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We study the orthogonal quantum groups satisfying the “easiness” assump-
tion axiomatized in our previous paper, with the construction of some new
examples and with some partial classification results. The conjectural con-
clusion is that the easy quantum groups consist of the previously known
14 examples, plus a hypothetical multiparameter “hyperoctahedral series”,
related to the complex reflection groups H s

n = Zs o Sn. We also discuss the
general structure and the computation of asymptotic laws of characters for
the new quantum groups that we construct.

Introduction

One of the strengths of the theory of compact Lie groups is that these objects can
be classified. It is indeed extremely useful to know that the symmetry group of
a classical or a quantum mechanical system falls into an advanced classification
machinery, and applications of this method abound in mathematics and physics.

The quantum groups were introduced by Drinfel’d [1987] and Jimbo [1985],
in order to deal with quite complicated systems, basically coming from number
theory or quantum mechanics, whose symmetry groups are not “classical”. There
are now available several extensions and generalizations of the Drinfel’d–Jimbo
construction, all of them more or less motivated by the same philosophy. A brief
account of the whole story, focusing on constructions that are of interest here, is
as follows:

(1) Let G⊂Un be a compact group, and consider the algebra A=C(G). The matrix
coordinates ui j ∈ A satisfy the commutation relations ab = ba. The original idea
of Drinfel’d and Jimbo, further processed by Woronowicz [1987], was that these
commutation relations are in fact the q = 1 case of the q-commutation relations
ab = qba, where q > 0 is a parameter. The algebra A itself appears then as the
q = 1 case of an algebra Aq . While Aq is no longer commutative, we can formally
write A = C(Gq), where Gq is a quantum group.

MSC2000: primary 46L65; secondary 20F55, 46L54.
Keywords: quantum group, noncrossing partition.
Banica was supported by the ANR grants “Galoisint” and “Granma”. Speicher was supported by a
Discovery grant from NSERC.

1



2 TEODOR BANICA, STEPHEN CURRAN AND ROLAND SPEICHER

(2) Wang [1995; 1998] proposed an interesting modification of this construction.
His idea was to construct a new algebra A+, by somehow “removing” the com-
mutation relations ab = ba. Once again we can formally write A+ = C(G+),
where G+ is a so-called free quantum group. This construction, while originally
coming only with a vague motivation from mathematical physics, has been studied
intensively in the last 15 years. Among the partial conclusions that we have so far
is the fact that the combinatorics of G+ is definitely interesting, and should have
something to do with physics. In other words, G+, while being by definition a
quite abstract object, is probably the symmetry group of something very concrete.

(3) Several variations of Wang’s construction appeared in recent years, notably in
connection with the construction and classification of intermediate quantum groups
G⊂G∗⊂G+. For instance in the case G=On , it was shown in our previous paper
[BS 2009] that the commutation relations ab = ba can be successfully replaced
with the so-called half-commutation relations abc= cba, in order to obtain a new
quantum group O∗n . Some other commutation-type relations, for instance of type
(ab)s = (ba)s , will be described in the present paper.

(4) As a conclusion, the general idea that tends to emerge from these considera-
tions is that a very large class of compact quantum groups should appear in the
following way: start with a compact Lie group G ⊂ Un; build a noncommutative
version of C(G) by replacing the commutation relations ab= ba by some weaker
relations; and deform this latter algebra, by using a positive parameter q > 0, or
more generally a whole family of such positive parameters.

This was the motivating story. In practice, now, while the construction (1) is
now basically understood, thanks to about 25 years of effort, (2) is just at the very
beginning of an axiomatization, (3) is still at the level of pioneering examples, and
(4) is just a dream. As for the possible applications to physics, basically nothing
is known so far, but the hope for such an application increases as more and more
interesting formulas emerge from the study of compact quantum groups.

This paper, a continuation of [BS 2009], will advance on the classification work
there, for the easy quantum groups in the orthogonal case, and will present a de-
tailed study of the new quantum groups we find.

The objects of interest will be the compact quantum groups with Sn ⊂G ⊂ O+n .
Here O+n is the free analogue of the orthogonal group, constructed by Wang [1995],
and for the compact quantum groups we use Woronowicz’s formalism [1987].

As in [BS 2009] we restrict attention to the “easy” case. The easiness assump-
tion, essential to our considerations, roughly states that the tensor category of G
should be spanned by certain partitions, coming from the tensor category of Sn .



CLASSIFICATION RESULTS FOR EASY QUANTUM GROUPS 3

This might look like a quite technical condition. The point, though, is that impos-
ing this technical condition is the price to pay for restricting attention to the “truly
easy” case.

As explained in [BS 2009], our motivating belief is that “any result that holds
for Sn, On should have a suitable extension to all easy quantum groups”. This is of
course a quite vague statement, whose target is actually informed by some results
at the borderline between representation theory and probability. Here, however, we
would rather focus on the classification problem. The further development of our
“Sn, On philosophy”, leading perhaps to some interesting applications, will be left
to future papers. See Section 8 for more comments in this direction.

So, for the purposes of the present work, the easy quantum groups can be just
thought of as being a carefully chosen collection of basic objects of the theory.

There are 14 natural examples of easy quantum groups, all but one described in
[BS 2009], and the remaining one to be studied in detail in this paper. In addition,
there are at least two infinite series, once again to be introduced here. The list is
as follows:

(1) Groups: On, Sn, Hn, Bn, S′n, B ′n .

(2) Free versions: O+n , S+n , H+n , B+n , S′+n , B ′+n .

(3) Half liberations: O∗n , H∗n .

(4) Hyperoctahedral series: H (s)
n , H [s]n .

This list doesn’t cover all the easy quantum groups, but we will present here
some partial classification results, with the conjectural conclusion that the full list
should consist of (1)–(3), and of a multiparameter series unifying (4). We will also
investigate the new quantum groups that we find, by using various techniques from
[Banica et al. 2007a; 2007b; BS 2009; Banica and Vergnioux 2009a; 2009b].

As already mentioned, we expect the list above to be a useful, fundamental
starting point for a number of representation theory and probability considerations.
We also expect that the new quantum groups that we find this way will lead to some
interesting applications. We have several projects here, to be discussed at the end
of the paper.

The paper is organized as follows. In Sections 1 and 2 we recall our previous
results from [BS 2009], and we study the quantum group H∗n by using techniques
from [BS 2009; Banica and Vergnioux 2009b]. In Sections 3 and 4, we introduce
the one-parameter series, and we study their basic properties by using techniques
from [Banica et al. 2007a; Banica and Vergnioux 2009a]. In Sections 5 and 6,
we state and prove the classification results, by making heavy use of the capping
method in [BS 2009; Banica and Vergnioux 2009b]. Sections 7 and 8 contain the
computation of asymptotic laws of characters, and some concluding remarks.
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Notation

As in [BS 2009], the basic object we consider will be a compact quantum group G.
Concrete examples include the usual compact groups G and, to some extent, the
duals of discrete groups 0̂. In the general case, G is just a fictional object, which
exists only via its associated Hopf C∗-algebra of “complex continuous functions”,
denoted A = C(G).

