3, we have to classify the easy quantum groups satisfying
K ⊂ G ⊂ K+. More precisely, we have to prove that for K = Sn, Bn, S′n, B ′n there
is no such partial liberation, and that for K =On there is only one partial liberation,
namely the quantum group K ∗ mentioned above. This follows from Lemma 6.4,
via the Tannakian results in [BS 2009]. �

The classification in the hyperoctahedral case seems to be a difficult problem,
which we have to leave open.

7. Laws of characters

We discuss the computation of the asymptotic law of the fundamental character
χ = Tr(u), and of its truncated versions χt =

∑
[tn]
i=1 ui i with t ∈ (0, 1].

These computations, which might seem quite technical, are in fact of great rel-
evance in the general context of representation theory. Given a compact group
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G ⊂Un , or more generally a compact quantum group G ⊂U+n , the main problem
in representation theory is to classify the irreducible representations of G. By the
Peter–Weyl theory, these irreducible representations appear in the tensor powers
u⊗k of the fundamental representation, and they can be in fact identified with the
minimal projections of the algebra End(u⊗k).

The exact computation of End(u⊗k) is generally quite difficult. However, an
easier problem whose answer is generally extremely useful is the computation of
the dimension of this algebra. Since this dimension can be simply obtained by
integrating χ2k , we are led to the fundamental problem of computing the law of χ .

In the quantum group context, the difference between the law of χ and the
corresponding classical result can be quite puzzling. The problem appears for
instance with Sn and S+n , where the law of χ is respectively Poisson with n→∞,
and free Poisson with n ≥ 4. The lack of symmetry was conceptually understood
in [Banica and Collins 2007], where it was shown that the correct invariant to look
at is the law of the truncated character χt , with t ∈ (0, 1].

Definition 7.1. Associated to an easy quantum group G ⊂ U+n is the truncated
character

χt =

[tn]∑
i=1

ui i ,

where u = (ui j ) is the matrix of standard coordinates, and t ∈ (0, 1].

Recall some basic results from [BS 2009]. Let G be an easy quantum group,
and denote by Dk ⊂ P(0, k) the corresponding sets of diagrams, having no upper
points. We define the Gram matrix to be Gkn(p, q)= nb(p∨q), where b( · ) is the
number of blocks. The Weingarten matrix is by definition its inverse, Wkn = G−1

kn .
In order for this inverse to exist, n must be big enough, and the assumption n ≥ k
is sufficient. In the general case the notion of quasiinverse must be used; see
[Collins and Matsumoto 2009] for a detailed discussion.

Theorem 7.2. The Haar integration over G is given by∫
G

ui1 j1 · · · uik jk du =
∑

p,q∈Dk

δp(i)δq( j)Wkn(p, q),

where the δ symbols are 0 or 1, depending on whether the indices fit or not.

Proof. This is proved in [BS 2009], using the idea that the integrals on the left,
taken altogether, form the orthogonal projection on Fix(u⊗k)= span(Dk). �

The Weingarten formula is particularly effective in the classical and free cases,
where complete computations were performed in [BS 2009].

Theorem 7.3. The asymptotic law of χt =
∑
[tn]
i=1 ui i with t ∈ (0, 1] is as follows:
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(1) For On , Sn , Hn and Bn , we get the Gaussian, Poisson, Bessel and shifted
Gaussian laws, which form convolution semigroups.

(2) For O+n , S+n , H+n and B+n we get the semicircular, free Poisson, free Bessel
and shifted semicircular laws, which form free convolution semigroups.

(3) For S′n , B ′n , S′+n and B ′+n we get symmetrized versions of the laws for Sn , Bn ,
S+n and B+n , which do not form classical or free convolution semigroups.

Proof. This is proved in [BS 2009] by using the Weingarten formula and cumulants.
Note that the semigroups in (1) and (2) are in Bercovici–Pata [1999] bijection. �

We should mention that the measures in (3), while not forming semigroups due
to the canonical copy of Z2, which produces a “correlation”, are very close to
forming some kind of semigroup. We come back to this question in our next
papers [Banica et al. 2009a; 2009b].

In the remaining cases, the Weingarten formula is less effective, because count-
ing partitions and their blocks is a delicate task. In the case of half-liberations and
of the hyperoctahedral series we will use instead the projective versions computed
in the previous sections, which reduce the problem to a classical computation.

Definition 7.4. We use the following complex probability measures:

(1) The complex Gaussian law of parameter t > 0 is the law of x + iy, where x
and y are independent Gaussian variables of parameter t .

(2) The s-Bessel law of parameter t > 0 is the law of
∑s

r=1 e2π ir/s xi , where
x1, . . . , xs are independent Poisson variables of parameter t/s.

The complex Gaussian laws are well known to form a convolution semigroup.
The same holds for the s-Bessel laws, and we refer to [Banica et al. 2007a] for a
complete discussion. The “Bessel” terminology comes from the fact that at s = 2,
the density of the corresponding discrete measure on R is given by a Bessel function
of the first kind.

Definition 7.5. Given a complex probability measure µ, we call squeezed version
of it the law of

√
zz∗, where z follows the law µ.

This law doesn’t depend of course on the choice of z.
For example, the squeezed version of the complex Gaussian law of parameter 1

is the Rayleigh law. This is because with z = x + iy, we have zz∗ = x2
+ y2.

Another interesting example, of key relevance in free probability, is the fact that
the squeezed version of Voiculescu’s circular law is Wigner’s semicircle law. See
for example [Nica and Speicher 2006].

Theorem 7.6. The asymptotic law of χt =
∑
[tn]
i=1 ui i with t ∈ (0, 1] is as follows:

(1) For O∗n , we get the squeezed complex Gaussian semigroup.
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(2) For H (s)
n , we get the squeezed s-Bessel semigroup.

Proof. The Weingarten formula shows that the odd moments of the variables in
the statement are all 0, so all computations actually take place over the projective
versions. With this remark in hand, the results simply follow from the well-known
fact that χt is asymptotically complex Gaussian for Un and s-Bessel for H s

n . See
[Banica et al. 2007a]. �

The squeezed s-Bessel laws seem to have a quite interesting combinatorics, but
this is beyond the purposes of this paper. We would like however to present one
such combinatorial statement, in the simplest case, s =∞ and t = 1.

Proposition 7.7. The asymptotic even moments of the character χ ∈C(H∗n ) satisfy

ck =

k−1∑
s=0

(k
s

)(k−1
s

)
cs

and are equal to the number of games of simple patience with n cards.

Proof. This follows from Theorem 7.6, but we will present below a direct proof,
which we found at an early stage of this work. According to the general theory,
the numbers in the statement are given by ck = #Eh(2k), that is, they count the
partitions of {1, . . . , 2k} having the property that each block has the same number
of odd and even legs.

It is convenient to do the following manipulation: We keep the sequence of odd
legs fixed, and we pull downwards the sequence of even legs. In this way, Eh(2k)
becomes the set of partitions between an upper and a lower sequence of k points,
such that each block is balanced in the sense that it has the same number of upper
and lower legs.

Now observe that these partitions can be obtained as follows: pick a number
r ∈ {1, . . . , n}; connect the first point on the upper line to some r − 1 other points
on the upper line; choose r points on the lower line, and connect them to the already
connected upper r points; and finally connect the remaining k− r upper points to
the remaining k− r lower points by means of a balanced partition.

With s= k−r this gives the formula in the statement. For the patience game in-
terpretation, see Aldous and Diaconis [1999] and Sloane’s comments [2008] about
the sequence A023998, which is the sequence of moments of χ . �

For the higher hyperoctahedral quantum group H [s]n , our standard methods sim-
ply do not work. We don’t know if this quantum group produces the squeezed
version of some known semigroup.
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8. Concluding remarks

We have seen in this paper that the easy quantum groups consist in principle of
6 groups, their free versions, 2 half-liberations, and one infinite series still waiting
to be constructed. The construction of this hypothetical multiparameter “hyper-
octahedral series”, and the continuation and completion of our classification work,
are of course the main two questions that we would like to address here.

The situation here, which is unexpectedly complex, brings to mind the algebraic
difficulty and subtlety of the usual complex reflection groups [Broué et al. 1998].

At the level of applications, as explained in the introduction, we intend to use
the easy quantum group list we know of as input for a number of representation
theory and probability considerations; again, we believe that “any result that holds
for Sn and On should have a suitable extension to all easy quantum groups”.

In the noneasy case, there are of course of large number of results, classical
or even free, having something to do with diagrams and with the easy quantum
group technology in general, and that might fall one day into an extension of our
formalism.

Here is a list of topics waiting to be developed:

(1) De Finetti theorems. These are available for Sn, On from the book [Kallenberg
2005], for S+n from [Köstler and Speicher 2009] and then [Curran 2009a], and for
O+n from [Curran 2009b]. We develop a global approach to the problem by using
easy quantum groups in our forthcoming paper [Banica et al. 2009a].

(2) Eigenvalue computations. The key results of Diaconis and Shahshahani [1994]
about Sn, On can also be obtained by using Weingarten functions and cumulants;
this is extended to all easy quantum groups in the preprint [Banica et al. 2009b].

(3) Invariant theory. The groups Sn, On and their versions S+n , O+n , O∗n have served
as a guiding example for the study of many invariants; see [Collins and Śniady
2006; Banica and Collins 2007; Novak 2007; Banica and Vergnioux 2009a; 2009b;
Collins and Matsumoto 2009]. Some of these results are expected to extend to all
easy quantum groups.

(4) Geometric aspects. The groups Sn, On and their free versions S+n , O+n were
also involved in many other “classical versus free” considerations. Let us mention
here the Poisson boundary results in [Vaes and Vergnioux 2007], and the quantum
isometry groups in [Bhowmick and Goswami 2009]. Once again, the easy quantum
groups can lead to some new results here.

(5) Generalizations. One interesting question would be to understand the twisting
and deformation of the easy quantum groups, say with the goal of extending our
formalism to the S2

6= id case, via monoidal equivalence [Bichon et al. 2006].
Another question is whether the half-liberation operation can be applied to locally
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compact real algebraic groups G ⊂ Mn(R), so as to fit into the general axioms in
[Kustermans and Vaes 2000].

In addition to these questions, one basic problem is to classify the intermedi-
ate quantum groups K ⊂ G ⊂ K+, where K is a fixed easy group. This looks
like a quite difficult question; but a possible way forward comes from a conjec-
ture in [Banica et al. 2007c], stating that there is no intermediate quantum group
Sn ⊂ G ⊂ S+n . This is actually a quite subtle question, whose study leads straight
into the core of the “noneasy” problems.
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by M. Bożejko et al., Banach Center Publ. 78, Polish Acad. Sci. Inst. Math., Warsaw, 2007.
MR 2009f:46094 Zbl 1140.46329

[Banica et al. 2009a] T. Banica, S. Curran, and R. Speicher, “De Finetti theorems for easy quantum
groups”, preprint, 2009. arXiv 0907.3314v2

[Banica et al. 2009b] T. Banica, S. Curran, and R. Speicher, “Stochastic aspects of easy quantum
groups”, preprint, 2009. arXiv 0909.0188v1

[Bercovici and Pata 1999] H. Bercovici and V. Pata, “Stable laws and domains of attraction in free
probability theory”, Ann. of Math. (2) 149:3 (1999), 1023–1060. MR 2000i:46061 Zbl 0945.46046

[Bhowmick and Goswami 2009] J. Bhowmick and D. Goswami, “Quantum group of orientation-
preserving Riemannian isometries”, J. Funct. Anal. 257:8 (2009), 2530–2572. MR 2555012 Zbl
1180.58005



CLASSIFICATION RESULTS FOR EASY QUANTUM GROUPS 25

[Bichon et al. 2006] J. Bichon, A. De Rijdt, and S. Vaes, “Ergodic coactions with large multiplic-
ity and monoidal equivalence of quantum groups”, Comm. Math. Phys. 262:3 (2006), 703–728.
MR 2007a:46072 Zbl 1122.46046

[Broué et al. 1998] M. Broué, G. Malle, and R. Rouquier, “Complex reflection groups, braid groups,
Hecke algebras”, J. Reine Angew. Math. 500 (1998), 127–190. MR 99m:20088 Zbl 0921.20046

[BS 2009] T. Banica and R. Speicher, “Liberation of orthogonal Lie groups”, Adv. Math. 222:4
(2009), 1461–1501. MR 2554941 Zbl 05614878

[Collins and Matsumoto 2009] B. Collins and S. Matsumoto, “On some properties of orthogonal
Weingarten functions”, J. Math. Phys. 50:11 (2009), 113516, 14. MR 2567222
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BATALIN–VILKOVISKY COALGEBRA OF STRING TOPOLOGY

XIAOJUN CHEN AND WEE LIANG GAN

We prove that the reduced Hochschild homology of a commutative DG
Frobenius algebra has the natural structure of a Batalin–Vilkovisky coalge-
bra, and the reduced cyclic homology has the natural structure of a gravity
coalgebra. As an application, this gives an algebraic model for a Batalin–
Vilkovisky coalgebra structure on the reduced homology of the free loop
space of a simply connected closed oriented manifold, and a gravity coalge-
bra structure on the reduced equivariant homology.

1. Introduction

Let M be a simply connected closed oriented m-manifold, and let LM be its free
loop space. Félix and Thomas [2008] gave a construction of the Batalin–Vilkovisky
algebra structure on the homology of LM in terms of Hochschild homology of a
Poincaré duality model of M . The aim of this paper is to show that the reduced
Hochschild homology, which gives the homology of LM relative to constant loops,
has the structure of a Batalin–Vilkovisky coalgebra. As a consequence it is also
shown that the reduced cyclic homology of the Poincaré duality model, which
models the equivariant homology of LM relative to the constant loops, has the
structure of a gravity coalgebra.

Throughout this paper, we shall work over the field of rational numbers. By
C∗( · ) and C∗( · ), we mean the complex of singular chains and the complex of
singular cochains. We shall grade C∗( · ) negatively. By applying [Lambrechts and
Stanley 2008, Theorem 1.1] to the Sullivan minimal model of M , it follows that
there is a commutative differential graded (DG) algebra A such that

• A is connected, finite-dimensional, and quasiisomorphic to the DG algebra
C∗(M); and

• there is an A-module isomorphism A → A∨ of degree m commuting with
the differential and inducing the Poincaré duality isomorphism H∗(M) →
Hm+∗(M) on homology.

MSC2000: 18G60.
Keywords: Batalin–Vilkovisky, coalgebra, string topology.
Gan was partially supported by NSF grant DMS-0726154.
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Following Félix and Thomas [2008], we call A a Poincaré duality model for M .
Let C = A∨, the dual space of A. Since A is a commutative DG algebra, C

is a cocommutative DG coalgebra. The linear isomorphism A ∼=−→C[m] induces
the structure of a commutative DG algebra on C whose product is of degree −m.
Moreover, the coproduct

1 : C→ C ⊗C, x 7→ x ′⊗ x ′′

is a map of C-bimodules. Thus, C forms a commutative DG Frobenius algebra in
the following sense, which models the chain complex of M :

Definition 1. Let C be a chain complex over a field k. A commutative DG Frobe-
nius algebra of degree m on C is a triple (C, · ,1) such that (C, · ) is a DG com-
mutative algebra whose product is of degree −m, (C,1) is a DG cocommutative
coalgebra, and

(1) (x · y)′⊗ (x · y)′′ = (x · y′)⊗ y′′ = (−1)m|x
′
|x ′⊗ (x ′′ · y) for any x, y ∈ C.

In Definition 1, C is not necessarily finite-dimensional.
From now on, we shall denote by C a commutative DG Frobenius algebra of

degree m with differential d , counit ε, and a coaugmentation Q ↪→ C . By the
Hochschild homology HH∗(C) and cyclic homology HC∗(C) of C , we mean the
Hochschild homology and cyclic homology of the underlying DG coalgebra struc-
ture of C . We recall their definitions:

Definition 2. The Hochschild homology HH∗(C) of C is the homology of the
normalized cocyclic cobar complex (CC∗(C), b), where

CC∗(C)=
∞∏

n=0

C ⊗ (6C)⊗n,

and

b(a0[a1|· · ·|an])

:= da0[a1|· · ·|an] +

n∑
i=1

(−1)|a0|+|[a1 |···|ai−1]|a0[a1 | · · · |dai | · · · |an]

+

n∑
i=1

(−1)|a0|+|[a1 |···|ai−1 |a′i ]|a0[a1 | · · · |a′i |a
′′

i | · · · |an]

+ (−1)|a
′

0|a′0
(
[a′′0 |a1 | · · · |an] − (−1)(|a

′′

0 |−1)|[a1 |···|an]|[a1 | · · · |an |a′′0 ]
)
.

Here, C :=C/Q'ker{ε :C→Q} and6 is the desuspension functor (shifting the
degrees of C down by one), and we write the elements of C⊗ (6C)⊗n in the form
a0[a1 | · · · |an]. In particular, the degree |[a1 | · · · |an]| is (|a1|−1)+· · ·+(|an|−1).
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One easily checks that b2
= 0. Connes’ cyclic operator on the normalized co-

cyclic cobar complex is given by

B : CC∗(C) → CC∗+1(C),

a0[a1 | · · · |an] 7→

n∑
i=1

(−1)|[ai |···|an]||[a1 |···|ai−1]|

· ε(a0)ai [ai+1 | · · · |an |a1 | · · · |ai−1].

One has B2
= 0 and bB+ Bb = 0.

Definition 3. The cyclic homology HC∗(C) of the coalgebra C is the homology of
the chain complex CC∗(C)[u], where u is a parameter of degree 2, with differential
b+ u−1 B defined by

(b+ u−1 B)(α⊗ un)=

{
bα⊗ un

+ Bα⊗ un−1 if n > 0,
bα if n = 0

for α ∈ CC∗(C).

As in the algebra case, one has Connes’ exact sequence:

(2) · · · // HH∗(C)
E // HC∗(C)

// HC∗−2(C)
M // HH∗−1(C) // · · · ;

compare with [Chen 2007, Theorem 8.3]. We now recall the Batalin–Vilkovisky
algebra structure on the Hochschild homology of a commutative DG Frobenius
algebra.

Definition 4. A Batalin–Vilkovisky algebra is a graded commutative algebra (V, •)
together with a linear map1 :V∗→V∗+1 such that1◦1=0, and for all a, b, c∈V ,

(3) 1(a • b • c)=1(a • b) • c+ (−1)|a|a •1(b • c)+ (−1)(|a|−1)|b|b •1(a • c)

− (1a) • b • c− (−1)|a|a • (1b) • c− (−1)|a|+|b|a • b • (1c).

Now for a commutative DG Frobenius algebra C , define a product

• : CC∗(C)⊗CC∗(C)→ CC∗(C)

by

a0[a1 | · · · |an] • b0[b1 | · · · |br ] := (−1)|b0||[a1 |···|an]|a0b0[a1 | · · · |an |b1 | · · · |br ].

Theorem 5 [Tradler 2008]. The Hochschild homology HH∗(C)[m] is a Batalin–
Vilkovisky algebra with differential B and product • .
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Using the maps E and M in Connes’ exact sequence (2), define, for each integer
n ≥ 2, a map cn of degree 2− n by

cn : HC∗(C)[m− 2]⊗n
→ HC∗(C)[m− 2]

α1⊗ · · · ⊗αn→ (−1)ε E(M(α1) • · · · •M(αn)),

where ε = (n− 1)|α1| + (n− 2)|α2| + · · · + |αn−1|. The corollary, which follows
from a general result (see Proposition 24), is this:

Corollary 6. The cyclic homology (HC∗(C)[m− 2], {cn}) is a gravity algebra.

Definition 7. A gravity algebra is a graded vector space V with a sequence of
graded skew-symmetric operators

{x1, . . . , xk} : V⊗k
→ V for k = 2, 3, . . .

of degree 2− k that satisfy the generalized Jacobi identities

(4)
∑

1≤i< j≤k

(−1)ε(i, j)
{{xi , x j }, x1, . . . , x̂i , . . . , x̂ j , . . . , xk, y1, . . . , yl}

=

{
{{x1, . . . , xk}, y1, . . . , yl} if l > 0,
0 if l = 0.

where ε(i, j)= (|x1| + · · · + |xi−1|)|xi | + (|x1| + · · · + |x j−1|)|x j | + |xi ||x j |.

In this paper, by the reduced Hochschild homology H̃H∗(C) of C , we mean the
homology of

C̃C∗(C) := CC∗(C)/C =
∞∏

n=1

C ⊗ (6C)⊗n.

By the reduced cyclic homology H̃C∗(C) of C , we mean the homology of

C̃C∗(C)[u] = CC∗(C)[u]/C[u].

As above, we have E : H̃H∗(C)→ H̃C∗(C) and M : H̃C∗(C)→ H̃H∗+1(C).
Define a coproduct

∨ : C̃C∗(C)→ C̃C∗(C)⊗ C̃C∗(C)

by

(5) ∨(a0[a1 | · · · |an])

:=

n−1∑
i=2

(−1)ε(i) (a0ai )
′
[a1 | · · · |ai−1]⊗ (a0ai )

′′
[ai+1 | · · · |an],

where ε(i)= |a0| + (1+ |ai | + |(a0ai )
′′
|)|[a1 | · · · |ai−1]|.

Our main result is the following.
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Theorem 8. The reduced Hochschild homology H̃H∗(C)[1 − m] is a Batalin–
Vilkovisky coalgebra with differential B and coproduct ∨.

The proof of Theorem 8 uses several identities at the chain level involving certain
homotopies which we will give in Section 5.

Similarly to above, define a map sn : H̃C∗(C)[2−m] → H̃C∗(C)[2−m]⊗n of
degree 2− n by

sn(α) := (E⊗ · · · ⊗E) ◦ (∨⊗ id⊗n−2) ◦ · · · ◦ (∨⊗ id) ◦∨ ◦M(α)

for any α ∈ H̃C∗(C)[2−m].

Corollary 9. The reduced cyclic homology (H̃C∗(C)[2 − m], {sn}) is a gravity
coalgebra.

In the two statements above, the Batalin–Vilkovisky coalgebra and gravity coal-
gebra are defined as dual versions of the corresponding algebras (see Definitions 14
and 15). The Batalin–Vilkovisky algebra and the gravity algebra structures of
HH∗(C) and HC∗(C) descend to H̃H∗(C) and H̃C∗(C), respectively. Thus, we
obtain both Batalin–Vilkovisky algebra and coalgebra structures on H̃H∗(C), and
gravity algebra and coalgebra structures on H̃C∗(C).

Let A be a Poincaré duality model for M and C = A∨. Let LM be the free loop
space of M . From [Jones 1987], one has isomorphisms

H∗(LM,M)∼= H̃H∗(C) and H S1

∗
(LM,M)∼= H̃C∗(C).

Following [Chas and Sullivan 2004], we call H∗(LM,M) the reduced homology
of the free loop space, and H S1

∗
(LM,M) the reduced equivariant homology of the

free loop space. As a consequence, the choice of a Poincaré duality model for
M gives the reduced homology of the free loop space the structure of a Batalin–
Vilkovisky coalgebra, and the reduced equivariant homology of the free loop space
the structure of a gravity coalgebra. In string topology, the loop product • was first
introduced in [Chas and Sullivan 1999]; see also [Cohen and Jones 2002]. The
coproduct ∨ was introduced in [Sullivan 2004]. The operators cn and sn were first
introduced in [Chas and Sullivan 2004] and discussed further in [Sullivan 2004];
see also [Westerland 2008].

Getzler [1994a; 1994b; 1995] studied Batalin–Vilkovisky algebras and gravity
algebras in his works on topological conformal field theories (TCFT). He showed
that a (genus zero) TCFT (respectively, an equivariant TCFT) with one output is
the same as a Batalin–Vilkovisky algebra (respectively, a gravity algebra). If we
consider multiple inputs and outputs, we then obtain both Batalin–Vilkovisky alge-
bra and coalgebra (respectively, gravity algebra and coalgebra). Our construction
gives an algebraic proof that string topology is a part of a (genus zero) TCFT. We
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expect that the constructions above can be generalized to homotopy versions of
commutative DG Frobenius algebras.

Remark 10. Sullivan’s coproduct ∨ is not the same as the loop coproduct intro-
duced in [Cohen and Godin 2004]; see also [Godin 2007].

Remark 11. Theorem 5 is not new; it is well known that the Hochschild cohomol-
ogy of a Frobenius algebra has the structure of a Batalin–Vilkovisky algebra; see,
for example, [Menichi 2004] and [Tradler 2008]. However, notice that the formulas
we give above in terms of the Hochschild homology of a Frobenius coalgebra are
really explicit and simple. The proof of Theorem 5 is included in this paper so that
the reader can compare it with the proof of Theorem 8. As far as we are aware,
Theorem 8 is new. Its statement is not true in general at the chain level, and the
homotopy operators that appear in its proof are also new.

The BV coalgebra structure in Theorem 8 also appears to be related to [Eu and
Schedler 2009, Question 2.3.72].

The rest of this paper is organized as follows. We recall the definitions of
Batalin–Vilkovisky algebras and gravity algebras in Section 2 and the proof of
Theorem 5 in Section 3. We give the proof of Corollary 6 in Section 4, the proof
of Theorem 8 in Section 5, and the proof of Corollary 9 in Section 6.

Koszul sign rule. All ± signs in this paper are determined by the Koszul rule for
signs. Thus, whenever we switch two elements a⊗ b 7→ b⊗ a, we put (−1)|a||b|

in front of b⊗a and write ±b⊗a. Also, if f and g are operators of homogeneous
degree, then ( f ⊗g)(a⊗b)=± f (a)⊗g(b)= (−1)|g||a| f (a)⊗g(b). For example,
in (5), to see that ε(i) = |a0| + (1+ |ai | + |(a0ai )

′′
|)|[a1 | · · · |ai−1]| is given by

the Koszul sign rule, note that the term (1+ |ai |)|[a1 | · · · |ai−1]| comes from first
moving [ai ] to the left of [a1 | · · · |ai−1], the term |a0| comes from moving a sus-
pension operator to the right of a0 to apply it to [ai ], and |(a0ai )

′′
||[a1 | · · · |ai−1]|

comes from moving (a0ai )
′′ to the right of [a1 | · · · |ai−1]. Similarly, the signs in

the formulas above for b, B, the product • , cn , and so on, are also all given by the
Koszul sign rule.

2. Batalin–Vilkovisky algebras and gravity algebras

Lemma 12. Let (V, • ,1) be a Batalin–Vilkovisky algebra. Define

{ · , · } : V ⊗ V → V

by
{a, b} := (−1)|a|1(a • b)− (−1)|a|(1a) • b− a • (1b).

Then (V [−1], { · , · },1) is a DG Lie algebra.
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Proof. See [Getzler 1994a, Proposition 1.2]. �

More generally, one has the following result proved by Getzler; see [1994b,
Theorem 4.5] and [1995, §3.4].

Theorem 13. Let (V, • ,1) be a Batalin–Vilkovisky algebra. For k = 2, 3, . . . ,
define

{ · , . . . , · } : V⊗k
→ V

by

{a1, . . . , ak} := (−1)ε
(
1(a1a2 · · · ak)−

k∑
i=1

(−1)|a1|+···+|ai−1|a1 · · · (1ai ) · · · ak

)
,

where ε = (k − 1)|a1| + (k − 2)|a2| + · · · + |ak−1|. Then V [−1] is a DG gravity
algebra with differential 1 and brackets {a1, . . . , ak}.

A DG gravity algebra is a gravity algebra with a differential commuting with
all the brackets. Thus, for a Batalin–Vilkovisky algebra (V, • ,1), its homology
H(V,1)[−1] has a gravity algebra structure. Taking k=3 and l=0 in (4) gives the
graded Jacobi identity. Hence, a gravity algebra has a graded Lie algebra structure.

Analogously, we may introduce the notions of a Batalin–Vilkovisky coalgebra
and a gravity coalgebra.

Definition 14. A Batalin–Vilkovisky coalgebra is a graded cocommutative coal-
gebra (V,∨ ) together with a linear map 1 : V∗ → V∗+1 such that 1 ◦ 1 = 0,
and

(1⊗ id⊗2
+ id⊗1⊗ id+ id⊗2

⊗1) ◦ (∨⊗ id) ◦∨(a)

= (τ 2
+ τ + id) ◦ (∨◦1⊗ id) ◦∨(a)+ (∨⊗ id) ◦∨ ◦1(a)

for all a ∈ V , where τ is the cyclic permutation τ : a⊗ b⊗ c 7→ c⊗ a⊗ b.

Similarly to the Batalin–Vilkovisky algebra case, the chain complex (V,1) is
a DG gravity coalgebra:

Definition 15. A gravity coalgebra is a graded vector space V with a sequence of
graded skew-symmetric operators

mk : V → V⊗k for k = 2, 3, 4, . . .

of degree 2− k, such that

(6) S2,k−2 ◦ (m2⊗ id⊗k−2) ◦mk−1+l = (mk ⊗ id⊗l) ◦ml+1 : V → V k+l,

where the range of the mapping (m2⊗ id⊗k−2) ◦mk−1+l : V → V k+l is identified
with V⊗2

⊗V⊗k−2
⊗V⊗l and S2,k−2 is the shuffle product V⊗2

⊗V⊗k−2
→ V⊗k ,

and if l = 0, we set m1 = 0.
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Theorem 16. Let (V,∨,1) be a Batalin–Vilkovisky coalgebra. For any x ∈ V , let

∨k(x) := (∨⊗ id⊗k−2) ◦ · · · ◦ (∨⊗ id) ◦∨(x)=
∑

x1⊗ x2⊗ · · ·⊗ xk,

and let

sk(x) :=
∑

(−1)(k−1)|x1|+(k−2)|x2|+···+|xk−1|

·

(
∨k(1x)−

k−1∑
i=0

(id⊗i
⊗1⊗ id⊗k−i−1) ◦∨k(x)

)
,

for k = 2, 3, . . . . Then V [1] is a DG gravity coalgebra with differential 1 and
cobrackets {sn}. In particular, (V [1], s2,1) is a DG Lie coalgebra.

The proof of the theorem is completely dual to that of Theorem 13.

3. The Batalin–Vilkovisky algebra

Next we recall the proof of Theorem 5 from [Chen 2007].

Lemma 17. The chain complex (CC∗(C)[m], b) is a DG algebra with product • .

Proof. The proof is by direct verification; see [Chen 2007, Lemma 4.1]. �

The product • on CC∗(C)[m] is not commutative, but homotopy commutative:

Lemma 18. Define a bilinear operator

∗ : CC∗(C)⊗CC∗(C)→ CC∗(C)

as follows: for α = a0[a1 | · · · |an], β = b0[b1 | · · · |br ] ∈ CC∗(C),

(7) α ∗β :=

n∑
i=1

(−1)|b0|+(|β|−1)|[ai+1|···|an]|

· ε(ai b0)a0[a1 | · · · |ai−1 |b1 | · · · |br |ai+1 | · · · |an].

Then

(8) b(α ∗β)= bα ∗β + (−1)|α|+1α ∗ bβ + (−1)|α|(α •β − (−1)|α||β|β •α).

Proof. The proof is by direct verification; see [Chen 2007, Lemma 5.1]. �

It follows from Lemma 17 and Lemma 18 that (HH∗(C)[m], • ) is a graded
commutative algebra.

Define the binary operator

{ · , · } : CC∗(C)⊗CC∗(C)→ CC∗(C)

to be the commutator of ∗ above, namely

{α, β} := α ∗β − (−1)(|α|+1)(|β|+1)β ∗α for α, β ∈ CC∗(C).
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Lemma 19. The chain complex (CC∗(C)[m− 1], b) is a DG Lie algebra with the
Lie bracket { · , · }.

Proof. The proof is direct; see [Chen 2007, Lemma 5.4 and Corollary 5.5]. �

In particular HH∗(C)[m−1] is a graded Lie algebra. Moreover, • and { · , · } are
compatible in the following sense, which makes HH∗(C)[m] into a Gerstenhaber
algebra:

Definition 20 [Gerstenhaber 1963]. Let V be a graded vector space. A Gersten-
haber algebra on V is a triple (V, · , { · , · }) such that

(i) (V, · ) is a graded commutative algebra;

(ii) (V, { · , · }) is a graded Lie algebra whose Lie bracket is of degree 1;

(iii) for any α, β, γ ∈ V , one has

(9) {α •β, γ } = α • {β, γ }+ (−1)|β|(|γ |+1)
{α, γ } •β.

Theorem 21. The Hochschild homology HH∗(C)[m] is a Gerstenhaber algebra,
with product • and bracket { · , · }.

Proof. From above, HH∗(C)[m] is both a graded commutative algebra and a degree
one graded Lie algebra. Equation (9) is immediate from Lemma 22. �

Lemma 22. For any

α = a0[a1 | · · · |an], β = b0[b1 | · · · |br ], γ = c0[c1 | · · · |cl] ∈ CC∗(C),

one has

(i) (α •β) ∗ γ = α • (β ∗ γ )+ (−1)|β|(|γ |+1)(α ∗ γ ) •β; and

(ii) γ ∗ (α •β)− (γ ∗α) •β− (−1)|α|(|γ |+1)α • (γ ∗β)= (b◦ρ−ρ ◦b)(α⊗β⊗γ ),
where

ρ(α⊗β⊗ γ ) :=
∑
i< j

(−1)εε(ci a0)ε(c j b0)c0[c1 | · · · |ci−1 |a1 | · · · |an |ci+1 |

· · · |c j−1 |b1 | · · · |br |c j+1 | · · · |cl],

and ε = (|α| − 1)|[ci+1 | · · · |cn]| + (|β| − 1)|[c j+1 | · · · |cn]|.

Proof. The proof is by direct verification; see [Chen 2007, Lemma 5.8]. �

Theorem 5 follows from [Getzler 1994a, Proposition 1.2], Theorem 21, and the
following:

Lemma 23. For any α, β ∈ HH∗(C)[m], one has

{α, β} = (−1)|α|B(α •β)− (−1)|α|B(α) •β −α • B(β).
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More precisely, for α = x[a1 | · · · |an] and β = y[b1 | · · · |br ] ∈ CC∗(C), define

φ(α, β)

:=

∑
i< j

±ε(x)ε(a j y)ai [ai+1 | · · · |a j−1 |b1 | · · · |br |a j+1 | · · · |an |a1 | · · · |ai−1],

ψ(α, β)

:=

∑
k<l

±ε(y)ε(bl x)bk[bk+1 | · · · |bl−1 |a1 | · · · |an |bl+1 | · · · |br |b1 | · · · |bk−1],

and let θ := φ+ψ . (The ± signs are determined by the Koszul sign rule.) Then

(b ◦ θ + θ ◦ b)(α⊗β)

= {α, β}− (−1)|α|B(α •β)− (−1)(|β|+1)(|a|+1)β • B(α)+α • B(β).

Proof. The proof is by a direct verification; see [Chen 2007, Lemma 7.3]. �

4. The gravity algebra

We define the complex (CC∗(C)[u, u−1
], b+ u−1 B) by

(b+ u−1 B)(α⊗ un)= bα⊗ un
+ Bα⊗ un−1 for all n.

The quotient of (CC∗(C)[u, u−1
], b+u−1 B) by its subcomplex CC∗(C)[u−1

]u−1

is the complex (CC∗(C)[u], b+ u−1 B) in Definition 3. The short exact sequence

0→ CC∗(C) // CC∗(C)[u]
u−1

// CC∗(C)[u] → 0

induces the long exact sequence (2). By diagram chasing, one can see that

M ◦E= B : HH∗(C)→ HH∗+1(C).

Corollary 6 is immediate from Theorem 5 and the following general result; see
[Chen 2007, Theorem 8.5].

Proposition 24. Let (V, • ,1) be a Batalin–Vilkovisky algebra, and let W be a
graded vector space. Let E : V∗→W∗ and M :W∗→ V∗+1 be two maps such that
E ◦M= 0 and M ◦E=1. Then (W [−2], {cn}) is a gravity algebra, where

cn(α1⊗ · · ·⊗αn) := (−1)(n−1)|α1|+(n−2)|α2|+···+|αn−1|E(M(α1) • · · · •M(αn)).

Proof. It follows from (3), by induction on n, that

(10) 1(x1 • x2 • · · · • xn)=
∑
i< j

±1(xi • x j ) • x1 • · · · • x̂i • · · · • x̂ j • · · · • xn

+ (n− 2)
∑

i

±x1 • · · · •1xi • · · · • xn.
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Now let xi =M(αi ), and apply E to both sides of the above equality; we obtain

E ◦1(M(α1) •M(α2) • · · · •M(αn))

=

∑
i< j

±E ◦
(
1(M(αi ) •M(α j )) •M(α1) • · · · • M̂(αi ) • · · · • M̂(α j ) • · · · •M(αn)

)
+ (n− 2)

∑
i

±E(M(α1) • · · · •1 ◦M(αi ) • · · · •M(αn)).

Since E ◦1= E ◦M ◦E= 0 and 1 ◦M=M ◦E ◦M= 0, we have∑
1≤i< j≤n

±cn−1(c2(αi ⊗α j )⊗α1⊗ · · ·⊗ α̂i ⊗ · · ·⊗ α̂ j ⊗ · · ·⊗αn)= 0.

Similarly, by multiplying y1 • · · · • yl on both sides of (10), letting y j =M(β j ),
and then applying E on both sides, we obtain∑
1≤i< j≤n

±cn+l−1(c2(αi ⊗α j )⊗α1⊗· · ·⊗ α̂i ⊗· · ·⊗ α̂ j ⊗· · ·⊗αn⊗β1⊗· · ·⊗βl)

= cl+1(cn(α1⊗ · · ·⊗αn)⊗β1⊗ · · ·⊗βl)

for l > 0. This proves the proposition. �

Proposition 24 can also be applied to the Hochschild homology of a Calabi-Yau
algebra (see [Ginzburg 2006, Theorem 3.4.3]) to give a gravity algebra structure
on its cyclic homology.

5. The Batalin–Vilkovisky coalgebra

The proof of Theorem 8 is similar to the proof of Theorem 5.

Lemma 25. The chain complex (C̃C∗(C)[1−m], b) is a DG coalgebra with co-
product ∨.

Proof. It is clear that ∨ is coassociative. Therefore we only need to check that b is
a derivation with respect to ∨. Observe that the expressions b ◦∨(α) and ∨◦b(α)
have two parts, one contains those terms involving the differentials of the entries
in α (which we call the differential part), the other contains those terms involving
the coproducts of the entries in α (which we call the diagonal part). It follows
directly from the definition of ∨ that the differential parts of b◦∨(α) and ∨◦b(α)
are equal. For the diagonal parts, omitting the signs determined by the Koszul sign
rule from our notation (see 32), we have

b ◦∨(a0[a1 | · · · |an])(11)

=

∑
1<i<n

b
(
(a0ai )

′
[a1 | · · · |ai−1]

)
⊗ (a0ai )

′′
[ai+1 | · · · |an](12)
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±

∑
1<i<n

(a0ai )
′
[a1 | · · · |ai−1]⊗ b

(
(a0ai )

′′
[ai+1 | · · · |an]

)
(13)

=

∑
1≤ j<i<n

±(a0ai )
′
[a1 | · · · |a′j |a

′′

j | · · · |ai−1]⊗ (a0ai )
′′
[ai+1 | · · · |an](14)

+

∑
1<i<n

±((a0ai )
′)′[((a0ai )

′)′′ |a1 | · · · |ai−1]⊗ (a0ai )
′′
[ai+1 | · · · |an](15)

−

∑
1<i<n

±((a0ai )
′)′[a1 | · · · |ai−1 |((a0ai )

′)′′]⊗ (a0ai )
′′
[ai+1 | · · · |an](16)

+

∑
1<i< j≤n

±(a0ai )
′
[a1 | · · · |ai−1]⊗ (a0ai )

′′
[ai+1 | · · · |a′j |a

′′

j | · · · |an](17)

+

∑
1<i<n

±(a0ai )
′
[a1 | · · · |ai−1]⊗ ((a0ai )

′′)′[((a0ai )
′′)′′ |ai+1 | · · · |an](18)

−

∑
1<i<n

±(a0ai )
′
[a1 | · · · |ai−1]⊗ ((a0ai )

′′)′[ai+1 | · · · |an |((a0ai )
′′)′′],(19)

while

∨◦ b(a0[a1 | · · · |an])(20)

=

∑
1≤ j<i<n

±(a0ai )
′
[a1 | · · · |a′j |a

′′

j | · · · |ai−1]⊗ (a0ai )
′′
[ai+1 | · · · |an](21)

+

∑
1<i< j≤n

±(a0ai )
′
[a1 | · · · |ai−1]⊗ (a0ai )

′′
[ai+1 | · · · |a′j |a

′′

j | · · · |an](22)

+

∑
1<i<n

±(a0a′i )
′
[a1 | · · · |ai−1]⊗ (a0a′i )

′′
[a′′i |ai+1 | · · · |an](23)

± (a0a′n)
′
[a1 | · · · |an−1]⊗ (a0a′n)

′′
[a′′n ](24)

± (a0a′′1 )
′
[a′1]⊗ (a0a′′1 )

′′
[a2 | · · · |an](25)

+

∑
1<i<n

±(a0a′′i )
′
[a1 | · · · |ai−1 |a′i ]⊗ (a0a′′i )

′′
[ai+1 | · · · |an](26)

± (a′0a1)
′
[a′′0 ]⊗ (a

′

0a1)
′′
[a2 | · · · |an](27)

+

∑
1<i<n

±(a′0ai )
′
[a′′0 |a1 | · · · |ai−1]⊗ (a′0ai )

′′
[ai+1 | · · · |an](28)

−

∑
1<i<n

±(a′0ai )
′
[a1 | · · · |ai−1]⊗ (a0ai )

′′
[ai+1 | · · · |an |a′′0 ](29)

−±(a′0an)
′
[a1 | · · · |an−1]⊗ (a′0an)

′′
[a′′0 ].(30)

Keeping (1) in mind, we see that (14) and (21) are equal; so are (15) and (28),
(16) and (26), (17) and (22), (18) and (23), and (19) and (29). Also, (24) and (30)
cancel; so do (25) and (27). Hence, (11)= (20). �
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Define the permutations τ and σ by

τ : C̃C∗(C)⊗ C̃C∗(C)→ C̃C∗(C)⊗ C̃C∗(C)

α1⊗α2 7→ ±α2⊗α1

and

σ : C̃C∗(C)⊗ C̃C∗(C)⊗ C̃C∗(C)→ C̃C∗(C)⊗ C̃C∗(C)⊗ C̃C∗(C)

α1⊗α2⊗α3 7→ ±α2⊗α3⊗α1.

The following lemma says that ∨ is cocommutative up to homotopy, and therefore
(H̃H∗(C)[1−m],∨) is a graded cocommutative, coassociative coalgebra.

Lemma 26. Let h : C̃C∗(C)→ C̃C∗(C)⊗ C̃C∗(C) be defined by

h(α) :=
∑
i< j

±a0[a1 | · · · |ai−1 |a j+1 | · · · |an]⊗ ai a j [ai+1 | · · · |a j−1]

for any α = a0[a1 | · · · |an] ∈ C̃C∗(C). (The ± sign is determined by the Koszul
sign rule on page 32.) Then

(31) b ◦ h(α)− h ◦ b(α)= τ ◦∨(α)−∨(α).

Proof. It is easy to see that the differential parts of the left side of (31) cancel each
other, so we only need to consider the diagonal parts. In fact, the diagonal parts of
h(bα) are equal to∑

i

±a′0[ai+1| · · · |an]⊗ (a′′0 ai )[a1| · · · |ai−1](32)

+

∑
i< j

±a′0[a
′′

0 |a1| · · · |ai−1|a j+1| · · · |an]⊗ (ai a j )[ai+1| · · · |a j−1](33)

−

∑
i

±a′0[a1| · · · |ai−1]⊗ (ai a′′0 )[ai+1| · · · |an](34)

−

∑
i< j

±a′0[a1| · · · |ai−1|a j+1| · · · |an |a′′0 ]⊗ (ai a j )[ai+1| · · · |a j−1](35)

+

∑
±a0[a1| · · · |a′k |a

′′

k | · · · |an]⊗ (ai a j )[ai+1| · · · |a j−1](36)

+

∑
i<k< j

±a0[a1| · · · |ai−1|a j+1| · · · |an]⊗ (ai a j )[ai+1| · · · |a′k |a
′′

k | · · · |a j−1](37)

+

∑
i< j

±a0[a1| · · · |ai−1|a j+1| · · · |an]⊗ (ai a j )
′
[(ai a j )

′′
|ai+1| · · · |a j−1](38)

−

∑
i< j

±a0[a1| · · · |ai−1|a j+1| · · · |an]⊗ (ai a j )
′
[ai+1| · · · |a j−1|(ai a j )

′′
],(39)
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(where the sum in (36) is taken over all k < i < j and i < j < k).
Now (33)+(35)+(36)+(37)+(38)+(39) is exactly b(hα), while the remaining

terms (32)+ (34) are exactly −τ ◦∨(α)+∨(α). �

Lemma 27. Let h be as in Lemma 26. Define S : C̃C∗(C)→ C̃C∗(C)⊗ C̃C∗(C)
by

S(α) := h(α)− τ ◦ h(α) for any α ∈ C̃C∗(C).

Then the chain complex (C̃C∗(C)[2−m], b) is a DG Lie coalgebra with the co-
bracket S.

Proof. It follows from the definition that S is skew-symmetric, and b commutes
with S by (31). Now, for any α = a0[a1| · · · |an],

(h⊗ 1)h(α)− (1⊗ h)h(α)

=

∑
k<l<i< j

±a0[a1 | · · · |ak−1 |al+1 | · · · |ai−1 |a j+1 | · · · |an]

⊗ akal[ak+1 | · · · |al−1]⊗ ai a j [ai+1 | · · · |a j−1]

+

∑
i< j<k<l

±a0[a1 | · · · |ai−1 |a j+1 | · · · |ak−1 |al+1 | · · · |an]

⊗ akal[ak+1 | · · · |al−1]⊗ ai a j [ai+1 | · · · |a j−1]

= (1⊗ τ)((h⊗ 1)h(α)− (1⊗ h)h(α)).

It follows that

(1+ σ + σ 2)(S⊗ 1)S

= (1+ σ + σ 2)
(
(h⊗ 1)h− (1⊗ h)h− (1⊗ τ)((h⊗ 1)h− (1⊗ h)h)

)
= 0,

so the co-Jacobi identity holds. �

It follows that (H̃H∗(C)[2−m], S) is a graded Lie coalgebra. The Lie cobracket
S and the cocommutative coproduct ∨ are compatible in the following sense:

Definition 28. Let V be a graded vector space. A Gerstenhaber coalgebra on V
is a triple (V,∨, S) such that

(i) (V,∨) is a graded cocommutative coalgebra;

(ii) (V, S) is a graded Lie coalgebra whose Lie cobracket is of degree 1; and

(iii) S : V → V ⊗ V is a coderivation with respect to ∨, that is, the following
diagram commutes:

V
∨ //

S
��

V ⊗ V

(id⊗τ)◦(S⊗id)+id⊗S
��

V ⊗ V
∨⊗id // V ⊗ V ⊗ V
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Theorem 29. The reduced Hochschild homology (H̃H∗(C)[1−m],∨, S) is a Ger-
stenhaber coalgebra.

Proof. From the definition of h in Lemma 26, the diagram

C̃C
∨ //

h
��

C̃C⊗ C̃C

(id⊗τ)◦(h⊗id)+id⊗h
��

C̃C⊗ C̃C
∨⊗id // C̃C⊗ C̃C⊗ C̃C

commutes. We next show that

(40) C̃C
∨ //

τ◦h
��

C̃C⊗ C̃C

(id⊗τ)◦(τ◦h⊗id)+id⊗τ◦h
��

C̃C⊗ C̃C
∨⊗id // C̃C⊗ C̃C⊗ C̃C,

commutes up to homotopy, and therefore, from S = h− τ ◦ h, the diagram

H̃H
∨ //

S
��

H̃H⊗ H̃H

(id⊗τ)◦(S⊗id)+id⊗S
��

H̃H⊗ H̃H
∨⊗id // H̃H⊗ H̃H⊗ H̃H

commutes. Let % : C̃C→ C̃C⊗ C̃C⊗ C̃C be the map defined by

%(α) :=
∑

i< j<k<l

±a0[a1 | · · · |ai−1 |a j+1 | · · · |ak−1 |al+1 | · · · |an]

⊗ ai a j [ai+1 | · · · |a j−1]⊗ akal[ak+1 | · · · |al−1],

for any α = a0[a1 | · · · |an]. (The ± sign is determined by the Koszul sign rule.)
Let ρ := σ ◦ %. Then

(41) (b◦ρ−ρ◦b)(α)= ((∨⊗id)◦(τ◦h)−((id⊗τ)◦(τ◦h⊗id)+id⊗τ◦h)◦∨)(α)

for any α ∈ C̃C. Indeed, one has

% ◦ b(α)− b ◦ %(α)=∑
i< j<k

±(a0ai )
′
[ai+1 | · · · |a j−1 |ak+1 | · · · |an](42)

⊗ (a0ai )
′′
[a1 | · · · |ai−1]⊗ (a j ak)[a j+1 | · · · |ak−1]

+

∑
j<i<k

±a0[a1 | · · · |a j−1 |ak+1 | · · · |an](43)

⊗(a j akai )
′
[a j+1 | · · · |ai−1]⊗ (a j akai )

′′
[ai+1 | · · · |ak−1]

+

∑
j<k<i

±(a0ai )
′
[a1 | · · · |a j−1 |ak+1 | · · · |ai−1](44)

⊗(a j ak)[a j+1 | · · · |ak−1]⊗ (a0ai )
′′
[ai+1 | · · · |an].
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After applying σ , (42) becomes (id⊗τ ◦ h) ◦ ∨(α), (43) becomes (∨ ⊗ id) ◦
(τ ◦h)(α), and (44) becomes (id⊗τ)◦ (τ ◦h⊗ id)◦∨(α). This proves the identity
(41), and hence (40) is proved. �

Theorem 8 follows from the dual version of [Getzler 1994a, Proposition 1.2],
Theorem 29, and the following lemma.

Lemma 30. For any α = a0[a1| · · · |an] ∈ C̃C∗(C), let

φ(α) :=
∑

i< j<k

±ε(a0)ai [ai+1 | · · · |a j−1 |ak+1 | · · · |an |a1 | · · · |ai−1](45)

⊗a j ak[a j+1 | · · · |ak−1],

ψ(α) :=
∑

j<k<i

±ε(a0)a j ak[a j+1 | · · · |ak−1](46)

⊗ai [ai+1 | · · · |an |a1 | · · · |a j−1 |ak+1 | · · · |ai−1],

and let θ = φ+ψ . (The ± signs are determined by the Koszul sign rule.) Then

b ◦ θ + θ ◦ b =∨◦ B− B ◦∨− S,

where S is as defined in Lemma 27.

Proof. The proof is similar to that of Lemma 23. For any α = a0[a1| · · · |an], the
terms on the right hand side of the desired equation are

∨◦ B(α)=∑
i> j

±ε(a0)(ai a j )
′
[ai+1| · · · |an |a1| · · · |a j−1](47)

⊗(ai a j )
′′
[a j+1| · · · |ai−1]

+

∑
i< j

±ε(a0)(ai a j )
′
[ai+1| · · · |a j−1](48)

⊗(ai a j )
′′
[a j+1| · · · |an |a1| · · · |ai−1],

B ◦∨(α)=∑
i>k

±ak[ak+1| · · · |ai−1|a1| · · · |ak−1]⊗ a0ai [ai+1| · · · |an](49)

+

∑
i<k

±a0ai [a1| · · · |ai−1]⊗ ak[ak+1| · · · |an |ai+1| · · · |ak−1],(50)

S(α)=∑
i< j

±a0[a1| · · · |ai−1|a j+1| · · · |an]⊗ ai a j [ai+1| · · · |a j−1](51)

+

∑
i< j

±ai a j [ai+1| · · · |a j−1]⊗ a0[a1| · · · |ai−1|a j+1| · · · |an].(52)
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It follows that

φ ◦ b(α)=−b ◦φ(α)+ (47)− (49)− (51),

while
ψ ◦ b(α)=−b ◦ψ(α)+ (48)− (50)− (52). �

6. The gravity coalgebra

Corollary 9 is immediate from Theorem 8 and the following result.

Proposition 31. Let (V,∨,1) be a Batalin–Vilkovisky coalgebra, and let W be a
graded vector space. Let E : V∗→W∗ and M :W∗→ V∗+1 be two maps such that
E ◦M= 0 and M ◦E=1. Define sn :W →W⊗n for n ≥ 2 by

sn(α) := (E⊗ · · ·⊗E) ◦ (∨⊗ id⊗n−2) ◦ · · · ◦ ∨ ◦M(α)

for any α ∈W . Then (W [1], {sn}) is a gravity coalgebra.

Proof. The proof is analogous to that of Proposition 24. By induction on n, we
deduce from the identity in Definition 14 that

(53) ∨n ◦1(x)− (n− 2)
(n−1∑

i=1

id⊗i
⊗1⊗ id⊗n−i−1

)
◦∨n(x)

= S2,n−2 ◦ (∨◦1⊗ id⊗n−2) ◦∨n−1(x),

for all x ∈ V , where we set ∨n := (∨⊗ id⊗n−2) ◦ · · · ◦ ∨ : V → V⊗n as before.
Let x =M(α) where α ∈W . Applying E⊗n to both sides of (53), we get

E⊗n
◦

(
∨n ◦1(M(α))− (n− 2)

n−1∑
i=1

(id⊗i
⊗1⊗ id⊗n−i−1) ◦∨n(M(α))

)
= E⊗n

◦ S2,n−2 ◦ (∨◦1⊗ id⊗n−2) ◦∨n−1(M(α)),

where the left side vanishes since 1=M ◦E and E ◦M= 0. Hence, we have

0= E⊗n
◦ S2,n−2 ◦ (∨◦1⊗ id⊗n−2) ◦∨n−1(M(α))

= E⊗n
◦ S2,n−2 ◦ (∨◦M ◦E⊗ id⊗n−2) ◦∨n−1(M(α))

= S2,n−2 ◦ (E⊗2
◦∨ ◦ (M ◦E)⊗E⊗n−2) ◦∨n−1(M(α))

= S2,n−2 ◦ (s2⊗ id⊗n−2) ◦ sn−1(α).

This proves the identity (6) in the definition of a gravity coalgebra for the case
l = 0.

Now let l > 0. Let x =M(α) where α ∈W and suppose

∨l+1(x)= x1⊗ · · ·⊗ xl+1.
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Applying the identity (53) to the first component on both sides, by the same argu-
ment as above, we obtain

S2,n−2 ◦ (s2⊗ id⊗n−2) ◦ sn−1+l(α)= (sn ⊗ id⊗l) ◦ sl+1(α).

This proves the identity (6) for the case l > 0. �
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INVARIANT FINSLER METRICS
ON POLAR HOMOGENEOUS SPACES

SHAOQIANG DENG

We study invariant Finsler metrics on polar homogeneous manifolds. After
establishing existence results, we prove that an invariant Finsler metric on
a nonsymmetric polar homogeneous manifold of a simply connected com-
pact simple Lie group is Berwaldian if and only if it is Riemannian. As
an application, we prove that on each such manifold with generalized rank
of at least 2, there exist infinitely many invariant Finsler metrics that are
reversible, non-Berwaldian and of vanishing S-curvature; this kind of space
is sought after in an open problem of Shen. Finally, using one type of polar
homogeneous manifold, we give a classification of homogeneous Randers
spaces with positive constant flag curvature.

Introduction

A fundamental problem in Riemann–Finsler geometry is that of classifying the
Finsler metrics on a given manifold. In full generality, this problem is intractable,
so we must focus on metrics with certain special properties (particularly curvature
properties), such as spaces of constant flag curvature and spaces with isotropic
S-curvature. One of the most important advances has been the classification of
Randers metrics with constant flag curvature obtained by Bao et al. [2004]. Also
important is the work of Szabó [1981; 2006] on symmetric Berwald spaces.

Here we consider this problem for invariant Finsler metrics on homogeneous
manifolds. More precisely, let G be a Lie group and H be a closed subgroup of G.
Then the coset space G/H admits a (unique) differentiable structure such that the
action of G on G/H is smooth; that is, G can be viewed as a Lie transformation
group on the manifold G/H . Our goal is to classify the G-invariant Finsler metrics
on G/H and study the geometrical properties of such metrics. In previous work,
we have obtained some partial results. For example, in [Deng and Hou 2004a], we
proved that there exist invariant non-Riemannian Finsler metrics on G/H , provided
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H is compact and the action of H on the tangent space of G/H at the origin
o= eH (that is, the action of the linear isotropic representation) is not irreducible;
in other words, we assumed that there exist nontrivial invariant subspaces of H .
However, when the linear isotropic representation is irreducible, the situation is
very complicated. For example, if (G, H) is a Riemannian symmetric pair and
the symmetric space G/H is irreducible of rank 1, then any G-invariant Finsler
metric on G/H must be Riemannian. However, if the rank is at least 2, then there
exist infinitely many G-invariant Finsler metrics on G/H that are non-Riemannian
[Szabó 1981]. Therefore it is interesting to find the conditions under which a coset
space with irreducible linear isotropic representation has invariant non-Riemannian
Finsler metrics and to classify those metrics.

Coset spaces with irreducible linear isotropic representation are called isotropic
irreducible homogeneous spaces. Wolf [1968; 1977] has studied the interesting
geometry of these manifolds extensively. It is known that a connected, simply
connected, noncompact, isotropic irreducible homogeneous space is either flat or
a Riemannian symmetric space [Besse 1987]. Therefore we are only interested in
the compact case. In this case, a classification of a special type of such spaces
(strongly isotropic irreducible homogeneous spaces) was obtained independently
by Manturov [1961a; 1961b; 1966], Wolf [1968], and Krámer [1975]. Wang and
Ziller [1991] studied a more generalized class of Riemannian spaces: isotropy irre-
ducible Riemannian spaces. It turns out that many such spaces are nonsymmetric.
So, our first step is to classify the invariant Finsler metrics on compact isotropic
irreducible homogeneous manifolds.

A deep analysis of this problem shows that a general classification is unreach-
able even if we confine ourselves to the isotropic irreducible homogeneous spaces.
However, the situation simplifies if the isotropic representation is polar, meaning
that there exists a subspace of the tangent space that intersects every orbit of the
isotropic group and does so perpendicularly at any intersection. Then the algebraic
methods of representation theory are available, and we can obtain a satisfactory
classification theorem.

Our main results can be summarized as follows: We first use the notion of
Minkowski representations of Lie groups to refine Szabó’s result on the existence
of invariant non-Riemannian Finsler metrics on Riemannian symmetric spaces to
establish a bijection between the invariant Finsler metrics on a polar homogeneous
space and the Weyl-invariant Minkowski norms on a generalized Cartan space. In
the compact case, we study the geometric properties of such metrics. In particular,
we prove that an invariant Finsler metric on a nonsymmetric polar homogeneous
manifold of a simply connected compact simple Lie group is Berwaldian if and
only if it is Riemannian. As an application, we prove that on each nonsymmetric
polar homogeneous manifold of a compact simple Lie group with generalized rank
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of at least 2, there exist infinitely many invariant Finsler metrics that are reversible,
non-Berwaldian and have vanishing S-curvature. Finally, using one type of polar
homogeneous manifold, we obtain a classification of homogeneous Randers spaces
with positive constant flag curvature. The bijection established here is new, and
can be viewed as a way to classify invariant Finsler metrics on polar homogeneous
spaces. We also mention that Szabó gave a classification of invariant Berwald
metrics on Riemannian symmetric spaces by explicit construction via Chevalley
polynomials. It is an interesting problem to consider the generalization of his
method to the polar cases.

This paper is organized as follows. In Sections 1 and 2, we recall the general
properties of Minkowski representations and polar representations. Section 3 gives
our classification of invariant Finsler metrics on polar homogeneous manifolds,
while Section 4 classifies invariant Finsler metrics in general. In Section 5, we
study the geometrical properties of such metrics. In Section 6, we give a complete
classification of invariant Randers metrics on polar homogeneous manifolds.

1. Minkowski representations of Lie groups

Definition 1.1. Let V be an n-dimensional real vector space. A Minkowski norm
on V is a functional F on V that is smooth on V \{0} and satisfies these conditions:

• F(u)≥ 0 for all u ∈ V .

• F(λu)= λF(u) for all λ > 0.

• For any basis ε1, ε2, . . . , εn of V , write F(y) = F(y1, y2, . . . , yn), where
y = y jε j . Then the Hessian matrix

(gi j ) :=
([1

2 F2]
yi y j

)
is positive definite at any point of V \ {0}.

If V is a real vector space endowed with a Minkowski norm F , then (V, F)
is called a Minkowski space. Minkowski spaces play a role in Finsler geometry
analogous to the role Euclidean spaces play in Riemannian geometry. In fact, a
Finsler space is just a smooth manifold endowed with a smoothly varying family
of Minkowski norms on its tangent spaces. Unlike in Riemannian manifolds, in a
Finsler space the Minkowski norms in different tangent spaces may not be linearly
isomorphic to each other.

Definition 1.2. Let G be a Lie group, and (V, ρ) a (real) representation of G. If
F is a Minkowski norm on V such that

F(ρ(g)v)= F(v) for all g ∈ G and v ∈ V,

then we call (V, ρ, F) a Minkowski representation of G.
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The notion of Minkowski representations of Lie groups is a natural and obvious
generalization of orthogonal representations.

Proposition 1.3 [Deng and Hou 2004a]. Suppose G/H is a coset space of a Lie
group G. Then there exists a bijection between the invariant Finsler metric F on
G/H and the Minkowski norm F0 on g/h, such that (g/h,Ad, F0) is a Minkowski
representation of H , where g and h are the Lie algebras of G and H and Ad is the
adjoint action of H on g/h.

Does a given homogeneous manifold admit an invariant non-Riemannian Finsler
metric? In [Deng and Hou 2004a], we proved that it does if the adjoint action of
H on g/h is not irreducible. When the adjoint action is irreducible, the situation
is more complicated, and in general, a necessary and sufficient condition seems to
be unattainable. However, we can give a complete answer when the action of H
on g/h is polar. Let us first recall some definitions in the next section.

2. Polar actions of Lie groups

Let G be a compact Lie group with Lie algebra g and a real representation (ρ, V ).
By Weyl’s unitary trick, there is an inner product 〈 · , · 〉 that is invariant under ρ(g)
for all g ∈ G. Therefore, we get a continuous homomorphism ρ from G to O(V ),
where O(V ) is the orthogonal group with respect to 〈 · , · 〉. In many situations, we
hope to find a linear subspace of V that intersects every orbit of the G-action and
is of minimal possible dimension. In studying G-invariant differential equations
or differential operators, such a subspace can be used for reduction of variables. It
is also useful in analyzing orbit structure, which is important in geometry.

The existence of such a cross section comes from a simple fact: As pointed out
in [Dadok 1985], if for v ∈ V we let av = {u ∈ V | 〈u, g · v〉 = 0} = (g · v)⊥, then
the linear space av intersects every G-orbit. The action of g on V is the differential
of that of G, and hence g · v is just the tangent space to the G-orbit through v.
To obtain a cross section of minimal dimension, we only need to choose v on an
orbit of maximal dimension. A vector v in V is called regular if g ·v is of maximal
possible dimension. In some special cases, we may choose a cross section that
intersects each orbit orthogonally.

Definition 2.1 [Dadok 1985]. A representation ρ : G→ O(V ) is called polar if it
satisfies any of the following equivalent conditions:

• For any regular elements v1 and v2, we have g ·v1= k ·(g ·v2) for some k ∈G.

• For any regular elements v1 and v2, we have av1 = k · av2 for some k ∈ G.

• For any regular element v∈V and u∈av, the scalar product 〈g·u, av〉 vanishes.
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For a polar representation (ρ, V ) of G, any minimal linear cross section av is
called a Cartan subspace. The dimension of a is called the (generalized) rank of
the representation.

The notion of a polar representation is closely related to that of a polar action of
a compact Lie group on a Riemannian manifold. An isometric action of a compact
Lie group G on a Riemannian manifold M is called polar if there exists a closed,
connected submanifold 6 of M that meets all G-orbits and meets these orbits
orthogonally. Any such 6 is called a section of the action. A section is necessarily
totally geodesic in M . If the section is flat in the induced Riemannian metric, then
the action is called hyperpolar. Therefore, a polar representation is just a hyperpolar
action consisting of linear isometries on a Euclidean space.

Now we recall some known results and terminology of polar representations.
Let a be a fixed Cartan subspace, and let NG(a) and ZG(a) be respectively the
normalizer and centralizer of a in G:

NG(a)= {g ∈ G | ρ(g)(a)⊂ a}, ZG(a)= {g ∈ G | ρ(g)(X)= X for X ∈ a}.

Then the Lie algebras of NG(a) and ZG(a) coincide by [Dadok 1985]. Hence
W = NG(a)/ZG(a) is a finite group acting on a. W is called the Weyl group of
the representation.

Theorem 2.2 [Dadok 1985]. Let ρ :G→ O(V ) be a polar representation, and let
a be a Cartan subspace. Then for any x ∈ V , the orbit G · x intersects a at finitely
many points and the set of intersections comprises a single W -orbit.

Definition 2.3. A symmetric space representation of a connected compact Lie
group G (with Lie algebra g) is an orthogonal representation ρ :G→ SO(V ) such
that there exists a noncompact real Lie algebra g1 with a Cartan decomposition
g1 = k1 + m1, a Lie algebra isomorphism A : g → k1, and a real vector space
isomorphism L : V →m1 such that L ◦ρ(X)(y)= [A(X), L(y)] for all X ∈ g and
y ∈ V .

Theorem 2.4 [Dadok 1985, Proposition 6]. Let ρ : G → SO(V ) be a polar rep-
resentation of a connected compact Lie group G. Then there exist a connected
compact Lie group G1 and a symmetric space representation ρ1 : G1 → SO(V )
such that the G- and G1-orbits coincide.

Remark 2.5. The fact that the G- and G1-orbits coincide does not mean that they
are equivalent representations. In fact, the classification of polar representations
implies there are irreducible polar representations that are not equivalent to the
isotropic representation of a Riemannian symmetric space; see Section 6.

The following result will be useful in proving the main results of Section 3.
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Proposition 2.6. Let ρ : G → SO(V ) be a symmetric space representation of a
connected compact Lie group G. On the vector space g = g + V (direct sum),
there is a Lie algebra structure that makes g into a noncompact semisimple Lie
algebra and such that g= g+V is a Cartan decomposition. Further, there exists a
Riemannian globally symmetric space G/K of noncompact type such that g=g+V
is the canonical decomposition of the corresponding Lie algebra, and the G-orbit
in V coincides with the K -orbit in V of the adjoint representation of K on V .

Proof. Let g1, k1, m1, A, L be as in Definition 2.3. In the vector space g = g+ V
(where the addition is direct sum of subspaces), we introduce a bracket: On g

we take the same bracket operation as that of the Lie algebra. For x, y ∈ V ,
the bracket is equal to A−1([L(x), L(y)]), where the Lie bracket is the same
as that of g1. (Note that L(x), L(y) are contained in m1, so [L(x), L(y)] lies
in k1 and A−1([L(x), L(y)]) is contained in g.) For X ∈ g, x ∈ V , we define
[X, x] = L−1([A(X), L(x)]), which is an element in V . It can be checked directly
(albeit nontrivially) that g with the brackets above forms a Lie algebra that is iso-
morphic to g1. Since g1 is a noncompact semisimple Lie algebra, so is g, and
since g1 = k1 +m1 is a Cartan decomposition, so is g = g+ V . Now, according
to the theory of orthogonal symmetric Lie algebras [Helgason 1978], there exists
a Riemannian symmetric pair (G, K ) of noncompact type with Lie G = g and
Lie K =g. Moreover, by the definition of the brackets, the differential of the adjoint
representation of K on V is just the induced action of g on V of the representation
ρ of G. Since ρ is an orthogonal representation, the inner product 〈 · , · 〉 on V
is invariant under the action of G. Hence, ρ(X) is skew-symmetric with respect
to 〈 · , · 〉 for any X ∈ g. Since in the Riemannian symmetric pair of noncompact
type, the subgroup must be compact and connected [Helgason 1978], K must be a
connected compact Lie group. This implies that the exponential map of g to K must
be surjective [Kobayashi and Nomizu 1963]. Thus 〈 · , · 〉 is also invariant under
the action of K . Hence, there is a G2-invariant Riemannian metric Q on G2/K2

whose restriction on To(G/K )= V is 〈 · , · 〉, where o is the origin of G/K . Then
(G/K , Q) is a Riemannian globally symmetric space [Helgason 1978]. Now the
proposition follows from the facts that the exponential map of G is surjective, and
that the differentials of ρ and of the adjoint representation of K2 on V coincide. �

3. Classification of Minkowski representations associated
with a polar representation

In the two theorems below, let G be a compact connected Lie group with a polar
representation (V, ρ).

Theorem 3.1. Let a⊂ V be a Cartan subspace and W be the corresponding Weyl
group. Then there exists a bijection between the set of Minkowski norms on V that
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make (V, ρ, F) a Minkowski representation, and the set of W -invariant Minkowski
norms on a.

Theorem 3.2. • If the generalized rank of (V, ρ) is 1, then there does not exist
a non-Euclidean Minkowski norm F on V such that (V, ρ, F) is a Minkowski
representation of G.

• If the generalized rank of (V, ρ) is at least 2, then there exist infinitely many
non-Euclidean Minkowski norms F on V such that (V, ρ, F) is a Minkowski
representation of G.

We remark here that Szabó’s argument [1981] on the existence of invariant non-
Riemannian Finsler metrics on a Riemannian symmetric space is also valid for
polar homogeneous space, since on a polar homogeneous space the isotropic rep-
resentation has the same orbit as that of a Riemannian symmetric space. Hence
Theorem 3.2 should not be viewed as a new result. The main point here is that
our refinement of Szabó’s argument can be used to establish the bijection stated in
Theorem 3.1. This will lead to a classification of all the invariant Finsler metrics
on a polar homogeneous space; see Section 4.

To prove the two theorems above, we need several lemmas.

Lemma 3.3. Let G, (V, ρ), a and W be as in Theorem 3.1. Then any W -invariant
Minkowski norm on a can be uniquely extended to a G-invariant functional on V
that is smooth on V \ {0}.

Proof. We use the same argument as in [Szabó 2006]. Since a is a Cartan subspace,
according to Definition 2.1, a intersects every orbit of the action of G on V . Thus
for any y ∈ V , there exist a ya ∈ a and gy ∈ G (not necessarily unique) such
that gy(ya) = y. We now define a functional L on V by L(y) = F(ya). Since
F is W -invariant, it is easy to check that L is well defined. To prove that L is
smooth on the slit space V \ {0}, we need a result of [Dadok 1982], which says
that the extension of a smooth W -invariant function on a to V is also smooth.
The Minkowski norm F is only smooth on a \ {0} but is continuous on the whole
space a. Define a functional F1 by

F1(y)= e−1/〈y,y〉
· F(y) for y ∈ V \ {0}; F1(0)= 0,

where 〈 · , · 〉 is the inner product on a. Then F1 is smooth on all of a. Since ρ is
an orthogonal representation, 〈 · , · 〉 is G-invariant. Thus F1 is also W -invariant.
Also, the extension of F1 to V is equal to e−1/〈X,X〉F(X) on g \ {0}. From this the
smoothness of F on g\{0} follows. The uniqueness of the extension is obvious. �

Lemma 3.3 establishes the smoothness of the extension of the W -invariant Min-
kowski norms. Next we consider the strong convexity of the extension. Since it is
very difficult to obtain strong convexity directly, we first prove a lemma about strict
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convexity. For this we need some results related to Kostant’s celebrated convexity
theorem, whose theory we now sketch.

Let (G/H, Q) be a globally Riemannian manifold, and let (g, σ ) be the corre-
sponding orthogonal Lie algebra. Let g= h+p be the canonical decomposition of
the orthogonal Lie algebra. Then we can identify the tangent space TeH (G/H)
of G/H at the origin with the space p. The isotropic representation of H on
TeH (G/H) then corresponds to the adjoint representation of H on p. Let t be
a maximal commutative subspace in p. Then t is a cross section of the action of H
and it intersects every orbit orthogonally. Therefore the isotropic representation is
polar. Let W be the corresponding Weyl group and π be the orthogonal projection
of p onto t.

Kostant’s convexity theorem [1973]. For any point x ∈ t, the subset π(H · x) is
equal to the convex hull of the points W · x , where H · x is the orbit of the point x.

To prove the strong convexity of the extension, we still need a lemma on the
convexity of the orbit of a convex domain in V . Let g be a noncompact semisimple
Lie algebra, let g = k+ p be a Cartan decomposition of g, and let t be a maximal
commutative subspace of p. Let Wt be the corresponding Weyl group and C be a
fixed Weyl chamber in t. The Cartan–Killing form B of g is positive definite on p,
so 〈x, y〉 = B(x, y) defines an inner product on p. The restriction of this inner
product to t, which we still denote by 〈 · , · 〉, is Wt-invariant. The dual cone of C ,
denoted by C∗, is defined by x ∈ C∗ if and only if 〈x, y〉 ≥ 0 for all y ∈ C . A
partial order can be defined on t such that x ≥ y if and only if x − y ∈ C∗. Then
Kostant [1973] proved that x ≤ y for x, y ∈ C if and only if x lies in the convex
hull of the W -orbit of y. Let H be the maximal compact subgroup of the adjoint
group Int g of g. It is well known that each H -orbit in g intersects C at exactly one
point [Helgason 1978]. For x ∈ p, we denote by C(x) the unique element of the
intersection of the orbit G · x = {g · x | g ∈ G} and C .

The following result is proved using Kostant’s convexity theorem.

Theorem 3.4 [Tam 1998]. For any x, y ∈ p, we have C(x + y)≤ C(x)+C(y).

The following lemma will be useful in proving the main result of this paper.

Lemma 3.5. Let D be a strictly convex domain in t containing the origin, with
smooth boundary S, and let D be invariant under the action of Wt. Then the orbit
of D under the action of H forms a strictly convex domain in p.

Proof. Since D is W -invariant, the boundary S is also Wt-invariant. Define a
nonnegative function h1 on t by h1(y)= 1/t where t > 0 is such that t y ∈ S. Then
h1 is smooth on t \ {0}, and h1(λy)= λh1(y) for any λ > 0. Also, h1 satisfies the
triangle inequality: h1(x+ y)≤ h1(x)+h1(y) with the equality holding if and only
if x = αy or y = αx for some α ≥ 0 [Bao et al. 2000]. Moreover, the function h1
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is obviously Wt-invariant. Hence h1 can be extended to a well-defined function h2

on p by defining h2(g · y) = y for g ∈ H and y ∈ t. Then it is easily seen that h2

is H -invariant and the orbit of D forms the set D1 = {y ∈ g | h2(y) < 1}. Now
suppose y1, y2 ∈ D1 and 0≤ λ≤ 1. Let g ∈ H be such that

g · (λy1+ (1− λ)y2)= C(λy1+ (1− λ)y2).

Then we have

h2(λy1+ (1− λ)y2)= h2(g · (λy1+ (1− λ)y2))= h1(C(λy1+ (1− λ)y2)).

Suppose Wt = {w1, w2, . . . , ws}, where s = |Wt|. Then by Theorem 3.4 and
Kostant’s convexity theorem, there exist nonnegative numbers αi for i=1, 2, . . . , s
that sum to one and satisfy

C(λy1+ (1− λ)y2)=

s∑
i=1

αiwi (C(λy1)+C((1− λ)y2)).

Hence

h1(C(λy1+ (1− λ)y2))

= h1

( s∑
i=1

αiwi (C(λy1)+C((1−λ)y2))
)
≤

s∑
i=1

h1(αiwi (C(λy1)+C((1−λ)y2)))

=

s∑
i=1

αi h1(wi (C(λy1)+C((1−λ)y2)))=

s∑
i=1

αi h1((C(λy1)+C((1−λ)y2)))

≤

s∑
i=1

αi (h1(C((λy1))+ h1(C(1−λ)y2)))=

s∑
i=1

αi (h2(λy1)+ h2((1−λ)y2))

=

s∑
i=1

αi (λh2(y1)+ (1−λ)h2(y2))= λh2(y1)+ (1−λ)h2(y2)≤ λ+ (1−λ)= 1.

Thus λy1 + (1− λ)y2 ∈ D1. Further, if h2(λy1 + (1− λ)y2) = 1, then from the
above equation we see that either h2(y1)= 1 with λ= 1 or h2(y2)= 1 with λ= 0;
that is, either λy1+ (1− λ)y2 = y1 or λy1+ (1− λ)y2 = y2. Hence the interior of
the line segment joining y1 and y2 is contained in D1. This proves the lemma. �

Corollary 3.6. Let G, V , ρ and a be as in Theorem 3.1. Let D be a strictly convex
domain in a containing the origin and invariant under the action of the Weyl group.
Then the orbit of D under the action of G forms a strictly convex domain in V .

Proof. By Dadok’s result, the G-orbit coincides with that of a symmetric space
representation ρ1 : G → SO(V ). Then by Proposition 2.6, we can assume that a

is a Cartan subspace of a Riemannian symmetric space of the noncompact type,
and that the action ρ1 of G on V is exactly the isotropic representation of the
Riemannian symmetric space. Now the corollary follows from Lemma 3.5. �
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Proof of Theorem 3.1. If F is a Minkowski norm on V such that (V, ρ) is a
Minkowski representation of G, then F |a is a W -invariant function and obviously
a Minkowski norm on a. It is a direct consequence of the definition of the Cartan
subspace that this correspondence is one-to-one. To prove it is surjective, let F1 be
a W -invariant Minkowski norm on a. For any x ∈ V , there exists g ∈ G such that
ρ(g)(x)∈ V . We then define a function F on V by F(x)= F1(ρ(g)(x)). Since F1

is W -invariant, F is well defined. By Lemma 3.3, F is smooth on V \ {0}. Next
we prove that F is a Minkowski norm on V . Let α1, . . . , αm be an orthonormal
basis of a with respect to the inner product restricted to a, and write F1(z) =
F1(z1, z2, . . . , zn) for z =

∑m
i=1 ziαi . Then we define the Hessian matrix of F1 by

[Bao et al. 2000]
(ai j )=

([1
2 F2

1
]

zi z j

)
.

For any y 6= 0, denote the minimal eigenvalue of the matrix (ai j (y)) by µ(y). Let

µ= inf
{y∈a|〈y,y〉=1}

µ(y).

Since F1 is a Minkowski norm, µ(y)>0 for any y∈a\{0}. Since {y∈a | 〈y, y〉=1}
is compact and the function µ(y) is continuous, we have µ> 0. Now on a we write

F1(x)=
√(

F2
1 (x)−

1
2µ〈x, x〉

)
+

1
2µ〈x, x〉 =

√
L∗(x)+ 1

2µ〈x, x〉,

where L∗(x)= F2
1 (x)−

1
2µ〈x, x〉. Since F2

1 (x)=
∑n

i, j=1 ai j (x)x i x j for x ∈V \{0},
we have

F2
1 (x)≥

n∑
i=1

µ(x)x i x i
= µ(x)〈x, x〉.

Hence L∗(x) > 0 for any x 6= 0. Further, the Hessian matrix of
√

L∗(x) is positive
definite at any x ∈a\{0}. Hence

√
L∗ is also a Minkowski norm on a. In particular,

the domain {y ∈ a | L∗(y) < 1} is strictly convex [Bao et al. 2000]. Denote its
boundary by S. Since 〈x, x〉 is W -invariant, L∗(x) is also W -invariant. Therefore
L∗(x) can be uniquely extended to a functional L on V that is smooth on V \{0}. By
Lemma 3.5, the orbit of S under the action of G is the boundary of a strictly convex
domain D1 in V . But it is obvious that D1 = {y ∈ V | L(y) < 1}. Therefore, the
Hessian matrix of

√
L (with respect to certain basis of V ) is positive semidefinite

[Bao et al. 2000]. Therefore the Hessian matrix of F is positive definite at any
x 6= 0. Thus F is a Minkowski norm. This proves that the correspondence above
is surjective. Therefore it is a bijection. �

Proof of Theorem 3.2. By Theorem 3.1, we only need to consider the W -invariant
Minkowski norms on a Cartan subspace a.

If dim V = 1, the conclusion is obvious. Therefore, we suppose that dim V ≥ 2.
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If the generalized rank of the polar representation is 1, then we assert that the
Weyl group W consists of two elements: W = {1,−1}. In fact, since the Weyl
group is generated by reflections, we have only two possibilities: either W = {1}
or W = {1,−1}. If W = {1}, each W -orbit consists of only one point. Consider the
unit sphere S of V , and let u and −u be the unit element in a. Since each G-orbit
intersects a at one point, we have S = G · u ∪G · (−u) and G · u ∩G · (−u)=∅.
Now a contradiction arises, because by the theory of Lie transformation groups, the
orbits G ·u and G ·(−u) are connected closed submanifolds of S [Helgason 1978].
Hence W = {1,−1}. Suppose F is a W -invariant Minkowski norm on a. Then we
have F(x) = F(−x). Since dim a = 1, we see that F is a Euclidean norm on a.
Suppose F(x)= c

√
〈x, x〉 for x ∈ a, where 〈 · , · 〉 is the G-invariant inner product

on V and c is a positive constant. Then by Theorem 3.1, the extension of F to V
must be equal to c

√
〈 · , · 〉 on V . This proves the first conclusion of the theorem.

Now we suppose that the generalized rank of the polar action is at least 2. By
Dadok’s result and Proposition 2.6, there exists a Riemannian symmetric space
G1/H1 of noncompact type with canonical decomposition g1 = h1+ p1 such that
V is linearly isometric to p1 through a linear isometry τ , and such that the G-
orbit corresponds to the H1-orbit of the isotropic representation on p1 through τ .
It is easily seen that a1 = τ(a) is a maximal abelian subalgebra (that is, a Cartan
subspace of the polar action of H1 on p1) of p1. Let W1 be the corresponding Weyl
group. Then W-orbits correspond to W1-orbits. Hence, to prove the theorem in this
case, we only need to prove that there are infinitely many W1-invariant Minkowski
norms on a1. Fix one Weyl chamber, say C. It is known that the closure C of C

is a fundamental domain of the action of W1. That is, every orbit intersects C at
exactly one point. Now we assert that there exist infinitely many functions f on C

such that

• f (λx)= λ f (x) for all λ > 0,

• f can be extended to a W -invariant smooth function f1 on a1 \ {0}, and

• the domain {x ∈ a1 | f1(x) < 1} is strictly convex.

For example, we first choose a sphere (centered at the origin) with respect to the
inner product on a1. Then we choose a hyperplane whose the intersection with the
sphere is contained in C. In this way, we get a hypersurface S1, which, together
with the Weyl walls of C, bounds a strictly convex domain. The hypersurface S1

is of course not smooth, but it is easily seen that we can make it smooth, while
keeping the bounded domain strictly convex. We denote one such hypersurface by
S and define a function f (x) on C by f (x) = λ if x/λ ∈ S. Then f (x) satisfies
the conditions above. It is obvious that there exist infinitely many functions of this
type. Now, each such f can be extended to a function F1 on a1 and, similarly to
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the proof of Theorem 3.1, we see that the function

F(u)=
√

F2
1 (u)+〈u, u〉,

with u ∈ a1, defines a W1-invariant Minkowski norm on a1. �

4. Invariant Finsler metrics: A classification

Let G be a Lie group and H be a closed subgroup of G. Then on the coset space
G/H there exists a smooth structure such that G becomes a Lie transformation
group of G/H . A fundamental problem in geometry to study the G-invariant
geometric structures on G/H . In [Deng and Hou 2004a], we considered this
problem for Finsler metrics. We proved that there is a one-to-one correspondence
between the G-invariant Finsler metrics on G/H and the H -invariant Minkowski
norms on the tangent space To(G/H) of G/H at the origin o= eH . Therefore, to
classify the G-invariant Finsler metrics, we only need to classify the Minkowski
representations of H on To(G/H).

Without losing generality, we can assume that H is a compact subgroup of G.
In fact, if (M, F) is a connected homogeneous Finsler space, then the isotropic
subgroup (at a fixed point x ∈M) of the full group Ix(M, F) of isometries I (M, F)
must be a compact subgroup of I (M, F) by [Deng and Hou 2002]. Hence M =
I (M, F)/I0(M, F) and F can be viewed as an I (M, F)-invariant Finsler metric
on M . The compactness of H implies that there exist H -invariant inner products
on the tangent space To(G/H). Fix one such inner product, and denote it by 〈 · , · 〉.
Then 〈 · , · 〉 can be extended to g= Lie G so that

〈Ad(h)(x),Ad(h)(y)〉 = 〈x, y〉 for all h ∈ H and x, y ∈ g.

Let m be the orthogonal complement of h= Lie H . Then m satisfies

(4-1) Ad(h)m⊂m and g= h+m.

Hence the tangent space To(G/H) can be identified with m, and the isotropic
representation of H on To(G/H) corresponds to the adjoint representation of H
on m.

Our goal is to a classify all the G-invariant Finsler metrics on G/H . We stress
here that this problem for Riemannian metrics is easy. In fact, since H is compact,
m can be decomposed into a direct sum of subspaces

m=m0+m1+ · · ·+mk,

where m0 consists of H -fixed vectors in m, and mi for i = 1, 2, . . . , k are invariant,
irreducible subspaces of H . For simplicity, we assume that the submodules mi are
not equivalent to each other. If there are two H -invariant inner products on m,
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then by Schur’s lemma, for each i with 1≤ i ≤ k, the restrictions of the two inner
products to mi must differ only by a positive multiple. On the other hand, any inner
product is H -invariant on m0. Fix an H -invariant inner product 〈 · , · 〉i on mi for
i = 1, 2, . . . , k. Then any H -invariant inner product must be of the form

〈 · , · 〉0+ c1〈 · , · 〉1+ · · ·+ ck〈 · , · 〉k,

where 〈 · , · 〉0 is an arbitrary inner product on m0, and c1, c2, . . . , ck are arbitrary
positive real numbers. This classifies H -invariant inner products on m, and hence
G-invariant Riemannian metrics on G/H .

Therefore, the difficult case is that of non-Riemannian Finsler metrics. Since
the general problem seems to be unsolvable, we restrict to the special case where
the isotropic representation is polar. Theorems 3.1 and 3.2 give this:

Theorem 4.1. Let G be a Lie group and H be a compact subgroup of G. Suppose
that the isotropic representation of G/H at the origin o= eH is polar and m is as
in Equation (4-1).

• If the generalized rank of the adjoint action of H on m is 1, then there does
not exist any non-Riemannian invariant Finsler metric on G/H.

• If the generalized rank of the action of H on m is at least 2, then there exist
infinitely many non-Riemannian invariant Finsler metrics on G/H (even if
we do not distinguish those metrics that are differ only by a positive multiple).
In this case, there is a one-to-one correspondence between the G-invariant
Finsler metrics on G/H and the W -invariant Minkowski norms on a, where a

is a Cartan subspace of m and W is the corresponding Weyl group.

Now we consider some special cases of Theorem 4.1. Suppose (G, H) is a
Riemannian symmetric pair. That is, G is a connected Lie group and H is a
closed subgroup of G such that there exists an involutive automorphism σ such
that (Gσ )e ⊂ H ⊂ Gσ , where Gσ denotes the fixed points of σ and (Gσ )e denotes
its unit components. Suppose also that the isotropic action of H at To(G/H) leaves
certain inner products invariant. We consider the classification of all G-invariant
Finsler metrics on G/H . Note that in this case the isotropic action is polar.

Theorem 4.2. Let (G, H) be a Riemannian symmetric pair. Let g = h + m be
the canonical decomposition of the Lie algebra of G. Fix one maximal subspace
a of m, and let W be the corresponding Weyl group. Then there exists a bijection
between the G-invariant Finsler metrics on G/H and the W -invariant Minkowski
norms on a. In particular, if the rank of G/H is 1, there does not exist any G-
invariant non-Riemannian Finsler metric on G/H ; if the rank of G/H is at least 2,
there exist infinitely many G-invariant non-Riemannian Finsler metrics on G/H.
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The existence part of this theorem was established in [Szabó 1981], but the
one-to-one part was not given there.

By [Deng and Hou 2007], any G-invariant Finsler metric on G/H is a globally
symmetric Berwald metric; and by [Deng and Hou 2005a], any globally symmetric
Berwald metric can be constructed in this way. Therefore, Theorem 4.2 can be
viewed as a classification of all globally symmetric Berwald metrics.

Example 4.3. Consider the unit sphere Sn in Euclidean Rn+1. It is a Riemannian
symmetric space of rank 1. The special orthogonal group SO(n + 1) acts tran-
sitively on Sn , and the isotropic subgroup at (1, 0, . . . , 0) can be identified with
the subgroup SO(n) of SO(n + 1). Thus Sn can be viewed as the coset space
SO(n + 1)/SO(n), and the induced Riemannian metric on Sn can be viewed as
an SO(n+ 1)-invariant metric on SO(n+ 1)/SO(n). By Theorem 4.2, there is no
SO(n + 1)-invariant non-Riemannian Finsler metric on Sn . Now we consider the
product manifold Sn

× Sm , where m, n ≥ 1. Write Sn
× Sm as

G/H = (SO(n+ 1)×SO(m+ 1))/(SO(n)×SO(m)).

The rank of G/H is 2. Therefore there exist infinitely many G-invariant non-
Riemannian Finsler metrics on G/H . All these metrics are globally symmetric
and of Berwald type. Now we can give an explicit description of these metrics.
Let a1 and a2 be Cartan subspaces of SO(n + 1)/SO(n) and SO(m + 1)/SO(m),
respectively. The corresponding Weyl groups on a1 and a2 are W1=W2={1,−1}.
The direct sum a = a1⊕ a2 is a Cartan subspace of G/H , and the corresponding
Weyl group W consists of four elements: W = {1, σ1, σ2, σ3}, where

σ1(x+y)=−x+y, σ2(x+y)= x−y, σ3(x+y)=−x−y for x ∈a1, y ∈a2.

Therefore a Minkowski norm F on a is W -invariant if and only if F satisfies

(4-2) F(±x ± y)= F(x + y) for x ∈ a1, y ∈ a2.

By Theorem 4.2, there is a one-to-one correspondence between the G-invariant
Finsler metrics on Sn

× Sm and the Minkowski norms on a satisfying (4-2). It is
easily seen that there actually exist infinitely many Minkowski norms on a that
satisfy (4-2). For example, identifying a1 and a2 with R1, we can define a set of
Minkowski norms by

Fµ(x + y)=
√

x2+ y2+µ
√

x4+ y4 for x, y ∈ R1,

where µ is an arbitrary positive real number. These norms satisfy (4-2) and are
pairwise not mutually linearly isometric [Bao et al. 2000].

Similarly, we can consider other Riemannian symmetric spaces of rank 1 and
their product. Next we give an irreducible example of rank at least 2.
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Example 4.4. Consider the Riemannian symmetric pair (SL(n,R),SO(n)), where
n ≥ 3. The rank is n − 1. So there exist infinitely many SL(n,R)-invariant non-
Riemannian Finsler metrics on SL(n,R)/SO(n). Now we explicitly describe these
metrics. The canonical decomposition of the Lie algebra is sl(n,R) = so(n)+ p,
where p consists of all n× n traceless symmetric matrices. A Cartan space can be
taken as the space of all diagonal matrices in p, denoted by a. The corresponding
Weyl group is isomorphic to the full permutation group of n indices, which acts on
a by permuting the entries along the diagonal [Helgason 1978]. Therefore, if we
write the elements in a as

diag(λ1, λ2, . . . , λn), where
∑n

i=1 λi = 0,

then a Minkowski norm F on a is W -invariant if and only if F(λ1, . . . , λn) is a
symmetric function of λ1, λ2, . . . , λn . An explicit series of such norms can be
constructed as follows:

Fµ(λ1, . . . , λn)=

√
n∑

i=1
λ2

i +µ

√
n∑

i=1
λ4

i ,

where µ is an arbitrary positive real number. As in Example 4.3, the Minkowski
norms above define infinitely many SL(n,R)-invariant non-Riemannian Finsler
metrics on SL(n,R)/SO(n). These metrics are all of the Berwald type.

Next we consider nonsymmetric polar homogeneous manifolds. By Kollross
and Podestà [2003] classified the polar homogeneous spaces of a connected, simply
connected, simple Lie group. Combining their list and Theorem 4.1 gives this:

Theorem 4.5. Let G/H be a connected, simply connected, isotropic polar homo-
geneous manifold, where G is a simply connected simple compact Lie group and
H is a closed subgroup of G. Then the pair (G, H) must be either a Riemannian
symmetric pair or one of the pairs in Table 1. Among the manifolds in Table 1,
any G-invariant Finsler metric on G/H must be Riemannian in types VIII and IX.
In any of the other types, however, there exist infinitely many G-invariant non-
Riemannian Finsler metrics on G/H.

Proof. Because Kollross and Podestà [2003] listed the isotropic polar homogeneous
manifolds, we only need to find which type is of rank 1. Since H is compact, the
action of H on the tangent space To(G/H) leaves the inner product invariant.
Therefore, we can view H as a subgroup of SO(m) (note that H is connected
in all the types in Table 1), where m = dim To(G/H). Therefore, to find out
which type is of rank 1, we only need to find in which case H acts transitively
on Sm−1. The compact connected subgroups of SO(m) that act transitively on Sm−1

were classified by Montgomery, Samelson, and Borel [Besse 1987]. Therefore the
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Type G H Rank

I SU(n+ 1) SU(n) ≥ 2
II Sp(n+ 1) Sp(n) ≥ 2
III Sp(n+ 1) U(1)×Sp(n) ≥ 2
IV SU(p+ q) SU(p)×SU(q), p < q ≥ 2
V Spin(2n) SU(n), n odd ≥ 2
VI E6 Spin(10) ≥ 2
VII Spin(9) Spin(7) ≥ 2
VIII Spin(7) G2 1
IX G2 SU(3) 1

Table 1. Pairs (G, H) occurring in Theorem 4.5.

theorem can be proved through a case-by-case computation of the dimensions of
the manifolds G/H . �

Now we give a description of the invariant Finsler metrics on the homogeneous
manifolds of type I in Table 1.

Example 4.6. Consider a homogeneous manifold

M = G/H = SU(n+ 1)/SU(n), with n ≥ 2.

Now we give a realization of the manifold M . The group G = SU(n + 1) acts
in the standard way on the standard Hermitian space Cn+1

= R2n+2. The action
keeps the sphere S2n+1 invariant, and the restriction of the action to the sphere is
transitive. The subgroup H = SU(n) can be identified with the isotropic subgroup
of G at the point o= (1, 0, . . . , 0)′ ∈ S2n+1, that is,

A ↪→
(1 0

0 A

)
for A ∈ H.

Therefore M is just the sphere S2n+1. Now we make some observations on the
isotropic representation. By selecting a certain local coordinate system, we can
identify the tangent space of G/H at o with the hyperplane

P = {(1, b1, b2, . . . , b2n+1)
′
∈ R2n+1

}

through the mapping

b = (b1, b2, . . . , b2n+1) ↪→ (1, b1, b2, . . . , b2n+1)
′.

Then the isotropic representation can be described as follows. For

b = (b1, b2, . . . , b2n+1) ∈ To(G/H) and A ∈ H,
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define b̃ = (1+ b1
√
−1, b2+ b3

√
−1, . . . , b2n + b2n+1

√
−1)′ ∈ Cn+1. Let

c =
(1 0

0 A

)
· b̃ =

(
1+ b1

√
−1, c1+ c2

√
−1, . . . , c2n−1+ c2n

√
−1
)′
∈ Cn+1,

where c j , j = 1, 2, . . . , 2n are real numbers. Then

A · b = (b1, c1, c2, . . . , c2n).

Therefore, the isotropic representation is equal to the identity transformation on
the subspace V1= {(b1, 0, . . . , 0)∈ To(M)}. On the other hand, the action of H on
the subspace V2 = {(0, b2, . . . , b2n+1) ∈ To(M))} is just the standard action of the
group SU(n) on Cn . Therefore, H is transitive on the unit sphere in V2. From this,
we see that the action of H on V2 is polar of rank 1. Since To(M) is the orthogonal
sum of V1 and V2, the action of H on To(M) is polar, and a Cartan space can be
chosen to be a= V1+a2, where a2 is an arbitrary one-dimensional subspace in V2.
As in Example 4.3 any Minkowski norm F on a satisfying

F(±x ± y)= F(x + y), x ∈ V1, y ∈ a2

can be extended uniquely to a H -invariant Minkowski norm on To(M), and hence
corresponds to a G-invariant Finsler metric on M .

5. General geometric properties

Let (G, K ) be a Riemannian symmetric pair. Then by the results of [Szabó 1981] it
is easily seen that any G-invariant Finsler metric on G/K must be a (reversible or
nonreversible) affine symmetric Berwald space. By Dadok’s results, we have seen
that a polar representation must have the same orbits as the isotropic representation
of a certain Riemannian symmetric space. It is therefore natural to ask whether the
result above holds for polar homogeneous spaces, that is, whether any invariant
Finsler metric on a polar homogeneous space must be Berwaldian. We will in-
vestigate this problem in this section. It is somehow surprising that the answer is
negative. In fact we can prove that in any polar homogeneous manifold in Table 1,
an invariant Finsler metric F on G/H is Berwaldian if and only if it is Riemannian.
As an application, we show that on any polar homogeneous space of rank at least 2
in Table 1, there exist infinitely many invariant Finsler metrics that are reversible,
non-Berwaldian and of vanishing S-curvature. The problem of the existence of
such spaces was posed by Shen [2009], and in our paper [Deng and Hou ≥ 2010],
we constructed some low-dimensional examples of Finsler spaces with the above
properties.

We begin with the notions of weakly symmetric Finsler spaces and geodesic
orbit Finsler spaces. Let (M, F) be a connected Finsler space. Then (M, F) is
called weakly symmetric if for any two points p and q there exists an isometry σ
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of (M, F) that interchanges them, that is, σ(p) = q and σ(q) = p. It is called
a geodesic orbit Finsler space if any geodesic γ is the orbit of a one-parameter
subgroup of the full group of isometries, that is, if there exists a vector X in the
Lie algebra g of the full group G of isometries such that γ (t)= exp(t X) ·o, where
o = γ (0) and exp is the exponential mapping of G. It is obvious that a weakly
symmetric space must be reversible and homogeneous and that a geodesic orbit
Finsler space must be homogeneous. Berndt et al. [1997] proved that a connected
weakly symmetric Riemannian manifold must be a geodesic orbit space. Their
proof is also valid for the Finslerian case, so a weakly symmetric Finsler must be
a geodesic orbit space. Also it is easy to prove that a geodesic orbit space must
have vanishing S-curvature [Deng and Hou ≥ 2010].

Nguyen [2000] introduced a way to construct weakly symmetric Riemannian
manifolds. Let G be a connected Lie group and θ be an involutive automorphism
of G. Suppose H is a θ -stable compact subgroup of G. Select a complement
subspace m of h in g that is also invariant under Adg/h(H). Then (G, H, θ) is
called a weakly symmetric triple if, given any element X ∈ m, there exists an
element h ∈ H such that (Ad(h))◦dθ(X)=−X . Nguyen proved that if (G, H, θ)
is weakly symmetric pair, then any G-invariant Riemannian metric on G/H is
weakly symmetric. Using this method we can also construct weakly symmetric
Finsler spaces.

Proposition 5.1. If (G, H, θ) is a weakly symmetric triple, then any G-invariant
reversible Finsler metric on G/H is weakly symmetric.

The proof is similar to the Riemannian case, so we omit it [Nguyen 2000].

Theorem 5.2. Let G/H be one of the polar homogeneous spaces in Table 1 (with
nontrivial subgroup H ) that is not of type II (that is, not Sp(n + 1)/Sp(n)). Then
any reversible G-invariant Finsler metric on G/H must be weakly symmetric. In
the coset space Sp(n)/Sp(n − 1) for n ≥ 2, there exist infinitely many invariant
weakly symmetric non-Riemannian Finsler metrics. In particular, in any of the
polar homogeneous manifolds of rank at least 2 in Table 1, there exist infinitely
many invariant weakly symmetric non-Riemannian Finsler metrics.

Proof. The first claim follows from the classification of compact weakly symmetric
Riemannian spaces by Nguyen [2000] and Yakimova [2004]. Also some of these
homogeneous manifolds are known to be weakly symmetric [Ziller 1996]. We now
give a case-by-case clarification. The manifolds SU(n)/SU(n−1), with n ≥ 3, are
known to be weakly symmetric [Ziller 1996]. The involutive automorphism θ

of SU(n) can be defined in the following way: Let SU(n) act in the standard
way on the unit sphere in Cn , and let µ be the transformation taking the complex
conjugation on each coordinate. Define θ(g) = µgµ−1. It is easy to check that
(SU(n),SU(n−1), θ) is a weakly symmetric triple. Therefore by Proposition 5.1,
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SU(n)/SU(n− 1) endowed with any invariant reversible non-Riemannian Finsler
metric must be a weakly symmetric Finsler space. This argument is also valid
for the homogeneous space SU(p + q)/SU(p)× SU(q), with p < q . Therefore
SU(p + q)/SU(p)× SU(q) endowed with any reversible Finsler spaces must be
weakly symmetric. According to Nguyen [2000], the homogeneous space G/H =
Sp(n)/Sp(n− 1) ·U (1) is weakly symmetric with respect to G, meaning that for
any X ∈ To(G/H), there exists an h ∈ H such that dh(X) = −X . Similarly to
the Riemannian case, this means that any invariant reversible Finsler metric on
G/H must be weakly symmetric [Ziller 1996]. Now by [Nguyen 2000], the space
SO(2n)/SU(n), with n odd, is weakly symmetric. Since the space Spin(2n)/SU(n)
is the universal covering of SO(2n)/SU(n), we see that Spin(2n)/SU(n) endowed
with any reversible must weakly symmetric [Yakimova 2004]. The situation is the
same for the space Spin(9)/Spin(7). Finally, the space E6/Spin(10) appears in
the list in [Nguyen 2000] (note that D5 is exactly Spin(10)). Therefore, if G/H
is a homogeneous manifold of rank at least 2 in Table 1 not of type II, then any
invariant reversible Finsler metric on G/H must be weakly symmetric.

Now we consider spaces of type II, that is, Sp(n)/Sp(n− 1) with n ≥ 2. Note
that Sp(n) acts transitively on the sphere S4n−1 in the standard way, and that any
isotropy subgroup is isomorphic to Sp(n − 1). Hence Sp(n)/Sp(n − 1) = S4n−1.
In this way, we can also view Sp(n) as a subgroup of SU(2n). Since we have
SU(2n)/SU(2n− 1)= S4n−1, we see that any SU(2n) invariant Finsler metric on
the sphere S4n−1 must be an invariant metric on the coset space Sp(n)/Sp(n− 1).
From this the theorem follows. �

Theorem 5.3. Let G be a connected simply connected compact simple Lie group
and H be a closed subgroup of G. Let G/H be a nonsymmetric polar homo-
geneous manifold. Then a G-invariant Finsler metric on G/H is Berwaldian if
and only if it is Riemannian.

Lemma 5.4. Let G be a compact connected Lie group and H be a closed subgroup
of G. Suppose G/H is diffeomorphic to the n-sphere, with n ≥ 2. Then any G-
invariant Riemannian metric on G/H is holonomy irreducible.

Proof. Suppose conversely that a G-invariant Riemannian metric Q on G/H is
holonomy reducible. Then by the de Rham decomposition theorem, we have a
Riemannian manifold decomposition

G/H = M1×M2× · · ·×Ms,

where M1,M2, . . . ,Ms are holonomy irreducible. By Hano’s result [1955], the
full group K of isometries of (G/H, Q) is isomorphic to the product of the groups
of isometries of Mi for 1 ≤ i ≤ s. This fact combined with the homogeneity of
(G/H, Q) implies that for each i , the group of isometries of Mi must be transitive
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on Mi ; in particular, it has dimension at least 1. Thus the identity component K 0

of K is not a simple Lie group. Now by the complete list of compact connected Lie
groups that act transitively on the spheres [Besse 1987], K 0 must be one of U(n)
with n≥2, Sp(n)Sp(1)with n≥1, or Sp(n)U(1)with n≥1. This means that s=2
and M1 can be chosen to be a coset space of U(1) = S1 or Sp(1) = SU(2) = S3.
But it is easily seen that the coset spaces of U(1) or Sp(1) must be diffeomorphic
to S1, S2 or S3. Therefore we have Sn

= G/H = S j
× M2 for n > j . But this

decomposition is impossible since the j-th homotopy group of Sn (where j = 1, 2,
or 3 and n > j) is the identity group and π j (S j )= Z. �

Oniscik [1963] proved that the only compact connected groups that act tran-
sitively on the projective complex spaces are SU(n) (on CPn−1), and Sp(n) (on
CP2n−1). Similar to Lemma 5.4, we have this:

Lemma 5.5. Let G be a compact connected Lie group and H be a closed subgroup
of G. Suppose the coset space G/H is diffeomorphic to the projective complex
space CPn . Then any G-invariant Riemannian metric on G/H must be holonomy
irreducible.

To state the next lemma, we need some definitions about Hermitian symmetric
spaces. Let (G, H) be an irreducible Riemannian metric of compact or noncompact
type. Then it is well known that G/H can be made into a Hermitian symmetric
space if and only if the (connected) compact subgroup H has nondiscrete center,
in which case the center of H is a one-dimensional Lie group [Helgason 1978].
Let g = h + m be the canonical decomposition of the Lie algebra. Let a be a
maximal abelian subspace of m and extend a to a Cartan subalgebra t of g. Then
on the subspace m there is a complex structure J corresponding to the root sys-
tem of (g, t) (not necessary the complex structure induced by that of the manifold
G/H ) [Korányi and Wolf 1965]. Let Z J be the element in the center zh of h

that corresponds to the complex structure above. Then we have a decomposition
Z J
= Z0
+Z ′, where Z0 defines the complex structure on the polydisc or the poly-

sphere inside G/H when G/H is realized as a generalized half-plane [Korányi and
Wolf 1965] and Z ′ is an element in h that centralizes a. The Hermitian symmetric
space G/H is said to be of tube type if in the decomposition above we have Z ′= 0.
Let H = Z H · Hs be the decomposition of H , where Z H is the one-dimensional
center of H and Hs is the semisimple part of H . Let S′ = {exp(t Z ′) | t ∈ R}. It is
known that if G/H is not of the tube type, then Z ′ is not in the center zh and we
have H = S′Hs = Hs S′. Further,

(5-1) m= Ad(Hs)(a).

Lemma 5.6. Let G be a compact connected simply connected simple Lie group
and H be a closed subgroup of G such that (G, H) is an irreducible Hermitian
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symmetric pair of nontube type. Let H = Z H Hs be the decomposition of H , where
Z H is the one-dimensional center of H and Hs is the semisimple part of H. Then
any G-invariant Riemannian metric on the coset space G/Hs must be holonomy
irreducible.

Proof. Let g=h+m be the canonical decomposition of the symmetric pair (G, H).
Then we can identify the tangent space To(G/H) with m. Since (G, H) is irre-
ducible, the action of H on m is irreducible. Now we claim that the action of the
semisimple part Hs of H on m is also irreducible. In fact, if this is not true, then
we can find a nontrivial subspace V1 of m that is invariant under Hs . Let X ∈ V1.
Then by (5-1) there exists k ∈ Hs and Xa ∈ a such that X = Ad(k)(Xa). Now for
any s ∈ S′, select s1 ∈ S′, k1 ∈ Hs such that sk = k1s1. Then

(5-2) Ad(s)(X)= Ad(s)Ad(k)(Xa)= Ad(k1s1)(Xa)= Ad(k1)(Xa)

= Ad(k1k−1)Ad(k)(Xa)= Ad(k1k−1)(X) ∈ V1,

where we have used the fact that Z ′ centralizes a. Now (5-2) means that V1 is also
invariant under the action of S′. Hence it is invariant under H . This contradicts
the assumption that G/H is irreducible, and proves our claim. The claim means
that the action of Hs on the tangent space To(G/Hs), which can be identified with
s+m (direct sum), where s is the one-dimensional Lie algebra of S1, decomposes
as the sum of irreducible subspaces s and m. By Schur’s lemma, this implies that
any Hs-invariant inner product on To(G/H ′) must be of the form

(5-3) Q1+α(−B)|m×m,

where Q1 is an arbitrary inner product on a (which is unique up to a positive
scalar), B is the Cartan–Killing form of the Lie algebra g, and α is an arbitrary
positive number. Now by the construction of D’Atri and Ziller [1979], any inner
product of the form (5-3) induces a naturally reductive G-invariant Riemannian
metric on G/H ′. Such a Riemannian metric on a simply connected coset space
of a connected simple Lie group must be holonomy irreducible [Kobayashi and
Nomizu 1969, page 215]. �

Proof of Theorem 5.3. We need only prove the “only if” part. We divide the
homogeneous manifolds in Table 1 into three groups. Group 1 consists of types I,
II, VII, VIII, and IX. Homogeneous manifolds in this group are diffeomorphic to a
sphere. Group 2 consists of type III, the manifold Sp(n)/(U(1)×Sp(n−1)). It has
a symmetric extension ((SU(2n),SU(2n−1)×U(1)); in other words, the quotient
Sp(n)/(U(1)×Sp(n− 1)) is diffeomorphic to the projective complex space

CP2n−1
= SU(2n)/(SU(2n− 1)×U(1)),



68 SHAOQIANG DENG

where we consider Sp(n) as a subgroup of SU(2n). Group 3 consists of types IV,
V, and VI. Homogeneous manifolds in this type are S1-bundles over Hermitian
symmetric spaces of nontube type [Nguyen 2000]. Let G/H be one of the homo-
geneous manifolds in Table 1. Then by Lemmas 5.4, 5.5, and 5.6, we have seen
that any G-invariant Riemannian metric on G/H must be holonomy irreducible.
Suppose F is an invariant Finsler metric on G/H of the Berwald type. Then there
exists a Riemannian metric Q on G/H whose Levi-Civita connection coincides
with the Chern connection of F [Szabó 1981]. Let A(Q) and I (Q) be the group
of affine transformations and the group of isometries of Q. Then any isometry of F
must be contained in A(Q) [Deng and Hou 2005b]. In particular, G ⊂ A(Q). On
the other hand, since G/H is compact, we have A(Q)0 = I (Q)0 [Kobayashi and
Nomizu 1963, page 244]. Since G is connected, we have G ⊂ A(Q)0 = I (Q)0.
That is, any element of G is an isometry of Q, or in other words, Q is a G-
invariant Riemannian metric and hence must be holonomy irreducible. If F is not
Riemannian, then according to [Szabó 1981], (G/H, Q) must be an irreducible
Riemannian symmetric space of rank at least 2. In particular, let K be the full
group of isometries of Q, let K0 be the identity component of K , and let N be
the isotropic subgroup of K0 at a fixed point. Then G ⊂ K 0, and (K0, N ) is a
Riemannian symmetric pair [Helgason 1978]. This means that the pair (G, H) has
a symmetric extension with rank at least 2. The symmetric extension of weakly
symmetric homogeneous manifolds has been classified by Yakimova [2004]. The
list shows that the manifolds of types I, III, VII, VIII, and IX in Table 1 have
symmetric extension of rank 1, and that the manifolds in other types do not admit
any symmetric extension. On the other hand, Sp(n)/Sp(n− 1) is the only homo-
geneous manifold in Table 1 that is not weakly symmetric. But Sp(n)/Sp(n − 1)
is diffeomorphic to the sphere S4n−1. Hence (Sp(n),Sp(n − 1)) has as its only
symmetric extension (SO(4n),SO(4n−1)), which is of rank 1. This contradiction
proves the theorem. �

Since a weakly symmetric Finsler space has vanishing S-curvature, combining
Theorems 5.2 and 5.3 gives this corollary:

Corollary 5.7. Let G be a connected simply connected compact Lie group, and let
H be a closed subgroup of G. Let G/H be a nonsymmetric polar homogeneous
manifold of rank 2. Then there exist infinitely many invariant Finsler metrics on
G/H that are reversible, non-Berwaldian, and of vanishing S-curvature.

6. Randers metrics

We now consider invariant Randers metrics on the homogeneous manifolds in
Table 1, and give a (global) complete classification of such metrics. As pointed
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out in Theorem 5.3, all the non-Riemannian Randers metrics we find are non-
Berwaldian. As an application, we give a classification of homogeneous Randers
spaces with positive constant flag curvature.

We first recall some known results. Let G be a Lie group, and let H be a closed
subgroup of G. Suppose Q is an invariant Riemannian metric on G/H . Then by
the results of [Deng and Hou 2004b], there exists a bijection between the invariant
Randers metrics on G/H with underlying Riemannian metric Q and the invariant
vector fields on G/H with length < 1. Suppose the coset space G/H is reductive,
that is, that there exists a subspace m of g (the Lie algebra of G) such that

g= h+m (direct sum of subspaces),

and Ad(h)m⊂ m, for all h ∈ H . Then invariant vector fields are in bijection with
the set

V = {X ∈m | Ad(h)(X)= X for all h ∈ H}.

Therefore, to find all the invariant Randers metrics on G/H , we need first to find
all the invariant Riemannian metrics with respect to which all vectors in V have
length less than 1.

Now we consider SU(n)/SU(n− 1). In this case we have a decomposition

(6-1) su(n)= su(n− 1)+m,

where

(6-2) m=

{(
a
√
−1 α

−ᾱ′ − 1
n−1a
√
−1In−1

) ∣∣∣∣ a ∈ R, α ∈ Cn−1
}
.

A direct computation shows that

V =
{

diag
(
−a
√
−1, 1

n−1a
√
−1, . . . , 1

n−1a
√
−1
) ∣∣ a ∈ R

}
.

Theorem 6.1. There is a one-to-one correspondence between the invariant Ran-
ders metrics on SU(n)/SU(n−1) and the Minkowski norms on m in (6-2). This
bijection is defined by

Fo(X)=
√

c1a2+ c2αᾱ′+ c1ca, X =
(

a
√
−1 α

−ᾱ′ − 1
n−1a
√
−1In−1

)
∈m,

where c1, c2 are positive real parameters and c is a real number with |c|< 1/
√

c1.

Among these Randers metrics, given any positive number k, the family with
parameters

c1 =
d2
+k2
−kd2

(k−d2)2
, c2 =

( k
k−d2

)2
, c =

d(d2
− k)

d2+ k2− kd2 ,
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has constant flag curvature k, where d is a real parameter satisfying |d| <
√

k.
Moreover, up to isometry these are all the connected simply connected homo-
geneous Randers spaces with positive constant flag curvature.

Moreover, any non-Riemannian Randers metric above is not of the Douglas
type, and hence is not projectively flat.

Proof. As stated above, to obtain the classification of invariant Randers metrics
on SU(n)/SU(n− 1), we first need to determine all invariant Riemannian metrics
thereon. These metrics are in bijection with the SU(n−1)-invariant inner products
on m. Now the vector space m, as a representation space of SU(n − 1), has the
decomposition m= V +m1, where

m1 =

{( 0 α
−ᾱ′ 0

) ∣∣∣ α ∈ Cn−1
}
.

Moreover, the subrepresentations V and m1 are irreducible. By Schur’s lemma, it
is easily seen that any SU(n−1)-invariant inner product on m must be of the form

〈X1, X2〉 = c1a1a2+ c2 Re(α1ᾱ
′

2) for c1, c2 > 0,

where

X i =

(
ai
√
−1 αi

−ᾱ′i −
1

n−1ai
√
−1

)
for i = 1, 2.

Therefore, the SU(n)-invariant Randers metric on SU(n)/SU(n − 1) determined
by 〈 · , · 〉 and

X0 =

(
c
√
−1 0

0 −
1

n−1 c
√
−1

)
∈ V, with

√
c1c < 1,

must be the one stated in the theorem.
Now we prove the theorem’s second claim. Note that SU(n) is a closed subgroup

of SO(2n) and is transitive on the sphere S2n−1
=SO(2n)/SO(2n−1). This means

that any SO(2n)-invariant Riemannian metric must be SU(n)-invariant. Thus for
any k > 0 there is one SU(n)-invariant Riemannian metric on SU(n)/SU(n − 1)
with constant sectional curvature k. We denote this Riemannian metric by Qk , and
next determine it explicitly. For two orthogonal unit vectors X, Y ∈m, the sectional
curvature of the plane spanned by X, Y is given by [Besse 1987, p. 183]

K (X, Y )=− 3
4

∣∣[X, Y ]m
∣∣2− 1

2〈[X, [X, Y ]]m, Y 〉

−
1
2〈[Y, [Y, X ]]m, X〉+ |U (X, Y )|2−〈U (X, X),U (Y, Y )〉,

where 〈 · , · 〉 is the inner product determined by Qk , | · | is the length function
of 〈 · , · 〉, [ · , · ] is the Lie bracket of su(n), [X, Y ]m denotes the projection of
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[X, Y ] to m corresponding to the decomposition (6-1), and U is a symmetric bi-
linear mapping from m×m to m defined by

〈U (X, Y ), Z〉 = 1
2

(
〈[Z , X ]m, Y 〉+ 〈[Z , Y ]m, X〉

)
.

Up to homotheties, the set of invariant Riemannian metrics on SU(n)/SU(n−1) has
dimension 1, so there must be a c1>0 such that the inner product c1a1a2+Re(α1ᾱ

′

2)

defines a Riemannian metric with constant sectional curvature. To find this c1, we
select three vectors in m:

X1 = diag
(√
−1
√

c1
,−

√
−1

(n−1)
√

c1
In−1

)
,

X2 =

( 0 α2
−α′2 0

)
, α2 = (1, 0, . . . , 0) ∈ Rn−1, X3=

√
−1X2.

Then a direct (albeit somewhat tedious) computation shows that

U (X1, X1)=U (X2, X2)=U (X3, X3)= 0,

U (X1, X2)=
1
2

( n
(n−1)

√
c1
− 2
√

c1

)
X3,

U (X1, X3)=
1
2

(
−

n
(n−1)

√
c1
+ 2
√

c1

)
X2,

U (X2, X3)= 0.

Substituting the above into the formula of sectional curvature, we get

K (X1, X2)= c1+
n

n−1
(1−
√

c1) and K (X2, X3)= 4− 3c1.

Now the equation K (X1, X2)= K (X2, X3) has a unique positive solution c1 = 1,
and in this case the sectional curvature is equal to 1. Therefore the inner product

(1/k)a1a2+ (1/k)Re(α1ᾱ
′

2)

defines the invariant Riemannian metric Qk on SU(n)/SU(n − 1) with constant
sectional curvature k.

Now for any X ∈ V with Qk(X, X) < 1, we can construct an invariant Randers
metric Fk,X on SU(n)/SU(n−1). Since Qk is SU(n)-invariant, the one parameter
group {exp(t X) | t ∈R} consists of isometries of Qk . In particular, for any U, V ∈m,
we have Qk

(
Ad(exp(t X))(U ),Ad(exp(t X))(V )

)
= Qk(U, V ) for all t . Taking the

derivative and considering the value at t = 0, we get

Qk([X,U ]m)+ Qk(U, [X, V ]m)= 0.

In other words, LX̃ Qk is equal to 0 at the origin. Since both the Riemannian metric
and the vector field X̃ are SU(n)-invariant, we have LX̃ Qk = 0 everywhere. By
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the criterion for a Randers metric to have constant flag curvature [Bao et al. 2004],
the Randers metric with navigation data (Qk, X̃), where

X =
(

d
√
−1 0

0 −
1

n−1 d
√
−1

)
, with |d|<

√
k,

has constant flag curvature k. By the transformation formulas between the defining
data and navigation data of Randers metrics [Chern and Shen 2005], we see that
the Randers metrics with parameters as described in the theorem have constant flag
curvature k.

Now we prove the converse of the conclusion above. Suppose (M, F) is a
connected simply connected homogeneous non-Riemannian Randers metric with
constant positive flag curvature k. Suppose the underlying Riemannian metric is Q
and the corresponding vector field is X̃ . Then (M, Q) is a connected simply con-
nected Riemannian metric with constant positive sectional curvature k. Thus M is
diffeomorphic to a sphere and X̃ is invariant under the full group of isometries of
(M, Q). In particular, X̃ has constant length with respect to Q. This means that
the Randers metric is in the corrected Yasuda–Shimada family. That is, it satisfies
θ = 0, and up to isometry there is only one family of such Randers metrics on
odd-dimensional spheres [Bao et al. 2004]. Therefore they must be exactly the
metrics constructed above.

Finally, by our previous result [An and Deng 2008], the Randers metric Fk,X is
of Douglas type if and only if Qk(X, [U, V ]m) = 0 for all U, V ∈ m. A simple
direct computation shows that this holds only if X = 0. Thus any non-Riemannian
Randers metric constructed above is not of the Douglas type. �

Other cases can be treated similarly; we omit the details here. The conclusion
is that on each of the homogeneous manifolds other than the types VII, VIII, and
IX, there exist invariant non-Riemannian Randers metrics. Any such metric is not
of the Douglas type. On Sp(n)/Sp(n− 1) with n ≥ 2, and given any k > 0, there
is also a family of invariant Randers metrics with constant flag curvature k. By
the arguments above, this family must be isometric to the corresponding family
on SU(2n)/SU(2n − 1) = S4n−1 that has constant flag curvature k. Moreover,
on Spin(9)/Spin(7), since the isotropy representation has no fixed nonzero points
[Ziller 1996], there are no Spin(9)-invariant non-Riemannian Randers metrics, al-
though there do exist invariant non-Riemannian metrics. Of course, there are no
invariant non-Riemannian metrics on the homogeneous manifolds of types VIII
and IX.
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A PROOF OF THE CONCUS–FINN CONJECTURE

KIRK E. LANCASTER

To Paul Concus and Robert Finn

Consider a nonparametric capillary or prescribed mean curvature surface
z = f (x, y) defined in a cylinder �× R over a two-dimensional region �
that has a boundary corner point at O with an opening angle of 2α. Suppose
2α ≤ π and the contact angle approaches limiting values γ1 and γ2 in (0, π)
as O is approached along each side of the opening angle. Our results yield
a proof of the Concus–Finn conjecture, which provides the last piece of the
puzzle of determining the qualitative behavior of a capillary surface at a
convex corner. We find that
• if (γ1, γ2) satisfies 2α+|γ1− γ2|> π , then f is bounded but discontin-

uous at O and has radial limits at O from all directions in � and, these
radial limits behave in a prescribed way;

• if (γ1, γ2) satisfies |γ1 + γ2 − π | > 2α, then f is unbounded in every
neighborhood of O; and

• otherwise f is continuous at O.

1. Introduction and statement of theorems

Let � ⊂ R2 be a connected, open set. Consider the prescribed mean curvature
problem

N f = H( · , f ( · )) in �,(1)

T f · ν = cos γ almost everywhere on ∂�,(2)

where T f =∇ f/
√

1+ |∇ f |2, N f =∇ ·T f , ν is the exterior unit normal on ∂�,
H(x, t) is a weakly increasing function of t for each x ∈� and γ = γ(x) ∈ [0, π].
If (1) specifically is

(3) N f = κ f + λ in �

(that is, H(x, t) = κt + λ), where κ and λ are constants with κ ≥ 0, then the
surface z = f (x) for x ∈ � represents the stationary liquid-gas interface formed

MSC2000: primary 76B45; secondary 35J60, 53A10.
Keywords: Concus–Finn conjecture, capillary graph.
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�

3

θ = α

θ =−α

∂−�

∂+�

3δ∗

Figure 1. The domain �.

by an incompressible fluid in a vertical cylindrical tube with cross section � in a
microgravity environment or in a downward oriented gravitational field; here the
subgraph U = {(x, t) ∈�×R : t < f (x)} represents the fluid-filled portion of the
cylinder and γ(x) is the angle at which the liquid-gas interface meets the vertical
cylinder at (x, f (x)) [Finn 1986].

Since 1970, Paul Concus and Robert Finn have made fundamental contributions
to the mathematical theory of capillary surfaces and have discovered that these
surfaces can behave in very peculiar and unexpected ways; see for example [Finn
1999; 2002b; 2002a]. Of particular interest, to both the mathematical and physical
theories in vertical cylinders, are domains � whose boundaries contain corners.

Suppose O = (0, 0) ∈ ∂� and � has a corner of size 2α ≤ π at O . With � as
illustrated in Figure 1, suppose there exist γ1, γ2 ∈ (0, π) such that

(4) lim
∂+�3x→(0,0)

γ(x)= γ1 and lim
∂−�3x→(0,0)

γ(x)= γ2.

Then Figure 2 can be used to illustrate our knowledge of the behavior of a solution
f of (3) and (2) at the corner O; here let R, D±1 and D±2 be the indicated open
regions in the (open) square (0, π) × (0, π). If (γ1, γ2) ∈ R ∩ (0, π) × (0, π),
then f is continuous at O; see [Concus and Finn 1996, Theorem 1; Lancaster
and Siegel 1996a, Corollary 4]. If (γ1, γ2) ∈ D±1 , then f is unbounded in any
neighborhood of O and the capillary problem has no solution if κ = 0 [Concus
and Finn 1996; Finn 1996]. If (γ1, γ2) ∈ D±2 , then f is bounded [Lancaster and
Siegel 1996a, Proposition 1] but its continuity at O is unknown. Concus and Finn
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Figure 2. The Concus–Finn rectangle.

discovered bounded solutions of (3) and (2) in domains with corners whose unit
normals (that is, Gauss maps) cannot extend continuously as functions of (x, y)
to a corner on the boundary of the domain (for example [Finn 1988b; Finn 1988a,
page 15; Concus and Finn 1996, Example 2; Finn 1996]). In 1992, as a result
of computational experiments, they formulated a conjecture on the continuity of
such surfaces [Concus et al. 1992; Concus and Finn 1996, page 67]; additional
numerical experiments in 1994 by Concus and Finn and in 1996 by Mittelmann
and Zhu found evidence to support the conjecture, which says that if (γ1, γ2)∈D±2 ,
then f has a jump discontinuity at O [Finn 1999, page 776]. Writing the conditions
for a pair of angles to be in D±2 yields the following formulation of the conjecture:

Concus–Finn conjecture. Suppose that 0< α < π/2, that the limits (4) exist and
that 0 < γ1, γ2 < π . If 2α+ |γ1− γ2| > π , then any solution of (1) and (2), with
H(x, z)= κz+ λ and κ nonnegative, has a jump discontinuity at O.

We will prove this conjecture when ∂�\{(0, 0)} is locally Hölder continuously
differentiable and γ is locally Hölder continuous on ∂�\{(0, 0)} in a neighborhood
of the origin. For convenience, we will adopt the following notation throughout
this paper. We will write points of R2 as lower case letters (for example, x) and
points of R3 as upper case letters (for example, X ). For m ∈ N with m ≥ 2, we
will write Om as the origin in Rm ; however, we will write O for O2 = (0, 0). We
denote by Bm(P, r) the open ball in Rm of radius r > 0 centered at P ∈Rm and by
B(x, r) the ball B2(x, r) for x ∈ R2. We will fix ρ∗ ∈ (0, 1) and α ∈ (0, π]; later
we will assume α ≤ π/2. We will write ω(θ) for (cos(θ), sin(θ)) for θ ∈ R.
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Our domain � will be a connected, simply connected open set in R2 such that
O ∈ ∂�, ∂� \ {O} is a piecewise C1 curve, ∂� has a corner of size 2α at O , and
the tangent cone to ∂� at O is L+∪ L−, where polar coordinates relative to O are
denoted by r and θ , and L+ = {θ = α} and L− = {θ =−α}. We will assume there
exists δ∗>0 such that ∂+�=∂�∩B(O, 3δ∗)∩T+ and ∂−�=∂�∩B(O, 3δ∗)∩T−

are connected, C1,ρ∗ arcs such that the tangent rays to ∂+� and ∂−� at O are L+

and L− respectively; here T+ = {x ∈R2
: x2 ≥ 0} and T− = {x ∈R2

: x2 ≤ 0}. We
set 3= ∂� \ (∂+�∪ ∂−�) and obtain

∂�= ∂+�∪ ∂−�∪3 with O ∈ ∂+�∩ ∂−� and B(O, 3δ∗)∩3=∅.

We will assume �⊂ {rω(θ) : r > 0,−π < θ <π}. Let us define τ+ ∈C0,ρ∗(∂+�)

and τ− ∈ C0,ρ∗(∂−�) such that τ+(O)= α, τ−(O)=−α,

(cos(τ+(x)), sin(τ+(x)), 0) is a unit tangent to ∂+�×R for x ∈ ∂+�

and

(cos(τ−(x)), sin(τ−(x)), 0) is a unit tangent to ∂−�×R for x ∈ ∂−�.

We will assume (4) holds and that γ ∈ C0,ρ∗(∂+�) (when γ(O) is set equal to γ1)
and γ ∈ C0,ρ∗(∂−�) (when γ(O) is set equal to γ2.) If γ1 = π/2 or γ2 = π/2, we
will need to be able to use slicing [Allard 1972, 4.10] and so we will assume

(5) |Dγ| ∈ L1(∂+�) if γ1 =
1
2π and |Dγ| ∈ L1(∂−�) if γ2 =

1
2π.

We will also assume (γ,�, O) is admissible as defined in Definition 3.4 (which
essentially says Emmer’s (boundary) condition holds at each point of ∂� \ {O}).
For a solution f ∈ C2(�)∩C1,ρ∗(� \ {O}) of (1) and (2), we let

En(X)= En f (X)=
(∇ f (x),−1)√
1+ |∇ f (x)|2

, where X = (x, t) ∈ (� \ {O})×R,

denote the downward unit normal to the graph of f ; in the capillary interpretation,
En represents the inward unit normal with respect to the fluid region. Using compari-
son theorems (for example, [Finn 1986, Theorem 5.1]) and existence and regularity
theorems for variational solutions (for example, [Finn 1986, Theorem 7.5 together
with Lemma 4.1]), we see that we may assume f is a variational (BV(�)) solution.
Since our interest will be in the local behavior of solutions of (1) and (2) near the
corner O , we sometimes think of � as the intersection of a larger domain with an
appropriate neighborhood of O and a solution f of (1) and (2) as the restriction to
� \ {O} of a function F that is a solution of a boundary value problem, perhaps
like (1) and (2), in this larger domain; in this case, restricting the problem to a
subdomain � for which (γ,�, O) is admissible is straightforward.

The following theorem will establish the validity of the Concus–Finn conjecture.
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Theorem 1.1. Let � and γ be as above with α ∈ (0, π/2], and suppose that
f ∈C2(�)∩C1,ρ∗(�\{O}) is a bounded solution to (1) satisfying (2) on ∂±�\{O}
with |H |∞ = supx∈� |H(x, f (x))| <∞. Suppose (4) holds and γ1, γ2 ∈ (0, π).
Then f is discontinuous at O whenever (γ1, γ2) satisfies

(6) 2α+ |γ1− γ2|> π.

Notice that we exclude cases in which γ1 or γ2 equals 0 or π . It seems likely that
an argument in this exceptional situation might use ideas from [Finn 1988b], and
it would be interesting to see the details of a proof.

For linear elliptic partial differential equations, especially uniformly elliptic
equations, the qualitative behavior “at” a boundary point of the solution f of a
boundary value problem can be determined by local information such as the pre-
scribed boundary information and bounds on the maximum rate at which | f | can go
to infinity “at” the boundary point (for example, [Bear and Hile 1983]). However
this is usually not true for quasilinear equations. The Concus–Finn conjecture,
if true, represents one of the rare situations when the qualitative behavior of a
solution (that is, its continuity at a convex corner) is determined by the boundary
information (that is, α, γ1 and γ2) in an arbitrarily small neighborhood of the
boundary point. At a nonconvex corner O (that is, α > π/2), [Shi and Finn 2004]
shows that information about ∂� ∩ Bε(O) and γ in Bε(O) for some ε > 0 need
not be sufficient to determine the continuity at O of a solution of (3) and (2).

Lancaster and Siegel [1996a] investigated the behavior of bounded solutions
of (3) and (2) at corners, both convex and nonconvex corners, and they noted in
[1996a; 1996b] that the conclusions in [1996a] carry over to solutions of (1) and (2)
when H satisfies some minor restrictions (that is, H(x, z) is either real-analytic or
strictly increasing in z); in this case, a bounded solution f ∈C2(�)∩C1(�\{O})
of (1) satisfying (2) on ∂±�\{O} is in C0(�) when (γ1, γ2)∈ R∩(0, π)×(0, π).
The arguments in [Concus and Finn 1996] and [Finn 1996] continue to show that
if (γ1, γ2) ∈ D±1 , then either (1) and (2) has no solution in a neighborhood of O or
f is unbounded in any neighborhood of O when H satisfies some extremely minor
restrictions. Thus, under mild restrictions on H , Figure 2 continues to illustrate the
behavior at O of solutions of (1) and (2). (See Remark 3.1 for a comment about
[Lancaster and Siegel 1996a].)

Once we know that a solution of (1) and (2) is discontinuous at a convex corner
O = (0, 0), it is natural to ask about its behavior nearby. In [Lancaster and Siegel
1996a, Theorem 1], it is proven that if ε ≤ γ ≤ π − ε for some ε > 0, then the
radial limits of f ,

R f (θ)= lim
r↓0

f (r cos(θ), r sin(θ)),
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exist for all θ ∈ (−α, α) and R f ∈C0([−α, α]), where R f (−α) and R f (α) are the
limits of the trace of f on ∂−� and ∂+� respectively; the continuity of the trace
of f on ∂−� and on ∂+� is a conclusion of this theorem.

Now suppose (4) holds and 2α+ |γ1− γ2| > π . Then Theorem 1.1 above and
[Lancaster and Siegel 1996a, Theorems 1 and 2] imply that there exist α1 and α2

with −α < α1 < α2 < α such that

R f (θ)=


constant if −α ≤ θ ≤ α1,

strictly monotonic if α1 ≤ θ ≤ α2,

constant if α2 ≤ θ ≤ α

and α1 − (−α) ≥ π − γ2 and α − α2 ≥ γ1 if R f is increasing on (α1, α2), while
α1 − (−α) ≥ γ2 and α− α2 ≥ π − γ1 if R f is decreasing on (α1, α2). Lancaster
and Siegel [1996a] call the intervals [−α, α1] and [α2, α] fans (of constant radial
limits), due to the shape of a region {(r cos(θ), r sin(θ)) : r > 0, α2 ≤ θ ≤ α} on
whose closure f is continuous; for nonconvex corners, a central fan (of constant
radial limits) with size π can also exist. In particular, we see that Theorem 1.1
implies f has a jump discontinuity at O .

This work arose as a consequence of the Summer School on Capillarity held at
the Max-Planck-Institut für Mathematik in Leipzig in June and July of 2003. While
the Concus–Finn conjecture was discussed at meetings prior to 2003 (for exam-
ple, the International Conference on Differential Equations and Dynamic Systems,
University of Waterloo, Waterloo, Canada, August, 1997), the 2003 summer school
brought together experts such as Maria Athanassenas, Robert Finn, Kirk Lancaster,
John McCuan, Erich Miersemann, David Siegel, Tom Vogel and Henry Wente. In
particular, Athanassenas and I worked (unsuccessfully) to find a counterexample
to the Concus–Finn conjecture while others attempted to find a proof; our failure to
find a counterexample together with the strong confidence in the correctness of the
conjecture by others, especially John McCuan, inspired me to attempt to prove the
conjecture. After the idea for a proof in the zero mean curvature case was obtained
in 2004, Robert Finn strongly encouraged me to find a proof in the general case. In
2005, I did discover the idea of a proof; modulo some essentially minor technical
modifications, this idea forms the basis for this work. This discovery may not have
happened without the contributions of Athanassenas, Finn and McCuan. On the
other hand, the absence of a subsequent summer school on capillarity, perhaps in
the United States, may have delayed progress on important questions in capillarity
(for example, [Athanassenas and Lancaster 2008; Finn 1999, 2002b; 2002a].)