For simplicity of notation, we would rather use the quantum group G instead
of the Hopf algebra A. For instance

∫
G ui1 j1 · · · uik jk du will denote the complex

number obtained by applying the Haar functional ϕ : A→ C to the well-defined
quantity ui1 j1 · · · uik jk ∈ A.

We will use the quantum group notation depending on the setting; in cases where
this can lead to confusion, we will switch back to the Hopf algebra notation.

1. Easy quantum groups

We briefly recall some notions and results from [BS 2009]. This material is here
mostly for fixing the formalism and the notation.

Consider first a compact group satisfying Sn ⊂ G ⊂ On . That is, G ⊂ On is
a closed subgroup containing the subgroup Sn ⊂ On formed by the permutation
matrices.

Let u, v be the fundamental representations of G, Sn . By functoriality we have
an inclusion Hom(u⊗k, u⊗l)⊂Hom(v⊗k, v⊗l) for any k and l. On the other hand,
the Hom-spaces for v are well known: they are spanned by operators Tp, with p
belonging to P(k, l), the set of partitions between k points and l points. More
precisely, if e1, . . . , en denotes the standard basis of Cn , the formula for Tp is

(1-1) Tp(ei1 ⊗ · · · ⊗ eik )=
∑
j1··· jl

δp

(i1 · · · ik

j1 · · · jl

)
e j1 ⊗ · · · ⊗ e jl

Here the δ symbol on the right is 0 or 1, depending on whether the indices “fit” or
not, that is, δ = 1 if all blocks of p contain equal indices, and δ = 0 if not.

Thus the space Hom(u⊗k, u⊗l) consists of linear combinations of operators of
type Tp with p ∈ P(k, l).

We call G easy if its tensor category is spanned by partitions.

Definition 1.1. We say a compact group Sn ⊂ G ⊂ On is easy if there exist sets
D(k, l)⊂ P(k, l) such that Hom(u⊗k, u⊗l)= span(Tp | p ∈ D(k, l)) for any k, l.

It follows from the axioms of tensor categories that the collection of sets D(k, l)
must be closed under certain categorical operations, notably vertical and horizontal
concatenation, and upside-down turning. The corresponding algebraic structure



CLASSIFICATION RESULTS FOR EASY QUANTUM GROUPS 5

formed by the sets D(k, l), axiomatized in [BS 2009], will be called category of
crossing partitions.

We recall that a matrix is called monomial if it has exactly one nonzero entry
on each row and each column. The basic examples are the permutation matrices.

Definition 1.2. We consider the following groups:

(1) On , the orthogonal group;

(2) Sn , the symmetric group, formed by the permutation matrices

(3) Hn , the hyperoctahedral group, formed by monomial matrices with±1 entries;

(4) Bn , the bistochastic group, formed by orthogonal matrices with sum 1 on each
row;

(5) S′n = Z2× Sn , the group formed by the permutation matrices times ±1;

(6) B ′n = Z2× Bn , the group formed by the bistochastic matrices times ±1.

It follows from definitions that all these groups satisfy Sn ⊂ G ⊂ On . Among
all these groups, only On and Sn are “irreducible”, because we have canonical
isomorphisms Hn = Z2 o Sn and Bn ' On−1. See [BS 2009].

The partitions in P(k, l) with k+ l even are themselves called even.

Theorem 1.3 [BS 2009]. The only easy groups are the ones in Definition 1.2, and
the corresponding categories of crossing partitions are as follows:

(1) Po, all pairings;

(2) Ps , all partitions;

(3) Ph , partitions with blocks of even size;

(4) Pb, singletons and pairings;

(5) Ps′ , all partitions (even part);

(6) Pb′ , singletons and pairings (even part).

The second assertion follows from some well-known results about the groups
On , Sn and their versions, and the first can be proved by carefully manipulating
the categorical axioms.

We now discuss the free analogue of the above results. Let O+n and S+n be
respectively the free orthogonal and symmetric quantum groups corresponding to
the Hopf algebras Ao(n) and As(n) constructed by Wang [1995; 1998]. Here and
in what follows, we use Woronowicz’s Hopf algebra formalism [1987] and its
subsequent quantum group interpretation.

We have Sn⊂ S+n , so by functoriality the Hom-spaces for S+n appear as subspaces
of the corresponding Hom-spaces for Sn . The Hom-spaces for S+n have in fact a
very simple description. They are spanned by the operators Tp with P ∈NC(k, l),
the set of noncrossing partitions between k upper points and l lower points.
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Definition 1.1. has a free analogue.

Definition 1.4. A compact quantum group S+n ⊂ G ⊂ O+n is called free if there
exist sets D(k, l) ⊂ NC(k, l) such that Hom(u⊗k, u⊗l) = span(Tp | p ∈ D(k, l))
for any k, l.

In this definition, the word “free” has a quite subtle meaning, to be fully justified
later on. Forn now, let us note that the passage from Definition 1.1 to Definition 1.4
is basically done by restricting attention to the noncrossing partitions, which, ac-
cording to [Speicher 1994], should indeed lead to freeness.

As in the classical case, the sets of partitions D(k, l)must be stable under certain
categorical operations, coming this time from the axioms in [Woronowicz 1988].
The corresponding algebraic structure, axiomatized in [BS 2009], is called the
category of noncrossing partitions.

We denote by H+n the hyperoctahedral quantum group constructed in [Banica
et al. 2007b], and by B+n , S′+n and B ′+n the free analogues of the groups Bn , S′n
and B ′n constructed in [BS 2009].

Definition 1.5. We consider the following quantum groups, all given with the
defining relations between the basic coordinates ui j ∈ C(G):

(1) O+n , orthogonality (ui j = u∗i j and ut
= u−1);

(2) S+n , magic condition (all rows and columns of u are partitions of unity);

(3) H+n , cubic condition (orthogonality and ui j uik = u j i uki = 0 for j 6= k);

(4) B+n , bistochastic condition (orthogonality and on each row the sum is 1);

(5) S′+n , cubic condition, with the same sum on rows and columns;

(6) B ′+n , orthogonality, with the same sum on rows and columns;

Perhaps the very first observation is that for any of the groups G appearing in
Definition 1.2 we have C(G) = C(G+)/I , where I ⊂ C(G+) is the commutator
ideal. In other words, G+ is indeed a noncommutative version of G. We refer to
[BS 2009] and to its predecessors [Banica et al. 2007b; Wang 1995; 1998] for the
whole story, and for a careful treatment of all this material.

The free analogue of Theorem 1.3 is this:

Theorem 1.6 [BS 2009]. Definition 1.5 lists the only free quantum groups. The
corresponding categories of noncrossing partitions are as follows:

(1) NCo, all noncrossing pairings;

(2) NCs , all noncrossing partitions;

(3) NCh , noncrossing partitions with blocks of even size;

(4) NCb, singletons and noncrossing pairings;
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(5) NCs′ , all noncrossing partitions (even part);

(6) NCb′ , singletons and noncrossing pairings (even part).