2. Image of the Gauss map

In this section, we characterize in Theorem 2.1 the behavior of the limits at points
of {O} × R of the Gauss map for the graph of f . The proof involves the use
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of a 1975 result by Massari and Pepe [1975], generalized solutions (for example,
[Giusti 1980]) and Leon Simon’s capillarity paper [1980].

The following proposition is [Massari and Pepe 1975, Theorem 3], provided in
translation for the convenience of the reader; the author thanks Professor Giuseppe
Tenti of the Department of Applied Mathematics of the University of Waterloo for a
translation of that paper. Here ∂∗A denotes the reduced boundary of a Caccioppoli
set A,

νA(x)= lim
ρ→0

∫
B(x,ρ) DφA∫

B(x,ρ) |DφA|

and |νA(x)| = 1 for x ∈ ∂∗A; if ∂A is a C1 hypersurface, x ∈ ∂A, and ν(x) is
the interior unit normal to ∂A, then νA(x) = ν(x); see for example [Giusti 1984,
Chapter 3]. In the proposition, νh(x) denotes νEh (x), ν(x) denotes νE(x), and �
denotes an open set in Rn; in the context used in this paper, such an open set might
be B3(X, r) for X ∈ R3 and r > 0, or �∞×R.

Proposition 2.1. Let {Eh}h be a sequence of Caccioppoli sets of mean curvature
Ah ∈ L p

loc(�) with p > n. If

φEh (x)→ φE(x) in L1
loc(�),(7)

∂Eh ∩� 3 xh→ x ∈ ∂∗E ∩�,(8)

Ah(x)→ A(x) in L1
loc(�)(9)

and if for every compact K of � there exists a constant γ(K ) such that

(10) ‖Ah‖L p(K ) < γ(K ) for all h ∈ N,

then there exists h0 ∈ N, such that, for every h > h0, we have

xh ∈ ∂
∗Eh ∩�,(11)

lim
h→∞

νh(xh)= ν(x).(12)

Remark 2.1. We define densities in the usual manner. If µ is a measure on Rn

and a ∈ Rn , we define the m-dimensional upper density 2∗m(µ, a), lower density
2m
∗
(µ, a) and density 2m(µ, a) of µ at a as in [Allard 1972]. For example,

2∗m(µ, x)= lim sup
r↓0

µ(Bn(x, r))
αmrm .

If A ⊂ Rn , x ∈ Rn and m ≤ n, we define the m-dimensional upper (mass) den-
sity 2∗m(A, x), the m-dimensional lower (mass) density 2m

∗
(A, x) and the m-

dimensional (mass) density 2m(A, x) of A at x in the usual way. For example,

2m
∗
(A, x)= lim inf

r↓0

H m(Bn(x, r)∩ A)
αmrm ;
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here αm = H m(Bm(Om, 1)) denotes the m-dimensional volume of the unit ball
in Rm .

Recall that a m-dimensional varifold in Rn is a Radon measure on Rn
×G(n,m).

We denote the space of m-dimensional varifolds in Rn (with the weak topology) by
Vm(R

n). To each Hm measurable and (Hm,m) rectifiable set S in Rn is associated a
varifold (for example [Allard 1972, Sections 3.5 and 4.7; Taylor 1976, Section I]);
we adopt the notation v(S) of [Allard 1972] for this varifold, whereas [Taylor 1976]
uses the notation |S|. We denote the first variation of V ∈ Vm(R

n) by δV , as in
[Allard 1972, Chapter 4].

For r > 0, let µr : Rn
→ Rn be defined by µr (X) = r X for X ∈ Rn . Let

V ∈ Vm(R
n). We set Vr = µr#V (for example [Allard 1972, Section 3.2; Taylor

1976, Section I]); then

(13) ‖Vr‖ = rmµr#‖V ‖ and ‖δVr‖ = rm−1µr#‖δV ‖

by [Allard 1972, 3.2(2) and 4.12(1)], respectively. Notice that if L > 0, then

‖µr#V ‖(B(On, L))= rmµr#‖V ‖(B(On, L))

= rm
‖V ‖(B(On, L/r))= Lm ‖V ‖(B(On, L/r))

(L/r)m
.

Thus, if 2∗m(‖V ‖, On) <∞,

(14) lim sup
r→∞

‖µr#V ‖(B(On, L))≤ Lmα(m)2∗m(‖V ‖, On).

Similarly, if k = m− 1 and 2∗k(‖δV ‖, On) <∞, then

(15) lim sup
r→∞

‖δ(µr#V )‖(B((On, L)≤ Lkα(k)2∗k(‖δV ‖, On).

Theorem 2.1. Suppose � and γ are as in Theorem 1.1 such that (4) holds with
γ1, γ2 ∈ (0, π) and γ2 − γ1 > π − 2α, that is, (γ1, γ2) ∈ D+2 . Let f ∈ C2(�) ∩

C1,ρ∗(� \ {O}) be a bounded solution of (1) and (2) and suppose there exists
J ∈ (0,∞) such that |H(x, f (x))| ≤ J on �×R. Let β ∈ (−α, α) and let (x j ) be
a sequence in � satisfying lim j→∞ x j = O and

(16) lim
j→∞

x j/|x j | = (cos(β), sin(β)).

(i) If β ∈ [−α+π − γ2, α− γ1], then lim j→∞ En(x j )= (− sin(β), cos(β), 0).

(ii) If β ∈ (−α,−α+π − γ2], then

lim
j→∞
En(x j )= (− sin(−α+π − γ2), cos(−α+π − γ2), 0).

(iii) If β ∈ [α− γ1, α), then lim j→∞ En(x j )= (− sin(α− γ1), cos(α− γ1), 0).
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The proof consists of minor modifications of the proof of [Simon 1980] and
the use of generalized solutions [Giusti 1980; Jeffres and Lancaster 2007]. The
rationale for using results from [Simon 1980] and [Giusti 1980] is essentially the
same as that used in [Tam 1986c]. (See Remark 2.3.) Simon’s technique is the
standard one (for example, [Federer 1969, Sections 3.1 and 5.4]) of blowing up
the graph of a solution of (1) and (2) about the origin O3 ∈ R3; Simon obtains a
plane through the origin, and we modify that proof to show that the limit of a blow-
up about O3 of the graph of f − R f (β) is a vertical half-plane π1. Unfortunately,
the third component of the image (x jk/ε jk , [ f (ε jk x jk )− R f (β)]/ε jk ) of the blow-
up sequence being used might diverge to infinity. We therefore consider a type of
sequence introduced in [Tam 1986c] and use the result above, Proposition 2.1 and
BV(�× R) techniques (for example, [Jeffres and Lancaster 2007]) to determine
the unit normal to π1. One might wish to read Remark 2.4 before examining the
proof of this theorem.

It will be convenient to define some quantities and state an assumption. Set

ε0 =
1
8 min{γ1, π − γ1, γ2, π − γ2}, ζ = 1

2π − 2ε0,

c1 =
1
4(cos(2ε0)− | cos(γ1)|), λ1 = (cos(α− ζ ), sin(α− ζ ), 0),

c2 =
1
4(cos(2ε0)− | cos(γ1)|), λ2 = (cos(−α+ ζ ), sin(−α+ ζ ), 0),

C = (min{sin(ε0), c1, c2})
−1 .

A quick calculation shows lim inf∂+�3x→0(−ν(x) ·λ1+ cos(γ(x))En(x) ·λ1)≥ 4c1

and lim inf∂−�3x→0(−ν(x) ·λ2+cos(γ(x))En(x) ·λ2)≥ 4c2. We will assume δ∗> 0
was chosen small enough that

(a) |τ+(x)−α|< α/4 and |τ−(x)+α|< α/4 if |x | ≤ 3δ∗.

(b) �∩ B(O, 3δ∗)⊂ {rω(θ) : r > 0, θ ∈ [−α− ε0, α+ ε0]}.

(c) −ν(x) · λ1+ cos(γ(x))En(x) · λ1 ≥ 2c1 if x ∈ ∂+� and |x | ≤ 3δ∗.

(d) −ν(x) · λ2+ cos(γ(x))En(x) · λ2 ≥ 2c2 if x ∈ ∂−� and |x | ≤ 3δ∗.

Notice that (a) and (b) imply there exist x± : [0, 3δ∗]→R2 that are parametrizations
of ∂±� such that x = x+(|x |) for x ∈ ∂+� and x = x−(|x |) for x ∈ ∂−�. Let
�λ =�∩ B(O, λ) for λ > 0.

Proof. Consider β ∈ (−α, α) fixed and set u(x)= f (x)− R f (β), as in [Lancaster
and Siegel 1996a]. Set δ0 = 2δ∗. Let

U = {(x, t) : x ∈�, t < u(x)} be the subgraph of u
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and
M0 = {(x, u(x)) : x ∈�∩ B(O, 3δ∗)},

M= {(x, u(x)) : x ∈�∩ B(O, 3δ∗) \ {O}},

∂+M= {(x, u(x)) : x ∈ ∂+� \ {O}},

∂−M= {(x, u(x)) : x ∈ ∂−� \ {O}}.

Notice that ∂U ∩ (�3δ∗ ×R) =M0. Let V = v(M) and V0 = v(M0) and note that
these are both two-dimensional integral varifolds; see for example [Allard 1972,
Section 3.5].

We will first use a variation of the argument in [Simon 1980, Section 1]1 to show
that

(17) H1(∂+M∪ ∂−M) <∞.

As in [S], let η denote the unit vector normal to ∂M= ∂+M∪ ∂−M that is tangent
to M and points into �×R; in the notation here,

η(X)=
−ν(X)+ (En(X) · ν(X))En(X)
|−ν(X)+ (En(X) · ν(X))En(X)|

=
−ν(X)+ cos(γ)En(X)
|−ν(X)+ cos(γ)En(X)|

.

Let h1, h2, s ∈C∞(R) with 0≤ h1(t), h2(t), s(t)≤ 1 for t ∈R, such that h1= 0 on
(−∞,−α/2] and h1 = 1 on [α/2,∞), with h2 = 1− h1 and s(t)= 1 if |t | ≤ 2δ∗

and s(t)= 0 if |t | ≥ 3δ∗. Define φ1, φ2 ∈ C∞((� \ {O})×R) such that

φ1(rω(θ), z)= h1(θ)s(r)λ1 and φ2(rω(θ), z)= h2(θ)s(r)λ2

for 0 < r < ∞ and θ ∈ (−π, π) that satisfy rω(θ) ∈ � \ {O}. Notice that
sup r |Dφ1|<∞ and sup r |Dφ2|<∞. As in [S, (1.4)], we obtain

ρ−1
∫

M∩[B(O,ρ)×R]

(φ1 · δ
Mr) dH2

+

∫
∂+M

min{r/ρ, 1}φ1 · η dH1

=−

∫
M

min{r/ρ, 1}(δM
·φ1+ Hν ·φ1) dH2,

since h1(t)= 0 if t ≤−α/2, and

ρ−1
∫

M∩[B(O,ρ)×R]

(φ2 · δ
Mr) dH2

+

∫
∂−M

min{r/ρ, 1}φ2 · η dH1

=−

∫
M

min{r/ρ, 1}(δM
·φ2+ Hν ·φ2) dH2,

since h2(t)= 0 if t ≥ α/2. From (b) and (c), we see that

φ1(X) · η(X)≥ c1h1(θ)s(r) if X = (rω(θ), z) ∈ ∂+M with θ ∈ (0, α+ ε0)

1In this proof, we refer to [Simon 1980] as [S].
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and, from (b) and (d), that

φ2(X) · η(X)≥ c2h2(θ)s(r) if X = (rω(θ), z) ∈ ∂−M with θ ∈ (−α− ε0, 0).

Using the argument on [S, page 367], we obtain

H1(∂+M∩ (B(O, δ0)×R)) <∞ and H1(∂−M∩ (B(O, δ0)×R)) <∞.

Since f , and so u, is in C1,ρ∗(� \ {O}), we see that (17) holds.
As in the proof of [S, (1.8)], we see using [Allard 1972, 4.2, 4.3(5), 4.7] that

(1), (17) and [S, (1.1)] imply

‖δV ‖(B(O, r)×R)≤ JH2(M∩ (B(O, r)×R))+H1(∂M∩ (B(O, r)×R))

and therefore

(18) ‖δV ‖(B(O, r)×R) <∞ for 0< r < R2.

Set K =max{sup�×R |δ
M
·φ1|, sup�×R |δ

M
·φ2|}.

Now let us substitute in [S, (1.4)] successively φ = φ1ψ and φ = φ2ψ , where
ψ ∈ C1

0(B(O, 3δ∗)×R). If we argue as in [S], we obtain the following analogues
for k = 1, 2 of [S, (1.10)]:

ρ−1
∫

M∩(B(O,ρ)×R)

ψ(φk · Dr)dH2
+

∫
∂M
ψ(φk · η)dH1

≤ (K + J ))
∫

M
(ψ + |δMψ |)dH2

+ o(1) as ρ→ 0.

Now (b) implies λ1 · Dr ≥ sin(ε0) on the support of φ1 and λ2 · Dr ≥ sin(ε0) on
the support of φ2. Therefore, if 0< ρ < δ0, then

lim sup
ρ↓0

ρ−1
∫

M∩(B(O,ρ)×R)

h1ψdH2
+

∫
∂M

h1ψdH1

≤ C(K + J )
∫

M

(
h1ψ + |δ

M(h1ψ)|
)
dH2

and

lim sup
ρ↓0

ρ−1
∫

M∩(B(O,ρ)×R)

h2ψdH2
+

∫
∂M

h2ψdH1

≤ C(K + J )
∫

M

(
h2ψ + |δ

M(h2ψ)|
)
dH2.
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By adding these inequalities, we see that if 0< ρ < δ0 then

lim sup
ρ↓0

ρ−1
∫

M∩(B(O,ρ)×R)

ψdH2
+

∫
∂M
ψdH1

≤ C(K + J )
∫

M

(
ψ + |δM(h1ψ)| + |δ

M(h2ψ)|
)
dH2

≤ C(K + J )
∫

M

(
ψ(1+ |δM(h1)| + |δ

M(h2)|)+ |δ
M(ψ)|

)
dH2.

From the first part of [Allard 1972, 3.1(2)], we see this implies for the varifold
V = v(M) that

(19) ‖δV ‖(ψ)≤ C(K + J )
∫ (
ψ(1+ |δM(h1)| + |δ

M(h2)|)+ |δ
M(ψ)|

)
d‖V ‖,

which is an analogue of [S, (1.11)]. As in [S], this implies

(20) H2(M∩ B3(Y, ρ))≥ Cρ2(1+ δ0),

for some constant C > 0, and therefore

(21) 22
∗
(‖V ‖, Y )≥ C > 0

if 0<ρ < δ0 and Y ∈M∩(B(O, σ )×R). (These two conclusions can be obtained
independently using BV(�) techniques and Lemma 3.1.)

Let
F1 = {(x, t) : x ∈ ∂+� \ {O}, t ≤ u(x)},

F̃1 = {(x, t) : x ∈ ∂+� \ {O}, t ≥ u(x)},

F2 = {(x, t) : x ∈ ∂−� \ {O}, t ≤ u(x)}, and

F̃2 = {(x, t) : x ∈ ∂−� \ {O}, t ≥ u(x)}.

Let W1=v(F1), W̃1=v(F̃1), W2=v(F2) and W̃2=v(F̃2), be the two-dimensional
varifolds associated with F1, F̃1, F2 and F̃2, respectively (for example, [Allard
1972, Sections 3.5 and 4.7] and [Taylor 1976, Section 1]). Set

E1 = {x ∈ ∂� : γ(x) < 1
2π}×R and E2 = {x ∈ ∂� : γ(x) > 1

2π}×R.

Define Z to be the two-dimensional varifold given by

Z = V −W1 cos(γ)χE2 + W̃1 cos(γ)χE1 −W2 cos(γ)χE2 + W̃2 cos(γ)χE1 .

The monotonicity formula [S, (2.6)] holds for Z ; that is, there exists c ≥ 0 such
that

(22) exp(crβ)
‖Z‖(B3(O3, r))

r2 is increasing in r for 0< r < R,
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and, in conjunction with (21), we see that the two-dimensional density of Z at O3

exists and

(23) 22(‖Z‖, O3) ∈ (0,∞).

We note, for example, that if γ1 = π/2, then (5) is used in a slicing argument (that
is, [Allard 1972, 4.10(1)]) to show that [S, (2.3)] (with ∂� replaced by ∂+�) holds.

Suppose (x j ) is a sequence in� converging to O as j→∞ and satisfying (16).
For each j ∈ N, set ε j = |x j | and � j = {x ∈ R2

: ε j x ∈ �}, and define f j , u j ∈

C2(� j )∩C1(� j \ {O}) by

f j (x)=
f (ε j x)− f (x j )

ε j
and u j (x)=

f (ε j x)− R f (β)
ε j

=
u(ε j x)
ε j
;

notice that ∇u j =∇ f j on � j and u j (x)= f j (x)+c j if c j = ( f (x j )− R f (β))/ε j .
Let En j be the downward unit normal to the graph of f j (and the graph of u j ), so
that

En j (x)= En(ε j x)=
(

T f j (x),
−1√

1+|∇ f j (x)|2

)
for x ∈� j .

Let U j ={(x, t)∈� j×R : t < u j (x)} be the subgraph of u j for each j ∈N. Notice
that µ1/ε j (M0)= ∂U j ∩ (� j ×R) and µ1/ε j (M)⊂ ∂U j ∩ ((� j \ {O})×R).

From [Allard 1972, 2.6(2)(a)] with G = {B(O3, L)×G(3, 2) : L > 0}, we see
that (14) implies that there is a subsequence (ε jk ) of (ε j ) and a varifold C ∈V2(R

3)

in the varifold tangent of Z at O such that

C = lim
k→∞

Z1/ε jk
,

where Z1/ε jk
= µ1/ε jk #(Z). By (14) and [Allard 1972, 2.6(2)(c)],

‖C‖(B(O3, L))= C(B(O3, L)×G(3, 2))≤ L2α(2)22(‖Z‖, O3);

from (22), we see that µr#‖C‖=‖C‖ for all r > 0 (as observed in [Simon 1980], p.
576). Since ‖V ‖(�×R)=‖Z‖(�×R) and (17) holds (hence H2(M∩(∂�×R))=

0), we see that
2∗2(‖V ‖, O3)≤2

2(‖Z‖, O3) <∞.

Using (14) and [Allard 1972, 2.6(2)(a)], we notice that there is a subsequence of
(ε jk ), still denoted (ε jk ), and a varifold V∞ ∈ V2(R

3) in the varifold tangent of V
at O3 such that

V∞ = lim
k→∞

V1/ε jk

and, by (14) and [Allard 1972, 2.6(2)(c)],

‖V∞‖(B(O3, L))= V∞(B(O3, L)×G(3, 2))≤ L2α(2)22(‖Z‖, O3).
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In a similar manner (as in [S, page 370]), we see that

W1,∞ = lim
k→∞

µ1/ε jk #(W1 a(− cos(γ1)) cos(γ1)χF1),

W̃1,∞ = lim
k→∞

µ1/ε jk #(W̃1 a(cos(γ1)) cos(γ1)χF̃1
),

W2,∞ = lim
k→∞

µ1/ε jk #(W2 a(− cos(γ2)) cos(γ2)χF2),

W̃2,∞ = lim
k→∞

µ1/ε jk #(W̃2 a(cos(γ2)) cos(γ2)χF̃2
)

all exist and

C = V∞− cos(γ1)W1,∞+ cos(γ1)W̃1,∞− cos(γ2)W2,∞+ cos(γ2)W̃2,∞.

Notice that W1,∞=0 if cos(γ1)<0 and W̃1,∞=0 if cos(γ1)>0, and that W2,∞=0
if cos(γ2) < 0 and W̃2,∞ = 0 if cos(γ2) > 0.

Using the arguments in [S, Section 3 up to the top of page 373 (including (3.5)′)],
we see the following.

(i) For each ρ > 0, there is a sequence {δk} of positive reals that converges to
zero such that

B3(O3, ρ)∩M jk ⊂ {Y ∈ B3(O3, ρ) : dist(Y, spt (‖V∞‖)) < δk},

where M jk = µ1/ε jk
M for each k ∈ N (that is, [S, (2.7)].)

(ii) M∞ = limk→∞M jk , taken in �∞ × R in the varifold sense, exists, and we
have

V∞ (�∞×R)= v(M∞)

and
µr (M∞)=M∞ for r > 0 (that is, M∞ is a cone).

(iii) M∞ is empty or M∞=
⋃N

j=1 π j ∩(�∞×R), where the π j are planes through
the origin and πi ∩π j ∩ (�∞×R)=∅ if i 6= j .

(iv) Either

Case 1. N = 1 and M∞ = π1 ∩ (�∞×R) for some plane π1 whose intersection
with {O}×R is {O3}; or

Case 2. N <∞ and M∞ =
⋃N

j=1 π j ∩ (�∞×R), where π1, . . . , πN are planes
with the line {O}×R in common.

(v) The subgraphs U jk of u jk and U∞ = limk→∞ µ1/ε jk
(U ) minimize appropriate

functionals (for example, [S, (3.4)′]).

Using (19) and arguing as in the proof of [S, (3.7), pages 373–4], we see that

M∞ 6=∅ and V∞ = v(M∞).
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(We note that this argument, specifically in the paragraph after [S, (3.7)], implies
2∗1(‖δV ‖, O3) <∞ and allows (15) to be used.) In particular, spt (‖V∞‖)=M∞
and so (i) says that for each ρ > 0, there is a sequence {δk} of positive reals that
converges to zero such that

(24) B3(O3, ρ)∩M jk ⊂ {Y ∈ B3(O3, ρ) : dist(Y,M∞) < δk}.

The conclusions in [S, Sections 2 and 3 up to, but not including, the paragraph
containing (3.17)] hold and imply that N = 1, M∞ = π1 ∩ (�∞×R) and either

• π1 ∩ ({O}×R)= {O3}, or

• {O}×R⊂ π1.

(See also [Jeffres and Lancaster 2007].) We observe that the first is impossible
when (γ1, γ2) ∈ D+2 (or (γ1, γ2) ∈ D−2 ) since no plane can meet ∂+�∞ × R in
angle γ1 and ∂−�∞×R in angle γ2 (as Concus and Finn [1996] observed and an
easy calculation confirms). Therefore there exists ξ1, ξ2 ∈ R with ξ 2

1 + ξ
2
2 = 1 and

ξ = (ξ1, ξ2, 0) ∈ S2 such that

π1 = {X ∈ R3
: X · ξ = 0} and U∞ = {X ∈�∞×R : X · ξ > 0}.

Hence

(25) M∞ = {X ∈ R3
: X · ξ = 0} ∩ (�∞×R)

and we may write U∞ = U (1)
∞ × R, where U (1)

∞ = {x ∈ �∞ : ξ · (x, 0) > 0}.
Using the arguments in [S, pages 374–5], which yield [S, (3.13), (3.15)–(3.16) and
(3.18)–(3.18)′] and, for example, defining

E (1)
∞
(W )=H1(∂W ∩�∞ ∩ B(O, 1))− cos(γ1)H

1(∂W ∩ ∂+�∞ ∩ B(O, 1))

− cos(γ2)H
1(∂W ∩ ∂−�∞ ∩ B(O, 1))

for any open set W ⊂�∞ satisfying

H1(∂W ∩ B(O, 1)) <∞ and (W4U (1)
∞
)∩ B(O, 1)⊂⊂ B(O, 1),

we obtain

E (1)
∞
(U (1)
∞
)≤ E (1)

∞
(W )

for any set W as described above (compare with [S, (3.16)].)
Note that f j ∈BV(� j ) is a variational solution and hence a generalized solution

of (1) and (2) with �, γ and H(x, z) replaced by � j , γ j and H∗j (x)= ε j H∗(ε j x)
(with H∗ as in (46)) respectively. By Lemma 3.2, ( f jk ) has a subsequence, still
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denoted ( f jk ), that converges to a generalized solution f∞ :�∞→ [−∞,∞] of

Nv = 0 in �∞,

T v · ν+
∞
= cos(γ1) almost everywhere on ∂+�∞,

T v · ν−
∞
= cos(γ2) almost everywhere on ∂−�∞,

where ν+
∞
= (cos(α+ 1

2π), sin(α+ 1
2π)) and ν−

∞
= (cos(−α− 1

2π), sin(−α− 1
2π)).

Let us denote the subgraph of f j by

(26) U∗j = {(x, t) ∈� j ×R : t < f j (x)} for j ∈ N,

and denote by U∗
∞

the subgraph of f∞. Notice that (16) and f j (x j/|x j |) = 0 for
j ∈ N imply

(a) if K is open with K ⊂⊂ �∞ and (cos(β), sin(β)) ∈ K , then there exists
m(K ) ∈ N such that K ⊂� j and x j/|x j | ∈ K whenever j ≥ m(K );

(b) (x j/|x j |, 0) ∈ ∂U∗j for j ∈ N; and

(c) (x j/|x j |, 0)→ (cos(β), sin(β), 0) as j→∞.

Set xβ = (cos(β), sin(β)) and Xβ = (cos(β), sin(β), 0). From interior density
bounds (for example, [Tam 1986b, Lemma 3.1]), we see that Xβ ∈∂U∗

∞
∩(�∞×R).

Notice that M∗ = ∂U∗
∞
∩ (�∞ × R) is a smooth surface whose (“downward”)

unit normal can be denoted by Eχ(X) = (χ1(X), χ2(X), χ3(X)) for X ∈ M∗; then
χ3(X)≤ 0 for all X ∈M∗. By Proposition 2.1, we see that

(27) En jk (yk)→ Eχ(X) as k→∞ whenever (yk, f jk (yk))→ X ∈M∗;

in particular, (c) implies En jk (x jk/ε jk )→ Eχ(Xβ) as k→∞ (with the set � in the
proposition being a neighborhood of X (or Xβ) in R3.) We claim that either

(ℵ) χ3(X) < 0 for all X ∈M∗ or

(ω) Eχ is constant, χ3(X)= 0 for all X ∈M∗ and M∗ is the intersection of �∞×R

with the vertical plane π2 containing Xβ and normal to Eχ .

(To see this, we may represent the minimal surface M∗ in isothermal coordinates
as the (downward oriented) parametric surface X : B(O, 1)→ R3 (for example,
[Courant 1977; Lancaster 1985; Elcrat and Lancaster 1986; Lancaster and Siegel
1996a]) and obtain the Weierstrass ( f, g)-representation of M∗, where

g(w)= S( Eχ(X (u, v))) for w = u+ iv ∈ C, |w|< 1,

is the composition of the (north pole) stereographic projection S with the Gauss
map Eχ ◦ X : B(O, 1)→ S2

−
. Then g is a holomorphic map from the open unit

ball in C into the closed unit ball in C. If χ3(X p) = 0 for some X p ∈ M∗, then
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X p = X (u p, vp) for some (u p, vp) ∈ B(O, 1) and |g(wp)| = 1 for wp = u p+ ivp;
the maximum modulus principle implies g is constant. The claim follows.)

Suppose (ℵ) holds and χ3(X) < 0 for all X ∈M∗. Then f∞ ∈ C2(�∞) and M∗

is the graph of f∞ over �∞. Let 0 < R < R < dist(xβ, ∂�∞); then there exists
L ≥ 0 such that |∇ f∞(x)| ≤ L for all x ∈ B(xβ, R). Now (27) together with the
uniform interior Hölder estimates for the unit normal (or Gauss) map of the graphs
of solutions of (1) (for example, [Gilbarg and Trudinger 1983, Theorem 16.18]
with K =−1 and K ′ = J (R− R)2 or [S, (3.1)]) imply there exists K (R, R) such
that if k ∈ N satisfies k ≥ K (R, R), then B(xβ, R)⊂� jk and

(28) |∇u jk (x)| ≤ L + 1 for all x ∈ B(xβ, R).

Notice that for k large enough, (28) contradicts (24) and (25) and so (ℵ) cannot
hold. Therefore (ω) holds, M∗ is the intersection of �∞×R with the plane π2, we
may write

Eχ = (cos(θ), sin(θ), 0) for some θ ∈ (−π, π]

and U∗
∞
= {X ∈�∞×R : (X− Xβ) · Eχ > 0}. (Notice then that (24) and (25) imply

Eχ = Eξ and π2 = π1.)
We will use the theory of generalized solutions (for example, [Giusti 1980]) to

determine θ . We claim that

(29) θ =


−α+π − γ2+π/2 if β ∈ (−α,−α+π − γ2],
β +π/2 if β ∈ [−α+π − γ2, α− γ1],

α− γ1+π/2 if β ∈ [α− γ1, α).

The sets

(30) P= {x ∈�∞ : f∞ =∞} and N= {x ∈�∞ : f∞ =−∞}

each minimize an appropriate functional, and the arguments in [JL]2 show that
U∞ =P×R, where P is given in one of [JL, (iv), (vi) or (viii) of Theorem 1] and
N=�∞ \P.

Suppose β ∈[−α+π−γ2, α−γ1] holds. We see that [JL, Theorem 1, case (viii)]
must hold. Since ∂P is a line going through O and (cos(β), sin(β)), we have
Eχ = (− sin(β), cos(β), 0) and θ = β +π/2.

Suppose β ∈ (−α,−α+ π − γ2] holds. Then [JL, Theorem 1, case (vi)] must
hold, Eχ = (− sin(−α+π−γ2), cos(−α+π−γ2), 0) and θ =−α+π−γ2+π/2.

Finally, suppose β ∈ [α − γ1, α). Then [JL, Theorem 1, case (iv)] must hold,
Eχ = (− sin(α − γ1), cos(α − γ1), 0) and θ = α − γ1 + π/2. Our claim (29) is
therefore proven.

2Here [JL] stands for [Jeffres and Lancaster 2007].
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We have taken an arbitrary sequence (x j ) in � that satisfies (16) and shown that
it has a subsequence (x jk ) for which (En(x jk )) converges to Eχ = (cos(θ), sin(θ), 0)
with θ given by (29). Therefore, if (y j ) is any sequence in � that satisfies (16)
such that lim j→∞ En(y j )= Eλ for some S2

3 Eλ 6= Eχ , it must have a subsequence (y jk )

for which En(y jk ) converges to both Eλ and Eχ , which is a contradiction. Thus, we
see that the conclusion of Theorem 2.1 follows. �

Remark 2.2. Notice that (γ1, γ2) ∈ D−2 if and only if (γ2, γ1) ∈ D+2 and therefore
we see that the conclusion of an appropriate version of Theorem 2.1 for the situation
where (γ1, γ2) ∈ D−2 follows using a reflection in the x-axis and Theorem 2.1.

Remark 2.3. The proof of [Tam 1986c, Section 1] is essentially the same as that
used in [Simon 1980] with the modification that [S, (1.12)] does not hold, the two-
dimensional density 22(‖Z‖, O3) = 0 and M∞ = ∅. Unfortunately the proofs of
the claim in [Tam 1986c, Section 2] that (i) a subsequence of { f j } (called {u j }

therein) converges “locally to a generalized solution” f∞ (called therein u∞) (that
is, φU∗j → φU∗∞ in L1

loc(�∞×R) with U∗j given by (26)) and (ii) the “graph” of this
generalized solution (that is, ∂U∗

∞
) is a vertical plane are absent; the “blow-up” in

that section does not correspond to the process of blowing up with respect to a fixed
point (that is, O3) used in [Simon 1980]. (In spite of this, the ideas in [Tam 1986c,
Section 2] are remarkable.) One difficulty is that even if a subsequence of { f j }

should happen to converge in the sense of [Giusti 1980] to a generalized solution
h∞, the technique used here (for example, (24), (25), (28)) to show that ∂U∗

∞
is a

vertical plane cannot be used in [Tam 1986c] to show that h∞ is the generalized
solution u∞ illustrated in [Tam 1986c, Figure 2 (see page 478)]. Even if Tam’s
proof can be correctly completed, the details would be sufficiently nontrivial that
they should be provided to the reader. This new proof might be somewhat similar
in outline to that of Theorem 2.1 above. (Of course, if α+γ <π/2 in [Tam 1986c],
no such proof could exist; the potential correction would need to be cognizant of
this fact.)

Remark 2.4. In some uses of geometric measure theory in the literature (for exam-
ple, [Allard 1972; Taylor 1977]), the authors leave important details to the reader
or adopt a glib, hand waving, style. In this style, the proof of Theorem 2.1 can be
shortened to the following:

Proof sketch. Suppose (x j ) is a sequence in � converging to O as j →∞ and
satisfying (16). For each j ∈ N, set ε j = |x j | and � j = {x ∈ R2

: ε j x ∈ �}, and
define f j , u j ∈ C2(� j )∩C1(� j \ {O}) by

f j (x)=
f (ε j x)− f (x j )

ε j
and u j (x)=

f (ε j x)− R f (β)
ε j

.
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Using the techniques and results in [Simon 1980], we see that there is a vertical
plane π1 containing O3 with unit normal Eχ such that for each ρ > 0, there is a
sequence {δk} of positive reals that converges to zero such that

(31) B3(O3, ρ)∩M jk ⊂ {Y ∈ B3(O3, ρ) : dist(Y, π1) < δk},

where M j = µ1/ε j M for each k ∈ N; recall that µr (X) = r X , X ∈ R3, and M =

{(x, f (x)− R f (β)) : x ∈�∩ B(O, 3δ∗) \ {O}}.
Now the sequence { f j } has a subsequence that converges (as in [Giusti 1980])

to a generalized solution f∞ of (1) and (2) (this is Lemma 3.2). Since f j (x j )= 0,
we have (x j , 0) ∈ ∂U∗j for each j ∈ N, where U∗j = {(x, t) ∈� j ×R : t < f j (x)}.
Interior density bounds (for example, [Tam 1986b, Lemma 3.1]) imply

(cos(β), sin(β), 0) ∈ ∂U∗
∞
∩ (�∞×R),

where U∗
∞

is the subgraph of f∞. If ∂U∗
∞

is not a vertical plane, then [Massari
and Pepe 1975, Theorem 3] (that is, Proposition 2.1) and [Gilbarg and Trudinger
1983, Theorem 16.18] imply a uniform bound on |∇ f j | in a neighborhood of
(cos(β), sin(β)) in �∞, and this contradicts (31) since ∇u j =∇ f j for each j ∈N.
The conclusions of Theorem 2.1 now follow from [Jeffres and Lancaster 2007,
Theorem 1].

3. Proof of Theorem 1.1

The proof of this theorem uses the conformal (or isothermal) representation of
a prescribed mean curvature surface discussed in [Lancaster and Siegel 1996a]
and properties of two-dimensional quasiconformal maps to obtain a contradiction
to the assumption that the solution f is continuous at the origin. This proof uses
Kenmotsu’s theorem [1979], Theorem 2.1, Gehring’s lemma [1973] and properties
of solutions of Riemann–Hilbert problems to obtain a contradiction, illustrated in
Figure 3, of the Phragmén–Lindelof theorem.

Proof. By Remark 2.2, we may assume (γ1, γ2) ∈ D+2 . Assume f is continuous
at O; then f is bounded in a neighborhood of O . Fix θ1 ∈ (−α,−α+π−γ2) and
θ2 ∈ (α− γ1, α). By making δ0 > 0 smaller if necessary, we may assume

�∗ = {(r cos(θ), r sin(θ)) : 0< r < δ0, θ1 < θ < θ2}

is contained in �. Let ∂+�∗ = {(r cos(θ2), r sin(θ2)) : 0 ≤ r ≤ δ0} and define
γ+0 : ∂

+�∗→[0, π] so that cos(γ+0 (x, y))= T f (x, y)·(cos(θ2+
1
2π), sin(θ2+

1
2π))

and notice that Theorem 2.1(iii) implies

(32) γ+0 (x, y)→ γ1+ θ2−α as (x, y) ∈ ∂+�∗ goes to (0, 0).
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Let ∂−�∗ = {(r cos(θ1), r sin(θ1)) : 0 ≤ r ≤ δ0} and define γ−0 : ∂
−�∗ → [0, π]

so that cos(γ−0 (x, y)) = T f (x, y) · (cos(θ1 −
1
2π), sin(θ1 −

1
2π)) and notice that

Theorem 2.1(ii) implies

(33) γ−0 (x, y)→ α+ γ2+ θ1 as (x, y) ∈ ∂−�∗ goes to (0, 0).

Set
5= {(cos(β + 1

2π), sin(β + 1
2π), 0) : π −α− γ2 ≤ β ≤ α− γ1}

and, for s ∈ (0, δ0], let �s = {(x, y) ∈�∗ : x2
+ y2 < s2

}; notice that Theorem 2.1
implies

(34) ∩s>0 En(�s)=5.

Since α≤ 1
2π and γ2−γ1 >π−2α, we have 0< 3

2π−α−γ2 <
1
2π+α−γ1 <π .

We now wish to examine the stereographic projection of the Gauss map near
(0, 0, f (0, 0)) and represent it as the sum of a holomorphic function and a contin-
uous function (that is, (44)).

From (32), (33) and (34) and the fact that γ1, γ2 ∈ (0, π), we see that there exists
σ ∈ (0, δ0] small enough that

(35) En(�σ )⊂{ω(θ, φ) : 14(3π−2α−2γ2)<θ <
1
4(3π+2α−2γ1),

1
2π <φ<

3
4π},

where ω(θ, φ)= (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)), and there exists λ> 0 such
that λ< γ±0 (x) < π−λ for x ∈ ∂�∗ \{O} with |x | ≤ σ . Notice that f ∈C0(�σ )∩

C2(�σ \ {O}) and that f satisfies N f = H(x, f ) on �σ , T f · ν = cos(γ+0 ) on
∂+�σ =�σ ∩ ∂

+�∗ and T f · ν = cos(γ−0 ) on ∂−�σ =�σ ∩ ∂−�∗. Define

S0 = {(x, y, f (x, y)) : (x, y) ∈�σ } and 00 = {(x, y, f (x, y)) : (x, y) ∈ ∂�σ }.

If 0±0 = {(x, y, f (x, y)) : (x, y)∈ ∂±�σ , x2
+ y2 <σ 2

} and 0σ0 =00 \(0
+

0 ∪0
−

0 ),
then 00 = 0

+

0 ∪0
−

0 ∪0
σ
0 .

We will use the unit disk E = {(u, v) : u2
+ v2 < 1} as a parameter domain.

From step 1 of the proof of [Lancaster and Siegel 1996a, Theorem 1] and from
[Kenmotsu 1979] (also [Kenmotsu 2003]), we obtain the following facts.

There is a parametric description of the surface S0

X (u, v)= (x(u, v), y(u, v), z(u, v)) ∈ C2(E : R3)∩W 1,2(E : R3)

with the following properties:

(i) X is a homeomorphism of E onto S0.

(ii) X maps ∂E strictly monotonically onto 00.

(iii) X is conformal on E , that is, Xu · Xv = 0 and |Xu| = |Xv| on E .
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(iv) Let H̃(u, v) = H(X (u, v)) denote the prescribed mean curvature of S0 at
X (u, v). Then 4X := Xuu + Xvv = H̃ Xu × Xv.

(v) X ∈ C0(E) and X (1, 0)= (0, 0, z0), where z0 = f (0, 0).

(vi) Write G(u, v) = (x(u, v), y(u, v)). Then G(cos t, sin t) moves clockwise
about ∂�σ as t increases in 0 ≤ t ≤ 2π , and G is an orientation-reversing
homeomorphism from E onto �σ .

(vii) [Kenmotsu 1979, Lemma 1 and Corollary] Let πS : S2
→C denote the stereo-

graphic projection from the north pole and define g(u+ iv)=πS(En(G(u, v)))
for (u, v) ∈ E . Then

(36) |gζ̄ | =
1
2 |H̃ |(1+ |g|

2)|Xu|,

where ζ = u+ iv,

∂
∂ζ
=

1
2

(
∂
∂u
− i ∂

∂v

)
and ∂

∂ζ̄
=

1
2

(
∂
∂u
+ i ∂

∂v

)
.

For convenience with complex variables, set E1 = {ζ ∈ C : |ζ |< 1}.

Now Theorem 2.1 implies

g(1+)= lim
θ↓0

g(eiθ )= cos(α− γ1+
1
2π)+ i sin(α− γ1+

1
2π)

and
g(1−)= lim

θ↑0
g(eiθ )= cos(3

2π −α− γ2)+ i sin(3
2π −α− γ2).

Define ñ(u, v)= En(x(u, v), y(u, v)) for (u, v) ∈ E . Notice that if

ñ(u, v)= (ñ1(u, v), ñ2(u, v), ñ3(u, v)),

then, from the choice of σ ,

(37) − cot
( 1

4π +
1
2(α− γ1)

)
<

ñ1(u, v)
ñ2(u, v)

< cot
( 3

4π −
1
2(α− γ2)

)
and

(38) min{ − csc
( 1

4(3π −2α−2γ2)
)
,− csc

(1
4(3π +2α−2γ1)

)
}<

ñ3(u, v)
ñ2(u, v)

< 0.

Now

ñ(u, v)=
Xu × Xv
|Xu × Xv|

=
1
|Xu|

2 (yuzv − yvzu, xvzu − xuzv, xu yv − xv yu);

hence

(39)
|xu yv − xv yu|

|xvzu − xuzv|
=
|ñ3|

|ñ2|
< A and

|yuzv − yvzu|

|xvzu − xuzv|
=
|ñ1|

|ñ2|
< B,
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where

A =max
{
csc
( 1

4(3π − 2α− 2γ2)
)
, csc

( 1
4(3π + 2α− 2γ1)

)}
,

B =max
{
cot
( 1

4π +
1
2(α− γ1)

)
, cot

( 3
4π −

1
2(α− γ2)

)}
.

Now (∂ f/∂y)(x(u, v), y(u, v))=−ñ2(u, v)/ñ3(u, v) and so (38) implies

(40)
∂ f
∂y
≥min

{
sin
( 1

4(3π − 2α− 2γ2)
)
, sin

( 1
4(3π + 2α− 2γ1)

)}
> 0

and so S0 = {(x, y, f (x, y)) : (x, y) ∈�σ } = X (E) is the graph y = φ(z, x) over
the (z, x)-plane of a C2 function over the projection U of S0 on the (z, x)-plane.
Notice that φ ∈ C0(U ) and ∂U is the projection of 00 on the (z, x)-plane.

If ∂0U = {(z, x) : (x, y, z) ∈ 0+0 ∪0
−

0 } and ∂1U = {(z, x) : (x, y, z) ∈ 0σ0 }, then
∂U = ∂0U ∪∂1U . Now Theorem 2.1 implies |∇ f (x, y)|→∞ as (x, y)∈�∗ goes
to O . Also

(41) T f (r cos(θ2), r sin(θ2)) · (cos(θ2), sin(θ2))→ cos(α+ 1
2π − γ1− θ2) > 0,

since 1
2π − γ1 < α+

1
2π − γ1− θ2 <

1
2π , and

T f (r cos(θ1), r sin(θ1)) · (cos(θ1), sin(θ1))→ cos(3
2π −α− γ2− θ1) < 0,

since 1
2π <

3
2π−α−γ2−θ1<

3
2π−γ2. Thus the limits of the directional derivatives

of f in the directions of ∂+�σ and ∂−�σ are

lim
r↓0
∇ f (r cos(θ2), r sin(θ2)) · (cos(θ2), sin(θ2))=+∞,(42)

lim
r↓0
∇ f (r cos(θ1), r sin(θ1)) · (cos(θ1), sin(θ1))=−∞.(43)

Hence 0+0 is tangent to {(0, 0, z) : z ≥ z0} and 0−0 is tangent to {(0, 0, z) : z ≤ z0}

at (0, 0, z0). In addition, (∂φ/∂z)(z0, 0)= 0. Thus 0+0 ∪0
−

0 is a C1 curve and ∂U
is the union of the C1 curve ∂0U and the C2 curve ∂1U . Since

|∇ f (σ cos(θ2), σ sin(θ2))|<∞,

fy(σ cos(θ2), σ sin(θ2))>0 (by (40)) and the curves y= tan(θ2)x and x2
+y2
=σ 2

are orthogonal at (σ cos(θ2), σ sin(θ2)), we see that 0+0 and 0σ0 do not meet tan-
gentially at (σ cos(θ2), σ sin(θ2), f (σ cos(θ2), σ sin(θ2))) and ∂+0 U and ∂1U do
not meet tangentially at (σ cos(θ2), σ sin(θ2)). Similarly 0−0 and 0σ0 do not meet
tangentially at (σ cos(θ1), σ sin(θ1), f (σ cos(θ1), σ sin(θ1))) and ∂−0 U and ∂1U do
not meet tangentially at (σ cos(θ1), σ sin(θ1)). Therefore U is a simply connected
Lipschitz domain and ∂U is a quasicircle (see [Gehring 2005, Theorem 6.3]).

Let us define F ∈C2(E :R2)∩W 1,2(E :R2) by F(u, v)= (z(u, v), x(u, v)). Note
that F is a homeomorphism from E onto U . Recall that |DF |2= x2

u+x2
v+ z2

u+ z2
v
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and the determinant of DF at (u, v) is

J ((u, v), F)= xvzu − xuzv = |Xu|
2ñ2 > 0.

Since we are using conformal, or isothermal, coordinates, we obtain

|DF(u, v)|2 ≤ 2|Xu|
2
= 2|Xu × Xv|

= 2
√
(yuzv − yvzu)2+ (xvzu − xuzv)2+ (xu yv − xv yu)2

≤ 2
√
(B2+ 1+ A2)(xvzu − xuzv)2 = 2K J ((u, v), F),

where K =
√

B2+ 1+ A2. Thus F is a K ′-quasiconformal map from E to U ,
where K ′ = (K −

√
K 2− 1)−1

=
√

A2+ B2+ 1+
√

A2+ B2; see for example
[Finn and Serrin 1958]. Then [Gehring 2005, Theorem 6.4] implies that there is
a K ′-quasiconformal extension L : R2

→ R2 of F−1
: U → E and hence there

is a K ′-quasiconformal extension F̃ : R2
→ R2 of F , given by F̃ = L−1. Using

Gehring’s lemma [1973] or [Iwaniec and Martin 2001, Theorem 14.4.1], we see
that F̃ ∈ W 1,p(B((1, 0), δ)) for some p > 2. Since F̃ = F on E ∩ B((1, 0), 2δ)
and F ∈W 1,∞(E \B((1, 0), ε)) for each ε > 0, we see that xu, xv, zu, zv ∈ L p(E).
Since ñ is normal to X (E), we have Xu · ñ = 0 and Xv · ñ = 0, which imply

yu =
ñ1

ñ2
xu +

ñ3

ñ2
zu and yv =

ñ1

ñ2
xv +

ñ3

ñ2
zv

and therefore |yu|≤ B|xu|+A|zu| and |yv|≤ B|xv|+A|zv|. This implies X belongs
to W 1,p(E : R3).

The corollary on [Kenmotsu 1979, page 92] yields

|gζ̄ | =
1
2 |H̃ |(1+ |g|

2)|Xu| ≤ |H |∞|Xu|

and so gζ̄ ∈ L p(E1 : R
2). Let us set µ= (p− 2)/p. Then from [Monakhov 1983,

Theorems 5 and 6, page 205], we see that

(44) g(ζ )= ψ(ζ )+ h(ζ ),

where ψ is a holomorphic function and h ∈ L∞(E1) is a uniformly Hölder contin-
uous function on E1 with Hölder exponent µ. Since g and h are bounded, so is ψ .
Since h is continuous at 1 ∈ ∂E1 and ψ(ζ )= g(ζ )−h(ζ ), the Phragmén–Lindelof
theorem (for example, [Bear and Hile 1983]) and Theorem 2.1 imply

lim
r→0+

ψ(1+ r cos(θ)+ ir sin(θ))= ψ(1−)(θ/π − 1/2)+ψ(1+)(3/2− θ/π)

for π/2< θ < 3π/2, where ψ(1+)= g(1+)− h(1) and ψ(1−)= g(1−)− h(1),
and so

(45) lim
r→0+

g(1+ r cos(θ)+ ir sin(θ))= g(1−)(θ/π −1/2)+ g(1+)(3/2− θ/π)
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πS(02)

ξA

ξC

πS(01)

Figure 3. Differing limits of g(u+ iv) as u+ iv→ 1.

for π/2< θ < 3π/2. Notice then that along any ray {1+r cos(θ)+ ir sin(θ)} with
π/2 < θ < 3π/2, in |ζ | < 1, g converges to a point strictly inside the open unit
disk as 1 is approached; see Figure 3. This contradicts Theorem 2.1, which implies
|g(u+ iv)| → 1 as u+ iv→ 1. Thus our assumption that f is continuous at O is
invalid and the proof of Theorem 1.1 is complete. �

Remark 3.1. In [Lancaster and Siegel 1996a, Theorem 1], the hypotheses include,
“If α < π/2 and there exist constants γ±, γ±, 0 < γ± ≤ π/2, π/2 ≤ γ± < π ,
satisfying

γ++ γ− > π − 2α and γ++ γ− < 2α+π

so that γ± ≤ γ±(s)≤ γ± for all s in 0< s < s0 for some s0.”
While the theorem is true as stated, the assumptions γ± ≤ π/2 and π/2 ≤ γ±

were added as an afterthought (by this author) and were unnecessary to the ar-
gument; [Lancaster and Siegel 1996a, Theorems 1 and 2] remain correct if one
merely assumes γ± ≤ γ±. It is useful to note this fact because these assumptions
artificially restrict the applicability of these theorems. (In fact, the remainder of
that article correctly ignores this restriction.)

Appendix

We wish to discuss variational solutions of (1) and (2). We assume a solution
f ∈ C2(�)∩C1,ρ∗(� \ {O}) is given and we define H∗ :�×R→ R by

(46) H∗(x)= H(x, f (x)) for x ∈�.

For the moment, we let � be any connected, open subset of R2 that has locally
Lipschitz boundary and let γ ∈ L∞(∂�) with 0 ≤ γ(x, y) ≤ π for (x, y) ∈ ∂�;
for convenience of notation, we assume � is bounded. The usual definition of a
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BV(�) (variational) solution of (1) and (2) is a function u ∈BV(�) that minimizes
the functional

E(u)=
∫
�

√
1+ | Du |2 d H2+

∫
�

∫ u

0
H∗( · , t) dt d H2−

∫
∂�

cos(γ)u d H1

over BV(�). In some cases (for example, � is unbounded), individual terms in
the functional may be infinite; Finn [1986, Definition 7.1] offers a more general
definition of variational solution in his book. Another type of variational solution
of (1) and (2) is that of a generalized solution, which we describe next.

We denote by F the (formal) functional given by

F(U )=
∫
�×R

|DφU | +

∫
�×R

H∗φU dt d H2−

∫
∂�×R

cos(γ)φU d H2.

For each T ∈ (0,∞) and K ⊂⊂ R2, we define the functional

(47) FT,K (U )=
∫

�(T,K )

|DφU | +

∫
�(T,K )

H∗φU dt d H2−

∫
δ�(T,K )

cos(γ)φU d H2

when U ⊂ �×R is a Caccioppoli set (that is, a Borel set with locally finite peri-
meter), where�(T, K )= (�∩K )×(−T, T ) and δ�(T, K )= (∂�∩K )×(−T, T ).

Definition 3.1. A Caccioppoli set U ⊂�×R is said to be a local solution for F if
and only if for each T > 0 and K ⊂⊂R2, we have FT,K (U )≤FT,K (V ) whenever
V ⊂ �×R is a Caccioppoli set such that the support of φU − φV is contained in
�(T, K ).

As noted in [Finn 1986, Section 7.3], a function u ∈ BV(�) minimizes E if and
only if its subgraph U = {(x, y, t) ∈�×R : t < u(x, y)} is a local solution for F

[Miranda 1977].

Definition 3.2. A function u : �→ [−∞,∞] is called a generalized solution of
(1) and (2) if and only if its subgraph U is a local solution for F.

Definition 3.3. A sequence (u j ) in BV(�) is said to converge locally in � to u∞
if and only if φU j converges to φU∞ in L1

loc(�×R) as j→∞, where U j and U∞
are the subgraphs of u j and u∞, respectively.

Definition 3.4. For each 3 ⊂ R2 and ε > 0, set 3ε = 3 \ B(O, ε) and 6ε =
∂3\ B(O, ε). We will say the triple (λ,3, O) is admissible if and only if 3 is an
open set in R2, O ∈ ∂3, the map λ : ∂3\{O}→ (0, π) is in C0,ρ∗(∂3\{O}) and,
for some ε0 > 0 and all ε ∈ (0, ε0], there exist a = a(ε) ∈ (0, 1), τ = τ(ε) > 0,
N = N (ε), N1 = N1(ε) ≤ N (ε), a finite open cover {3εj : j = 2, . . . , N } of �ε

with O /∈
⋃N

j=23
ε
j and rigid motions F j : R2

→ R2 for 2 ≤ j ≤ N1, such that
3εj ∩∂3 6=∅ if 1≤ j ≤ N1 and3εj ∩∂3=∅ if N1< j ≤ N , the set 6εj = ∂3∩3

ε
j

is open and connected in the relative topology of 6ε , F j (6
ε
j ) can be represented



100 KIRK E. LANCASTER

over some interval a j < x < b j with a j < b j by a Lipschitz function y = ψ j (x)
with Lipschitz constant L j , the set T j ={(x, y+ψ j (x)) : a j < x <b j , −τ < y<0}
lies in F j (�) and |cos(γ)|

√

1+ L2
j ≤ a(ε) on 6εj for j = 2, . . . , N1. Compare this

with [Finn 1986, Section 6.3].

Lemma 3.1. Suppose γ ∈ C0,ρ∗(∂� \ {O}) satisfies (4), |γ1 − γ2| > π − 2α (so
that (γ1, γ2) ∈ D+2 ∪ D−2 ) and (γ,�, O) is admissible. Then there exist ζ > 0,
µ=µ(a(ζ ),�) and ϒ =ϒ(a(ζ ),�) with µ ∈ [a(ζ ), 1) such that for each T > 0,
λ > 0 and f ∈ BV(�× (−T, T )) with f ≥ 0 almost everywhere on �× (−T, T ),
we have

(48)
∣∣∣∫
6×(−T,T )

cos(γ) f ∗d H2

∣∣∣≤ µ ∫
Aλ×(−T,T )

|D f | +ϒ
∫

Aλ×(−T,T )
f,

where Aλ ⊂ � is the strip of width λ adjacent to 6 = ∂� and we denote by
f ∗ ∈ L1(∂�× (−T, T )) the trace of f on ∂�× (−T, T ).

Proof. Fix T > 0 and λ > 0. Let f ∈ BV(�× (−T, T )) such that f ≥ 0 almost
everywhere in �× (−T, T ); then f ∗ ≥ 0 almost everywhere on ∂�. We see from
[Giusti 1984, Remark 2.12] that there exists a sequence

{ fk} ⊂ C∞(�× (−T, T ))∩BV(�× (−T, T ))

such that

lim
k→∞

∫
�×(−T,T )

| fk − f | dx = 0,(49)

lim
k→∞

∫
�×(−T,T )

|D fk | dx =
∫
�×(−T,T )

|D f |(50)

and

(51) f ∗k = f ∗ on ∂(�× (−T, T )) for each k ∈ N,

where f ∗k and f ∗ denote the traces of fk and f on ∂(�× (−T, T )), respectively.
An examination of the construction of the fk in [Giusti 1984, Theorem 1.17] shows
that fk ≥ 0 on �× (−T, T ) for k = 1, 2, 3, . . . , since f ≥ 0 almost everywhere on
�× (−T, T ). (In fact, each fk is actually a function fε for a suitably small ε > 0
in the construction in the proof of that theorem.)

Since
∫
|D f | is a Radon measure on �× (−T, T ),

(52)
∫
∂Aσ×(−T,T )

|D f | = 0 for almost all σ ∈ (0, λ] and all T > 0;

by replacing λ by a σ ∈ (0, λ] that satisfies (52), we may assume

(53)
∫
∂Aλ×(−T,T )

|D f | = 0
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always holds.
We shall focus on functions h ∈C1(�×(−T, T ))∩BV(�×(−T, T ))with h≥0

in �× (−T, T )), obtain (48) for such functions, and then use the approximation
above to establish (48) for f .

Case 1 ((γ1, γ2) ∈ D+2 and γ2 ≤ π/2). This case is defined by γ2− γ1 > π − 2α,
and so γ1 < π/2 and 2α > π/2. Fix ε ∈ (0, γ1). We wish to select σ ∈ (0, π/2)
such that σ < γ1− ε, 0<π −2α−σ < γ2− ε. Now these conditions require that
σ ∈ (0, γ1 − ε)∩ (π − 2α − γ2 + ε, π − 2α); this intersection is nonempty since
γ1− ε− (π − 2α− γ2+ ε) > 2γ1− 2ε > 0 and so γ1− ε > π − 2α− γ2+ ε.

Let ζ > 0 be small enough that

(a) |γ(x)− γ1|< ε/2 whenever x ∈ ∂+� \ {O} with |x | ≤ 2ζ , and

(b) |γ(x)− γ2|< ε/2 whenever x ∈ ∂−� \ {O} with |x | ≤ 2ζ .

Recall that τ+(x)= γ(x)−π/2 for x ∈ ∂+�∩ Bδ∗(O) and τ−(x)= γ(x)+π/2
for x ∈ ∂−�∩ Bδ∗(O); hence |τ+(x)−α|< ε/2 whenever x ∈ ∂+� with |x | ≤ 2ζ
and |τ−(x)+α|< ε/2 whenever x ∈ ∂−� with |x | ≤ 2ζ .

Let τ = ζ and R1 : R
2
→ R2 be the rotation about the origin through the angle

−α− σ . Then R1(∂
+�) and R1(∂

−�) are the graphs y = ψ+1 (x) and y = ψ−1 (x)
of Lipschitz functions with Lipschitz constants

L+1 ≤ tan(σ + ε/2) and L−1 ≤ tan(π − 2α− σ + ε/2),

respectively; notice that dom(ψ+1 )= [0, x+0 ) and dom(ψ−1 )= (x
−

0 , 0], where

|(x+0 , ψ
+

1 (x
+

0 ))| = 2ζ and |(x−0 , ψ
−

1 (x
−

0 ))| = 2ζ.

Set L1 = max{L+1 , L−1 } and let δ > 0 satisfy δ2
+ (L1δ + τ)

2
= 4ζ 2 (so that

δ = ζ((3L2
1+ 4)1/2− 1)/(L2

1+ 1) ).
For 0< x ≤ δ, we have σ + ε/2< γ1− ε/2< γ(x) and so

cos(γ(x))
√

1+ (L+1 )
2 < cos(γ1− ε/2) sec(σ + ε/2) <

cos(γ1− ε/2)
cos(γ1− ε/2)

= 1.

For −δ ≤ x < 0, we have π − 2α− σ + ε/2< γ2− ε/2< γ(x) and so

cos(γ(x))
√

1+ (L−1 )
2< cos(γ2−ε/2) sec(π−2α−σ+ε/2)<

cos(γ2− ε/2)
cos(γ2− ε/2)

= 1.

Set S1 = (−δ, δ)× (−L1δ− τ, 0),

µ1 =
cos(γ1− ε/2)
cos(σ + ε/2)

and µ2 =
cos(γ2− ε/2)

cos(π − 2α− σ + ε/2)
.

Then µ1 < 1, µ2 < 1 and

(54)
√

1+ (L+1 )
2 cos(γ ◦ R−1

1 (x))≤ µ1 for x ∈ R1(∂
+�)∩ S1,
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and

(55)
√

1+ (L−1 )
2 cos(γ ◦ R−1

1 (x))≤ µ2 for x ∈ R1(∂
−�)∩ S1,

We will now establish

(56)
∫
6×(−T,T )

cos(γ)h∗d H2 ≤ µ

∫
Aλ×(−T,T )

|Dh| +ϒ
∫

Aλ×(−T,T )
h,

when h ∈C1(�× (−T, T ))∩BV(�× (−T, T )) with h ≥ 0 in �× (−T, T )). To a
great extent, we will follow the proof of [Finn 1986, Lemma 6.1]. In Definition 3.4,
set ε equal to δ, N = N (δ), N1 = N1(δ), τ = τ(δ) and obtain a finite, open cover
{3δj : j = 2, . . . , N } of �δ in R2 with the properties described in the definition.
Set �δj = 3δj ∩ � for j = 2, . . . , N and set �δ1 = R−1

1 (S1) ∩ �. Notice that
{�δj : j = 1, . . . , N } is an open (in the relative topology of �) cover of �. Let
{ϕ j : j = 1, . . . , N } be a partition of unity of� subordinate to {�δj : j = 1, . . . , N }.
Notice since O /∈

⋃N
j=23

δ
j that ϕ1 ≡ 1 in some neighborhood of O .

Using the techniques in the proof of [Finn 1986, Lemma 6.1], one sees that∣∣∣∫
6×(−T,T )

ϕ j cos(γ)h∗d H2

∣∣∣≤ a(δ)
∫

Aλ×(−T,T )
ϕ j |Dh| +ϒ

∫
A

j
λ×(−T,T )

h,

where A
j
λ = Aλ ∩ F−1

j (T j ) for each j = 2, . . . , N1 and k ∈ N. Notice also that
these techniques yield∣∣∣∫

∂+�×(−T,T )
ϕ1h∗d H2

∣∣∣≤√1+ (L+1 )
2
∫

A+λ ×(−T,T )
ϕ1|Dh| +ϒ

∫
A+λ ×(−T,T )

h

and∣∣∣∫
∂−�×(−T,T )

ϕ1h∗d H2

∣∣∣≤√1+ (L−1 )
2
∫

A−λ ×(−T,T )
ϕ1|Dh| +ϒ

∫
A−λ ×(−T,T )

h,

where

A+λ =�∩ R−1
1 ({(x, y) : 0< x < δ,ψ+1 (x)− λ < y <ψ+1 (x)}),

A−λ =�∩ R−1
1 ({(x, y) : −δ < x < 0, ψ−1 (x)− λ < y <ψ−1 (x)}).

Then∫
6×(−T,T )

ϕ1 cos(γ)h∗d H2 ≤ µ1

∫
A+λ ×(−T,T )

ϕ1|Dh| +ϒ
∫

A+λ ×(−T,T )
h

+µ2

∫
A−λ ×(−T,T )

ϕ1|Dh| +ϒ
∫

A−λ ×(−T,T )
h,
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and so, if we set µ0 =max{µ1, µ2}< 1,

(57)
∫
6×(−T,T )

ϕ1 cos(γ)h∗d H2 ≤ µ0

∫
Aλ×(−T,T )

ϕ1|Dh| +ϒ
∫

A1
λ×(−T,T )

h,

where A1
λ =Aλ∩ B2ζ (O). Therefore, if we set µ=max{a(δ), µ0}< 1, we obtain∫

6×(−T,T )
cos(γ)h∗d H2 =

N1∑
j=1

∫
6×(−T,T )

ϕ j cos(γ)h∗d H2

≤

N1∑
j=1

(
µ

∫
Aλ×(−T,T )

ϕ j |Dh| +ϒ
∫

A
j
λ×(−T,T )

h
)

≤ µ

∫
Aλ×(−T,T )

|Dh| +ϒ1

∫
Aλ×(−T,T )

h

and thus we obtain (56).
Now set h = fk and obtain

∫
6 cos(γ) f ∗k ds ≤µ

∫
Aδ
|D fk |+ϒ1

∫
Aδ
| fk | for each

k ∈ N. From (50), (53) and [Giusti 1984, Proposition 1.13], we see that

lim
k→∞

∫
Aλ×(−T,T )

|D fk | dx =
∫

Aλ×(−T,T )
|D f |

and therefore using this together with (49) and (51) yields∫
6

cos(γ) f ∗ d H 2
=

∫
6

cos(γ) f ∗k d H 2
≤ µ

∫
Aδ

|D fk | +ϒ1

∫
Aδ

| fk |

≤ µ

∫
Aδ

|D fk | +ϒ1

∫
Aδ

| f | +ϒ1

∫
Aδ

| f − fk |.

If we take the limit as k→∞, we obtain

(58)
∫
6

cos(γ) f ∗ d H 2
≤ µ

∫
Aδ

|D f | +ϒ1

∫
Aδ

| f |.

We wish to prove (58) with f replaced by − f . Fix ε ∈ (0,min{γ1, π/2− γ1}).
Let ζ ∈ (0, δ∗/2) be small enough that

(a) |γ(x)− γ1|< ε/2 whenever x ∈ ∂+� \ {O} with |x | ≤ 2ζ , and

(b) |γ(x)− γ2|< ε/2 whenever x ∈ ∂−� \ {O} with |x | ≤ 2ζ .

Notice that if x ∈ ∂+�\ {O}∩ B2ζ (O), then π−γ(x) > π−γ1− ε > π/2 and so

(59) cos(π − γ) < 0 on (∂+� \ {O})∩ B2ζ (O).

Also, if x ∈ ∂−� \ {O} ∩ B2ζ (O), then

|τ−(x)+α|< ε/2 and π − γ(x) > π − γ2− ε/2> π/2− ε/2.
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Let τ = ζ and let R2 :R
2
→R2 be the rotation about the origin through the angle

α− π . Then R2(∂
−�)∩ B2ζ (O) is the graph y = ψ−2 (x) of a Lipschitz function

with Lipschitz constant L−2 ≤ tan(ε/2); notice that dom(ψ−1 ) = (x
−

0 , 0], where
|(x−0 , ψ

−

1 (x
−

0 ))| = 2ζ . Set L2 = L−2 and let δ > 0 satisfy δ2
+ (L2δ + τ)

2
= 4ζ 2

(so that δ = ζ((3L2
2+4)1/2−1)/(L2

2+1) ). For −δ ≤ x < 0, we have π −γ(x)≥
π/2− ε/2 and so

cos(π − γ(x))
√

1+ (L−2 )
2 < cos(π/2− ε/2) sec(ε/2) <

cos(π/4+ γ1/2)
cos(π/4− γ1/2)

< 1.

We will now establish

(60) −

∫
6×(−T,T )

cos(γ)h∗ d H2 ≤ µ

∫
Aλ×(−T,T )

|Dh| +ϒ1

∫
Aλ×(−T,T )

h

when h ∈C1(�×(−T, T ))∩BV(�×(−T, T )) with h≥ 0 in�×(−T, T )), where
µ=max{a(δ), µ3}< 1 and µ3 = cos(π/2− ε/2)/cos(ε/2). Let us write (60) as∫

6×(−T,T )
cos(π − γ)h∗d H2 ≤ µ

∫
Aλ×(−T,T )

|Dh| +ϒ1

∫
Aλ×(−T,T )

h.

Using the techniques in the proof of [Finn 1986, Lemma 6.1], one sees that∣∣∣∫
6×(−T,T )

ϕ j cos(π − γ)h∗d H2

∣∣∣≤ a(δ)
∫

Aλ×(−T,T )
ϕ j |Dh| +ϒ

∫
A

j
λ×(−T,T )

h,

where A
j
λ = Aλ ∩ F−1

j (T j ) for each j = 2, . . . , N1 and k ∈ N. Notice also that
these techniques yield∣∣∣∫

∂−�×(−T,T )
ϕ1h∗d H2

∣∣∣≤√1+ (L−1 )
2
∫

A−λ ×(−T,T )
ϕ1|Dh| +ϒ

∫
A−λ ×(−T,T )

h,

where A−λ =�∩ R−1
2

(
{(x, y) : −δ < x < 0, ψ−2 (x)− λ < y <ψ−2 (x)}

)
. Then

(61)
∫
6×(−T,T )

ϕ1 cos(π−γ)h∗d H2 ≤µ3

∫
A−λ ×(−T,T )

ϕ1|Dh|+ϒ
∫

A−λ ×(−T,T )
h.

Therefore, if we set µ=max{a(δ), µ0}< 1, we obtain∫
6×(−T,T )

cos(π − γ)h∗d H2 =

N1∑
j=1

∫
6×(−T,T )

ϕ j cos(γ)h∗d H2

≤

N1∑
j=1

[
µ

∫
Aλ×(−T,T )

ϕ j |Dh| +ϒ
∫

A
j
λ×(−T,T )

h
]

≤ µ

∫
Aλ×(−T,T )

|Dh| +ϒ1

∫
Aλ×(−T,T )

h,
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and thus we obtain (60). If we reason as before when we used (56) to obtain (58),
we see that (60) and the approximation of f by the ( fk) implies

(62) −

∫
6

cos(γ) f ∗ d H 2
≤ µ

∫
Aδ

|D f | +ϒ1

∫
Aδ

| f |.