The proof of this theorem follows that of Theorem 1.3. The symmetry between
Theorems 1.3 and 1.6 corresponds to the liberation operation for orthogonal Lie
groups, further investigated in [BS 2009].

2. Half-liberation

We consider now the general situation where we have a compact quantum group
satisfying Sn ⊂ G ⊂ O+n . Once again, we can ask for the tensor category of G to
be spanned by certain partitions, coming from the tensor category of Sn .

Definition 2.1. A compact quantum group Sn ⊂ G ⊂ O+n is called easy if there
exist sets D(k, l)⊂ P(k, l) such that Hom(u⊗k, u⊗l)= span(Tp | p ∈ D(k, l)) for
any k, l.

This definition generalizes at the same time Definitions 1.1 and 1.4. Indeed, the
easy quantum groups Sn ⊂ G ⊂ O+n satisfying the extra assumption G ⊂ On are
the easy groups, and those satisfying the extra assumption S+n ⊂ G are the free
quantum groups. This follows from definitions; see [BS 2009].

Once again, the sets of partitions D(k, l)must be stable under certain categorical
operations coming from the axioms in [Woronowicz 1988]. The corresponding
algebraic structure, axiomatized in [BS 2009], will be called simply “category of
partitions”.

We already know that the easy quantum groups include the 6 easy groups and
the 6 free quantum groups. In general, the world of easy quantum groups is quite
rigid, but we can produce some more examples in the following way.

Definition 2.2. The half-liberated version of an easy group G is the quantum
group G∗ given by C(G∗) = C(G+)/I , where I is the ideal generated by the
half-commutation relations abc = cba, imposed on the basic matrix coordinates
ui j ∈ C(G+).

In other words, instead of removing the commutativity relations of type ab= ba
from the standard presentation of C(G), which would produce the algebra C(G+),
we replace these commutativity relations by the weaker relations abc = cba.

To study the half-liberated versions, we need a categorical interpretation of the
relations abc = cba. Let us agree that the upper points of a partition p ∈ P(k, l)
are labeled 1, 2, . . . , k, and the lower points are labeled 1′, 2′, . . . , l ′.

Lemma 2.3 [BS 2009]. For a compact quantum group G ⊂ O+n , the following are
equivalent:

(1) The basic coordinates ui j satisfy abc = cba.
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(2) Tp belongs to End(u⊗3), where p = (13′)(22′)(3′1).

Proof. By the definition (1-1) of Tp, we have Tp(ea ⊗ eb⊗ ec)= ec⊗eb⊗ea . This
gives the formulas

Tpu⊗3(ea ⊗ eb⊗ ec)=
∑
i jk

ek ⊗ e j ⊗ ei ⊗ uiau jbukc

u⊗3Tp(ea ⊗ eb⊗ ec)=
∑
i jk

ei ⊗ e j ⊗ ek ⊗ uicu jbuka

The identification of the right terms gives the equivalence in the statement. �

We now go back to the quantum groups G∗. Observe first that we have inclu-
sions G ⊂ G∗ ⊂ G+. As pointed out in [BS 2009], the cases G = Sn, Bn, S′n, B ′n
are not interesting, because here we have G = G∗. This can be checked by a
direct computation with generators and relations, or with the partition p appearing
in Lemma 2.3, and will follow as well from the general classification results in
Sections 5 and 6.

In the cases G = On, Hn , however, we obtain new quantum groups. Label the
legs of each partition by 1, 2, 3, . . . , clockwise starting from top left.

Theorem 2.4. The half-liberated versions of On and Hn are easy quantum groups,
and the corresponding categories of partitions are

(1) Eo, pairings with each string connecting an odd number to an even number;

(2) Eh , partitions with each block having the same number of odd and even legs.

Proof. Our claim is that Eo and Eh are categories of partitions, corresponding
respectively to the quantum groups O∗n and H∗n .

(1) Here Eo is nothing but the set of pairings with each string having an even
number of crossings, and the result was proved in [BS 2009]. The idea is that Eo

is generated in the categorical sense by the partition p appearing in Lemma 2.3.

(2) The fact that Eh is indeed a category of partitions follows from definitions.
Thinking of each block as being “balanced” with respect to the odd and even labels,
we see that the categorical operations preserve the balancing. For instance when
checking the stability under composition, which is the crucial axiom, we see that
given a connected union of blocks of the two partitions that are composed, the
“balancing in the middle” is subject to canceling.

The fact that Eh corresponds to the above quantum group H∗n can be checked
in several ways. Consider for instance the diagram

O∗n ⊂ O+n
∪ ∪

H∗n ⊂ H+n .
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We know from definitions that H∗n is obtained by putting together the relations for
O∗n and for Hn , so we have the quantum group equality H∗n = O∗n ∩ H+n . Now by
the general properties of Tannakian duality, it follows that the category of partitions
of H∗n is generated by the category of partitions for H+n , namely the noncrossing
partitions having even blocks, and by the half-liberation partition p in Lemma 2.3.

This category is by definition included into Eh , and the reverse inclusion can be
checked as well by a straightforward computation. �

The quantum group O∗n , appearing first in [BS 2009], was further investigated
in [Banica and Vergnioux 2009b]. To get some insight into the structure of H∗n , we
will use similar methods.

Definition 2.5. The projective version of a quantum group G⊂U+n is the quantum
group PG⊂U+n2 , having as basic coordinates the elements vi j,kl = uiku∗jl .

In other words, C(PG)⊂C(G) is the algebra generated by the elements vi j,kl =

uiku∗jl . In the case where G is a classical group we recover the well-known formula
PG = G/(G ∩ T ), where T ⊂ Un are the unitary diagonal matrices. We refer to
[Banica and Vergnioux 2009b] for a full discussion and a list of concrete examples.

Consider now the compact group Kn = T o Sn consisting of monomial (that is,
permutation-like) matrices, with elements on the unit circle T as nonzero entries.

The next result, whose first claim is from [Banica and Vergnioux 2009b], will
play a key role in the study of H∗n and the other quantum groups introduced here.

Theorem 2.6. The projective versions of half-liberations are as

(1) PO∗n = PUn , and

(2) PH∗n = PKn .

Proof. The first claim is proved using that the partitions for PO∗n and PUn are the
same. For the second, we use a similar method. Observe first that from H∗n ⊂ O∗n ,
we get PH∗n ⊂ PO∗n = PUn , so PH∗n is indeed a classical group.

To compute this group, consider the diagram

Kn ⊂ U+n
∪ ∪

Hn ⊂ H∗n .

We fix k, l ≥ 0 and consider the formal words α = (u⊗ u)⊗k and β = (u⊗ u)⊗l .
Our claim is that the corresponding spaces Hom(α, β) for our 4 quantum groups
appear as span of the operators Tp, with p belonging to the following 4 sets of
partitions:

Eh(2k, 2l) ⊃ Eo(2k, 2l)
∪ ∪

Ph(2k, 2l) ⊃ Eh(2k, 2l).
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Indeed, the bottom left set is a good one, by Theorem 1.3. The bottom right set is
also a good one, by Theorem 2.4. For the top right set, this follows from the equality
PO∗n = PUn and from Theorem 2.4, and for full details see [Banica and Vergnioux
2009b]. As for the top left set, this follows for instance from the various results in
[Banica et al. 2007a; Banica 2008; Banica and Vergnioux 2009a] regarding K+n ,
after “adding a crossing”. A direct proof can be obtained as well, by working out
the categorical interpretation of the various relations defining Kn .

In summary, we have computed the relevant diagrams for the projective versions
of our four algebras. So, let us look now at these projective versions:

PKn ⊂ PU+n
∪ ∪

PHn ⊂ PH∗n .

The quantum groups PH∗n and PKn appear as subgroups of the same quantum
group, namely PU+n , and the discussion above tells us that these subgroups have
the same diagrams. The same argument of [Banica and Vergnioux 2009b] tells us
that PH∗n = PKn . �

3. The hyperoctahedral series

We now introduce a new series of quantum groups, H (s)
n with s ∈ {2, 3, . . . ,∞}.

These will intermediate between H (2)
n = Hn and H (∞)

n = H∗n .
The quantum group H (s)

n is obtained from H∗n by imposing the s-commutation
condition abab · · · = baba · · · (words of length s) on the basic coordinates ui j .

Definition 3.1. C(H (s)
n ) is the universal C∗-algebra generated by n2 self-adjoint

variables ui j , subject to the relations

(1) (orthogonality) uut
= ut u = 1, where u = (ui j ) and ut

= (u j i );

(2) (cubic relations) ui j uik = u j i uki = 0 for any i and any j 6= k;

(3) (half-commutation) abc = cba for any a, b, c ∈ {ui j };

(4) (s-mixing relation) abab · · · = baba · · · (length s words) for any a, b ∈ {ui j }.

That H (s)
n is a quantum group follows from the elementary fact that the cubic

relations are of Hopf type, that is, they allow the construction of the Hopf algebra
maps 1, ε, S. This can be checked by a routine computation.

At s = 2, the s-mixing is the usual commutation ab = ba. Since this relation is
stronger than the half-commutation abc= cba, we are led to the algebra generated
by n2 commuting self-adjoint variables satisfying (1) and (2), which is C(Hn).

In the case s =∞, the s-mixing relation disappears by definition. Thus we are
led to the algebra defined by the relations (1)–(3), which is C(H∗n ).
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Summarizing, we have H (2)
n = Hn and H (∞)

n = H∗n , as previously claimed. In
what follows we present a detailed study of H (s)

n .

Lemma 3.2. For a compact quantum group G ⊂ H∗n , the following are equivalent:

(1) The basic coordinates ui j satisfy abab · · · = baba · · · (length s words).

(2) Tp belongs to End(u⊗s), where p = (135 · · · 2′4′6′ · · ·)(246 · · · 1′3′5′ · · ·).

Proof. According to the definition of Tp given in (1-1), the operator associated to
the partition in the statement is given by the formula

Tp(ea1 ⊗ eb1 ⊗ ea2 ⊗ eb2 ⊗ · · · )= δ(a)δ(b)eb⊗ ea ⊗ eb⊗ ea ⊗ · · · .

Here we use the convention δ(a) = 1 if all the indices ai are equal and δ(a) = 0
if not, along with a similar convention for δ(b). The indices a and b appearing on
the right are the common values of the a indices and b indices, respectively, in the
case δ(a)= δ(b)= 1, and are irrelevant quantities in the remaining cases.

This gives the formulas

Tpu⊗s(ea1⊗eb1⊗ea2⊗ · · · )=
∑

i j

ei⊗e j⊗ei⊗ · · · ⊗uia1u jb1uia2 · · · ,

u⊗s Tp(ea1⊗eb1⊗ea2⊗ · · · )= δ(a)δ(b)
∑

i j

ei1⊗e j1⊗ei2⊗ · · · ⊗ui1bu j1aui2b · · · .

Here the upper sum is over all indices i and j , and the lower sum is over all
multiindices i = (i1, . . . , is) and j = ( j1, . . . , js). The identification of the terms
on the right, after a suitable relabeling of indices, gives the equivalence in the
statement. �

We now work out the s-analogue of Theorem 2.4.

Theorem 3.3. H (s)
n is an easy quantum group, and its associated category E s

h is
that of the s-balanced partitions, that is, partitions satisfying the conditions that

(1) the total number of legs is even, and

(2) in each block, the number of odd and even legs are equal, modulo s.

Proof. At s = 2 the first condition implies the second one, so here we simply get
the partitions having an even number of legs, corresponding to Hn . At s =∞ we
get the partitions that are balanced, in the sense of the proof of Theorem 2.4, which
are known from there to correspond to the quantum group H∗n .

We first claim that E s
h is a category. This follows simply by adapting the s =∞

argument in the proof of Theorem 2.4, just by adding “modulo s” everywhere.
It remains to prove that this category corresponds to H (s)

n . This follows from
the fact that the partition p of Lemma 3.2 generates the category of s-balanced
partitions, as one can check by a routine computation. �



12 TEODOR BANICA, STEPHEN CURRAN AND ROLAND SPEICHER

Consider now the complex reflection group H s
n =Zs oSn , consisting of monomial

matrices having the s-roots of unity as nonzero entries. Observe that we have
PH(s)

n = H s
n/T.

We have the following s-analogue of Theorem 2.6.

Theorem 3.4. PH(s)
n = PHs

n .

Proof. This statement holds at s = 2, because here we have H (2)
n = H 2

n = Hn; it
holds at s =∞ due to Theorem 2.6.

In the general case, it follows by adapting the proof of Theorem 2.6. Observe
first that from H (s)

n ⊂ H∗n we get PH(s)
n ⊂PH∗n =PKn , so PH(s)

n is a classical group.
To compute this group, consider the diagram

H s
n ⊂ U+n
∪ ∪

Sn ⊂ H (s)
n .

The corresponding sets of partitions, as in the proof of Theorem 2.6, are

E s
h(2k, 2l) ⊃ Eo(2k, 2l)
∪ ∪

P(2k, 2l) ⊃ E s
h(2k, 2l).

The bottom left set is a good one, by Theorem 1.3, as is bottom right one, by
Theorem 3.3. For the top right set, this was already discussed in the proof of
Theorem 2.6. For the top left set, this follows either from the results in [Banica
et al. 2007a; Banica and Vergnioux 2009a] regarding the free version H s+

n , after
adding a crossing, or from the s =∞ computation in the proof of Theorem 2.6. A
direct proof can be obtained as well.

We now look at the projective versions of the above quantum groups:

PHs
n ⊂ PU+n
∪ ∪

PHn ⊂ PH(s)
n .