Since (58) and (62) are together equivalent to (48), we see that the lemma is proven
when (γ1, γ2) ∈ D+2 and γ2 ≤ π/2.

Case 2 ((γ1, γ2)∈ D+2 and γ1≥π/2). In this case, γ2>π/2. Let us set γ̃=π−γ,
γ̃1 = π − γ1 and γ̃2 = π − γ2. Notice that γ̃1 − γ̃2 = γ2 − γ1 > π − 2α and so
(γ̃1, γ̃2) ∈ D−2 . Then (γ̃2, γ̃1) ∈ D+2 with γ̃1 ≤ π/2. By reflecting � and γ about
the x-axis, we see from our previous argument with γ2 ≤ π/2 that (48) holds.

Case 3 ((γ1, γ2) ∈ D+2 , γ1 < π/2 and γ2 > π/2). We use the same argument
used to establish (48) when γ2 ≤ π/2 — that is, only one of the sides, ∂+� or
∂−�, contributes to each integral since an inequality like (59) holds on the other
side, and, by rotating through a suitable angle, we can make the intersection of
the contributing side with a sufficiently small ball centered at O the graph of a
function over the x-axis with arbitrarily small Lipschitz constant. Then we see
that (48) holds in this case.

Case 4 ((γ1, γ2)∈ D−2 ). In this case γ1−γ2>π−2α. Then (γ2, γ1)∈ D+2 and, by
reflection about the x-axis, we see our previous arguments show that (48) holds. �

Remark 3.2. Suppose � j → �∞ in that � j = {x ∈ R2
: ε j x ∈ �} when ε j → 0

as j → ∞ and �∞ = {(r cos(θ), r sin(θ)) : r > 0, −α < θ < α}. Assuming
we define other quantities appropriately (for example, γ j ∈ C0(∂� j ) defined by
γ j (x) = γ(ε j x) for x ∈ ∂� j ), then an examination of the proofs of [Finn 1986,
Lemmas 6.1 and 7.6] shows that the constants ζ , a(ζ ), ϒ and µ can be assumed
to be independent of j in Lemma 3.1.

Remark 3.3. Notice, in particular, that if U is a Caccioppoli set in �×R, then,
with f = φU and f = φU ′ , (48) implies

(63)
∣∣∣∫
6×(−T,T )

cos(γ)φ∗U d H2

∣∣∣≤ µ ∫
6λ×(−T,T )

|DφU | +ϒ

∫
6λ×(−T,T )

φU

and

(64)
∣∣∣∫
6×(−T,T )

cos(π−γ)φ∗U ′d H2

∣∣∣≤µ ∫
6λ×(−T,T )

|DφU ′ |+ϒ

∫
6λ×(−T,T )

φU ′,

where U ′ = (�×R) \U for T > 0.

Emmer’s lemma (for example, [Emmer 1973]), in this case Lemma 3.1, is the
key ingredient needed to obtain lower semicontinuity of the functional in question.
Slight modifications of arguments in [Finn 1986, Section 7.4] and [Tam 1986b,
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Lemma 1.2] show that E and FT,K for T > 0 and K ⊂⊂ R2 are lower semi-
continuous. The proof of [Tam 1986a, Lemma 2.3] (also [Tam 1984, Lemma 2.3]),
adapted to the situation here, yields this:

Lemma 3.2. Let � and γ be as in Theorem 1.1, and note that (γ,�, O) is admis-
sible. Let (ε j ) be a sequence of positive reals such that lim j→∞ ε j = 0. For each
j ∈N, set H∗j (x)= ε j H∗(ε j x) for x ∈� j and γ j (x)= ε jγ(ε j x) for x ∈ ∂� j . For
each j ∈ N, suppose f j is a generalized solution for

E j (u)=
∫
� j

√
1+ | Du |2 d H2+

∫
� j

H∗j u d H2−

∫
∂� j

cos(γ)u d H1.

Then ( f j ) has a subsequence ( f ji ) that converges locally to a generalized solution
f∞ for

E∞(u)=
∫
�∞

√
1+ | Du |2 d H2−

∫
∂+�∞

cos(γ1)u d H1−

∫
∂−�∞

cos(γ2)u d H1.
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THE EXISTENCE AND MONOTONICITY OF A
THREE-DIMENSIONAL TRANSONIC SHOCK IN A FINITE

NOZZLE WITH AXISYMMETRIC EXIT PRESSURE

JUN LI, ZHOUPING XIN AND HUICHENG YIN

We establish the existence of a multidimensional transonic shock solution
in a class of slowly varying nozzles for the three dimensional steady full
Euler system with axially symmetric exit pressure in the diverging part lying
in an appropriate scope. We also show that the shock position depends
monotonically on the exit pressure.

1. Introduction and the main results

The transonic shock problem in a de Laval nozzle is a fundamental one in fluid
dynamics and has been extensively studied by many authors under the assump-
tion that the transonic flow is quasi-one-dimensional or the transonic shock goes
through some fixed point in advance [Chen et al. 2006; Chen et al. 2007; Chen
and Feldman 2003; Chen 2008; Courant and Friedrichs 1948; Embid et al. 1984;
Glaz and Liu 1984; Kuz’min 2002; Liu 1982a; 1982b; Xin et al. 2009; Xin and
Yin 2005; 2008a; 2008b; Yuan 2006]. Courant and Friedrichs [1948, page 386]
proposed a physically more interesting transonic shock wave pattern in a de Laval
nozzle as follows: Given an appropriately large end pressure pe(x), if the upstream
flow is still supersonic behind the throat of the nozzle, then at a certain place in
the diverging part of the nozzle a shock front intervenes and the gas is compressed
and slowed down to subsonic speed. The position and the strength of the shock
front are automatically adjusted so that the end pressure at the exit becomes pe(x).
This means that the position of the transonic shock should be completely free.
Indeed, the assumption that the shock goes through some fixed point at the wall
of the nozzle in advance may lead to overdetermined boundary conditions for the
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transonic shock problem for the full Euler system with the given exit pressure; see
[Xin et al. 2009; Xin and Yin 2008a] for details. Here, we focus on the existence
of a solution to this transonic shock problem for the three-dimensional full Euler
system when the exit pressure pe(x) is axisymmetric and lies in an appropriate
scope without other artificial constraints. In particular, we show the shock position
depends monotonically on the exit pressure.

The steady and nonisentropic Euler system in three-dimensional space is

(1-1)


div(ρu)= 0,

div(ρu⊗ u)+∇P = 0,

div
(
(ρ(e+ 1

2 |u|
2)+ P)u

)
= 0,

where u= (u1, u2, u3), ρ, P , e and S stand for the velocity, density, pressure, inter-
nal energy and specific entropy, respectively. The pressure function P = P(ρ, S)
and the internal energy function e = e(ρ, S) are smooth in their arguments. It is
assumed that ∂ρP(ρ, S) > 0 and ∂Se(ρ, S) > 0 for ρ > 0.

For the ideal polytropic gases, the equations of state are given by

P = AργeS/cv and e = P
(γ−1)ρ

,

where A, cv and γ are positive constants, and 1< γ < 3 (in air, γ ≈ 1.4).
We now describe the class of de Laval nozzle that will be studied later on;

see also [Li et al. 2010a; 2010b]. The wall 0 of the nozzle is assumed to be
C3,α-regular for X0 − 1 ≤ r ≡ (x2

1 + x2
2 + x2

3)
1/2
≤ X0 + 1, where X0 > 0 is

a fixed large constant, and α ∈ (0, 1) and 0 consists of two curved surfaces 51

and 52; here 51 includes the converging part of the nozzle, and 52 constructs
a symmetric curved diverging part of it. See Figure 1. More precisely, 52 is
represented by the equation x2

2+ x2
3 = x2

1 tan2 θ0 with x1 > 0 and X0 < r < X0+1,
where θ satisfies 0< θ0 <π/2 and is sufficiently small. For simplicity, we assume
that the C3,α-smooth supersonic incoming flow (S−0 , P−0 (x), u−0 (x)) is spherically
symmetric near r = X0; here S−0 (x) = S−0 is a constant, P−0 (x) = P−0 (r), and
u−0 (x)=U−0 (r)x/r . This assumption is easily satisfied because of the hyperbolicity
of the supersonic incoming flow and the symmetry of 52.

Let shock 6 in the nozzle be given by x1 = η(x ′) with x ′ = (x2, x3), and denote
the flow field behind the shock by (S+(x), P+(x), u+(x)). The Rankine–Hugoniot
conditions on 6 imply

(1-2)


[(1,−∇x ′ η(x ′)) · ρu] = 0,

[((1,−∇x ′ η(x ′)) · ρu)u] + (1,−∇x ′ η(x ′))t [P] = 0,

[(1,−∇x ′ η(x ′)) · (ρ(e+ 1
2 |u|

2)+ P)u] = 0.
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O

supersonic shock

6

subsonic

0

x1

Figure 1

Here the brackets around function denotes the jump of that function across 6.
In addition, P+(x) should satisfy the physical entropy condition

(1-3) P+(x) > P−(x) on x1 = η(x2, x3);

see [Courant and Friedrichs 1948].
On the exit of the nozzle, the pressure is prescribed and axisymmetric:

(1-4) P+(x)= Pe+ ε P̃(θ) on r = X0+ 1.

Here Pe is a positive constant, ε>0 is sufficiently small, θ=r−1 arcsin(x2
2+x2

3)
1/2,

and P̃(θ) ∈ C2,α
[0, θ0] with P̃ ′(0) = P̃ ′(θ0) = 0. We require that for given exit

pressure Pe, the Euler system (1-1) has a radial symmetric transonic shock lying
at r = r0 ∈ (X0, X0+1) with supersonic incoming flow (S−0 , P−0 (r), (U

−

0 (r)/r)x)
for r ∈ (X0, r0). For the range of Pe and detailed information on the corresponding
transonic shock solution (S±0 , P±0 (r), (U

±

0 (r)/r)x), see Theorem A.1.
The wall of the nozzle is assumed to be solid; thus

(1-5) x1u+1 tan2 θ0− x2u+2 − x3u+3 = 0 on 52.

Finally, we assume X0 and θ0 to be suitably large and small respectively so that

(1-6) X0θ0 = 1 and 1
2η0 < θ0 < η0.

Here η0 > 0 is a constant.
Note that (1-6) means that the nozzle wall 52 : x2

2 + x2
3 = x2

1 tan2 θ0 is close to
the cylindrical surface x2

2 + x2
3 = 1 for X0 ≤ r ≤ X0+ 1.

The main results in this paper can be stated as follows:

Theorem 1.1 (existence and monotonicity). Under the assumptions above, with

M−0 (X0)≡
U−0 (X0)

c(ρ−0 (X0))
>

√
γ+ 3

2
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and ε < 1/X3
0 , the problem (1-1) with the conditions (1-2)–(1-5) has a solution

(S+(x), P+(x), u+(x); η(x2, x3)) that admits the following estimates:

(i) η(x2, x3) ∈ C3,α(S̄e), with Se = {(x2, x3) : (η(x2, x3), x2, x3) ∈ 6} being the
projection of the shock surface 6 onto the (x2, x3)-plane. Moreover, there exists a
constant C0 > 0 (depending only on α and the supersonic incoming flow) such that

‖η(x2, x3)− (r2
0 − x2

2 − x2
3)

1/2
‖L∞(Se) ≤ C0 X0ε,

‖∇x2,x3(η(x2, x3)− (r2
0 − x2

2 − x2
3)

1/2)‖C2,α(S̄e)
≤ C0ε.

(ii) Denote by

�+={(x1, x2, x3) : η(x2, x3)< x1<((X0+1)2−x2
2−x2

3)
1/2, x2

2+x2
3 ≤ x2

1 tan2 θ0}

the subsonic region. Then (S+(x), P+(x), u+(x)) ∈ C2,α(�+) satisfies

‖(S+(x), P+(x), u+(x))− (S+0 , P̂+0 (r), û+0 (x))‖C2,α(�̄+)
≤ C0ε,

where û+0 (x)= Û+0 (r)x/r , and (S+0 , P̂+0 (r), û+0 (r)) stands for the extension of the
background solution (S+0 , P+0 (r), U+0 (r)x/r) in �+ described in more detail in
Theorem A.1 and Remark A.3.

(iii) The position of the shock surface depends on the given exit pressure monoton-
ically and continuously.

Remark 1.2. Showing that the shock position depends monotonically on the exit
pressure is one of the keys to the existence result described by Theorem 1.1. When
the exit pressure changes at order O(ε), the shock position will change at order
X0O(ε) instead of O(1)ε; this will be crucial in our analysis.

Remark 1.3. The condition

M−0 (X0)≡
U−0 (X0)

c(ρ−0 (X0))
>

√
γ+ 3

2

on the supersonic Mach number is there to ensure that the shock position along
the nozzle wall is monotonic in the subsonic pressure across the shock; this is the
initial step toward showing the monotonic dependence of the shock position on the
exit pressure. See (4-34), (4-36), (4-38), and (4-39) for more details.

Remark 1.4. Although in [Li et al. 2010a] we established by a completely different
method (see [Li et al. 2009a] also) the existence of a three-dimensional transonic
shock for a variety of conic nozzles with axisymmetric exit pressures, we did not
show monotonic dependence of the shock position on the exit pressure.

There has already been much work on the steady transonic problem; see [Bers
1950; 1951; Čanić et al. 2000; Chen et al. 2006; Chen et al. 2007; Chen and
Feldman 2003; Chen 2008; Courant and Friedrichs 1948; Embid et al. 1984; Glaz
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and Liu 1984; Kuz’min 2002; Li et al. 2009a; 2009b; 2010a; 2010b; Liu 1982a;
1982b; Morawetz 1994; Xin et al. 2009; Xin and Yin 2005; 2008b; 2008a; Yuan
2006; Zheng 2003; 2006] and the references therein. In particular, for a three-
dimensional nozzle with a symmetric diverging part and a symmetric supersonic
incoming flow near the diverging part of the nozzle, Xin and Yin [2008b] and
Courant and Friedrichs [1948] have shown that there exist two constant pressures
P1 and P2 with P1 < P2 such that if the exit pressure Pe is in the interval (P1, P2),
then the transonic shock exists uniquely in the diverging part of the nozzle, and
the position and the strength of the shock are completely determined by Pe and
the resulting ordinary differential equations. Xin and Yin [2008b] also established
global existence, stability and long time asymptotic behavior of an unsteady sym-
metric transonic shock under the exit pressure Pe when the initial unsteady shock
lies in the symmetric diverging part of the three-dimensional nozzle; on the other
hand a steady symmetric transonic shock is dynamically unstable if it lies in the
symmetric converging part of the nozzle. In [Li et al. 2009b], we established for the
two-dimensional steady Euler system, by a monotonicity argument on the shock
position and the exit pressure, uniqueness and existence of a completely free two-
dimensional transonic shock in a nozzle with variable end pressures at the exit.
For the three-dimensional steady Euler system, we have shown in [Li et al. 2010b]
the uniqueness of a completely free three-dimensional transonic shock solution
of class C3,α in a nozzle with general exit pressure; this regularity is higher than
the C2,α regularity of solutions in Theorem 1.1. In this paper, we will focus on
the existence and monotonicity property of a completely free three-dimensional
transonic shock for a certain class of the exit pressures.

Next we comment on the proofs of the main results in this paper. In almost all
previous results dealing with transonic shocks in a nozzle with given exit pressure
except, except for those in [Li et al. 2009b; 2010a; 2010b; Xin et al. 2009], the
authors assume that the shock goes through a fixed point in advance; this plays
the crucial role in the analysis, in particular, in the process of determining the
shock position. However, for de Laval nozzles, this assumption is not physical
since the shock position should be determined by the supersonic incoming flow,
the geometry of the nozzle and the exit pressure, as pointed out by Courant and
Friedrichs. Moreover, this constraint may lead in general to an over-determined
problem. In [Li et al. 2009b; 2010a; 2010b], we have successfully removed this
condition, and further determined the shock position and transonic flow in the
nozzle. This leads to the well-posedness of the transonic shock problem in the
two-dimensional case and the uniqueness of solutions to it in the three-dimensional
case, as well as some new observations and techniques.

A key step in [Li et al. 2009b; 2010b] is to derive a priori gradient estimates
instead of the solution itself, in order to establish that the shock position along
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the walls of the nozzle varies monotonically with exit pressure. This leads to
the determination of a unique shock position and the desired stability estimates.
However, it seems difficult to apply these methods directly to obtain the existence
of the transonic shock in a three-dimensional nozzle. The main reasons are as
follows: C3,α regularity of the solution in the subsonic region plays a fundamental
role in the theorems, but this higher order regularity is a source of great difficulties
for nozzles with variable exit pressure. Compared with two-dimensional case, it
seems much more difficult to find higher order compatibility conditions near the
intersection curve of the shock surface with the wall of the nozzle, which is nec-
essary to ensure C3,α regularity of the solution nearby. In the two-dimensional
case, higher order compatibility at the intersection points of the shock curve with
the walls of the nozzle can be found directly from the Euler system together with
the no-flow boundary condition of the walls of the nozzle, and Rankine–Hugoniot
conditions on the shock curve. This yields naturally C3,α regularity of the solution
in [Li et al. 2009b]; similar approaches cannot be applied in the three-dimensional
case; see [Xin and Yin 2008b, Lemma 6.1]. In addition, for the axially symmetric
exit pressure in this paper, it is natural to introduce spherical coordinates in the
space variables, which brings new technical difficulties in finding compatibility
conditions on the symmetry axis and handling singularities and source terms in
the transformed equations near the symmetry axis. Due to the singularity near the
symmetry axis and the source terms for the Euler system in spherical coordinates,
the key gradient estimate method in [Li et al. 2009b] cannot be applied here; see
(2-8) and Remark 3.3.

To overcome these difficulties, our strategy is as follows: First, we will give
some rather delicate computations and analysis of the three-dimensional Euler
system and the related axisymmetric functions near the x1-axis and the nozzle
wall; this is to establish C2,α regularity of the solutions; see Lemmas B.1–B.7
and Section 3. Second, to derive that the shock position is monotonic in the end
pressure, we will focus directly on the first order elliptic system and how the two
pressures and two shock positions (see (4-17)) differ from those in the gradient
estimates of [Li et al. 2009b; 2010b]. The key step is to establish an ordinary
differential-integral inequality in the difference of pressures (see (4-45)). Based
on this result and the continuous dependence of the shock position on the exit
pressure, we can finally complete the proof of Theorem 1.1.

The rest of the paper is organized as follows. In Section 2, we will reformu-
late the three-dimensional problem (1-1) with the boundary conditions (1-2)–(1-5).
First we transform the nozzle wall into a cube surface, and decompose the velocity
u+ as the radial speed U+1 and two angular speeds U+2 and U+3 . In the Euler system
on (S+, P+,U+1 ,U

+

2 ,U
+

3 ), with the exit boundary condition (1-4), it is natural to
search for a solution with U+3 ≡ 0. Furthermore, we decompose the Euler system
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(1-1) as a 2× 2 first order elliptic system for ρ+ and U+2 /U
+

1 , and two algebraic
equations in U+1 and specific entropy S+ respectively. In Section 3, we use the
decomposition in Section 2 to linearize the compressible Euler system, establish
an existence result under the assumption that the shock goes through some fixed
point at the nozzle wall in advance, and obtain some key estimates based on the
background solution. We note that this solution does not satisfy the boundary
condition (1-4) unless the exit pressure is adjusted by an appropriate constant. In
Section 4, we establish that the shock position is monotonic in the end pressure. In
Section 5, we use the continuous dependence of the solution on the shock position
to the existence result in Theorem 1.1. In Appendix A, we list some properties
of the background solution. We give some useful inequalities and estimates in
Appendix B. Finally, in Appendix C we give a detailed discussion of the regularity
of C3,α solutions to problem (1-1) with (1-2)–(1-5).

We will use the following conventions:
O(ε) means that there exists a generic constant C1 > 0 independent of X0 and

ε such that ‖O(ε)‖C1,α ≤ C1ε.
O(1/Xm

0 ) for m > 0 means that there exists a generic constant C2 > 0 indepen-
dent of X0 and ε such that ‖O(1/Xm

0 )‖C1,α ≤ C2/Xm
0 .

2. Reformulation of the problem

In this section, we will reformulate the nonlinear problem (1-1) with (1-2)–(1-5)
to obtain a coupled first order elliptic system in the angular velocity exponent U+2
and the density ρ+, and two first order equations, one in the radial velocity U+1
and the other in the specific entropy S+. As in [Xin and Yin 2008b], we will need
to derive relations between (ρ+,U+1 ) and (U+2 ,U

+

3 ) in the shock 6. Due to the
symmetry of the nozzle wall52 and the supersonic incoming flow in the diverging
part, it will be more convenient to use the spherical coordinates

(2-1) x1 = r cos θ, x2 = r sin θ cosϕ, x3 = r sin θ sinϕ

and velocity decomposition

(2-2)

U+1 = u+1 cos θ + u+2 sin θ cosϕ+ u+3 sin θ sinϕ,

U+2 = u+1 sin θ − u+2 cos θ cosϕ− u+3 cos θ sinϕ,

U+3 =−u+2 sinϕ+ u+3 cosϕ,

where θ ∈ [0, θ0], ϕ ∈ [0, 2π ], and r = (x2
1 + x2

2 + x2
3)

1/2.
In the spherical coordinates (2-1), set

∇̃ :=

(
∂r ,−

1
r
∂θ ,

1
r sin θ

∂ϕ

)
and Ũ = (U1,U2,U3).
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Then (1-1) and (1-2) are transformed respectively into

(2-3)



∇̃ · (ρ+Ũ+)+
(2

r
,−

1
r

cot θ
)
ρ+ · (U+1 ,U

+

2 )= 0,

(Ũ+ · ∇̃)Ũ++ ∇̃P+

ρ+
+

1
r

 −((U+2 )2+ (U+3 )2)U+1 U+2 + (U
+

3 )
2 cot θ

U+1 U+2 −U+2 U+3 cot θ

= 0,

(Ũ+ · ∇̃)S+ = 0,

and

(2-4)



[ρŨ ] ·
(

1, 1
r̃
∂θ r̃ ,−

∂ϕ r̃
r̃ sin θ

)
= 0,

[ρŨ ⊗ Ũ + P I ] ·
(

1, 1
r̃
∂θ r̃ ,−

∂ϕ r̃
r̃ sinϕ

)
= 0

[
(ρ(e+ 1

2 |Ũ |
2)+ P)Ũ

]
·

(
1, 1

r̃
∂θ r̃ ,−

∂ϕ r̃
r̃ sinϕ

)
= 0,

where r= r̃(θ, ϕ) is the equation of the shock surface6 in the spherical coordinates
(r, θ, ϕ).

Meanwhile, (1-4) and (1-5) are correspondingly changed into

(2-5) P+(r, θ, ϕ)= Pe+ ε P̃(θ) on r = X0+ 1

and

(2-6) U+2 = 0 on θ = θ0.

For the axisymmetric exit pressure (1-4), we will search for solutions of (2-3)–
(2-6) in the form

(2-7) (S+, P+, Ũ+; r̃)= (S+(r, θ), P+(r, θ),U+1 (r, θ),U
+

2 (r, θ), 0; r̃(θ)),

that is, we look for a solution and shock surface independent of the variable ϕ.
In this case, using the notation

U ≡ (U1,U2), U⊥ ≡ (−U2,U1), ∇ ≡ (∂r ,−(1/r)∂θ ),

we can simplify (2-3) and (2-4) to

(2-8)


∇ · (ρ+U+)+ 1

r
ρ+(2,− cot θ) ·U+ = 0,

(U+ · ∇)U++ 1
ρ+
∇P++

U+2
r
(U+)⊥ = 0,

(U · ∇)S+ = 0,
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and

(2-9)



[ρU ] ·
(

1,
r̃ ′(θ)
r̃(θ)

)
= 0,

[ρU ⊗U + P I ] ·
(

1,
r̃ ′(θ)
r̃(θ)

)
= 0,[

(ρ(e+ 1
2 |U |

2)+ P)U
]
·

(
1, r̃ ′(θ)

r̃(θ)

)
= 0.

For convenience, we use the transformation

(2-10) y1 = r and y2 = X0θ,

to change the fixed wall 52 into y2 = 1.
In the following, we will drop the + superscripts for simplicity in presentation.
In this case, (2-8) and (2-9) can be rewritten respectively as

(2-11)


∇y · (ρU )+

ρ

y1
U ·

(
2,− cot

( y2

X0

))
= 0,

(U · ∇y)U +
1
ρ
∇y P +

U2

y1
U⊥ = 0,

(U · ∇y)S = 0,

and

(2-12)

 [ρU ]
[ρU ⊗U + P I ]

[(ρ(e+ 1
2 |U |

2)+ P)U ]

 ·
 1

X0ξ
′(y2)

ξ(y2)

= 0,

where ∇y ≡ (∂y1,−(X0/y1)∂y2) and ξ(y2)= r̃(y2/X0), and (2-5) and (2-6) become
respectively

(2-13) P(y)= Pe+ ε P̃(y2/X0) on y1 = X0+ 1

and

(2-14) U2 = 0 on y2 = 1.

Next, we derive boundary conditions of (P, S,U1) on the shock surface.
It follows from (2-12) that

(2-15) ξ ′(y2)=−
ξ(y2)

X0

[ρU1U2]

[ρU 2
2 + P]

.
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This, together with (2-12), yields on 6 that

(2-16)

G1(ρ,U, S)≡ [ρU1][ρU 2
2 + P] − ρ2U1U 2

2 = 0,

G2(ρ,U, S)≡ [ρU 2
1 + P][ρU 2

2 + P] − (ρU1U2)
2
= 0,

G3(ρ,U, S)≡ [(ρe+ 1
2ρ|U |

2
+ P)U1][ρU 2

2 + P]

− ρU1(ρe+ 1
2ρ|U |

2
+ P)U 2

2 = 0.

It follows from a direct computation and the implicit function theorem that at
the shock position 6

(2-17) (S− S+0 , P − P+0 ,U1− Û+0 )(r0)

= (g̃1, g̃2, g̃3)(U 2
2 , P−0 − P−0 (r0),U−0 −U−0 (r0)),

where g̃ j is smooth in its arguments and satisfies g̃ j (0, 0, 0) = 0 for j = 1, 2, 3.
Moreover, by (1-6), the expected estimates in Theorem 1.1, and Remarks A.2
and A.3, it can be verified that

g̃i = (O(ε)+ O(1/X0))(O(U2)+ O(ξ(y2)− r0)) for i = 1, 2, 3.

This implies that on the shock surface, the influence of U2 and ξ(y2)− r0 on
S− S+0 , U1− Û+0 and P − P̂+0 can be almost neglected.

On the other hand, due to (2-1) and (2-10), the extension (S±0 , P̂±0 (r), Û
±

0 (r))
of the background solution in Appendix A will be changed into

(2-18) (S±0 , P̂±0 (y), Û
±

0 (y)),

which satisfies for large X0

(2-19)
∣∣∣∣dk P̂±0 (y1)

dyk
1

∣∣∣∣+ ∣∣∣∣dkÛ±0 (y1)

dyk
1

∣∣∣∣≤ C
X k

0
for k = 1, 2, 3,

where the constant C > 0 is independent of X0 (see Remark A.2).
To treat the system (2-11) with (2-12)–(2-14), we introduce new coordinates

(2-20) z1 =
y1− ξ(y2)

X0+ 1− ξ(y2)
and z2 = y2,

which changes the free domain

(2-21) R+ = {(y1, y2) : ξ(y2) < y1 < X0+ 1, 0< y2 < 1}

into a fixed square

(2-22) E+ = {(z1, z2) : 0< z1 < 1, 0< z2 < 1}.

There coordinates will decouple the system (2-11) with (2-12)–(2-14).
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With some abuse of notation, we set

(S, P,U1,U2)(z)= (S, P,U1,U2)(ξ(z2)+ z1(X0+ 1− ξ(z2)), z2),(2-23)

(P̂+0 , Û
+

0 )(z1)= (P̂+0 , Û
+

0 )(r0+ z1(X0+ 1− r0)).(2-24)

Define

(2-25) w =U2/U1.

We now derive a first order elliptic system in w and P .
In fact,

1
ρU 2

1
×
(
(the third equation in (2-11))−U2× (the first equation in (2-11))

)
,

together with the fourth equation in (2-11), yields

∂y1w−
X0

y1

(
1
ρU 2

1
−
w2

γP

)
∂y2 P − w

γP
∂y1 P − w

y1
+
w2

y1
cot

y2

X0
= 0.

While

y1

X0ρU 2
1
×
(
(the second equation in (2-11))−U1× (the first equation in (2-11))

)
yields

∂y2w+
w
X0

cot
y2

X0
+

y1

X0

(
1
ρU 2

1
−

1
γP

)
∂y1 P + w

γP
∂y2 P − w

2
+2

X0
= 0.

In the (z1, z2) coordinates, we then have in E+

(2-26)
∂z1w− a1∂z2 P = F1(S, P,U1,U2; ξ),

∂z2w+
1

X0
cot

z2

X0
w+ a2∂z1 P = F2(S, P,U1,U2; ξ),

where

a1 =
X0(X0+ 1− r0)

r0

1
ρ̂+0 (0)(Û

+

0 (0))
2
,

a2 =
r0

X0(X0+ 1− r0)

(
1

ρ̂+0 (0)(Û
+

0 (0))
2
−

1
γ P̂+0 (0)

)
,
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and

F1(S, P,U1,U2; ξ)

=
X0

ξ(z2)+ z1(X0+ 1− ξ(z2))

(
1
ρU 2

1
−
w2

γP

)(
(z1− 1)ξ ′(z2)∂z1

+ (X0+ 1− ξ(z2))∂z2

)
P + w

γP
∂z1 P − a1∂z2 P

+
w(X0+ 1− ξ(z2))

ξ(z2)+ z1(X0+ 1− ξ(z2))
−

w2(X0+ 1− ξ(z2))

ξ(z2)+ z1(X0+ 1− ξ(z2))
cot

z2

X0
,

F2(S, P,U1,U2; ξ)

= a2∂z1 P −
ξ(z2)+ z1(X0+ 1− ξ(z2))

X0(X0+ 1− ξ(z2))

(
1
ρU 2

1
−

1
γP

)
∂z1 P

−
w
γP

(
(z1− 1)ξ ′(z2)

X0+ 1− ξ(z2)
∂z1 + ∂z2

)
P +

(1− z1)ξ
′(z2)

X0+ 1− ξ(z2)
∂z1w+

w2
+2

X0
.

It should be noted that in (2-26),

w2(X0+ 1− ξ(z2))

ξ(z2)+ z1(X0+ 1− ξ(z2))
cot

z2

X0
and 1

X0
cot

z2

X0
w

are singular at z2 = 0, and thus special care is required in our analysis.
In addition, it follows from the first equality and the fourth equality in (2-9) that[

1
2 |U |

2
+

γ

γ− 1
P
ρ

]
= 0.

This, together with the first and the fifth equation in (1-1) yields the Bernoulli’s
law

(2-27) 1
2U 2

1 (1+w
2)+

γ

γ− 1
P
ρ
=

1
2(U

−

0 (X0))
2
+

γ

γ− 1
P−0 (X0)

ρ−0 (X0)
.

In terms of the fourth equation in (2-11), the equation for the entropy becomes

(2-28)
((

1+
X0w(1− z1)ξ

′(z2)

ξ(z2)+ z1(X0+ 1− ξ(z2))

)
∂z1

−
X0(X0+ 1− ξ(z2))w

ξ(z2)+ z1(X0+ 1− ξ(z2))
∂z2

)
S = 0.

The related boundary conditions of (S+, P,U1,U2) are

(2-29) (S, P,U1)(0, z2)− (S+0 , P̂+0 ,U
+

0 )(0)

= (g̃1, g̃2, g̃3)(U 2
2 (0, z2), P−0 (ξ(z2))− P−0 (r0),U−0 (ξ(z2))−U−0 (r0)).
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and

P(1, z2)= Pe+ ε P̃(z2/X0).(2-30)

U2(z1, 1)= 0,(2-31)

where the shock ξ(z2) is determined by

(2-32) ξ ′(z2)=−
ξ(z2)

X0

(ρU1U2)(0, z2)

ρ(0, z2)U 2
2 (0, z2)+ P(0, z2)− P−0 (ξ(z2))

.

Consequently, in order to show Theorem 1.1, we only need to solve the problem
(2-26)–(2-28) with conditions (2-29)–(2-32).

3. The existence of a three-dimensional transonic shock
for undetermined exit pressure

We will now establish the existence of a three-dimensional transonic shock in a
nozzle when the transonic shock is assumed to go through some fixed point on the
wall and when the end pressure Pe+ εP0(θ) in (1-4) is adjusted by an appropriate
constant. It follows from this that if one can show that the shock goes through
some a point at the wall and if the corresponding adjustment constant on the end
pressure is zero, then Theorem 1.1 will be proved.

Theorem 3.1. Let the three-dimensional nozzle and the supersonic incoming flow
be described as in Section 1. Assume further that

(3-1) ξ(1)= r̃0,

where r̃0 ∈ (r0 − C̃ X3/2
0 ε, r0 + C̃ X3/2

0 ε) with C̃ > 0 some fixed constant. Then
for ε < 1/X3

0 and large X0, there exists a constant C0 such that the problem
(2-26)–(2-28) and (2-32) with conditions (2-29), (2-31) and (3-1) has a C2,α(E+)
transonic solution (S(z), P(z),U1(z),U2(z); ξ(z2)) when (2-30) is replaced by

(3-2) P = P̃e+ ε P̃(z2/X0)+C0 on r = X0+ 1.

Moreover,

(3-3) ‖ξ − r̃0‖C3α[0,1] ≤ Cε

and

(3-4) ‖(S, P,U1)− (S+a , P̂+a (z1), Û+a (z1))‖C2,α(E+)+‖U2‖C2,α(E+)+|C0| ≤ Cε.

Here C is a generic nonnegative constant that is independent of X0 and ε, and
(S+a , P̂+a (z1), Û+a (z1)) is the background solution representing a radially symmet-
ric transonic shock at position r̃0 with exit pressure P̃e.
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Due to singular terms in (2-26) on {z2 = 0}, special attention must be paid to
handle the possible nearby singularities of the solution. Fortunately, this difficulty
can be overcome and C2,α regularity of the subsonic flow can be established.

We define iteration spaces as follows:

(3-5) Sσ ={ξ(z2)∈C3,α
[0, 1] :‖ξ−r̃0‖C3,α[0,1]≤σ, ξ

′(0)=ξ ′(1)=0, ξ (3)(0)=0}

and

(3-6) 4δ =
{
(S, P,U1,U2) : ‖(S, P,U1,U2)− (S+a , P̂+a , Û

+

a , 0)‖C2,α(E+) ≤ δ,

∂z2(S, P,U1)(z1, 0)= ∂z2(S, P,U1)(z1, 1)= (0, 0, 0),

U2(z1, 0)=U2(z1, 1)= ∂2
z2

U2(z1, 0)= 0
}
,

with σ > 0 and δ > 0 to be determined.
The proof of Theorem 3.1 is divided into four steps.

Step 1 (approximating shock). For (S̃, P(q, S̃), V1, V2) ∈ 4δ, we may by (2-32)
define the approximating shock location as

(3-7)
ξ ′(z2)=−

ξ(z2)

X0

(qV1V2)(0, z2)

P(q, S̃)(0, z2)− P−0 (ξ(z2))+ (qV 2
2 )(0, z2)

,

ξ(1)= r̃0,

which has a unique solution ξ(z2)∈C3,α([0, 1]). It follows from the compatibility
conditions in (3-6) that ξ(z2) satisfies at z2 = 0, 1 the last two conditions in (3-5),
and

(3-8) ‖ξ(z2)− r̃0‖C3,α ≤ C‖V2‖C2,α ≤ Cδ.

In addition, as in (2-29), on z1 = ξ(z2) we may require that

(3-9) (S, P,U1)(0, z2)− (S+a , P̂+a (r̃0), Û+a (r̃0))

= (ǧ1, ǧ2, ǧ3)((V2)
2, P−0 − P−0 (r̃0),U−0 −U−0 (r̃0)).

It can be verified directly that ∂z2(S, P,U1)(0, 0)= ∂z2(S, P,U1)(0, 1)= 0.

Step 2 (approximating the specific entropy S). By (2-28), we approximate S by
solving the problem
(3-10)((

V1+
X0(1− z1)ξ

′(z2)V2

ξ(z2)+ z1(X0+1−ξ(z2))

)
∂z1−

X0(X0+1−ξ(z2))V2

ξ(z2)+ z1(X0+1−ξ(z2))
∂z2

)
S = 0

in E+,

S+a + g̃1((V2)
2(0, z2), P−0 (ξ(z2))− P−0 (r̃0),U−0 (ξ(z2))−U−0 (r̃0))= S

at z1 = 0.
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Due to (3-6), this problem has a unique solution S ∈ C2,α(E+). Moreover, by
Remarks A.2 and A.3, we have

(3-11)
‖S− S+a ‖C2,α ≤ C‖V2‖

2
C2,α +

C
X0
‖ξ − r̃0‖C3,α

≤ C
(
‖V2‖C2,α +

1
X0

)
‖V2‖C2,α ≤ C

(
δ+

1
X0

)
δ.

Differentiating (3-10) with respect to z2 and noting ξ ′(1) = V2(z1, 1) = 0, we
have

V1∂z1(∂z2 S)−
X0(X0+ 1− ξ(z2))∂z2 V
ξ(z2)+ z1(X0+ 1− ξ(z2))

(∂z2 S)= 0 along z2 = 0 or z2 = 1,

∂z2 S(0, 0)= ∂z2 S(0, 1)= 0,

which implies that

(3-12) ∂z2 S(z1, 0)= ∂z2 S(z1, 1)= 0.

Thus, S belongs to 4δ for small δ.

Convention 3.2. The reader may have noticed that X0 sets the length scale for
many quantities here. Since this trend will continue, we now declare that any
symbol with check above it is that symbol divided by X0. For example, ž2= z2/X2,
and 1̌= 1/X0.

Step 3 (approximating P and w). By (2-26), the second equality in (3-9) and
(2-30)–(2-31), the approximate pressure P and w can be obtained from the bound-
ary value problem

(3-13)

∂1w− ā1∂2 P = F1(S̃, P(q, S̃), V1, V2; ξ),

∂2w+ 1̌ cot ž2w+ ā2∂1 P = F2(S̃, P(q, S̃), V1, V2; ξ),

P(0, z2)− P̂+a (r̃0)

= g̃2(V 2
2 (0, z2), P−0 (ξ(z2))− P−0 (r̃0),U−0 (ξ(z2))−U−0 (r̃0)),

P(1, z2)= P̃e+ ε P̃(ž2)+C0,

w(z1, 0)= 0, w(z1, 1)= 0.

Here ā1 and ā2 are defined as a1 and a2 in (2-26), but with (ρ̂+0 , Û
+

0 , P̂+0 ; r0)

replaced by (ρ̂+a , Û
+
a , P̂+a ; r̃0). Note that the boundary condition w(z1, 0) = 0

comes essentially from requiring C2,α regularity of the solution (P, w), by assum-
ing P̃ ′(0) = 0 in (1-4). The constant C0 will be chosen so that the solvability
condition in (3-13) can be fulfilled. More concretely, it follows from the second
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equation in (3-13) and w(z1, 0)= 0 that

w(z)= 1
sin ž2

∫ z2

0
sin š(F2− ā2∂1 P)(z1, s)ds.

Since w(z1, 1)= 0, we have∫ 1

0
sin š

(
F2(S̃, P(q, S̃), V1, V2; ξ)− ā2∂1 P

)
(z1, s)ds = 0.

In particular,

(3-14)
∫ 1

0
sin š

(
F2(S̃, P(q, S̃), V1, V2; ξ)− ā2∂1 P

)
(1, s)ds = 0.

We will take this as the solvability condition of (3-13) that determines the unknown
constant C0.

Next, since P̂+a (z1) satisfies

ā2∂1 P̂+a (z1)− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0)= 0 in E+ and P̂+a (1)= P̃e,

a direct computation yields

(3-15)

∂1w− ā1∂2(P − P̂+a )= F1(S̃, P(q, S̃), V1, V2; ξ),

∂2w+ 1̌ cot ž2w+ ā2∂1(P − P̂+a )= F2(S̃, P(q, S̃), V1, V2; ξ)

− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0),

(P − P̂+a )(0, z2)= g̃2(V 2
2 (0, z2), P−0 (ξ(z2))− P−a (r̃0),U−0 (ξ(z2))−U−a (r̃0)),

(P − P̂+a )(1, z2)= ε P̃(ž2)+C0,

w(z1, 0)= 0, w(z1, 1)= 0.

Next, we derive a second order elliptic equation for P − P̂+a from (3-15).
Applying ∂z1 and −(∂z2 + 1̌ cot(ž2)) to the first and second equation in (3-15)

respectively and adding up yields
(3-16)
∂1
(
ā2∂1(P − P̂+a (z1))

)
+ ∂2

(
ā1∂2(P − P̂+a (z1))

)
+ ˇ̄a1 cot ž2∂2

(
P − P̂+a (z1)

)
= ∂1

(
F2(S̃, P(q, S̃), V1, V2; ξ)− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0)

)
− ∂2

(
F1(S̃, P(q, S̃), V1, V2; ξ)

)
− 1̌ cot ž2 F1(S̃, P(q, S̃), V1, V2; ξ) in E+,

(P − P̂+a )(0, z2)= g̃2
(
V 2

2 (0, z2), P−0 (ξ(z2))− P−0 (r̃0),U−0 (ξ(z2))−U−0 (r̃0)
)
,

(P − P̂+a )(1, z2)= ε P̃(ž2)+C0,

∂2(P − P̂+a (z1))= 0 on z2 = 0 or z2 = 1,
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where the fact that ∂z2(P− P̂+a )(z1, 0)= ∂z2(P− P̂+a )(z1, 1)=0 comes from (3-15)
and F1(S̃, P(q, S̃), V1, V2; ξ)(z1, 0)= F1(S̃, P(q, S̃), V1, V2; ξ)(z1, 1)= 0.

We now decompose the problem (3-16) as P(z)= P1(z)+ P2(z), with

(3-17)

∂1(ā2∂1(P1− P̂+a (z1)))+ ∂2(ā1∂2(P1− P̂+a (z1)))+ ˇ̄a1 cot ž2∂2(P1− P̂+a (z1))

= ∂1
(
F2(S̃, P(q, S̃), V1, V2; ξ)− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0)

)
− ∂2

(
F1(S̃, P(q, S̃), V1, V2; ξ)

)
− 1̌ cot ž2 F1(S̃, P(q, S̃), V1, V2; ξ),

P1(0, z2)− P̂+a (0)= g̃2(V 2
2 (0, z2), P−0 (ξ(z2))− P−a (r̃0),U−0 (ξ(z2))−U−a (r̃0)),

P1(1, z2)− P̂+a (1)= ε P̃(ž2),

∂2(P1− P̂+a (z1))= 0 on z2 = 0 or z2 = 1,

and

(3-18)

ā2∂
2
1 P2+ ā1∂

2
2 P2+ ˇ̄a1 cot ž2∂2 P2 = 0 in E+,

P2(0, z2)= 0,

P2(1, z2)= C0,

∂2 P2 = 0 on z2 = 0 or z2 = 1.

We first treat the problem (3-17).
It follows from Lemma B.5 (for the case of k = 1) that (3-17) has a unique

C2,α(E+) solution P1(z) satisfying

‖P1(z)− P̂+a (z1)‖C2,α

≤ C‖F2(S̃, P(q, S̃), V1, V2; ξ)− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0)‖C1,α

+C‖F1(S̃, P(q, S̃), V1, V2; ξ)‖C1,α +Cε‖P̃(ž2)‖C2,α

+C‖g̃2(V 2
2 (0, z2), P−0 (ξ(z2))− P−0 (r̃0),U−0 (ξ(z2))−U−0 (r̃0))‖C2,α .

Though (V 2
2 (X0+1−ξ(z2)))/(ξ(z2)+z1(X0+1−ξ(z2))) cot ž2 may be singular

in F1, it follows from Lemma B.3 that

∥∥∥∥ V 2
2 (X0+ 1− ξ(z2))

ξ(z2)+ z1(X0+ 1− ξ(z2))
cot ž2

∥∥∥∥
C1,α
≤ C‖V2‖C1,α

∥∥∥1̌ cot ž2V2

∥∥∥
C1,α(E+)

≤ Cδ‖V2‖C2,α .
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Thus,

(3-19)

‖P1(z)− P̂+a (z1)‖C2,α

≤ O(1̌)‖S̃− S+a ‖C2,α + O(1̌)‖P(q, S̃)− P̂+a ‖C2,α

+ O(1̌+ δ)‖V1− Û+a ‖C2,α + O(1̌+ δ+ ε)‖V2‖C2,α

+ O(1̌+ δ)‖ξ − r̃0‖C2,α + O(ε)
≤ C(δ̌+ δ2

+ ε).

Next, note that the problem (3-18) has a solution

(3-20) P2(z)= C0z1,

which is unique by Lemma B.5.
In this case, by the second equation in (3-15), (3-14) can be changed into

(3-21)
∫ 1

0
sin š

(
F2(S̃, P(q, S̃), V1, V2; ξ)− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0)

− ā2(∂1 P1− ∂1 P̂+a (z1))− ā2C0
)
(1, s)ds = 0.

Note that ā2 = O(1) > 0 since (S+a , P̂+a , Û
+
a ) is subsonic. Then we can choose

a unique constant C0 such that (3-21) holds. Moreover, it follows from (3-19) and
the expression of F2 that C0 admits the estimate

(3-22) |C0|

=
1

2ā2 X0 sin2 1
2X0

∣∣∣∣∫ 1

0
sin š

(
F2(S̃, P(q, S̃), V1, V2; ξ)

− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0)

− ā2(∂1 P1− ∂1 P̂+a (z1))
)
(1, s)ds

∣∣∣∣
≤ ‖P1(z)− P̂+a (z1)‖C2,α

+
1
ā2

∥∥F2(S̃, P(q, S̃), V1, V2; ξ)− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0)
∥∥

C1,α

≤ C(δ̌+ δ2
+ ε).

Collecting all the estimates (3-17)–(3-22) shows that there exists a unique con-
stant C0 such that the second order elliptic equation (3-16) with mixed boundary
conditions has a unique solution P(z) satisfying

(3-23) ‖P − P̂+a ‖C2,α + |C0| ≤ ‖P1− P̂+a ‖C2,α +C |C0| ≤ C(δ̌+ δ2
+ ε).
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With P(z) so determined, we can obtain w in E+ by solving the problem

(3-24)

∂1w = ā1∂2 P + F1(S̃, P(q, S̃), V1, V2; ξ),

∂2w+ 1̌ cot ž2w = F2(S̃, P(q, S̃), V1, V2; ξ)− ā2∂1 P,

w(z1, 0)= 0.

It follows from Lemma B.7 that (3-24) has a unique solution w due to (3-13).
On the other hand, by w(z1, 0)= 0, we arrive at

(3-25) ‖w‖C2,α ≤ C(‖∂1w‖C1,α +‖∂2w‖C1,α ).

We now estimate ‖∂1w‖C1,α(E+) and ‖∂2w‖C1,α(E+).
By the first equation in (3-15) and (3-23), we have

(3-26) ‖∂1w‖C1,α ≤ C
(
‖P − P̂+a ‖C2,α +‖F1‖C1,α

)
≤ C(δ̌+ δ2

+ ε).

Next, it follows from the second equation in (3-15) that

(3-27) w(z)= 1
sin ž2

∫ z2

0
sin š

(
F2(S̃, P(q, S̃), V1, V2; ξ)

− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0)

− ā2(∂1 P − ∂1 P̂+a (z1))
)
ds.

Furthermore, a direct but careful computation using (3-27) and (3-21) yields

(3-28) w(z1, 0)= ∂2
z2
w(z1, 0)= w(1, 1)= 0.

Indeed, w(z1, 0) = w(1, 1) = 0 comes directly from (3-21), (3-24) and (3-27),
while ∂2

z2
w(z1, 0)= 0 follows from the following computations:

Applying ∂z2 two both sides of the second equation in (3-24) yields

(3-29) ∂2
z2
w+ 1̌ cot ž2∂z2w−

1
X2

0 sin2 ž2
w = ∂z2 F2− ā2∂

2
z1z2

P.

Note that for small z2,

∂2
z2
w+ 1̌ cot ž2∂z2w−

1
X2

0 sin2 ž2
w

= ∂2
z2
w+

1
X2

0 sin2 ž2
(∂z2wX0 sin ž2 cos ž2−w)

= ∂2
z2
w+

1
X2

0 sin2 ž2

(
∂z2wX0(ž2+ o(ž2

2))
(
1− 1

2 ž2
2+ o(ž3

2)
)

−z2

∫ 1

0
∂z2w(z1, θ z2)dθ

)
= ∂2

z2
w+

1
X2

0 sin2 ž2

(
∂z2wz2− ∂z2w(z1, 0)z2−

1
2∂

2
z2
w(z1, 0)z2

2+ o(z2
2)
)
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=
3
2∂

2
z2
w(z1, 0)+ o(z2),

and it follows from ∂z2 P(z1, 0)= 0 and the expression of F2 that ∂2
z1z2

P(z1, 0)= 0
and ∂z2 F2(z1, 0)= 0. Consequently, (3-29) shows that ∂2

z2
w(z1, 0)= 0.

In addition, because ∂z1w(z1, 1)= 0, which comes from ∂z2 P(z1, 1)= 0 and
F1(S̃, P(q, S̃), V1, V2; ξ)(z1, 1)= 0, and w(1, 1)= 0, we have

(3-30) w(z1, 1)= 0.

Finally, it follows from the second equation in (3-15) and Lemma B.6 that

‖∂2w‖Cα +‖∂2
2w‖Cα

≤ C
(
‖F2(S̃, P(q, S̃), V1, V2; ξ)− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0)‖C1,α

+‖P − P̂+a (z1)‖C2,α
)

≤ C(δ̌+ δ2
+ ε).

This, together with (3-26), yields

(3-31)

‖w‖C2,α

≤ C
(
‖F2(S̃, P(q, S̃), V1, V2; ξ)− F2(S+a , P̂+a (z1), Û+a (z1), 0; r̃0)‖C1,α

+‖P − P̂+a ‖C2,α +‖F1‖C1,α
)

≤ C(δ̌+ δ2
+ ε).

Thus, it follows from (3-16), (3-22)–(3-24), (3-28), (3-30) and (3-31) that there
exists a unique constant C0 such that the first order elliptic system (3-13) has a
unique solution (P(z), w(z)) satisfying the estimates

(3-32) ‖P − P̂+0 ‖C2,α +‖w‖C2,α + |C0| ≤ C(δ̌+ δ2
+ ε).

and

(3-33) ∂2 P(z1, 0)= ∂2 P(z1, 1)= w(z1, 0)= w(z1, 1)= ∂2
2w(z1, 0)= 0.

Step 4 (approximating the radial velocity U1). Due to (2-27), the radial velocity
U1 can be uniquely determined from

(3-34)
U 2

1 (1+w
2)+

2γ
γ−1

P
ρ
−
(
Û+a

)2
−

2γ
γ− 1

P̂+a
ρ̂+a
= 0,

U1(z) > 0.

It follows from (3-11) and (3-32) that U1(z) satisfies

(3-35)
‖U1− Û+a ‖C2,α ≤ C

(
δ‖w‖C2,α +‖S− S+a ‖C2,α +‖P − P̂+a ‖C2,α

)
≤ C(δ̌+ δ2

+ ε).
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By (3-12), (3-28) and (3-30), a direct computation yields

(3-36) ∂z2U1(z1, 0)= ∂z2U1(z1, 1)= 0.

All the constants C in (3-8), (3-11), (3-32) and (3-35) depend only on the su-
personic incoming flow and ‖P̃(ž2)‖C2,α , so we can choose σ = O(1)ε > 0 and
δ = O(1)ε > 0 such that (S, P,U1,U2; ξ) obtained in Steps 1–4 belongs to the
space 4δ. Consequently, we can define a map T from 4δ to itself by

(3-37) T (S̃, P(q, S̃), V1, V2)= (S, P,U1,U2).

Proof of Theorem 3.1. It suffices to prove that the mapping T defined in (3-37) is
contractible in C1,α(E+).

For any two given elements (S̃1, P̃1, V11, V21) and (S̃2, P̃2, V12, V22) in 4δ, set

T (S̃1, P̃1, V11, V21)= (S1, P1,U11,U21),

T (S̃2, P̃2, V12, V22)= (S2, P2,U12,U22),

and denote the corresponding approximating shocks (obtained by solving (3-7)) by
ξ1(z2) and ξ2(z2), respectively. Below we will use the fact that σ = O(1)ε > 0 and
δ = O(1)ε > 0 in (3-5) and (3-6).

Define

(W1,W2,W3,W4)= (S1− S2, P1− P2,U11−U12,U21−U22),

(W̃1, W̃2, W̃3, W̃4)= (S̃1− S̃2, P̃1− P̃2, V11− V12, V21− V22).

For convenience, we set also

W5 =
U21

U11
−

U22

U12
, W̃5 =

V21

V11
−

V22

V12
, W6 = ξ1(z2)− ξ2(z2).

Next, we derive some useful estimates on Wi for i = 1, 2, · · · , 6, so that the
contractible property of T can be established.

First, it follows from (3-7) and a simple computation that

(3-38)

W ′6(z2)= O(ε)W̃1+ O(ε)W̃2+ O(ε)W̃3

+ O(1)W̃4+ O(ε̌)W6 in [0, 1],

W6(1)= 0.

This yields

(3-39) ‖W6‖C2,α[0,1] ≤ C
(
ε

3∑
i=1

‖W̃i‖C1,α +‖W̃4‖C1,α

)
.
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Second, it follows from (2-28) and Lemma B.8 that

(3-40) ‖W1‖C1,α ≤ C
(
ε

4∑
i=2

‖W̃i‖C1,α + 1̌‖W6‖C2,α

)
.

Next, it follows from (3-13) and (3-21) that

(3-41)

∂1W5− ā1∂2W2 = O(ε)W̃1+ O(ε)W̃2+ O(ε)W̃3

+ O(1̌)W̃5+ O(ε)W6+ O(ε)∂1W̃2

+ O(1̌)∂2W̃2+ O(1̌)W ′6(z2),

∂2W5+ 1̌ cot(ž2)W5+ ā2∂1W2

= O(1̌)W̃1+ O(1̌)W̃2+ O(1̌)W̃3

+ O(ε)W̃5+ O(1̌)W6+ O(1̌)∂1W̃2

+ O(ε)∂2W̃2+ O(ε)∂1W̃5+ O(ε)W ′6(z2),

W2(0, z2)= O(ε)W̃4(0, z2)+ O(1̌)W6(z2),

W2(1, z2)= constant,

W5(z1, 0)= 0, W5(z1, 1)= 0.

Then it follows from Lemma B.5 for the case k = 0 and (B-31) of Lemma B.6
that

(3-42) ‖W2‖C1,α +‖W5‖C1,α + |constant| ≤ Č
( 5∑

i=1

‖W̃i‖C1,α +‖W6‖C2,α

)
.

Finally, it follows from the algebraic equation (2-27) that

(3-43) W3 = O(1)W1+ O(1)W2+ O(ε)W5.

This yields

(3-44) ‖W3‖C1,α ≤ C(‖W1‖C1,α +‖W2‖C1,α + ε‖W5‖C1,α ).

Collecting all the estimates (3-39), (3-40), (3-42) and (3-44) obtained thus far,
we arrive at

(3-45)
3∑

i=1

‖Wi‖C1,α +‖W5‖C1,α ≤ C(1̌+ ε)
5∑

j=1

‖W̃i‖C1,α .

In terms of the definitions of W4, W5, W̃4 and W̃5, one deduces from (3-45) that

(3-46)
4∑

i=1

‖Wi‖C1,α ≤ C(1̌+ ε)
4∑

j=1

‖W̃i‖C1,α .
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Since X0 is large and ε is small, C(1̌+ε) < 1 holds true in (3-46). This implies
that the mapping T from 4δ into itself is contractible in C1,α(E+). Therefore,
it follows from the contractible mapping theorem that there exists a unique fixed
point of T in the function space4δ, which completes the proof of Theorem 3.1. �

We complete this section by pointing out some refined estimates on the solution
obtained in Theorem 3.1. First, we note that by some elementary analysis for
ordinary differential systems, one can verify the following fact, which has been
given in [Li et al. 2009b, Proposition 5.3]:

Suppose (S+0,1, P̂+0,1(r), Û
+

0,1(r) and (S+0,2, P̂+0,2(r), Û
+

0,2(r)), with r ∈ [X0, X0 + 1]
given in Remark A.3, are two extended subsonic flows that correspond to the shock
positions r0,1 and r0,2 with r0,i ∈ (X0, X0+1), and constant end pressures P1,e and
P2,e respectively. Then there exists a uniform constant C > 1 independent of X0

such that for large X0

(3-47)

‖(S+0,1, P̂+0,2(r), Û
+

0,2(r))− (S
+

0,2, P̂+0,1(r), Û
+

0,1(r))‖C4,α[X0,X0+1]

≤ C |P2,e− P1,e|,

(X0/C)|P2,e− P1,e| ≤ |r0,2− r0,1| ≤ C X0|P2,e− P1,e|.

This result combines with Theorem 3.1 to give another:

Theorem 3.1′. Under the assumptions of Theorem 3.1, we have

(3-48) ‖ξ − r0‖L∞[0,1] ≤ C X3/2
0 ε, ‖ξ ′‖C2,α[0,1] ≤ Cε

and

‖(S, P,U1)− (S+0 , P̂+0 (z1), Û+0 (z1))‖C2,α(E+)+ |C0| ≤ C
√

X0ε,(3-49)

‖∂z2(S, P,U1)− ∂z2(S
+

0 , P̂+0 (z1), Û+0 (z1))‖C1,α(E+)+‖U2‖C2,α(E+)(3-50)

≤ Cε.

Here the generic constant C > 0 is independent of X0 and ε, but may depend on C̃.

Remark 3.3. In Theorems 3.1 and 3.1′ or the problem (1-1) with (1-2)–(1-5),
it seems difficult to find higher order compatibility conditions at the nozzle wall
so that the solutions will achieve C3,α regularity; this is due to the source terms
in (2-8). For more details, see Appendix C.

4. The monotonic dependence of the shock position on the exit pressure

The key to proving Theorem 1.1, as in [Li et al. 2009b], establishing the monotonic
dependence of the shock position on the end pressure. For this end, we assume that
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the problem (2-26)–(2-28), (2-32) with (2-29) and (2-31), has two solutions

(S, P,U1,U2; ξ1) ∈ C2,α(E+)×C3,α([0, 1]),

(S̃, P̃, V1, V2; ξ2) ∈ C2,α(E+)×C3,α([0, 1])

when the exit pressure boundary condition (2-30) is replaced respectively by

P(1, z2)= Pe+ ε P̃1(ž2),(4-1)

P̃(1, z2)= Pe+ ε P̃2(ž2).(4-2)

Theorem 4.1. If (P, ρ,U1,U2, S; ξ1) and (P̃, q, V1, V2, S̃; ξ2) both satisfy the es-
timates (3-48)–(3-50), and

M−0 (X0)≡
U−0 (X0)

c(ρ−0 (X0))
>

√
γ+ 3

2
,

then

(4-3) |ξ2(1)− ξ1(1)| ≤ C X0ε‖P̃1(ž2)− P̃2(ž2)‖C1,α[0,1],

and

(4-4) ‖(S, P,U1,U2)− (S̃, P̃, V1, V2)‖C1,α(E+)+‖ξ
′

1− ξ
′

2‖C1,α[0,1]

≤ Cε‖P̃1(ž2)− P̃2(ž2)‖C1,α[0,1].

Furthermore, if P1(1, z2)− P2(1, z2)= C̃ = O(
√

X0ε) and ξ1(1) < ξ2(1), then
ξ1(z2) < ξ2(z2) and the constant C̃ is positive. Moreover, there exists a generic
constant C > 1 such that

(4-5) 1̌
C
(ξ2(1)− ξ1(1))≤ C̃ ≤ Č(ξ2(1)− ξ1(1)).

Proof. Without loss of generality, we assume

(4-6) ξ1(1) < ξ2(1).

With some abuse of notation, we set

W1(z)= S− S̃, W2(z)= P − P̃, W3(z)=U1− V1,

W4(z)=U2− V2, W5(z)=
U2

U1
−

V2

V1
, W6(z2)= ξ1− ξ2.

The proof of Theorem 4.1 will be divided into five steps.
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Step i (the estimate of W6). It follows from (2-32) that W6(z2) satisfies

(4-7)
W ′6(z2)=

3∑
i=1

O(ε)Wi + O(1)W4+ O(ε̌)W6,

W6(1)= ξ1(1)− ξ2(1)

and

(4-8)
W ′′6 (z2)=

4∑
i=1

O(ε)Wi + O(ε̌)W6+

3∑
i=1

O(ε)∂2Wi

+ O(1)∂2W4+ O(ε̌)W ′6(z2),

W ′6(1)= 0.

By (4-6), we have

(4-9) ‖W ′6(z2)‖C1,α ≤ C(ε(ξ2(1)− ξ1(1))+‖∂2W4‖Cα )+Cε
( 4∑

i=1

‖Wi‖C1,α

)
and

(4-10)

‖W6‖C2,α ≤ C((ξ2(1)− ξ1(1))+‖W ′6(z2)‖C1,α )

≤ C((ξ2(1)− ξ1(1))+‖∂2W4‖Cα )+Cε
( 4∑

i=1

‖Wi‖C1,α

)
.

Step ii (the estimate of W1). First, we solve the first order system (2-28) in the
coordinate z = (z1, z2). Let z1

2(s; z)(z
2
2(s; z)) be the characteristic going through

z = (z1, z2) and reaching (0, β)((0, β̃)) at s = 0 corresponding to the vector field
(U1,U2)((V1, V2)), that is,

dz1
2(s; z)
ds

=−
X0(X0+ 1− ξ1(z1

2))

A1
U2(ξ1(z1

2)+ s(X0+ 1− ξ1(z1
2)), z1

2),

z1
2(z1; z)= z2, z1

2(0; z)= β,

where

A1 = (ξ1(z1
2)+ s(X0+ 1− ξ1(z1

2)))U1+U2 X0(1− s)ξ ′1(z
1
2).

Set l(s; z) = z1
2(s; z)− z2

2(s; z), and note that z1
2(0; z) = β and z2

2(0; z) = β̃.
Then we have

(4-11)

dl
ds
= O(ε)l + O(ε)W3(s, z1

2)+ O(1)W4(s, z1
2)

+ O(ε)W6(z1
2)+ O(ε2)W ′6(z

1
2)

l(0; z)= β − β̃, l(z1; z)= 0.
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By the C2,α regularity of solutions, we can check that the coefficients of l(t; z)
in (4-11) are in C1,α. Based on this, we intend to derive the C1,α estimate of β−β̃.

Indeed, by (4-11), we can arrive at

‖β − β̃‖L∞ ≤ C(ε‖W3‖L∞ +‖W4‖L∞ + ε‖W6‖L∞ + ε
2
‖W ′6(z2)‖L∞).

On the other hand,

z1
2(s; z)=−

∫ s

0

X0(X0+ 1− ξ1(z1
2))

A1
U2(ξ1(z1

2)+ t (X0+ 1− ξ1(z1
2)), z1

2)dt +β,

and

z2 =−

∫ z1

0

X0(X0+ 1− ξ1(z21))

A1
U2(ξ1(z1

2)+ t (X0+ 1− ξ1(z21)), z1
2)dt +β.

Similar relations hold for z2
2(s; z), z2, and β̃ corresponding to (V1, V2).

Hence, one can obtain

(4-12)

β − β̃ =

∫ z1

0
(O(ε)W3(t, z1

2)+ O(1)W4(t, z1
2)

+ O(ε)W6(z1
2)+ O(ε2)W ′6(z

1
2)+ O(ε)l(t; z))dt,

l(s; z)=
∫ s

z1

(O(ε)W3(t, z1
2)+ O(1)W4(t, z1

2)

+ O(ε)W6(z1
2)+ O(ε2)W ′6(z

1
2)+ O(ε)l(t; z))dt

and

(4-13) ‖∂z1(β, β̃)‖C1,α ≤ Cε, ‖∂z2(β, β̃)‖C1,α ≤ C.

It follows from (4-12) and (4-13) that

(4-14) ‖β − β̃‖C1,α ≤ C(ε‖W3‖C1,α +‖W4‖C1,α + ε‖W6‖C2,α ).

In addition, by (2-28) and the characteristics method, we have

(4-15)
W1(z)=W1(0, β(z1, z2))+ O(ε)

(
β(z1, z2)− β̃(z1, z2)

)
,

W1(0, z2)= O(ε)W4(0, z2)+ O(1̌)W6(z2).

Combining (4-15) with (4-14) yields

(4-16)

‖W1‖C1,α ≤ C
(
ε‖(εW2, εW3,W4)‖C1,α + 1̌‖W6‖C2,α + ε‖β − β̃‖C1,α

)
≤ C

(
1̌(ξ2(1)− ξ1(1))+ ε‖(εW2,W3,W4)‖C1,α

+ 1̌‖W ′6(z2)‖C1,α
)
.
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Step iii (the estimates of W2 and W5). By the system (2-26) and the related bound-
ary conditions, a direct computation yields

(4-17)

∂1W5− ã1∂2W2 = O(ε) · (W1,W2,W3,W6)+ O(1̌)W5+ O(ε)∂1W2

+ O(1̌)∂2W2+ O(1̌)W ′6(z2),

∂2W5+ 1̌ cot(ž2)W5+ ã2∂1W2

= O(1̌) · (W1,W2,W3,W6, ∂1W2)

+ O(ε) · (W5, ∂2W2, ∂1W5,W ′6),

W2(0, z2)= O(ε)W4(0, z2)+ O(1̌)W6(z2),

W2(1, z2)= ε P̃1(ž2)− ε P̃2(ž2),

W5(z1, 0)= 0,

W5(z1, 1)= 0,

where ã1 and ã2 are positive constants that are defined like a1 and a2 respectively
in (2-26) for the background solution, but with shock position at r = ξ1(1) rather
than at r = r0.

As in (3-16)–(3-18) and (3-21), we decompose W2 =W21+W22 so that

(4-18)

ã2∂
2
1 W21+ ã1∂

2
2 W21+ (ã1/X0) cot(ž2)∂2W21

= ∂1
(
O(1̌) · (W1,W2,W3, ∂1W2)

+ O(ε) · (W5, ∂2W2, ∂1W5,W ′6)+ a3(z)W6
)

− ∂2
(
O(ε) · (W1,W2,W3,W6, ∂1W2)+ O(1̌) · (W5, ∂2W2,W ′6)

)
− X−1

0 cot(ž2)

× (O(ε) · (W1,W2,W3,W6, ∂1W2)+ O(1̌) · (W5, ∂2W2,W ′6)),

W21(0, z2)= O(ε)W4(0, z2)+ O(1̌)W6(z2),

W21(1, z2)= 0,

∂2W21(z1, 0)= 0,

∂2W21(z1, 1)= 0

and

(4-19)

ã2∂
2
1 W22+ ã1∂

2
2 W22+ (ã1/X0) cot(ž2)∂2W22 = 0,

W22(0, z2)= 0,

W22(1, z2)= ε P̃1(ž2)− ε P̃2(ž2),

∂2W22(z1, 0)= 0,

∂2W22(z1, 1)= 0



136 JUN LI, ZHOUPING XIN AND HUICHENG YIN

and

(4-20)
∫ 1

0
sin š

(
O(1̌) · (W1,W2,W3, ∂1W2)+ O(ε) · (W5, ∂2W2, ∂1W5,W ′6)

+ a3(z)W6− ã2∂1W21− ã2∂1W22
)
(1, s)ds = 0,

where a3(z2)= O(1̌). In particular, due to the estimates (3-48)–(3-50), we have

(4-21) a3(z)=−
( 1
ρU 2

1
−

1
γP

)
× ∂1 P

(
1− z1

X0(X0+ 1− ξ1(z2))
+

ξ2(z2)+ z1(X0+ 1− ξ2(z2))

X0(X0+ 1− ξ1(z2))(X0+ 1− ξ2(z2))

)
+ O(ε) < 0.