As in the proof of Theorem 2.6, we have two quantum subgroups having the same
diagrams, and we conclude that PH(s)

n = PHs
n . �

4. The higher hyperoctahedral series

We introduce a second one-parameter series of quantum groups, H [s]n with s in
{2, 3, . . . ,∞}, having as main particular case the group H [2]n = Hn .

Definition 4.1. C(H [s]n ) is the universal C∗-algebra generated by n2 self-adjoint
variables ui j , subject to the relations
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(1) (orthogonality) uut
= ut u = 1, where u = (ui j ) and ut

= (u j i ).

(2) (ultracubic relations) acb= 0 for any a 6= b on the same row or column of u.

(3) (s-mixing relation) abab · · · = baba · · · (length s words) for any a, b ∈ {ui j }.

That H [s]n is a quantum group follows from the elementary fact that the ultracubic
relations are of “Hopf type”, that is, that they allow the construction of the Hopf
algebra maps 1, ε and S. This can be checked by a routine computation.

We first compare the defining relations for H [s]n with those for H (s)
n . To deal

at the same time with the cubic and ultracubic relations, it is convenient to use a
statement about a unifying notion, k-cubic relations.

Lemma 4.2. For a compact quantum group G⊂O+n , the following are equivalent:

(1) The basic coordinates ui j satisfy the k-cubic relations ac1 · · · ckb = 0 for any
a 6= b on the same row or column of u, and for any c1, . . . , ck .

(2) Tp ∈ End(u⊗k+2), where p=(1, 1′, k+2, k+2′)(2, 2′)· · ·(k+1, k+1′).

Proof. According to (1-1), the operator associated to the partition in the statement
is given by

Tp(ea ⊗ ec1 ⊗ · · · ⊗ eck ⊗ eb)= δabea ⊗ ec1 ⊗ · · · ⊗ eck ⊗ ea.

This gives the formulas

Tpu⊗k+2(ea ⊗ ec1 ⊗ · · · ⊗ eck ⊗ eb)

=

∑
i j

ei ⊗ e j1 ⊗ · · · ⊗ e jk ⊗ ei ⊗ uiau j1c1 · · · u jkck uib,

u⊗k+2Tp(ea ⊗ ec1 ⊗ · · · ⊗ eck ⊗ eb

= δab

∑
i jl

ei ⊗ e j1 ⊗ · · · ⊗ e jk ⊗ el ⊗ uiau j1c1 · · · u jkck ula,

Here the sums are over all indices i and l, and over all multiindices j= ( j1, . . . , jk).
The identification of the terms on the right gives the desired equivalence. �

We can now establish the precise relationship between H [s]n and H (s)
n and also

show that no further series can appear in this way.

Proposition 4.3. For k ≥ 1, the k-cubic relations are all equivalent to the ultra-
cubic relations, and they imply the cubic relations.

Proof. This follows from two observations.
First, the k-cubic relations imply the 2k-cubic relations. Indeed, one can connect

two copies of the partition p in Lemma 4.2, by gluing them with two semicircles
in the middle, and the resulting partition is the one implementing the 2k-cubic
relations.
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Second, the k-cubic relations imply the (k−1)-cubic relations. By capping the
partition p in Lemma 4.2 with a semicircle at bottom right, we get a partition
p′ ∈ P(k + 2, k), and by rotating the upper right leg of this partition we get the
partition p′′ ∈ P(k+ 1, k+ 1) implementing the (k−1)-cubic relations. �

Proposition 4.3 shows that replacing in Definition 4.1 the ultracubic condition
by any of the k-cubic conditions with k ≥ 2 won’t change the resulting quantum
group. The other consequences of Proposition 4.3 are summarized as follows.

Proposition 4.4. The quantum groups H [s]n have the properties that

(1) H (s)
n ⊂ H [s]n ⊂ H+n ;

(2) H [2]n = H (s)
n = Hn at s = 2;

(3) H (s)
n 6= H [s]n at s ≥ 3.

Proof. All the assertions basically follow from Lemma 4.2:

(1) For the first inclusion, we need to show half-commutation plus cubic implies
ultracubic; this can be done by placing the half-commutation partition next to
the cubic partition, then using 2 semicircle cappings in the middle. The second
inclusion follows from Proposition 4.3, because the ultracubic relations (1-cubic
relations) imply the cubic relations (0-cubic relations).

(2) At s = 2 the s-commutation is the usual commutation ab = ba. Thus we are
led here to the algebra generated by n2 commuting self-adjoint variables satisfying
the cubic condition, which is C(Hn).

(3) Finally, H (s)
n 6= H [s]n will be a consequence of Theorem 4.5 below, because at

s≥3 the half-commutation partition p= (14)(25)(36) is s-balanced but not locally
s-balanced. �

Theorem 4.5. H [s]n is an easy quantum group, and its associated category is that
of the locally s-balanced partitions, that is, partitions having the property that each
of their subpartitions (that is, partitions obtained by removing certain blocks) are
s-balanced.

Proof. At s= 2 the locally s-balancing condition is automatic for a partition having
blocks of even size, so we get indeed the category corresponding to Hn .

In the general case, we first claim that the locally s-balanced partitions form a
category. This follows simply by adapting the proof of Theorem 3.3, just by adding
“locally” everywhere.

It remains to prove that this category corresponds to H [s]n . This follows from
Lemma 3.2 and from the fact that the partition generating the category of locally
balanced partitions, namely, p = (1346)(25), is nothing but the one implementing
the ultracubic relations, as one can check by a routine computation. �
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5. Classification: General strategy

In this section and the next we advance the classification work started in [BS 2009].
We will prove that the easy quantum groups constructed so far are the only ones,
modulo a hypothetical multiparameter “hyperoctahedral series”, unifying the series
constructed in the previous sections, and still waiting to be constructed.

Let G be an easy quantum group with category of partitions denoted Pg. It
follows from definitions that Pg∩NC is a category of noncrossing partitions; by the
results in Section 1, this latter category must come from a free quantum group K+.
Since NCk = Pg ∩NC is included into Pg, we have G ⊂ K+.

Definition 5.1. Associated to an easy quantum group G is the easy group K given
by the equality of categories Pg ∩NC= NCk .

According to the easy group classification in Theorem 1.3, there are six cases
to be studied; five of these will be studied in Section 6, and the remaining case,
K = Hn , will be left open.

The reason these cases are separated comes from the question, Do we have
K ⊂ G? In the reminder of this section we will try to answer this question.

We begin with the technical lemma, valid in the general case. Let 3g,3k ⊂ N

be the set of the possible sizes of blocks of elements of Pg,NCk .

Lemma 5.2. Let G and K be as above.

(1) 3k ⊂3g ⊂3k ∪ (3k − 1).

(2) 1 ∈3g implies 1 ∈3k .

(3) If NCk is even, so is Pg.

Proof. We will heavily use the various abstract notions and results in [BS 2009].