Similar to the estimates in (3-42), by (B-20) in Lemma B.5 for the case k = 0,
we have

‖W21‖C1,α(E1) ≤ Č
6∑

i=1

‖Wi‖C1,α(E1),(4-22)

‖W22‖C1,α(E1) ≤ Cε‖P̃1(ž2)− P̃2(ž2)‖C1,α[0,1].(4-23)

In particular, for the case of P(1, z2)− P̃(1, z2)= C̃ , we can determine W22 =

C̃z1 as in Section 3. Thus it follows from (4-20) and ã2(z)= O(1) > 0 that

(4-24) C̃ ≤ C
(
1̌(ξ2(1)− ξ1(1))+ 1̌‖W1‖C1,α +‖W21‖C1,α + 1̌‖W3‖C1,α

+ ε‖W5‖C1,α + 1̌‖W ′6(z2)‖C1,α
)
.

Similar to the estimates for (3-21), (3-26) and (3-31), together with (4-9) and
(4-22)–(4-23), we get

‖W21‖C1,α ≤ Č
(
(ξ2(1)− ξ1(1))+‖(W1,W3,W5,W ′6)‖C1,α

)
(4-25)

+ Čε‖P̃1(ž2)− P̃2(ž2)‖C1,α ,

‖W5‖C1,α ≤ Č
(
(ξ2(1)− ξ1(1))+‖(W1,W21,W3,W ′6)‖C1,α

)
(4-26)

+ Čε‖P̃1(ž2)− P̃2(ž2)‖C1,α .

Thus, combining (4-25) and (4-26) with (4-23) yields

(4-27) ‖W2‖C1,α +‖W5‖C1,α ≤ Č
(
(ξ2(1)− ξ1(1))+‖(W1,W3,W ′6)‖C1,α

)
+Cε‖P̃1(ž2)− P̃2(ž2)‖C1,α .

Step iv (the estimate of W3). It follows from (2-27) that

(4-28) W3 = O(ε)W5+ O(1)W1+ O(1)W2.
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This yields

(4-29) ‖W3‖C1,α ≤ C
(
‖W1‖C1,α +‖W2‖C1,α + ε‖W5‖C1,α

)
.

Step v (the estimate of W2(0, z2)). Note that the supersonic background solution
(ρ−0 , P−0 ,U

−

0 ) satisfies the system (2-11), that is,

(4-30)

d(ρ−0 U−0 )
dy1

=−
2ρ−0 U−0

y1
,

d(ρ−0 (U
−

0 )
2
+ P−0 )

dy1
=−

2ρ−0 (U
−

0 )
2

y1
.

Set
m0(y1)= (ρ

−

0 U−0 )
2,

m1(y1)= ρ
−

0 (U
−

0 )
2
+ P−0 , m2 =

γ

γ− 1
P−0
ρ−0
+

1
2(U

−

0 )
2.

It follows from Bernoulli’s law, (2-27), that m2 is a constant.
In addition, by (2-16) and (2-27), we have on z1 = 0

(4-31)

ρU1 =
√

m0+
ρ2U1U 2

2

[ρU 2
2 + P]

,

ρU 2
1 + P = m1+

(ρU1U2)
2

[ρU 2
2 + P]

, m2 =
γ

γ− 1
P
ρ
+

1
2(U

2
1 +U 2

2 ).

This implies

(4-32)
ρ =

(√
m0+ ρ

2U1U 2
2 /[ρU 2

2 + P]
)2

m1− P + (ρU1U2)2/[ρU 2
2 + P]

,

U1 =
m1− P
√

m0
, m2 =

γ

γ− 1
P
ρ
+

1
2(U

2
1 +U 2

2 ).

Substituting the first two expressions in (4-32) into the third equality in (4-32)
yields on z1 = 0

(4-33) 1
2(m1− P)2+

γ

γ− 1
P(m1− P)−m2m0

=m2
√

m0
ρ2U1U 2

2

[ρU 2
2 + P]

−
1
2 m0U 2

2 −
1
2
√

m0
ρ2U1U 2

2

[ρU 2
2 + P]

(
(m1− P)2

m0
+U 2

2

)
.

Since (S, P,U1,U2; ξ1) and (S̃, P̃, V1, V2; ξ2) both satisfy (4-33), it follows
from a direct computation and the estimates (3-48)–(3-50) for (S, P,U1,U2; ξ1)
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and (S̃, P̃, V1, V2; ξ2) that

(4-34) a4(z2)W2 = a5(z2)W6(z2)+ O(ε2)W1+ O(ε2)W2+ O(ε2)W3

+ O(ε)W4+ O(ε2 X−1
0 )W6,

where

(4-35)

a4(z2)=
γ

γ− 1
m1(ξ1)−

1
2(m1(ξ1)+m1(ξ2)− P − P̃)−

γ

γ− 1
(P + P̃)

=
γ

γ− 1
m1(r0)− (m1(r0)− P̂+0 (r0))−

2γ
γ− 1

P̂+0 (r0)+ O(
√

X0ε)

=
1

γ− 1
ρ̂+0 (r0)(Û+0 (r0))

2
−

γ

γ− 1
P̂+0 (r0)+ O(

√
X0ε)

=
1

γ− 1
ρ̂+0 (r0)

(
(Û+0 (r0))

2
− c2(ρ̂+0 (r0))

)
+ O(

√
X0ε) < 0

and

(4-36)

a5(z2)= m2

∫ 1

0
m′0(ξ2+ s(ξ1− ξ2))ds

−
1
2(m1(ξ1)+m1(ξ2)− P − P̃)

∫ 1

0
m′1(ξ2+ s(ξ1− ξ2))ds

−
γ

γ− 1
P̃
∫ 1

0
m′1(ξ2+ s(ξ1− ξ2))ds

= m2m′0(r0)− (m1(r0)− P̂+0 (r0))m′1(r0)−
γ

γ− 1
P̂+0 (r0)m′1(r0)

+ O(
√

X0ε)

=−2
(ρ−0 (U

−

0 )
2)(r0)

(γ− 1)r0
((γ+ 1)P−0 (r0)− P̂+0 (r0))+ O(

√
X0ε).

Next, we analyze the sign of a5(z2) for small ε and especially the sign of
(γ+ 1)P−0 (r0)− P̂+0 (r0).

In fact, by (4-32), P̂+0 (r0) is a solution of the algebraic equation

(4-37) F(s)= 1
2(m1(r0)− s)2+

γ

γ− 1
s(m1(r0)− s)−m2m0(r0)= 0.

Since

F(P−0 (r0))= 0, F ′′(s)=−
γ+ 1
γ− 1

< 0,

F ′(P−0 (r0))=
1

γ−1
(
(ρ−0 (U

−

0 )
2)(r0)− γP−0 (r0)

)
=
ρ−0 (r0)

γ− 1
((U−0 (r0))

2
− c2(ρ−0 (r0))) > 0,
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which follows from direct computations, F(s) is a concave function and P−0 (r0)

is a left zero point of F(s).
Using the assumption M−0 (X0)>

√
(γ+ 3)/2 on the Mach number for the super-

sonic incoming flow, we have

F((γ+ 1)P−0 (r0))=
(ρ−0 (r0))

2c2(ρ−0 (r0))

2(γ− 1)

(
2(U−0 (r0))

2
− (γ+ 3)c2(ρ−0 (r0))

)
> 0.

This shows that

(4-38) P̂+0 (r0) > (γ+ 1)P−0 (r0).

Combining (4-38) with (4-36), we have

(4-39) a5(z2)= O(1̌) and a5(z2) > 0.

On the other hand, by the estimates (4-9), (4-10), (4-16), (4-27) and (4-29), we
have

(4-40)
4∑

i=1

‖Wi‖C1,α +‖W ′6(z2)‖C1,α

≤ Č |ξ1(1)− ξ2(1)| +Cε‖P̃1(ž2)− P̃2(ž2)‖C1,α .

This, together with (4-34)–(4-36), yields

(4-41) W2(0, z2)≥ b̌1(ξ2(1)− ξ1(1))− b2ε‖P̃1(ž2)− P̃2(ž2)‖C1,α[0,1],

where bi for i = 1, 2 is a generic positive constant of order O(1).

Based on Steps i–v, we can prove Theorem 4.1.
Using (4-21) and substituting (4-40) into (4-20) (noting that (4-20) holds for all

z1 ∈ [0, 1]), we have, for all z1 ∈ [0, 1],

(4-42)
∫ 1

0
sin š

(
b̌3(ξ2(1)− ξ1(1))

− b4ε‖P̃1(ž2)− P̃2(ž2)‖C1,α − ∂1W21
)
(z1, s)ds ≤ 0,

where bi for i = 3, 4 is a generic positive constant. In particular,

b3 ≥ C(−X0a3(z)+ Č)= O(1) > 0

because a3(z)= O(1̌) < 0 in (4-21).
If we assume

(4-43) ε‖P̃1(ž2)− P̃2(ž2)‖C1,α <min
{

b̌1

2b2
,

b̌3

2b4

}
(ξ2(1)− ξ1(1)),
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is false (that is, that this statement is true with “≥” instead of “<”), then (4-3) has
been shown. If we assume (4-43) is true, then this means W2(0, z2) > 0. Due to
W2(0, z2)=W21(0, z2)+W22(0, z2) and W22(0, z2)= 0 in (4-18), we then get

(4-44) W21(0, z2) > 0.

On the other hand, it follows from (4-42) and (4-43) that for z1 ∈ [0, 1]

(4-45) ∂1

(∫ 1

0
sW21(z1, s) sin šds

)
> 0.

Combining (4-44) with (4-45) yields∫ 1

0
W21(1, s) sin šds > 0.

However, this contradicts that W21(1, z2) = 0 in (4-18). Thus (4-43) does not
hold, that is, we have shown that there exists a constant C > 0 such that

|ξ2(1)− ξ1(1)| ≤ C X0ε‖P̃1(ž2)− P̃2(ž2)‖C1,α .

Combining this with (4-40), we complete the proof of (4-3) and (4-4).
Finally, by (4-24) and (4-25) and an argument analogous to the one for (4-3)

and (4-4), we can also show (4-5). We omit the details. �

Remark 4.2. From (4-3) of Theorem 4.1, we have established that the position
of the shock depends continuously on the exit pressure. If the condition (2-30)
is replaced by P(1, z2) = Pe + ε P̃(ž2)+C , then (4-5) establishes that the corre-
sponding position of the shock depends monotonically on the exit pressure. Thus,
the constant C0 in Theorem 3.1′ can be considered as a function of the variable
y1 ∈ (X0, X0+1), which is denoted by C0(y1). Furthermore, it follows from (4-5)
that the function C0(y1) is Lipschitz continuous and decreasing.

5. Proof of Theorem 1.1.

First, we prove that the system (2-26)–(2-28), (2-32) with (2-29)–(2-31) has a
solution.

Denote by P̄1 = Pe −
√

X0ε and P̄2 = Pe +
√

X0ε the exit pressures of the
symmetric transonic shock solutions with corresponding shock positions at y1= r1

and y1 = r2, respectively. Then it follows from (4-5) in Theorem 4.1 that r1 > r2

holds true.
For each fixed point (y∗1 , 1) with y∗1 ∈ [r2, r1], it follows from Theorem 3.1′ and

Remark 4.2 that there exists a constant C0(y∗1 ) such that problem (2-26)–(2-28),
(2-32) with (2-29), (2-31) and the exit pressure P = Pe + εP0(θ)+C0(y∗1 ) has a
unique solution (S, P,U1,U2; ξ(z2)) that admits the estimates in Theorem 3.1′.
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If y∗1 = r2, it follows from (3-4) and (3-47) that

(5-1) |C0(r2)−
√

X0ε| ≤ Cε.

This implies that C0(r2) > 0. Analogously, we have C0(r1) < 0. Therefore, in
terms of Theorem 4.1 and Remark 4.2, there exists a unique point y0

1 ∈ (r2, r1) such
that C0(y0

1) = 0, that is, the system (2-26)–(2-28), (2-32) with (2-29)–(2-31) has
a unique angular symmetric solution (S, P, ρ,U1,U2; ξ). Also, by Theorem 3.1,
this solution also satisfies the estimates

(5-2) ‖ξ − r0‖L∞[0,1] ≤ C X0ε, ‖ξ ′‖C2,α[0,1] ≤ Cε

and

(5-3) ‖(S, P,U1)− (S+0 , P̂+0 (z1), Û+0 (z1))‖C2,α(E+) ≤ Cε.

According to the constructions of the spaces of Sσ and 4δ in Section 3, we can
derive that

(5-4)

∂z2 S(z1, 0)= ∂z2 P(z1, 0)= ∂z2U1(z1, 0)= 0,

∂z2 S(z1, 1)= ∂z2 P(z1, 1)= ∂z2U1(z1, 1)= 0,

U2(z1, 0)= ∂2
z2

U2(z1, 0)=U2(z1, 1)= 0,

ξ ′(0)= ξ (3)(0)= ξ ′(1)= 0.

Next, we verify that the axisymmetric solution (S, P,U1,U2; ξ) satisfies all the
estimates in Theorem 1.1 in the (x1, x2, x3) coordinate system.

The transformation (2-20) keeps the equivalence of C2,α norms between the co-
ordinates (y1, y2) and (z1, z2). Denoting the solution by ((S, P,U1,U2)(y); ξ(y2))

in the coordinates (y1, y2), we have

(5-5) |ξ(y2)− r0| ≤ C X0ε, ‖ξ
′(y2)‖C2,α[0,1] ≤ Cε

and

(5-6) ‖(S, P,U1,U2)− (S+0 , P̂+0 (y1), Û+0 (y1), 0)‖C2,α(R+) ≤ Cε.

In addition, it follows from (5-4) and a direct computation that

(5-7)

∂y2 S(y1, 0)= ∂y2 P(y1, 0)= ∂y2U1(y1, 0)= 0,

∂y2 S(y1, 1)= ∂y2 P(y1, 1)= ∂y2U1(y1, 1)= 0,

U2(y1, 0)= ∂2
y2

U2(y1, 0)=U2(y1, 1)= 0,

ξ ′(0)= ξ (3)(0)= ξ ′(1)= 0.
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Therefore, by the inverse transformations of (2-1) and (2-2), the solution to the
problem (1-1) with (1-2)–(1-5) has the form

(S, P)(x1, x2, x3)= (S, P)
(
(x2

1 + x2
2 + x2

3)
1/2, X0 arcsin

(
(x2

2 + x2
3)

1/2

(x2
1 + x2

2 + x2
3)

1/2

))
,

andu1

u2

u3

 (x1, x2, x3)=
1

(x2
1+x2

2+x2
3)

1/2

x1 (x2
2 + x2

3)
1/2

x2 −x1x2/(x2
2 + x2

3)
1/2

x3 −x1x3/(x2
2 + x2

3)
1/2


·

(
U1

U2

)(
(x2

1 + x2
2 + x2

3)
1/2, X0 arcsin

( (x2
2 + x2

3)
1/2

(x2
1 + x2

2 + x2
3)

1/2

))
,

and the shock position x1 = η(x2, x3) is given by the implicit function

(5-8) G(x1, x2, x3)≡ (x2
1+x2

2+x2
3)

1/2
−ξ

(
X0 arcsin

(
(x2

2 + x2
3)

1/2

(x2
1 + x2

2 + x2
3)

1/2

))
=0,

where we have for small ε

∂x1 G=
x1

(x2
1 + x2

2 + x2
3)

1/2
+ξ ′

(
X0 arcsin

( (x2
2 + x2

3)
1/2

(x2
1 + x2

2 + x2
3)

1/2

)) X0(x2
2 + x2

3)
1/2

x2
1 + x2

2 + x2
3
>0

because |ξ ′| ≤ Cε.
Thanks to (5-7) and Lemmas B.3 and B.4, we know that

(S+(x), P+(x), u+1 (x), u+2 (x), u+3 (x))

belongs to C2,α(�+) and satisfies the estimates in Theorem 1.1.
Finally, we show that η(x2, x3) ∈ C3,α(S̄e) and satisfies Theorem 1.1(i).
Since the shock surface x1 = η(x2, x3) is determined by (5-8),

(5-9) ‖η− (r2
0 − x2

2 − x2
3)

1/2
‖L∞(Se) ≤ C‖ξ − r0‖L∞[0,1] ≤ C X0ε.

In addition, η(x2, x3) satisfies the Rankine–Hugoniot conditions (1-2), so we
have

(5-10)

∂x2η =
[ρu1u2][P + ρu2

3] − [ρu1u3][ρu2u3]

[P + ρu2
2][P + ρu2

3] − [ρu2u3]2
,

∂x3η =
[ρu1u3][P + ρu2

2] − [ρu1u2][ρu2u3]

[P + ρu2
2][P + ρu2

3] − [ρu2u3]2
.

Similarly, η0(x2, x3)= (r2
0 − x2

2 − x2
3)

1/2 also satisfies (5-10) when the solution
(ρ±, P±, u±) is replaced by the corresponding background solution in (5-10).
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Therefore, by Remark A.2, (5-9) and the interpolation theorem in Hölder space,
we have∥∥∇x2,x3

(
η(x2, x3)− (r2

0 − x2
2 − x2

3)
1/2)∥∥

C2,α(S̄e)

≤ C(ε+‖∇x(S+0 , P̂+0 , û+1,0, û+2,0, û+3,0)‖C2,α‖η− (r2
0 − x2

2 − x2
3)

1/2
‖C2,α(S̄e)

)

≤ Cε.

This completes the proof of Theorem 1.1. �

Appendix A.

In this appendix, we will describe the transonic solution of the problem (1-1) with
(1-2)–(1-5), when the exit pressure is a suitable constant Pe under the assumptions
given in Section 1 on the nozzle walls and the supersonic incoming flow. Such
a solution, called a background solution, can be obtained by solving the related
ordinary differential equations. Related analysis has been given in [Courant and
Friedrichs 1948, Section 147] and the details can be seen in [Xin and Yin 2008b].
For the reader’s convenience and because it’s needed for the computations in this
paper, we will give a detailed statement.

Theorem A.1. If the three-dimensional nozzle wall 0 and the supersonic incoming
flow are as defined in Section 1, then there exist two constant pressures P̃1 and P̃2

with P̃1 < P̃2 such that if the exit pressure P̃e ∈ (P̃1, P̃2), then the system (1-2) has
a symmetric transonic shock solution

(P, u1, u2, u3, S)=
{
(P−0 (r), u−1,0(x), u−2,0(x), u−3,0(x), S−0 ) for r < r0,

(P+0 (r), u+1,0(x), u+2,0(x), u+3,0(x), S+0 ) for r > r0,

where u+i,0(x) = U+0 (r)xi/r for i = 1, 2, 3, X0 < r0 < X0+ 1, S+0 is a constant,
and (P+0 (r),U

+

0 (r)) is C3-smooth.

See Theorem 1.1 in [Xin and Yin 2008b] for the proof.
Next, we cite two useful remarks, which were stated in [Xin and Yin 2008b].

Remark A.2. By the assumption (1-6), we have for r0 ≤ r ≤ X0+ 1∣∣∣∣dkU+0 (r)
dr k

∣∣∣∣+ ∣∣∣∣dk P+0 (r)
dr k

∣∣∣∣≤ Ck

X k
0

for k = 1, 2, 3.

Remark A.3. One can obtain an extension (ρ̂+0 (r), Û
+

0 (r)) of (ρ+0 (r),U
+

0 (r)) for
r ∈ (X0, X0+ 1) by solving the Euler system.

Appendix B.

We now give some elementary facts and computations often used in Section 5.
Compared with the similar results in [Li et al. 2010a, Appendix B], the estimates
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here are more delicate since we require them to be independent of X0. Here and
in what follows, X0 is defined as in Section 1 and C stands for a generic positive
constant that is independent of X0.

For the convenience, we set

E1 = {(z1, z2) ∈ R2
: 0< z1 < 1, 0< z2 < 1},

E2 = {(x1, x2, x3) ∈ R3
: 0< x1 < 1, x2

2 + x2
3 < 1},

E3 = {(z1, z2, z3) ∈ R3
: 0< z1 < 1, 0< z2 < 1, 0≤ z3 < 2π},

E4 = {(x1, x2) ∈ R2
: x2

1 + x2
2 ≤ 1}.

Lemma B.1. Let

φ(x1, x2)=

(
1

X0
cot
(
(x2

1 + x2
2)

1/2

X0

)
−

1
(x2

1+x2
2)

1/2

)
x2

(x2
1 + x2

2)
1/2
.

Then we have

(B-1) ‖φ‖C0,1(E4) ≤ C.

Proof. Note that φ(x1, x2) can be rewritten as

φ(x1, x2)=

∫ 1
0 (cos(ρ̌)− cos(sρ̌))ds

X0 sin ρ̌
x2

ρ

=
2x2

ρ

∫ 1
0 (sin(1

2(1+ s)ρ̌) sin( 1
2(s− 1)ρ̌))ds

X0 sin(ρ̌)
,

where ρ = (x2
1 + x2

2)
1/2

It is easy to see that

(B-2) ‖φ‖L∞(E4) ≤ C.

For any two distinct points (x11, x21) and (x12, x22) in E4, it follows from a
direct computation that

(B-3) φ(x11, x21)−φ(x12, x22)= I1+ I2+ I3,

where, with a = (x2
11+ x2

21)
1/2 and b = (x2

12+ x2
22)

1/2,

I1 =

(
1̌ cot(ǎ)− 1

a

) x21− x22

a
,

I2 =−

(
1̌ cot(ǎ)− 1

a

) x22
(
(x11− x12)(x11+ x12)+ (x21− x22)(x21+ x22)

)
ab
(
a+ b

) ,

I3 =
x12
b

(
1̌ cot(ǎ)− 1

a
− 1̌ cot(b̌)+ 1

b

)
.
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Now we only estimate I3 since the treatments on I1 and I2 are analogous or even
simpler.

Assume that a ≥ b without loss of generality. Then a direct computation yields

|I3| ≤

∣∣∣∣ab sin(b̌− a)− X0 sin(ǎ) sin(b̌)(b− a)

X0 sin(ǎ) sin(b̌)ab

∣∣∣∣.
Since

|ab sin(b̌− a)− X0 sin(ǎ) sin(b̌)(b− a)|

=

∣∣∣b̌− aab
∫ 1

0

∫ 1

0
(cos(sb̌− a)− cos(sǎ) cos(t b̌))dsdt

∣∣∣
≤
|b− a|

X0
ab
(
sin(ǎ) sin(b̌)+ 2 sin(b̌) sin(2̌b)

)
,

we have |I3| ≤ C |a− b| and hence

(B-4) |φ(x11, x21)−φ(x12, x22)| ≤ C |a− b|.

Combining (B-4) with (B-2) yields Lemma B.1. �

Remark B.2. By the computation of |I3|, we show that

X−1
0 cot((x2

2 + x2
3)

1/2 X−1
0 )− (x2

2 + x2
3)
−1/2

is in C0,1(E4) and is no greater than C .

Lemma B.3. (i) For φ(z1, z2) ∈ Cα(E1) with 0 < α < 1, there exists a constant
C > 1 such that

(B-5) 1
C
‖φ(x1, (x2

2+x2
3)

1/2)‖Cα(E2)
≤‖φ‖Cα(E1)≤C‖φ(x1, (x2

2+x2
3)

1/2)‖Cα(E2)
.

If φ(z1, z2) ∈ Ck,α(E1) for some k ∈ {1, 2} and ∂z2φ(z1, 0) = 0, then there
exists a constant C > 1 such that

(B-6)
1
C
‖φ(x1, (x2

2 + x2
3)

1/2)‖Ck,α(E2)
≤ ‖φ‖Ck,α(E1)

≤ C‖φ(x1, (x2
2 + x2

3)
1/2)‖Ck,α(E2)

.

(ii) If φ(z1, z2)∈Ck,α(E1) with some k ∈ {1, 2} and φ(z1, 0)= 0, then there exists
a constant C2 > 1 such that

(B-7) ‖1̌ cot(ž2)φ‖Ck−1,α(E1) ≤ C‖φ‖Ck,α(E1).

Proof. Since (B-5) and (B-6) can be verified directly, we omit the proof. Next we
show (B-7).
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Using φ(z1, 0)= 0, we have

1̌ cot(ž2)φ(z1, z2)=
ž2 cos(ž2)

sin ž2

∫ 1

0
∂z2φ(z1, sz2)ds

= cos(ž2)

(
1+

ž2− sin ž2

sin ž2

)∫ 1

0
∂z2φ(z1, sz2)ds,

this yields for k = 1 or 2

(B-8)
∥∥1̌ cot(ž2)φ(z1, z2)

∥∥
Ck−1,α(E1)

≤ C
(

1+
∥∥∥ ž2− sin ž2

sin ž2

∥∥∥
Ck−1,α[0,1]

)
‖∂z2φ‖Ck−1,α(E1).

Since

ž2− sin ž2

sin ž2

=
ž2

sin ž2

∫ 1

0
(1− cos(sž2))ds

=
2ž2

sin ž2

∫ 1

0

(
sin(1

2 sž2)
)2ds,

d
dz2

( ž2− sin(ž2)

sin ž2

)
=

2 sin ž2− 2ž2 cos ž2

X0 sin2 ž2

∫ 1

0
(sin(1

2 sž2))
2ds+ ž2

X0 sin ž2

∫ 1

0
sin(sž2)sds,

d2

dz2
2

( ž2− sin ž2

sin ž2

)

=
2ž2+ 2ž2 cos2 ž2− sin(2ž2)

X2
0 sin3 ž2

∫ 1

0
(sin( 1

2 sž2))
2ds

+
2 sin ž2− 2ž2 cos(ž2)

X0 sin2 ž2

∫ 1

0
sin(sž2)sds+

ž2

X2
0 sin ž2

∫ 1

0
cos(sž2)s2ds,

and because∫ 1

0
(sin( 1

2 sž2))
2ds ≤ 1

4 ž2
2, and

∫ 1

0
sin(1

2 sž2)ds ≤ 1
2 ž2,

we have ∥∥∥ z2− X0 sin ž2

X0 sin ž2

∥∥∥
C1,1[0,1]

≤ C.

Combining this with (B-8) yields (B-7) for k = 1 or k = 2. �
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Lemma B.4. (i) For φ(z1, z2)∈Ck,α(E1) with some k={0, 1} and φ(z1, 0)= 0,

(B-9)
3∑

i=2

∥∥∥∥ xi

(x2
2 + x2

3)
1/2
φ(x1, (x2

2 + x2
3)

1/2)

∥∥∥∥
Ck,α(E2)

≤ C‖φ(z1, z2)‖Ck,α(E1).

(ii) For φ ∈ C2,α(E1) and φ(z1, 0)= ∂2
z2
φ(z1, 0)= 0,

(B-10)
3∑

i=2

∥∥∥∥ xi

(x2
2 + x2

3)
1/2
φ(x1, (x2

2 + x2
3)

1/2)

∥∥∥∥
C2,α(E2)

≤ C‖φ(z1, z2)‖C2,α(E1).

Proof. Put ρ = (x2
2 + x2

3)
1/2. Set

Vi (x1, x2, x3)= (xi/ρ)φ(x1, (x2
2 + x2

3)
1/2) for i = 2, 3.

Then

(B-11) ‖Vi‖L∞(E2) ≤ ‖φ(r)‖L∞(E1) for i = 2, 3.

Since V2 and V3 have the analogous forms, it suffices to treat V2.

(i) First we show (B-9).
For any two distinct points (x11, x21, x31) and (x12, x22, x32) in E2, we may

assume without loss of generality that |x21| ≥ |x22|. Put a = (x2
21 + x2

31)
1/2 and

b = (x2
22+ x2

32)
1/2. Then

(B-12)
V2(x11, x21, x31)− V2(x12, x22, x32)=

x21

a
φ(x11, a)−

x22

b
φ(x12, b)

= J1+ J2+ J3.

where

J1 =
x21− x22

a
φ(x11, a),

J2 =−
x22
(
(x21− x22)(x21+ x22)+ (x31− x32)(x31+ x32)

)
ab(a+ b)

φ(x11, a),

J3 =
x22

b

(
φ(x11, a)−φ(x12, b)

)
.

By φ(z1, 0)= 0 and the assumption |x21| ≥ |x22|, a direct computation yields

(B-13)

|J1| ≤ [φ]α
(|x21| + |x22|)

1−α

a1−α |x21− x22|
α
≤ 21−α

[φ]α|x21− x22|
α,

|J2| ≤ 2[φ]α
|x22|

(
|x21− x22| + |x31− x32|

)
a1−αb

≤ 22−α
[φ]α

(
|x21− x22|

α
+ |x31− x32|

α
)
,

|J3| ≤ [φ]α
(
(x11− x12)

2
+ (x21− x22)

2
+ (x31− x32)

2)α/2.
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Here [φ]α denotes the Hölder seminorm with exponent α.
Combining (B-13) with (B-12) and (B-11) yields

(B-14) ‖V2‖Cα(E2) ≤ C‖φ‖Cα(E1).

If φ ∈ C1,α(E2) and φ(z1, 0)= 0, we have

∂x1 V2 = (x2/ρ)∂z1φ(x1, ρ),

∂x2 V2 =
x2

3

ρ3φ(x1, ρ)+
x2

2

ρ2 ∂z2φ(x1, ρ),

∂x3 V2 =−
x2x3

ρ3 φ(x1, ρ)+
x2x3

ρ2 ∂z2φ(x1, ρ),

Next, we only analyze ∂x2 V2 since the treatment of ∂x1 V2 and ∂x3 V2 is similar.
Rewrite ∂x2 V2 as ∂x2 V2 = J5+ J6, where

J5 =
x2

3

ρ2

∫ 1

0

(
∂z2φ(x1, θρ)− ∂z2φ(x1, ρ)

)
dθ and J6 = ∂z2φ(x1, ρ).

For convenience, we set

V (x1, ρ)=

∫ 1

0
(∂z2φ(x1, θρ)− ∂z2φ(x1, ρ))dθ.

Then V (x1, 0)= 0. Applying the same argument as for (B-14) yields

(B-15) ‖J5‖Cα(E2) ≤ C‖φ‖C1,α(E1).

In addition, by (B-5), we have

(B-16) ‖J6‖Cα(E2) ≤ C‖φ‖C1,α(E1).

Thus, combining (B-15) and (B-16) with (B-14) yields (B-9).

(ii) We now show (B-10).
For φ(z) ∈ C2,α(E1) with φ(z1, 0)= ∂2

z2
φ(z1, 0)= 0, we have

∂2
x1

V2 =
x2

ρ
∂2

z1
φ(x1, ρ),

∂2
x1x2

V2 =
x2

3

ρ3 ∂z1φ(x1, ρ)+
x2

2

ρ2 ∂
2
z1z2
φ(x1, ρ)

=
x2

3

ρ2

∫ 1

0
(∂2

z1z2
φ(x1, θρ)− ∂

2
z1z2
φ(x1, ρ))dθ + ∂2

z1z2
φ(x1, ρ),

∂2
x1x3

V2 =−
x2x3

ρ3 ∂z1φ(x1, ρ)+
x2x3

ρ2 ∂
2
z1z2
φ(x1, ρ).
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It follows from φ(z1, 0)= 0, ∂2
z1
φ(z1, 0)= 0 and (B-9) that

(B-17) ‖∂2
x1

V2‖Cα(E1) ≤ C‖φ‖C2,α(E1).

In a similar proof as for (B-15) and (B-16), we have

(B-18)
3∑

i=2

‖∂2
x1xi

V2‖Cα(E1) ≤ C‖φ‖C2,α(E1),

The quantities ∂2
xi x j

V2 for i, j = 2, 3 can also be estimated in the same way.
Therefore, due to (B-17), (B-18) and (B-9), we have proved (B-10). �

Lemma B.5. Let k= 0 or k= 1. If fi (z1, z2)∈Ck,α(E1) and gi (z2)∈Ck+1,α
[0, 1]

with g′i (0) = g′i (1) = 0 for i = 1, 2 and ∂z2 f1(z1, 0) = f2(z1, 0) = 0, then the
problem

(B-19)

∂2
z1

U + ∂2
z2

U + 1̌ cot(ž2)∂z2U = ∂z1 f1(z1, z2)+ ∂z2 f2(z1, z2)

+ 1̌ cot(ž2) f2(z1, z2) in E1,

U (0, z2)= g1(z2),

U (1, z2)= g2(z2),

∂z2U (z1, 0)= 0,

∂z2U (z1, 1)= 0

has a unique solution U (z) ∈ Ck+1,α(E1) that admits the estimate

(B-20) ‖U (z)‖Ck+1,α(E1) ≤ C
2∑

i=1

(
‖ fi (z)‖Ck,α(E1)+‖gi‖Ck+1,α[0,1]

)
.

Proof. Again let ρ = (x2
2 + x2

3)
1/2. First, we consider the elliptic problem

(B-21)

(∂2
x1
+ ∂2

x2
+ ∂2

x3
)U1+ b1(x1, x2, x3)∂x2U1

+ b2(x1, x2, x3)∂x3U1 =

2∑
i=1

Fi (x1, x2, x3) in E2,

U1(0, x2, x3)= g1(ρ),

U1(1, x2, x3)= g2(ρ),

ρ−1(x2∂x2 + x3∂x3)U1(x1, x2, x3)= 0 on ρ = 1.
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where

(B-22)

bi (x1, x2, x3)= (1̌ cot(ρ̌)− ρ−1)xi+1/ρ for i = 1, 2,

F1(x1, x2, x3)= ∂x1 f1(x1, ρ),

F2(x1, x2, x3)= ρ
−1(x2∂x2 + x3∂x3) f2(x1, ρ)

+ 1̌ cot(ρ/X0) f2(x1, ρ).

We turn to the existence and uniqueness of the solution to the problem (B-21).
According to the theory on second order elliptic equations with cornered bound-
aries and mixed type boundary conditions (see [Azzam 1980; 1981; Gilbarg and
Hörmander 1980; Gilbarg and Trudinger 1983; Lieberman 1986; Vekua 1952]),
we need to analyze the regularity of bi (x1, x2, x3) and Fi (x1, x2, x3) for i = 1, 2.

First, it follows from Lemma B.1 that bi (x1, x2, x3) satisfies

(B-23) ‖bi (x1, x2, x3)‖Cα(E2) ≤ C.

In addition, F2(x1, x2, x3) can be rewritten as

(B-24) F2(x1, x2, x3)=

3∑
i=2

∂xi

( xi
ρ

f2(x1, ρ)
)
+ (1̌ cot(ρ̂)− ρ−1) f2(x1, ρ).

Since f2(z1, 0)= 0, it follows from Lemma B.4 that

(B-25)
3∑

i=2

∥∥∥ xi

ρ
f2(x1, ρ)

∥∥∥
Ck,α(E2)

≤ C‖ f2‖Ck,α(E1) for k = 0, 1.

On the other hand, by Remark B.2, we have

(B-26) ‖(1̌ cot(ρ̂)− ρ−1) f2(x1, ρ)‖Cα(E2) ≤ C‖ f2‖Cα(E1).

Because g′i (0) = g′i (1) = 0 for i = 1, 2 and ∂z2 f1(z1, 0) = 0, the compatible
conditions at the corners for the problem (B-21) are satisfied. Moreover, by using
(B-5) and (B-6) in Lemma B.3, we have

(B-27)
‖gi‖C j,α(E4) ≤ C‖gi‖C j,α([0,1]) for i = 1, 2 and j = 1, 2,

‖ f1‖C l,α(E2) ≤ C‖ f1‖C l,α(E1) for l = 0, 1.

Then by the results in [Lieberman 1986], the problem (B-21), which has the
divergence form of a seconder order elliptic equation and the regularities of (B-23)–
(B-26), has a unique solution U1(x1, x2, x3) such that

(B-28) ‖U1(x)‖C1,α(E2) ≤ C
2∑

i=1

(
‖ fi (z)‖Cα(E1)+‖gi‖C1,α[0,1]

)
.
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Furthermore, for fi (z) ∈ C1,α(E1) and gi ∈ C2,α
[0, 1], due to the compatibil-

ity conditions at the corners, it follows from [Xin et al. 2009, Lemma A] that
U1(x1, x2, x3) is in C2,α(E2) and satisfies the estimate

(B-29) ‖U1(x)‖C2,α(E2) ≤ C
2∑

i=1

(
‖ fi (z)‖C1,α(E1)+‖gi‖C2,α[0,1]

)
.

Next, we prove that the solution U1(x1, x2, x3) in (B-21) is cylindrically sym-
metric. We use the transformation

x̄1 = x1, x̄2 = x2 cos γ0+ x3 sin γ0, x̄3 =−x2 sin γ0+ x3 cos γ0,

with γ0 ∈ [0, 2π ] being any fixed constant.
It is easy to verify that U1(x̄) also solves the problem (B-21). Thus, by the

arbitrariness of γ0, U1(x) is cylindrically symmetric with respect to (x2, x3), that
is, U1(x) has the form U1(x)=U1(x1, ρ).

In addition, using the coordinate transformation

(B-30) x1 = z1, x2 = z2 cos z3, x3 = z2 sin z3,

U1(x) can be expressed as U1=U1(z1, z2). Finally, it follows from (B-28)–(B-29)
and Lemma B.3 that

(B-31) ‖U1(z1, z2)‖Ck,α(E1) ≤ ‖U (x1, ρ)‖Ck,α(E2)

≤ C
2∑

i=1

(
‖ fi (z)‖Ck−1,α(E1)+‖gi‖Ck,α[0,1]

)
for k = 1 or k = 2. �

Lemma B.6. If F(z) ∈ Cα(E1), then the function

U (z)= 1
sin ž2

∫ z2

0
sin š F(z1, s)ds

satisfies

(B-32) ‖∂z2U (z)‖Cα(E1) ≤ C‖F(z)‖Cα(E1).

Further, if F(z) ∈ C1,α(E1) and ∂z2 F(z1, 0)= 0, then U (z) satisfies

(B-33) ‖∂2
z2

U (z)‖Cα(E1) ≤ C‖F(z)‖C1,α(E1).

Proof. First, U (z) can be rewritten as

(B-34) U (z)= 1
sin ž2

∫ z2

0
sin š(F(z1, s)− F(z1, 0))ds+ X0 tan(1

2 ž2)F(z1, 0).

A direct computation yields

(B-35) ‖∂k
z2

(
X0 tan( 1

2 ž2)F(z1, 0)
)
‖Cα(E1) ≤ C‖F‖Cα(E1) for k = 1 or k = 2.
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Based on (B-34)–(B-35), in order to show Lemma B.6, it suffices to consider
the case of F(z1, 0)= 0 in (B-32) and F(z1, 0)= ∂z2 F(z1, 0)= 0 in (B-33).

First, we prove (B-32) with F(z1, 0)= 0.
It follows from a direct computation that

∂z2U (z1, z2)= F(z1, z2)−
cos ž2

X0 sin2 ž2

∫ z2

0
sin(š)F(z1, s)ds

=
1

X0 sin2 ž2

∫ z2

0

(
sin ž2 cos š F(z1, z2)− sin š cos ž2 F(z1, s)

)
ds.

This easily implies

(B-36) ‖∂z2U (z)‖L∞(E1) ≤ C‖F(z)‖L∞(E1).

We now estimate [∂z2U (z)]α in E1.
For any two different points (z11, z21) and (z12, z22) in E1, we may assume

without loss of generality that z21 ≥ z22. Then

(B-37) ∂z2U (z11, z21)− ∂z2U (z12, z22)= K1+ K2+ K3,

where

K1 =
1

X0 sin2 ž21

∫ z21

0

(
cos(š)(sin ž21 F(z11, z21)− sin ž22 F(z12, z22))

− sin š
(
cos(ž21)F(z11, s)

− cos(ž22)F(z12, s)
))

ds,

K2 =
1

X0 sin ž21

∫ z21

z22

(
sin ž22 cos(š)F(z12, z22)− sin š cos(ž22)F(z12, s)

)
ds,

K3 =
(sin ž22− sin ž21)

(
sin ž22+ sin ž21

)
X0(sin ž21 sin ž22)2

×

∫ z22

0

(
sin ž22 cos(š)F(z12, z22)− sin š cos(ž22)F(z12, s)

)
ds.

It follows from F(z11, 0)= 0 and a direct computation that

|K1| ≤
1

X0 sin2 ž21

(
|sin ž21− sin ž22|z1+α

21 [F]α

+ sin(ž22)((z11− z12)
2
+ (z21− z22)

2)
α/2

z21[F]α

+ sin(ž21)|cos ž21− cos ž22|z1+α
21 [F]α + sin(ž21)z21|z11− z12|

α
[F]α

)
≤ C[F]α((z11− z12)

2
+ (z21− z22)

2)
α/2
,
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|K2| ≤
1

sin2 ž21
(sin(ž22)|sin ž21− sin ž22|zα22[F]α + |cos(ž21)− cos(ž22)|zα21[F]α)

≤ C[F]α((z11− z12)
2
+ (z21− z22)

2)
α/2
,

|K3| ≤
|sin ž22− sin ž21|(sin ž22+ sin ž21)

X0(sin ž21 sin ž22)2
sin(ž22)z1+α

22 [F]α

≤ C[F]α
(
(z11− z12)

2
+ (z21− z22)

2)α/2.
This implies

(B-38) [∂z2U (z)]α ≤ C[F]α.

Combining (B-38) with (B-35) and (B-36) yields (B-32).
Second, we prove (B-33) in the case of F(z1, 0)= ∂z2 F(z1, 0)= 0. Note that

∂2
z2

U (z)= ∂z2 F(z1, z2)− 1̌ cot(ž2)F(z1, z2)+
1+ cos2 ž2

X2
0 sin3 ž2

∫ z2

0
sin(š)F(z1, s)ds.

By (B-7) of Lemma B.3, we have

(B-39) ‖∂z2 F(z1, z2)− 1̌ cot(ž2)F(z1, z2)‖Cα(E1) ≤ C‖F‖C1,α(E1).

In addition, a direct computation yields

1+ cos2 ž21

X2
0 sin3 ž21

∫ z21

0
sin(š)F(z11, s)ds− 1+cos2 ž22

X2
0 sin3 ž22

∫ z22

0
sin(š)F(z12, s)ds

= K4+ K5+ K6+ K7,

where

K4 =
1+ cos2(ž21)

X2
0 sin3 ž21

∫ z21

0
sin(š)s

(∫ 1

0
(∂z2 F(z11, θs)− ∂z2 F(z12, θs))dθ

)
ds,

K5 =
1+ cos2 ž21

X2
0 sin3 ž21

∫ z21

z22

sin(š)s
(∫ 1

0
∂z2 F(z12, θs)dθ

)
ds,

K6 =
(cos ž21− cos ž22)(cos ž21+ cos ž22)

X2
0 sin3 ž21

×

∫ z22

0
sin(š)s

(∫ 1

0
∂z2 F(z12, θs)dθ

)
ds,

K7 =
(1+ cos2 ž22)(sin ž22− sin ž21)(sin2 ž22+ sin ž22 sin ž21+ sin2 ž21)

X2
0(sin ž21 sin ž22)3

×

∫ z22

0
sin(š)s

(∫ 1

0
∂z2 F(z12, θs)dθ

)
ds.
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Hence, by using F(z1, 0)= ∂z2 F(z1, 0)= 0, we have

|K4| ≤
sin(ž21)z2

21

X2
0 sin3 ž21

[∂z2 F]α|z11− z12|
α
≤ C[∂z2 F]α|z11− z12|

α,

|K5| ≤
sin(ž21)z21|z21− z22|

X2
0 sin3 ž21

[∂z2 F]αzα12 ≤ C[∂z2 F]α|z21− z22|
α,

|K6| ≤
2 sin(1

2(ž21− ž22))

X2
0 sin3 ž21

[∂z2 F]αz2+α
22 sin(ž22)≤ C[∂z2 F]α|z21− z22|

α,

|K7| ≤
3 sin2 ž21|sin ž22− sin ž21|

X2
0(sin ž21 sin ž22)3

sin(ž22)[∂z2 F]αz2+α
22 ≤ C[∂z2 F]α|z21− z22|

α.

This leads to

(B-40) [∂2
z2

U (z)]α ≤ C[∂z2 F]α.

Combining (B-40) with (B-39) and (B-32), we complete the proof of (B-33).
Therefore, the proof of Lemma B.6 is completed. �

Lemma B.7. The problem

(B-41)

∂1w = a1∂2 P + F1(S̃, P(q, S̃), V1, V2; ξ) in E1,

∂2w+ 1̌ cot(ž2)w = F2(S̃, P(q, S̃), V1, V2; ξ)− a2∂1 P in E1,

w(z1, 0)= 0

is well posed if(
∂z2 + 1̌ cot(ž2)

)
(a1∂2 P + F1(S̃, P(q, S̃), V1, V2; ξ))

− ∂z1(F2(S̃, P(q, S̃), V1, V2; ξ)− a2∂1 P)= 0,

(a1∂2 P + F1(S̃, P(q, S̃), V1, V2; ξ))(z1, 0)= 0.

Proof. Define wi for i = 1, 2 as
(B-42)

∂1w1 = a1∂2 P + F1(S̃, P(q, S̃), V1, V2; ξ) in E1,

w1(1, z2)=
1

sin(ž2)

∫ z2

0
sin(š)(F2(S̃, P(q, S̃), V1, V2; ξ)− a2∂1 P)(1, s)ds

and

(B-43)
∂2w2+ 1̌ cot(ž2)w2 = F2(S̃, P(q, S̃), V1, V2; ξ)− a2∂1 P in E1,

w2(z1, 0)= 0.

Obviously, w1 and w2 can be determined uniquely.
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From (B-43), w2 has the expression
(B-44)

w2(z1, z2)=
1

sin ž2

∫ z2

0
sin(š)(F2(S̃, P(q, S̃), V1, V2; ξ)− a2∂1 P)(z1, s)ds.

Also it follows from (B-42) and the second equality in B.7 that w1(z1, 0)= 0.
By (B-43) and (B-44), we arrive at

w2(z1, 0)= 0 and w1(1, z2)= w2(1, z2).

Next, we show w1 = w2 in E1.
Note that (∂z2 + 1̌ cot(ž2)) times the first equation in (B-42) minus ∂z1 applied

to the first equation in (B-43) yields

(B-45)
(∂z2 + 1̌ cot(ž2))∂z1(w1−w2)= 0 in E1,

w1(z1, 0)= w2(z1, 0)= 0, w1(1, z2)= w2(1, z2).

One concludes easily that w1 = w2 holds true in E1, completing the proof. �

Lemma B.8. Let (S̃1, P̃1, V11, V21) and (S̃2, P̃2, V12, V22) be in 4δ such that

T (S̃1, P̃1, V11, V21)= (S1, P1,U11,U21),

T (S̃2, P̃2, V12, V22)= (S2, P2,U12,U22),

where the mapping T is defined in (3-37). Denote by ξ1(z2) and ξ2(z2) the cor-
responding approximate shocks by solving (3-7). Define Wi for i = 1, 2, 3, 4 as
in Section 3 with respect to (S1, P1,U11,U21) and (S2, P2,U12, U22), and define
W̃i (i = 1, 2, 3, 4) with respect to (S̃1, P̃1, V11, V21) and (S̃2, P̃2, V12, V22).

Set

W5 =
U21

U11
−

U22

U12
, W̃5 =

V21

V11
−

V22

V12
, W6 = ξ1(z2)− ξ2(z2).

Then under the assumptions of Theorem 3.1, we have

(B-46) ‖W1‖C1,α(E+) ≤ C
(
δ

4∑
i=2

‖W̃i‖C1,α(E+)+ 1̌‖W6‖C1,α(E+)

)
.

Proof. In the coordinate z= (z1, z2), the characteristics z1
2(s; z) and z2

2(s; z), which
go through the point (z1, z2) and correspond to the vector fields (V11, V21) and
(V12, V22) in the right hand side of (2-28) respectively, can be defined as

dzi
2(s; z)
ds

=−
X0(X0+ 1− ξ1(zi

2))

Ai
V2i
(
ξ1(zi

2)+ s(X0+ 1− ξ1(zi
2)), zi

2
)
,

zi
2(z1; z)= z2, z1

2(0; z)= β, z2
2(0, z)= β̃ for i = 1, 2,
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where

Ai = (ξi (zi
2)+ s(X0+ 1− ξi (zi

2)))V1i + V2i X0(1− s)ξ ′i (z
i
2) for i = 1, 2.

Set l(s; z) = z1
2(s; z)− z2

2(s; z). Noting that z1
2(0; z) = β and z2

2(0; z) = β̃, we
have

(B-47)

dl
ds
= O(δ)l + O(δ)W̃3(s, z1

2)+ O(1)W̃4(s, z1
2)

+ O(δ)W6(z1
2)+ O(δ2)W ′6(z

1
2),

l(0; z)= β − β̃, l(z1; z)= 0,

where we point out that the coefficients of l(t; z) are in C1,α, which will be used
to derive the C1,α estimate of β − β̃.

By (B-47), we can arrive at

‖β − β̃‖L∞ ≤ ‖l‖L∞ ≤ C(δ‖W̃3‖L∞ +‖W̃4‖L∞ + δ‖W6‖L∞ + δ
2
‖W ′6(z2)‖L∞).

Note that

z1
2(s; z)=−

∫ s

0

X0(X0+ 1− ξ1(z1
2))

A1
V21
(
ξ1(z1

2)+ t (X0+ 1− ξ1(z1
2)), z1

2
)
dt +β,

which implies, in particular, that

z2 =−

∫ z1

0

X0(X0+ 1− ξ1(z21))

A1
V21
(
ξ1(z1

2)+ t (X0+ 1− ξ1(z21)), z1
2
)
)dt +β.

Similar expressions hold for z2
2(s; z) and z2 with β replaced by β̃. Thus, we

may obtain

(B-48)

β − β̃ =

∫ z1

0

(
O(δ)W̃3(t, z1

2)+ O(1)W̃4(t, z1
2)+ O(δ)W6(z1

2)

+ O(δ2)W ′6(z
1
2)+ O(δ)l(t; z)

)
dt,

l(s; z)=
∫ s

z1

(
O(δ)W̃3(t, z1

2)+ O(1)W̃4(t, z1
2)+ O(δ)W6(z1

2)

+ O(δ2)W ′6(z
1
2)+ O(δ)l(t; z)

)
dt

and

(B-49) ‖∂z1(β, β̃)‖C1,α ≤ Cε, ‖∂z2(β, β̃)‖C1,α ≤ Cε.

In addition, it follows from (B-47) and (B-48) that

(B-50) ‖β − β̃‖C1,α ≤ C(δ‖W̃3‖C1,α +‖W̃4‖C1,α + δ‖W6‖C2,α ).
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This, together with (2-28) and the characteristics method, yields

(B-51)

W1(z1, z2)=W1(0, β(z1, z2))+ O(δ)
(
β(z1, z2)− β̃(z1, z2)

)
,

W1(0, z2)= O(δ2)W̃2(0, z2)+ O(δ2)W̃3(0, z2)+ O(δ)W̃4(0, z2)

+ O(1̌)W6(z2),

and

(B-52) ‖β(z)− β̃(z)‖C1,α(E+)

≤ C
(
δ‖W̃3‖C1,α(E+)+‖W̃4‖C1,α(E+)+ δ‖W6‖C2,α[0,1]

)
.

Combining (B-52) with (B-51) yields (B-46), proving Lemma B.8. �

Remark B.9. If we choose

(S̃2, P̃2, V12, V22)= (S2, P2,U12,U22)= (S+0 , P̂+0 , Û
+

0 , 0),

where (S+0 , P̂+0 , Û
+

0 , 0) is the background solution given in Appendix A with the
exit pressure Pe, then, by the C3,α regularity of (S+0 , P̂+0 , Û

+

0 , 0), we can conclude
that

(B-53) ‖W1‖C2,α(E+) ≤ C
(
δ

4∑
i=2

‖W̃i‖C2,α(E+)+ 1̌‖W6‖C3,α(E+)

)
.

In fact, in this case, the corresponding coefficients of l(s; z) in (B-47) and (B-48)
are in C2,α. As in (B-50), we can derive that

(B-54) ‖β(z)− β̃(z)‖C2,α(E+)

≤ C(δ‖W̃3‖C2,α(E+)+‖W̃4‖C2,α(E+)+ δ‖W6‖C3,α[0,1]).

Subsequently, (B-53) can be shown by using (B-51) and (B-54).

Appendix C.

Here, for the problem (1-1) with (1-2)–(1-5), we give a detailed discussion of the
higher order compatibility conditions on the nozzle wall and address the crucial
difficulty in obtaining C3,α regularities of solutions — that is, the appearance of
the source terms in (2-8).

Due to the right hand conditions (1-2), the following expressions hold:

(C-1)

G1(ρ,U, S)≡ [ρU1][ρU 2
2 + P] − ρ2U1U 2

2 = 0,

G2(ρ,U, S)≡ [ρU 2
1 + P][ρU 2

2 + P] − (ρU1U2)
2
= 0,

G3(ρ,U, S)≡ [(ρe+ 1
2ρ|U |

2
+ P)U1][ρU 2

2 + P]

− ρU1(ρe+ 1
2ρ|U |

2
+ P)U 2

2 = 0.
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Since U2= ∂z2 P = ∂z2 S= ∂z2ρ= ∂z2U1= 0, at the point M0 := (z1, z2)= (0, 1),
taking the tangential derivatives of second order and third order respectively along
the shock surface yields at M0

(C-2)

(ρ∂2
z2

U1+U1∂
2
z2
ρ)[P] − 2ρ2U1(∂z2U2)

2
= 0,

(2ρU1∂
2
z2

U1+U 2
1 ∂

2
z2
ρ+ ∂2

z2
P)][P] − 2ρ2U 2

1 (∂z2U2)
2
= 0,(( γ

γ− 1
P + 1

2ρU 2
1

)
∂2

z2
U1

+U1

( γ

γ− 1
∂2

z2
P + 1

2U 2
1 ∂

2
z2
ρ+ ρU1∂

2
z2

U1+ ρ(∂z2U2)
2
))
[P]

− 2ρU1

( γ

γ− 1
P + 1

2ρU 2
1

)
(∂z2U2)

2
= 0.

and

(C-3)

(ρ∂3
z2

U1+U1∂
3
z2
ρ)[P] − 6ρ2U1∂z2U2∂

2
z2

U2 = 0,

(2ρU1∂
3
z2

U1+U 2
1 ∂

3
z2
ρ+ ∂3

z2
P)][P] − 6ρ2U 2

1 ∂z2U2∂
2
z2

U2 = 0,(( γ

γ−1
P + 1

2ρU 2
1

)
∂3

z2
U1

+U1

( γ

γ−1
∂3

z2
P + 1

2U 3
1 ∂

3
z2
ρ+ ρU1∂

3
z2

U1+ 3ρ∂z2U2∂
2
z2

U2

))
[P]

−6ρU1

( γ

γ− 1
P + 1

2ρU 2
1

)
∂z2U2∂

2
z2

U2 = 0.

From the first two equations in (C-2) and (C-3), we have at M0

(C-4) ∂2
z2

P + ρU1∂
2
z2

U1 = 0, ∂3
z2

P + ρU1∂
3
z2

U1 = 0.

It follows from the first and the third equations in (C-2) and (C-3) that at M0

(C-5)

(
γ

γ− 1
P∂2

z2
U1+U1

( γ

γ− 1
∂2

z2
P + ρU1∂

2
z2

U1+ ρ(∂z2U2)
2
))
[P]

−
2γ
γ− 1

ρU1 P(∂z2U2)
2
= 0,(

γ

γ−1
P∂3

z2
U1+U1

( γ

γ−1
∂3

z2
P + ρU1∂

3
z2

U1+ 3ρ∂z2U2∂
2
z2

U2

))
[P]

−
6γ
γ− 1

ρU1 P∂z2U2∂
2
z2

U2 = 0.

Since ∂2
z2

U2+ 1̌ cot(1̌)∂z2U2= 0 at M0 due to (3-5) and (3-6) and by the expres-
sion of F2 in (2-26), this together with (C-4) and (C-5) yields

(C-6) Q
(
∂3

z2
P + 1̌ cot(1̌)∂2

z2
P
)
=

( 4γ
γ− 1

ρU1 P − 2ρU1[P]
)
∂z2U2∂

2
z2

U2 at M0
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where

(C-7) Q =
ρU 2

1 − γP
(γ− 1)ρU1

< 0.

On the other hand, it follows from the first equation in (2-26), the expressions
of F1 and F2, and (3-6) and (3-7) that ∂z2 P = ∂z2 F2 = F1 = 0 at M0 and

(C-8) a1(∂
3
z2

P + 1̌ cot(1̌)∂2
z2

P)=−∂2
z2

F1− 1̌∂z2 F1 at M0.

Also, since

ξ (3)(1)+ 1̌ cot(1̌)ξ (2)(1)= 0 and ∂2
z2

U2+ 1̌ cot(1̌)∂z2U2 = 0

at M0, Equation (C-8) yields

X0(X0+ 1− ξ)
ξρU 2

1
(∂3

z2
P + 1̌ cot(1̌)∂2

z2
P)=

2(∂z2U2)
2(X0+ 1− ξ)
ξU 2

1
cot(1̌)

at M0, so that

(C-9) ∂3
z2

P + 1̌ cot(1̌)∂2
z2

P = 2̌ρ cot(1̌)(∂z2U2)
2

at M0. Thus, it follows from (C-9) and (C-6) that

(C-10) Q+
2γ
γ− 1

U1 P −U1[P] = 0 or ∂z2U2 = 0 at M0.

Meanwhile, in the general case,

Q+
2γ
γ− 1

U1 P −U1[P] =
1

(γ−1)ρU1
(ρU 2

1 − γP)+
2γ
γ− 1

U1 P −U1[P]

=
1

γ−1
U1+U1 P̂−0 +

γ+ 1
γ− 1

U1 P −
γ

(γ− 1)ρU1
P

=
1

γ−1
U1+U1 P̂−0 +

P
(γ−1)ρU1

((γ+ 1)ρU 2
1 − γ) 6= 0.

Thus, combining this with (C-9) yields ∂z2U2 = 0 at M0 if the solution is in C3,α.
On the other hand, it follows from (2-26) that

∂z2U2

U1
+

ξ

X0(X0+ 1− ξ)
∂z1(P − P̃+0 )= 0,

where P̃+0 denotes the background pressure when the shock position lies at r=ξ(1).
However, it seems to be rather difficult to show ∂z1(P − P̃+0 ) = 0 at the point M0

in general (although ∂z2(P − P̃+0 )= 0 there by (3-6)).
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BI-HAMILTONIAN FLOWS AND THEIR REALIZATIONS AS
CURVES IN REAL SEMISIMPLE HOMOGENEOUS

MANIFOLDS

GLORIA MARÍ BEFFA

We describe a reduction process that allows us to define Hamiltonian struc-
tures on the manifold of differential invariants of parametrized curves for
any homogeneous manifold of the form G/H , with G semisimple. We also
prove that equations that are Hamiltonian with respect to the first of these
reduced brackets automatically have a geometric realization as an invariant
flow of curves in G/H . This result applies to some well-known completely
integrable systems. We study in detail the Hamiltonian structures associ-
ated to the sphere SO(n+ 1)/SO(n).

1. Introduction

Completely integrable systems are PDEs for which one can find an infinite family
of preserved functionals in involution. Most of these systems are bi-Hamiltonian,
that is, they are Hamiltonian with respect to two different but compatible Hamil-
tonian structures (compatible means that their sum is also a Hamiltonian structure).
The Hamiltonian structures are used to generate a recursion operator, an operator
that when reiteratively applied to one initial preserved functional generates the
entire family — or hierarchy — see [Magri 1978]. In recent years a large number
of publications have shown that many completely integrable systems appear linked
to the geometric background of curves and surfaces; see for example [Anco 2006;
Doliwa and Santini 1994; Ferapontov 1995; Gay-Balmaz and Ratiu 2007; Chou
and Qu 2002; 2003; Langer and Perline 1991; 2000; Sanders and Wang 2003;
Terng and Thorbergsson 2001; Terng and Uhlenbeck 2006; 2000; Yasui and Sasaki
1998; Marı́ 2008a; 2006; 2008b; 2007; 2005; 2009; Marı́ et al. 2002] and refer-
ences within. Some of this work relates the integrable systems to invariant flows of
(in general parametrized) curves in different types of manifolds through geometric
realizations, that is, evolutions of curves inducing the integrable system on its cur-
vatures, or differential invariants in general. Perhaps the best known example of

MSC2000: primary 37K10, 37K25, 37K30; secondary 53A55.
Keywords: invariant curve evolutions, Poisson structures, differential invariants, moving frames,

homogeneous spaces.
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such a geometric realization is that of the nonlinear Schrödinger equation (NLS) by
the vortex filament flow (VF). Hasimoto [1972] showed that VF, viewed as a flow
of spacial Euclidean curves, induces the NLS on its curvature and torsion via what
it became known as the Hasimoto transformation. The Hasimoto transformation
was proved to be a Poisson map between two equivalent bi-Poisson manifolds, that
of the standard curvature and torsion and the manifold of natural curvatures; see
[Langer and Perline 1991; Marı́ et al. 2002].

The author of this paper has linked the bi-Hamiltonian structures of many of
these integrable systems to a process that allows us to reduce well-known compat-
ible Poisson brackets on the manifold of loops in the dual of a Lie algebra, which
we will call Lg∗, to the manifold of differential invariants. This reduction pro-
cess was described in [Marı́ 2008a] for homogeneous manifolds of the form G/H
where g, the Lie algebra associated to G, is |1|-graded. These include RPn+1, the
conformal Möbius sphere, the Grassmannian, the Lagrangian Grassmannian and
others. The reduction process was also described in [Marı́ 2006] for the case of
affine geometries, that is, homogeneous manifolds of the form G n Rn/G with
G semisimple. In both cases a well-known Poisson structure (we will refer to it
as our first bracket) on Lg∗ can be reduced to the space of differential invariants
to produce some of the best known Hamiltonian structures used in the integration
of PDEs. This structure is also linked to geometric realizations in the sense that
under minimal conditions one can find geometric realizations for any Hamiltonian
evolution, and hence for bi-Hamiltonian integrable systems. The reduction of a
second compatible bracket is not guaranteed, and neither is the existence of an
associated integrable system. Indeed it was shown in [Marı́ 2005] that in the La-
grangian 2-Grassmannian manifold (or Grassmannian of Lagrangian planes in R4),
the second bracket in Lsp(2)∗ never reduces. No completely integrable systems
induced by Lagrangian flows on the differential invariants have been found. On
the other hand, the reduction of the second bracket, whenever possible, points at
the existence of an associated completely integrable system, or at least it is so in
all known examples. Coming from a different direction, Terng, with Thorbergsson
in [2001] and with Uhlenbeck in [2000; 2006], started by constructing classical
completely integrable systems that are Hamiltonian with respect to the reduction
of the second bracket, the bracket defined on coadjoint orbits, and after finding the
existence of these systems they link them to our first bracket. These two different
approaches have not been clearly bridged yet.

Even in the cases where the second bracket does not reduce, one can at times
find integrable systems as level sets of Hamiltonian evolutions: the second bracket
might not reduce to the complete manifold of differential invariants, but it might
reduce to a submanifold of it defined by some chosen invariants. The geometric
realization might exist if initial conditions are restricted to the types of curves
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for which the undesired invariants are constant. For example, in the case of the
Lagrangian n-Grassmannian the second Poisson bracket does not reduce in gen-
eral, but it does always reduce to the submanifold defined by the eigenvalues of
the so-called Lagrangian Schwarzian derivatives, whenever the other invariants
vanish. In fact, it has been conjectured (and studies are supportive of this) that
the type of Poisson structures/integrable systems and the character of the chosen
invariants are closely related. For example, one can usually reduce the second
bracket to a submanifold of differential invariants of projective type (as was done
in [Marı́ 2008a; 2008b; 2007]) to obtain Poisson structures and integrable systems
of KdV type (for example, the KdV equation or systems of decoupled KdV in
[2008a; 2008b; 2007], complexly coupled KdV equations in [2008b], and Adler–
Gel’fand–Dikii evolutions in [2008a]). Similarly, one can reduce to a submanifold
of curvatures of natural-type to obtain modified KdV vector equations and NLS
systems, as in [Anco 2006; Marı́ et al. 2002; Sanders and Wang 2003; Terng and
Thorbergsson 2001; Terng and Uhlenbeck 2006].

A last relevant feature of these brackets is the following. Some of the Poisson
structures obtained when reducing our first bracket are not truly structures associ-
ated to parametrized curves, but trivial extensions of Poisson brackets associated
to unparametrized curves and extended trivially to the differential invariant of arc
length type, as defined in [Marı́ 2009]. Except for the case G = GL(n,R), all
classical affine geometries G n Rn/G have first reductions for which Hamiltonian
evolutions will always preserve the invariant of arc length type [Marı́ 2009]. On
the other hand, all known examples for semisimple parabolic cases (G/P , with
P parabolic) have reductions of the first bracket that do not preserve parameters
of arc length type. Indeed, geometric realizations of equations of KdV type do
not preserve any invariant of arc length type. Thus, having first reductions on
parametrized or unparametrized curves seems to be linked to the type of geometry
that the manifold has.

In this paper we describe the reduction process for the general case of a homoge-
neous manifold G/H with G semisimple. Semisimplicity can be trivially assumed
for the definition of the bracket; otherwise the bracket will only be defined on the
semisimple component of the algebra. The reduction process here is, in fact, a
simplification of the process in [Marı́ 2008a]. We prove in Theorem 4.3 that any
system that is Hamiltonian with respect to the first reduced bracket possesses a
geometric realization by an invariant flow on G/H . Our running example is that
of SO(2, 2)/P for an appropriate choice of parabolic subgroup P . This manifold
is geometrically equivalent to RP1

×RP1 and we show that both brackets reduce
to produce a decoupled system of KdV bi-Hamiltonian structures. The manifold
SO(3, 1)/P (the conformal plane) is known [Marı́ 2005] to produce a system of
two complexly coupled KdV equations. Thus, we show that the exchange
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0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

→


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


in the bilinear form defining the group effectively decouples the KdV system.

Finally, the Hamiltonian structures of the sphere SO(n + 1)/SO(n) is studied
in Section 5. In [Terng and Thorbergsson 2001; Anco 2006], the authors found a
geometric realization on this sphere for a vector system of modified KdV equations.
The authors do not study the generation of the mKdV bi-Hamiltonian structures,
or their possible definition by reduction (Anco provides a recursion operator that
is said to be encoded by the geometry, but he provides no explanation on how the
encoding takes place). The case of SO(n+1)/SO(n) is interesting because, being
a semisimple case (albeit not a parabolic one), one would think that the arc length
does not need to be preserved; said differently, the first reduced Poisson structure
should be expected to be a structure on parametrized curves. On the other hand,
the mKdV systems found by Anco and Terng and Thorbergsson associated to this
geometric background (and found also in the Euclidean case, an affine manifold)
are arc length preserving. In Section 5, we show that the first reduced bracket does
not preserve arc length, so that the bracket is defined on parametrized curves, in
accordance with the manifold being homogeneous and semisimple. But here it
is the second bracket that always preserves arc length and, hence, forces any bi-
Hamiltonian system to be arc length preserving, in accordance with vector mKdV
being the associated integrable system. The system of vector mKdVs is shown to
be a bi-Hamiltonian system with respect to both reductions.

The reduction method we use is strongly rooted in the use of group-based mov-
ing frames. The method is relatively new so we include a description in our first
section, together with other background definitions.