(1) The first inclusion follows from NCk ⊂ Pg. The second is equivalent to the
statement, “If b is a block of a partition p ∈ Pg, then there exists a certain block b′

of a certain partition p′ ∈ Pg ∩NC, having size #b or #b− 1.” This then follows
by using the capping method in [BS 2009]. We can cap p with semicircles, so that
b remains unchanged, and we end up with a partition p′ consisting of b and some
extra points, at most one point between any two legs of b, which may or may not
be connected. Since the semicircle capping is a categorical operation, this partition
p′ remains in Pg.

Now by further capping p′ with semicircles, so as to get rid of the extra points,
the size of b can only increase, and we end up with a one-block partition having
size at least that of b. This one-block partition is obviously noncrossing, and by
capping it again with semicircles we can reduce the number of legs up to #b or
#b− 1, and we are done.
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(2) The condition 1 ∈ 3g means that there exists p ∈ Pg having a singleton. By
capping p with semicircles outside this singleton, we can obtain a singleton or a
double singleton. Since both these partitions are noncrossing and have a singleton,
we are done.

(3) Assume that Pg is not even, and consider a partition p ∈ Pg having an odd
number of legs. By capping p with enough semicircles we ensure ending up with
a singleton, and since this singleton is by definition in Pg ∩NC, we are done. �

We are now in position of splitting the classification.

Proposition 5.3. Let G, K be as above.

(1) If K 6= Hn , then K ⊂ G ⊂ K+.

(2) If K = Hn , then S′n ⊂ G ⊂ H+n .

Proof. Recall that the inclusion G ⊂ K+ follows from definitions. For the other
inclusion, we have 6 cases, depending on the exact value of the easy group K :

(1a) K = On . Here 3k = {2}, so by Lemma 5.2(1) we get {2} ⊂ 3g ⊂ {1, 2}.
Moreover, from Lemma 5.2(2), we get 3g = {2}. Thus Pg ⊂ Po, which gives
On ⊂ G.

(1b) K = Sn . Here there is nothing to prove, since Sn ⊂ G by definition.

(1c) K = Bn . Here 3k = {1, 2}, so by Lemma 5.2(1) we get 3g = {1, 2}. Thus we
have Pg ⊂ Pb, which gives Bn ⊂ G.

(1d) K = S′n . Here Pg ⊂ Ps by definition, and by using Lemma 5.2(3) we deduce
that Pg ⊂ Ps′ , which gives S′n ⊂ G.

(1e) K = B ′n . Here 3= {1, 2}, so by Lemma 5.2(1) we get 3g = {1, 2}. This gives
Pg ⊂ Pb, and by Lemma 5.2(3), we get Pg ⊂ Pb′ , which gives B ′n ⊂ G.

(2) K = Hn . Here Pg ⊂ Ps by definition, and by using Lemma 5.2(3) we deduce
that Pg ⊂ Ps′ , which gives S′n ⊂ G. �

With a little more care, one can prove that the easy group K in statement (1) is
nothing but the classical version of G, obtained as dual object to the commutative
Hopf algebra C(G)/I , where I ⊂ C(G) is the commutator ideal.

Statement (2) cannot be improved. The reason is that for the quantum group
H (s)

n with s odd, we have K = Hn , and K 6⊂ G.

6. The nonhyperoctahedral case

We classify the easy quantum groups, under the nonhyperoctahedral assumption
K 6= Hn . Here K is as usual the easy group from Definition 5.1.

We know from Proposition 5.3 that our easy quantum group G appears as an
intermediate quantum group, K ⊂G⊂K+. To classify these intermediate quantum
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groups, we use the method in [Banica and Vergnioux 2009b], where the problem
was solved in the case G = On . For uniformity, we will also include this case.

Definition 6.1. Let p ∈ P(k, l) be a partition, with the points counted modulo k+l
counterclockwise starting from bottom left.

(1) We call semicircle capping of p any partition obtained from p by connecting
with a semicircle a pair of consecutive neighbors.

(2) We call singleton capping of p any partition obtained from p by capping one
of its legs with a singleton.

(3) We call doubleton capping of p any partition obtained from p by capping two
of its legs with singletons.

The semicircle, singleton and doubleton cappings are elementary operations on
partitions that lower the total number of legs by 2, 1 and 2 respectively. There are
k+l possibilities for placing the semicircle or the singleton, and (k+l)(k+l−1)/2
possibilities for placing the double singleton. In the case of semicircle cappings at
left or at right, the semicircle in question is in fact a vertical bar, but we will still
call it semicircle.

The various cappings of p will be generically denoted p′.
Consider now the 5+ 5+ 1 = 11 categories of partitions Px , NCx , Ex , with

x = o, s, b, s ′, b′ described in Sections 1 and 2.

Lemma 6.2. Let p be a partition having j legs.

(1) If p ∈ Po− Eo and j > 4, there exists a semicircle capping p′ ∈ Po− Eo.

(2) If p ∈ Eo−NCo and j > 6, there exists a semicircle capping p′ ∈ Eo−NCo.

(3) If p ∈ Ps −NCs and j > 4, there exists a singleton capping p′ ∈ Ps −NCs .

(4) If p ∈ Pb−NCb and j > 4, there exists a singleton capping p′ ∈ Pb−NCb.

(5) If p ∈ Ps′−NCs′ and j > 4, there exists a doubleton capping p′ ∈ Ps′−NCs′ .

(6) If p ∈ Pb′−NCb′ and j > 4, there exists a doubleton capping p′ ∈ Pb′−NCb′ .

Proof. We write p ∈ P(k, l), so that the number of legs is j = k + l. In the cases
where our partition is a pairing, we use as well the number of strings, s = j/2.

Let us agree that all partitions are drawn to have a minimal number of crossings.
We use the same idea for all the proofs, namely to isolate a block of p having

a crossing, or an odd number of crossings, then to cap p as in the statement, so
this block remains crossing, or with an odd number of crossings. Here we use the
observation that the balancing condition that defines the categories Eo and Eh can
be interpreted as saying that each block has an even number of crossings when the
picture of the partition is drawn so that this number of crossings is minimal.
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(1) The assumption p /∈ Eo means that p has strings having an odd number of
crossings. We fix such a string, and we try to cap p so that this string remains odd
in the resulting partition p′. An examination of all possible pictures shows that this
is possible, provided that our partition has s > 2 strings.

(2) The assumption p /∈ NCo means that p has crossing strings. We fix such a
pair of strings, and we try to cap p so these strings remain crossing in p′. Once
again, looking at all possible pictures shows that this is possible, provided that our
partition has s > 3 strings.

(3) Since p is crossing, we can choose two of its blocks that are intersecting. If
there are some other blocks left, we can cap one of their legs with a singleton, and
we are done. If not, this means that our two blocks have a total of j ′ ≥ j > 4 legs,
so at least one of them has j ′′ > 2 legs. One of these j ′′ legs can always be capped
with a singleton, so the capped partition remains crossing, and we are done.

(4) Here we can simply cap with a singleton, as in (3).

(5)–(6) Here we can cap with a doubleton, by proceeding twice as in (3). �

For a collection of subsets X (k, l)⊂ P(k, l) we denote by 〈X〉⊂ P the category
of partitions generated by X . In other words, the elements of 〈X〉 come from those
of X via the categorical operations for the categories of partitions, which are the
vertical and horizontal concatenation and the upside-down turning. See [BS 2009].

Lemma 6.3. Let p be a partition.

(1) If p ∈ Po− Eo, then 〈p,NCo〉 = Po.

(2) If p ∈ Eo−NCo, then 〈p,NCo〉 = Eo.

(3) If p ∈ Ps −NCs , then 〈p,NCs〉 = Ps .

(4) If p ∈ Pb−NCb, then 〈p,NCb〉 = Pb.

(5) If p ∈ Ps′ −NCs′ , then 〈p,NCs′〉 = Ps′ .

(6) If p ∈ Pb′ −NCb′ , then 〈p,NCb′〉 = Pb′ .

Proof. We use Lemma 6.2 and the observation that the “capping partition” appear-
ing there is always in the good category.

That is, we use that the semicircle is in NCo,NCs′ , the singleton is in NCs,NCb,
and the doubleton is in NCb′ . This observation tells us that, in each of the cases
under consideration, the category to be computed can only decrease when replacing
p by one of its cappings p′. For the singleton and doubleton cappings this is
clear from definitions; for the semicircle capping this is also clear from definitions,
except in the case where the capping semicircle is actually a bar added at left or at
right, where we can use a categorical rotation operation as in [BS 2009].
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(1)–(2) These claims can be proved by recurrence on the number s = (k+ l)/2 of
strings. Indeed, by using Lemma 6.2(1)–(2), for s> 3 we have a descent procedure
s→ s−1, and this leads to the situation s ∈ {1, 2, 3}, where the statement is clear.

(3) We can proceed by recurrence on the number of legs of p. If the number of legs
is j = 4, then p is a basic crossing, and we have 〈p〉 = Ps . If the number of legs
is j > 4 we can apply Lemma 6.2(3), and the result follows from 〈p〉 ⊃ 〈p′〉 = Ps .

(4)–(6) This is similar to the proof of (1)–(2), by using Lemma 6.2(4)–(6). �

Lemma 6.4. Let p be a partition.

(1) If p ∈ Po, then 〈p,NCo〉 ∈ {Po, Eo,NCo}.

(2) If p ∈ Ps , then 〈p,NCs〉 ∈ {Ps,NCs}.

(3) If p ∈ Pb, then 〈p,NCb〉 ∈ {Pb,NCb}.

(4) If p ∈ Ps′ , then 〈p,NCs′〉 ∈ {Ps′,NCs′}.

(5) If p ∈ Pb′ , then 〈p,NCb′〉 ∈ {Pb′,NCb′}.

Proof. This follows by rearranging the results in Lemma 6.3. �

We may now state our main result. We call nonhyperoctahedral any easy quan-
tum group G such that K 6= Hn .

Theorem 6.5. There are exactly 11 nonhyperoctahedral easy quantum groups:

(1) On , O∗n and O+n , the orthogonal quantum groups;

(2) Sn and S+n , the symmetric quantum groups;

(3) Bn and B+n , the bistochastic quantum groups;

(4) S′n and S′+n , the modified symmetric quantum groups;

(5) B ′n and B ′+n , the modified bistochastic quantum groups.

Proof. By Proposition 5.3, we have to classify the easy quantum groups satisfying
K ⊂ G ⊂ K+. More precisely, we have to prove that for K = Sn, Bn, S′n, B ′n there
is no such partial liberation, and that for K =On there is only one partial liberation,
namely the quantum group K ∗ mentioned above. This follows from Lemma 6.4,
via the Tannakian results in [BS 2009]. �

The classification in the hyperoctahedral case seems to be a difficult problem,
which we have to leave open.

7. Laws of characters

We discuss the computation of the asymptotic law of the fundamental character
χ = Tr(u), and of its truncated versions χt =

∑
[tn]
i=1 ui i with t ∈ (0, 1].

These computations, which might seem quite technical, are in fact of great rel-
evance in the general context of representation theory. Given a compact group
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G ⊂Un , or more generally a compact quantum group G ⊂U+n , the main problem
in representation theory is to classify the irreducible representations of G. By the
Peter–Weyl theory, these irreducible representations appear in the tensor powers
u⊗k of the fundamental representation, and they can be in fact identified with the
minimal projections of the algebra End(u⊗k).

The exact computation of End(u⊗k) is generally quite difficult. However, an
easier problem whose answer is generally extremely useful is the computation of
the dimension of this algebra. Since this dimension can be simply obtained by
integrating χ2k , we are led to the fundamental problem of computing the law of χ .

In the quantum group context, the difference between the law of χ and the
corresponding classical result can be quite puzzling. The problem appears for
instance with Sn and S+n , where the law of χ is respectively Poisson with n→∞,
and free Poisson with n ≥ 4. The lack of symmetry was conceptually understood
in [Banica and Collins 2007], where it was shown that the correct invariant to look
at is the law of the truncated character χt , with t ∈ (0, 1].

Definition 7.1. Associated to an easy quantum group G ⊂ U+n is the truncated
character

χt =

[tn]∑
i=1

ui i ,

where u = (ui j ) is the matrix of standard coordinates, and t ∈ (0, 1].

Recall some basic results from [BS 2009]. Let G be an easy quantum group,
and denote by Dk ⊂ P(0, k) the corresponding sets of diagrams, having no upper
points. We define the Gram matrix to be Gkn(p, q)= nb(p∨q), where b( · ) is the
number of blocks. The Weingarten matrix is by definition its inverse, Wkn = G−1

kn .
In order for this inverse to exist, n must be big enough, and the assumption n ≥ k
is sufficient. In the general case the notion of quasiinverse must be used; see
[Collins and Matsumoto 2009] for a detailed discussion.

Theorem 7.2. The Haar integration over G is given by∫
G

ui1 j1 · · · uik jk du =
∑

p,q∈Dk

δp(i)δq( j)Wkn(p, q),

where the δ symbols are 0 or 1, depending on whether the indices fit or not.

Proof. This is proved in [BS 2009], using the idea that the integrals on the left,
taken altogether, form the orthogonal projection on Fix(u⊗k)= span(Dk). �

The Weingarten formula is particularly effective in the classical and free cases,
where complete computations were performed in [BS 2009].

Theorem 7.3. The asymptotic law of χt =
∑
[tn]
i=1 ui i with t ∈ (0, 1] is as follows:
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(1) For On , Sn , Hn and Bn , we get the Gaussian, Poisson, Bessel and shifted
Gaussian laws, which form convolution semigroups.

(2) For O+n , S+n , H+n and B+n we get the semicircular, free Poisson, free Bessel
and shifted semicircular laws, which form free convolution semigroups.

(3) For S′n , B ′n , S′+n and B ′+n we get symmetrized versions of the laws for Sn , Bn ,
S+n and B+n , which do not form classical or free convolution semigroups.