2. Background definitions

2a. Moving frames, differential invariants, Serret–Frenet equations and geo-
metric realizations. The classical concept of moving frame was developed by Élie
Cartan [1935; 1937]. A classical moving frame along a curve in a manifold M is a
curve in the frame bundle of the manifold over the curve, invariant under the action
of a transformation group under consideration. This method is a very powerful tool,
but its explicit application relied on intuitive choices that were not clear in a general
setting. Ideas in Cartan’s work and later work of Griffiths [1974], Green [1978] and
others laid the foundation for the concept of a group-based moving frame, that is,
an equivariant map between the jet space of curves in the manifold and the group
of transformations. Recent work by Fels and Olver [1999] finally gave the precise
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definition of the group-based moving frame and extended its application beyond
its original geometric picture. In this section we will describe Fels and Olver’s
moving frame and its role in our study. From now on we will assume M = G/H
with G semisimple and acting on M via left multiplication on representatives of a
class. We will also assume that curves in M are parametrized, and that therefore
the group G does not act on the parameter.

Definition 2.1. Let J k(R,M) be the space of k-jets of curves, that is, the set of
equivalence classes of curves in M up to k-th order of contact. If we denote by u(x)
a curve in M and by ur the r -th derivative of u with respect to the parameter x , that
is, ur =dr u/dxr , then the jet space has local coordinates that can be represented by
u(k) = (x, u, u1, u2, . . . , uk). The group G acts naturally on parametrized curves;
therefore it acts naturally on the jet space via the formula

g · u(k) = (x, g · u, (g · u)1, (g · u)2, . . . ),

where by (g · u)k we mean the formula obtained when one differentiates g · u and
then writes the result in terms of g, u, u1, and so on. This is usually called the
prolonged action of G on J k(R,M).

Definition 2.2. A function I : J k(R,M)→ R is called a k-th order differential
invariant if it is invariant with respect to the prolonged action of G.

Definition 2.3. A map ρ : J k(R,M)→G is called a left (respectively right) moving
frame if it is equivariant with respect to the prolonged action of G on J k(R,M)
and the left (respectively right) action of G on itself.

The group-based moving frame appears in a familiar method for calculating
the curvature of a curve u(s) in the Euclidean plane. In this method one uses a
translation to take u(s) to the origin and then a rotation to make one of the axes
tangent to the curve. The curvature can classically be found as the coefficient
of the second order term in the expansion of the curve around u(s). The crucial
observation made by Fels and Olver is that the element of the group carrying out
the translation and rotation depends on u and its derivatives and so defines a map
from the jet space to the group. This map is a right moving frame, and it carries all
the geometric information of the curve. In fact, Fels and Olver developed a similar
normalization process to find right moving frames.

Theorem 2.4 [Fels and Olver 1999]. Let · denote the prolonged action of the
group on u(k) and assume we have normalization equations of the form g ·u(k)= ck ,
where at least some of the entries of ck are constants (they are called normalization
constants). Assume we have enough normalization equations to determine g as a
function of u, u1, . . . . Then g = ρ is a right invariant moving frame.
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Next is the description of the equivalent to the classical Serret–Frenet equations.
We are denoting by L∗g (respectively R∗g), the map induced on T G by Lg, the left
multiplication by g (respectively Rg, the right multiplication). From now on, we
will also assume the (local) connection on M is flat, although some modifications
can be introduced to assume constant curvature.

Definition 2.5. Consider K dx to be the horizontal component of the pullback of
the left- (respectively right)-invariant Maurer–Cartan form of the group G via a
left (respectively right) moving frame ρ. That is,

K = L∗ρ−1ρx ∈ g (respectively K = R∗ρ−1ρx)

We call K the left (respectively right) Serret–Frenet equations for the moving
frame ρ.

Notice that, if ρ is a left moving frame, then ρ−1 is a right moving frame and
their Serret–Frenet equations are the negatives of each other. A complete set of
generating differential invariants can always be found among the coordinates of
group-based Serret–Frenet equations, a crucial difference with the classical picture.
The next theorem is a direct consequence of the results in [Fels and Olver 1999].
A more general result can be found in [Hubert 2007].

Theorem 2.6. Let ρ be a (left or right) moving frame along a curve u. Let us fix a
basis for g. Then, the coordinates of the (left or right) Serret–Frenet equations for
ρ contain a basis for the space of differential invariants of the curve. That is, any
other differential invariant for the curve is a function of the coordinates of K and
their derivatives with respect to x.

If we can find a moving frame using a set of normalization equations as in
Theorem 2.4, we can also find algebraically the explicit form of the Serret–Frenet
equations of the frame, following a parallel set of recurrence equations. Let K · u
represent the infinitesimal action of the algebra g, likewise with K · u(k), which
represents the infinitesimal prolonged action. The following theorem is a rewriting
of results appearing in [Fels and Olver 1999].

Theorem 2.7. Let K = L∗
ρ−1ρx be the left Serret–Frenet equation associated to the

left moving frame ρ. Let ρ be determined by normalization equations of the form
ρ−1
· uk = ck . Then, K satisfies the equations

K · uk |I = ck+1− (ck)x ,

where K ·uk |I denotes what is usually called the invariantization of K ·uk , that is,
the expression K · uk with all ur substituted by cr .

Definition 2.8 (geometric realization of an evolution of invariants). Let k denote
a vector whose entries form an independent and generating system of differential
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invariants for curves. That is, k is a vector whose entries are differential invariants
for the curve; the entries of k and their derivatives are functionally independent (no
entry can be written as a function of the other entries and their derivatives); and
any other differential invariant is a function of the entries of k and their derivatives.

Let

(1) kt = F(k, kx , kxx , . . . )

be an evolution of k. We say that

(2) ut = Q(u, ux , uxx , uxxx , . . . )

is a geometric realization of (1) on G/H whenever u(t, x)∈G/H , (2) is invariant
under the action on G (that is, G takes solutions to solutions) and the evolution
induced on k by (2) is (1). Equivalently, we say that (1) is the invariantization
of (2).

2b. Poisson brackets on Lg∗. Consider the group of loops LG=C∞(S1,G) and
its Lie algebra Lg = C∞(S1, g). Let B̂ : g × g → R be an ad-invariant non-
degenerate bilinear form of the algebra. We can use B̂ to identify g∗ with g so that
X∗ = B̂(X, · ) ∈ g∗. For example, if g ⊂ gl(n,R), then B̂ can be the trace of the
matrix product. With this bilinear form, the dual to Ei j (the matrix having 1 in
place (i, j) and 0 elsewhere) is given by E j i . The bilinear form

(3) B(X, Y )=
∫

S1
B̂(X, Y )dx

will give us the analogous form defined on Lg, and we can identify Lg∗ (the regular
part of (Lg)∗) with Lg using B.

One can define two natural Poisson brackets on Lg∗; for more information see
[Pressley and Segal 1989]. If H,G :Lg∗→R are two functionals defined on Lg∗,
then δH/δL denotes the variational derivative of H at L and it can be identified,
using (3), with an element of Lg so that

(4) d
dε

∣∣∣
ε=0

H(L + εV )=
∫

S1
B̂
(
δH
δL
, V
)

dx .

Likewise with G. If L ∈ Lg∗, we define

(5) {H,G}(L)=
∫

S1

〈(
δH
δL

)
x
+ ad∗

(
δH
δL

)
(L), δG

δL

〉
dx

where 〈 · , · 〉 is the natural coupling between g∗ and g and where we identify
(δH/δL)x with its dual counterpart. If we identify L with its dual, then we have
ad∗(δH/δL)(L)=− ad(δH/δL)(L).
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One also has a compatible family of second brackets, namely

(6) {H,G}(L)=
∫

S1

〈(
ad∗
(
δH
δL

)
(L0),

δG
δL

〉
dx,

where L0 ∈ g∗ is any constant element.
In the next section we will show how (5) can be always reduced to the space of

differential invariants of curves. The compatible bracket (6) can only be reduced
sometimes. Recall that the appearance of compatible pairs of Poisson brackets
often indicates the existence of completely integrable systems.

3. Geometric Poisson brackets on the space
of differential invariants of curves

Since H ⊂ G is a subgroup, the algebra g has a splitting of the form

(7) g= h⊕m,

where m is a vector subspace complement to the subalgebra h, but not a subalgebra
in general. From now on we will also assume that our curves on homogeneous
manifolds have a group monodromy, that is, there exists m ∈ G such that

u(t + T )= m · u(t),

where T is the period. Under these assumptions, the Serret–Frenet equations will
be periodic and will belong to Lg∗ (under proper identification). Alternatively, one
could assume that u is asymptotic at ±∞, so that the invariants vanish at infinity,
and describe a similar situation.

Theorem 3.1. Let u be a generic curve on the homogeneous manifold G/H. Let ρ
be a left moving frame with ρ ·o= u. Locally, we can find moving frames for curves
û in a neighborhood of u (with respect to the C∞ topology) such that ρ · o = û.
Let K be the submanifold of Lg given by the Serret–Frenet equations associated to
these left moving frames, in the sense of the previous section. Then, when identified
with its dual, K defines a section of the quotient Lg∗/LH , where the subgroup LH
acts on Lg∗ via the standard gauge action

a(g)(L)= L∗g−1 gx +Ad∗(g)(L)

and where again the element L∗g−1 gx is identified with its dual.

Proof. This theorem is proved using the definition of moving frame. Assume
m ∈ Lg∗ and identify the element with an element in the algebra. Let η be a
(local) solution of the equation L∗η−1ηx = m. We call u = η · o and we denote by
ρ a left moving frame associated to u, with ρ · o = u. The frame ρ has the same
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monodromy as u, and u has the same monodromy as η. Hence, ρ and η have the
same monodromy.

With these choices we have ρ = ηη−1ρ = ηg and g ·o= η−1ρ ·o= η−1
·u = o.

Since H is the isotropy group of o (which represents the class of H in G/H ), we
conclude that g(x)∈H for any x . Furthermore, the monodromy of both ρ and η are
the same, and therefore g∈LH . The action of LG on the space of solutions η→ηg
induces the gauge action described in the theorem on the elements of Lg∗ defining
the equations satisfied by η. If identified with Lg, Ad∗(g)(L) = Ad(g−1)(L) and
the action on Lg induced by the gauge action is L∗g−1 gx +Ad(g−1)L . �

Example 3.2. Our running example will be the case G = SO(2, 2) for H = P
given by a particular parabolic choice. Assume SO(2, 2) is the isotropy group of
the bilinear form defined by the matrix

J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
that is, o(2, 2) is the set of matrices that are skew-symmetric with respect to the
secondary diagonal. Locally, g ∈ SO(2, 2) can be factored as

g = g1(v)g0(α,2)g−1(y)

=


1 v1 v2

−v2v1

0 1 0 −v2

0 0 1 −v1

0 0 0 1


α 0 0

0 2 0
0 0 α−1




1 0 0 0
y1 1 0 0
y2 0 1 0
−y2 y1

−y2
−y1 1

 ,
with α ∈R and 2 ∈ SO(1, 1). This factorization corresponds to the algebra grada-
tion o(2, 2)= g1⊕ g0⊕ g−1 as in the diagram

0 +1 +1 +1
−1 0 0 +1
−1 0 0 +1
−1 −1 −1 0

 .
Let us choose the parabolic subgroup H= P=G1·G0, that is, the subgroup defined
by elements g such that y1

= y2
= 0. Notice that SO(3, 1) has the exact same

description, with one difference, namely 2 ∈ SO(2) (here −v1v2
= −

1
2‖v‖J —

see below — while for SO(3, 1) we would have − 1
2‖v‖ = −

1
2v

T v instead).
With this representation, the action of SO(2, 2) on SO(2, 2)/H is determined

by the relation gg−1(u) = g(g · u)h for some h ∈ H . We will use the section
ς :SO(2, 2)/H→SO(2, 2) given by ς(u)= g−1(u) to locally identify SO(2, 2)/H
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with G−1. The subgroups Gi are the exponentials of the Lie subalgebras gi . One
can readily find an explicit formula for the action using this notation:

(8) g · u =
α−12(u+ y)+ 1

2α
−2
‖u+ y‖2Jv

∗

1+α−1vT2(u+ y)+ 1
4α
−2‖v‖2J‖u+ y‖2J

where ‖x‖J = x̂T J x̂ for x̂ = (0, x, 0) and where, if v =
(
v1

v2

)
, then v∗ =

(
v2

v1

)
. One

can check that this action decouples into two projective actions. If 2 ∈ SO(1, 1)
with2=diag(a, a−1), the two projective actions are given by (y1, aα−1, v1) acting
projectively on u1 and (y2, aα−1, v2) acting projectively on u2. This is because
the isomorphism o(2, 2) ∼= sl(2,R)⊕ sl(2,R) induces a splitting of SO(2, 2) into
SL(2,R)× SL(2,R) and also an equivalence of O(2, 2)/P with RP1

×RP1. (A
choice of 2 on the second connected component of O(1, 1) will simply produce
an involution exchanging u1 and u2.)

If g is as in (8), the zero normalization equation is g ·u= 0, which can be solved
with the choice y=−u. If u= u(x), the first normalization equation is g ·u1= c1,
obtained by differentiating the action (8) with respect to x and substituting y=−u.
It is given by

α−12u1 = c1.

Since 2= diag(a, a−1) ∈ O(1, 1), we need to choose nonvanishing normalization
values for each of the entries of c3. We choose c1 =

(
1
1

)
, rather than the usual

c1 = e1 favored in normalizations — in this case e1 would be a singular choice.
This choice forces the values

α = ‖ux‖J 2−1/2 and 2−1
(1

1

)
=

√
2ux

‖ux‖J
.

This condition completely determines 2= diag(α(u1
x)
−1, α−1u1

x).
The second normalization equation is obtained differentiating (8) twice and sub-

stituting previously found values. It is given by

α−22uxx − v = c2 = 0,

which is readily resolved choosing v = α−22uxx . This last equation completely
determines the right moving frame. Following [Fels and Olver 1999], we have a
set of independent and generating invariants given by the entries of c3; we have
two invariants of third order. The interested reader can differentiate once more
and find the third normalization equations and the explicit formula for c3. It is
given by c3 =

( k1
k2

)
with ki = S(ui ), where S( f ) = f −1

x ( fxxx −
3
2( fxx/ fx)

2) is
the Schwarzian derivative of f . The Schwarzian derivative is the generator of
projective differential invariants in RP1.
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Let’s call ρ the left moving frame, that is, the inverse of the frame we just found:

ρ =

1 −(u∗)T −1
2‖u‖

2
J

0 I u
0 0 1

α−1 0 0
0 2−1 0
0 0 α

1 −vT
−

1
2‖v‖J

0 I v∗

0 0 1

 .
In parallel with the normalization equations, we can use recurrence formulas of
Theorem 2.7 to determine the matrix K = ρ−1ρx . If K = K1+ K0+ K−1 are the
gradated components of K and K0 = Kα+K2 are the two components of K0, the
recurrence formulas are given by

K · u|I = K−1 = c1− c′0 = c1 =
( 1

1

)
,

K · u1|I = K2c1− Kαc1 = c2− c′1 = 0.

The last equation implies K2 = 0 and Kα = 0. The two equations describe K as
being of the form

(9) K =


0 k1 k2 0
1 0 0 −k2

1 0 0 −k1

0 −1 −1 0

 .
The general theory tells us that the entries of K generate all other differential
invariants for u, and hence k1 and k2 must be generators. If one writes the re-
currence equations of Theorem 2.7 for the second prolongation, we also see that
K1 coincides with c3. This matrix is very similar to the one obtained in the case
G = O(3, 1) for which G/H is the conformal plane; see [Marı́ 2008b]. The only
difference is that in the conformal case, c1 = e1 is a regular value and K−1 = e1

was chosen instead. This small difference will create a very significant one for the
reduced Poisson brackets and their associated integrable systems.

Our next theorem shows that (5) can be reduced to K, and its proof gives an
algebraic method to calculate the reduced bracket explicitly (and also the reduction
of (6) whenever possible).

Theorem 3.3. The Poisson bracket defined on Lg∗ by (5) is reducible to the sub-
manifold K. We call this the first reduced Poisson bracket associated to curves
on G/H.

Proof. Observe that K is given locally by the quotient Lg∗/LH , where LH acts
in Lg∗ via the gauge action. The symplectic leaves of the bracket (5) are formed
by the orbits of the gauge action itself. For more information on these brackets,
see [Pressley and Segal 1989]. Assume we have two functionals R and G such that
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δR/δL, δG/δL ∈ Lg vanish on the tangent to the LH -leaves. That means

(10)
(
δR
δL

)
x
− ad

(
δR
δL

)
(K ) ∈ h0

and likewise for G (we are identifying Lg with Lg∗). Then, the bracket (5) of these
two functionals will also vanish on the tangent to the leaves (equivalently, it will
be constant on the leaves); one only needs to apply Jacobi’s identity for (5) to see
this. Hence, the bracket will represent a well-defined functional on the quotient K.

Following the same reasoning as in [Marsden and Ratiu 1986], let r, g :K→ R

be two functionals, and let R and G be two extensions that are constant on the
leaves of LH . The bracket

(11) {r, g}(K )=
∫

S1

〈(
δR
δL

)
x
− ad

(
δR
δL

)
(K ), δG

δL

〉
dx

describes a well-defined functional on K. It is a Poisson bracket on K in which
Jacobi’s identity is given directly by the Jacobi identity of (5). For a complete
description of this and other Poisson reductions for finite-dimensional manifolds,
see [Marsden and Ratiu 1986]. Our infinite-dimensional case is a straightforward
generalization of the results there. �

Although this bracket seems to be complicated to compute, in all known cases
the calculation follows a purely algebraic process that can be done by hand in low
dimensions. The essence of the algebraic process is the use of (10).

Example 3.4. We now go back to the case G = SO(2, 2). In this case h= g0⊕g1

and so h0
= g1. If K is given as in (9), then an extension R of a functional

r : K→ R to Lo(2, 2)∗ will coincide with r in the direction of k1 and k2. The
variational derivative of R is defined as in (4), and so

(12) δR
δL
(K )=


β a b 0

δr/δk1 c 0 −b
δr/δk2 0 −c −a

0 −δr/δk2 −δr/δk1 −β

 .
If we substitute these values in condition (10), we get along K that
β ′+ k1δr/δk1+ k2δr/δk2− a− b a′+ ck1−βk1 b′− ck2−βk2 0

(δr/δk1)x +β − c c′+ a+ k2δr/δk2− k1δr/δk1− b 0 ∗

(δr/δk2)x +β + c 0 ∗ ∗

0 ∗ ∗ ∗



=


0 ∗ ∗ 0
0 0 0 ∗
0 0 0 ∗
0 0 0 0

 .
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From here we obtain

β =−
1
2

(
δr
δk1
+
δr
δk2

)′
, c = 1

2

(
δr
δk1
−
δr
δk2

)′
a =−1

2

(
δr
δk1

)′′
+ k1

δr
δk1

, b =−1
2

(
δr
δk2

)′′
+ k2

δr
δk2

The reduced Poisson bracket is defined by (11), where R and G are appropriate
extensions with variational derivatives as above. After straightforward calculations,
these can be written as

{r, g}(k)=
∫

S1

δg
δk1

(
−

1
2 D3
+ Dk1+ k1 D

) δr
δk1
+
δg
δk2

(
−

1
2 D3
+ Dk1+ k1 D

) δr
δk2
;

therefore the first reduced bracket is defined by two decoupled second Poisson
structures for KdV equations, one in each k1 and k2. We can also check whether
or not, for some choice of L0, the bracket (6) reduces to K by evaluating (6) in our
extensions. If we choose L0 = E12 − E21 + E13 − E31 (that is, the element dual
to K−1), the result is

{r, g}0(k)=
∫

S1

〈
δG
δL
(K ),

[
L0,

δR
δL
(K )

]〉
dx =−2

∫
S1

δg
δk1

D δr
δk1
+
δg
δk2

D δr
δk2

.

Thus, the second reduced bracket is given by two decoupled first Poisson structures
for KdV equations.

This result fits well with the equivalence SO(2, 2)/H ∼= RP1
× RP1. Indeed,

the two reduced Poisson brackets associated to the geometry of flows in RP1 are
known to be the two KdV Hamiltonian structures. On the other hand, O(3, 1)/P
is the conformal plane and the two reduced Poisson brackets were given by the
two Hamiltonian structures for a complexly coupled system of KdV equations
[Marı́ 2005]. Thus the change O(3, 1) → O(2, 2) decouples the Hamiltonian
structures.

4. Geometric realizations of Hamiltonian evolutions

Let 8g : G/H → G/H be defined by the action of g ∈ G on the quotient, that
is, 8g(x) = 8g([y]) = [gy] = g · x . Let ς : G/H → G be a section of the
homogeneous quotient such that ς(o) = e. The section is compatible with the
action of G on G/H , that is,

(13) gς(x)= ς(8g(x))h for some h ∈ H .

This relation in fact determines the action of the group on G/H uniquely, as we
saw in our running example. As before, we consider the splitting of the Lie algebra
g= h⊕m, where m is not in general a Lie subalgebra. Since ς is s section, dς(o)
is an isomorphism between m and To M .
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The following theorem was proved in [Marı́ 2006] and describes the most gen-
eral form of invariant evolutions in terms of left moving frames.

Theorem 4.1. Let u(t, x) ∈ G/H be a flow, that is, the solution of an invariant
evolution of the form

ut = F(u, ux , uxx , uxxx , . . . ).

Assume the evolution is invariant under the action of G, that is, G takes solutions
to solutions. Let ρ(t, x) be a family of left moving frames along u(t, x) such that
ρ ·o= u. Then, there exists an invariant family of tangent vectors r(t, x), that is, a
family depending on the differential invariants of u and their derivatives, such that

ut = d8ρ(o)r.

An interpretation of this theorem is as follows. If we choose coordinates and
d8ρ(o) is considered as an element on GL(n,R), then its columns d8ρ(o) =
(T1, . . . , Tn) form a classical moving frame, that is, an invariant curve in the frame
bundle. If in those coordinates r = (r1, . . . , rn)

T , then ut = r1T1 + · · · + rnTn

for some ri functions of the differential invariants and their derivatives. Many
readers might be more familiar with this writing of an invariant evolution, and it is
equivalent to ours.

Before we describe the relation between the evolutions of u and geometric
Hamiltonian evolutions, it is convenient to prove this:

Lemma 4.2. Let u(t, x) be a one-parameter family of curves in G/H. Assume
u(t, x) evolves following an evolution invariant under the action of G. Assume the
evolution is written as

(14) ut = d8ρ(o)r,

where ρ is a left moving frame that can be locally factored as ς(u)ρH with ρH ∈ H ,
and where r is some invariant tangent vector.

Let N = L∗ρ−1ρt be the left invariant vector field defining the evolution of ρ
under (14). Let N = Nm+Nh be the splitting of N in its m and h component. Then
Nm = dς(o)r .

Note ρH · o= o since ρH ∈ H . Using (13) we have

ς(u)ς(o)= ς(u)= ς(ς(u) · o)h,

which is uniquely determined for some value of h ∈ H . The choices h = e and
ς(u) · o= u satisfy the equation, so we can conclude that ς(u) · o= u.

Proof. Assume ρ = ς(u)ρH . If we calculate N , we have

N = Ad(ρ−1
H )L∗ς(u)−1dς(u)ut + L∗ρ−1

H
dρH (u)ut .
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Since L∗ρ−1
H

dρH (u)ut ∈ h we need to look only for the m component of

Ad(ρ−1
H )L∗ς(u)−1dς(u)ut .

On the other hand, differentiating (13) gives

L∗gdς(u)ut = dς(8g(u))d8g(u)ut h(u, g)+ ς(8g(u)dh(u)ut .

Evaluating this at g = ρ−1, we get

L∗ρ−1dς(u)ut = R∗h(u,ρ−1)dς(o)d8ρ−1(u)ut + dh(u, ρ−1)ut .

Also from (13),

ρ−1ς(u)= ρ−1
H = ς(ρ

−1
· u)h(u, ρ−1)= ς(o)h(u, ρ−1)= h(u, ρ−1),

and (d8ρ−1(u))−1
= d8ρ(ρ−1

· u)= d8ρ(o). Therefore

R∗ρH
L∗ρ−1dς(u)ut = R∗ρH

R∗h(u,ρ−1)dς(o)(d8ρ(o))
−1ut = dς(o)r

whenever u evolves as in (14). This is precisely Nm. �

In what follows we will assume the manifold to be flat, so its Cartan connection
is given by the Maurer–Cartan form. If, for example, the manifold has constant
curvature, some modifications can be introduced to adapt the result, much as was
done in [Terng and Thorbergsson 2001; Anco 2006; Marı́ et al. 2002].

Theorem 4.3. Assume that K is described by an affine subspace of Lg∗. Assume
that (14) is an invariant evolution of curves on G/H and there is a Hamiltonian
functional h : K→ R such that, if H : Lg∗ → R is an extension of h satisfying
condition (10), then

δH
δL
(k)m = dς(o)r,

where
δH
δL
(k)= δH

δL
(k)m+

δH
δL
(k)h

are the components defined by the splitting of the algebra. Then K induces by (14)
an evolution Hamiltonian with respect to the first reduced Poisson bracket (11),
with Hamiltonian functional h. In particular, any Hamiltonian evolution in k with
respect to the first reduced Poisson bracket (11) and Hamiltonian functional h(k)
has a geometric realization given by

ut = d8ρ(o)dς(o)−1 δH
δL
(k)m

where H is any extension of h satisfying (10).
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Proof. Assume that an evolution of u as in (14) induces a Hamiltonian evolution
on K, with Hamiltonian functional h : K→ R. If K is an affine subspace of Lg∗,
then Kt is a linear subspace of Lg∗. Assume r : K→ R is any other Hamiltonian
functional, and let R be an extension satisfying (10). Then∫

S1

〈
Kt ,

δR
δL
(K )

〉
dx = {h, r}(K ).

On one hand, if H is an extension of h satisfying (10), then

(15) {h, r}(K )=
∫

S1

〈(
δH
δL
(K )

)
x
+ ad∗

(
δH
δL
(K )

)
(K ), δR

δL
(K )

〉
.

On the other hand, if N = L∗ρ−1ρt , then applying the structure equation for the
Maurer–Cartan form to the commuting vector fields d/dx and d/dt along ρ results
in the compatibility condition Kt = Nx + ad(K )(N ). Therefore, we obtain that〈

Kt ,
δR
δL
(K )

〉
=

〈(
δH
δL
(K )

)
x
+ ad∗

(
δH
δL
(K )

)
(K ), δR

δL
(K )

〉
=

〈
Nx + ad∗(N )(K ), δR

δL
(K )

〉
,

where we are again identifying K with its dual, so that ad(K )(N ) = ad∗(N )(K ).
Finally, from (10), the only component involved in (15) is δR/δLm. Likewise for
δH/δL by skew-symmetry. Therefore, if δH/δLm= Nm, the evolution induced on
k will be Hamiltonian with Hamiltonian functional h. Using the lemma, we arrive
to the conclusion of the theorem. �

In general, N and δH/δL are different. Only their components tangent to the
manifold need to coincide.

Example 4.4. Using the data we have on SO(2, 2)/H , one can easily calculate the
formula for a general invariant evolution to be

ut = d8ρ(o)r = α2
(r1

r2

)
=

(
u1

x 0
0 u2

x

)(r1

r2

)
which results on the decoupling ui

t=ui
xri for i=1, 2, where the ri are any functions

depending on k1, k2 and their derivatives. The evolutions are not decoupled unless
the ri are decoupled. From the data we obtained in (12) we have

δH
δL
(K )m =



0 0 0 0
δh
δk1

1 0 0

δh
δk2

0 1 0

0 −
δh
δk2
−
δh
δk1

0

 and dς(o)r =


0 0 0 0

b f r1 1 0 0
r2 0 1 0
0 −r2 −r1 0

 ,
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so that the condition for a geometric realization to exist is δh/δki = ri for i = 1, 2.
In particular, a pair of decoupled KdV equations is obtained when

h(k1, k2)=
1
2

∫
S1
(k2

1 + k2
2)dx

for which ri = ki produces a geometric realization. In the conformal case for which
G =O(3, 1), these same choices produced a geometric realization for a complexly
coupled system of KdV equations. That is, changing from SO(3, 1) to SO(2, 2)
effectively decouples the system of coupled KdV equations.

5. The sphere SO(n+ 1)/SO(n)

In this case G = SO(n + 1) and H = SO(n) is not a parabolic subgroup. We
consider the splitting o(n + 1) = m⊕ h of the Lie algebra into subspaces (unlike
the previous example, only h is a Lie subalgebra here) with

(16)
(

0 y
yT 0

)
∈m and

(
A 0
0 0

)
∈ h,

where y∈Rn and A∈o(n). Associated to this splitting we have a local factorization
in the group into factors belonging to H = SO(n) and exp(m). This factorization
is given by

(17) g =
(
2 0
0 1

)(
I + cosy yyT siny y
− siny yT cos‖y‖

)
where cosy =

cos‖y‖− 1
‖y‖2

, siny =
sin‖y‖
‖y‖

, ‖y‖2 = yT y.

The factorization exists locally.
Let ς : M→ G be the section defined by the exponential, that is,

ς(u)=
(

I + cosu uuT sinu u
− sinu uT cos‖u‖

)
.

Clearly dς(o) :To M→m is an isomorphism given by dς(o)y=
( 0 y

yT 0

)
. The action

of SO(n+1) on the sphere — let’s denote it by g ·u — is determined by the relation
gς(u)= ς(g ·u)h for some h ∈ SO(n) that is also determined by this relation. Let
g be as in (17). Straightforward calculations show that if η = g · u, then

sinη η = sinu 2u+ (cosy sinu yT u+ siny cos‖u‖)2y(18)

cos‖η‖ = cos‖y‖ cos‖u‖− sinu siny yT u.(19)

5a. Left moving frames, Serret–Frenet equations and geometric Hamiltonian
structures for generic curves on the sphere.
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Moving frames. With the factorization above in mind we can use normalization
procedures to calculate a right moving frame along a generic curve u. Indeed, if g
is as in (17), then the first normalization equation is g · u = o, which is resolved
by choosing y =−u. Notice that, if ς is our section, ς(u)−1

= ς(−u), and SO(n)
preserves the origin o.

The first normalization equation is given in terms of the prolonged action of
the group. The action is an action on parametrized curves. Therefore, its explicit
expression is found, as before, by differentiating g ·u with respect to the parameter.
If we do that and substitute y =−u, the first normalization equation is then

sinu 2u1+ (1− sinu)
‖u‖1
‖u‖

2u = se1

where s = (sin2
u‖ux‖

2
+ (1− sin2

u)‖u‖
2
x)

1/2 is the spherical arc length invariant.
The vector e1 is an arbitrary choice; any other unit vector can be chosen instead.
We will not, in general, consider unparametrized curves, so this invariant is not, a
priori, constant.

Subsequent normalization equations (up to order n) will determine 2−1ei for
i = 2, . . . , n and with it 2. The r -th normalization equation will be of the form
2 fr (u(r)) = cr for some function fr depending on u and its derivatives. The fact
that 2 ∈ o(n) implies that the vector cr is a function of r differential invariants
of order r . Among these r differential invariants, r − 1 of them will be functions
of lower order differential invariants and their derivatives. Hence, at each step we
get a new invariant of order r that is functionally independent from those of lower
order. Thus, we have n invariants or increasingly high order, the order increasing
by one at each step. According to the theory developed in [Fels and Olver 1999],
these would be generators of all differential invariants of the curve u. For the
purpose of this example, no more details are needed.

Serret–Frenet equations and natural moving frames. First of all, the m component
of ρ(ρ−1)x = K̂ is equal to dς(0)(e1), as we proved in our previous section when
studying the general case.

Indeed, after some straightforward calculations,

ρ(ρ−1)x =

(
2 0
0 1

)
s(u)(s(−u))x

(
2−1 0

0 1

)
+

(
2(2−1)x 0

0 0

)

=

(
2(2−1)x +2(cosu u1uT

− cosu uuT
1 )2

−1 sinu 2u1+ (1− sinu)
‖u‖1
‖u‖ 2u

− sinu uT
12

T
− (1− sinu)

‖u‖1
‖u‖ uT2T 0

)

=

(
K0 se1

−seT
1 0

)
= K̂ .
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Theorem 5.1. There exists a left moving frame ρ whose associated Serret–Frenet
equations are given by

(20) K =

 0 −υT s
υ 0 0
−s 0 0

 ,
where s is the arc length invariant and υ = (υi ) are the natural curvatures. The
moving frame will in general be nonlocal, and it is known as the natural moving
frame (see [Bishop 1975] for the original definition).

Proof. Let ρ be our previous moving frame. Any other left moving frame will be
of the form ρg, where g ∈LSO(n+1) is an invariant element of the group, that is,
a matrix in SO(n+1) depending on the differential invariants and their derivatives.
Since we do not want to change the m component of the equation, we will choose
g ∈ LH . If the natural frame (let us call it ρn) exists, then ρn = ρg for some
invariant g and K = (ρg)−1(ρg)x = g−1 K̂ g + g−1gx . If g =

(
θ 0
0 1

)
, this relation

becomes

K =
(
θT θx + θ

T K0θ sθT e1

−seT
1 θ 0

)
.

We want the m component to remain the same, and so θ should leave e1 invariant.
That is,

θ =

(
1 0
0 η

)
for η ∈ SO(n− 1).

Furthermore, we need

θT θx + θ
T K0θ =

(
0 υT

υ 0

)
, that is, ηTηx + η

T K1η = 0 for K0 =

(
0 ∗
∗ K1

)
.

In general, the solution of ηx = −K1η will be nonlocal. Also, the solution will
in general have a monodromy, and it does not need to be periodic. Hence, the
calculations that follow are, in that sense, formal. This situation was discussed in
[Marı́ 2006]. �

When choose a natural moving frame, rather than a classical Riemannian one,
the familiar reduced Hamiltonian structures and integrable systems emerge. Any
other choice of frame gives an equivalent system, but it will not look familiar to us
in general.

5a1. Geometric Hamiltonian structures. Finally, we will look into the reduced
Poisson bracket defined on the affine subspace K ⊂ Lo(n + 1)∗ consisting of
matrices of the form (20). For this example we will use as bilinear form the usual
〈M, N 〉 = 1

2 tr(M N ). As explained in the previous section, we start by considering
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a Hamiltonian functional h : K→ R and extend it to H : Lo(n+ 1)∗→ R so that
its variational derivative satisfies

(21)
(
δH
δL
(K )

)
x
+

[
K , δH

δL
(K )

]
∈ o(n)0.

If we write

(22)
δH

δL
(K )=


0 δh

δυ

T
−
δh
δs

−
δh
δυ

H0 v

δh
δs
−vT 0


for some H0(s, υ) ∈ o(n− 1) and v(s, υ) ∈ Rn , then condition (21) becomes

0
(
δh
δυ

T)
x
−υT H0− svT

−

(
δh
δs

)
x
−υT v

−

(
δh
δυ

)
x
− H0υ + sv (H0)x +υ

(
δh
δυ

)T
−
δh
δυ
υT vx −

δh
δs
υ + s δh

δυ(
δh
δs

)
x
+ vTυ −vT

x − s δh
δυ

T
+
δh
δs
υT 0

=
0 0 ∗

0 0 ∗
∗ ∗ 0

 .

This results in

v =
1
s

((
δh
δυ

)
x
+ H0υ

)
and H0 = D−1

(
δh
δυ
υT
−υ

(
δh
δυ

)T)
.

If h, g : K→ R are two such functionals and the notation is as above, then the
reduced bracket defined on K is given by

{h, g}R(s, υ)=
∫

S1

〈(
δH

δL
(K )

)
x
+

[
K , δH

δL
(K )

]
,
δG

δL
(K )

〉
dx

=

∫
S1

〈 0 0 −
(
δh
δs

)
x −υ

T v

0 0 vx −
δh
δs υ + s δh

δυ(
δh
δs

)
x + v

Tυ −vT
x − s δh

δυ

T
+

δh
δs υ

T 0

 ,
 0 δg

δυ

T
−
δg
δs

−
δg
δυ

G0 vg
δg
δs −vT

g 0


〉

dx

=−

∫
S1

δg
δs

((
δh
δs

)
x
+ vTυ

)
+ vT

g

(
vx +

δh
δs
υ − s

δh
δυ

)
dx .

Substituting the known values for v and vg we get an explicit expression of the
first reduced Hamiltonian structure on the sphere. Let

Q
(
δh
δυ

)
= H0υ = D−1

(
δh
δυ
υT
− υ

δh
δυ

T)
υ.

It is known (see [Anco 2006; Terng and Thorbergsson 2001] for example) that
D+Q defines a Poisson bracket. In terms of this operator, the reduced bracket is
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written as

(23) {h, g}(s,υ)=−
∫

S1

(
δg
δs

δg
δυ

)
P

(
δh/δs
δh/δυ

)
dx

where P is the matrix of differential operators given by

P=

(
D 1

s υ
T D+ 1

s υ
T Q

Dυ 1
s +Q 1

s υ −D 1
s D 1

s D− D 1
s D 1

s Q−Q 1
s D 1

s D−Q 1
s D 1

s Q− D+Q

)
.

This bracket does not preserve arc length. In that sense it is a true bracket on
parametrized curves. We will come back to this point later.

The companion bracket (6) also reduces to K for the value L0= E1,n+1−En+1,1.
Indeed

(24)
{h, g}0(s,υ)=

∫
S1

〈
δG
δL
,
[

L0,
δH
δL

]〉
dx

=

∫
S1
vT δg
δυ
− vT

g
δh
δυ
=

∫
S1

δg
δυ

T
P0
δh
δυ

dx,

where the Poisson operator P0 is given by

(25)
(

0 0
0 1

s D+ D 1
s + 2Q

)
.

This operator, in turn, leaves the arc length parameter invariant and hence is a
Poisson brackets defined on invariants of unparametrized curves. A discussion
about this difference follows in the next subsection. Our last theorem has now
been proved:

Theorem 5.2. The space K of differential invariants of the Riemannian sphere
SO(n + 1)/SO(n) is a bi-Poisson manifold with compatible geometric Poisson
brackets given by (23) and (24).

5b. Geometric realizations of Hamiltonian k-evolutions, a geometric realization
for a vector modified KdV evolution. In our final section we will describe the
general formula for an invariant evolution of curves u and determine which ones
are Hamiltonian with respect to (23).

Theorem 5.3. Let ut = F(u, ux , uxx , . . . ) be an invariant evolution of curves on
the sphere SO(n+ 1)/SO(n). Let 2 be given by our right moving frame under the
factorization in (17). Then

(26) ut =

(
sin−1

u

(
I − uuT

‖u‖2

)
+

uuT

‖u‖2

)
2−1r

for some invariant vector r depending on s, υ and their derivatives.
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Proof. First, the action of H on the manifold is linear (α,2) · u = α−12u. On
the other hand, ρH = (1,2−1) and so d8ρH (o)u = 2

−1u. The action of ς(u) is
slightly more complicated; we can calculate directly that

d8ς(u)(o)= sin−1
u

(
I − uuT

‖u‖2

)
+

uuT

‖u‖2

Following Theorem 4.1 we can straightforwardly calculate the most general form
for an invariant evolution to be given by

ut =

(
sin−1

u

(
I − uuT

‖u‖2
)
+

uuT

‖u‖2
)
2−1r

for some invariant vector r depending on υ, s and their derivatives. �

Theorem 5.4. If u(t, x) evolves following (26), then the differential invariants
(s, υ) evolve following the equations

st = (r1)x − υ
T r̂

υt =
1
s

(
r̂ xx + (r1υ)x − D−1 1

s
(υ r̂T

x − r̂ xυ
T )
)
, where r =

(
r1

r̂

)
.

Proof. We want to calculate N =ρ−1ρt whenever ρ(x, t) is the natural left moving
frame along the flow u(x, t). Lemma 4.2 tells us that N is of the form

N = ρ−1ρt =

(
N0 r
−r 0

)
.

Evaluating the Maurer–Cartan structure equations along d
dx and d

dt implies

Kt = Nx + [K , N ],

that is, with ϒ =
(

0 −υT

υ 0

)
,

(
ϒ se1

−seT
1 0

)
t
=

(
N0 r
−rT 0

)
x
+

(
[ϒ, N0] − s(e1rT

− reT
1 ) ϒ r − s N0e1

−seT
1 N0+ r Tϒ 0

)
.

The m component of the equation gives st e1 = r x +ϒ r − s N0e1 and implies

N0e1 =
1
s

(
0

r̂ + r1υ

)
where r = (ri ) and r̂ = (r2, r3, . . . , rn−1)

T , and

(27) st = (r1)x − υ
T r̂.
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The evolution ϒt = (N0)x + [ϒ, N0] − s(e1rT
− reT

1 ) in the o(n) block imposes
conditions on N0. Namely, if

N0 =

(
0 −r̂T

− r1υ
T

r̂ + r1υ N̂0

)
, then N̂0 = D−1 1

s
(υ r̂T

x − r̂ xυ
T ).

We also get directly the evolution of υ:

(28) υt =
1
s

(
r̂ xx + (r1υ)x − D−1 1

s
(υ r̂T

x − r̂ xυ
T )υ

)
. �

Finally, our last theorem is the direct translation of Theorem 4.3, having in mind
the description in (22).

Theorem 5.5. Let (26) be an invariant evolution such that

r =
(

r1

r̂

)
=

 −
δh
δs

1
s
(D+Q)

(
δh
δυ

)


for some Hamiltonian functional h(s, υ). Then (26) induces an evolution on (s, υ)
that is Hamiltonian with respect to (23), with Hamiltonian functional h.

As was pointed out in [Terng and Thorbergsson 2001] and [Anco 2006], the
choice of invariant vector r1=

1
2‖υ‖

2 and r̂=υx results in an arc length preserving
evolution (st = 0, we will assume s = 1) given by

υt = υxxx +
3
2‖υ‖

2υx

that is, the vector modified KdV equation.
The final question is whether or not the modified KdV equation is bi-Hamiltonian

with respect to the two compatible Poisson brackets we found. Our previous gen-
eral theorem 4.3 states that the condition for the evolution to be Hamiltonian is the
existence of a Hamiltonian h : K→ R and an extension H : Lg∗→ R such that
δH/δLm = dς(o)r . Using (22), this condition is equivalent to

−
δh
δs
= r1 =

1
2‖υ‖

2 and v =
(
δh
δυ

)
x
+Q

(
δh
δυ

)
= r̂ = υx .

Notice that the second relation is satisfied by δh/δυ = υ.
Consider the Hamiltonian functional

h(s, υ)=
∫

S1
−

1
2‖υ‖

2s+‖υ‖2.

Clearly,
δh
δs
=−

1
2‖υ‖

2 and δh
δυ
= (2− s)υ.

On the preserved level set s = 1, the Hamiltonian has the desired properties.
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Finally, the vector modified KdV equation is also Hamiltonian with respect to
our second reduced Poisson bracket. If we consider as Hamiltonian the operator
h0 : K→ R given by

h0(υ)=
1
2

∫
S1
−‖υx‖

2
+

1
4‖υ‖

4,

then

υt = υxxx +
3
2‖υ‖

2
= P0(υxx +

1
2‖υ‖

2υ)= P0
δh0

δυ
.

Therefore, the modified KdV vector equation is bi-Hamiltonian with respect to both
brackets as long as we assume the parameter to be the spherical arc length. This
condition is forced upon the equations if we want the equations to be Hamiltonian
with respect to the second reduced bracket (24). The second bracket, but not the
first, appeared already in [Terng and Thorbergsson 2001; Anco 2006].

The role of invariants of arc length type was studied in [Marı́ 2007] in the case of
affine geometries, which are manifolds of the form GnRn/G. Among the classical
Lie groups, all manifolds except G = GL(n) have a common feature: their first
geometric Poisson bracket (11) always preserves an invariant of arc length type —
they are brackets associated to unparametrized curves. Therefore, any Hamiltonian
evolution will have geometric realizations by evolutions that preserve arc length
type parameters. This is not a choice, but is imposed by the background geom-
etry. On the other hand, homogeneous manifolds of the form G/H in general
do not have this property. All known examples have a geometric Poisson bracket
defined as in (11) that does not preserve a parameter of arc length type as defined
in [Marı́ 2009]. On the other hand, the modified KdV equation is usually asso-
ciated to Riemannian manifolds in general, and to natural frames in particular;
it is always the invariantization of a curve evolution parametrized by arc length.
Thus, it seemed contradictory that it appears on manifolds of the form G/H , with
G semisimple; at the very least, it seemed counterintuitive. As we saw in our
example, the imposition of arc length preservation does not come from the first
geometric bracket, but from the second. The first bracket does not preserve arc
length, in agreement with all other examples of the type G/H , but the second
does, in agreement with modified KdV being an evolution associated to evolutions
that do so.
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CLOSED ORBITS OF A CHARGE IN A WEAKLY EXACT
MAGNETIC FIELD

WILL J. MERRY

We prove that for a weakly exact magnetic system on a closed connected
Riemannian manifold, almost all energy levels contain a closed orbit. More
precisely, we prove the following stronger statements. Let (M, g) denote a
closed connected Riemannian manifold and σ ∈ �2(M) a weakly exact 2-
form. Let φt : T M → T M denote the magnetic flow determined by σ , and
let c(g, σ ) ∈ R ∪ {∞} denote the Mañé critical value of the pair (g, σ ). We
prove that if k > c(g, σ ), then for every nontrivial free homotopy class of
loops on M there exists a closed orbit of φt with energy k whose projection
to M belongs to that free homotopy class. We also prove that for almost all
k < c(g, σ ) there exists a closed orbit of φt with energy k whose projection
to M is contractible. In particular, when c(g, σ ) = ∞ this implies that
almost every energy level has a contractible closed orbit. As a corollary we
deduce that a weakly exact magnetic flow with [σ ] 6= 0 on a manifold with
amenable fundamental group (which implies c(g, σ )= ∞) has contractible
closed orbits on almost every energy level.

1. Introduction

Let (M, g) denote a closed connected d-dimensional Riemannian manifold, with
tangent bundle π : T M → M and universal cover M̃ . We will assume M is not
simply connected, as otherwise M̃ = M and all results proved in this paper reduce
to special cases of the results in [Contreras 2006]. Let σ ∈�2(M) denote a closed
2-form, and let σ̃ ∈ �2(M̃) denote its pullback to the universal cover. In this
paper we consider the case where σ is weakly exact, that is, when σ̃ is exact (this
is equivalent to requiring that σ |π2(M) = 0); however we do not assume that σ̃
necessarily admits a bounded primitive.

Let ωg denote the standard symplectic form on T M obtained by pulling back the
canonical symplectic form dq ∧ dp on T ∗M via the Riemannian metric. Let ω :=
ωg + π

∗σ denote the twisted symplectic form determined by the pair (g, σ ). Let
E : T M→R denote the energy Hamiltonian E(q, v)= 1

2 |v|
2. Let φt : T M→ T M

MSC2000: 37J45, 70H12.
Keywords: magnetic flow, twisted geodesic flow, periodic orbits, Mañé critical value.
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denote the flow of the symplectic gradient of E with respect to ω; such φt is known
as a twisted geodesic flow or a magnetic flow. The reason for the latter terminology
is that this flow can be thought of as modeling the motion of a particle of unit mass
and unit charge under the effect of a magnetic field represented by the 2-form σ .
Given k ∈ R+ := {t ∈ R : t > 0}, let 6k := E−1(k)⊆ T M .

There exists a number c = c(g, σ ) ∈ R ∪ {∞}, the Mañé critical value (see
[Mañé 1996; Contreras et al. 1997; Contreras and Iturriaga 1999; Burns and Pater-
nain 2002] or Section 2 for the precise definition), such that the dynamics of the
hypersurface 6k differs dramatically depending on whether k < c, k = c or k > c.
Moreover c <∞ if and only if σ̃ admits a bounded primitive.

In this paper we study the old problem of the existence of closed orbits on pre-
scribed energy levels. In the case when σ is exact, this has been essentially solved
by Contreras [2006]; see Theorem D therein in particular, which gives contractible
closed orbits in almost every energy level below the Mañé critical value, and closed
orbits in every free homotopy class for any energy level above the critical value.
In the case of surfaces a stronger result is known to hold: Contreras, Macarini and
Paternain have proved in [Contreras et al. 2004, Theorem 1.1] that in this case every
energy level admits a closed orbit. However the case of a magnetic monopole (that
is, when σ is not exact) remains open, although much progress has been made.
Let us describe now some of these results. A more comprehensive survey can be
found in the introduction to [Contreras et al. 2004]; see also [Ginzburg 1996] for
a introductory account of the problem.

Macarini [2004], extending an earlier result of Polterovich [1998], proved that
if [σ ] 6= 0 there exist nontrivial contractible closed orbits of the magnetic flow
in a sequence of arbitrarily small energy levels. Kerman [2000] proved the same
result for magnetic fields given by symplectic forms. This was then sharpened by
Ginzburg and Gürel [2009] and finally by Usher [2009], where it is proved that
when σ is symplectic, contractible closed orbits exist for all low energy levels.
See also [Lu 2006] for another interesting approach to the problem in the case of
symplectic σ . Perhaps the most general result so far is due to Schlenk [2006], who
showed that for any closed 2-form (not necessarily weakly exact), almost every
sufficiently small energy level contains a contractible closed orbit.

This paper extends [Contreras 2006, Theorem D] to the weakly exact case.

Theorem 1.1. Let (M, g) denote a closed connected Riemannian manifold, and
let σ ∈�2(M) denote a closed 2-form whose pullback to the universal cover M̃ is
exact. Let c= c(g, σ ) ∈R∪{∞} denote the Mañé critical value, and let φt denote
the magnetic flow defined by σ .

(1) If c<∞, then for all k> c and for each nontrivial homotopy class ν ∈ [T,M],
there is a closed orbit of φt with energy k whose projection to M belongs to ν.
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(2) For almost all k ∈ (0, c), where possibly c = ∞, there exists a contractible
closed orbit of φt with energy k.

Theorem 1.1(1) has, under a mild technical assumption on π1(M), been proved by
Paternain [2006]. We use a completely different method of proof however, which
bypasses the need for this additional assumption. For c(g, σ )<∞, Theorem 1.1(2)
is due to Osuna [2005]; we believe the main contribution of this paper is the case
c(g, σ )=∞.

Remark. We will actually prove a slightly stronger statement than the one stated
above; see Proposition 5.8 below for details.

When π1(M) is amenable and σ is not exact, we always have c(g, σ ) = ∞;
see for instance [Paternain 2006, Corollary 5.4]. Thus the following corollary is
immediate.

Corollary 1.2. Let (M, g) denote a closed connected Riemannian manifold, and
let σ ∈ �2(M) denote a closed nonexact 2-form whose pullback to the universal
cover M̃ is exact. Suppose π1(M) is amenable. Then almost every energy level
contains a contractible closed orbit of the magnetic flow defined by σ .

Let us now give a brief outline of our method of attack. Fix a primitive θ of σ̃ ,
and consider the Lagrangian L : T M̃→ R defined by

L(q, v) := 1
2 |v|

2
− θq(v).

The Euler–Lagrange flow of L is precisely the lifted flow φ̃t : T M̃ → T M̃ of the
magnetic flow φt : T M → T M ; see for example [Contreras and Iturriaga 1999].
Recall that the action A(y) of the Lagrangian L over an absolutely continuous
curve y : [0, T ] → M̃ is given by

A(y) :=
∫ T

0
L(y(t), ẏ(t))dt =

∫ T

0

1
2 |ẏ(t)|

2dt −
∫

y
θ.

Set
Ak(y) :=

∫ T

0
(L(y(t), ẏ(t))+ k)dt = A(y)+ kT .

A closed orbit of φ̃t with energy k can be realized as a critical point of the functional
y 7→ Ak(y). More precisely, let 3M̃ denote the Hilbert manifold of absolutely
continuous square integrable curves x : T→ M̃ and consider S̃k :3M̃ ×R+→ R

defined by

S̃k(x, T ) :=
∫ 1

0
T · L(x(t), ẋ(t)/T )dt + kT =

∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
x
θ.

Then the pair (x, T ) is a critical point S̃k if and only if y(t) := x(t/T ) is the
projection to M̃ of a closed orbit of φ̃t with energy k; see [Contreras et al. 2000].
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If σ was actually exact then we could define L on T M , instead of just on T M̃ .
In this case it has been shown in [Contreras et al. 2000] that S̃k for k > c(g, σ )
satisfies the Palais–Smale condition and is bounded below. Standard results from
Morse theory [Contreras et al. 2000, Corollary 23] then tell us that S̃k admits a
global minimum, and this gives us our desired closed orbit. In [Contreras 2006]
this was extended to give contractible orbits on almost every energy level below the
critical value. Crucially however, these results use compactness of M and hence
are not applicable directly in the weakly exact case, since then L is defined only
on T M̃ .

In the weakly exact case, whilst S̃k is not well defined on T M , its differential
is. This leads to our key observation that we can still work directly on 3M . More
precisely, we define a functional Sk :3M×R+→R with1 the property that (x, T )
is a critical point of Sk if and only if a lift ỹ to M̃ of the curve y(t) := x(t/T ) is
the projection to M̃ of a flow line of φ̃t with energy k. The functional Sk is given
by

Sk(x, T ) :=
∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
C(x)

σ,

where C(x) is any cylinder with boundary x(T)∪ xν(T), where xν ∈3M is some
fixed reference loop in the free homotopy class ν ∈ [T,M] that x belongs to. If
c(g, σ ) <∞, then since σ is weakly exact, the value

∫
C(x) σ is independent of the

choice of cylinder C(x) for any curve x ∈3M . In the case c(g, σ )=∞, the value∫
C(x) σ is independent of the choice of cylinder only when x is a contractible loop.

The functional Sk allows one to extend other results previously known only for
the exact case to the weakly exact case. For instance, in [Merry 2010] we will
use Sk to establish the short exact sequence [Cieliebak et al. 2010; Abbondandolo
and Schwarz 2009a] between the Rabinowitz Floer homology of a weakly exact
twisted cotangent bundle and the singular (co)homology of the free loop space.

2. Preliminaries

The setup. It will be convenient to view M and M̃ as being embedded isometrically
in some RN (which is possible by Nash’s theorem). We will be interested in various
spaces of absolutely continuous curves.

Given q0, q1 ∈ M and T ≥ 0, let Cac
M(q0, q1; T ) denote the set of absolutely

continuous curves y : [0, T ] → M with y(0)= q0 and y(T )= q1. Let

Cac
M(q0, q1) :=

⋃
T≥0

Cac
M(q0, q1; T ).

1If σ̃ does not admit any bounded primitives, Sk is only defined on 30 ×R+, where 30 ⊆ 3M
is the subset of contractible loops.
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We can repeat the construction on M̃ to obtain for q0, q1 ∈ M̃ sets Cac
M̃
(q0, q1; T )

and Cac
M̃
(q0, q1) of curves on M̃ .

Next, consider the space W 1,2(RN ) of absolutely continuous maps x : I → RN

such that
∫ 1

0 |ẋ(t)|
2dt <∞ and the space

W 1,2(M) := {x ∈W 1,2(RN ) : x(I )⊆ M},

with W 1,2(M̃) defined similarly. Here and throughout, I := [0, 1].
Let 3RN ⊆ W 1,2(RN ) denote the set of closed loops of class W 1,2 on RN , and

let 3M := W 1,2(M)∩3RN . We will think of maps x ∈ 3M as maps x : T→ M
(here T = R/Z, which we shall often identify with S1). Given a free homotopy
class ν ∈ [T,M], let 3ν ⊆3M denote the connected component of 3M consisting
of the loops belonging to ν.

The tangent space to 3RN at x ∈3RN is given by

Tx3RN = {ξ ∈W 1,2(RN ) : ξ(0)= ξ(1)}.

Given (x, T ) ∈3M ×R+, we thus have

T(x,T )(3M ×R+)= {(ξ, ψ) ∈W 1,2(RN )×R : ξ(0)= ξ(1)}.

Let 〈 · , · 〉 denote the standard Euclidean metric. The metric on W 1,2(RN ) we
will work with is

〈ξ, ζ 〉1,2 := 〈ξ(0), ζ(0)〉+
∫ 1

0

〈
ξ̇ (t), ζ̇ (t)

〉
dt.

This defines a metric that we shall denote simply by 〈 · , · 〉 on W 1,2(RN )×R+ by

(2-1) 〈(ξ, ψ), (ζ, χ)〉 := 〈ξ, ζ 〉1,2+ψχ.

Mañé’s critical value. We now recall the definition of c(g, σ ), the critical value
introduced in [Mañé 1996], which plays a decisive role in all that follows.

Let us fix a primitive θ of σ̃ . Given k ∈ R+, we define Ak as follows. Let
q0, q1 ∈ M̃ . Define Ak : Cac

M̃
(q0, q1)→ R by

Ak(y) :=
∫ T

0

1
2 |ẏ(t)|

2
+ kT −

∫
y
θ.

We define Mañé’s action potential mk : M̃ × M̃→ R∪ {−∞} by

mk(q0, q1) := inf
T>0

inf
y∈Cac

M̃
(q0,q1;T )

Ak(y).

Then we have the following result; for a proof see [Contreras and Iturriaga 1999,
Proposition 2-1.1] for the first five statements, and [Burns and Paternain 2002,
Appendix A] for a proof of the last statement.
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Lemma 2.1. Properties of mk :

(1) If k ≤ k ′, then mk(q0, q1)≤ mk′(q0, q1) for all q0, q1 ∈ M̃.

(2) For all k ∈ R and all q0, q1, q2 ∈ M̃ , we have

mk(q0, q2)≤ mk(q0, q1)+mk(q1, q2).

(3) Fix k ∈R. Then either mk(q0, q1)=−∞ for all q0, q1 ∈ M̃ , or mk(q0, q1)∈R

for all q0, q1 ∈ M̃ and mk(q, q)= 0 for all q ∈ M̃.

(4) If
c(g, σ ) := inf{k ∈ R : mk(q0, q1) ∈ R for all q0, q1 ∈ M̃},

then mc(g,σ ) is finite everywhere.

(5) We can alternatively define c(g, σ ) by

(2-2) c(g, σ )= inf
u∈C∞(M̃)

sup
q∈M̃

1
2 |dqu+ θq |

2.

We call the number c(g, σ ) the Mañé critical value. Using (2-2) it is clear that
c(g, σ ) <∞ if and only if θ is bounded, that is, if

(2-3) ‖θ‖∞ := sup
q∈M̃
|θq |<∞.

The functional Sk. We will now define a second functional Sk , which will be our
main object of study. In the case c(g, σ ) < ∞, it is defined on 3M × R+. For
c(g, σ ) = ∞, it is only defined on 30 × R+. The following lemma is the key
observation required to define Sk . In the statement, T2 denotes the 2-torus.

Lemma 2.2. If c(g, σ ) <∞, then f ∗σ is exact for any smooth map f : T2
→ M.

Proof. Consider G := f∗(π1(T
2))≤π1(M). Then G is amenable since π1(T

2)=Z2,
which is amenable. Then [Paternain 2006, Lemma 5.3] says that since ‖θ‖∞<∞,
we can replace θ by a G-invariant primitive θ ′ of σ̃ , which descends to define a
primitive θ ′′ ∈�1(T2) of f ∗σ . �

For each free homotopy class ν ∈ [T,M], pick a reference loop xν ∈3ν . Given
any x ∈3ν , let C(x) denote a cylinder with boundary x(T)∪ xν(T).

Define Sk :3ν ×R+→ R by

Sk(x, T ) :=
∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
C(x)

σ,

This is well defined because
∫

C(x) σ is independent of the choice of cylinder: If
C ′(x) is another cylinder with the same boundary, then T2(x) :=C(x)∪C ′(x) is a
torus (where C ′(x) denotes the cylinder C ′(x) taken with the opposite orientation),
and

∫
T2(x) σ = 0 since σ |T2(x) is exact by the previous lemma.
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If c(g, σ ) = ∞, we cannot define Sk on all of 3M × R+, since in this case
Lemma 2.2 fails. It is however well defined on 30×R+. To see why, consider the
case of contractible loops when c(g, σ ) <∞ again. If x : T→ M is contractible
and x : D2

→ M denotes a capping disc, so that x|∂D2 = x , it is easy to see that

(2-4)
∫

C(x)
σ =

∫
D2

x∗σ ;

note that the right side is (as it should be) independent of the choice of capping
disc x, and depends only on x and σ , since σ |π2(M)= 0. Moreover the right side is
well defined and depends only on x and σ even when c(g, σ )=∞. Thus it makes
sense to define Sk |30×R+ by

Sk(x, T )=
∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
D2

x∗σ ;

this is consistent with the previous definition of Sk |30×R+ when c(g, σ ) <∞.
Next we will explicitly calculate the derivative of Sk . Let (xs, Ts) be a variation

of (x, T ), with ξ(t) := ∂
∂s

∣∣
s=0xs(t) and ψ := ∂

∂s

∣∣
s=0Ts . Write Eq and Ev for ∂E

∂q and
∂E
∂v respectively. Then an easy calculation in local coordinates shows that the first
variation (that is, the Gateaux derivative) of Sk at (ξ, ψ), that is, ∂

∂s

∣∣
s=0Sk(xs, Ts)

is given by

(2-5) ∂
∂s

∣∣∣
s=0

Sk(xs, Ts)

= ψ

∫ 1

0
(k− E(x(t), ẋ(t)/T ))dt +

∫ 1

0
σx(t)(ξ(t), ẋ(t))dt

+

∫ 1

0

(
T · Eq(x(t), ẋ(t)/T ) · ξ(t)+ Ev(x(t), ẋ(t)/T ) · ξ̇ (t)

)
dt.

We claim now that Sk is differentiable with respect to the canonical Hilbert man-
ifold structure of 3ν ×R+ (that is, Sk is Fréchet differentiable). In fact, Sk is of
class C2. For this we quote the fact that

(x, T ) 7→
∫ 1

0

1
2T
|ẋ(t)|2dt + kT

is of class C2 (see for instance [Abbondandolo and Schwarz 2009b]) and thus is
remains to check that x 7→

∫
C(x) σ is differentiable. This can be checked directly. It

thus follows that the first variation ∂
∂s

∣∣
s=0Sk(xs, Ts) is actually equal to the (Fréchet)

derivative d(x,T )Sk(ξ, ψ).
Finally, let us note that

(2-6) ∂
∂T

Sk(x, T )= 1
T

∫ T

0
(k− E(y, ẏ))dt, where y(t) := x(t/T ).
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Relating Sk and Ak. Next, if (x, T ) is a critical point of Sk , then y(t) := x(t/T )
satisfies ∫ T

0

(
Eq(y, ẏ)− d

dt
Ev(y, ẏ)

)
ζdt − 1

T

∫ T

0
σy(ζ, ẏ)dt = 0,

where ζ(t) = ξ(t/T ). Since this holds for all variations ζ , this implies that if
ỹ : [0, T ] → M̃ is a lift of y, then ỹ satisfies the Euler–Lagrange equations for L ,
that is,

Lq(ỹ, ˙̃y)−
d
dt

Lv(ỹ, ˙̃y)= 0.

Thus ỹ is the lift to M̃ of the projection to M of an orbit of φt , and we have the
following result.

Corollary 2.3. Let x ∈ 3M and x̃ denote a lift of x to M̃. Let T ∈ R+. Define
ỹ(t) := x̃(t/T ). Then the following are equivalent:

(1) The pair (x, T ) is a critical point of Sk .

(2) ỹ is a critical point of Ak .

Thus the pair (x, T ) ∈3M ×R+ is a critical point of Sk if and only if t 7→ x(t/T )
is the projection to M of a closed orbit of φt .

To specify the lifts we work with, let us fix a lift x̃ν : I → M̃ of xν for each
ν ∈ [T,M]. Throughout the paper, given any two paths y and y′ such that the end
point of y is the start point of y′, the path y ∗ y′ is the path obtained by first going
along y and then going along y′. Similarly the path y−1 is the path obtained by
going along y backwards.

Suppose now that c(g, σ ) <∞. Fix a free homotopy class ν ∈ [T,M] (which
could be the trivial free homotopy class). Let x ∈ 3ν , and let xs denote a free
homotopy from x0 = x to x1 = xν . Let z(s) := xs(0). Let x̃s denote the unique
homotopy of curves on M̃ that projects down onto xs and satisfies x̃1(t) = x̃ν(t).
Let x̃(t) := x̃0(t), z̃0(s) := x̃s(0) and z̃1(s) := x̃s(1).

Now observe that if R ⊆ M̃ denotes the rectangle R = im x̃s , then we have∫
C(x)

σ =

∫
R
σ̃ =

∫
R

dθ =
∫
∂R
θ =

∫
x̃∗z̃1∗x̃−1

ν ∗z̃−1
0

θ.

Let ϕ ∈ π1(M) denote the unique covering transformation taking z̃0 to z̃1. Since
〈ϕ〉 ≤ π1(M) is an amenable subgroup, [Paternain 2006, Lemma 5.3] allows us to
assume without loss of generality that θ is ϕ-invariant. Thus

∫
z̃−1

0
θ +

∫
z̃1
θ = 0. It

thus follows that
∫

C(x) σ =
∫

x̃ θ +
∫

x̃−1
ν
θ .

Set aν :=
∫

x̃−1
ν
θ . We conclude that

∫
C(x) σ =

∫
x̃ θ + aν . This computation

shows if c(g, σ ) <∞, then for any (x, T ) ∈ 3ν × R+, if x̃ is any lift of x and
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ỹ(t) := x̃(t/T ), then

(2-7) Sk(x, T )= Ak(ỹ)+ aν .

For the case ν = 0 ∈ [T,M] the trivial free homotopy class, we may choose the
curve x0 above to be a constant map, from which it is easy to see that a0 = 0. In
particular, if (x, T ) ∈30×R+ and ỹ is defined as before, then

(2-8) Sk(x, T )= Ak(ỹ).

Finally, if c(g, σ ) =∞, Sk is only defined on 30 ×R+, and it is clear that (2-8)
still holds.

3. The Palais–Smale condition

Let (M, 〈 · , · 〉) be a Riemannian Hilbert manifold, and suppose S :M→ R is C1.

Definition 3.1. We say S satisfies the Palais–Smale condition if every sequence
(xn)⊆M such that ‖dxn S‖→0 as n→∞ and supn|S(xn)|<∞ admits a convergent
subsequence. We say S satisfies the Palais–Smale condition at the level µ ∈ R if
every sequence (xn) ⊆ M with ‖dxn S‖ → 0 as n→∞ and S(xn)→ µ admits a
convergent subsequence.

The following result, concerning Sk satisfying the Palais–Smale condition, is
adapted from [Contreras 2006, Propositions 3.8 and 3.12]. We will first consider
only the case where c(g, σ ) <∞; see Proposition 3.7 for the case c(g, σ ) =∞.
In the statement of the theorem, ‖ · ‖ denotes the operator norm with respect to the
metric 〈 · , · 〉.

Theorem 3.2. Suppose c(g, σ ) <∞. Let A, B, k ∈ R+, and suppose (xn, Tn) ⊆

3M ×R+ satisfies

sup
n
|Sk(xn, Tn)| ≤ A, sup

n
Tn ≤ B, ‖d(xn,Tn)Sk‖< 1/n.

(1) If lim inf Tn > 0, then, passing to a subsequence if necessary, the sequence
(xn, Tn) is convergent in the W 1,2-topology.

(2) If lim inf Tn = 0 and the xn are all contractible, then passing to a subsequence
if necessary, Sk(xn, Tn)→ 0.

Before proving the theorem, let us now fix some notation that we will use
throughout this section, as well as implicitly in the rest of the paper. Given a
sequence (xn, Tn)⊆3M×R+, let yn : [0, Tn]→M be defined by yn(t) := xn(t/Tn).
Define

ln :=

∫ 1

0
|ẋn(t)|dt and en :=

∫ 1

0

1
2Tn
|ẋn(t)|2dt.
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Note that ln is the length of yn and en is the energy of yn . The Cauchy–Schwarz
inequality implies

(3-1) l2
n ≤ 2Tnen.

Suppose now c(g, σ ) <∞. Since ‖θ‖∞ <∞, there exist constants b1, b2 ∈R+

such that

(3-2) L(q, v)≥ b1|v|
2
− b2 for all (q, v) ∈ T M̃ .

Given A, B, k ∈ R+ and a free homotopy class ν ∈ [T,M], we denote by
D(A, B, k, ν) ⊆ 3M × R+ set of pairs (x, T ) such that x ∈ 3ν , Sk(x, T ) ≤ A
and T ≤ B.

Proof of Theorem 3.2. We begin with three preparatory lemmas.

Lemma 3.3. Suppose c(g, σ ) <∞. Let (xn, Tn)⊆ D(A, B, k, ν). Then if

b(A, B, ν) :=
A+ b2 B+ |aν |

2b1

then en ≤ b(A, B, ν) for all n ∈ N.

Proof. We have by (2-7) and (3-2) that

A ≥ Sk(xn, Tn)= Ak(ỹn)− aν ≥ 2b1en − b2Tn + kTn + aν,

and thus

en ≤
A+ b2Tn − kTn + |aν |

2b1
≤

A+ b2 B+ |aν |
2b1

. �

Lemma 3.4. Suppose c(g, σ ) <∞, and suppose (xn)⊆30 are such that ln→ 0.
Then

∫
C(xn)

σ → 0.

Proof. Let xn : D2
→ M denote a capping disc for xn , so (as in (2-4))

xn|∂D2 = xn and
∫

C(xn)

σ =

∫
D2

x∗nσ.

Let x̃n : D2
→ M̃ denote a lift of xn to M̃ . Then∣∣∣∫

D2
x∗nσ

∣∣∣= ∣∣∣∫
D2

x̃∗n(dθ)
∣∣∣= ∣∣∣∫

x̃n

θ
∣∣∣≤ ‖θ‖∞ln→ 0. �

We now reduce Theorem 3.2(1) to a simpler situation:

Lemma 3.5. Suppose c(g, σ )<∞ and (xn, Tn)∈D(A, B, k, ν)with lim inf Tn>0.
Passing to a subsequence we may assume that there exists x ∈3ν such that the xn

converge to x in the C0-topology.
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Proof. First by compactness of M , passing to a subsequence if necessary we may
assume there exists q ∈ M and T ∈ R+ such that limn→∞ xn(0) = xn(1) = q
and limn→∞ Tn = T . Consider g-geodesics cn : I → M such that cn(0) = q and
cn(1)= xn(0). By passing to a subsequence we may assume that distg(xn(0), q)<1,
and thus we have |ċn| ≤ 1. Now consider the curves

wn : [0, Tn+2]→M, t 7→ cn∗yn∗c−1
n and zn :T→M, t 7→wn(t/Tn+2).

Thus zn(0)= zn(1)= q , and (zn)⊆3ν .
Given 0≤ t1 < t2 < Tn + 2,

distg(wn(t1), wn(t2))≤
∫ t2

t1
|ẇn(t)|dt ≤

√
2|t2− t1|1/2

(∫ Tn+2

0

1
2 |ẇn(t)|2dt

)1/2
.

By Lemma 3.3 we have∫ Tn+2

0

1
2
|ẇn(t)|2dt =

∫ 1

0

1
2 |ċn(t)|2dt + en +

∫ 1

0

1
2 |ċ
−1
n (t)|2dt ≤ 1+ b(A, B, ν),

and thus distg(wn(t1), wn(t2))≤
√

2|t2−t1|1/2(1+b(A, B, ν))1/2. Hence the family
(wn) is equicontinuous. The Arzelà–Ascoli theorem then completes the proof. �

Proof of Theorem 3.2. We begin by proving Theorem 3.2(1). This part of the
proof is very similar to the proof of [Contreras et al. 2000, Theorem B]. Suppose
(xn, Tn)⊆D(A, B, k, ν) with lim inf Tn > 0. By the previous lemma, after passing
to a subsequence if necessary, we may assume that (xn, Tn) converges in the C0

topology to some (x, T ), where T > 0.
Without loss of generality, let us assume that the limit curve x is contained in

a single chart U (otherwise simply repeat these arguments finitely many times).
Then after passing possibly to another subsequence, we may assume that the xn

are all contained in U as well. There exists a constant b3 ∈ R+ such that in the
coordinates on U ,

(3-3) b3 := sup
q∈U,v∈Tq M

|Eq(q, v)|
1+ |v|2

<∞.

Write zn(t) := T−1
n xn(t). By Lemma 3.3 we can find a constant R> 0 such that

|xn|1,2 ≤ R and |zn|1,2 ≤ R.

Now since ‖d(xn,Tn)Sk‖→ 0 as n→∞, given ε > 0 there exists N ∈ N such that
for every (ξ, ψ) satisfying |(ξ, ψ)| ≤ 2R and n,m ≥ N , we have

|d(xn,Tn)Sk(ξ, ψ)− d(xm ,Tm)Sk(ξ, ψ)|< ε.
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Take ξ = xn − xm and ψ = 0 and use (2-5) to discover that

(3-4)
∣∣∣∣∫ 1

0

(
Tn · Eq(xn, żn)− Tm · Eq(xm, żm)

)
(xn − xm)dt

+

∫ 1

0
(Ev(xn, żn)− Ev(xm, żm)) (ẋn − ẋm)dt

+

∫ 1

0
σxn (ẋn, ẋm)− σxm (ẋn, ẋm)dt

∣∣∣∣< ε.
Here we are using the canonical parallel transport available to us on Euclidean
spaces to view ẋn − ẋm as a tangent vector in any tangent space of our choosing.
Using (3-3) we can bound the first integral as follows:∣∣∣∣∫ 1

0

(
Tn · Eq(xn, żn)− Tm · Eq(xm, żm)

)
(xn − xm)dt

∣∣∣∣
≤ (2Bb3+ 2b3b(A, B, ν))‖xn − xm‖∞.

Let us write σ |U in local coordinates as σ = σi j dq i
∧dq j , where σi j ∈C∞(U,R).

Then since

|σi j (xn(t))− σi j (xm(t))| → 0 as n,m→∞, uniformly in t,

and ∫ 1

0
|ẋn||ẋm |dt ≤ 2

√
TnTmenem

is bounded, it follows that for n and m large the third integral is small. Thus the
second integral must also be small for large n and m. Since

|v− v′|2 = (Ev(q, v)− Ev(q ′, v′)) · (v− v′),

we have ∫ 1

0
|żn − żm |

2dt ≤
∫ 1

0
(Ev(xn, żn)− Ev(xm, żm))(żn − żm)dt,

and hence the fact that the second integral in (3-4) is small for large n and m
implies that the sequence (zn), and hence the sequence (xn), converges in the W 1,2

topology. This completes the proof of Theorem 3.2(1).
We now prove Theorem 3.2(2). This part of the proof follows the proof of

[Contreras 2006, Theorem 3.8] very closely. Assume (xn, Tn) ⊆ D(A, B, k, 0)
(where 0 ∈ [T,M] denotes the trivial free homotopy class) and that lim inf Tn = 0.
Passing to a subsequence, we may assume that Tn → 0. It suffices to show that
passing to a subsequence we have en → 0. Then by Lemma 3.4, Sk(xn, Tn) =

en + kTn −
∫

C(xn)
σ → 0.
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We know that en remains bounded by Lemma 3.3. Since Tn→ 0, (3-1) implies
that ln→ 0. Thus as before we may assume that all the curves xn take their image
in the domain of some chart U on M . Thus for the remainder of the proof we work
in coordinates as if M =Rd . Let ξn(t) := xn(t)− xn(0), so that ξn(0)= ξn(1)= 0.
Then (ξn, 0)∈ T(xn,Tn)(3Rd×R+). Let also ζn(t) := ξn(t/Tn), so that ζ̇n(t)= ẏn(t).
Then

|d(xn,Tn)Sk(ξn, 0)| ≤ 1
n

(
Tn

∫ Tn

0
|ζ̇n(t)|2dt

)1/2
≤

1
n

√
2Tnen.

Using (2-5) we have

d(xn,Tn)Sk(ξn, 0)=
∫ Tn

0

(
Eq(yn, ẏn) · ζn + Ev(yn, ẏn) · ζ̇n(t)

)
dt

+

∫ 1

0
σxn(t)(ξn(t), ẋn(t))dt.

There exists b4 ∈ R+ such that∣∣∣∣∫ 1

0
σxn(t)(ξn(t), ẋn(t))dt

∣∣∣∣≤ b4

∫ 1

0
|ξn(t)||ẋn(t)|dt ≤ b4l2

n .

Thus using (3-3) and the fact that Ev(q, v) · ξ = 〈v, ξ〉, we have

d(xn,Tn)Sk(ξn, 0)≥−b3

∫ Tn

0
(1+ |ẏn(t)|2)|yn(t)− yn(0)|dt + 2en − b4l2

n

≥−b3ln(Tn + 2en)+ 2en − b4l2
n .

Putting this together and dividing through by
√

Tn , we have

−b3ln
√

Tn − 2b3
enln
√

Tn
+ 2

en
√

Tn
− b4

l2
n
√

Tn
≤

1
n

√
2en.

By (3-1), we have

lim
n→∞

l2
n
√

Tn
= 0 and lim

n→∞

ln
√

Tn
is bounded;

thus limn→∞ en/
√

Tn must also be bounded, and this can happen if and only if
en→ 0. This completes the proof of Theorem 3.2(2). �

We now wish to study the case where c(g, σ )=∞. Recall in this case Sk is only
defined on 30×R+. For a result similar to Theorem 3.2 to hold in the unbounded
setting, we must restrict to a subset of 30×R+.

Definition 3.6. Suppose K ⊆ M̃ is compact. Define 3K
0 ⊆ 30 to be the set of

loops x ∈30 such that there exists a lift x̃ : T→ M̃ of x such that x̃(T)⊆ K .

Here is the extension of Theorem 3.2 to the case c(g, σ )=∞.
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Proposition 3.7. Suppose that c(g, σ )=∞. Let A, B, k ∈R+ and take K ⊆ M̃ to
be compact. Suppose (xn, Tn)⊆3

K
0 ×R+ satisfy

sup
n
|Sk(xn, Tn)| ≤ A, sup

n
Tn ≤ B, ‖d(xn,Tn)Sk‖< 1/n.

(1) If lim inf Tn > 0, then passing to a subsequence if necessary the sequence
(xn, Tn) is convergent in the W 1,2-topology.

(2) If lim inf Tn = 0, then passing to a subsequence if necessary it holds that
Sk(xn, Tn)→ 0.

Proof. The proof proceeds exactly as before, since any primitive θ of σ̃ is bounded
on K . �

4. Supercritical energy levels: The case k > c(g, σ )

We now assume c(g, σ ) <∞, and study supercritical energies k > c(g, σ ). We
aim to prove Theorem 1.1(1). The key fact we will use is the following result. As
before, let (M, 〈 · , · 〉) be a Riemannian Hilbert manifold, and let S :M→ R be of
class C1.

Proposition 4.1. Suppose S is bounded from below and satisfies the Palais–Smale
condition, and suppose for every A ∈ R+ the set {x ∈ M : S(x) ≤ A} is complete.
Then S has a global minimum.

A proof may be found in [Contreras et al. 2000, Corollary 23]. Fix a nontrivial
free homotopy class ν ∈ [T,M]. The aim of this section is to verify for k> c(g, σ )
that the functional Sk on the Hilbert manifold 3ν × R+ satisfies the hypotheses
of Proposition 4.1, for then the global minimum whose existence Proposition 4.1
guarantees is our desired closed orbit of energy k.

The first step then is the following lemma, whose proof only requires k≥c(g, σ ),
and works for any free homotopy class ν ∈ [T,M].

Lemma 4.2. Let k ≥ c(g, σ ). Then Sk |3ν×R+ is bounded below.

Proof. The argument begins by replicating an argument seen earlier in Section 2.
Fix a free homotopy class ν ∈ [T,M] (which could be the trivial free homotopy
class). Let (x, T ) ∈ 3ν ×R+, and let xs denote a free homotopy from x0 = x to
x1 = xν . Let z(s) := xs(0). Lift xs to a homotopy x̃s in M̃ with x̃1(t)= x̃ν(t), and
let x̃(t) := x̃0(t), z̃0(s)= x̃s(0) and z̃1(s)= x̃s(1).

Now observe that if R ⊆ M̃ denotes the rectangle R = im x̃s , then we have∫
C(x)

σ =

∫
R
σ̃ =

∫
R

dθ =
∫
∂R
θ =

∫
x̃∗z̃1∗x̃−1

ν ∗z̃−1
0

θ.

Suppose ϕ ∈ π1(M) denotes the unique covering transformation taking z̃0 to z̃1.
Since 〈ϕ〉 ≤ π1(M) is an amenable subgroup, [Paternain 2006, Lemma 5.3] allows



CLOSED ORBITS OF A CHARGE IN A WEAKLY EXACT MAGNETIC FIELD 203

us to assume that without loss of generality, θ is ϕ-invariant. Thus
∫

z̃−1
0
θ+

∫
z̃1
θ =0.

It thus follows that

(4-1)
∫

C(x)
σ =

∫
x̃
θ +

∫
x̃−1
ν

θ.

Let x̃n := ϕ
n x̃ , and use similar notations for z̃n and x̃ν,n . Let ỹn := x̃n(t/T ), so

ỹn : [0, T ]→ M̃ . Then for any n ∈N we consider the closed loop un : [0, Tn]→ M̃
defined by

un = ỹ0 ∗ ỹ1 ∗ · · · ∗ ỹn ∗ z̃n+1 ∗ x̃−1
ν,n ∗ · · · ∗ x̃−1

ν,1 ∗ x̃−1
ν ∗ z̃−1

0 ,

where Tn := (n+ 1)T + 1+ (n+ 1)+ 1. We have

Ak(un)= (n+ 1)
(∫ T

0

1
2 |
˙̃y(t)|2dt +

∫ 1

0

1
2 |
˙̃x−1
ν |

2dt −
∫

ỹ0

θ −

∫
x̃−1
ν

θ
)

+

∫ 1

0

1
2 |
˙̃z1(t)|2dt +

∫ 1

0

1
2 |
˙̃z−1

0 (t)|2dt + kTn.

Now if k ≥ c(g, σ ), then by definition of c(g, σ ) we have Ak(un)≥ 0. Thus,

0≤
∫ T

0

1
2 |
˙̃y0(t)|2dt +

∫ 1

0

1
2 |
˙̃x−1
ν |

2dt −
∫

ỹ0

θ −

∫
x̃−1
ν

θ +
kTn

n+ 1

+
1

n+1

(∫ 1

0
| ˙̃z1(t)|2dt +

∫ 1

0
| ˙̃z−1

0 (t)|2dt
)
.

Letting n→∞ and substituting for the terms with ỹ0 we obtain

(4-2)
∫ 1

0

1
2T
|ẋ(t)|2dt +

∫ 1

0

1
2 |ẋ
−1
ν |

2dt −
∫

x̃
θ − aν + k(T + 1)≥ 0.

Now

Sk(x, T )=
∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
C(x)

σ

=

∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
x̃
θ − aν,

and hence by (4-1) and (4-2),

Sk(x, T )+
∫ 1

0

1
2 |
˙̃x−1
ν (t)|2dt + k ≥ 0,

that is,

Sk(x, T )≥−
∫ 1

0

1
2 |
˙̃xν(t)−1

|
2dt − k >−∞. �
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Let us setik,ν := inf(x,T )∈3ν×R+Sk(x, T ), so that the lemma tells us ik,ν > −∞

for k ≥ c(g, σ ).
The next lemma implies that {Sk |3ν×R+ ≤ A} is complete for any A ≥ 0.

Lemma 4.3. Suppose c(g, σ ) <∞. Let ν ∈ [T,M] be a nontrivial free homotopy
class and let A ∈ R+. There exists T0 = T0(A, k, ν) ∈ R+ such that T ≥ T0 if
(x, T ) ∈ D(A,∞, k, ν).

Proof. Let x̃ denote a lift of x and let ỹ : [0, T ] → M̃ be the curve t 7→ x̃(t/T ).
Using (2-7) and (3-2), we compute that

A≥ Sk(x, T )= Ak(ỹ)+aν≥
b1

T

∫ 1

0
| ˙̃x |2dt−(k−b2)T+aν≥

b1

T
l(ν)−(k−b2)T+aν,

where l(ν) := inf{
∫ 1

0 |ẋ(t)|dt : x ∈3ν}. Since M is closed and ν is a nontrivial free
homotopy class, we have l(ν) > 0, which implies the lemma. �

Proof of Theorem 1.1(1). Take k > c(g, σ ), and fix a nontrivial free homotopy
class ν ∈ [T,M]. Let (xn, Tn) ⊆ D(A,∞, k, ν). We want to show that (xn, Tn)

admits a convergent subsequence in the W 1,2-topology. In view of Theorem 3.2,
it suffices to show that there exists B > 0 such that (xn, Tn) ⊆ D(A, B, k, ν) and
that lim inf Tn > 0.

Lemma 4.4. The sequence (Tn) is bounded above and bounded away from zero.

Proof. First we claim that (Tn) is bounded. Indeed, if c = c(g, σ ),

A ≥ Sk(xn, Tn)= Sc(xn, Tn)+ (k− c)Tn ≥ ic,ν + (k− c)Tn,

and thus (Tn) is bounded. Say Tn ≤ B for all n, where B ∈ R+. Passing to a
subsequence we may assume that if T := lim inf Tn , then Tn → T . It remains
to check T > 0. From (3-1) and Lemma 3.3 if T = 0, then ln → 0. This is a
contradiction since ln > l(ν) > 0 (see the proof of the previous lemma). �

5. Subcritical energy levels: The case k < c(g, σ )

In this section we drop the assumption that c(g, σ ) < ∞, and study subcritical
energies k < c(g, σ ).

Mountain pass geometry. Again let (M, 〈 · , · 〉) be a Riemannian Hilbert manifold
and S : M→ R a function of class C2. Let 8s denote the (local) flow of −∇S.
Define α :M→ R+ ∪ {∞} by

α(x) := sup{r > 0 : s 7→8s(x) is defined on [0, r ]}.

An admissible time is a differentiable function τ :M→R such that 0≤ τ(x)<α(x)
for all x ∈M.
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Let F denote a family of subsets of M, and define µ := infF∈F supx∈F S(x).
Suppose that µ ∈ R. We say that F is S-forward invariant if the following holds:
if τ is an admissible time such that τ(x)= 0 if S(x)≤ µ− δ for some δ > 0, then
for all F ∈ F the set Fτ := {8τ(x)(x) : x ∈ F} is also a member of F.

For convenience, given a subset V⊆M and a ∈R, let Ka,V := crit S∩S−1(a)∩V

denote the set of critical points of S in V at the level a.
Our main tool will be the following mountain pass theorem, whose statement

is similar to that of [Contreras 2006, Proposition 6.3]. In what follows, a strict
local minimizer of a function S :M→ R is a point x ∈M such that there exists a
neighborhood N of x such that S(y) > S(x) for all y ∈ N \ {x}.

Theorem 5.1. Let M be a Riemannian Hilbert manifold and S :M→R a function
of class C2. Suppose we are given a sequence (Fn) of families of subsets of M with
Fn ⊆ Fn+1 for all n ∈ N. Set F∞ :=

⋃
n Fn . Set µ∞ := infF∈F∞ supx∈F S(x).

Suppose in addition that

(1) F∞ is S-forward invariant, and the sets F ∈ F∞ are connected;

(2) µ∞ ∈ R;

(3) the flow 8s of −∇S is relatively complete on {µ∞ − η ≤ S ≤ µ∞ + η} for
some η > 0;

(4) there are closed subsets (Un) of M such that for all ε> 0, there exists n(ε)∈N

such that for all n ≥ n(ε) there exists F ∈ Fn and 0< ε1(n) < ε such that

F ⊆ {S ≤ µ∞− ε1(n)} ∪ (Un ∩ {S ≤ µ∞+ ε}); and

(5) there are closed subsets (Vn) and a sequence (rn)⊆ R+ such that

Brn (Un) := {x ∈M : dist(x,Un) < rn} ⊆ Vn,

and such that S|Vn satisfies the Palais–Smale condition at the level µ∞.

Then if V∞ :=
⋃

n∈N Vn , then S has a critical point x ∈V∞ with S(x)= µ∞, that
is, Kµ∞,V∞ 6=∅. Moreover, if

(5-1) sup
F∈F∞

inf
x∈F

S(x) < µ∞,

then there is a point in Kµ∞,V∞ that is not a strict local minimizer of S.

The proof is an easy application of the following result, which can be found as
[Contreras 2006, Lemma 6.2].

Lemma 5.2. Let M be a Riemannian Hilbert manifold and let U⊆V⊆M be closed
subsets such that Br (U) ⊆ V for some r > 0. Let S : M→ R be a C2 function,
and let µ ∈ R be such that S|V satisfies the Palais–Smale condition at the level µ.



206 WILL J. MERRY

Suppose also that the flow 8s of −∇S is relatively complete on {|S−µ| ≤ η} for
some η > 0.

Then if N is any neighborhood of Kµ,V relative to V, then for any λ > 0 there
exists ε and δ with 0 < ε < δ < λ such that for any 0 < ε1 < ε there exists an
admissible time τ such that τ(x)= 0 for all x ∈ {|S−µ| ≥ δ}, and such that if

F := {S ≤ µ− ε1} ∪ (U∩ {S ≤ µ+ ε}),

then Fτ ⊆ N∪ {S ≤ µ− ε1}.

Proof of Theorem 5.1. We will show that Kµ∞,Vn 6= ∅ for n large enough. Fix
0 < ε < δ < λ := 1 as in the statement of Lemma 5.2. By hypothesis there exists
n(ε) ∈N such that for all n ≥ n(ε) there exists 0< ε1(n) < ε and F ∈Fn such that

F ⊆ {S ≤ µ∞− ε1(n)} ∪ (Un ∩ {S ≤ µ∞+ ε}).

For such n, we have Kµ∞,Vn 6= ∅. Indeed, if Kµ∞,Vn = ∅, by Lemma 5.2, there
exists an admissible time τ such that τ ≡ 0 on {S ≤ µ∞ − δ}, and such that Fτ
satisfies Fτ ⊆ {S ≤ µ∞ − ε1(n)} (for we may take N = ∅ in Lemma 5.2). Since
F∞ is forward invariant, Fτ ∈ F∞. This contradicts the definition of µ∞.

To prove the last statement, suppose that Kµ∞,V∞ consists entirely of strict local
minimizers, and that (5-1) holds. Choose λ0 > 0 such that

sup
F∈F∞

inf
x∈F

S(x) < µ∞− 2λ0.

For each x ∈ Kµ∞,V∞ , let N(x) denote a neighborhood of x such that S(y) > S(x)
for all y ∈ N(x) \ {x}, and let

N0 :=
⋃

x∈Kµ∞,V∞

N(x) and Nn := N0 ∩Vn for each n ∈ N.

Let 0 < ε < δ < λ0 be given by Lemma 5.2 for N0. By hypothesis there exists
n(ε) ∈N such that for all n ≥ n(ε) there exists 0< ε1(n) < ε and F ∈Fn such that

F ⊆ {S ≤ µ∞− ε1(n)} ∪ (Un ∩ {S ≤ µ∞+ ε}).

By Lemma 5.2, there exists an admissible time τ such that τ ≡ 0 on {S ≤µ∞− δ}
and such that Fτ ⊆Nn∪{S≤µ∞−ε1(n)} ⊆N0∪{S≤µ∞−ε1(n)}. By definition
of N0, the sets N0 and {S ≤µ∞− ε1(n)} are disjoint, so N0∪{S ≤µ∞− ε1(n)} is
disconnected. Since Fτ is connected by hypothesis, we either have Fτ ⊆ N0 and
Fτ ∩ {S ≤ µ∞ − ε1(n)} = ∅, or Fτ ⊆ {S ≤ µ∞ − ε1(n)}. The former fails since
ε1(n) < ε < λ0, and the value of S decreases under 8s , and the latter contradicts
the definition of µ∞. �
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Proof of the second statement of Theorem 1.1(2). The main tool we will use will
be Theorem 5.1. The first step however is the following result, whose statement
and proof closely parallel [Contreras 2006, Proposition C].

Proposition 5.3. Let k ∈ R+. Then there exists a constant µ0 > 0 such that if
f : I →30×R+ is any path such that, with f (0)= (x0, T0) and f (1)= (x1, T1),
we have

(1) Sk(x0, T0) < 0, and

(2) x1 is the constant curve x1(t)≡ x0(0),

then sups∈I Sk( f (s)) > µ0 > 0.

Remark. The constant µ0 does not depend on T1.

In the statement of the following, as before, we put l(x) :=
∫ 1

0 |ẋ(t)|dt .

Lemma 5.4 [Contreras 2006, Lemma 5.1]. Let θ ∈�1(M̃). Given any q ∈ M̃ and
any open neighborhood V ⊆ M̃ of q, there exists an open neighborhood W ⊆ V
of q and a constant β > 0 such that |

∫
x θ | ≤βl(x)2 for any closed curve x : I→W .

Proof of Proposition 5.3. Compactness of M and the previous lemma imply that
there exists β, ρ0 > 0 such that if x : I → M is any closed contractible curve with
x(I ) contained in a ball of radius ρ0 then |

∫
C(x) σ | ≤ βl(x)2. Let q := x0(0) and

let W denote the ball of radius ρ0 about q . Pick ρ ∈ R+ such that

0< ρ <min{ρ0,
√

k/(2β)2}

Write f (s) = (xs, Ts), so xs ∈ 30 for all s. We claim that there exists s0 ∈ (0, 1)
such that l(xs0)= ρ. Since the functional s 7→ l(xs) is continuous and l(x0)= 0, it
suffices to show that there exists s1 ∈ [0, 1) such that l(xs1) > ρ.

If there exists s1 ∈ [0, 1) such that xs1(I )  W , then we are done, since then
l(xs1)≥ρ0>ρ. The other possibility is that xs(I )⊆W for all s ∈ I . In this case we
claim that we may take s1=0, that is, l(x0)>ρ. By assumption if y0(t)= x0(t/T0),
we have

(5-2)

0> Sk(x0, T0)=

∫ 1

0

1
2T0
|ẋ0(t)|2dt + kT0−

∫
C(x0)

σ

≥
1

2T0
l(x0)

2
+ kT0−

∣∣∣∫
x0

θ
∣∣∣

≥

( 1
2T0
−β

)
l(x0)

2
+ kT0,

where the second inequality came from (3-1) and the third from Lemma 5.4. From
this it follows that T0 > 1/(2β), and thus

l(x0)
2 >

kT0

β − 1/(2T0)
>

k
2β2 > ρ

2.
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and we are done as before.
We claim finally that Sk( f (s0)) > 0. Since xs0 ∈ Cac

M(q, q) and l(xs0) < ρ0, we
have xs0(I )⊆W . In particular, (5-2) holds for xs0 , and so we have

Sk( f (s0))≥
( 1

2Ts0

−β
)
`2
+ kTs0 = P(Ts0)≥ min

t∈R+
P(t),

where P(t) := (1/(2t)−β)ρ2
+ kt . It is elementary to see that

mint∈R+ P(t)=
√
ρ2/(2k)=: µ0 > 0,

and this completes the proof. �

The next lemma will be needed to prove relative completeness of the flow of
−∇Sk on any interval not containing zero.

Lemma 5.5. There exists a constant C > 0 such that for any (x0, T0) ∈3M ×R+

and any r > 0, if (x1, T1) ∈3M ×R+ satisfies dist((x0, T0), (x1, T1)) < r , then

|T0− T1|< r and distHD(x0, x1) < Cr.

This result is essentially proved by Contreras [2006, Lemma 2.3]; Contreras
used a different metric on 3M×R+, which meant that an additional condition was
imposed in the statement of the lemma. Since we are working with the standard
metric (2-1) on 3M ×R+ this additional condition is not needed, and the proof in
[Contreras 2006] goes through without any changes.

Corollary 5.6. Let K ⊆ M̃ and B > 0. Let U := {(x, T ) ∈3K
0 ×R+ : T ≤ B}. Let

C be as in the statement of Lemma 5.5. Then if L ⊆ M̃ satisfies

{q ∈ M̃ : distg̃(q, q ′)≤ Cr for some q ′ ∈ K } ⊆ L

and we set V := {(x, T ) ∈3L
0 ×R+ : T ≤ B+ r}, then Br (U)⊆ V.

Proof. Suppose (x1, T1) ∈Br (U). Then there exists (x0, T0) ∈U with

dist((x0, T0), (x1, T1)) < r.

By Lemma 5.5, distHD(x0, x1) < Cr and |T0− T1|< r . Thus (x1, T1) ∈ V. �

Next, we prove relative completeness of the flow of −∇Sk on any interval that
doesn’t contain zero. This proof is very similar to [Contreras 2006, Lemma 6.9].

Lemma 5.7. For all k ∈ R+, if [a, b] ⊆ R is an interval such that 0 /∈ [a, b], then
the local flow of −∇Sk is relatively complete on (30×R+)∩ {a ≤ Sk ≤ b}.

Proof. Let 8s : 3M × R+→ 3M × R+ denote the local flow of the vector field
−∇Sk . Then for any (x, T ) ∈3M ×R+,

Sk(8s1(x, T ))− Sk(8s2(x, T ))=
∫ s2

s1

|∇Sk(8s(x, T ))|2ds.
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By the Cauchy–Schwarz inequality we see that

dist(8s1(x, T ),8s2(x, T ))2 ≤
(∫ s2

s1

|∇Sk(8s(x, T ))|ds
)2

≤ |s1− s2|

∫ s2

s1

|∇Sk(8s(x, T ))|2ds,

and hence

(5-3) dist(8s1(x, T ),8s2(x, T ))2 ≤ |s1− s2||Sk(8s1(x, T ))− Sk(8s2(x, T ))|.

Now suppose we are given a pair (x, T ) ∈30×R+, such that there exists a, b ∈R

with 0 /∈ [a, b] and

a ≤ Sk(8s(x, T ))≤ b for all s such that 8s(x, T ) is defined.

Let [0, α) be the maximum interval of definition of s 7→ 8s(x, T ), where α > 0.
To complete the proof we need to show α =∞. Suppose the contrary.

Write 8s(x, T ) = (xs, Ts). If sn ↑ α, then (8sn (x, T )) =: (xn, Tn) is a Cauchy
sequence in (30×R+)∩{a ≤ Sk ≤ b} by (5-3). Thus Tα := lims↑α Ts exists and is
finite.

If Tα > 0, then (xα, Tα) := limn→∞(xn, Tn) exists and is equal to 8α(x, T )
since the sequence (xn, Tn) is Cauchy. Since Sk is C2 we can extend the solution
s 7→ 8s(x, T ) at s = α, contradicting the definition of α. Thus Tα = 0. Hence
there exists a sequence sm ↑ α such that d

ds Tsm ≤ 0. As before write xm := xsm and
Tm := Tsm . By (5-3) and Lemma 5.5, we may assume there exists a compact set
K ⊆ M̃ such that (xm, Tm)⊆3

K
0 ×R+ for all m. If ym(t) := xm(t/Tm), then

0≥ d
ds

Tm = −
∂
∂T

Sk(xm, Tm)=
1

Tm

∫ Tm

0
(−k+ E(ym, ẏm))dt =−k+

em

Tm
,

where the penultimate equality uses (2-6). Since limm→∞ Tm = 0, this forces
limm→∞ em = 0. As in the proof of the second part of Theorem 3.2, this implies
Sk(xm, Tm)→ 0, contradicting the fact that 0 /∈ [a, b]. This implies that we must
have originally had α =∞, and so completes the proof. �

We now move towards proving Theorem 1.1(2). In fact, we will prove a stronger
result, which is based on [Contreras 2006, Proposition 7.1]:

Proposition 5.8. Let c= c(g, σ )∈R∪{∞}. For almost all k ∈ (0, c) there exists a
contractible closed orbit of φt with energy k. This orbit has positive Sk-action, and
is not a strict local minimizer of Sk on30×R+. This holds for a specific k ∈ (0, c)
if Sk is known to satisfy the Palais–Smale condition on the level k.

Proof. Fix k0 ∈ (0, c). There exists (x0, T0) ∈ 30×R+ such that Sk0(x0, T0) < 0.
Indeed, there exists a closed curve ỹ : [0, T0]→ M̃ such that Ak0(ỹ) < 0. Then the
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projection y : [0, T0]→ M of ỹ to M is a closed curve, and if x0(t) := y(tT0), then
(x0, T0) ∈30×R+ and Sk0(x0, T0)= Ak0(ỹ) < 0. There exists ε > 0 such that for
all k ∈ J := [k0, k0+ ε], we have Sk(x0, T0) < 0.

Let x1 denote the constant loop at x0(0). Given k ∈ J , let µ0(k) > 0 be the
constant given by Proposition 5.3 such that any path f ∈ C0(I,30 × R+) with
f (0)= (x0, T0) and f (1)= (x1, T ) for some T > 0 has sups∈I Sk( f (s)) > µ0(k).
Choose T1 > 0 such that T1 < infk∈J µ0(k)/k. Then

max{Sk(x0, T0), Sk(x1, T1)} = kT1 < µ0(k) for all k ∈ J.

Set 0 := { f ∈C0(I,30×R+) : f (0)= (x0, T0), f (1)= (x1, T1)}. Let (Kn)⊆ M̃
denote compact sets such that Kn ⊆ Kn+1 and

⋃
n Kn = M̃ . Let

0n := 0 ∩C0(I,3Kn
0 ×R+).

Define µn(k) := inf f ∈0n sups∈I Sk( f (s)) and µ∞(k) := inf f ∈0 sups∈I Sk( f (s))
for k ∈ J . Then µn(k) ≥ µn+1(k) ≥ µ∞(k) ≥ µ0(k) for all n ∈ N and k ∈ J ,
and the functions µn : J → R converge pointwise to µ∞. Both µn and µ∞ are
nondecreasing. Since µ∞ is nondecreasing, by Lebesgue’s theorem there exists a
subset J0 ⊆ (k0, k0+ε) with J \ J0 having measure zero such that µ∞|J0 is locally
Lipschitz. In other words, for all j ∈ J0 there exist constants M( j)>0 and δ( j)>0
such that

|µ∞( j + δ)−µ∞( j)|< M( j)|δ| for all |δ|< δ( j).

Fix j ∈ J0 and a sequence ( jm)⊆ J0 with jm ↓ j . Let fn,m ∈ 0n be paths such that

max
s∈I

S jm ( fn,m(s))≤ µn( jm)+ ( jm − j).

Next, define Un := {(x, T )∈3Kn
0 ×R+ : T ≤M( j)+2}. Choose another collection

(Ln) ⊆ M̃ of compact sets such that Kn ⊆ Ln , and such that B1(Un) ⊆ Vn for
Vn := {(x, T ) ∈ 3Ln

0 × R+ : T ≤ M( j)+ 3}. Such a collection (Ln) exists by
Corollary 5.6. Since µ∞( j) 6= 0, from Proposition 3.7 it follows that S j |Vn satisfies
the Palais–Smale condition at the level µ∞( j) for all n ∈ N.

Since k 7→ Sk(x, T ) is increasing,

(5-4) max
s∈I

S j ( fn,m(s))≤max
s∈I

S jm ( fn,m(s))≤ µn( jm)+ ( jm − j).

If s∈ I is such that S j ( fn,m(s))>µ∞( j)−( jm− j), writing fn,m(s)=: (xn,m
s , T n,m

s )

we have

T n,m
s =

S jm ( fn,m(s))− S j ( fn,m(s))
jm − j

≤
µ∞( jm)−µn( j)

jm − j
+ 2≤

µ∞( jm)−µ∞( j)
jm − j

+ 2≤ M( j)+ 2,
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for n large enough.
Given ε > 0, first choose m large enough that jm − j < ε/(2(M( j)+ 1)), and

then select n large enough that µn( jm)−µ∞( jm) < ε/2. Then

µn( jm)−µ∞( j)+ ( jm − j)

= (µn( jm)−µ∞( jm))+ (µ∞( jm)−µ∞( j))+ ( jm − j)

< ε/2+M( j)( jm − j)+ ( jm − j) < ε.

Then by (5-4),

fn,m(I )⊆ {S j ≤ µ∞( j)− ( jm − j)} ∩ (Un ∩ {S j ≤ µ∞( j)+ ε}).

Since µ∞( j) 6= 0, by Lemma 5.7 the gradient flow of −S j is relatively complete
on {µ∞( j)− η ≤ S j ≤ µ∞( j)+ η} for some η > 0. Theorem 5.1 then gives a
critical point for S j |30×R+ that is not a strict local minimizer (here we are applying
Theorem 5.1 with Fn := { f (I ) : f ∈ 0n}).

Finally, suppose that k < c(g, σ )≤∞ is such that Sk satisfies the Palais–Smale
condition. Then the theorem is immediate from Lemma 5.7 and Theorem 5.1.
Indeed, by Lemma 5.7 we may simply take Un = Vn = V∞ = 30×R+, as then
the hypotheses of Theorem 5.1 are trivially satisfied. This completes the proof of
Theorem 1.1. �

Acknowledgment

I thank my PhD adviser Gabriel P. Paternain for many helpful discussions.

References

[Abbondandolo and Schwarz 2009a] A. Abbondandolo and M. Schwarz, “Estimates and computa-
tions in Rabinowitz–Floer homology”, J. Topol. Anal. 1:4 (2009), 307–405. MR 2597650

[Abbondandolo and Schwarz 2009b] A. Abbondandolo and M. Schwarz, “A smooth pseudo-gradient
for the Lagrangian action functional”, Adv. Nonlinear Stud. 9:4 (2009), 597–623. MR 2560122
Zbl 1185.37145

[Burns and Paternain 2002] K. Burns and G. P. Paternain, “Anosov magnetic flows, critical values
and topological entropy”, Nonlinearity 15:2 (2002), 281–314. MR 2004d:37076 Zbl 1161.37337

[Cieliebak et al. 2010] K. Cieliebak, U. Frauenfelder, and A. Oancea, “Rabinowitz Floer homology
and symplectic homology”, Annales scientifiques de l’ENS 43 (2010), fascicule 6. arXiv 0903.0768

[Contreras 2006] G. Contreras, “The Palais–Smale condition on contact type energy levels for con-
vex Lagrangian systems”, Calc. Var. Partial Differential Equations 27:3 (2006), 321–395. MR
2007i:37116 Zbl 1105.37037

[Contreras and Iturriaga 1999] G. Contreras and R. Iturriaga, Global minimizers of autonomous
Lagrangians, Colóquio Brasileiro de Matemática 22, Instituto de Matemática Pura e Aplicada, Rio
de Janeiro, 1999. MR 2001j:37113 Zbl 0957.37065



212 WILL J. MERRY

[Contreras et al. 1997] G. Contreras, J. Delgado, and R. Iturriaga, “Lagrangian flows: The dy-
namics of globally minimizing orbits, II”, Bol. Soc. Brasil. Mat. (N.S.) 28:2 (1997), 155–196.
MR 98i:58093 Zbl 0892.58065

[Contreras et al. 2000] G. Contreras, R. Iturriaga, G. P. Paternain, and M. Paternain, “The Palais–
Smale condition and Mañé’s critical values”, Ann. Henri Poincaré 1:4 (2000), 655–684. MR 2001k:
37101 Zbl 0986.58005

[Contreras et al. 2004] G. Contreras, L. Macarini, and G. P. Paternain, “Periodic orbits for exact
magnetic flows on surfaces”, Int. Math. Res. Not. 2004:8 (2004), 361–387. MR 2005a:37103
Zbl 1086.37032

[Ginzburg 1996] V. L. Ginzburg, “On closed trajectories of a charge in a magnetic field: An ap-
plication of symplectic geometry”, pp. 131–148 in Contact and symplectic geometry (Cambridge,
1994), edited by C. B. Thomas, Publ. Newton Inst. 8, Cambridge Univ. Press, 1996. MR 97j:58128
Zbl 0873.58034

[Ginzburg and Gürel 2009] V. L. Ginzburg and B. Z. Gürel, “Periodic orbits of twisted geodesic
flows and the Weinstein–Moser theorem”, Comment. Math. Helv. 84 (2009), 865–907. MR 2534483
Zbl 1184.37046

[Kerman 2000] E. Kerman, Symplectic geometry and the motion of a particle in a magnetic field,
thesis, Univ. California, Santa Cruz, 2000, available at http://tinyurl.com/32h3bzu. MR 2616826

[Lu 2006] G. Lu, “Finiteness of the Hofer–Zehnder capacity of neighborhoods of symplectic sub-
manifolds”, Int. Math. Res. Not. 2006 (2006), Art. ID 76520. MR 2007a:53159 Zbl 1132.53317

[Mañé 1996] R. Mañé, “Lagrangian flows: The dynamics of globally minimizing orbits”, pp. 120–
131 in International Conference on Dynamical Systems (Montevideo, 1995), edited by F. Ledrap-
pier et al., Pitman Res. Notes Math. Ser. 362, Longman, Harlow, 1996. MR 98g:58059 Zbl 0870.
58026

[Macarini 2004] L. Macarini, “Hofer–Zehnder capacity and Hamiltonian circle actions”, Commun.
Contemp. Math. 6:6 (2004), 913–945. MR 2005k:53170 Zbl 1076.53098

[Merry 2010] W. J. Merry, “On the Rabinowitz Floer homology of twisted cotangent bundles”,
preprint, 2010. arXiv 1002.0162

[Osuna 2005] O. Osuna, “Periodic orbits of weakly exact magnetic flows”, preprint, 2005.
[Paternain 2006] G. P. Paternain, “Magnetic rigidity of horocycle flows”, Pacific J. Math. 225:2
(2006), 301–323. MR 2008e:37029 Zbl 1116.37020

[Polterovich 1998] L. Polterovich, “Geometry on the group of Hamiltonian diffeomorphisms”, pp.
401–410 in Proceedings of the International Congress of Mathematicians (Berlin, 1998), vol. 2,
Doc. Math. 1998, 1998. MR 2000c:37120 Zbl 0909.58004

[Schlenk 2006] F. Schlenk, “Applications of Hofer’s geometry to Hamiltonian dynamics”, Comment.
Math. Helv. 81:1 (2006), 105–121. MR 2007f:53117 Zbl 1094.37031

[Usher 2009] M. Usher, “Floer homology in disk bundles and symplectically twisted geodesic
flows”, J. Mod. Dyn. 3:1 (2009), 61–101. MR 2010b:53157 Zbl 1186.53099

Received June 28, 2009.

WILL J. MERRY

DEPARTMENT OF PURE MATHEMATICS AND MATHEMATICAL STATISTICS

UNIVERSITY OF CAMBRIDGE

CAMBRIDGE CB3 0WB
ENGLAND

w.merry@dpmms.cam.ac.uk



PACIFIC JOURNAL OF MATHEMATICS
Vol. 247, No. 1, 2010

RINGEL–HALL ALGEBRAS AND TWO-PARAMETER
QUANTIZED ENVELOPING ALGEBRAS

XIN TANG

Let g be a finite-dimensional complex simple Lie algebra and 3 be the finite-
dimensional hereditary algebra associated to g. Let U+r,s(g) (respectively
U≥0

r,s (g)) denote the two-parameter quantized enveloping algebra of the pos-
itive maximal nilpotent (respectively Borel) Lie subalgebra of g. We study
the two-parameter quantized enveloping algebras U+r,s(g) and U≥0

r,s (g) using
the approach of Ringel–Hall algebras. First of all, we show that U+r,s(g) is
isomorphic to a certain two-parameter twisted Ringel–Hall algebra Hr,s(3),
which generalizes a result of Reineke. Based on detailed computations in
Hr,s(3), we show that Hr,s(3) can be presented as an iterated skew poly-
nomial ring. As an result, we obtain a PBW-basis for Hr,s(3), which can
be further used to construct a PBW-basis for the two-parameter quantized
enveloping algebra Ur,s(g). We also show that all prime ideals of U+r,s(g)

are completely prime under some mild conditions on the parameters r, s.
Second, we study the two-parameter extended Ringel–Hall algebra Hr,s(3).
In particular, we define a Hopf algebra structure on Hr,s(3); and we prove
that U≥0

r,s (g) is isomorphic as a Hopf algebra to the two-parameter extended
Ringel–Hall algebra Hr,s(3).

Introduction

The interest in two-parameter quantum groups (or multiparameter quantum groups)
arose in the early 1990s. Various definitions (or constructions) of two-parameter
quantum groups (or multiparameter quantum groups) have appeared in the vast
literature [Artin et al. 1991; Chin and Musson 1996; Dobrev and Parashar 1993;
Doi and Takeuchi 1994; Jing 1992; Kulish 1990; Reshetikhin 1990; Sudbery 1990].
In particular, Takeuchi [1990] defined the two-parameter quantum groups associ-
ated to the general linear Lie algebras gln and the special linear Lie algebras sln .
These quantum groups are certain two-parameter deformations of the universal
enveloping algebras U (g) of the Lie algebras g. Motivated by the connections

MSC2000: 17B37.
Keywords: two-parameter quantized enveloping algebras, two-parameter Ringel–Hall algebras,

skew polynomial rings, completely prime ideals.
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to the study of down-up algebras, Takeuchi’s two-parameter quantum groups have
been reinvestigated by Benkart and Witherspoon [2004b]. In contrast to Takeuchi’s
two-parameter quantum groups, the two-parameter quantum groups they defined
have the opposite coproduct.

Recently, more research efforts have been focused on finding similar construc-
tions of the two-parameter quantum groups associated to other finite-dimensional
complex simple Lie algebras g and Kac–Moody algebras, and studying their ring-
theoretic properties and representation theory [Bergeron et al. 2006; Benkart et al.
2006; Benkart and Witherspoon 2004a; Hu et al. 2008; Hu and Pei 2008]. For
the finite-dimensional simple Lie algebras g, Hu and Pei [2008] formulated a
uniform construction of the two-parameter quantum groups Ur,s(g) in terms of
Ringel form. All these constructions and their modifications can also be unified
by using the methods of Kharchenko [2002; 1999], in which a variety of quantum
enveloping algebras were constructed from certain quantification matrices. The
two-parameter quantum groups Ur,s(g) are similar to the one-parameter quantum
groups in many aspects: They are also Hopf algebras and admit both the triangular
decompositions and the Drinfeld double realizations. Indeed, they share a similar
representation and structure theory with their one-parameter analogue. However,
the two-parameter quantum groups possess a more complicated structure and less
symmetry, which makes them more difficult to study.

To effectively study the two-parameter quantum groups Ur,s(g), it is natural
to first study their important subalgebras such as U+r,s(g) and U≥0

r,s (g), which can
be regarded as the two-parameter quantized enveloping algebras of the nilpotent
subalgebras n+ and the Borel subalgebras b+ of g.

In this paper, we will study these algebras from the viewpoint of two-parameter
Ringel–Hall algebras. This approach has played a very important role in the study
of one-parameter quantum groups Uq(g) [Green 1995; Lusztig 1993; 1990; Ringel
1990b; 1996; 1993; 1990c; 1990a; Xiao 1997]. It is well known that the quantized
enveloping algebras Uq(g) can be realized as the reduced Drinfeld doubles of the
extended Ringel–Hall algebras H∗v (3) of a certain finite-dimensional hereditary
algebra associated to g. The one-parameter quantized enveloping algebra Uq(g) is
first defined via generators and relations. Thus a first priority in the study of Uq(g)

is to provide more information on the Hopf algebra structure of Uq(g) and construct
good bases for Uq(g) as an algebra. These can be successfully fulfilled by using the
Ringel–Hall algebra realization of Uq(g). Furthermore, this realization contributes
significantly to the construction of canonical bases for U+q (g) via the representation
theory of finite-dimensional hereditary algebras [Ringel 1996; Lusztig 1990]. For
more details about Ringel–Hall algebras and their applications to the study of one-
parameter quantum groups Uq(g), see [Green 1995; Ringel 1990b; 1996] and the
references therein.
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Let g be a finite-dimensional complex simple Lie algebra of type A, D, E and3
be the finite-dimensional hereditary algebra associated to g. Indeed, 3 is the path
algebra of the corresponding Dynkin quiver associated to g. Reineke [2001], for the
purpose of studying the monoid ring arising from generic extensions, defined a two-
parameter Ringel–Hall algebra Hr,s(3) of3. He proved that Hr,s(3) is isomorphic
to Takeuchi’s two-parameter quantization Ur,s(n

+), where Ur,s(n
+) = U+r,s(g) is

the two-parameter quantized enveloping algebra of the nilpotent subalgebra n+ of
the Lie algebra g.

In this paper, we will generalize Reineke’s definition to any finite-dimensional
complex simple Lie algebra g. In the case of nonsimply connected Lie alge-
bras, there are no quivers and path algebras available, so we will take 3 to be
the corresponding finite-dimensional hereditary tensor algebra associated to the
k-species [Dlab and Ringel 1975; 1976]. By Ringel’s results [1990c; 1990a], the
Hall polynomials exist for the extensions between modules in the category3-mod.
Reineke’s definition of two-parameter Ringel–Hall algebras depends solely on the
existence of Hall polynomials, and it can thus be applied to all finite-dimensional
complex Lie algebras. For any finite-dimensional simple Lie algebra g, we shall
prove that the two-parameter quantized enveloping algebra U+r,s(g) is isomorphic
to the two-parameter Ringel–Hall algebra Hr,s(3), where 3 is the corresponding
finite-dimensional hereditary algebra associated to g [Dlab and Ringel 1975; 1976].

Following Ringel [1996], we shall carry out some standard calculations inside
the algebra Hr,s(3). As a result, we are able to prove that Hr,s(3) can be presented
as an iterated skew polynomial ring. An immediate application is that the skew-
polynomial ring presentation of Hr,s(3) will yield a natural PBW-basis for U+r,s(g)
through the previous isomorphism. We further prove that all prime ideals of U+r,s(g)
are completely prime based on some mild conditions on the parameters r, s. This
result has also been proved in [Benkart et al. 2006] for the case of the Lie algebra
g= sln by using results in [Kharchenko 2002].

For the purpose of studying the two-parameter quantized enveloping algebra
U≥0

r,s (g), we will extend the two-parameter Ringel–Hall algebra Hr,s(3) by adding
the torus part to it. Furthermore, we will define a Hopf algebra structure on the
extended Ringel–Hall algebra Hr,s(3). In particular, we will prove that U≥0

r,s (g) is
isomorphic to the extended Ringel–Hall algebra Hr,s(3) as a Hopf algebra. The
result gives the possibility of realizing the two-parameter quantum groups Ur,s(g)

as the Drinfeld doubles of two-parameter extended Ringel–Hall algebras associated
to certain finite-dimensional hereditary algebras 3.

The paper is organized as follows. In Section 1, we recall the definition and some
basic results of two-parameter quantum groups. In Section 2, we recall Reineke’s
construction of two-parameter Ringel–Hall algebras and prove some basic results.
In Section 3, we define the extended two-parameter Ringel–Hall algebras and then
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propose a Hopf algebra structure for it. We establish the Hopf algebra isomorphism
between the two-parameter quantization U≥0

r,s (g) and the extended two-parameter
Ringel–Hall algebra.

1. Definition and basic properties of the two-parameter quantum groups
Ur,s(g)

Let g be a finite-dimensional complex simple Lie algebra. The two-parameter
quantum groups Ur,s(g) associated to g have been constructed in the literature
[Bergeron et al. 2006; Benkart and Witherspoon 2004b; Takeuchi 1990]. A simpler
uniform definition of Ur,s(g) in terms of Ringel form has recently been proposed
in [Hu and Pei 2008]; we now recall the definition of Ur,s(g) used there and state
some basic properties of them.

Let C = (ai j )i, j∈I be the Cartan matrix corresponding to the Lie algebra g. Let
{di | i ∈ I } be a set of relatively prime positive integers such that di ai j = d j a j i

for i, j ∈ I . Let Q(r, s) be the function field in two variables r, s over the field
Q of all rational numbers. We may also choose complex numbers r, s ∈ C so that
r2
6= s2. Let us write ri = rdi and si = sdi .
Let 〈 · , · 〉 be the corresponding bilinear form (so-called Ringel or Euler form)

defined on the root lattice Q∼=ZI associated to g. More precisely, the bilinear form
is defined as follows:

〈i, j〉 := 〈αi , α j 〉 =


di ai j if i < j,
di if i = j,
0 if i > j.

Definition 1.1 [Bergeron et al. 2006; Benkart and Witherspoon 2004b; Hu and
Pei 2008]. The two-parameter quantum groups Ur,s(g) are the Q(r, s)-algebras
generated by the generators ei , fi , w

±1
i , w′±1

i subject to the relations

w±1
i w±1

j = w
±1
j w

±1
i , w′±1

i w′±1
j = w

′±1
j w′±1

i ,

w±1
i w′±1

j = w
′±1
j w±1

i , w±1
i w∓1

i = 1= w′±1
i w′∓1

i ,

wi e j = r 〈 j,i〉s−〈i, j〉e jwi , w′i e j = r−〈i, j〉s〈 j,i〉e jw
′

i ,

wi f j = r−〈 j,i〉s〈i, j〉 f j ei , w′i f j = r 〈i, j〉s−〈 j,i〉 f jw
′

i ,

ei f j − f j ei = δi, j (wi −w
′

i )/(ri − si ),

1−ai j∑
k=0

(−1)k
(1−ai j

k

)
ri s−1

i

c(k)i j e1−ai j−k
i e j ek

i = 0 for i 6= j,

1−ai j∑
k=0

(−1)k
(1−ai j

k

)
ri s−1

i

c(k)i j f k
i f j f 1−ai j−k

i = 0 for i 6= j,
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where c(k)i j = (ri s−1
i )k(k−1)/2r k〈 j,i〉s−k〈i, j〉 for i 6= j , and for a symbol v, we set up

the notation

(n)v =
vn
−1

v−1
, (n)v! = (1)v(2)v · · · (n)v,(n

k

)
v
=

(n)v!
(k)v!(n− k)v!

for n ≥ k ≥ 0,

and (0)v! = 1.

Remark 1.1. In the sequel, if needed, we may change the base field from the
function field Q(r, s) to the complex number field C by choosing r, s ∈ C in so
that rmsn

= 1 implies n = m = 0, or we may restrict the base ring to the rational
number field Q or the local ring Q[r, s](r−1,s−1).

From [Bergeron et al. 2006; Benkart and Witherspoon 2004b; Hu and Pei 2008],
we know the algebra Ur,s(g) has a Hopf algebra structure with the corresponding
comultiplication, counit and antipode defined as follows:

1(w±1
i )= w±1

i ⊗w
±1
i , 1(w′±1

i )= w′±1
i ⊗w

′±1
i ,

1(ei )= ei ⊗ 1+wi ⊗ ei , 1( fi )= 1⊗ fi + fi ⊗w
′

i ,

ε(w±1
i )= ε(w′±1

i )= 1, ε(ei )= ε( fi )= 0,

S(w±1
i )= w∓1

i , S(w′±1
i )= w′∓1

i ,

S(ei )=−w
−1
i ei , S( fi )=− fiw

′−1
i .

Let U+r,s(g) and U−r,s(g) be the subalgebras of Ur,s(g) generated by ei for i ∈ I
and by fi for i ∈ I , respectively. Let U 0

r,s(g) be the subalgebra of Ur,s(g) generated
by w±1

i , w′±1
i for i ∈ I . The following result about the triangular decomposition

of Ur,s(g) was obtained in the papers above.

Proposition 1.1. Ur,s(g) has the standard triangular decomposition

Ur,s(g)∼=U−r,s(g)⊗U 0
r,s(g)⊗U+r,s(g).

Let us denote by ZI the free abelian group of rank |I | with a basis denoted by
z1, z2, . . . , z|I |. Given an element a ∈ ZI , say a =

∑
ai zi , we set |a| =

∑
ai . The

algebras U+r,s(g) and U−r,s(g) are ZI -graded algebras by assigning to the generator
ei and fi , respectively, the degree zi . Given a ∈ ZI , we denote by U±r,s(g)a the set
of homogeneous elements of degree a in U±r,s(g); thus we have the decomposition

U+r,s(g)=
⊕

a
U+r,s(g)a and U−r,s(g)=

⊕
a

U−r,s(g)a.

Let U≥0
r,s (g) (respectively U≤0

r,s (g)) be the subalgebra of Ur,s(g) generated by
ei , w

±1
i (respectively fi , w

′±1
i ), then we have the following result.



218 XIN TANG

Proposition 1.2 [Bergeron et al. 2006; Benkart and Witherspoon 2004b; Hu and
Pei 2008]. The algebra Ur,s(g) can be realized as a Drinfeld double of Hopf sub-
algebras U≥0

r,s (g) and U≤0
r,s (g) with respect to the pairing ( · , · ), that is,

Ur,s(g)∼= D(U≥0
r,s (g),U

≤0
r,s (g)).

To better understand Ur,s(g), it is natural to further study the subalgebras U+r,s(g)
and U≥0

r,s (g). We will address this problem in the forthcoming sections via the
approach of Ringel–Hall algebras.

2. Two-parameter Ringel–Hall algebras Hr,s(3)

In this section, we will first recall Reineke’s construction of the two-parameter
Ringel–Hall algebra Hr,s(3), where 3 denotes the finite-dimensional hereditary
algebra associated to a complex simple Lie algebra g of type A, D, E . Indeed,3 is
the path algebra of the corresponding Dynkin quiver associated to g. Then we will
define the corresponding two-parameter Ringel–Hall algebra Hr,s(3) of the finite-
dimensional hereditary algebra 3, which is the corresponding finite-dimensional
hereditary algebra associated to any finite-dimensional complex simple Lie alge-
bra g. We will take 3 as the tensor algebras of the associated k-species in the
nonsimply connected cases. Note that Reineke’s construction is still valid due to
the existence of Hall polynomials for 3-modules.

To further study the properties of Hr,s(3), we will carry out some calculations
similar to ones done in [Ringel 1996]. These will yield a skew polynomial ring
presentation of Hr,s(3), which immediately enables us to construct a PBW-basis
for Hr,s(3). This PBW-basis will be used to construct a PBW-basis for Ur,s(g).
Based on certain mild restrictions on the parameters r, s, using the stratification
theory of prime ideals developed in [Goodearl and Letzter 2000], we will further
prove that all prime ideals of Hr,s(3) are completely prime. Finally, we establish
the relationship between the algebra U+r,s(g) and the two-parameter Ringel–Hall
algebra Hr,s(3) by proving that they are isomorphic to each other as algebras.
Thus all the results obtained on Hr,s(3) can be transformed to U+r,s(g) via this
algebra isomorphism.

2.1. Preliminaries on k-species. In this subsection, for the reader’s convenience,
we shall recall some basic information about k-species. The study of k-species
is a very important research topic that has generated a vast literature. We shall
only briefly mention some results that relate the study of k-species to the study
of finite-dimensional hereditary algebras and Lie algebras, and cite some relevant
references. See [Dlab and Ringel 1975; 1976; Ringel 1976] and the references
therein for a detailed account of the structure and representation theory of k-species
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and their connections to other subjects. In particular, the following presentation of
the material is borrowed from the Dlab and Ringel references.

Gabriel [1972] observed that there is a one-to-one correspondence between the
set of indecomposable representations of these graphs (“quivers”) with a positive
definite quadratic form and the set of positive roots of this quadratic form. Later,
Bernšteı̆n, Gel’fand and Ponomarev [1973] showed that this result can be proved
directly, by using appropriate functors (the BGP reflection functors) to construct
all indecomposable representations from the simple ones in the same way that the
canonical generators of the Weyl group are used to produce all positive roots from
the simple roots. Dlab and Ringel [1975; 1976] extended this method. To deal
with all Dynkin diagrams (not necessarily those of type A, D or E), they fur-
ther considered valued graphs (and therefore “species”). For the valued graphs of
Dynkin type, they obtained the same one-to-one correspondence between the set of
indecomposable representations and the set of positive roots of the corresponding
quadratic form, thus generalizing Gabriel’s result for the type A, D or E diagrams.
In [1976], they also considered valued graphs with positive semidefinite quadratic
form (that is, extended Dynkin diagrams) and described all the indecomposable
representations up to homogeneous ones.

A valued graph 0 := (0, d) consists of a finite set 0 (of vertices) together with
a set d of nonnegative integers di j for all i, j ∈ 0 such that di i = 0 and there exist
positive integers {εi }i∈0 that satisfy

di jε j = d j iεi for all i, j ∈ 0.

A pair {i, j} of vertices of 0 is called an edge of the graph 0 if di j 6= 0. An
orientation of � of a valued graph (0, d) is given by assigning each edge {i, j}
of 0 an order (which is denoted by an arrow i → j ). We usually call (0, d, �)
a valued quiver. Given any orientation � and any vertex i ∈ 0, we can define a
new orientation si� of (0, d) by reversing the direction of the arrows along all
edges containing i . A vertex i ∈ 0 is called a sink (or source) with respect to
the orientation � if i ← j (or i → j) for all neighbor vertices j ∈ 0 of i . An
orientation is said to be admissible if there is an ordering i1, i2, . . . , in of 0 such
that each vertex it is a sink with respect to the orientation sit−1 · · · si2si1� for all
1≤ t ≤ n; such an ordering is called an admissible ordering for �.

For a given valued graph 0 = (0, d), one can associate a symmetrizable Cartan
matrix C = (ai j )i, j∈0 by setting the entries of C as follows:

ai i = 2 and ai j =−di j for i 6= j ∈ 0.

Conversely, for any symmetrizable Cartan matrix C , one can associate a valued
graph 0C as well. It is easy to see that the mapping from the valued graph (0, d)
to the Cartan matrix C defines a one-to-one correspondence between the set of
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valued graphs and the set of symmetrizable Cartan matrices. This correspondence
indicates a close relationship between the study of valued graphs and the study of
Lie algebras, as we shall further explain below.

Let k denote a finite field and let (0, d, �) be a valued graph together with
an admissible orientation �. Following [Gabriel 1973], by definition, a k-species
S = (M, �) := (Fi , i M j ) of type (0, d, �) (which is also called a realization
of the valued graph (0, d, �) in [Dlab and Ringel 1976]) consists of a family of
(Fi−F j )-bimodules i M j , where the fields Fi are finite field extensions of k in an
algebraic closure of k such that dimk Fi = εi and dim(i M j )F j = di j . Note that S is
called connected provided the corresponding graph is connected; an oriented cycle
of S is given by a sequence of vertices i1, i2, . . . , ik−1, ik = i1 such that i j → i j+1

for all 1 ≤ j ≤ k − 1. From now on, we shall always assume that (0, d, �) is
connected and contains no oriented cycles.

A representation (Vi , jφi ) of the k-species S is given by a set of vector spaces
(Vi )Fi and F j -linear mappings Vi ⊗ i M j → V j . Such a representation is called
finite-dimensional provided all the vector spaces Vi are finite-dimensional vector
spaces. A homomorphism α = (αi ) : (Vi , jφi )→ (V ′i , jφ

′

i ) is given by a set of
Fi -linear mappings αi : Vi→ V ′i such that α j jφi = jφ

′

i (αi⊗1). We shall denote by
rep S= L(M, �) the category of all finite-dimensional representations of (M, �).
It is an abelian category. A k-species S is said to be of finite representation type if
the category rep S has only finitely many indecomposable objects.

[Dlab and Ringel 1975, Theorem B]. A k-species is of finite representation type
if and only if its diagram is a finite union of Dynkin diagrams.

Given a k-species S, one denotes by Q0 the rational vector space of all vectors
x = (xi )i∈0 over the rational number field. There is a quadratic form defined on
Qn where n = |0| as follows: For any x ∈Qn , let

(x, x)=
∑

εi x2
i −

∑
mi j xi x j ,

where εi = dimk Fi and mi j = dimk(i M j ). Given any representation (Vi , jφi ) of
the k-species (M, �), one can define the dimension vector mapping

dim : L(M, �)→Q0

by setting dim(V ) = (xi ), where xi = dim(Vi )Fi for all i ∈ 0. Dlab and Ringel
[1975; 1976] proved that the k-species S is of finite representation type if and
only if the corresponding quadratic form is positive definite, that is, the underlying
graph is a Dynkin diagram. In particular, we shall quote the following two results:

[Dlab and Ringel 1976, Proposition 1.2]. (a) (0, d) is a Dynkin diagram if and
only if its quadratic form is positive definite.
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(b) (0, d) is an extended Dynkin diagram if and only if its quadratic form is pos-
itive semi-definite.

[Dlab and Ringel 1976, Proposition 2.6]. Let (M, �) be a realization of the val-
ued graph (0, d).

(a) If (0, d) is a Dynkin diagram, then the mapping dim provides a one-to-one
correspondence between all positive roots of (0, d) and all indecomposable
representations in L(M, �).

(b) If (0, d) is an extended Dynkin diagram, then the mapping dim provides a one-
to-one correspondence between all positive roots of (0, d) of nonzero defect
and all indecomposable representations in L(M, �) of nonzero defect.

The results on the representations of valued graphs can be translated into the rep-
resentation theory of finite-dimensional associative algebras over a field, or more
generally into that of certain classes of artinian rings [Dlab and Ringel 1976]. For
any given artinian ring R, one can define a valued graph, we will not discuss the
detailed construction here. Conversely, for any given k-species S on a given valued
graph (0, d), one can define its associated tensor algebra 3= T (S) by

3=
⊕
t≥0

3(t)

where

3(0) =
∏
i∈0

Fi , 3(1) =
∏
h∈�

i M j , and 3(n) =3(n−1)
⊗3(0) 3

(1) for t ≥ 2

with the componentwise addition and the multiplication induced by taking tensor
products. Note that for an admissible orientation � of (0, d), the tensor alge-
bra 3 of (0, d, �) is a finite-dimensional hereditary k-algebra. An algebra R is
said to be of finite representation type if there are only finitely many indecompos-
able finite-dimensional R-modules. Each finite-dimensional hereditary k-algebra
of finite representation type can be identified with the tensor algebra of some k-
species. It is well known [Dlab and Ringel 1975] that the category3-mod of finite-
dimensional 3-modules is equivalent to the category rep(S) of finite-dimensional
representations of the k-species S over the field k.

[Dlab and Ringel 1975, Theorem C]. A finite-dimensional k-algebra R is hered-
itary of finite representation type if and only if R is Morita equivalent to the tensor
algebra T (S), where S is a k-species of finite representation type.

In the rest of this paper, we will not distinguish between these two categories.
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2.2. Two-parameter Ringel–Hall algebra Hr,s(3). As above, let k be a finite
field. Let 3 denote a finite-dimensional associative hereditary algebra over k.
Denote by q = |k| the cardinality of the base field k, and let v be a number such
that v2

= q . We shall also assume that 3 is finitary, that is, the cardinality of the
extension group Ext1(S, S′) is finite for any two simple 3-modules S and S′.

It is well known that this finitary condition is satisfied by the algebra 3 as long
as 3 is a finitely generated k-algebra over a finite base field k. By P, we will
denote the set of all isomorphism classes of finite-dimensional 3-modules. We set
P1 = P− 0, where 0 denotes the subset of P consisting of the only isomorphism
class of the zero 3-module. For any α ∈P, we choose a module representative uα
for the isomorphism class α. We denote by aα the order of the automorphism group
Aut3(uα) of the 3-module uα. It is easy to see that the number aα is independent
of the choices of the representatives uα for any α ∈ P.

For any given three representatives uα, uβ, uγ of the elements α, β, γ ∈ P re-
spectively, we denote by gγαβ the number of submodules N of uγ satisfying the
conditions N ∼= uβ and uγ /N ∼= uα.

For any two given 3-modules M, N , let us set

〈M, N 〉 = dimk Hom(M, N )− dimk Ext1(M, N ).

Since the algebra 3 is hereditary, it is well known that 〈M, N 〉 depends only on
the dimension vectors dim(M) and dim(N ) of the 3-modules M and N . Thus for
any given two elements α, β ∈ P, we can define the notation

〈α, β〉 = 〈uα, uβ〉

where uα and uβ are any chosen representatives of α and β respectively. Note that
〈 · , · 〉 is a bilinear form that is not necessarily symmetric. However, using 〈 · , · 〉,
we can also define a symmetric bilinear form ( · , · ) by setting

(α, β)= 〈α, β〉+ 〈β, α〉.

In the rest of this paper, we will be mostly dealing with the form 〈 · , · 〉 instead.
Let 3-mod denote the category of all finite-dimensional 3-modules. Note that

there exists a fine symmetry between elements in the category 3-mod:

Theorem 2.1 [Green 1995, first formula]. Assume that3 is hereditary and finitary.
Let α, β, α′, β ′ ∈ P. Then

aαaβaα′aβ ′
∑
λ∈P

gλα,βgλα′β ′a
−1
λ =

∑
ρ,σ,σ ′,τ∈P

|Ext1(uρ, uτ )|
|Hom(uρ, uτ )|

gαρσ gα
′

ρσ ′g
β
σ ′τ gβ

′

στaρaσaσ ′aτ ′ .