Proof. This is proved in [BS 2009] by using the Weingarten formula and cumulants.
Note that the semigroups in (1) and (2) are in Bercovici–Pata [1999] bijection. �

We should mention that the measures in (3), while not forming semigroups due
to the canonical copy of Z2, which produces a “correlation”, are very close to
forming some kind of semigroup. We come back to this question in our next
papers [Banica et al. 2009a; 2009b].

In the remaining cases, the Weingarten formula is less effective, because count-
ing partitions and their blocks is a delicate task. In the case of half-liberations and
of the hyperoctahedral series we will use instead the projective versions computed
in the previous sections, which reduce the problem to a classical computation.

Definition 7.4. We use the following complex probability measures:

(1) The complex Gaussian law of parameter t > 0 is the law of x + iy, where x
and y are independent Gaussian variables of parameter t .

(2) The s-Bessel law of parameter t > 0 is the law of
∑s

r=1 e2π ir/s xi , where
x1, . . . , xs are independent Poisson variables of parameter t/s.

The complex Gaussian laws are well known to form a convolution semigroup.
The same holds for the s-Bessel laws, and we refer to [Banica et al. 2007a] for a
complete discussion. The “Bessel” terminology comes from the fact that at s = 2,
the density of the corresponding discrete measure on R is given by a Bessel function
of the first kind.

Definition 7.5. Given a complex probability measure µ, we call squeezed version
of it the law of

√
zz∗, where z follows the law µ.

This law doesn’t depend of course on the choice of z.
For example, the squeezed version of the complex Gaussian law of parameter 1

is the Rayleigh law. This is because with z = x + iy, we have zz∗ = x2
+ y2.

Another interesting example, of key relevance in free probability, is the fact that
the squeezed version of Voiculescu’s circular law is Wigner’s semicircle law. See
for example [Nica and Speicher 2006].

Theorem 7.6. The asymptotic law of χt =
∑
[tn]
i=1 ui i with t ∈ (0, 1] is as follows:

(1) For O∗n , we get the squeezed complex Gaussian semigroup.
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(2) For H (s)
n , we get the squeezed s-Bessel semigroup.

Proof. The Weingarten formula shows that the odd moments of the variables in
the statement are all 0, so all computations actually take place over the projective
versions. With this remark in hand, the results simply follow from the well-known
fact that χt is asymptotically complex Gaussian for Un and s-Bessel for H s

n . See
[Banica et al. 2007a]. �

The squeezed s-Bessel laws seem to have a quite interesting combinatorics, but
this is beyond the purposes of this paper. We would like however to present one
such combinatorial statement, in the simplest case, s =∞ and t = 1.

Proposition 7.7. The asymptotic even moments of the character χ ∈C(H∗n ) satisfy

ck =

k−1∑
s=0

(k
s

)(k−1
s

)
cs

and are equal to the number of games of simple patience with n cards.

Proof. This follows from Theorem 7.6, but we will present below a direct proof,
which we found at an early stage of this work. According to the general theory,
the numbers in the statement are given by ck = #Eh(2k), that is, they count the
partitions of {1, . . . , 2k} having the property that each block has the same number
of odd and even legs.

It is convenient to do the following manipulation: We keep the sequence of odd
legs fixed, and we pull downwards the sequence of even legs. In this way, Eh(2k)
becomes the set of partitions between an upper and a lower sequence of k points,
such that each block is balanced in the sense that it has the same number of upper
and lower legs.

Now observe that these partitions can be obtained as follows: pick a number
r ∈ {1, . . . , n}; connect the first point on the upper line to some r − 1 other points
on the upper line; choose r points on the lower line, and connect them to the already
connected upper r points; and finally connect the remaining k− r upper points to
the remaining k− r lower points by means of a balanced partition.

With s= k−r this gives the formula in the statement. For the patience game in-
terpretation, see Aldous and Diaconis [1999] and Sloane’s comments [2008] about
the sequence A023998, which is the sequence of moments of χ . �

For the higher hyperoctahedral quantum group H [s]n , our standard methods sim-
ply do not work. We don’t know if this quantum group produces the squeezed
version of some known semigroup.
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8. Concluding remarks

We have seen in this paper that the easy quantum groups consist in principle of
6 groups, their free versions, 2 half-liberations, and one infinite series still waiting
to be constructed. The construction of this hypothetical multiparameter “hyper-
octahedral series”, and the continuation and completion of our classification work,
are of course the main two questions that we would like to address here.

The situation here, which is unexpectedly complex, brings to mind the algebraic
difficulty and subtlety of the usual complex reflection groups [Broué et al. 1998].

At the level of applications, as explained in the introduction, we intend to use
the easy quantum group list we know of as input for a number of representation
theory and probability considerations; again, we believe that “any result that holds
for Sn and On should have a suitable extension to all easy quantum groups”.

In the noneasy case, there are of course of large number of results, classical
or even free, having something to do with diagrams and with the easy quantum
group technology in general, and that might fall one day into an extension of our
formalism.

Here is a list of topics waiting to be developed:

(1) De Finetti theorems. These are available for Sn, On from the book [Kallenberg
2005], for S+n from [Köstler and Speicher 2009] and then [Curran 2009a], and for
O+n from [Curran 2009b]. We develop a global approach to the problem by using
easy quantum groups in our forthcoming paper [Banica et al. 2009a].

(2) Eigenvalue computations. The key results of Diaconis and Shahshahani [1994]
about Sn, On can also be obtained by using Weingarten functions and cumulants;
this is extended to all easy quantum groups in the preprint [Banica et al. 2009b].

(3) Invariant theory. The groups Sn, On and their versions S+n , O+n , O∗n have served
as a guiding example for the study of many invariants; see [Collins and Śniady
2006; Banica and Collins 2007; Novak 2007; Banica and Vergnioux 2009a; 2009b;
Collins and Matsumoto 2009]. Some of these results are expected to extend to all
easy quantum groups.

(4) Geometric aspects. The groups Sn, On and their free versions S+n , O+n were
also involved in many other “classical versus free” considerations. Let us mention
here the Poisson boundary results in [Vaes and Vergnioux 2007], and the quantum
isometry groups in [Bhowmick and Goswami 2009]. Once again, the easy quantum
groups can lead to some new results here.

(5) Generalizations. One interesting question would be to understand the twisting
and deformation of the easy quantum groups, say with the goal of extending our
formalism to the S2

6= id case, via monoidal equivalence [Bichon et al. 2006].
Another question is whether the half-liberation operation can be applied to locally
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compact real algebraic groups G ⊂ Mn(R), so as to fit into the general axioms in
[Kustermans and Vaes 2000].

In addition to these questions, one basic problem is to classify the intermedi-
ate quantum groups K ⊂ G ⊂ K+, where K is a fixed easy group. This looks
like a quite difficult question; but a possible way forward comes from a conjec-
ture in [Banica et al. 2007c], stating that there is no intermediate quantum group
Sn ⊂ G ⊂ S+n . This is actually a quite subtle question, whose study leads straight
into the core of the “noneasy” problems.
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