Let g be a finite-dimensional complex simple Lie algebra of type A, D or E ;
and let 3 be the finite-dimensional hereditary algebra associated to g. As a two-
parameter twist of Ringel–Hall algebra, the two-parameter Ringel–Hall algebra
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Hr,s(3)was first defined by Reineke [2001] for the purpose of studying the monoid
ring of generic extensions. We will first recall some details of its construction.

Since g is a finite-dimensional complex simple Lie algebra of type A, D or E ,
we can associate a Dynkin quiver E1 to the Lie algebra g, so that the path algebra
3 := k E1 of the Dynkin quiver E1 is a finite-dimensional hereditary algebra of
finite representation type. Reineke [2001] introduced a two-parameter Ringel–
Hall algebra, which was used to realize Takeuchi’s two-parameter quantization
Ur,s(n

+), with n+ the maximal nilpotent Lie subalgebra of the Lie algebra g. To
avoid colliding notation, we will denote Reineke’s version of the two-parameter
Ringel–Hall algebra by Hr,s(3) instead of the original H(Q). Reineke proved that
the two-parameter Ringel–Hall algebra Hr,s(3) is indeed isomorphic to the two-
parameter quantization U+r,s(n

+).
It is natural to extend Reineke’s construction to finite-dimensional complex sim-

ple Lie algebras of other types. This can be done in terms of k-species due to the
existence of Hall polynomials [Ringel 1990a; 1990c]. We will first write down the
details of the formulation of the two-parameter Ringel–Hall algebra Hr,s(3) for
any complex simple Lie algebra g of other types. During the process, the algebra3
is taken as the tensor algebra of the k-species associated to the nonsimply connected
simple complex Lie algebra g. Then we will show that two-parameter Ringel–Hall
algebra Hr,s(3) is isomorphic to the two-parameter quantization U+r,s(g) for any
Lie algebra g, which generalizes Reineke’s result of [2001].

From now on, we will always assume that g is a finite-dimensional complex
simple algebra and let3 be the corresponding hereditary path algebra (or the tensor
algebra of the k-species for nonsimply connected cases). Note that there exist Hall
polynomials F L

M,N (x) associated to modules M , N and L in 3-mod such that for
these 3-modules, we have gL

M,N = F L
M,N (q), where q is the cardinality of the base

field k. For a detailed account of the existence and calculation of Hall polynomials
in 3-mod, see [Ringel 1996; 1993].

Recall that P is the set of isomorphism classes of finite-dimensional3-modules.
Let us denote by Hr,s(3) the free Q(r, s)-module generated by the elements of the
set {uα | α ∈P}. In addition, we define a multiplication on the free Q(r, s)-module
Hr,s(3) by

uαuβ =
∑
λ∈P

s−〈α,β〉Fuλ
uαuβ (rs−1)uλ for anyα, β ∈ P.

Then it is easy to see that we have the following result:

Proposition 2.1 (see also [Reineke 2001]). If 3 is the finite-dimensional corre-
sponding hereditary algebra associated to the Lie algebra g, then the algebra
Hr,s(3) is an associative Q(r, s)-algebra under the multiplication defined above.
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The proof is a straightforward verification and we will omit it.

2.3. Ring theoretical properties of Hr,s(3). Now we will investigate some ring-
theoretic properties of the two-parameter Ringel–Hall algebra Hr,s(3). We first
verify some basic identities for Hr,s(3) following along the lines in [Ringel 1996].
These calculations are the same as those done there, with some slight modifications.

First, we introduce a new Q(r, s)-basis for Hr,s(3). For any chosen element
α ∈ P, we have an element uα ∈ Hr,s(3). We denote by ε(α) the k-dimension of
the endomorphism ring of the module representative uα corresponding to α.

For any given module M of the algebra 3, we denote the isomorphism class of
M by [M] and by dim(M) the dimension vector of M , which is an element of the
Grothendieck group K0(3) of the category3-mod of all finite3-modules modulo
the exact sequences.

According to [Bernšteı̆n et al. 1973; Dlab and Ringel 1975; Gabriel 1972], there
is a one-to-one correspondence between the set of all positive roots for the Lie
algebra g and the set of indecomposable modules in 3-mod (see Section 2.1). Let
a ∈ 8+ be any positive root; we denote by M(a) the indecomposable module
corresponding to a. For any map α :8+→ N0, set

M(α)= M3(α)=
⊕
a∈8+

α(a)M(a).

Then it is easy to see there is a bijection between the set P of isomorphism
classes of finite-dimensional 3-modules and the set of all maps α :8+→N0. We
will not distinguish an element α ∈P from the corresponding map associated to α,
and we may denote both of them by α if no confusion arises.

For any α ∈ P, let us set dimα =
∑

a∈8+ α(a)a. Then we have

dim(M(α))= dimα.

For any given α ∈ P, we denote by dim(α) = dim(uα) the dimension of the
3-module uα as a k-vector space. Furthermore, let us set

〈uα〉 = sdim(uα)−ε(α)uα.

For convenience, we may sometimes simply denote uα by α for any α ∈P and
denote Fuλ

uαuβ (rs−1) by gλαβ if no confusion arises. In particular, we will carry out
all the computations in terms of α instead of uα in the rest of this subsection.

Obviously the set {〈α〉 | α ∈ P} is also a Q(r, s)-basis for the algebra Hr,s(3).
Note that 〈αi 〉 = αi for any element αi ∈ P corresponding to the simple root αi .
Thus the multiplication in Hr,s(3) can be rewritten in terms of this new basis as

〈α〉〈β〉 = s−ε(α)−ε(β)−〈dimα,dimβ〉
∑
λ∈P

sε(λ)gλαβ〈λ〉 for any α, β ∈ P.
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Furthermore, let us write

e(α, β)= dimk Hom3(M(α),M(β)) and ζ(α, β)= dimk Ext13(M(α),M(β)).

Then we have the following proposition, similar to the one in [Ringel 1996].

Proposition 2.2. Let α1, . . . , αt ∈P such that for i < j , we have both ε(α j , αi )=0
and ζ(αi , α j )= 0. Then 〈⊕t

i=1 αi
〉
= 〈α1〉 · · · 〈αt 〉.

Proof. Without of loss of generality, we may assume that t = 2. Let us set α1 = α

and α2 = β. Since ζ(α, β)= 0, we have

〈α, β〉 = e(α, β)− ζ(α, β)= e(α, β).

Since e(β, α)= 0, we also have

e(α⊕β)= e(α, α)+ e(α, β)+ e(β, β)+ e(β, α)

= e(α, α)+ e(β, β)+ e(α, β).

Thus

ε(α⊕β)−〈α, β〉− e(α, α)− e(β, β)

= e(α, α)+ e(β, β)+ e(α, β)− e(α, β)+ ζ(α, β)− e(α, α)− e(β, β)= 0.

Since ζ(α, β)= 0, that gγαβ 6= 0 implies that γ = α⊕ β. Since e(β, α)= 0, we
have gα⊕βαβ = 1. Therefore, we may finish the proof:

〈α〉〈β〉 = sdim(α)+dim(β)−ε(α)−ε(β)αβ

= sε(α⊕β)−〈α,β〉−ε(α)−ε(β)gα⊕βαβ 〈α⊕β〉

= 〈α⊕β〉. �

Theorem 2.2. Let α, β ∈ P such that e(β, α)= 0 and ζ(α, β)= 0. Then we have

〈β〉〈α〉 = r 〈α,β〉s−〈β,α〉〈α〉〈β〉+
∑

γ∈J (α,β)

cγ 〈γ 〉

where the coefficients cγ are in Z[r±1, s±1
] and J (α, β) is the set of all elements

λ ∈ P that are different from α⊕β and gλαβ 6= 0.

Proof. First, by Proposition 2.2, we have 〈α〉〈β〉 = 〈α⊕β〉.
Note that 〈β〉〈α〉 =

∑
γ c′γ γ . Thus we have the relationship c′γ = sdim(γ )−ε(γ )cγ

between the coefficients cγ and c′γ . By [Ringel 1996], we also have

gα⊕ββα = (rs−1)e(α,β).
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Note that ε(α⊕β)= ε(α)+ ε(β)+ e(α, β). Thus

c′α⊕β = sdim(β)−ε(β)+dim(α)−ε(α)s−〈β,α〉gα⊕ββα

= sdim(α⊕β)−ε(α)−ε(β)+ζ(β,α)(rs−1)e(α,β)

= sdim(α⊕β)−ε(α)−ε(β)+ζ(β,α)−e(α,β)r e(α,β)

= r e(α,β)sζ(β,α)sdim(α⊕β)−ε(α⊕β)
= r 〈α,β〉s−〈β,α〉sdim(α⊕β)−ε(α⊕β).

Finally, we have c′α⊕βα⊕β = r 〈α,β〉s−〈β,α〉〈α⊕β〉. �

According to the representation theory of finite-dimensional hereditary algebras
of finite representation type [Bernšteı̆n et al. 1973; Dlab and Ringel 1976], we
can give a total ordering on the set of positive roots of the Lie algebra g. Fol-
lowing Ringel [1996], we will order all positive roots in a way a1, a2, . . . , am so
that Hom(M(ai ),M(a j )) 6= 0 implies i ≤ j , where M(ai ) is the indecomposable
module corresponding to the positive root ai . Such an ordering will be called
E1-admissible.

Lemma 2.1 [Ringel 1996]. A total ordering a1, . . . , am of all the positive roots is
E1-admissible if and only if 〈ai , a j 〉 > 0 implies i ≤ j . Such an ordering has the
additional property that 〈ai , a j 〉< 0 implies i > j .

From now on, we will always fix such a E1-admissible ordering on the set of all
positive roots.

Proposition 2.3. For any α ∈ P, we have 〈α〉 = 〈α(a1)a1〉 · · · 〈α(am)am〉.

Proof. Since the ordering of the positive roots ai is admissible, e(a j , ai ) = 0
for any i < j . In addition, we also have ζ(ai , a j ) = 0. Note that, as a module,
α =

⊕m
i=1 α(ai )M(ai ); then the result follows from Proposition 2.2. �

Now let us consider the divided powers of 〈a〉 by setting

〈a〉(t) = 1
[t]!ε(a)

〈a〉t , where [t]!ε(a) =
t∏

i=1

r iε(a)
−siε(a)

r ε(a)−sε(a)
.

Lemma 2.2. Let a be a positive root and t ≥ 0 be an integer. Then 〈ta〉 = 〈a〉(t).

Proof. The proof is adapted from [Ringel 1996]. Let S be a reduced k-species,
where k is a finite field. Then the number of filtrations

t MS(a)= M0 ⊃ M1 · · · ⊃ Mt = 0

of the module t MS(a) with composition factors isomorphic to the module MS(a)
is given by evaluating the following polynomial in x at the number |k| = rs−1:

(xε(a)t − 1)(xε(a)(t−1)
− 1) · · · (xε(a)− 1))

(xε(a))− 1)t
.
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Since ζ(a, a)= 0, we have

at
= s−ε(a)(

t
2)[t]!ε(a)s−ε(a)(

t
2)t a = s−ε(a)t (t−1)

[t]!ε(a)ta.

Therefore,

〈a〉(t) = 1
[t]!ε(a)

〈a〉t = s−ε(a)t (t−1)
[t]!ε(a)st (dim(a)−ε(a))

[t]!ε(a)
at

= s−ε(a)t (t−1)+t (dim(a)−ε(a))t a

= st dim(a)−ε(a)t (t−1+1)ta = st dim(a)−ε(a)t2
= st dim(a)−ε(t a)ta = 〈t a〉. �

For each positive root ai , let us define the symbol X i = 〈ai 〉.

Proposition 2.4. Let α ∈ P. Then α can be regarded as a map α : 8+ → N0.
Setting α(i)= α(ai ), we have

〈α〉 = X (α(1))
1 · · · X (α(m))

m =

( m∏
i=1

1
[α(i)]!ε(ai )

)
Xα(1)

1 · · · Xα(m)
m .

Proof. By Proposition 2.3, we have 〈α〉 = 〈α(1)a1〉 · · · 〈α(m)am〉. By Lemma 2.2,
we also have 〈α(i)ai 〉 = X (α(i))

i . Thus the first equality holds. The second equality
can be proved by using the divided powers. �

Theorem 2.3. The monomials Xα(1)
1 · · · Xα(m)

m with α(1), . . . , α(m) ∈ N0 form a
Q(r, s)-basis of Hr,s(3), and for i < j , we have

X j X i = r 〈dim X i ,dim X j 〉s−〈dim X j ,dim X i 〉X i X j

+

∑
I (i, j)

c(ai+1, . . . , a j−1)X
ai+1
i+1 · · · X

a j−1
j−1

with coefficients c(ai+1, . . . , a j−1) in Q(r, s). Here the index set I (i, j) is the set
of sequences (ai+1, · · · a j−1) of natural numbers such that

∑ j−1
t=i+1 at at = ai + a j .

Proof. Given α(1), . . . , α(m)∈N0, define an element α∈P by setting α(ai )=α(i).
According to the previous proposition, we have 〈α〉 = X (α(1))

1 · · · X (α(m))
m . Thus

the monomials given in the theorem are exactly nonzero scalar multiples of the
elements in P. Therefore, these monomials form a Q(r, s)-basis of Hr,s(3).

Let i < j . We can apply Theorem 2.2 to the positive roots ai and a j . We need to
show that for any β ∈ J (i, j), the element β is a scalar multiple of some monomials
Xai+1

i+1 · · · X
a j
j with

∑ j−1
t=i+1 at at = ai + a j .

Let β ∈ J (i, j), and let β(t)=β(at). Since gβa j ai 6= 0, there is an exact sequence

0→ M(ai )→

m⊕
t=1

β(t)M(at)→ M(a j )→ 0.
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Let us write f = ( ft)t with ft : M(ai ) → β(t)M(at). The exact sequence
does not split; otherwise, β = ai ⊕ a j , which contradicts the assumption that
β ∈ J (i, j). Let us consider some t with β(t)>0. We claim that ft 6=0. Otherwise,
the cokernel of f would split off β(t) copies of M(at); and since the cokernel
of f is indecomposable, this would mean that the exact sequence splits. Since
Hom(ai , a j ) 6= 0, it follows that i ≤ t . In addition, we can exclude the case i = t ,
since in this case, ft and therefore f would be a split monomorphism. Altogether,
we have i < t . The dual argument applied to g shows that t < j . According to
Proposition 2.2, we know that 〈β〉 is a scalar multiple of Xai+1

i+1 · · · X
a j
j . The exact

sequence exhibited above shows that
∑ j−1

t=i+1 at at = ai + a j . �

Now we define some algebra automorphisms and skew derivations on Hr,s(3).
Namely, for any d ∈Zn , there is an algebra automorphism ld of Hr,s(3) defined by
ld(w)= r 〈dimw,d〉s−〈d,dimw〉w, where w is any homogeneous element of Hr,s(3).

Lemma 2.3 [Ringel 1996]. Let R be a ring and let l be an endomorphism of R.
For any r ∈ R, we define a map δr : R→ R by

δr (x)= r x − l(x)r for any x ∈ R.

Then the map δr is an l-derivation.

Proof from [Ringel 1996]. First, the map δr is additive. In addition, for any x, y∈ R,
we have

δr (xy)= r xy− l(xy)r = r xy− l(x)r y+ l(x)r y− l(x)l(y)r

= (r x − l(x)r)y+ l(x)(r y− l(y)r)

= δr (x)y+ l(x)δr (y).

Thus the map δr is an l-derivation of R. �

Definition 2.1. Let R be a domain with 1 6= 0, let σ1 : R → R be a ring homo-
morphism and let δ1 : R → R be a σ1-derivation, so that for all a, b ∈ R, we
have

• σ1(a+ b)= σ1(a)+ σ1(b),

• σ1(ab)= σ1(a)σ1(b),

• δ1(a+ b)= δ1(a)+ δ1(b),

• δ1(ab)= δ1(a)b+ σ1(a)δ1(b).

Then the skew polynomial ring R[X1, σ1, δ1] is the set of noncommutative poly-
nomials R[X1] with addition defined as commutative polynomials, and with mul-
tiplication defined distributively over addition and by the commutator rule

X1a = σ1(a)X1+ δ1(a),



RINGEL–HALL AND TWO-PARAMETER QUANTIZED ENVELOPING ALGEBRAS 229

valid for all a ∈ R. We set R1= R[X1, σ1, δ1], and let σ2 be a ring homomorphism
of R1 and δ2 be a σ2-derivation of the ring R1. Then we can define another skew
polynomial ring R2 = R1[X2, σ2, δ2]. Similarly, we can iterate this process to
define Rn for any n ≥ 2. These rings Rn are called iterated skew polynomial rings.

Let H j denote the Q(r, s)-subalgebra of Hr,s(3) generated by the generators
X1, . . . , X j . Thus we have H0 =Q(r, s) and for any 0≤ j ≤ m, we have

H j = H j−1[X j , l j , δ j ]

with the automorphism l j and the l j -derivation δ j of H j−1. The automorphism l j

can be explicitly defined by

l j (X i )= r 〈dim X i ,dim X j 〉s−〈dim X j ,dim X i 〉X i for i < j .

The skew derivation δ j can be defined by

δ j (X i )= X j X i − l j (X i )X j =
∑
I (i, j)

c(ai+1, . . . , a j−1)X
ai+1
i+1 · · · X

a j−1
j1 .

Theorem 2.4. The automorphism l j and the skew derivation δ j satisfy the relation

l jδ j = r 〈a j ,a j 〉s−〈a j ,a j 〉δ j l j .

Proof. Suppose i < j . Then l j (X i )= r 〈ai ,a j 〉s−〈a j ,ai 〉X i . Thus, we have

δ j l j (X i )= r 〈ai ,a j 〉s−〈a j ,ai 〉δ j (X i ).

Let us write d = ai+a j . Note that δ j (X i ) is a linear combination of monomials
of the form

Xai+1
i+1 · · · X

a j−1
j−1 where

∑ j−1
t=i+1 at at = ai + a j = d.

Thus we know that δ j (X i ) belongs to Hr,s(3). Since we have

〈d, a j 〉 = 〈ai + a j , a j 〉 = 〈ai , a j 〉+ 〈a j , a j 〉,

〈a j , d〉 = 〈a j , ai + a j 〉 = 〈a j , ai 〉+ 〈a j , a j 〉,

it follows that

l jδ j (X i )= r 〈d,a j 〉s−〈d,a j 〉δ j (X i )

= r 〈ai ,a j 〉+〈a j ,a j 〉s−〈a j ,a j 〉−〈a j ,a j 〉δ j (X i )

= r 〈a j ,a j 〉s−〈a j ,a j 〉δ j l j (X i ). �

Theorem 2.5. The two-parameter Ringel–Hall algebra Hr,s(3) can be presented
as an iterated skew polynomial ring.

Proof. The proof follows from the previous theorem. �
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Let R be a ring. Recall that an ideal P ⊂ R is said to be prime if P 6= R and if
whenever the product AB of two ideals A and B of R is contained in P , at least one
of A and B is contained in P . An ideal P ⊂ R is called completely prime if P 6= R
and if whenever the product ab of two elements of R is contained in P , at least
one of the elements a and b is contained in P . In the case of commutative rings,
prime ideals are exactly completely prime ideals. In the case of noncommutative
rings, a completely prime ideal is a prime ideal, but a prime ideal is not necessarily
a completely prime ideal. Concerning prime ideals, we have the following result
for the algebra Hr,s(3).

Corollary 2.1. Suppose the multiplicative group generated by r and s is torsion-
free. Then any prime ideal of Hr,s(3) is completely prime.

Proof. The proof follows directly from a result on prime ideals of iterated skew
polynomial rings, due to Goodearl and Letzter [2000]. �

2.4. An algebra isomorphism from U+r,s(g) onto Hr,s(3). In this subsection, we
introduce an algebra isomorphism from the two-parameter quantized enveloping
algebra U+r,s(g) onto the two-parameter Ringel–Hall algebra Hr,s(3). Via this iso-
morphism, all results established in the previous subsection on Hr,s(3) will be
transferred to the two-parameter quantized enveloping algebra U+r,s(g). For the
convenience of this paper, we will awkwardly denote the nontwisted Hall algebra
multiplication by ◦ in the one-parameter nontwisted generic Ringel–Hall algebra
Hv(3) (which can be defined due to the existence of Hall polynomials). Recall
also that v2

= q .
First, we need an important lemma on a two-parameter version of the quantum

Serre relations, which was proved to hold in the case of one-parameter nontwisted
Ringel–Hall algebra Hv(3).

Lemma 2.4. Let αi ∈ P correspond to the simple module Si . Then we have the
identities

1−ai j∑
k=0

(−1)k
(1−ai j

k

)
ri s−1

i

c(k)i j u1−ai j−k
αi uα j u

k
αi
= 0 for i 6= j

in Hr,s(3), where c(k)i j = (ri s−1
i )k(k−1)/2r k〈 j,i〉s−k〈i, j〉 for i 6= j .

Proof. The idea of the proof is to reduce these identities to those that have been
proved in [Ringel 1990b] to hold for the one-parameter nontwisted generic Ringel–
Hall algebra Hv(3). Though this reduction is straightforward, we will provide the
details. For convenience, we shall set m = 1− ai j in the rest of this proof.
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First, we assume that i< j . Then we have 〈i, j〉=di ai j and 〈 j, i〉=0. Therefore,

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

c(k)i j um−k
αi

uα j u
k
αi

=

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )k(k−1)/2r k〈 j,i〉s−k〈i, j〉um−k

αi
uα j u

k
αi

=

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )k(k−1)/2r k〈 j,i〉s−k〈i, j〉s−(m(m−1)/2〈i,i〉+(m−k)〈i, j〉+k〈 j,i〉)

u◦(m−k)
αi

◦ uα j ◦ u◦(k)αi

= s−(〈i,i〉m
2
−m/2+m〈i, j〉)

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )k(k−1)/2u◦(m−k)

αi
◦ uα j ◦ u◦(k)αi

.

Note that the following result was proved for the nontwisted generic Ringel–Hall
algebra Hv(3) in [Ringel 1990b]:

m∑
k=0

(−1)k
(m

k

)
q i
(q i )k(k−1)/2u◦(m−k)

αi
◦ uα j ◦ u◦(k)αi

= 0.

Due to the existence of Hall polynomials [Ringel 1990a; 1990c], we can set
rs−1
= q . Thus we have proved that the statement is true for i < j , as desired.

Now let us assume that i > j . Then 〈i, j〉 = 0 and 〈 j, i〉 = d j a j i = di ai j =

di (1−m). Furthermore, we have

(−1)m
m∑

k=0

(−1)k
(m

k

)
ri s−1

i

c(k)i j um−k
αi

uα j u
k
αi

=

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )(m−k)(m−k−1)/2r (m−k)〈 j,i〉s−(m−k)〈i, j〉uk

αi
uα j u

m−k
αi

=

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )(m−k)(m−k−1)/2r (m−k)〈 j,i〉

s−(
1
2 m(m−1)〈i,i〉+k〈i, j〉+(m−k)〈 j,i〉)u◦(k)αi

◦ uα j ◦ u◦(m−k)
αi

= r
1
2 (m−m2)〈i,i〉

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )k(k−1)/2u◦(k)αi

◦ uα j ◦ u◦(m−k)
αi

.

The following result was proved for the nontwisted generic Ringel–Hall algebra
Hv(3) in [Ringel 1990b]:

m∑
k=0

(−1)k
(m

k

)
q i
(r i )k(k−1)/2u◦(k)αi

◦ uα j ◦ u◦(m−k)
αi

= 0.
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Once again, thanks to the existence of Hall polynomials, we can set rs−1
= q

and thus the result follows as desired. �

The next result was first proved by Reineke for the case of a finite-dimensional
complex simple Lie algebra g of type A, D or E in [Reineke 2001], and we show
that the result holds for all finite-dimensional complex simple Lie algebras g. The
proof is more or less the same as the one used in [Reineke 2001].

Theorem 2.6 (see also [Reineke 2001]). With the multiplication defined above,
Hr,s(3) is an associative Q(r, s)-algebra. In particular, the map

η : ei → αi

extends to a Q(r, s)-algebra isomorphism

η :U+r,s(g)→ Hr,s(3).

Proof. First, note that the quantum Serre relations of U+r,s(g) are preserved by the
map η. Thus the map η indeed defines an algebra homomorphism from the two-
parameter quantized enveloping algebra U+r,s(g) into the two-parameter Ringel–
Hall algebra Hr,s(3). It only remains to show that the map η is a bijection.

We first show that the map η is surjective by verifying that the algebra Hr,s(3)

is generated by the elements ui that correspond to the simple modules Si of the
algebra 3. Let uα be any element in Hr,s(3). Then we have

uα =
( m∏

i=1

1
[α(i)]!ε(ai )

)
uα(a1)

a1
· · · uα(am)

am
.

Now it suffices to prove that uα is generated by ui for any α corresponding to
an indecomposable module. We prove this claim by using induction. Note that
ζ(α, α)= 0. Thus, we have

uα = ud1
1 · · · u

dn
n −

∑
β 6=α

dimβ=dimα

s〈β,β〉uβ .

However, one sees that the dimension of the module uβ is less than that of the
module uα. Thus by induction on the dimension, we can reduce to the case where
dim(uα)= 1. In this case, the only possibility is that uα = ui for some i . Thus we
have proved the statement that every uα is generated by ui , which further implies
that the map η is a surjective map. We also note that the map η is a graded map.

Finally, we show that the map η is injective. Let B :=Q[r, s](r−1),s−1) denote the
localization of the polynomial ring Q[r, s] at the maximal ideal (r − 1, s− 1). Then
we know that B=Q[r, s](r−1,s−1) is a local ring with residue field Q and fractional
field Q(r, s). Let U+B denote the free B-algebra generated by the generators ei
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subject to the quantum Serre relations holding in U+r,s(g). Also let U+
Q
(g) denote

the universal enveloping algebra of n+ defined over the base field Q. Then we have

U+r,s(g)=Q(r, s)⊗B U+B and U+
Q
(g)=Q⊗B U+B .

For any β ∈ Nn , we have the following result via Nakayama’s lemma:

dimQ U+
Q
(g)β = dimQ(Q⊗B U+B ))β

≥ dimQ(r,s)(Q(r, s)⊗B U+B )β = dimQ(r,s) U+r,s(g)β

≥ dimQ(r,s) Hr,s(3)β .

Using [Ringel 1993, Corollary 2] and the PBW-theorem, we also have

dimQ U+
Q
(g)β = dimQ(r,s) Hr,s(3)β .

Thus we have proved that the map η is injective. Therefore, the map η is an
algebra isomorphism from U+r,s(g) onto Hr,s(3), as desired. �

Based on the previous theorem, the following corollary is in order:

Corollary 2.2. The algebra U+r,s(g) has a Q(r, s)-basis parameterized by the iso-
morphism classes of finite-dimensional representations of the algebra 3.

Theorem 2.7. All prime ideals of U+r,s(g) are completely prime under the condition
that the multiplicative group generated by r and s is torsion-free.

Proof. This follows since Ur,s(g) is isomorphic to Hr,s(3) as an algebra and since
all prime ideals of Hr,s(3) are completely prime under the condition. �

3. The extended two-parameter Ringel–Hall algebras Hr,s(3)

In the one-parameter quantum group case, the torus part was added to the Ringel–
Hall algebra for the purpose of realizing the Borel subalgebra U≥0

q (g) of the one-
parameter quantum group Uq(g). In the two-parameter case, we can do the same.
Here, we spell out the details. In particular, we will first define the extended
Ringel–Hall algebra Hr,s(3) by adding the torus part. Then we propose a Hopf
algebra structure on this extended two-parameter Ringel–Hall algebra Hr,s(3).
As an application, we will prove that U≥0

r,s (g) is isomorphic to the extended two-
parameter Ringel–Hall algebra Hr,s(3) as a Hopf algebra. The approach used here
is very similar to those in [Ringel 1996; Green 1995; Xiao 1997]. In addition, an
analogous result is obtained for the algebra U≤0

r,s (g). By patching them together
via the triangular decomposition of Ur,s(g), we derive a PBW-basis of Ur,s(g).
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3.1. Extended Ringel–Hall algebras Hr,s(3). To realize the Borel subalgebras
U≥0

r,s (g) and U≤0
r,s (g) of the two-parameter quantum group Ur,s(g), we need to en-

large the Ringel–Hall algebras Hr,s(3) defined in the previous section. We are
going to enlarge Hr,s(3) by adding the torus part to it. Namely, we will define
Hr,s(3) to be the free Q(r, s)-module with the basis

{kαuλ | α ∈ Z[I ], λ ∈ P}.

In addition, we are going to define an algebra structure for Hr,s(3) by

uαuβ =
∑

λ∈P s−〈α,β〉Fuλ
uα,uβ (rs−1)uλ for any α, β ∈ P,

kαuβ = r 〈β,α〉s−〈α,β〉uβkα for any α ∈ Z[I ], β ∈ P,

kαkβ = kβkα for any α, β ∈ Z[I ].

Lemma 3.1. For any elements x, y, z ∈ Z[I ] and α, β, γ ∈ P, we have

[(kx uα)(kyuβ)](kx uα)= (kx uα)[(kyuβ)(kzuγ )].

In particular, the multiplication defined in Hr,s(3) is associative.

Proof. First, we have

(uαuβ)uγ =
(∑
λ∈P

s−〈α,β〉gλαβuλ
)

uγ =
∑
λ′∈P

s−〈α,β〉−〈α+β,γ 〉gλ
′

αβγ uλ′,

uα(uβuγ )= uα
(∑
λ∈P

s−〈β,γ 〉gλβγ uλ
)
=

∑
λ′∈P

s−〈α,β+γ 〉−〈β,γ 〉gλ
′

αβγ uλ′ .

So we have just proved that (uαuβ)uγ = uα(uβuγ ). In addition, we have the
results

[(kx uα)(kyuβ)](kzuγ )= r−〈α,y〉−〈α+β,z〉s〈y,α〉+〈z,α+β〉kx+y+x uαuβuγ ,

(kx uα)[(kyuβ)(kzuγ )] = r−〈α,y+z〉−〈β,z〉s〈y+z,α〉+〈z,β〉kx+y+zuαuβuγ .

Also, we have (kx uα)[(kyuβ)(kzuγ )] = [(kx uα)(kyuβ)](kzuγ ), which further
implies that the multiplication is associative. �

Proposition 3.1. With the above defined multiplication, Hr,s(3) is an associative
Q(r, s)-algebra.

Proof. This follows directly from the previous lemma. �

Theorem 3.1. The map η extends to a Q(r, s)-algebra isomorphism from U≥0
r,s (g)

onto Hr,s(3) via the map η(wi )= ki and η(ei )= uαi .

Proof. The proof is straightforward. �

Corollary 3.1. The set B+ = {wαη−1(uλ) | α ∈ Z[I ], λ ∈ P} is a Q(r, s)-basis of
U≥0

r,s (g).



RINGEL–HALL AND TWO-PARAMETER QUANTIZED ENVELOPING ALGEBRAS 235

3.2. A Hopf algebra structure on Hr,s(3). Now we are going to introduce a Hopf
algebra structure on the extended two-parameter Ringel–Hall algebra Hr,s(3).

Theorem 3.2. The algebra Hr,s(3) is a Hopf algebra with the Hopf algebra struc-
ture defined as follows.

(1) Multiplication:

uαuβ =
∑

λ∈P s−〈α,β〉gλαβuλ for any α, β ∈B,

kαuβ = r 〈β,α〉s−〈α,β〉uβkα for any α ∈ Z[I ], β ∈ P,

kαkβ = kβkα for any α, β ∈ Z[I ].

(2) Comultiplication:

1(uλ)=
∑

α,β∈P r 〈α,β〉(aαaβ/aλ)gλαβuαkβ ⊗ uβ for any λ ∈ P,

1(kα)= kα ⊗ kα for any α ∈ Z[I ].

(3) Counit: ε(uλ)= 0 for all λ 6= 0 and ε(kα)= 1 for any α ∈ P.

(4) Antipode:

σ(uλ)= δλ,0+
∑
m≥1

(−1)m

×

∑
π∈P,λ1,λ2,...,λm∈P1

(rs−1)
∑

i< j 〈λi ,λ j 〉
aλ1 · · · aλm

aλ
gλλ1···λm

gπλ1···λm
k−λuπ

for any element λ ∈ P and σ(kα)= k−α for any α ∈ Z[I ].

The proof of this theorem consists of two lemmas.

Lemma 3.2. The comultiplication 1 is an algebra endomorphism of Hr,s(3).

Proof. First, 1(kx ky) = 1(kx+y) = kx+y ⊗ kx+y . Thus, 1(kx ky) = 1(kx)1(ky).
To prove that 1 is an algebra homomorphism of Hr,s(3), it suffices to show that
1(uαuβ)=1(uα)1(uβ). Since

uα′uβ ′ =
∑
λ∈P

s−〈α
′,β ′〉gλα′β ′uλ,

we have

1(uα′uβ ′)=1
(∑
λ∈P

s−〈α,β〉gλα′β ′uλ
)

=

∑
λ∈P

s−〈α
′,β ′〉gλα′β ′1(uλ)

=

∑
λ,α,β∈P

s−〈α
′,β ′〉r 〈α,β〉gλα′β ′g

λ
αβ

aαaβ
aλ

uαkβ ⊗ uβ
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and

1(uα′)1(uβ ′)=
( ∑
ρ,σ∈P

r 〈ρ,σ 〉
aρaσ
aα′

gα
′

ρσuρkσ ⊗ uσ
)

×

( ∑
ρ′,σ ′∈P

r 〈ρ
′,σ ′〉 aρ′aaσ ′

aβ ′
gβ
′

ρ′σ ′uρ′kσ ′ ⊗ uσ ′
)

=

∑
ρ,σ,ρ′,σ ′∈P

r 〈ρ,σ 〉+〈ρ
′,σ ′〉 aρaσaρ′aσ ′

aα′aβ ′
× gα

′

ρσ gβ
′

ρ′σ ′uρkσuρ′kσ ′ ⊗ uσuσ ′

=

∑
ρ,σ,ρ′,σ ′∈P

r 〈ρ,σ 〉+〈ρ
′,σ ′〉+〈ρ′,σ 〉s−〈σ,ρ

′
〉−〈σ,σ ′〉−〈ρ,ρ′〉 aρaσaρ′aσ

aα′aβ ′

× gα
′

ρσ gβ
′

ρ′σ ′g
α
ρρ′g

β
σσ ′uαkβ ⊗ uβ .

Note that dim(uα)+ dim(uβ)= dim(uλ). Thus, we have

dim(uα)+ dim(uβ)= dim(uλ)= dim(uα′)+ dim(uβ ′)

and

dim(uρ)+ dim(uσ )= dim(uα′), dim(uρ′)+ dim(uσ ′)= dim(uβ ′);

dim(uρ)+ dim(uρ′)= dim(uα), dim(uσ )+ dim(uσ ′)= dim(uβ).

In addition, we have kβ = kσ kσ ′ . Thus we have

〈α, β〉 = 〈ρ, σ 〉+ 〈ρ, σ ′〉+ 〈ρ ′, σ 〉+ 〈σ, σ ′〉,

〈α′, β ′〉 = 〈ρ, ρ ′〉+ 〈ρ, σ ′〉+ 〈σ, ρ ′〉+ 〈σ, σ ′〉.

Therefore, we only need to show that∑
λ∈P

gλαβgλα′β ′
aαaβaα′aβ ′

aλ
=

∑
ρ,σ,ρ′,σ ′∈P

(rs−1)−〈ρ,σ
′
〉gσρρ′g

β
σσ ′g

α′

ρσ gβ
′

ρ′σ ′aρaσaρ′aσ ′,

but this is true according to Green’s formula. �

Lemma 3.3. For any λ ∈ P, we have

µ(σ ⊗ 1)1(uλ)= δλ0 and µ(1⊗ σ)1(uλ)= δλ0.

Proof. First of all, we have

1(uλ)=
∑

λ′,λm+1∈P

aλ′aλm+1

aλ
gλλ′λm+1

uλ′kλm+1 ⊗ uλm+1 .

Thus we further have

µ(σ ⊗ 1)1(uλ)=
∑

λ′,λm+1∈P

r 〈λ
′,λm+1〉

aλ′aλm+1

aλ
gλλ′λm+1

k−λm+1σ(uλ′)uλm+1 .
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To prove the first identity, it suffices to prove that

σ(uλ)= δλ0−
∑

λ′∈P,λm+1∈P1

r 〈λ
′,λm+1〉

aλ′aλm+1

aλ
gλλ′λm+1

k−λm+1σ(uλ′)uλm+1 .

Since we have

σ(uλ′)= δλ′0−
∑
m≥1

(−1)m
∑

π ′∈P,λ1,...,λm∈P1

(rs−1)
∑

i< j 〈λi ,λ j 〉
aλ1 · · · aλm

aλ′

× gλ
′

λ1···λm
gπ
′

λ1···λm
k−λ′uπ ′,

we will have the result

σ(uλ)= δλ0− k−λuλ−
∑

λ′,λm+1∈P1

r 〈λ
′,λm+1〉

aλ′aλm+1

aλ
gλλ′λm+1

k−λm+1

×

∑
m≥1

(−1)m
∑
π ′∈P,

λ1,...,λm∈P1

(rs−1)
∑

i< j 〈λi ,λ j 〉
aλ1 · · · aλm

aλ′

gλ
′

λ1···λm
gπ
′

λ1...,λm
× k−λ′uπ ′uλm+1

= δλ0− k−λuλ−
∑
m≥1

(−1)m
∑
π ′∈P

λ′,λ1,...,λm∈P1

(rs−1)
∑

k< j 〈λi ,λ j 〉r 〈λ
′,λm+1〉

×
aλ1···aλm

aλm+1

λ
gλ
′

λ1···λm
gπ
′

λ′λkλm+1k−λ′
∑
π∈P

s〈π
′,λm+1〉gππ ′λm+1

uπ

= δλ0−
∑
m≥1

(−1)m
∑
π∈P

λ1,...,λm∈P1

aλ1 · · · aλm aλm+1

aλ
gλλ1···λmλm+1

k−λuπ .

Since gλα1···αi
6= 0 implies dim uλ = dim uα1 + · · · dim uλi , we may assume that

dim(uλ′)= dim(uλ1)+ · · ·+ dim(uλm ),

dim(uπ ′)= dim(uλ1)+ · · ·+ dim(uλm ),

dim(uλ′)+ dim(uλm+1)= dim(uλ),

dim(uπ ′)+ dim(uλm+1)= dim(uπ ).

Therefore, we have the result

σ(uλ)= δλ0− k−λuλ+
∑
m≥2

(−1)m

∑
π∈P

λ1,...,λm∈P1

(rs−1)
∑

i< j 〈λi ,λ j 〉
aλ1 · · · aλm

aλ
gλλ1···λm

gπλ1···λm
k−λuπ

= δλ0+
∑
m≥1

(−1)m
∑
π∈P

λ1,...,λm∈P1

(rs−1)
∑

i< j 〈λi ,λ j 〉
aλ1 · · · aλm

aλ
× gλλ1···λm

gπλ1···λm
k−λuπ .

So we have proved the statement by the definition of σ . Similarly, we can verify
that µ(1⊗ σ)1(uλ)= δλ0. �
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Remark 3.1. The proofs of the two lemmas above are slightly modified versions
of those in [Xiao 1997].

3.3. A Hopf algebra isomorphism from U≥0
r,s (g) onto Hr,s(3). Here we prove

that the Borel subalgebras U≥0
r,s (g) and U≤0

r,s (g) of the two-parameter quantum
group Ur,s(g) can be realized as the extended two-parameter Ringel–Hall algebras
Hr,s(3) and Hs−1,r−1(3) as Hopf algebras. As a result, we shall derive a PBW-
basis for the algebra Ur,s(g).

Theorem 3.3. We have

U≥0
r,s (g)

∼= Hr,s(3) and U≤0
r,s (g)

∼= Hs−1,r−1(3)

as Hopf algebras.

Proof. Let us define a map φ : U≥0
r,s (g)→ Hr,s(3) by setting φ(Ei ) = uSi and

φ(wi ) = ki . Then it is easy to verify that φ is a bijection and respects the Hopf
algebra structures. Thus it is a Hopf algebra isomorphism. Similarly, we can prove
that U≤0

r,s (g) is isomorphic to Hs−1,r−1(3) as a Hopf algebra. �

Let B− be the basis constructed for U≤0
r,s (g) via the algebra Hs−1,r−1(3); then

we have the following:

Corollary 3.2. The set B+∪B− is a Q(r, s)-basis for the two-parameter quantum
groups Ur,s(g).
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A NEW PROBABILITY DISTRIBUTION WITH APPLICATIONS

MINGJIN WANG

We introduce a new probability distribution, which is useful in the study of
basic hypergeometric series. As applications, we give probabilistic deriva-
tions of the q-binomial theorem, the q-Gauss summation formula, a new
multiple identity, and an extension of the Rogers–Ramanujan identities.

1. Introduction

The probabilistic method is a useful tool in the study of basic hypergeometric
series [Chapman 2005; Evans 2002; Fulman 2001; Rawlings 1997]. In this paper,
we introduce a new probability distribution and then demonstrate the applications
of this distribution in q-series. We begin with recall some definitions, notations
and known results in [Andrews et al. 1999; Gasper and Rahman 1990; Liu 2003].
Throughout the paper, we suppose that 0 < q < 1. The q-shifted factorials are
defined as

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1− aqk), (a; q)∞ =
∞∏

k=0

(1− aqk).

We also adopt a compact notation for multiple q-shifted factorials:

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

where n is an integer or∞. The q-binomial coefficient is defined by[n
k

]
=

(q; q)n
(q; q)k(q; q)n−k

.

In 1846, Heine introduced the r+1φr basic hypergeometric series, which is defined
by

r+1φr

(
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, x

)
=

∞∑
n=0

(a1, a2, . . . , ar+1; q)nxn

(q, b1, b2, . . . , br ; q)n
.

MSC2000: primary 60E05; secondary 33D15, 05A10.
Keywords: probability distribution, basic hypergeometric series, Andrews–Askey integral,

Al-Salam–Carlitz polynomials, Lebesgue’s dominated convergence theorem, Tannery’s theorem,
Rogers–Ramanujan identities.
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F. H. Jackson [1910] defined the q-integral by

(1-1)
∫ d

0
f (t)dq t = d(1− q)

∞∑
n=0

f (dqn)qn,

and

(1-2)
∫ d

c
f (t)dq t =

∫ d

0
f (t)dq t −

∫ c

0
f (t)dq t.

The q-integrals are important in the theory and application of basic hypergeometric
series. For example, the author gives some applications of the q-integral in [Wang
2008; 2009b; 2009a; 2010b; 2010a]. The Andrews–Askey [1981] integral is

(1-3)
∫ d

c

(qt/c, qt/d; q)∞
(at, bt; q)∞

dq t =
d(1− q)(q, dq/c, c/d, abcd; q)∞

(ac, ad, bc, bd; q)∞
,

which can be derived from Ramanujan’s 1ψ1 summation provided that no zero
factors occur in the denominator of the integral.

The Al-Salam–Carlitz polynomials ϕ(a)n (x |q) are defined by

ϕ(a)n (x |q)=
n∑

k=0

[n
k

]
xk(a; q)k,

[Srivastava and Jain 1989] and have the q-integral representation [Wang 2009b]

(1-4) ϕ(a)n (x |q)=
(ax, a; q)∞

(1− q)(q, q/x, x; q)∞

∫ 1

x

(qt/x, qt; q)∞tn

(at; q)∞
dq t

provided that no zero factors occur in the denominator.
We frequently use the following well-known theorems:

Theorem (analytic continuation theorem). If f and g are analytic at z0 and agree
at infinitely many points, which include z0 as an accumulation point, then f = g.

Theorem (Lebesgue’s dominated convergence theorem). Suppose that {Xn, n≥1}
is a sequence of random variables such that Xn→ X pointwise almost everywhere
as n → ∞, and such that |Xn| ≤ Y for all n, where the random variable Y is
integrable. Then X is integrable, and

lim
n→∞

E Xn = E X,

where E( · ) denotes expected value.

Tannery’s theorem is a special case of Lebesgue’s dominated convergence theorem
on the sequence space L1.
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Theorem [Tannery 1904]. If s(n) =
∑

k≥0 fk(n) is a finite sum (or a convergent
series) for each n,

lim
n→∞

fk(n)= fk, | fk(n)| ≤ Mk, and
∞∑

k=0

Mk <∞

then

lim
n→∞

s(n)=
∞∑

k=0

fk .

2. A new probability distribution

In order to use Lebesgue’s dominated convergence theorem to get q-identities, we
need to find some special probability distributions. In this section, we introduce a
useful probability distribution.

The main method of this paper as follows: First, we define a probability distri-
bution by q-shifted factorials; its expected value can be easily obtained. Then we
construct a sequence of random variables with this probability distribution. Finally,
we use Lebesgue’s dominated convergence theorem to obtain a q-identity.

Lemma 2.1. Suppose x is a real such that x < 0; then we have

(2-1)
(−x)n(xn−1qk+1, xnqk+1

; q)∞qk

(q, q/x, x; q)∞
≥ 0

and

(2-2)
1∑

n=0

∞∑
k=0

(−x)n(xn−1qk+1, xnqk+1
; q)∞qk

(q, q/x, x; q)∞
= 1,

where n = 0, 1 and k = 0, 1, 2, . . . .

Proof. Inequality (2-1) is obvious by the definition of the q-shifted factorials and
the assumption that x < 0. We only need to prove (2-2).

Since

(2-3)
1∑

n=0

∞∑
k=0

(−x)n(xn−1qk+1, xnqk+1
; q)∞qk

(q, q/x, x; q)∞

=
1

(1−q)(q, q/x, x; q)∞

×

(
(1−q)

∞∑
k=0

(qk+1/x, qk+1
; q)∞qk

−x(1−q)
∞∑

k=0

(qk+1, xqk+1
; q)∞qk

)
,
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using the definition of the q-integral gives

(1− q)
∞∑

k=0

(qk+1/x, qk+1
; q)∞qk

=

∫ 1

0
(qt/x, qt; q)∞dq t

and

x(1− q)
∞∑

k=0

(qk+1, xqk+1
; q)∞qk

=

∫ x

0
(qt/x, qt; q)∞dq t.

Consequently, we have

(2-4) (1− q)
∞∑

k=0

(qk+1/x, qk+1
; q)∞qk

=

∫ 1

0
(qt/x, qt; q)∞dq t−

∫ x

0
(qt/x, qt; q)∞dq t =

∫ 1

x
(qt/x, qt; q)∞dq t.

Employing the Andrews–Askey integral (1-3) gives

(2-5)
∫ 1

x
(qt/x, qt; q)∞dq t = (1− q)(q, q/x, x; q)∞.

Substituting (2-4) and (2-5) into (2-3) gives (2-2). �

Definition 2.2. A random variable ξ has distribution W (x; q) if

P(ξ = xnqk)=
(−x)n(xn−1qk+1, xnqk+1

; q)∞qk

(q, q/x, x; q)∞
,

where x < 0, 0< q < 1, n = 0, 1 and k = 0, 1, 2, . . . .

The distribution W (x; q) has some applications in the study of basic hyper-
geometric series.

Before giving applications, we need the following lemmas.

Lemma 2.3. Let −1< x < 0 and |a|< 1. Let ξ denote a random variable having
with W (x; q). Then we have

(2-6) E
(

ξm

(aξ ; q)∞

)
=

1
(a, ax; q)∞

ϕ(a)m (x |q) for m = 0, 1, 2, . . . .
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Proof. Using the definition of the q-integral (1-1), (1-2) and the q-integral repre-
sentation of the Al-Salam–Carlitz polynomials (1-4), we have

E
(

ξm

(aξ ; q)∞

)
=

1∑
n=0

∞∑
k=0

(−x)n(xn−1qk+1, xnqk+1
; q)∞qk

(q, q/x, x; q)∞
·

xnmqkm

(axnqk; q)∞

=
1

(1−q)(q, q/x, x; q)∞

(
(1− q)

∞∑
k=0

(qk+1/x, qk+1
; q)∞ ·

qk(m+1)

(aqk; q)∞

− x(1− q)
∞∑

k=0

(qk+1, xqk+1
; q)∞ ·

xmqk(m+1)

(axqk; q)∞

)
=

1
(1−q)(q, q/x, x; q)∞

×

(∫ 1

0

(qt/x, qt; q)∞tm

(at; q)∞
dq t −

∫ x

0

(qt/x, qt; q)∞tm

(at; q)∞
dq t

)
=

1
(1−q)(q, q/x, x; q)∞

∫ 1

x

(qt/x, qt; q)∞tm

(at; q)∞
dq t

=
1

(a, ax; q)∞
ϕ(a)m (x |q). �

Lemma 2.4. Let −1< x < 0 and |a|< 1. Let ξ denote a random variable having
distribution W (x; q). Then we have

E
(

1
(aξ, bξ ; q)∞

)
=

(abx, ; q)∞
(a, b, ax, bx; q)∞

.

Proof. Using the definition of the q-integral (1-1), (1-2) and the Andrews–Askey
integral (1-3), we have

E
( 1
(aξ, bξ ; q)∞

)

=

1∑
n=0

∞∑
k=0

(−x)n(xn−1qk+1, xnqk+1
; q)∞qk

(q, q/x, x; q)∞
·

1
(axnqk, bxnqk; q)∞

=
1

(1− q)(q, q/x, x; q)∞

(
(1− q)

∞∑
k=0

(qk+1/x, qk+1
; q)∞ ·

qk

(aqk, bqk; q)∞

−x(1− q)
∞∑

k=0

(qk+1, xqk+1
; q)∞ ·

qk

(axqk, bxnqk; q)∞

)
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=
1

(1− q)(q, q/x, x; q)∞

(∫ 1

0

(qt/x, qt; q)∞
(at, bt; q)∞

dq t −
∫ x

0

(qt/x, qt; q)∞
(at, bt; q)∞

dq t
)

=
1

(1− q)(q, q/x, x; q)∞

∫ 1

x

(qt/x, qt; q)∞
(at, bt; q)∞

dq t =
(abx, ; q)∞

(a, b, ax, bx; q)∞
,

which completes the proof. �

Lemma 2.5. Let |x |< 1. Then

(2-7) lim
n→∞

ϕ(a)n (x |q)=
∞∑

k=0

(a; q)k xk

(q; q)k
.

Proof. Let fk(n)=
[n

k

]
xk(a; q)k if k ≤ n and fk(n)= 0 if k > n. We have

ϕ(a)n (x |q)=
∞∑

k=0

fk(n).

Since

lim
n→∞

fk(n)=
(a; q)k xk

(q; q)k
, | fk(n)| ≤

|(a; q)k xk
|

(q; q)∞
,

∞∑
k=0

|(a; q)k xk
|

(q; q)∞
<∞,

by Tannery’s theorem we know (2-7) holds. �

3. The q-binomial theorem

One of the most important summation formulas for basic hypergeometric series is
the q-binomial theorem, which was derived by Cauchy in 1843, Heine in 1847,
and by other mathematicians. There are many proofs. By using the probability
distribution W (x; q) and the Lebesgue dominated convergence theorem, we give a
probabilistic derivation; see also [Andrews et al. 1999; Gasper and Rahman 1990].

Theorem 3.1.
∞∑

n=0

(a; q)nxn

(q; q)n
=
(ax; q)∞
(x; q)∞

for |x |< 1.

Proof. Let ξ be a random variable having distribution W (x; q), where −1< x < 0.
We consider the sequence{

ξ n

(aξ ; q)∞

}∞
n=1

for |a|< 1

of random variables (on a probability space). It is easy to see that ξ n converges to
I(ξ=1), which has Binomial distribution B(1, 1/(x; q)∞) and

lim
n→∞

ξ n

(aξ ; q)∞
=

I(ξ=1)

(a; q)∞
,
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where I� is the indicator function defined by

I�(x)=
{

1 if x ∈�,
0 if x /∈�.

Since ∣∣∣∣ ξ n

(aξ ; q)∞

∣∣∣∣≤ 1
(|a|; q)∞

,

using Lebesgue’s dominated convergence theorem gives

(3-1) lim
n→∞

E
(

ξ n

(aξ ; q)∞

)
= E

(
I(ξ=1)

(a; q)∞

)
.

Employing (1-4) and using Tannery’s theorem gives

(3-2)

lim
m→∞

E
(

ξm

(aξ ; q)∞

)
=

1
(a, ax; q)∞

lim
m→∞

ϕ(a)m (x |q)

=
1

(a, ax; q)∞

∞∑
m=0

(a; q)m xm

(q; q)m
.

By direct calculation,

(3-3) E
(

I(ξ=1)

(a; q)∞

)
=

1
(a, x; q)∞

.

Substituting (3-2) and (3-3) into (3-1) gives
∞∑

n=0

(a; q)nxn

(q; q)n
=
(ax; q)∞
(x; q)∞

,

where −1 < x < 0 and |a| < 1. By analytic continuation, we may replace the
assumptions −1< x < 0 by |a|< 1 by |x |< 1. Thus, we get Theorem 3.1. �

4. The q-Gauss summation formula

In 1847, Heine derived a q-analogue of Gauss’s summation formula. We show that
this result can be recovered with the probability distribution W (x; q).

Theorem 4.1. 2φ1

( a, b
c
; q, c

ab

)
=
(c/a, c/b; q)∞
(c, c/ab; q)∞

for |c/(ab)|< 1.

Proof. Let ξ and η denote two independent random variables having distributions
W (x; q) and W (y; q), respectively, where we set −1< x, y < 0. We consider the
following sequence of random variables (on a probability space):{

ηn

(aξη; q)∞

}∞
n=1

for |a|< 1.
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Clearly ηn converges to I(η=1) having binomial distribution B(1, 1/((y; q)∞)) and

lim
n→∞

ηn

(aξη; q)∞
=

I(η=1)

(aξ ; q)∞
,

where I� is the indicator function.
Since ∣∣∣∣ ηn

(aξη; q)∞

∣∣∣∣≤ 1
(|a|; q)∞

,

using Lebesgue’s dominated convergence theorem gives

(4-1) lim
n→∞

E
(

ηn

(aξη; q)∞

)
= E

(
I(η=1)

(aξ ; q)∞

)
.

Observe that

E
(

ηn

(aξη; q)∞

)
= E

(
E
(

ηn

(aξη; q)∞

∣∣ξ))
= E

(
1

(aξ, ayξ ; q)∞
ϕ(aξ)n (x |q)

)

=

n∑
k=0

[n
k

]
yk
· E
(

1
(aξqk, ayξ ; q)∞

)

=

n∑
k=0

[n
k

]
yk
·

(a2xyqk
; q)∞

(aqk, axqk, ay, axy; q)∞

=
(a2xy; q)∞

(a, ax, ay, axy; q)∞

n∑
k=0

[n
k

]
·
(a, ax; q)∞yk

(a2xy; q)∞
.

Hence, we get the left hand side of (4-1):

(4-2) lim
n→∞

E
(

ηn

(aξη; q)∞

)
=

(a2xy; q)∞
(a, ax, ay, axy; q)∞

∞∑
k=0

(a, ax; q)∞yk

(q, a2xy; q)∞
.

On the other hand, the right hand side of (4-1) equals

(4-3) E
( I(η=1)

(aξ ; q)∞

)
= p(η = 1)E

(
1

(aξ ; q)∞

)
=

1
(a, ax, y; q)∞

.

Substituting (4-2) and (4-3) into (4-1) gives

∞∑
k=0

(a, ax; q)∞yk

(q, a2xy; q)∞
=
(ay, axy; q)∞
(a2xy, y; q)∞

,

which is equivalent to the q-Gauss theorem, Theorem 4.1, by analytic continuation.
�
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5. A multiple identity

Multiple basic hypergeometric series have been investigated by various authors
[Milne 1997; Wang 2009a; Zhang 2006; Zhang and Liu 2006]. We will use the
distribution W (x; q) to prove the following multiple identity.

Theorem 5.1. Let |a|< 1. Then for any positive integers m and n, we have

(5-1)
∑

y1+···+ym≥n

[ y1+· · ·+ym
n

]
q y2+2y3+···+(m−1)ym ay1+···+ym

=
an

(a; q)n+m

[n+m−1
n

]
.

Proof. Let ξ denote a random variable with distribution W (x; q), where−1< x<0.
For any positive integer m, we consider the sequence{

(1− (aξ)n)(1− (aqξ)n) · · · (1− (aqm−1ξ)n)

(aξ ; q)∞

}∞
n=1

for |a|< 1

of random variables (on a probability space). It is easy to see that

lim
n→∞

(1− (aξ)n)(1− (aqξ)n) · · · (1− (aqm−1ξ)n)

(aξ ; q)∞
=

1
(aξ ; q)∞

.

Since |(1−(aξ)n)(1−(aqξ)n) · · · (1−(aqm−1ξ)n)/(aξ ; q)∞|≤1/(|a|; q)∞, using
Lebesgue’s dominated convergence theorem gives

(5-2) lim
n→∞

E
(
(1− (aξ)n)(1− (aqξ)n) · · · (1− (aqm−1ξ)n)

(aξ ; q)∞

)
= E

(
1

(aξ ; q)∞

)
.

Employing (2-6), we get the right hand side of (5-2):

(5-3) E
(

1
(aξ ; q)∞

)
=

1
(a, ax; q)∞

.

On the other hand, observing that

(1− (aξ)n)(1− (aqξ)n) · · · (1− (aqm−1ξ)n)

(aξ ; q)∞

=
1− (aξ)n

1− aξ
·

1− (aqξ)n

1− aqξ
· · ·

1− (aqm−1ξ)n

1− aqm−1ξ
·

1
(aqmξ ; q)∞

=

n−1∑
y1=0

(aξ)y1 ·

n−1∑
y2=0

(aqξ)y2 · · ·

n−1∑
ym=0

(aqm−1ξ)ym ·
1

(aqmξ ; q)∞

=

∑
0≤y1,...,ym≤n−1

q y2+2y3+···+(m−1)ym ay1+···+ym ·
ξ y1+···+ym

(aqmξ ; q)∞
,
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we have

E
(
[1− (aξ)n][1− (aqξ)n] · · · [1− (aqm−1ξ)n]

(aξ ; q)∞

)
=

∑
0≤y1,...,ym≤n−1

q y2+2y3+···+(m−1)ym ay1+···+ym E
(
ξ y1+···+ym

(aqmξ ; q)∞

)
=

1
(aqm, axqm; q)∞

×

∑
0≤y1,...,ym≤n−1

q y2+2y3+···+(m−1)ym ay1+···+ym ϕ
(aqm)
y1+···+ym

(x |q).

Hence, we get the left hand side of (5-2):

(5-4) lim
n→∞

E
(
[1− (aξ)n][1− (aqξ)n] · · · [1− (aqm−1ξ)n]

(aξ ; q)∞

)
=

1
(aqm, axqm; q)∞

×

∑
y1,...,ym≥0

q y2+2y3+···+(m−1)ym ay1+···+ym ϕ
(aqm)
y1+···+ym

(x |q).

Substituting (5-3) and (5-4) into (5-2) gives

(5-5)
∑

y1,...,ym≥0

q y2+2y3+···+(m−1)ym ay1+···+ym ϕ
(aqm)
y1+···+ym

(x |q)= 1
(a, ax; q)m

.

Using Theorem 3.1 with a = qm and x = ax gives

(5-6)
∞∑

k=0

[m+k−1
k

]
ak xk
=

1
(ax; q)m

.

Substituting (5-6) into (5-5) and comparing the coefficients of xn gives (5-1). �

6. An extension of the Rogers–Ramanujan identities

The well-known Rogers–Ramanujan identities are

∞∑
m=0

qm2

(q; q)m
=

1
(q, q4; q5)∞

,(6-1)

∞∑
m=0

qm2
+m

(q; q)m
=

1
(q2, q3; q5)∞

.(6-2)

There are many proofs of this beautiful pair of identities. Baxter’s [1982] is
based on the statistical mechanics, and the proof of Lepowsky and Milne [1978]
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uses the character formula on an infinite dimensional Lie algebra. We use our
probability distribution to derive an extension of the Rogers–Ramanujan identities.

Theorem 6.1. We have
∞∑

m=n

qm2

(q; q)m−n
=

1
(q; q)∞

×

(
qn
+

∞∑
k=1

n∑
l=0

[n
l

](−1)k(qk
; q)l(q; q)2k

(1− qk)(q; q)2k+1−l
q5(k

2)+k(n+2−l)(1− q2k
+ q4k+1)

−

∞∑
k=1

n∑
l=0

[n
l

](−1)k(qk
; q)l(q; q)2k

(1− qk)(q; q)2k+1−l
q5(k

2)+k(n+4−l)+1−l
)
.

Proof. By Watson’s q-Whipple transformation formula [Watson 1929],

8φ7

(
a, q
√

a,−q
√

a, b, c, d, e, q−n
√

a,−
√

a, qa/b, qa/c, qa/d, qa/e, qn+1a
; q,

q2+na2

bcde

)
=
(qa, qa/bc; q)n
(qa/b, qa/c)n

4φ3

(
q−n, b, c, qa/de

qa/d, qa/e, q−nbc/a
; q, q

)
.

Letting b, c, d, e, n→∞ in this equation gives

∞∑
m=0

qm2
am

(q; q)m
=

1
(aq; q)∞

+

∞∑
k=1

(−1)kq5(k
2)+2k

(q; q)k
·

a2k

(aqk; q)∞

−

∞∑
k=1

(−1)kq5(k
2)+4k

(q; q)k
·

a2k+1

(aqk; q)∞
for |a| ≤ 1.

Then letting a = ξ gives

∞∑
m=0

qm2
ξm

(q; q)m
=

1
(ξq; q)∞

+

∞∑
k=1

(−1)kq5(k
2)+2k

(q; q)k
·

ξ 2k

(ξqk; q)∞

−

∞∑
k=1

(−1)kq5(k
2)+4k

(q; q)k
·

ξ 2k+1

(ξqk; q)∞
.

where ξ is a random variable with distribution W (x; q) and −1< x < 0. Applying
the expectation operator E to both sides of the above, we get

(6-3) E
( ∞∑

m=0

qm2
ξm

(q; q)m

)
= E

(
1

(ξq; q)∞

)
+E

( ∞∑
k=1

(−1)kq5(k
2)+2k

(q; q)k
·

ξ 2k

(ξqk; q)∞

)

− E
( ∞∑

k=1

(−1)kq5(k
2)+4k

(q; q)k
·

ξ 2k+1

(ξqk; q)∞

)
.
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Since |qm2
ξm/(q; q)m |≤qm2

/(q; q)m and the series
∑
∞

m=0 qm2
/(q; q)m converges

absolutely, using Lebesgue’s dominated convergence theorem and (2-6) gives the
left hand side of (6-3):

(6-4) E
( ∞∑

m=0

qm2
ξm

(q; q)m

)
=

∞∑
m=0

qm2
E{ξm

}

(q; q)m
=

∞∑
m=0

qm2
hm(x |q)
(q; q)m

.

On the other hand, using (2-6) gives

E
( 1
(ξq; q)∞

)
=

1
(q, qx; q)∞

,(6-5)

E
(

ξ 2k

(ξqk; q)∞

)
=

1
(qk, qk x; q)∞

ϕ
(qk)
2k (x |q),(6-6)

E
(

ξ 2k+1

(ξqk; q)∞

)
=

1
(qk, qk x; q)∞

ϕ
(qk)
2k+1(x |q).(6-7)

It is easy to see that∣∣∣∣(−1)kq5(k
2)+4k

(q; q)k
·

ξ 2k+1

(ξqk; q)∞

∣∣∣∣≤ ∣∣∣∣(−1)kq5(k
2)+2k

(q; q)k
·

ξ 2k

(ξqk; q)∞

∣∣∣∣≤ q5(k
2)+2k

(q; q)k(q; q)∞
,

and the series
∑
∞

k=0 q5(k
2)+2k/((q; q)k(q; q)∞) is converges absolutely. Using

Lebesgue’s dominated convergence theorem and (6-5), (6-6) and (6-7) gives the
right hand side of (6-3):

E
( 1
(ξq; q)∞

)
+ E

( ∞∑
k=1

(−1)kq5(k
2)+2k

(q; q)k
·

ξ 2k

(ξqk; q)∞

)

−E
( ∞∑

k=1

(−1)kq5(k
2)+4k

(q; q)k
·

ξ 2k+1

(ξqk; q)∞

)

= E
( 1
(ξq; q)∞

)
+

∞∑
k=1

(−1)kq5(k
2)+2k

(q; q)k
E
(

ξ 2k

(ξqk; q)∞

)

−

∞∑
k=1

(−1)kq5(k
2)+4k

(q; q)k
E
(

ξ 2k+1

(ξqk; q)∞

)

=
1

(q, qx; q)∞
+

∞∑
k=1

(−1)kq5(k
2)+2k

(q; q)k
1

(qk, qk x; q)∞
ϕ
(qk)
2k (x |q)

−

∞∑
k=1

(−1)kq5(k
2)+4k

(q; q)k
1

(qk, qk x; q)∞
ϕ
(qk)
2k+1(x |q)
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=
1

(q, qx; q)∞

+
1

(q, x; q)∞

∞∑
k=1

(−1)k(x; q)k
1− qk q5(k

2)+2k(ϕ(qk)
2k (x |q)− q2kϕ

(qk)
2k+1(x |q)

)
.

Substituting this and (6-4) into (6-3) gives

∞∑
m=0

qm2
hm(x |q)
(q; q)m

=
1

(q, qx; q)∞

+
1

(q, x; q)∞

∞∑
k=1

(−1)k(x; q)k
1− qk q5(k

2)+2k(ϕ(qk)
2k (x |q)− q2kϕ

(qk)
2k+1(x |q)

)
,

where −1 < x < 0. By analytic continuation, we may replace the assumption
−1< x < 0 by |x |< 1.

Substituting the expansion

1
(z; q)∞

=

∞∑
l=0

zl

(q; q)l

into the last, we have

∞∑
m=0

qm2
hm(x |q)
(q; q)m

=
1

(q; q)∞

∞∑
l=0

ql x l

(q; q)l

+
1

(q; q)∞

∞∑
k=1

∞∑
l=0

(
qkl x l

(q; q)l
·
(−1)kq5(k

2)+2k

1− qk

(
ϕ
(qk)
2k (x |q)− q2kϕ

(qk)
2k+1(x |q)

))
.

Comparing the coefficients of xn in this identity gives

∞∑
m=n

qm2[m
n

]
(q; q)m

=
qn

(q; q)∞(q; q)n

+
1

(q; q)∞

∞∑
k=1

n∑
l=0

(−1)k(qk
; q)l

(1− qk)(q; q)n−l
q5(k

2)+k(n+2−l)
([2k

l

]
+ q2k

[2k+1
l

])
,

which can be written as Theorem 6.1. �

The Rogers–Ramanujan identities are special cases of Theorem 6.1. Letting
n = 0 and then applying the Jacobi triple product identity [Andrews et al. 1999]

∞∑
n=−∞

(−1)nq(
n
2)xn
= (q, x, q/x; q)∞
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leads to the Rogers–Ramanujan identity (6-1). In fact, when n = 0, we have
∞∑

m=0

qm2

(q; q)m
=

1
(q; q)∞

(
1+

∞∑
k=1

(−1)k(1+ qk)q5(k
2)+2k

)

=
1

(q; q)∞

∞∑
k=−∞

(−1)kq5(k
2)+2k

=
(q5, q2, q3

; q5)∞

(q; q)∞
=

1
(q, q4; q5)∞

.

Similarly, the case n = 1 of Theorem 6.1 results in another identity due to Rogers
and Ramanujan:

∞∑
m=0

qm2
+m

(q; q)m
=

∞∑
m=0

qm2

(q; q)m
−

∞∑
m=1

qm2

(q; q)m−1

=
1

(q; q)∞

(
1+

∞∑
k=1

(1− q2k+1)q5(k
2)+4k

)

=
1

(q; q)∞

∞∑
k=−∞

(−1)kq5(k
2)+4k

=
(q, q4, q5

; q5)∞

(q; q)∞
=

1
(q2, q3; q5)∞

.
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